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In the current economic climate, law enforcement agencies are facing resource shortages. The effective and efficient use of scarce
resources is therefore of the utmost importance to provide a high standard public safety service. Optimization models specifically
tailored to the necessity of police agencies can help to ameliorate their use.TheMulticriteria Police Districting Problem (MC-PDP)
on a graph concerns the definition of sound patrolling sectors in a police district.The objective of this problem is to partition a graph
into convex and continuous subsets, while ensuring efficiency and workload balance among the subsets. The model was originally
formulated in collaboration with the Spanish National Police Corps. We propose for its solution three local search algorithms: a
Simple Hill Climbing, a Steepest Descent Hill Climbing, and a Tabu Search. To improve their diversification capabilities, all the
algorithms implement a multistart procedure, initialized by randomized greedy solutions. The algorithms are empirically tested
on a case study on the Central District of Madrid. Our experiments show that the solutions identified by the novel Tabu Search
outperform the other algorithms. Finally, research guidelines for future developments on the MC-PDP are given.

1. Introduction

The Police Districting Problem concerns the definition of
soundpatrolling sectors in a police district. An extensive liter-
ature review on this family of problems is given by Camacho-
Collados et al. [1]. The newest member of this family is the
Multicriteria Police Districting Problem (MC-PDP) [1]. The
novelty of this model stands in that it evaluates the workload
associated with a specific patrol sector according to multiple
criteria, such as area, crime risk, diameter, and isolation,
and that it finds a balance between global efficiency and
workload distribution among the agents, according to the
preferences of a decision-maker (i.e., the service coordinator
in charge of the patrolling operations in a police district).
TheMC-PDPwas originally formulated in collaborationwith
the Spanish National Police Corps (SNPC) and it was solved
by means of a fast heuristic algorithm that is capable of
rapidly generating patrolling configurations that are more

efficient than those adopted by the SNPC. When combined
with Predictive Policing methodologies [2], the MC-PDP
allows designing patrolling configurations that focus the
distribution of resources on the most relevant locations,
with a consequential improvement in the effectiveness of
patrolling operations. This is the rationale of the paper
by Camacho-Collados and Liberatore [3] that presented a
Decision Support System (DSS) for the implementation of a
paradigm of Predictive Patrolling in the SNPC.

The contributions of this paper are the following. In
this research we extend the applicability and the quality
of the solutions found by the MC-PDP with the objective
of improving the performance of the DSS for Predictive
Policing. In particular, we tackle one of the major limitations
of the original formulation of the MC-PDP and propose
and compare new heuristic algorithms. More specifically,
the original MC-PDP was formulated to partition a grid. In
this paper we formulate the MC-PDP to generate patrolling
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district on a generic graph, without any assumption on its
topology. This allows for the definition of patrolling configu-
rations using census districts as the atomic unit of patrolling.
As explained by Sarac et al. [4] the use of a structure based
on census districts is desirable as it allows easy access to
demographic data and, at the same time, it is suitable for use
by other agencies. Translating theMC-PDP to a generic graph
requires the definition of an efficient and practical condition
for set convexity that we derive from the classical definition
of convexity in graphs. In terms of solution methodologies,
we propose three local search algorithms for the MC-PDP
on a graph, including a Tabu Search (TS). Thanks to its
ability to escape from local optima and its versatility, the
TS has been successfully applied to a very wide breadth of
contexts and problems, such as parameter optimization [5],
vehicle routing [6], hardware/software partitioning [7], and
job shop scheduling [8]. The MC-PDP is a variant of the
graph partitioning problem. The first application of the TS
to the graph partitioning problem is due to Rolland et al.
[9]. In recent years, the TS has been successfully applied to
this family of problems, either individually or combined with
other approaches [10–14].

The proposed algorithms are extensively tested on a
real dataset based on a case study of the Central District
of Madrid. Their performances are then compared and
analyzed statistically. Finally, the best solutions found by the
algorithms are illustrated and operational insights are drawn.

The remainder of the paper is structured as follows. The
following section presents a review of the most relevant
contributions to the literature. In Section 3 we formulate the
MC-PDP for a generic graph and propose a methodology
to deal with the problem of partitioning a generic graph
into convex blocks. Next, we present in detail the local
search algorithms developed for the solution of the models.
In Section 5 we explain the dataset and the computational
experiments run to test the algorithms. Also, we analyze
the results and provide insights on the solutions obtained.
Finally, we conclude the paperwith some guidelines for future
research.

2. Related Work

In his seminal work, Mitchell [15] proposes a clustering
heuristic for the redesign of patrol beats in Anaheim, Califor-
nia. The underlying optimization model considers both the
total expected weighted distance to incidents and a workload
measure defined as the sum of the expected service and travel
time. A different approach is presented by Bodily [16] that
adopts a utility theory model that takes into consideration
the preferences of the citizens, the administrators, and the
service personnel. The problem is solved by means of a local
search algorithm that explores the solution space by swapping
elements between the sectors. Benveniste [17] includes for the
first time workload equalization criteria.The final model was
nonlinear and stochastic in nature and was solved by means
of an approximation algorithm. D’Amico et al. [18] propose
a simulated annealing algorithm. The solutions identified by
the search algorithm are evaluated by an external software
program, PCAM [19, 20], that calculates sector workloads.

The external routine is based on a queuing model that
computes relevant statistics regarding a sector, including the
optimal number of cars to be allocated. Equity in terms of
area to be patrolled is enforced in the model by constraining
the ratio of the size of the largest and the smallest sectors.
A simpler approach is presented by Curtin et al. [21] that
tackle the problem of partitioning a police district by using
a covering model that maximizes the number of incidents
that are close to the centers of the sectors. Five years later,
the authors extend their approach [22] and include backup
coverage (e.g., multiple coverage of high priority locations).
Finally, Zhang and Brown [23] propose a heuristic algorithm
for the generation of districting, evaluated using an agent-
based simulation model. The MC-PDP [1, 3] differs from
those proposed so far in the literature in a number of relevant
aspects:

(i) It focuses on crime prevention rather than detention.
For this reason it does not consider the emergency
calls but it is based on a crime risk estimation. (The
crime risk estimation can be obtained by a Predictive
Policing model, as illustrated by the authors in [3].)
Previous approaches [18, 23] optimize the reaction
time to crime incidents, that is, crimes that have
already happened.

(ii) It optimizes at the same time attributes of area, crime
risk, compactness, and support. In particular, mutual
support is a novel attribute that differs from backup
coverage [22] in that the former regards the possibility
of receiving backing in any point of the patrol sector
from any other agent in the district, while the latter
only concerns the overlapping areas between patrol
sectors.

(iii) It considers the decision-maker’s preferences in the
objective function. In the formulation proposed by
D’Amico et al. [18], the users can specify their prefer-
ences only by adjusting the righthand side coefficients
in the constraints, while, in the models presented by
Curtin et al. [21, 22], no user preference is considered.

(iv) It requires a limited amount of data to function,
while all the approaches previously presented in the
literature require specific information, such as the
time, location, and service time of incidents and
emergency calls, whichmight not be available. For the
same reason, these methodologies do not take into
consideration, and hence they cannot be extended
to, all the nonviolent crimes that are not reported by
emergency calls, such as pickpockets, theft of vehicles,
or property damage.

In this paper we extend the first formulation of the
MC-PDP [1, 3], solving the problem on a generic graph
rather than on a grid. This improvement allows for the
definition of patrolling configurations using census districts
as the atomic unit of patrolling which results in an increased
operationality of the patrolling configurations designed by
the problem, a simpler access to demographic data, and favors
communication with other agencies. To translate the MC-
PDP into a generic graph we devised a definition of set
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convexity specifically tailored to the structure of the problem.
In terms of methodology, we propose and compare three
local search algorithms that are capable of generating good
patrolling configurations in a short time. In fact, the MC-
PDP has been designed to be included in a Decision Support
System. Therefore, the ability of generating good patrolling
configurations in a short time is of primary importance. In
Section 5 we show that the solutions obtained by two of the
new algorithms outperform those of the former approach.
All these improvements greatly enhance the realism, appli-
cability, and effectiveness of the MC-PDP, compared to the
previous formulation and solution methodology [1, 3].

The MC-PDP is also related to another family of prob-
lems, namely, the Convex 𝑝-Partition Problem. The Convex
𝑝-Partition Problem concerns the partition of a graph into
𝑝 convex subgraphs. Research on the decision form of the
problem is extremely recent and the first contributions on
the topic are due to Artigas et al. In two subsequent articles
[24, 25] the authors prove that the problem of deciding if a
graph can be partitioned into 𝑝 convex subgraphs is NP-
complete in general and polynomial for cographs. In recent
years, it has been shown that this problem is also polynomial
for bipartite graphs for all 𝑝 ≥ 2 [26], and for planar graphs
when𝑝 = 2 [27]. However, determiningwhether the problem
is polynomial for planar graph and 𝑝 ≥ 3 (which is the
premise of the MC-PDP) is still an open question.

So far, the research on the problem has focused primarily
on its decision form (meaning establishing whether a graph
can be partitioned into convex subsets). To the best of the
authors’ knowledge, the literature has a lack of models that
tackle the problem of optimizing convex partitions, that is,
partitioning a graph into convex subgraphs while optimizing
an objective function or a set of criteria. In fact, optimiza-
tion of convex partitions is a prerogative of the districting
problem, a special case of the graph partitioning problem
to which the MC-PDP belongs, and most of the research
in the area focused on proposing metrics of convexity for
districting problems (see, e.g., [28–30]). With respect to the
Police Districting Problem, the only model that includes
a measure of graph convexity in the optimization process,
apart from the MC-PDP, is that proposed by D’Amico et al.
[18]. However, the authors recognize that their definition of
convexity “is somewhat unclear.” In fact, instead of relying on
the formal definition of convexity as we do for the MC-PDP,
they consider a set of feasibility constraints that, according
to the authors, should ensure convexity in the final solution.
Nonetheless, the constraints seem to be rather arbitrary and
no formal proof is given.

In the following section we formulate the MC-PDP for a
generic graph and propose a methodology to deal with the
problem of partitioning a generic graph into convex subsets.

3. The Multicriteria Police Districting
Problem on Graph

The MC-PDP concerns the design of patrol sector config-
urations that are efficient and that distribute the workload
homogeneously among the police officers. A solution to

the MC-PDP defined on graph 𝐺 = (𝑁, 𝐸) is partition
𝑃 of set of nodes 𝑁. Each block 𝐴 ∈ 𝑃 of the partition
is a connected subset of the node set and represents a
patrol sector. Therefore, from this point onward the terms
“partition block,” “patrol sector,” and “sector” will be used
interchangeably. The MC-PDP requires the partition blocks
to be convex. This condition has been introduced to ensure
that all the patrol sector would be intrinsically efficient; that
is, the agent can move within the sector always following the
shortest path. Finally, the number of subsets in the partition
must be exactly 𝑝. The formal elements of the model are
presented in the following.

3.1. Data and Properties. Wedefine theMC-PDP on a generic
graph𝐺 = (𝑁, 𝐸), with𝑁 being the set of nodes and 𝐸 the set
of edges. For each node 𝑖 ∈ 𝑁 the following data is required:

(i) 𝑎
𝑖
∈ R
≥0
: total length of the streets to be patrolled at

node 𝑖 ∈ 𝑁.
(ii) 𝑟
𝑖
∈ R
≥0
: risk of crime at node 𝑖 ∈ 𝑁.

Also, each edge (𝑖, 𝑗) ∈ 𝐸 is characterized by the following:
(i) 𝑙
𝑖𝑗
∈ R
≥0
: length of edge (𝑖, 𝑗) ∈ 𝐸.

Finally, 𝑝 ∈ N
≥2

is the number of patrolling sectors to be
defined.

Additionally, on the set of nodes 𝑁 and all of its subsets
𝑁
󸀠
⊆ 𝑁 we define the following operations:
(i) 𝑑
𝑖,𝑗
(𝑁
󸀠
): shortest path distance between nodes 𝑖, 𝑗 ∈

𝑁
󸀠 computed using only the nodes in 𝑁

󸀠. This
distance is calculated considering the length of the
edges in the path.

(ii) 𝑑1
𝑖,𝑗
(𝑁
󸀠
): shortest edge distance between nodes 𝑖, 𝑗 ∈

𝑁
󸀠 computed using only the nodes in 𝑁

󸀠. This
distance is calculated considering exclusively the
number of edges in the path.

Given a node subset𝑁󸀠 ⊆ 𝑁, the shortest distances between
all the nodes are obtained using the Floyd-Warshall algorithm
[31, 32]. The algorithm is initialized with 𝑙

𝑖𝑗
for 𝑑
𝑖,𝑗
(𝑁
󸀠
),

and with the adjacency matrix for 𝑑1
𝑖,𝑗
(𝑁
󸀠
). Other relevant

properties defined on the set of nodes𝑁 and all of its subsets
𝑁
󸀠
⊆ 𝑁 are as follows:
(i) ⊘
𝑁
󸀠 : diameter of subset 𝑁

󸀠. The diameter is the
maximum distance between two nodes belonging to
𝑁
󸀠; that is, ⊘

𝑁
󸀠 = max

𝑖,𝑗∈𝑁
󸀠𝑑
𝑖,𝑗
(𝑁
󸀠
).

(ii) 𝑐
𝑁
󸀠 : center of subset 𝑁󸀠. We define the center of a

subset of nodes𝑁󸀠 ⊆ 𝑁 as the node belonging to the
subset that minimizes the maximum risk-weighted
distance to all the other nodes in the subset. In
case of ties, the node that minimizes the sum of the
risk-weighted distances is chosen. In summary, 𝑐

𝑁
󸀠 =

arg Lexmin
𝑖∈𝑁
󸀠(max

𝑗∈𝑁
󸀠𝑟
𝑗
𝑑
𝑖,𝑗
(𝑁
󸀠
), ∑
𝑗∈𝑁
󸀠 𝑟𝑗𝑑𝑖,𝑗(𝑁

󸀠
)),

where Lex stands for lexicographic optimization (i.e.,
hierarchical optimization) of the two objectives. We
consider risk-weighted distances as we assume that
the agents should spend more time patrolling the
nodes having greater risk.
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3.2. Patrol Sector Attributes and Workload. The MC-PDP
evaluates the patrol sectors defined by a partition according
to fourmain attributes: area, isolation, demand, and diameter.
All the attributes, explained in the following, are expressed as
dimensionless ratios, so as to be comparable.

(i) Area, 𝛼𝐴. This attribute is a measure of the size of the
territory that an agent should patrol. It is expressed as the
ratio of the area encompassed by patrol sector𝐴 to the whole
district area:

𝛼
𝐴
=

∑
𝑖∈𝐴

𝑎
𝑖

∑
𝑖∈𝑁

𝑎
𝑖

. (1)

(ii) Isolation, 𝛽𝐴. In the MC-PDP, two patrol sectors support
each other if the distance between their centers is less than or
equal to a defined constant,𝐾.The value of𝐾 can be provided
by an expert. Alternatively, for the MC-PDP on graph we
recommend the following:

𝐾 =
⊘
𝑁

2√𝑝
; (2)

that is, we suggest 𝐾 to be set equal to the total diameter of
the graph divided by twice the square root of the number of
subsets to be defined. The support received by a patrol sector
can be calculated by

𝑏
𝐴
=
󵄨󵄨󵄨󵄨󵄨
{𝐵 ∈ 𝑃 | 𝑑

𝑐
𝐴
𝑐
𝐵

(𝑁) ≤ 𝐾, 𝐴 ̸= 𝐵}
󵄨󵄨󵄨󵄨󵄨
; (3)

that is, the support 𝑏𝐴 is equal to the number of sectors whose
centers are within a distance of 𝐾 from the center of the
currently considered subset.Therefore, the isolation of sector
𝐴 is computed as

𝛽
𝐴
=
𝑝 − 1 − 𝑏

𝐴

𝑝 − 1
. (4)

(iii) Risk, 𝛾𝐴. This attribute is a measure of the total risk
associated with the sector that an agent patrols. It is expressed
as the ratio of the total risk of sector 𝐴 to the whole district
risk:

𝛾
𝐴
=

∑
𝑖∈𝐴

𝑟
𝑖

∑
𝑖∈𝑁

𝑟
𝑖

. (5)

(iv) Diameter, 𝛿𝐴. The diameter has been introduced in the
MC-PDP as an efficiency measure. In fact, the diameter
can be interpreted as the maximum distance that the agent
associated with the sector would have to travel in case of an
emergency call. Therefore, a small diameter results in a low
response time.Thediametermeasure used to evaluate a patrol
sector is the ratio of the subset diameter to the diameter of the
graph, that is, the maximum possible diameter:

𝛿
𝐴
=

⊘
𝐴

⊘
𝑁

. (6)

The decision-maker can express their preference on each
attribute by defining a normalized vector of weights w ∈ R4.
By linearly combining the attributes with preference weights
w we can compute a measure of workload 𝑊

𝐴 of a sector 𝐴
as

𝑊
𝐴
= 𝑤
𝛼
⋅ 𝛼
𝐴
+ 𝑤
𝛽
⋅ 𝛽
𝐴
+ 𝑤
𝛾
⋅ 𝛾
𝐴
+ 𝑤
𝛿
⋅ 𝛿
𝐴
. (7)

3.3. Objective Function. The objective of the MC-PDP is to
generate patrolling configurations that are efficient and, at
the same time, that distribute the workload homogeneously
among the patrol sectors. The objective function of the MC-
PDP takes into consideration the preferences of the decision-
maker for these factors by introducing coefficient 𝜆 ∈ R,
0 ≤ 𝜆 ≤ 1, that expresses the decision-maker’s preference
between optimization and workload balance:

obj (𝑃) = 𝜆 ⋅max
𝐴∈𝑃

{𝑊
𝐴
} + (1 − 𝜆) ⋅

∑
𝐴∈𝑃

𝑊
𝐴

𝑝
. (8)

The term max
𝐴∈𝑃

{𝑊
𝐴
} represents the worst workload, while

the term ∑
𝐴∈𝑃

𝑊
𝐴
/𝑝 is the average workload. This objective

function allows the decision-maker to examine the trade-off
between optimization and balance by a parametric analysis.
In fact, by varying 𝜆, the model gives a range from optimiza-
tion (𝜆 = 0) to balance (𝜆 = 1).

3.4. Problem Formulation. We can now present a mathemat-
ical formulation for the MC-PDP:

min obj (𝑃) (9)

s.t. 0 ∉ 𝑃 (10)

⋃

𝐴∈𝑃

𝐴 = 𝑁 (11)

𝐴 ∩ 𝐵 = 0 ∀𝐴, 𝐵 ∈ 𝑃 | 𝐴 ̸= 𝐵 (12)

|𝑃| = 𝑝 (13)

Conn (𝐴) = 1 ∀𝐴 ∈ 𝑃 (14)

Conv (𝐴) = 1 ∀𝐴 ∈ 𝑃. (15)

The model optimizes the objective function (8). Con-
straints (10)–(12) represent the conditions held by partition 𝑃
defined on𝑁; that is,𝑃 should not contain the empty set 0 (10)
and the partition blocks cover𝑁 (11) and are pairwise disjoint
(12). Restriction (13) concerns the partition cardinality and
enforces the number of partition blocks to be exactly 𝑝.
Conditions (14) and (15) regard the geometry of the patrol
sectors. In fact, Conn(𝐴) is an indicator function that equals
1 when 𝐴 is connected and zero otherwise, and Conv(𝐴) is
an indicator function that equals 1 when 𝐴 is convex and
zero otherwise. The model establishes that only connected
partition blocks are feasible. This condition implies that an
agent cannot be assigned to patrol sectors composed of two or
more separate areas of the city. Furthermore, all the partition
blocks are required to be convex. When a subset is convex,
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procedure 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝑃
0
)

𝑃
*
← 𝑃
0
; {Initialize the best solution found to the initial solution.}

𝑡 ← 0;
while ¬𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎() do
𝑃
𝑡+1

← 𝑆𝑒𝑙𝑒𝑐𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑃
𝑡
); {Select a neighboring solution.}

if 𝑃
𝑡+1

better than 𝑃
* then

𝑃
*
← 𝑃
𝑡+1

; {Save the best solution found so far.}
end if
𝑡 ← 𝑡 + 1; {Increase the iteration counter.}

end while
return 𝑃

*;
end procedure

Algorithm 1: Local search algorithm pseudocode.

it is also optimally efficient in terms of distance between
the points. In fact, in a convex subset there is a minimal
shortest path connecting any pair of points. Therefore, this
condition allows for the generation of patrol sectors that are
more efficient in terms of movement inside of the area. In the
following, we illustrate more in detail the concept of graph
convexity.

3.5. A Note on Graph Convexity and on Convex Graph
Partitioning. Let 𝐺 = (𝑁, 𝐸) be a finite simple graph. Let
𝐴 ⊆ 𝑁, its closed interval 𝐼[𝐴] being the set of all nodes lying
on shortest paths between any pair of nodes of 𝐴. The set 𝐴
is convex if 𝐼[𝐴] = 𝐴. In this work, the following equivalent
condition is applied:

𝑑
1

𝑖,𝑗
(𝐴) = 𝑑

1

𝑖,𝑗
(𝑁) ∀𝑖, 𝑗 ∈ 𝐴 ⇐⇒ Conv (𝐴) = 1. (16)

Lemma 1. Equation (16) is a proper condition for set convexity.

Proof. Let𝐴 be a nonconvex set. It follows from the definition
that 𝐼[𝐴] ̸= 𝐴. Let us consider nodes 𝑖, 𝑗 ∈ 𝐴 and node 𝑘 ∈ 𝑁

such that 𝑘 ∈ 𝐼[𝐴] and 𝑘 ∉ 𝐴. It follows that 𝑑1
𝑖,𝑗
(𝐴) > 𝑑

1

𝑖,𝑗
(𝑁).

In fact, if it were that 𝑑1
𝑖,𝑗
(𝐴) = 𝑑

1

𝑖,𝑗
(𝑁) then 𝑘 would need to

belong to 𝐴. Now let 𝐴 be a convex set. It follows from the
definition that 𝐼[𝐴] = 𝐴. More specifically, all the nodes lying
on the shortest path in 𝑖, 𝑗 ∈ 𝐴 also belong to 𝐴. It follows
that, necessarily, 𝑑1

𝑖,𝑗
(𝐴) = 𝑑

1

𝑖,𝑗
(𝑁).

Artigas et al. [25] prove that the problem of deciding
if a graph can be partitioned into 𝑝 ≥ 2 convex sets
is NP-complete. As we do not make any assumption on
graph 𝐺, convexity for all the patrol sectors could not always
be possible. In order to always obtain a solution, we relax
constraint (15) and penalize its violation in the objective
function by means of a Lagrange multiplier. The resulting
program is

min obj (𝑃) = obj (𝑃) + 𝜇∑

𝐴∈𝑃

(1 − Conv (𝐴)) (17)

s.t. (10) , (11) , (12) , (13) , and (14) . (18)

Coefficient 𝜇 is the Lagrange multiplier associated with
the convexity constraint (15).We suggest setting𝜇 > 1. In fact,

as obj(𝑃) ≤ 1, setting 𝜇 > 1 translates into always preferring
a convex graph partition over a nonconvex one, regardless of
the value of obj(𝑃).

4. Local Search Methods for the MC-PDP

Local search algorithms move from solution to solution
in the space of candidate solutions (the search space) by
applying local changes, until certain termination criteria are
satisfied: for example, a solution deemed optimal is found or
a time bound is elapsed. One of the main advantages of local
search algorithms is that they are anytime algorithms, which
means that they can return a valid solution even if they are
interrupted at any time before they end. For this reason, they
are often used to tackle hard optimization problems in a real-
time environment, such as the MC-PDP. All the local search
algorithms proposedmake use of the same solution structure:

𝑃 = {𝑑
1
, 𝑑
2
, . . . , 𝑑

|𝑁|
} , (19)

where 𝑑
𝑖
∈ [1, 𝑝], ∀𝑖 = 1, . . . , 𝑁. In summary, a solution

is a vector of |𝑁| elements, one for each node in the graph,
that can take any value from one to 𝑝, that is, the number
of patrolling sectors. A generic pseudocode for a local search
algorithm is presented in Algorithm 1.

The procedure starts the search from a given initial
solution 𝑃

0
and it iteratively moves to a solution belonging

to the neighborhood of the incumbent one, until certain
termination criteria are met. The neighborhood of a solution
is the set of solutions that can be obtained from the current
one by changing it slightly. In this research, we consider
all the solutions that can be obtained by removing a node
from a patrol sector and assigning it to another one, without
violating constraints (10)–(14). Different implementations
of 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎() and 𝑆𝑒𝑙𝑒𝑐𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟() result in
different local search algorithms. The characteristics of the
algorithms developed in this research are presented in the
following.

Simple Hill Climbing. At each iteration, the Simple Hill
Climbing (SHC) algorithm [33] explores the neighborhood
of the incumbent solution to find a better one. In our SHC,
𝑆𝑒𝑙𝑒𝑐𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝑃

𝑡
) procedure explores the neighborhood
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procedure 𝑀𝑢𝑙𝑡𝑖𝑆𝑡𝑎𝑟𝑡()

while ¬𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑎() do
𝑃 ← 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(); {Generate an initial solution.}
𝑃
󸀠
← 𝐿𝑜𝑐𝑎𝑙𝑆𝑒𝑎𝑟𝑐ℎ(𝑃); {Improve the current solution.}

if 𝑃󸀠 better than 𝑃
* then

𝑃
*
← 𝑃
󸀠; {Save the best solution found so far.}

end if
end while
return 𝑃

*;
end procedure

Algorithm 2: Multistart pseudocode.

of partition 𝑃
𝑡
in a random fashion and returns the first

improving solution found.The algorithm terminateswhen no
improving solution is found or the time limit is exceeded.

Steepest Descent Hill Climbing. The Steepest Descent Hill
Climbing (SDHC) algorithm [33] is a variant of the SHC that
explores the whole neighborhood of the incumbent solution
and chooses the best solution belonging to it.This is the same
algorithm originally proposed for the solution of the MC-
PDP [1].

Tabu Search. Similarly to the SDHC, the Tabu Search (TS)
algorithm [34, 35] explores the whole neighborhood of the
incumbent solution. However, the TS chooses for the next
iteration the best solution found that is not tabu. Also, the TS
does not terminate if an improving solution is not found.This
allows the algorithm to escape local optima. The criterion
that is used to declare a certain point of the neighborhood
as tabu is based on a short-term memory. At each iteration,
the TS presented in this paper stores the current solution in
the short-termmemorywith an associated expiration counter
initially set to 𝑇. During the exploration of a neighborhood
all the solutions found that are already included in the
short-term memory are marked as tabu and their expiration
counter is reset to 𝑇. Finally, at the end of the iteration, all the
expiration counters are decreased by one and the solutions
whose counters have reached zero are removed from the
short-term memory.

The algorithm terminateswhen the time limit is exceeded,
when no nontabu solution is found in the current neighbor-
hood, or after a fixed number 𝐼 of nonimproving iterations.
We suggest setting parameters 𝑇 and 𝐼 to the cardinality of
the node set; that is, 𝑇 = 𝐼 = |𝑁|.

4.1. Multistart Local Search Algorithms. Local search meth-
ods are very good at exploring certain zones of the solution
space but they generally end up in local optima. Multistart
is a very simple and general diversification method. In order
to better explore distant portions of the solution space the
search is started more than one time from different points.
The pseudocode of a multistart procedure is illustrated in
Algorithm 2.

The procedure alternates a solution generation procedure
with a local search step, until the time limit is exceeded.

Begin

Termination
criteria?

No

InitialSolution

LocalSearch

Solution
improvement

test

Yes End

SHC

SDHC

TS

Figure 1: Algorithm flow-chart.

Generating an Initial Solution. To generate an initial solution
at each iteration of the multistart algorithm, we use the
random greedy algorithm proposed in Camacho-Collados
et al. [1], adapted to work on a generic graph. In summary,
the algorithm generates a solution by randomly choosing the
first node of each sector and then expanding the sectors in a
greedy fashion while preserving their connectivity. Initially,
the partition blocks are empty. In the first phase of the
algorithm, each block is initialized with a randomly chosen
node. Subsequently, at each iteration of the second phase, the
algorithm extends the initial solution by assigning a node
to a single sector. The algorithm chooses the combination
of node and sector that results in the best feasible solution.
The algorithm ends when all the points have been assigned to
subsets. It is important to notice that, in the current version of
the algorithm, the solutions are evaluated by using the relaxed
objective function (17).

Complete Algorithm Structure. Figure 1 illustrates the flow-
chart of the complete multistart algorithm. First, an initial
solution is generated using the aforementioned random
greedy algorithm. Second, the solution is improved by means
of local search. The local search algorithm could be either
SHC, SDHC, or TS. Finally, the incumbent solution is
comparedwith the best found that is updated if required.This
sequence of steps is repeated until the termination criteria are
met, the algorithm terminates, and the best solution found is
returned.

5. Results and Discussion

5.1. Dataset. We test our algorithms on the Central District
of Madrid dataset presented in Camacho-Collados et al. [1].
However, in this research the data is aggregated with respect
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Figure 2: Census districts in theCentral District ofMadrid (in gray)
and the corresponding graph (in black).

to the census district rather than a grid. As reported by Sarac
et al. [4] the use of a structure based on census districts
is preferable as it allows easy access to demographic data
and is suitable for use by other agencies. Figure 2 shows
the subdivision of the territory and the associated graph.
The borders of the census districts are plotted in gray. The
nodes of the graph, identified by black bullets, correspond
to the centroids of the census districts. Finally, black lines
represent the edges of the graph that connect neighboring
census districts. Overall, the graph is comprised of 111 nodes
and 277 edges. The total length of the streets at each node,
𝑎
𝑖
, is obtained by summing the length of the parts of street

contained within the borders of each census district. The
length of each edge, 𝑙

𝑖𝑗
, is computed as the great-circle

distance between the nodes. In terms of the risk of crime at
each node, 𝑟

𝑖
, we consider the thefts that occurred during the

following shifts:

(i) SATT3: Saturday, 10/13/2012, night shift (10 PM–
8AM).

(ii) SUNT1: Sunday, 10/14/2012, morning shift (8AM–
3 PM).

(iii) MONT2: Monday, 10/15/2012, afternoon shift (3 PM–
10 PM).

These shifts have been identified by a service coordinator in
charge of the patrolling operations of the Central District
of Madrid as typical scenarios representing different crime
activity patterns, as illustrated in Figure 3. In the SATT3
shift the district is characterized by a high level of nightlife;
therefore thefts are committed in almost all the territory, with
the highest levels distributed around popular meeting places
in the center and in the northeast of the district. SUNT1 has
a low level of criminality, mostly concentrated in the south of
the district where a popular flea market is held every Sunday
morning. Finally, MONT2 presents the characteristics of a
normal business day, with criminal activity spread in the

central area of the territory, which is where the commercial
activities are located.

5.2. Computational Experiments. We now present and ana-
lyze the solution values obtained by the heuristic algorithms
presented. It is important to notice that all the algorithms
(i.e., SHC, SDHC, and TS) implement the multistart method;
that is, the local search algorithms are repeatedly run starting
from a different randomly generated solution, until the global
termination criteria are met. For the sake of consistency,
the experiments have been run using the same parameters
adopted in previous researches on the subject [1, 3]:

(i) Decision-maker preference weights and balance coef-
ficient: (𝑤

𝛼
, 𝑤
𝛽
, 𝑤
𝛾
, 𝑤
𝛿
) = (0.45, 0.05, 0.45, 0.05) and

𝜆 = 0.1. These values have been provided by a service
coordinator in charge of the patrolling operations of
the Central District of Madrid as their preference.

(ii) Number of patrol sectors: 𝑝 = {2, 6}. On an “average
day,” the Central District of Madrid is either split
into two big sectors or partitioned according to its six
neighborhoods.

(iii) The parameters of the TS algorithm have been set as
𝑇 = 𝐼 = 111, as the graph is comprised of 111 nodes.

Given the random nature of the algorithms proposed, we ran
each combination of algorithm, shift, and number of patrol
sectors 50 times. Each run had a time limit of 60 seconds, to
simulate the real-time environment of DSS.The experiments
were run on a computer with an Intel Core i5-2500K CPU
having four cores at 3.30GHz and 4GBRAM memory and
the algorithms were programmed in C++.

Tables 1(a)–1(f) show the average relaxed objective func-
tion value, obj(𝑃), and the corresponding standard deviation
for each group. In the tables, the rows correspond to the
algorithm and the best average solution value is highlighted
in bold. Please note that a solution value that is less than
one indicates that the solution is feasible with respect to the
convexity constraints (15). From the tables we can observe
that on average the TS algorithm finds the best solution in
four out of six groups and the SDHC in the remaining two
groups.

For the sake of reproducibility and comparison with
future contributions to the subject, the average number of
multistart iterations (The number of solutions explored in
a full local search run depends exclusively on the initial
solution and, in the case of the SHC, on the neighborhood
exploration order which is random. Therefore, the only
metric that fully depends on the capabilities of themachine is
the number ofmultistart iterations. Reporting its value allows
for comparisons between runs on different machines.) and
the corresponding standard deviations are provided in Tables
2(a)–2(f).

5.3. Statistical Analysis. As a first step, we verify that the
solution values are normally distributed by using the Shapiro-
Wilk test. The results are shown in Table 3. As all the 𝑝

values are greater than the chosen alpha level, 0.05, the null



8 Mathematical Problems in Engineering

(a) SATT3 (b) SUNT1

(c) MONT2

Figure 3: Maps of the number of thefts reported in the Central District of Madrid. The red shade represents a high crime level while the
white shade represents no criminal activity.

hypothesis that the solution values are normally distributed
cannot be rejected. To understand if the differences in the
means are statistically significant we can now run one-way
ANOVA tests. The results are illustrated in Table 4.

We highlighted in bold the rows of the groups where a
significant difference was detected. We can immediately see
that there is no significant difference in the groups where
the SDHC algorithm was the best. We run post hoc Tukey’s
tests to understand more in detail which algorithm performs
better for the solution of theMC-PDP. Tukey’s test is a single-
step multiple comparison procedure used to find means that
are significantly different from each other and that is more
suitable for multiple comparisons than doing a number of
𝑡-tests would be. The results are illustrated in Tables 5(a)–
5(f). In the tables, the rows are associated with the pairs of

algorithms being tested. We highlighted in bold the rows
showing a significant difference. From the results of the
statistical tests we can draw the following conclusions:

(i) The performances of the SHC and the SDHC in terms
of solutions’ objective function values are always
identical, except for shift SATT3 with six patrol
sectors, where the SDHC produces solutions that are
significantly better than those of the SHC.

(ii) The TS produces on average better solutions in four
out of six groups, and its performances are not
worse than those of the other two algorithms in the
remaining two groups. Therefore, we can claim that
it is preferable to use the TS over the SHC and the
SDHC.
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Table 1: Average relaxed objective function value, obj(𝑃), and
standard deviation for each group.

(a) Shift SATT3, 𝑝 = 2

Algorithm Avg. St. Dev.
SHC 0.50109 0.00435
SDHC 0.49997 0.00413
TS 0.53567 0.19831

(b) Shift SATT3, 𝑝 = 6

Algorithm Avg. St. Dev.
SHC 0.20720 0.00342
SDHC 0.20498 0.00313
TS 0.20146 0.00513

(c) Shift SUNT1, 𝑝 = 2

Algorithm Avg. St. Dev.
SHC 0.50456 0.01000
SDHC 0.50651 0.01277
TS 0.49101 0.00473

(d) Shift SUNT1, 𝑝 = 6

Algorithm Avg. St. Dev.
SHC 0.20619 0.00315
SDHC 0.20594 0.00328
TS 0.20161 0.00384

(e) Shift MONT2, 𝑝 = 2

Algorithm Avg. St. Dev.
SHC 0.50381 0.00608
SDHC 0.50067 0.00656
TS 0.51948 0.14180

(f) Shift MONT2, 𝑝 = 6

Algorithm Avg. St. Dev.
SHC 0.20350 0.00469
SDHC 0.20336 0.00498
TS 0.19729 0.00620

5.4. Solution Analysis. Figures 4(a)–4(f) illustrate the best
solutions found for each shift and number of patrol sectors
in terms of relaxed objective function value. All the solutions
have been identified by the TS. In the figures, the borders of
the census districts have been plotted in black, the streets have
been plotted in gray, and each patrol sector is represented by
a different color. By observing the patrolling configurations
some insights can be drawn:

(i) SATT3: police activity is focusedmostly on the center,
as well as on the northeast part of the district, where
most of the crimes are committed. The reason for
that is that those areas are very busy nightlife meeting
places.

(ii) SUNT1: the patrolling configurations concentrate on
the southern part of the territory, where most of
the thefts happen on Sunday morning because of

Table 2: Average number ofmultistart iterations and corresponding
standard deviation for each group.

(a) Shift SATT3, 𝑝 = 2

Algorithm Avg. St. Dev.
SHC 65.88 8.73800
SDHC 70.04 8.90531
TS 5.15094 0.36142

(b) Shift SATT3, 𝑝 = 6

Algorithm Avg. St. Dev.
SHC 64.54 10.44951
SDHC 55.7 10.12826
TS 6.58 0.73095

(c) Shift SUNT1, 𝑝 = 2

Algorithm Avg. St. Dev.
SHC 57.74 7.01546
SDHC 53.54 7.25121
TS 5.68 0.68333

(d) Shift SUNT1, 𝑝 = 6

Algorithm Avg. St. Dev.
SHC 92.54 15.46188
SDHC 54.66 7.85223
TS 5.38 0.49031

(e) Shift MONT2, 𝑝 = 2

Algorithm Avg. St. Dev.
SHC 62.44 8.68769
SDHC 59 7.65522
TS 5.3 0.46291

(f) Shift MONT2, 𝑝 = 6

Algorithm Avg. St. Dev.
SHC 80.02 11.29654
SDHC 63.26 11.74875
TS 11.02 0.99980

the popular flea market. In the six patrol sectors’
configuration we can see that one sector is dedicated
exclusively to the area with the highest concentration
of crimes that corresponds exactly to the location of
the flea market.

(iii) MONT2: the district is uniformly partitioned
between northeast and southwest. The configuration
with six patrol sectors assigns higher importance to
the central-western part of the district, corresponding
to the commercial area.

6. Conclusions

In this paper we extended the MC-PDP to generate efficient
convex partitions on generic graphs, which increases the
practical usefulness and applicability of the model. Also, we
propose and compare three local search algorithms and test
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Table 3: Values of Shapiro-Wilk test statistics and corresponding 𝑝
value for each group.

(a) Shift SATT3, 𝑝 = 2

Algorithm Statistic𝑊 𝑝 value
SHC 0.97584 0.06277
SDHC 0.98543 0.3412
TS 0.98595 0.3707

(b) Shift SATT3, 𝑝 = 6

Algorithm Statistic𝑊 𝑝 value
SHC 0.96566 0.1534
SDHC 0.97822 0.4797
TS 0.95943 0.08413

(c) Shift SUNT1, 𝑝 = 2

Algorithm Statistic𝑊 𝑝 value
SHC 0.98348 0.2456
SDHC 0.97758 0.08592
TS 0.98024 0.1387

(d) Shift SUNT1, 𝑝 = 6

Algorithm Statistic𝑊 𝑝 value
SHC 0.96181 0.1059
SDHC 0.97153 0.2669
TS 0.9772 0.08032

(e) Shift MONT2, 𝑝 = 2

Algorithm Statistic𝑊 𝑝 value
SHC 0.97593 0.06385
SDHC 0.97819 0.09604
TS 0.97526 0.05652

(f) Shift MONT2, 𝑝 = 6

Algorithm Statistic𝑊 𝑝 value
SHC 0.97063 0.2454
SDHC 0.98254 0.663
TS 0.98201 0.19

Table 4: Results of the one-wayANOVA tests on the solution values.

Shift 𝑝 𝐹(2, 147) Pr(>𝐹)
SATT3 2 1.57 0.212

SATT3 6 26.2 1.85e − 10
SUNT1 2 37.44 7.19e − 14
SUNT1 6 28.16 4.43e − 11
MONT2 2 0.754 0.472

MONT2 6 22.12 4.01e − 09

them on real crime data from the Central District of Madrid.
The results of the computational experiments show that the
TS presented in this paper produces solutions that are on
average better than those identified by the SDHC algorithm
proposed in a previous research [1].

Table 5: Results of Tukey’s test for each group.

(a) Shift SATT3, 𝑝 = 2

Pair 𝑝 value
SHC-SDHC 0.99867
TS-SDHC 0.26697
TS-SHC 0.28945

(b) Shift SATT3, 𝑝 = 6

Pair 𝑝 value
SHC-SDHC 0.01698
TS-SDHC 6.09e − 5
TS-SHC <1e − 7

(c) Shift SUNT1, 𝑝 = 2

Pair 𝑝 value
SHC-SDHC 0.57937
TS-SDHC <1e − 7
TS-SHC <1e − 7

(d) Shift SUNT1, 𝑝 = 6

Pair 𝑝 value
SHC-SDHC 0.93070
TS-SDHC <1e − 7
TS-SHC <1e − 7

(e) Shift MONT2, 𝑝 = 2

Pair 𝑝 value
SHC-SDHC 0.98003
TS-SDHC 0.48723
TS-SHC 0.60639

(f) Shift MONT2, 𝑝 = 6

Pair 𝑝 value
SHC-SDHC 0.99018
TS-SDHC 2e − 7
TS-SHC 1e − 7

This research offers new interesting lines to be pursued. In
terms ofmodeling, solving theMC-PDPon a graph simplifies
the inclusion of demographic data in the model, such as the
racial composition of a census district. A future work might
explore the impact of the minimization of racial profiling on
the performance of the resulting patrolling configurations.
Furthermore, it would be interesting to research optimal
solution algorithms for the MC-PDP. Given its intrinsically
nonlinear structure and the interdependence between the
patrol sectors to compute the isolation ratio, we believe that
a simultaneous column-and-row generation algorithm [36]
should be used. Although this methodology is rather time
consuming, it could still generate good heuristic solutions
within the allowed time limit. The quality of these solutions
could then be compared with that of the TS proposed in this
paper. As explained in Introduction, theMC-PDP is a variant
of the graph partitioning problems. It could be interesting
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(a) Shift SATT3, 𝑝 = 2 (b) Shift SATT3, 𝑝 = 6

(c) Shift SUNT1, 𝑝 = 2 (d) Shift SUNT1, 𝑝 = 6

(e) Shift MONT2, 𝑝 = 2 (f) Shift MONT2, 𝑝 = 6

Figure 4: Best solutions found.
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to compare our TS with adaptations of solution techniques
proposed in the literature for this family of problems.
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