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Forecasting Options Prices Using 
Discrete Time Volatility Models 
Estimated at Mixed Timescales
GIOVANNI CALICE, JING CHEN, AND JULIAN WILLIAMS

ABSTRACT: Option pricing models traditionally 

have utilized continuous-time frameworks to derive 

solutions or Monte Carlo schemes to price the con-

tingent claim. Typically these models were calibrated 

to discrete-time data using a variety of approaches. 

Recent work on GARCH based option pricing 

models have introduced a set of models that easily 

can be estimated via MLE or GMM directly from 

discrete time spot data. This paper provides a series 

of extensions to the standard discrete-time options 

pricing setup and then implements a set of various 

pricing approaches for a very large cross-section of 

equity and index options against the forward-looking 

traded market price of these options, out-of-sample. 

Our analysis provides two significant findings. First, 

we provide clear evidence that including autoregressive 

jumps in the options model is critical in determining 

the correct price of heavily out-of-the money and 

in-the-money options relatively close to maturity. 

Second, for longer maturity options, we show that 

the anticipated performance of the popular component 

GARCH models, which exhibit long persistence in 

volatility, does not materialize. We ascribe this result 

in part to the inherent instability of the numerical 

solution to the option price in the presence of com-

ponent volatility. Taken together, our results suggest 

that when pricing options, the first best approach is to 

include jumps directly in the model, preferably using 

jumps calibrated from intraday data.

 TOPICS: Options, volatility measures*

O
ption pricing on equities and 
equity indexes has been the sub-
ject of extended discussion since 
Black, Scholes and Merton pro-

vided their foundational insights. The devel-
opment of this research area has focused on 
continuous-time models and tractable solu-
tions that are either set around the log-normal 
pricing paradigm or use stochastic volatility 
potentially in the presence of jumps.

• In this paper, we present a new method for estimating the parameters for a jump GARCH
model. We provide a series of empirical tests of the efficacy of the GARCH type option
models. We analyse the S&P 500 index and for a sample of 20 individual equities sampled
from the Dow Jones 30. Our out-of-sample test covers over a third of a million individu-
ally equity traded prices.

• We find three primary empirical results. First, pre-filtering for jumps improves the accu-
racy of options models based on GARCH processes. Second, for certain stocks, models
that explicitly incorporate jumps substantially outperform all other models. Third, for the
S&P500, the GARCH model estimated on jump-filtered returns appears to dominate.

KEY FINDINGS
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In discussing the 1987 crash, Bates (1996) noted that 
in the analysis of options without the formal empirical and 
quantitative analysis of both the historical data of the under-
lying market and forward-looking calibration from the 
options market, complete insight into either market would 
prove elusive. Part of our contribution is to add another 
dimension to this context. Asset pricing in both markets 
is also dependent on the analysis of multiple timescales. 
We demonstrate that when including discontinuous jumps 
and the use of at least two timescales, the extra informa-
tion provided is more important to forecasting the value 
of options than to improving the maximum likelihood 
estimation of the underlying data-generating process.

In a separate tract of finance research, in discrete 
time-series econometrics, the generalized autoregres-
sive conditionally heteroskedastic (GARCH) model 
has proved extremely popular for a variety of applica-
tions related to forecasting volatility in discrete time. 
However, the consistent composition of the two models 
in an analytic framework has been a more recent phe-
nomenon. In an important series of contributions, Bates 
(1996), Heston and Nandi (2000), and Christoffersen 
et al. (2008), among others, have provided a signif i-
cant step forward in tractable options pricing not seen 
since the derivation of the original Black and Scholes 
models and their subsequent extensions in the early and 
mid-1970s. The key insight of these seminal papers is to 
combine discrete-time models of volatility and jumps 
with risk-neutral dynamics.

Most strikingly, the results of Christoffersen et al. 
(2008) suggested that for S&P 500 index options, a highly 
persistent form of GARCH model, the CGARCH, pro-
vides the best out-of-sample performance when pricing 
contracts against those reported in the market, for all 
maturities and money-ness. This was especially impor-
tant as the comparison models included an autoregres-
sive Poisson point process driving the jump diffusion. 
This result goes against much of the preceding litera-
ture and industry practice for which Poisson type jump 
processes are considered essential, in particular for the 
pricing of near-maturity options, which are not at- or 
near-the-money.

This paper makes three main contributions to the 
literature. First, we provide a series of empirical tests of 
the efficacy of the GARCH type option models sug-
gested in Christoffersen et al. (2008) out-of-sample for 
both the S&P 500 index and for a sample of 20 individual 
equities sampled from the DOW Jones 30. Our major 

contribution is to propose alternative estimation proce-
dures over the domain of models, and provide evidence 
from a far larger pool of equities and equity indexes for 
this analysis. Our primary argument is that jumps are an 
intraday feature and that maximum likelihood evidence 
at a daily frequency, commonly used in option pricing, 
ineff iciently detects the intraday jump phenomena. 
Using a heterogeneous timescale approach should yield 
a better f it when comparing estimated versus market 
prices of options. A key benefit of this strategy is that it 
avoids the problems identified in Durham et al. (2015), 
who note that the standard maximum likelihood esti-
mator of the unobserved volatility and jump processes 
does not meet the normal requirements of a standard 
filter for an AR-Jump model. In this case the jumps are 
partially observed, such that the existence of Nt > 0 is 
imputed from high frequency data at an a-priori stage.

Second, our out-of-sample test covers over a third 
of a million individually traded prices sampled from the 
Options Price Reporting Authority (OPRA) data feed 
for 2012 and 2013, and this is, to our knowledge, the 
largest data set ever constructed. Third, we implement 
an original estimation method for the jump intensity 
process that uses data at both the daily and intraday fre-
quencies. In summary, we believe that this is the most 
comprehensive study of its type ever undertaken, and 
that it should provide a reasonably definitive conclusion 
to the debate on the performance of this model.

Our results indicate two important facets. First, if 
the option pricing model does not, or cannot, explicitly 
incorporate jumps in its estimation stage, then pre-fil-
tering for jumps improves the accuracy of options models 
based around standard GARCH processes. Second, for 
certain stocks, such as IBM, models that explicitly incor-
porate jumps substantially outperform all other models. 
However, for the S&P 500 index, the results are less con-
clusive. Here, the standard GARCH model of Heston 
and Nandi (2000) outperforms all others out-of-sample 
for both root mean square error (RMSE) and median 
absolute error (MAE). This level of accuracy is in line 
with that found for similar modeling fitting against actual 
options data, such as that found in Ballotta et al. (2017).

The rest of this paper is organized as follows: The 
next section brief ly reviews related studies and highlights 
our contribution to the existing literature. Then we 
describe our methodology and the rationale regarding 
the key assumptions in our forecasting and estimation 
procedures. Then we describe our rich data set, and 
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then present and discuss the empirical results. The final 
section concludes with some suggestions for extended 
work in this area.

MOTIVATION AND RELATED LITERATURE

J umps are often considered primarily to be a short 
term phenomenon, and prior empirical studies focused 
on near maturity, near the money options. Our dataset 
encompasses a broad range of maturities and we show 
that the relative effectiveness of different option pricing 
tools is significantly affected by monieness and maturity.

Indeed, several studies have argued that jumps 
either do not exist or are being spuriously detected; see 
for instance Bajgrowicz and Scaillet (2009) who utilize 
a short sample of data for the Dow Jones constituents 
and argue that sudden price movements are more likely 
the result of a “sudden burst of volatility.” How sudden 
a “burst” is required to shift the likelihood of a 3% jump 
from effectively zero to 0.02% in a day? It needs to be a 
burst that amounts to reducing the number of standard 
deviations between the current price and the out-of-the-
money threshold from 364 to 2.87. The answer is just 
a little above 1,000% annualized; when a log-normal 
distribution approaches this level of variance the mode 
of the distribution is indistinguishable from zero.

At a lower-frequency modeling, clustering in vola-
tility and sudden discontinuous jumps in returns has 
been a topic of substantial interest since the inception 
of the financial economics literature. Motivated by the 
need for accurate estimation of volatility to price deriva-
tives contracts, Roberts (1959) and Merton (1976) were 
among the first to discuss the non-Gaussian properties 
of returns in relation to derivatives contracts.

The ARCH/GARCH models of Engle (1982) 
and Bollerslev (1986) were the first to explicitly capture 
autoregressive clustering of volatility in a time series 
framework. The standard form of the GARCH models 
and most of the endless contemporary variations do not 
provide simple closed-form solutions to the price of a 
contingent claim on an asset exhibiting return behavior 
with these effects. However, as previously noted, several 
recent contributions have derived closed-form solutions; 
two of the most prominent are those of Heston and 
Nandi (2000) and Christoffersen et al. (2008).

The general consensus in the mainstream option 
pricing literature is to assume that the GARCH vola-
tility component is a continuous diffusion component 

of returns and all other càdlàg components are referred 
to as discontinuous jumps. A useful summary of the 
current state of art on discretely sampling continuous 
diffusions can be found in Mykland and Zhang (2009). 
An important feature of the literature on modeling vola-
tility is that while unbiased estimates of volatility are 
possible for most types of continuous diffusions with 
fixed time horizons T, given increasing sampling fre-
quency, this is not true for the drift.

A recent strand of the literature has focused on 
extracting the discontinuous jump component from the 
continuous diffusion. This is motivated in part by ver-
sions of the example we described above. When options 
are traded near maturity, any price that deviates substan-
tively from |St − K| must be driven by some very short 
term time component. Over longer maturities this is 
less important. However, for continuous trading, small 
differences in pricing of the contingent claim can be 
extremely critical. It should also be noted that, even ex-
post maturity, there is no definitive “correct” price for 
a contingent claim of this type. Therefore, the purpose 
of an option pricing model is to correctly predict the 
market price of an option and not |ST − K|.

On this note, Andersen et al. (2002) have docu-
mented empirically that the inclusion of jumps reduces 
systematic bias in continuous-time stochastic volatility 
models based around the specification first presented in 
Heston (1993). The magnitude of the results in Andersen 
et al. (2002) are broadly representative of the improve-
ment in f it when including the jump process in the 
underlying diffusion. A non-exhaustive list of examples 
of similar results, for both discrete- and continuous-
time models, can be found in Chan and Maheu (2002); 
Jorion (1998); Maheu and McCurdy (2004), and Palm 
and Vlaar (1993).

More specific forms of jumps, for instance Poisson-
normal jumps, have been found to improve the fit from 
the historical evolution of the underlying asset process 
to that inferred by the options market. See for instance 
Bakshi et al. (1997), Bates (1996, 2006), Chernov 
et al. (2003), Eraker et al. (2003), Eraker (2004), and 
Pan (2002), among others. In fact there is no empirical 
evidence to indicate that the exclusion of a jump pro-
cess from the underlying can actually improve the fit 
of the predicted option price to the prices observed in 
the market.

Pricing options tends to be primarily from low 
frequency (circa daily). However, jumps generally 

A
u
th

o
r 
D
ra

ft
 f
o
r 
R
e
v
ie

w
 o

n
ly



4   Forecasting Options Prices Using Discrete Time Volatility Models Estimated at Mixed Timescales Spring 2020

are thought to be a “high-frequency” phenomenon. 
Aït-Sahalia (2004) offers a comprehensive summary on 
jump diffusion models and their applications to asset 
pricing in addition to a substantial discussion on how 
to filter the jump component from the continuous dif-
fusion from high-frequency data. The motivation for 
extracting the jump component primarily lies in the 
impact of jumps on portfolio risk management and 
derivative pricing. The presence of jumps requires a sub-
stantial adjustment to derivative pricing models. In par-
ticular, the dynamics of the intensities (a latent variable) 
of a jump component present a variety of challenges. 
Aït-Sahalia (2004) develops a method for extracting the 
quadratic variation of the continuous diffusion for the 
two common forms of jumps, infinitely active Lévy and 
finitely active Poisson.

Other empirical work in this area has focused 
on extracting finitely active jumps—see, for example, 
Andersen et al. (2003), Barndorff-Nielson and Shephard 
(2004), Barndorff-Nielson and Shephard (2006), Tauchen 
and Zhou (2011), and more recently Fuertes and Olmo 
(2012). Visual inspection of the return series suggests that 
during the sample period some jumps have occurred. 
However, these discontinuities are mostly visible at the 
higher sampling frequencies. Option pricing models that 
contain persistent volatility or jump effects, such as that 
demonstrated in Christoffersen et al. (2008), are usually 
calibrated from daily data. However, a growing body of 
the econometric literature (see for instance Tauchen and 
Zhou, 2011) suggest that filtering for jumps at relatively 
low frequencies (such as daily or weekly data) is problem-
atic, if not unfeasible. Therefore a model estimated only 
on daily returns might well be inconsistently and/or inac-
curately calibrated if only fitted to low frequency data.

Christoffersen and Jacobs (2004) f ind that for 
option valuation purposes the best f itting model is a 
parsimonious GARCH model that allows only for vola-
tility clustering and standard leverage effects.

Corsi et al. (2013) develop a reduced form discrete-
time stochastic volatility option pricing model that 
exploits the information of high-frequency data, which 
is the measure of realized volatility. By modeling the 
conditional mean of the volatility process using the Het-
erogeneous Autoregressive (HAR) multi-components 
model, they show, through an application to the SP500 
index options, that this model outperforms competing 
GARCH-type and other stochastic volatility option 
pricing models.

Babaoglu et al. (2017) introduce a new class of 
models that incorporate three features: multiple vola-
tility components, fat-tailed return innovations, and 
a variance-dependent price kernel. They apply these 
models on the SP500 option prices and find economi-
cally and statistically significant improvements over the 
benchmark SV option pricing model.

Overall, in the literature there is not a clear-cut 
consensus on the importance of jumps in options pricing. 
For example, Bakshi et al. (1997) demonstrate substantial 
benefits from including jumps in prices, whereas Bates 
(2000) find that such benefits are economically small, 
if not negligible. Furthermore, while studies using the 
time series of returns unanimously support jumps in 
prices, they disagree with respect to the importance of 
jumps in volatility. One plausible explanation for the 
above disparities is that most papers use data covering 
only short time periods. Since jumps are rare, short sam-
ples are likely to either over- or under-represent jumps 
and/or periods of high or low volatility, and thus could 
generate disparate results.

Broadie et al. (2007) use an extensive data set of 
S&P 500 futures options from January 1987 to March 
2003 and find that adding price jumps to a square-root 
stochastic volatility (SV) model improves the cross-sec-
tional fit by almost 50%. This is consistent with the large 
impact reported in Bakshi et al. (1997), but contrasts 
with the negligible gains documented in Bates (2000), 
Pan (2002), and Eraker (2004). Without any risk pre-
mium constraints, the SVJ and SVCJ models perform 
similarly in and out of sample. This is not surprising, 
as price jumps, which generate significant amounts of 
skewness and kurtosis, and stochastic volatility are clearly 
the two most important components for describing the 
time series of returns or for pricing options. ÄÏt-Sahalia 
(2004), Carr and Wu (2003), and Huang and Tauchen 
(2005) also find evidence for jumps in prices.

Tauchen and Todorov (2010) have proposed a new 
continuous process to describe activity levels, which 
essentially extends the Blumenthal-Getoor index to Ito 
semi-martingales. This study focuses on the activity 
signature function and suggests a more effective way of 
making non-parametric inference for generalized activi-
ties with finite sample but removing bias documented 
in the literature (see Aït-Sahalia and Jacod 2009a and 
(2009b, and Mykland et al. 2005). The model setups 
compare a pure-jump model to a pure-jump model with 
continuous component, and shows that the latter appears 
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to be the better model, for example, for examining jump 
activities in financial series.

Jacod and Todorov (2009) propose a bivariate dis-
crete model to detect the occurrence of common jumps 
(at least one jump found simultaneously at the same time) 
or disjoint jumps. This study contributes to the litera-
ture by addressing the issue of existence of systematic 
jumps. Such models are not only theoretically important 
because of their simple and novel structure, but also 
practically useful. For example, at the aggregated market 
level, such a model can be used to explain whether mul-
tiple asset prices jump simultaneously, which forms a 
more systematic pattern, or vice versa, remain primarily 
an idiosyncratic phenomenon. The simulation methods 
prove that the process works for both infinite and some 
finite samples. In conclusion, these papers agree that 
diffusive stochastic volatility and jumps in prices are 
important, but they disagree over the importance of 
jumps in volatility.

Part of our approach is, therefore, to extract 
the jump component from the high-frequency data 
using the method of Tauchen and Zhou (2011) and 
then separately to estimate the daily volatility using 
the canonical GARCH type frameworks, namely the 
Component GARCH of Engle and Lee (1999) and the 
GARCH model with jumps, as proposed by Christof-
fersen et al. (2006) and Christoffersen et al. (2008), 
derived from the setting introduced by Heston and 
Nandi (2000).

When comparing option prices predicted from an 
underlying time series to market prices of options, the 
choice of the loss function is relatively critical; this is 
discussed at length in Christoffersen and Jacobs (2004). 
However, the major choice of the loss function advocated 
in Christoffersen and Jacobs (2004), the RMSE, con-
trasts with much of the contemporary literature on out-
of-sample loss forecasting; see for instance Giacomini 
and Rossi (2010). While the RMSE applied directly to 
the actual and forecasted prices provides a useful “dollar” 
amount for the average pricing error, the option has 
a lower bound at zero. Hence, overpricing the option 
can be more significantly penalized than underpricing. 
This is particularly acute for heavily out of the money 
options, with prices intrinsically near zero. We therefore 
compute the RMSE on the log price of the predicted 
and realized option. We also provide RMSE error tables 
in the Online Supplement.

METHODOLOGY

We use intraday data to detect and extract jumps 
from returns. We follow a three-step procedure. We 
start by f itting an AR process to the arrival intensi-
ties of the AR-Jump process. In a second step, we fit a 
GARCH model to the jump-filtered returns. Finally, 
we impose the jump-filtered GARCH parameters on 
an AR-GARCH process and impute the AR process 
from the filtered returns. Against this setup, we develop 
a series of base cases. First, we estimate the AR-Jump-
GARCH model fitted via maximum likelihood esti-
mation at the daily timescale. Second, we estimate the 
AR-Jump-GARCH model with GARCH parameters 
imposed after we have extracted the jumps and the AR-
jump model then f itted using maximum likelihood 
estimation. Finally, we compare these fits to a Compo-
nent GARCH (CGARCH) model (the best-performing 
model in Christoffersen et al. 2008) and a basic GARCH 
specification. In each instance we compare in-sample fits 
via the fitted log-likelihoods, and most importantly we 
document how each model performs out-of-sample in 
the forward pricing of options.

The Price Process Assumptions

The basic price process of interest is the natural 
logarithm of the quoted price denoted s(τ), where t0 < 
τ < T, which is assumed to be a diffusion that exhibits 
varying volatility at heterogeneous timescales and 
potentially exhibiting discontinuous jumps. The objec-
tive of this paper is to infer the optimal approach to 
fitting the process to data and evaluate its performance 
in pricing stock options. The basic process of interest 
is as follows:

 J Nt t td (s ) d d (W ) dJ ( ),τ) µtt τ)  (1)

where t is a daily index, µt is a daily level of drift, σt 
is a daily level of volatility, assumed to be of the form 

ht thσ =t  where ht is a daily conditional variance and 
J t J J~ ( , )J

2µ σJ ,N  is a random jump size. The random pro-
cesses W(τ) and N(τ) are respectively a Wiener process 
and a Poisson point process such that W(τ + Δ) − W(τ) ~ 

N(0, Δ) and P t

nt( (N ) (N ) )n ( )t / !nτ ) τ) = χe t (− χ , 
where tχ  is the arrival intensity of the Poisson process 
and n is an integer.
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For option pricing purposes, we assume that µt 
is determined by the model characteristics. Therefore, 
the key objects of interest are σt and tχ . We assume 
a variety of models for σt and tχ . Our basic specif i-
cation is that σt is a GARCH model and tχ  is a sta-
tionary autoregressive process (AR-J). For our basic 
comparison, we follow Christoffersen et al. (2008) 
and compare a persistent, component GARCH model 
(denoted GARCH) and an AR-J model with a vola-
tility mean-reverting GARCH model. Our approach 
is to f it the models in two stages. First, we extract the 
jumps by analyzing intra-daily data using a standard 
jump detection technique. We then fit the GARCH 
model to the de-jumped data at the daily frequency. 
For the final part of our analysis, we utilize the fitted 
models to price options and compare the goodness of 
f it to real options data via a proportional RMSE loss 
function.

Jump Detection and Extraction

L et us consider a high-frequency uniformly sam-
pled grid indexed by i. The price diffusion is assumed 
to be sampled at τi ∈ {τ0, …, τn}, where τi+Δ − τi, ∀i ∈ 
{0, …, n − 1} is constant over a day again indexed by t. 
Therefore, the time interval τ0 to τn

 − 1 is a single day of 
trading for the asset with log prices discretely recorded 
by St,i. We assume that t ∈ {1, …, T} is a single year of 
data, usually ≈ 252 trading days.

Our objective is to separate s d
2

0
∫ σn

τ  from 
( )d2 2

0
ss s J∫ σ(n

τ  and hence identify the jump and 
continuous diffusion components of the daily return 
s(τn) − s(τ0). Let st, i be the log price for a regularly spaced 
grid at time index τi. If the process describing s(τ) is as 
that given in (1) then RV r st iVV n

s s J
n ( )s s J d1 ,rr 2 2n ( 2

0
= Σ → ∫ s λ s= τi1 ,rtrr → ∫ τ , 

where rt,i = St,i − St,i−1. We assume that the contribution 
of the drift term µt over the course of a day is negligible 
and hence tends to zero. Following Barndorff-Nielson 
and Shephard (2004) and Tauchen and Zhou (2011), we 
define an alternative estimator, the bipower variation, 
that converges to ss d

2

0
∫ σn

τ .
The bipower variation, BV, is a member of 

a family of jump robust power estimators and has 
proven popular for jump detection approaches. This is 
defined as | || |2 1 2 ,| 1 ,||BV ||||tVV n i

n

i, i,= Σ2 1
n

=2 | . In the absence of 
Poisson jumps BVt tVV 2→ σ . However, in the presence 

of jumps BV st tBVV s J
n d2 2BV n

0
σ −t

2 → ∫ λ σsτ
τ  and the variation of 

Z BVt t tVV2  is asymptotically normal. As such, we 
can construct a standardized test such that

 N

(( /4 5)

max[1, / ]) , (0,1)

2 2((
1 1/2

Z Z

TQ Z

t t t

n t t/ t

ɶ ɶ

∼

σZ tZ π +/42 π −−

with estimated jump size J R RV BVt tR t tVV BVVˆ ( )( )1/2−RVR )(

t( )t ( )Z∗N N( )Zt ≥
1 , where sgn is the signum function, 1 is 

the indicator function, Z∗ is a standardized critical 
z-score, and N(Z) is the cumulative distribution func-
tion for a normal distribution with lower integrator z 
and R rt i

n

i1 ,rtrrΣ = . The term TQt is the without-jumps 
estimate of the quarticity of the continuous diffu-
sion and is estimated using the tripower quarticity, 
suggested in Barndorff-Nielson and Shephard (2004) and 
Tauchen and Zhou (2011), among others. In this case, 
TQ r r rt s k i

n

i trr t irrn d |n k i

n | | | | |4
4/3 3 ,rtrr| 2

4/3
, 1i

4/3
,

4/3

0
→ ∫ σ s ds4 Σk

n
nτ

τ
−it|  

where µk = 2k ⁄ 2Γ((k + 1)2) ⁄ Γ(1 ⁄ 2) and Γ(k) denotes the 
Euler’s Gamma function. Let 

N N( ) ( )
N t N (t

1= ∗ , be the 
{0, 1} count of at least one jump on day t. An issue that 
arises is the problem of Nt > 1 jumps. Note that the implicit 
assumption in Barndorff-Nielson and Shephard (2004) 
and the explicit assumption in Tauchen and Zhou (2011) 
is that Nt = {0, 1}. If we assume explicitly that the count 
process is Poisson then P(Nt > 1) > 0, by construction. 
A simple approach is to assume that on a daily basis tχ  will 
be sufficiently small that the at-most one jump restriction 
does not cause substantial issues to the identification of 

tχ  from the time series of Nt. However, two alternative 
approaches exist. A first method is to sub-divide a day into 
blocks and sequentially test for jumps within those blocks. 
However, as the day is chopped into ever smaller blocks 
of time, the sample gets shorter for each block. A possible 
solution would be to shift to a higher sampling frequency, 
but this gives rise to potentially misleading issues such 
as stale prices. A second procedure is to compute Jt on 
the basis of the jump existence and then use a bootstrap 
resampling with replacement and robustly estimate µJ and 
σJ. For our pricing purposes, we will utilize an iterative 
approach based on maximum likelihood scores for our 
assumed jump process with GARCH.

We define a semi-parametric estimator for the 
count AR process in the spirit of Harvey and Fernandes 
(1989) and Heinen (2003). This is effectively an autore-
gressive conditional Poisson model (ACP) of the form

 t t ,0 1t 1χ =t χ +0 ρχ + ξη −t1 ξη  (2)
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where the θ  symbol for the parameter θ is used 

to distinguish the parameters and f itted intensi-

ties tχ  of the AR process from the nonparametric 

intraday jump detection analysis. Recall that for a 

Poisson process Nt tN tη =t − χ  the unconditional mean, 

variance, and autocorrelation of this process are 

E( ) /(1 )0t = χ = χ ρ , EN Nt tNvar( ) (EEE )−NE χ =) χ)  and 

corr( , ) )1 2/(1N,t t,N, s

1sρ ρ −/(1/(1 ρ−  respectively. This leaves 

us with two parameters, ρ  and 0χ , that we can directly 

observe from the theoretical moments of the process 

and ξ which we can solve from the f iltration where 

E t t( )N t = χ  and T t t( )N t t

2 1T 2ξ →2  given the variance 

constraint in a second step. We can over-identify the 

parameters by computing s > 1, ∀s ∈ N+ autocorrelations. 

We then have two choices. We can embed the jumps 

in mean only or alternatively we can embed the jumps 

in both mean and variance as in Christoffersen et al. 

(2008). For our main specification we will embed the 

jumps in both mean and variance.

Using Mixed Frequency Data

Multiscale volatility estimation has received con-
siderable attention in the literature recently. However, 
this has mostly focused on measuring ex-post quadratic 
variation. In order to price options under specific mod-
eling assumptions, we need to utilize the multi-times-
cale data in a slightly different manner.

A simple iterative procedure for updating the 
counts and hence extracting the jump intensities is as 
follows:

Step 0:  For each observation, compute the “ jump 
free” return R R Jt tR t

ˆ−R  and fit the GARCH 
model of your choice. Using the model

 ˆ , ˆ ~ GARCH,( ) ( ) ( )R r1 h h,( )
t z1 r1

J

t t

J+rr λ

       the coefficients from this pre-filtered GARCH 
in mean model also can be used as a bench-
mark against the unfiltered returns.

Step 1:  Compute the initial unconditional mean and 
standard deviation from the detected jumps:

J

J

J tt

T

J tt

T

J

ˆ ,

ˆ .

(1)
1

1

(1)
1

1

(1)

∑
1

∑
1

( )tt

t

1∑ N tN
t

( )tt

t

1∑ N tN
t

µ =J

(1)

σ =J

(1) − µ

−

=

−

=

      This follows the Tauchen and Zhou (2011) 
assumption that only one jump has occurred 
within a day. It is possible to simply threshold 
these jumps and ascribe extra jumps to out-
liers. However, we can improve the estima-
tion accuracy of detecting multiple jumps by 
computing the conditional jump intensity and 
commuting the overall likelihood of the pro-
cess for one potentially additional jump.

Step 2:  Set the initial count to unity, N t 1(1) =  for 
all detected jumps J t

ˆ 0≠  and compute 0
(1)χ , 

(1)ρ  and hence ξ(1) by solving simultaneously 
the unconditional mean and autocorrela-
tion noted above. Utilize these coefficients 
to construct a candidate time series of t

(1)χ . 
Then impose these model coefficients with 
the computed z

J( )Jλ , J

(1)µ , and J

(1)σ  on the fol-
lowing log-likelihood:

                

N j

h j

R

t tN t

t J

t z t y t t Jj

( ;Rt , )t

l (2 ( ˆ ( )J ))

( ˆ ( )j Jj )

2
.

1

1
2

( )J (1) 2)

( )J ( )J (1) (1) 1 2) 2

2( )ht

J

J
ˆ( )J (1)

= Ωj,

= πln(21
2 j(

+
− R( λ −hz t

J( )J ( )J λ χy − χ(1)

L

  
  

( 3)

      The likelihood function has only one param-
eter: the jump compensator λz. Therefore,

                N jz t

T

t tN t

z

( ˆ ) arg max ( ;Rt , )t .(1)

,
1

(1)
1∑λ =z ) :(1) = Ωj,

ν λ,
=

L

Step 3:  Compute the likelihood score for each obser-
vation t( ;Rt

ˆ )(1)θL  at the optimum, where 

z

J

J J z
ˆ { ,z ,J

ˆ }(1) ({ ) (1) (1) (1)θ =(1) µJ ,z

J( ) σ λJ ,J

(1)(1)  is the collection 
of parameters, the superscript in brackets 
defining those parameters that will be updated 
in the following steps. Define an arbitrary 
threshold ln(ca), where ca is a lower bound, 
e.g., 1% or 0.1%. For these observations 
add +1 to the jump counter, t tN 1(2) (N 2) +N tN (N 2)(2)  
if ct ac( ;Rt

ˆ l ( )(1)θ )(1)
L . For days with multiple 

jumps we assume that the jumps are of equal 
size. We therefore compute a new mean and 
standard deviations for the jumps denoted J

(2)µ  
and J

(2)σ  and subsequently 0
(2)χ , (2)ρ  and hence 

ξ(2) from the time new series N t

(2).

A
u
th

o
r 
D
ra

ft
 f
o
r 
R
e
v
ie

w
 o

n
ly



8   Forecasting Options Prices Using Discrete Time Volatility Models Estimated at Mixed Timescales Spring 2020

Step 4:  Maximize the new updated log-likelihood 
function jt

T

t tN t(Rt , )t1
(2)

1Σ =Nt

T

tN( ;R1
(2) Ωjt( t= , t1L  if it is 

greater than jt

T

t tN t(Rt , )t1
(1)

1Σ =Nt

T

tN( ;R1
(1) Ωjt( t= , t1L  at the 

optimum, then repeat Steps 2 and 3. If it is 
equal or lower, discard the new parameters 
ˆ (2)θ  and keep ˆ (1)θ .

In the Online Supplement, we provide a proof, 
under a fairly general data-generating process and some 
Monte Carlo studies, to demonstrate the consistency 
of the iterative scheme above. Notice that the penalty 
for over-guessing N t

( )i  for any given day spills over in 
subsequent days through the updated t

( )iχ . This process 
is mediated by the autoregressive parameter ρ. We set 
ca to be 0.1% for our models. For example, a time t, 
log-likelihood of below −6.908 triggers an additional 
candidate jump. Additionally, notice that this approach 
only works well when the true average jump size is less 
than the true standard deviation µJ < σJ. Thus, small 
jumps are not generating log-likelihoods greater than 
one standard deviation away from µJ and erroneously 
being awarded extra jumps and hence degrading the 
total log-likelihood. However, our results indicate that 
the mean detected jumps are between −0.12% and +0.7% 
with standard deviations of between 1.5% and 9%—that 
is, over one order of magnitude larger.

The Chosen GARCH Models

While jump models have no closed-form solu-
tion for the option price, the risk-neutral dynamics for 
certain types of discrete-time models can be explicitly 
determined. For GARCH models there is a significant 
restriction on the autoregressive form of the volatility 
model to ensure that (a) the risk-neutral dynamics can 
be easily derived and (b) the resultant option price has 
a closed-form solution.

This natural limitation is discussed in Christoffersen 
et al. (2008), who compare a persistent GARCH model 
with an AR-J model with a more standard GARCH 
specification with mean reversion. We implement this 
experimental design. Our major contribution is to pro-
pose alternative estimation procedures over the domain 
of models and provide evidence from a far larger pool of 
equities and equity indexes for this analysis.

Let h st t

2

0
∫ τ

τ  be the daily quadratic variation. 

We assume that ht is a discrete GARCH process varying 

at a daily timescale, and we follow Christoffersen 
et al. (2008) by setting the spot variance process for the 
GARCH and CGARCH to be, respectively:

 h h ht th t t( )z ht th ,1/2 2)β + α hhh  (4)

 and

 ) (( ) (1 )),) (( 1/2 2) 1
2h q1 z h1 qt t11 t t t t1h1 t+q β −((h + α +(1 γ  (5 )

 q q z ht tq t t t(( )h zth t .2 1/2ω + ρ + ϕ  (6)

The noise term zt in our notation, in the absence 
of jumps, will be ( )d ( ) ( )00

∫ ≡( )d τ ) ττ ( n  and rt = 
s(τn) − s(τ0). Therefore, over a single day, the continuous 
part of the price is a geometric Brownian motion GBM 
with constant volatility. For option pricing purposes, the 
drift term, in the absence of jumps, is

 R r h zt t t t ,1 1
1/2

1+rr λ +h 1httrrr hth + +ztz1  (7)

where r is the daily return on a risk-free instrument 

of same maturity as the option and λ is a coefficient 

that determines the risk premium. The without-jumps 

models are fitted using a standard maximum likelihood 

estimator assuming Gaussian innovations. Hence, L ,0t T is 

the Gaussian log-likelihood function for a sample t0, T, 

with the vector θ collecting the relevant collection of 

parameters θ = {λ, α, β, γ, ω} for the GARCH model 

and θ = {λ, α, β, γ1, γ2, ω, ρ, ϕ} for the CGARCH model. 

Finally, we denote by t T,0

∗
Lt

∗  the evolution of the log-

likelihood at its maxima.

The AR-Jump with GARCH 

Density Function

Similarly to the volatility model, we assume again 
that the process driving the intensity of these jumps 
is autoregressive at a daily frequency, but uniform at 
the intraday timescale. Let jumps Jt be normally dis-
tributed with mean and standard deviation µJ and σJ 
respectively. The distribution of jumps is assumed not 
to be time varying. For a given day, the arrival rate per 
intraday block of time is denoted tχ . From our previous 
notation, there is a process tχ  which we assume to be 

AR(1)t
ɶ ∼χ . We can think of tχ  as the constant rate 
of jump arrivals over a single day and it is therefore 
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scalable to the intraday grids that we specified above—
for instance tχ  is the five minute arrival rate when Δ is 
5 ⁄ (24 × 60). tχ  by contrast is fixed to being the daily 
intensity rate.

The additivity property of Poisson processes 
implies that nt t tχ =t χ , that is, while tχ  is autoregressive 
at a daily timescale, tχ  is constant over a day. As such, 
the probability mass of a jump arrival is continuously 
and equally distributed over the trading day. Therefore, 
during a day, the price process s(τ) will be a jump dif-
fusion process combining a continuous diffusion with 
constant volatility and a càdlàg process with constant 
jump arrival. This follows the implicit assumptions of 
Tauchen and Zhou (2011), who assumed at most one 
jump a day. More complex models that permit intraday 
volatility are of course easily specified, but these have 
two disadvantages. The first is the need for persistence 
over many days in the volatility and intensity processes. 
Second, for a model that captures both intraday and 
inter-day volatility and intensity persistence, the option 
pricing model becomes far less tractable with a question-
able degree of improvement. We therefore assume an 
autoregressive modeling structure to the evolution of 

tχ  which is at a daily frequency, within the day. The 
likelihood of a jump occurring is the same for any given 
fraction of that day:

 R r h yt z t y t t t ty J t+rr λ +hh λ +h zh z + µ χz zzr t y t th trr hz t y h zthh  (8)

 t t ,0 1t 1χ =t χ +0 ρχ + ξη −t1 ξη  (9)

where Ω is the information set for the filtration of the 

intensity process, whereby P e jt tj t

j(N j /j) !1= Ω;jj e−
χ

. 

The disturbance term ηt is determined recursively such 

that Et tE t t( ;N tN 1 t; 1η =t Ω −)1t χt; − . Similarly E N jt t j( ;N 0Ω ) Σ∞  

P t tj(N j )= Ω;jj and this is derived recursively from 

P L R N j jt tj t t t tN t j(N j ) (L N jtN ; t 0jΩ R(L N Ω =P N tN) (PPP Ω Σ)t / () / ( j

∞

L Pj P jt tN t tNP t(Rt ( ;N jtN ))Ω = Ω;j . Where the f iltration 

function is given by

 

L N j

h j e

t tN t

t Jj
h

t z t y t J t

t J

( ;Rt , )t

2 ( )

1

2 1) /2

( (Rt z t t )t

2( )

2 2) )
2

= Ωj,

= 2 σjj

−(R λ hhz t λ χyy µ( −νσ χ)2 )

+σ

( 2 )

 (10)

and y is a  compound Poisson random variable with mean 

µJ and variance J

2σ . Note that we now have two risk 

premium coefficients, namely zλ  and yλ .

Risk-Neutral Dynamics

For the pricing of options we must recast the param-
eters of the empirical model to provide a set of risk-neutral 
dynamics. This is equivalent to a change of measure in a 
constant volatility framework. Given some of the subtle 
adjustments to our framework, it is worth re-stating the 
risk-neutral pricing models from Christoffersen et al. (2008). 
In summary, we compare three basic pricing approaches: 
the GARCH and the CGARCH, which are computed 
using the Kolmogorov backward method, and the ARJ-
GARCH, for which the price is computed via Monte Carlo 
simulation. In each case, we write down the risk-neutral 
price and then proceed to derive the functional form or 
infer the price of the option. The risk-neutral dynamics for 
the Heston and Nandi (2000) model are given by

 R r h zt t t t1 1 1z+rr λ +h 1httrrr hth + t1ztz∗  (11)

 h h ht th t t( )z ht th ,1/2 2)β + α ∗ ∗  (12)

where γ∗ = γ + λ + 1 ⁄ 2 and t ~ (0,1)∗
N . In a note-

worthy contribution to this area, Christoffersen et al. 

(2008) demonstrate that the CGARCH risk-neutral 

dynamics are given by

 R r h zt t t t1 1 1z+rr λ +h 1httrrr hth + t1ztz∗  (13)

 h q z h ht t t tq t th t)qtq (( ) (1 )ht )1
1/2 )2 2

1
2+q 1q β (h + α (1 γttqqtq ∗ ∗) ((h(h + ∗(1∗h1/2 2) (1   

  (14)

 q h ht t t t t(( ( )),ztw q t

1/2 2
2

2= +www ρ +qqq ϕ −z((zt γ −hth )2 γ∗ ∗((+ ∗ ∗h1/2 2  (15)

where the risk-neutral parameters (denoted by the (∗) 
term) are defined by

 ( ) ( )1
2

1 2
2

2β = β + α γ 1 γ +)1) ϕ(( γ∗ ∗(β + ∗  (16)

 ( ) ( )1
2

1 2) ( 2
2ρ = ρ + α γ( γ + ϕ 2 γ∗ ∗(+ ∗  (17)

 1/ 2, {1,2}.ii iγ =i γ + λ + ∈∗  (18)

The f inal baseline option pricing model is the 
ARJ-GARCH. The risk-neutral dynamics for the mean, 
variance, and jump equations are as follows:

 R r h yt z t y t t t t J tth 1yty 1+rr λ +hh λ χy +h z1hth − µ χzzr trr hz t

∗ ∗
+ zt1z1

∗ ∗ ∗
+

∗h∗ ∗ ∗ ∗  (19)
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h h ht th t ty t t( )z h hty t th1/2 1hh /2 2β + α y hty∗ ∗ 1/2  (20)

 et t
J ,

1
2

2 2

χ =t χ∗ ν σ2 +νµ∗  (21)

where the evolution of tχ  is from (8), ν is the market 
price of risk and J J

2µ = µ −J νσ∗ , y
1
2γ = γ + + λ∗ ∗1+ + λ  and 

y y J J J( )y ( 1/ 2 )J J

2 2λ =y λy µ −J )J exp(x µ∗ . The noise com-
ponents zt

∗  and yt

∗  are respectively a normally dis-
tributed random variable under a risk-neutral measure 
transformed from zt and a Poisson jump with normally 
distributed jump size yt J J~ ( , )Jµ σJ ,

∗ ∗(N  with a Poisson 
count N t t~ Poisson( )χ∗ ∗P i ( . It is worth noting that the 
term y J t( )yλy χJ )J

∗ ∗ ∗  forces the discounted price process 
to be a martingale.

We now have an unknown parameter ν, that needs 
to be derived from the maximum likelihood estimates of 
the model specified in equation 8. The option prices for 
the autoregressive jump models in mean and variance, 
by construction, must be derived from the risk-neutral 
prices rather than using a complete market approach. We 
follow Pan (2002), albeit modified to jumps in the first 
and second moments and including the explicit autore-
gressive jump construction. This has the disadvantage 
that the value of ν needs to be calibrated by simulation 
rather than via a numerical integration approach which 
is, of course, computationally quicker.

Unfortunately, analytical long-run moments for 
this type of process are not possible to compute (if 
they were then the option could be solved without 
recourse to simulation). We need thus to compute first 
“physical” maximum likelihood  estimates and then 
impute ν. Christoffersen et al. (2008) suggest that ν 
can be “solved for numerically from the physical MLE 
estimates” and we argue this to be possible when the 
intensity process χt is time invariant. However, experi-
mentation indicates that relying on the approach of Pan 
(2002) provides far better results.

The Pan (2002) approach is relatively straightfor-
ward albeit computationally intensive.

Step 1:  Estimate the observed data-generating process 
from the estimation window of the under-
lying sample.

Step 2:  Choose a lower bound on ν(1) and impute the 
risk-neutral parameters y

(1)λ ∗, J

(1)µ ∗, and γ (1)∗. 

Generate the time series t

(1)χ ∗ and ht

(1) under 

the risk-neutral dynamics. Next collect a daily 
sample of very near maturity, at-the-money, 
options.

Step 3:  Pan (2002) recommends less than 25 days. We 
posit that a fair test is to collect the average 
price of 15 to 25 (for stocks this is required 
for coverage) day at the money option prices 
for each day in the sample and compute the 
average maturity T ∗ − t. Next generate 10,000 
draws for each day starting from t

(1)χ ∗ and ht

(1) 
and compute the undercounted estimated 
price of each option, under ν(1). Using the 
rule:

 Q

P S K

S K s

t TP SP

T

1

10,000
( ,0)

max( ,0)d

(1)

1

10,000

,
(1)

0

(1) (
QK 0)d 1)

∑

∫0∫

−S( )

Smax(→ ∫

∗

ι=
ι

∗

∞

      and hence the option price from C et

T t(1) (e r )−Tr ∗

, 
where Q(1) is the risk-neutral measure under 
ν(1) and collect the root mean squared log 
difference between the observed Ct and Ct

(1). 
Recall that we denoted this as M(1).

Step 4:  Compute a new market price of jump risk 
from the rule ν(a+1) = ν(a) + E, for the a iteration. 
Where E is a computationally manageable step 
size and repeat Step 2.

We suggest two termination conditions: first iter-
ative, if M(a+1) > M(a), then record ν = ν(a). However, 
as noted in Pan (2002), the error in the first moment 
can be problematic. We therefore advocate searching 
over a range νmin to νmax, which is easily encoded in 
parallel, and then identifying the ν(a) smallest pricing 
error min(M(a)).

Pricing the Options Using CGARCH 

and GARCH Models

As discussed above, for the GARCH and CGARCH 
models, closed-form solutions exist for the pricing of the 
options. The pricing formulas are in the form of iden-
tification of the functions NS(ϑ, θ) and NK(ϑ, θ), where 
θ is the vector of parameters of the GARCH (θ = {λ, α, 
β, γ, ω}) and CGARCH (θ = {λ, α, β, γ1, γ2, ϕ, ρ, ω}) 
models and ϑ is the vector of parameters of the option 
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ϑ = {t, T, K, S, r}. In both cases, the closed-form solution 
is derived using the characteristic function. In particular, 
for each case the local characteristic function f  ∗(t, T, φ) 
for each option is derived using Kologmorov’s backward 
method. The price of the call option is of the form

EC e r

t T

t S

r

K

(maxax( ,S KTS 0))

( , ) (Ke r

K , ),

( )T t

( )T tT t

Ee (max(S( )

= ϑSt S ( θ −) ϑ θ,

− r T ∗

KeKK r T tr T

where Et

∗ is the time t conditional expectation under 

risk-neutral distribution. For the GARCH model, 

Heston and Nandi (2000) derive the moment gener-

ating function for any number of lags in the AR and 

MA components of the model. The functions NS(ϑ, θ) 

and NK(ϑ, θ) are defined as follows:

 

d

d

S Sd

K Kd

( )
1

2

1
( d ,

( )
1

2

1
( d ,

0

0

∫

∫

ϑ θ = +
π

φ φ)d

ϑ θ = +
π

φ φ)d

∞

∞

N

N  (22)

where

 

d
K f T

S e

d
K f T

S e

S

t

r

K

t

r

( Re
( ,t , 1)

i
, and

( Re
( ,t , )

i
,

( )T t

( )T t

φ =)
φ +

φ

φ =)
φ

φ

φi ∗

φi ∗

 (23)

where f  ∗(t, Tφ) = f(t, Tiφ), f(φ) is the moment-generating 

function, over φ moments for the candidate process. 

Let φ be the unconditional moments; for the first-order 

version of the GARCH model, the moment-generating 

function is given by f t T S et

A B ht tB t,t , 1φ =) φ + , where

 

A A r B

B B

t t t t

t tB

ln(1 2 )BtB ,

( )

1r B 1
2 1

1 2
1

+AtA 1 φrrrr ω − − 2

φ λ β
+1 r Bt1 r +

+  (24)

with the time T boundary condition is that AT = BT = 0. 

Heston and Nandi (2000) provide extensive coverage 

of the GARCH approach utilizing the Kolmogorov’s 

backward induction equation to identify the above 

moment-generating function. Christoffersen et al. (2008) 

extend the approach for the GARCH to the CGARCH 

form. Setting f t T S et

A B h q B qt t t t t tq,t , ( )h q, 1q 2, 1φ =) φ B tB (h1 +ttqqtq +  to be the 

moment-generating function with recursive coefficients, 

then

 

A A r

B B

t t

t t

( )B B

ln(1 2 2B )

, 1 2B , 1tt

1
2 1, , 1t 2, 1

+AA1 1 φrr B

− −ln(1 α tB1 +B )2B , 1 ω
+r tr t+1 rr B tB

t2BB ,t +  (25)

 B B
B B

t tB
t

2
( )B

1 2 21, 1, 1
1 1B , 1tt 2

2

1, 2B , 1t

β + λφ +
γ ϕγ

− α2+
2BB ,t

 (26)

 B B
B B

t t

t

2
( )B

1 2 22, , 1
1 1B , 1tt 2

2

1, 2B , 1t

+B tB2 1 λφ +
γ ϕγ

− α2+
2BB ,t

 (27)

and terminal conditions AT = B1, T = B2, T = 0, effec-

tively adding the component structure to the original 

GARCH specification. However, the GARCH model 

has a deliberate structure that imposes certain regularity 

conditions on the characteristic function (see the tech-

nical Appendix in Heston and Nandi 2000), and from 

the complexity of the CGARCH component equation 

it is effectively impossible to recover analytically con-

firmation that the CGARCH will converge in an iden-

tical fashion. In order to address this, we will explore 

the CGARCH pricing function in more detail using 

numerical examples.

Numerical Stability of the Pricing 

Algorithms

For the GARCH and CGARCH models the 

objective is to compute the functions Ni(ϑ, θ), i ∈ {S, K} 

via numerical quadrature. The option pricing literature 

that encompasses the popular Heston (1993) approach 

proffers a considerable discussion on the numerical sta-

bility of such an approach; see Albrecher et al. (2006) 

for a discussion of the “Little Heston Trap” problem 

that can substantiate itself in the computation of options 

under stochastic volatility. Notice that the major issue is 

the branch cut in the complex plane for the solutions to 

the characteristic function. The Heston model is argu-

ably the simplest nontrivial model that can be computed 

via fast Fourier transform or numerical quadrature of 

the characteristic function, and the existence of two 

roots in the complex plane for this model poses several 

problems for numerical implementation. The Heston 

and Nandi (2000) GARCH model essentially collapses 

to the Heston (1993) model as Δt → 0 and similarly 

A
u
th

o
r 
D
ra

ft
 f
o
r 
R
e
v
ie

w
 o

n
ly
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provides a well-defined branch cut that we can identify. 

However, the CGARCH model is more complicated in 

this sense and numerical implementation poses prob-

lems. The problem of the branch cut in the evaluation 

of the function is that at the cut numerical evaluations 

can exhibit substantial errors, an obvious issue being 

singularities that result in indefinite evaluations.

To overcome this issue, some publicly available 

algorithms for the CGARCH pricing model appear to 

solve this by arbitrary truncation at φ = 10. However, 

this truncation also causes problems that deteriorate the 

accuracy of the option price, as for many out-of-the-

money strikes the function has not yet fully converged 

to zero at φ = 10. Several quadrature methods are com-

monly used to solve the types of integrals found in 

equation 22, and standard implementation techniques 

are available in most numerical analytical tools such as 

MatLab or Mathematica. To illustrate that the effect 

stems from the moment-generating function and not 

the quadrature method we implement three proce-

dures: Simpson’s rule, the Gauss–Konrod rule, and 

the trapezoidal or brute force integration. We also 

have implemented the option pricing method in both 

Mathematica (which uses variable or arbitrary precision 

arithmetic) and MatLab that uses IEEE standard double 

precision arithmetic.

From a practical standpoint, using an arbitrary 

precision arithmetic to price a large number of options 

is effectively impossible, as each option requires a sub-

stantial amount of computation time to derive the price, 

even using a large cluster. Hence, we demonstrate the 

instability of the CGARCH model for a pair of options. 

In Exhibit 5 we present CGARCH parameter esti-

mates for our models compared with those found in 

see the technical Appendix Heston and Nandi (2000) 

and Christoffersen et al. (2008) for the S&P 500 index 

(highlighted in bold red for our estimated and bold black 

for Heston and Nandi (2000) and Christoffersen et al. 

(2008)). For comparison we will use the parameters 

from the non-jump-filtered returns. Using these param-

eters, we analyze the following pair of options: a 100-

day at-the-money call and a 300-day in-the-money call 

where S ⁄K = 1.3. We will assume that in all cases the 

conditional variance is ht = 0.352 and for the CGARCH 

the component volatility is qt = 0.01792, the average qt 

from our CGARCH model with no jump filtration. Let

d

d

S Sd

K Kd

(
1

2

1
( d ,

(
1

2

1
( d .

0

0

∫

∫

φ =) +
π

φ φ)d

φ =) +
π

φ φ)d

φ

φ

IS

IK  (28)

In Exhibit 1 we observe, over a range of initial 
stock-prices, the explosive point for an example set of 
evaluations of dS(φ). While the spectral functions dS(φ) 
and dK(φ) for the GARCH model converge to zero after 
a finite number of iterations, the CGARCH versions of 
the functions dS(φ) and dK(φ) do not. In fact, they stabi-
lize and then after a finite number of iterations the func-
tion destabilizes and explodes. A further complication 
is that for the two different option models the point at 
which the CGARCH functions dS(φ) and dK(φ) destabi-
lize diverges substantially, and consistently deriving this 
threshold has proved elusive. Our approach is to system-
atically vary the upper limit of integration and then use 
a Haar wavelet (a local average) to detect the point of 
relative f latness and hence the correct values of Ni∈{S,K}.

Note that the stability of the estimates deterio-
rates when jumps are incorrectly omitted from the 
option pricing model. Consider a data-generating 
process for R R Jt tR t+RtR , where Rt is the continuous 
diffusion component with GARCH volatilities and Jt 
is the jump component. While the option is biased if 
the option price is based solely on Rt rather than Rt, 
the contamination of the auto-regressive jumps causes 
greater problems for the CGARCH model in correctly 
pricing options, and this contamination has differential 
effects across maturities and money-ness. We will show 
that the jump-filtered GARCH and CGARCH models 
perform at least as well as, and in many cases better 
than, GARCH and CGARCH models estimated on 
unfiltered returns. The bias in the price also will vary 
with the properties of the jump model. We find that 
the deterioration in the performance of the CGARCH 
when jumps are omitted is substantial.

Out-of-Sample Forecasting

The f inal aspect of our ana lysis is an “acid-test” 

of the volatility model in comparing the computed 

call option prices to traded options out-of-sample. We 

therefore estimate the various GARCH models over 
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the sample period up to the onset of our options data 

sample in 2010. An important aspect of pricing options 

is to ensure that intraday effects do not add noise and/

or bias to the results. Our options are sampled each 

day from the OPRA data feed at 4 p.m. and matched 

to the underlying assets price at that time. This is 

considered to be time t. The conditional variances 

and jump intensities used in the option pricing are 

taken from the previous day’s closing stock or index 

return t − 1, and are therefore ex ante and not ex post. 

Hence, we assume that ht and χt are known and that 

the parameters of the model rolling forward are taken 

from the preceding estimation window, from 1996 

to 2010, which is the full history of the available tick 

data from Thomson-Reuters. To test for parameter 

instability we implement the f ixed window, rolling 

window, and recursive tests described in Giacomini 

and Rossi (2010) and find very little variation for most 

of the models except the CGARCH when estimated 

on the raw returns, not f iltered for jumps. Here the 

rolling window reveals a substantial change in the ω 

coeff icient in the qt equation during 2010 for the S&P 

500 index, and several stocks appear to violate the 

bootstrapped maximal f luctuation test from Giacomini 

and Rossi (2010) critical boundary at 90%, but not at 

95%. Therefore, we still adopt the f ixed estimation 

window coeff icients for the CGARCH, to maintain 

parity with the other models.

Call Option Loss Functions and Experiments

Let Ct(ϑt) and t t t( ,t )1ϑ θ,t −  be the actual recorded 

call option price and the model predicted call option 

price for day t. The parameter vectors are partitioned 

E X H I B I T  1
Numerical Stability of CGARCH Option Pricing Function. Evaluation of ∫∫ φ∫∫ d pφφφφ hid)φφφφ

0
 with Respect to an Arbitrary 

Truncation φφφφ  the Ordinate Values on the Left Plot are Multiplied by a Factor of 10 for Visualization Purposes

Notes: The left-hand plot illustrates the evaluations of d phiS0∫ φd0  with respect to the upper bound φ  Many implementations of these types of model 
truncate φ to around the 10th moment. We can see from this simple example where λ = −0.2049, β = 0.9132, α = 1.3201e−07, γ1 = 415, 
ω = 6.8328e−07, ρ = 0.9855, ϕ = 2.8006e−06, γ2 = 2.0134e−10, ht = 0.352 and qt = 0.01792. The option being priced is 50 days to maturity and 
the risk-free rate is set to 0.25%. Note that the ordinate values for the right-hand plot are already in the range ±1e199 when φ  = 247.5. This provides a 
fairly complicated numerical problem to solve, as the function slowly deviates toward the singularity, an error that has been noted in this type of approach 
to pricing options.
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as follows. First, the option-specif ic information 

is given by ϑt = {St, K, r, T} where St is the actual 

stock price at the time of trade, K is the strike price, 

r is the current risk free rate, and T is the maturity. 

The one-day-lagged information θt−1 is model specific. 

For the GARCH model this is θt−1 = {ω, β, α, γ, ht}, 

for the CGARCH model θt−1 = {ω, ρ, α, β, γ1, γ2, ht, qt} 

and for the ARJ-GARCH θt−1 = {ω, α, β, γ, λy, ν, 

σJ, µJ, ht, tXt }. Following Christoffersen and Jacobs 

(2004), we set up a loss function approach by set-

ting Fj(Cj,t(ϑt), j t j t( )) ( )j t1t t t( tϑ θt = δF(  where j indexes 

the M(ϑ) call options with ϑ ∈ Θ characteristics in 

our sample. The summary loss statistics are the root 

mean and root median forecast errors:

 F ( ) 1/ ( ) ( )
1

( )∑ϑ =) δ(
( )

ϑ)∑µFF
=

ϑ
M(

( )
)∑ j

M

j t,  (29)

 j t( median( (F )).m j( ) ( (ϑ =)) δFm  (30)

We choose the loss function F(δj,t) to be in terms 

of square of the log differences:

 F j t j t t j( )j t (ln (C j t ln (C jC ))t j)t ( j , 1t t t(t , t

2δ =)j t ϑ −t ) ϑ θt ,  (31)

We then assign each option to a moneyness-
maturity bin and compute the root mean of the quadratic 
losses.

There are of course a very large number of combi-

nations that can be studied within an empirical analysis 

of this form. In order to present the results in a relatively 

contained manner we choose 20 moneyness-maturity 

bins with four maturities, 0 < T − t ≤ 50, 50 < T ≤ 100, 

100 < T − t ≤ 500, T > 500, and five stratifications of 

moneyness, 0 < S  ⁄K ≤ 0.75, 0.75 < S  ⁄K ≤ 1, 1 < S  ⁄K ≤ 

1.25, 1.25 < S  ⁄K ≤ 1.5, and S  ⁄K > 1.5.

We restrict ourselves to presenting six models. 

We also implement a further pair of models: the gener-

alized affine realized volatility model of Christoffersen 

et al. (2012) and the doubly stochastic poisson model of 

Scott (1997), calibrated only to historical options data. 

However, the results for both models were very mark-

edly inferior to the CGARCH model estimated using 

unfiltered returns, the worst-performing model from 

our chosen group. Code and results for these models are 

available in our online supplementary material.

#1  GARCH Estimated by Maximum Likelihood 
on jump-filtered returns.

   Option prices via numerical integration of 
di∈{S,K}.

#2  CGARCH Estimated by Maximum Likelihood 
on jump-filtered returns.

   Option prices via numerical integration of 
di∈{S,K}.

#3  GARCH with AR-Jumps Estimated via the 
iterative approach from mixed frequency data 
as outlined above.

#4  GARCH Estimated by Maximum Likelihood 
on unfiltered returns.

   Option prices via numerical integration of 
di∈{S,K}.

#5  CGARCH Estimated by Maximum Likelihood 
on unfiltered returns. 

   Option prices via numerical integration of 
di∈{S,K}.

#6  GARCH with AR-Jumps Estimated by Max-
imum Likelihood on unfiltered returns.

   Options priced via Monte Carlo simulation.

The f irst three models mirror essential ly 
Christoffersen et al. (2008) for both stocks and the S&P 
500 index. We disaggregate the presentation of the results 
for the S&P 500 index options from the individual stocks. 
Furthermore, to illustrate the consistency across indi-
vidual stocks, we present two cases: IBM and Johnson 
and Johnson (Code JNJ). We then report the mean 
squared errors for all the individual stocks combined.

DATA AND PREPROCESSING

When conducting a study of this type the probity 
an d sources of the data are of critical importance. It is 
therefore instructive to carefully detail the data collec-
tion approach to illustrate any potential sources of bias. 
We collect our stock and index data from the Thomson-
Reuters Tick History (TRTH) data service, which in 
turn pulls data directly from the exchange feeds. For the 
pre-2005 period this is by exchange and post-2005 this 
is from the National Market System (NMS) for both the 
underlying stocks and the options via OPRA.

When conducting intraday volatility studies, the 
econometrician has the discretion of using the mid-price 
halfway between the best bids and best asks (the inside 
spread) or the actual traded prices. We choose the actual 
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trades, as (a) this is the price that the option will be priced 
against and (b) this type of tick data is consistent with the 
stock index data. Note that by license we are not per-
mitted to release source tick data. Nevertheless, the time 
series of daily returns, realized volatilities, bipower varia-
tion, tripower quarticities, and inferred jumps for our 
one-minute data is available in the Online Supplement.

The historical stock and index sample pulls data 
available from January 1, 1996, and ends on March 6, 
2014, the entirety of the TRTH available history, cov-
ering 17 years for 20 individual stocks sampled from 
the components of the Dow Jones Industrial Average 
and the intraday S&P 500 index. Notably, some stocks 
(for instance Chevron, Verizon, and Home Depot) start 
slightly later in the data feed. The estimation of the 
underlying models is conducted on the daily aggregate 
returns, denoted Rt  (see above for a detailed explanation).

The options data are sampled from the OPRA data 
feed via TRTH from January 1, 2010, to March 6, 2014. 
It is important to point out that the source options data 
from the OPRA NMS is vast. Therefore, our filtering 
approach is as follows. We pull only the options traded 
in the five minutes after 4 p.m. EST weekdays. Note 
that the vast majority of options trades are conducted 
in Chicago on the CME, while the underlying tickers 
are mostly traded in New York and New Jersey, so the 
time zones are different. We time stamp all the trading 
data relative to GMT to ensure that stocks and options 
are synchronized. All live maturity dates from January 2, 
2010, to March 6, 2014, are included. For each avail-
able contract type (each code contains a maturity date 
and a strike price) for our underlying assets we compute 
the open-interest weighted price of all trades within 
the five-minute time period of interest. This is accom-
plished by an algorithm within the data service. Hence, 
the number of source contracts used to compute open-
interest-weighted price is unknown. However, pulling 
the raw data for the S&P 500 index options for a few days 
indicated that it is in the thousands for the at-the-money 
options and in the hundreds for the out-of-the-money 
options. Therefore, while for brevity we refer to the 
data as 347,612 contracts, it is more appropriate to refer 
to it as 347,612 maturity-strike-ticker-code-day aver-
ages for the five-minute sample in question. All options 
are restricted to the European type from the data feed. 
Exhibit 2 provides details of the sample characteristics.

Despite the active nature of the equity options 
market, some stocks have missing or very few maturity-

moneyness combinations; this is illustrated in Exhibit 3, 
which cuts up the sample by contract population in bins. 
It should be noted that the S&P 500 index options have 
a much wider range of available strike prices registered 
on the OPRA-NMS system. Accordingly, over one-
third of the sample comes from this contract type. This 
source of data is roughly that which provides the end-
of-day prices reported in the OptionMetrics data set. 
However, we choose 4 p.m. to eliminate potential end-
of-day effects. This appears to be consistent with market 
practice, most notably for individual stocks.

The historical data set, therefore, consists of over 
2 billion trades and/or updates from the S&P 500 index 
and 20 stocks randomly selected from the Dow Jones 
30. The GARCH models are fitted on the filtered data 
up to January 1, 2010. However, for the remaining data 
we compute the forward recursion of the models until 
the end of the sample on March 6, 2014. This is an 
average of 538,322 trades or updates per day and 93,030 
firm days in the sample, making this one of the largest 
scale studies of its type, on RV alone. The option data 
set spans January 1, 2010, to March 6, 2014, and con-
sists of 347,612 traded option contracts. Again, to our 
knowledge this is one of the largest data sets ever con-
structed for option pricing problems involving Monte 
Carlo estimations.

ANALYSIS AND ECONOMIC IMPLICATIONS

In this section, we first summarize the parameter 
estimates in-sample for our new approach to fitting the 
models to the underlying data using mixed frequencies 
for the estimation window. Finally, we review the mean 
and median results for the models out-of-sample for our 
options data.

In-Sample Model Estimates

We begin our discussion w ith the maximum like-
lihood estimations to document the consistency of the 
estimates across our individual stocks and the index and 
to demonstrate that our results for the stocks are not 
driven by one rogue miscalibrated MLE. In Exhibit 3 we 
provide a summary of our option contracts across firms 
and the S&P 500 index. The final column, in bold, shows 
the summary for the total number of contracts for just 
the firms, and the middle column highlighted in bold 
presents the number of contracts for the S&P 500 index.
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We are relatively fortunate in that the number of 
available contracts for the individual stocks is relatively 
even across our bins. However, certain bins do stand 
out. For instance, we can observe a very large number 
of long maturity options with maturity in excess of 250 
days. This must be noted as a critical issue for the S&P 
500. In fact, the standardized option strikes mean that 
the number of available contracts that are out-of-the-
money by more than 25% are in short supply. This is a 
result very similar to that found in Pan (2002) where the 
available strikes are dependent on the exchanges issuing 
new standardized strike-maturity codes. For options of 
longer maturity, more strike-maturity combinations are 

issued and hence we have a larger sample for the cross-
section of strikes. It is also noteworthy that the bin sizes 
are not identical. Hence, we can capture more inter-
esting pricing errors for near-the-money and heavily 
in- and out-of-the-money conditions.

In Exhibit 4 we present the maximum likelihood 
estimates for the stocks and the S&P 500 index for the 
jump-f iltered data generated from the tick-by-tick 
returns for the GARCH model. The term t T,

∗
Lt

∗  denotes 
the evaluation of the maximized log-likelihood, when 
the models are estimated using the assumption of con-
ditional normality. The last column in bold presents for 
comparison the estimates of Christoffersen et al. (2008) 

E X H I B I T  2
Sample Characteristics

Notes: For computational reasons, we restrict ourselves to 20 stocks randomly selected from the Dow 30 and the S&P 500 index; note that we use the 
intraday index, which is updated roughly every 15 seconds during the trading day. Thus, the number of informed updates is relatively stable at just over 
2,000. Our data come directly from the Reuters-America feed that computes the update and this appears to contain more than the 1,560 updates expected 
for the 390 minutes of the trading day. The S&P 500 depository receipt (SPDR), an S&P 500 exchange traded fund, has a higher update frequency. 
However, this is an “equal-weight” version of the S&P 500 and it is not the reference index for the S&P 500 index options. The codes in column one are 
used throughout the paper. Average ticks per day are the average number of trades in a day. The number of trading days for each sample includes all days 
where there are more than 60 price changes. In practice, we have only dropped one day, for AA, in the whole sample, due to the lack of variation in ticks. 
Total ticks are provided to give an overview of the whole historical data set. Number of options contracts shows the total sample size for 2010 to 2014, for 
our out-of-sample testing period. Market price of jump risk is computed from the autoregressive jump model maximum likelihood parameters using 
end-of-day short-maturity near-the-money options, in our estimation window.

Codes

T

AA

AXP

BA

CATAA

CVX

KO

DIS

DD

GE

HPQ

HD

IBM

JNJ

MCD

PG

PFE

SPX

UTX

VZ

WMT

Total

Average Ticks
per Day

35,758

27,545

21,061

14,371

18,470

33,048

20,694

21,549

15,097

58,028

46,298

26,473

17,168

23,857

16,187

22,714

43,148

2,142

12,346

34,030

28,338

538,322

Number ofr
Days in Sample

4,641

4,658

4,604

4,628

4,640

3,212

4,608

4,606

4,584

4,716

3,084

4,631

4,637

4,619

4,611

4,596

4,689

4,543

4,563

3,526

4,634

93,030

No. of Options
Contracts

11,206

10,299

10,266

12,773

8,720

8,948

8,366

7,899

9,938

7,910

8,646

8,473

22,641

10,524

7,401

9,401

8,744

144,025

9,604

14,792

7,036

347,612

Total Ticks

165,952,878

128,304,610

96,964,844

66,508,988

85,700,800

106,150,176

95,357,952

99,254,694

69,204,648

273,660,048

142,783,032

122,596,463

79,608,016

110,195,483

74,638,257

104,393,544

202,320,972

9,731,106

56,334,798

119,989,780

131,318,292

2,340,969,381

Market Price
of Jum Risk

(ν in Basis Points)

209.61

449.09

252.64

252.63

521.46

695.00

830.60

245.22

130.17

287.85

398.66

913.71

521.31

27.99

530.29

154.50

781.19

46.63

925.62

178.68

604.56

AT&T

Alcoa

American Express

Boeing

Caterpillar

Chevron

Coca Cola

Disney

Dupont

General Electric

Home Depot

Hewlett Packard

Int. Bus. Mach.

Johnson and Johnson

McDonalds

Procter and Gamble

Pfizer

S&P 500 Index

United TechnologiesTT

Verizon

WallmarWW t

Name
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E X H I B I T  3
Option Contract Data

Notes: A summary of the number of options contracts for each of the 25 domains moneyness and maturity “bins” used in our sample. It is important to note that these are not individual 
trades, but means of prices taken over a 10-minute period before 3 p.m. Therefore, each number represents the number of contracts available within each bin. The mean values of the indi-
vidual trades are computed by CME. A zero indicates that no contract applicable to the individual bin is available. A color version of this exhibit appears in the online edition of this article.
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E X H I B I T  4
Maximum Likelihood Estimates for the GARCH Model on Jump-Filtered Returns for 20 Stocks and the S&P 500 Index (in bold) where 
the Coefficients are Represented by: 1

1/2

1R J1 h zt t1 t th t=J = +r== + λ++ λ +h 11λλt11 +t1 h11 + +1 zt++ +++ , ( )1/2 2)h 1 ht t11 t tββ +hthββ + α++ α(αα  and L ,t TLL ,

∗
LL

∗∗∗
LLLL  is the Log-Likelihood of the Sample for 

the Parameters at the Optimum

Notes: In the last column in bold we report the coefficient estimates from Christoffersen et al. (2008), labeled CJOW08. Standard errors are computed from the information matrix formed 
by inverting the Hessian of the log-likelihood function at the optimum, t T i j[ /t T ]2

, ∂θ ∂θ∗ ∗2∂H [ t= [∗ ∗2∂[  in the standard manner. The finite difference operator used to compute the Hessian is y
epsilon , where epsilon is the f loating point relative accuracy. In contrast, the standard errors in CJOW08, probably due to computational issues, are computed using the outer product of the 

gradient t T,∇ ∗
Lt

∗  vector at the optimum. While robust to f loating point errors in the finite differencing at the optimum, using the gradient does not asymptotically converge to the Cramer-Rao 
lower bound and hence the asymptotic parameter covariance matrix. A color version of this exhibit appears in the online edition of this article.

AA

JNJ

AXP

KO

BA

MCD

CAT

PFE

CVX

PG

DD

SPX

DIS

T

GE

UTX

HD

VZ

HPQ

WMT

IBM

CJOW08

λ –1.861e+00

[2.465e–03]

–8.995e–02

[2.504e–03]

8.786e–02

[2.577e–03]

–4.376e–01

[2.617e–03]

–8.362e–02

[4.760e–03]

–1.014e+00

[2.814e–03]

–2.567e–01

[2.473e–03]

–8.532e–01

[2.659e–03]

–8.663e–01

[2.413e–03]

7.596e–01

[3.205e–03]

4.978e–01

[1.994e–03]

ω 5.490e–ll

[8.899e–01]

2.334e–13

[5.571e+00]

1.647e–12

[5.064e+00]

7.510e–12

[1.960e+00]

4.749e–ll

[1.155e+00]

6.865e–12

[2.778e+00]

2.878e–10

[1.122e+00]

3.316e–13

[3.825e+00]

6.483e–07

[1.839e–02]

1.419e–14

[1.325e+01]

1.206e–06

[1.568e–02]

β 9.678e–01

[2.354e–03]

9.191e–01

[1.922e–03]

9.310e–01

[1.688e–03]

9.500e–01

[2.514e–03]

9.170e–01

[2.258e–03]

9.294e–01

[1.656e–03]

9.107e–01

[1.788e–03]

9.221e–01

[1.968e–03]

9.134e–01

[2.139e–03]

9.727e–01

[3.672e–03]

8.291e–01

[1.468e–03]

α 1.310e–05

[2.780e–03]

1.711e–05

[2.205e–03]

1.856e–05

[1.870e–03]

4.619e–06

[2.033e–03]

9.416e–06

[2.290e–03]

1.644e–05

[1.952e–03]

2.912e–05

[1.886e–03]

4.874e–06

[1.788e–03]

9.248e–06

[2.207e–03]

6.326e–06

[4.541e–03]

2.922e–05

[1.274e–03]

γ 2.452e+01

[4.736e–04]

4.709e+01

[4.527e–04]

2.586e+01

[3.075e–04]

9.037e+01

[6.867e–04]

5.775e+01

[6.987e–04]

2.927e+01

[3.487e–04]

1.251e+01

[2.511e–04]

1.115e+02

[7.098e–04]

8.077e+01

[5.247e–04]

4.467e+01

[1.184e–03]

6.119e+01

[2.377e–04]

L*
t,T

8.580e+03 1.031e+04 1.128e+04 9.853e+03 9.133e+03 1.137e+04 1.153e+04 1.246e+04 1.113e+04 7.347e+03 1.179e+04

λ –4.729e–01

[3.811e–03]

2.033e–02

[2.421e–03]

1.178e+00

[3.144e–03]

1.636e–03

[2.511e–03]

3.125e+00

[3.401e–03]

2.324e+00

[4.157e–03]

–1.488e+00

[2.635e–03]

–7.633e–01

[1.726e–03]

–1.099e+00

[4.117e–03]

–7.614e–02

[2.365e–03]

2.231e+00

[1.123e+00]

ω 8.409e–13

[3.812e+00]

3.256e–06

[8.237e–03]

1.726e–12

[2.600e+00]

3.296e–ll

[1.493e+00]

2.201e–05

[1.660e–03]

8.847e–13

[1.321e+01]

1.567e–12

[3.880e+00]

4.194e–06

[1.114e–02]

5.551e–14

[7.473e+00]

3.163e–09

[2.770e–01]

2.101e–17

[1.120e–07]

β 9.132e–01

[1.589e–03]

6.784e–01

[1.095e–03]

9.667e–01

[2.124e–03]

9.138e–01

[1.803e–03]

5.029e–01

[1.020e–03]

8.212e–01

[1.353e–03]

9.479e–01

[2.267e–03]

5.503e–01

[1.061e–03]

9.677e–01

[2.851e–03]

7.961e–01

[9.985e–04]

9.012e–01

[4.678e–03]

α 9.247e–06

[1.702e–03]

3.883e–05

[1.029e–03]

6.031e–06

[1.912e–03]

2.702e–05

[1.936e–03]

8.656e–05

[8.065e–04]

4.306e–06

[1.266e–03]

1.420e–05

[2.468e–03]

3.815e–04

[1.190e–03]

6.189e–06

[2.759e–03]

7.109e–05

[1.039e–03]

3.317e–06

[1.380e–07]

γ 4.530e+01

[4.510e–04]

7.098e+01

[2.295e–04]

2.892e+01

[5.402e–04]

1.410e+01

[2.693e–04]

1.745e+01

[1.463e–04]

1.834e+02

[7.822e–04]

1.712e+01

[3.245e–04]

–1.683e+01

[9.109e–05]

1.844e+01

[6.350e–04]

–9.089e+00

[1.393e–04]

1.276e+02

[8.347e+00]

L*
t,T

1.388e+04 1.269e+04 1.253e+04 1.165e+04 1.260e+04 1.437e+04 1.223e+04 8.371e+03 9.803e+03 1.213e+04 –
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on a longer daily sample of unfiltered returns. The direct 
comparator is the column in bold, which shows our 
results for the jump-filtered daily returns on the S&P 
500 index. It is also interesting to compare the point esti-
mates from Heston and Nandi (2000), who computed λ 
= 0.205 compared to values that are about one order of 
magnitude higher for both Christoffersen et al. (2008) 
and our own estimates for the jump-filtered data. Simi-
larly, the values of ω = 5.02e−6, α = 1.32e−6 and β = 
0.589 appear very different from our own estimates and 
those suggested in Heston and Nandi (2000). Indeed, 
the long run volatilities suggested in Heston and Nandi 
(2000) appear radically different from those computed 
herein and in Christoffersen et al. (2008)—at between 
8% and 10% for Heston and Nandi (2000) and between 
13% and 17% for Christoffersen et al. (2008) and our 
jump-filtered results respectively for the S&P 500. Recall 
that the long-run variance is h ( ) / (1 )2= ( β − αγ  
and using the “rule-of-16,” the annualized volatility is 

therefore h252 . This discrepancy seems less likely due 

to the intercept ω, found to be 2.101e−17 by Christof-
fersen et al. (2008) and 8.847e−13 from the jump-filtered 
data, and might be more related to the estimation of 
β, which as both Christoffersen et al. (2008) and the 
jump-filtered returns indicate, is close to unity vis-à-vis 
the 0.589 suggested in Heston and Nandi (2000). Due 
to the requirements of the jump filtration step and data 
availability, our results run over the 1996–2014 period, 
a shorter sample than in Christoffersen et al. (2008).

Note that at the individual stock level, the variation 
in the parameters is quite high. IBM is an interesting 
example in that it appears to provide us with as close 
to an “ideal” stock as possible. For IBM the risk pre-
mium is λ ≈ −0.5 and the long-run annualized volatility 
is 21%. For all stocks the standard errors indicate that 
the asymmetry γ parameters are high (in the high teens 
and sometimes in the 100s), but none are close to the 
421 value reported in Heston and Nandi (2000). In fact 
Verizon (VZ) and Walmart (WMT) have small nega-
tive values for γ that are not statistically significant. The 
persistence parameter β is uniformly high, at above 0.9 
for most stocks except Coca-Cola (KO) and Walmart 
but also uniformly below unity.

The results from Heston and Nandi (2000) for 
imputing the parameters of the model by nonlinear least 
squares from a small sample of options are even more at 
odds with the results found herein and as documented 

in Christoffersen et al. (2008). While this is a relatively 
trivial exercise with our short maturity near-the-money 
option data, the results are extremely volatile and good-
ness of fit is several orders of magnitude away from our 
version of the Pan (2002) approach. This is available 
from the authors or can be computed very quickly using 
the Matlab code from this study. We therefore omit a 
detailed analysis from our discussion.

For the GARCH model (more than a decade since 
its introduction) we suggest that, while the GARCH 
option pricing framework may be closer to a structural 
model of options prices than the Black–Scholes model 
or other more primitive stochastic volatility models, the 
maximum likelihood parameter estimates still appear 
somewhat unstable, although far less unstable than the 
comparison between the results in Christoffersen et al. 
(2008) and Heston and Nandi (2000). Note that cross-
sectionally the parameter estimates for individual stocks 
are very stable for the jump-filtered returns and indeed 
the jump-filtered returns do not exhibit substantial 
variation from the unfiltered returns (see the Online 
Supplement).

The CGARCH results presented in Exhibit 5 are 
again very consistent with our jump-filtered results and 
those found in Christoffersen et al. (2008). For the S&P 
500 (center column in bold) we find λ to be highly 
consistent with the GARCH (similarly to Christoffersen 
et al. 2008). For our jump-filtered results we find that 
γ2, the asymmetry parameter in the component equa-
tion, is about 50% larger. We ascribe this variation to 
the 2007–2010 financial crisis period. The CGARCH 
model performs less consistently than the GARCH 
across the individual stocks, and the variation between 
the jump-filtered parameter estimates and the unfiltered 
estimates (Online Supplement), both individually and 
on average, is more pronounced. We will see from the 
option pricing performance that the CGARCH appears 
more acutely vulnerable to a lack of filtering jumps than 
the GARCH (possibly due to the component equation 
specification). Recall that we have restricted ourselves to 
the case when ρ is a free parameter, and in each case the 
point estimate of ρ is less than unity. Auxiliary likeli-
hood ratio testing (not presented for space reasons) shows 
that for several cases, such as Boeing (BA), Caterpillar 
(CAT), and Dupont (DD), the restriction of ρ = 1 cannot 
be rejected at a 95% confidence level. Overall, the results 
indicate uniformly that the component persistence is 
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E X H I B I T  5
Maximum Likelihood Estimates for the CGARCH Model on Jump-Filtered Returns with Specification: R J r h h zt t tt tJ hh1/2

1λλλλλλλλ=J +ht 1 tth + +zt1 +++  and 
) (( (1 ))) (( 1/2 2) 1

2h q1 h qt t11 t t t t1 t+q + β++ β −((hββ +)) + α++ α((((zαα −)1/2 )h1 t1h1 (1 γγγγ  where (( 1) 2 )2
2

1/2q q h1/2
t t tz t t== ω== ω +ωω ρ +q ϕ −(( 2z(( tz(( − γ2

Notes: Standard errors are computed in the same manner as for the GARCH model. A color version of this exhibit appears in the online edition of this article.

ρ

ϕ

λ

β

α

γ
1

γγ

γ
2

γγ

ω

L*
t,T

ρ

ϕ

λ

β

α

γ
1

γγ

γ
2

γγ

ω

L*
t,T

–8.995e–02

[2.526e–02]

9.160e–01

[8.242e–02]

1.656e–05

[3.432e–02]

1.613e+02

[2.797e–02]

2.089e–06

[1.740e–02]

9.900e–01

[2.741e–02]

1.711e–05

[1.738e–02]

5.690e–01

[2.298e–02]

2.990e+04

–6.977e–01

[9.059e–03]

8.393e–01

[1.870e–03]

3.167e–06

[3.366e–03]

8.389e+02

[5.520e–05]

2.003e–05

[1.359e–03]

9.384e–01

[1.321e–03]

2.038e–05

[1.228e–03]

3.486e–10

[3.578e–04]

1.271e+04

AXP

KO

–1.443e–02

[8.075e–03]

9.050e–01

[5.189e–03]

1.447e–05

[3.264e–03]

3.767e+01

[3.827e–06]

1.806e–06

[6.187e–03]

9.946e–01

[6.101e–03]

4.273e–06

[4.365e–03]

1.077e+01

[3.202e–04]

1.130e+04

1.200e+00

[1.145e–02]

9.538e–01

[1.299e–02]

1.260e–06

[8.243e–03]

2.212e+02

[3.534e–05]

1.068e–06

[2.769e–03]

9.950e–01

[2.235e–03]

3.823e–06

[1.482e–03]

1.000e–ll

[5.029e–04]

1.260e+04

BA

MCD

–4.343e–01

[1.228e–01]

9.530e–01

[6.064e–03]

3.237e–06

[8.512e–03]

1.455e–ll

[9.581e–06]

2.826e–06

[5.789e–02]

9.907e–01

[3.336e–02]

4.676e–06

[2.694e–02]

8.604e+01

[3.671e–03]

9.860e+03

1.636e–03

[4.333e–02]

9.684e–01

[3.450e–02]

1.020e–06

[4.791e–02]

7.344e+02

[4.469e–02]

6.541e–07

[2.660e–02]

9.900e–01

[8.787e–03]

2.702e–05

[5.390e–02]

7.203e–01

[6.039e–02]

1.193e+04

CAT

PFE

–4.492e–02

[1.470e–02]

8.966e–01

[6.161e–03]

1.928e–07

[3.334e–02]

3.663e+03

[2.397e–03]

3.602e–06

[3.909e–03]

9.810e–01

[3.780e–03]

8.440e–06

[2.108e–03]

2.191e–02

[6.301e–04]

9.156e+03

3.125e+00

[2.881e–15]

3.609e–01

[3.426e–24]

1.225e–06

[3.304e–15]

6.760e+02

[1.068e–24]

4.073e–05

[7.145e–15]

9.900e–01

[1.338e–24]

8.655e–05

[4.039e–24]

2.745e+01

[8.941e–16]

3.060e+03

CVX

PG

–1.014e+00

[2.675e–02]

9.016e–01

[3.027e–02]

2.538e–05

[2.719e–02]

1.245e+02

[3.201e–02]

4.762e–06

[7.697e–02]

9.900e–01

[2.652e–02]

1.644e–05

[2.536e–02]

4.614e+00

[4.685e–02]

1.872e+04

2.321e+00

[2.729e–02]

7.426e–01

[3.781e–03]

3.712e–08

[3.449e–02]

2.544e+04

[1.857e–02]

2.042e–06

[2.134e–03]

9.843e–01

[2.276e–03]

3.724e–06

[1.437e–03]

1.056e+02

[4.856e–04]

1.442e+04

DD

SPX

–3.658e–01

[7.919e–03]

8.758e–01

[1.588e–02]

1.488e–06

[2.426e–02]

8.731e–10

[1.712e–05]

2.443e–05

[2.574e–03]

9.297e–01

[2.677e–03]

2.635e–05

[2.539e–03]

1.309e+01

[1.407e–04]

1.153e+04

–1.488e+00

[8.901e–03]

9.513e–01

[5.970e–02]

4.132e–06

[1.303e–02]

2.366e+02

[3.545e–02]

1.046e–06

[8.608e–03]

9.900e–01

[1.572e–02]

1.420e–05

[2.121e–02]

4.224e+00

[2.152e–02]

1.072e+03

DIS

T

–8.111e–01

[8.690e–03]

8.393e–01

[5.602e–03]

7.498e–06

[4.478e–03]

3.037e+01

[5.231e–06]

2.002e–06

[2.504e–03]

9.933e–01

[2.650e–03]

5.021e–06

[2.080e–03]

6.734e+01

[3.463e–04]

1.253e+04

–7.633e–01

[1.208e–02]

4.395e–01

[9.094e–03]

1.301e–06

[1.831e–02]

1.040e+03

[1.483e–02]

1.367e–04

[1.415e–02]

9.900e–01

[9.317e–03]

3.815e–04

[8.663e–03]

9.130e–01

[9.948e–03]

5.871e+03

GE

UTX

–8.708e–01

[1.993e–03]

9.012e–01

[2.202e–02]

6.593e–07

[1.004e–02]

2.765e–10

[1.336e–05]

6.416e–06

[2.113e–03]

9.894e–01

[2.160e–03]

9.418e–06

[2.725e–03]

8.459e+01

[2.933e–04]

1.109e+04

–1.097e+00

[1.231e–02]

9.522e–01

[1.206e–02]

3.667e–06

[9.530e–03]

0.000e+00

[9.500e–06]

1.988e–06

[5.202e–03]

9.913e–01

[4.789e–03]

4.561e–06

[1.679e–03]

6.895e+01

[8.839e–04]

9.815e+03

HD

VZ

7.727e–01

[1.075e–02]

6.646e–01

[1.003e–02]

3.527e–05

[3.859e–03]

5.528e+00

[2.815e–06]

2.053e–06

[4.654e–03]

9.949e–01

[4.455e–03]

1.834e–06

[8.868e–03]

1.226e+02

[2.211e–03]

7.384e+03

–7.614e–02

[1.251e–02]

9.593e–01

[3.975e–02]

2.727e–06

[1.452e–02]

7.486e+02

[1.572e–02]

1.216e–06

[6.003e–03]

9.900e–01

[4.566e–03]

7.109e–05

[9.893e–03]

1.431e+01

[2.780e–02]

7.139e+03

HPQ

WMT

4.978e–01

[6.209e–02]

9.652e–01

[3.333e–02]

2.657e–06

[1.688e–01]

9.778e+02

[3.881e–02]

8.681e–07

[1.384e–01]

9.900e–01

[1.777e–01]

2.922e–05

[1.153e–01]

2.955e–01

[1.888e–01]

9.086e+03

2.092e+00

[7.729e–01]

6.437e–01

[2.759e–02]

1.580e–06

[2.430e–07]

4.151e+02

[6.341e+01]

8.208e–07

[7.620e–08]

9.896e–01

[9.630e–04]

2.480e–06

[1.160e–07]

6.324e+01

[5.300e+00]

–

IBM

CJOWO8

–1.859e+00

[1.007e–02]

9.524e–01

[3.879e–03]

1.136e–05

[1.909e–03]

5.648e–07

[1.654e–06]

4.098e–06

[3.081e–03]

9.916e–01

[3.990e–03]

9.917e–06

[2.506e–03]

6.810e+01

[2.883e–04]

8.573e+03

–4.729e–01

[1.072e–02]

9.019e–01

[1.361e–02]

3.327e–06

[1.020e–02]

2.295e+02

[6.858e–03]

1.673e–06

[1.682e–02]

9.900e–01

[1.215e–02]

9.247e–06

[1.812e–02]

8.784e+00

[1.415e–02]

2.138e+04
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high for both filtered and unfiltered returns, in line with 
Christoffersen et al. (2008).

It is worth stressing that our AR-Jump model 
with GARCH differs slightly from Christoffersen et al. 
(2008) in that we explicitly allow the jump intensity to 
vary stochastically. In Exhibit 6 we report the parameter 
estimates from our multistep estimation framework for 
the AR-Jump model with GARCH volatilities. Once 
again we report the estimates from Christoffersen et al. 
(2008) in bold in the last column. However, in this case 
they are not directly analogous for two reasons. First, 
our primary specification does not allow for jumps in 
variance. Indeed, this is a second maximum likelihood 
only estimation that is reported in the Online Supple-
ment and corresponds to model #6 in our option com-
parison table. For brevity, we do not fully elucidate the 
results here. However, they are less consistent than the 
GARCH and CGARCH models with the equivalent 
results in Christoffersen et al. (2008). Second and more 
importantly, we allow the intensities to be autoregres-
sive. Hence, two more parameters have to be identified 
rather than simply having a single long-run intensity.

We will present some interesting features of the 
results in Exhibit 6. However, it is important to note the 
speed advantage offered by estimating the model using 
the multistep approach outlined in the previous section. 
In contrast to the unfiltered MLE approach used to esti-
mate the model parameters from daily unfiltered data, 
the MLE procedure, while iterative, only has to optimize 
the log-likelihood function for the jump risk premium. 
The preceding steps from the tick data are determined 
using descriptive statistics in a single step. The GARCH 
model used to extract the conditional variances is a five-
parameter optimization and is also extremely fast. In 
contrast, full maximum likelihood estimation of the 
jump model requires an 11-dimensional optimization, 
and the computation of the optimal parameters is very 
slow. It is worth stressing that the log-likelihoods for the 
reported parameters (MS), while lightly lower than those 
reported for a fully optimized system (MLE), almost 
uniformly are lower than one-half of a chi-squared at 
95%, i.e., t T t T 1/2 (1,0.95),

MLE
,
MS 21/2<t T

,MS χ∗ ∗MLE
L Lt T t

,MLE − t

∗ ∗MLE . This suggests 
that the real data behaves in a statistically similar manner 
to the Monte Carlo study performed in the Online 
Supplement. Furthermore, the log-likelihoods, reported 
in Exhibit 6, are uniformly higher than the CGARCH 
and nested GARCH models, and in most cases substan-
tially greater than 1 ⁄ 2χ2(6, 0.95) from the GARCH, 

indicating that the joint restriction on the jump param-
eters is rejected. This is far more clear-cut than the like-
lihood ratio testing between the N and CGARCH cases 
(a restriction of three degrees of freedom). We also per-
formed likelihood ratio tests to compare the AR versus 
constant jump intensity and found that the restriction 
was rejected each time, as is customary in the option 
pricing literature.

In summary, our results indicate that the max-
imum likelihood estimation of the models for filtered 
and unfiltered returns does change the fit to the under-
lying data, although not dramatically. We conclude this 
section by analyzing our out-of sample options results, 
for which we find substantial variation. Nevertheless, we 
want to reinforce the main theme of the present paper as 
the results are most likely driven by the inherent proper-
ties of the models and not due to substantial variation in 
the quality of fitting to the underlying data.

Out-of-Sample Options Results

Exhibits 7 and 8 present the root mean mean and 
median absolute errors, respectively. Recall that the loss 
functions here are relative valued, as they are reported 
from the squared differences in the natural logarithm 
of actual and predicted options prices. The bins corre-
spond to those found in Exhibit 3. However, for brevity 
we present only three blocks of results on the central 
tendency of the out-of-sample pricing errors: First, 
those for the individual stocks as an aggregate; second, 
the results for the S&P 500 index, for comparison with 
Christoffersen et al. (2008) and Heston and Nandi 
(2000); and finally the results for IBM, which we chose 
as being a fairly archetypal stock from the in-sample 
model parameter estimates, and which has a sufficient 
number of options to provide a meaningful comparison 
to the aggregate stock data and the index.

The models are ordered using the summary out-
lined above. Therefore, #1 presents the option pricing 
errors for the GARCH model estimated on jump-
filtered returns; #2 reports the option pricing errors 
for the CGARCH model estimated on jump-filtered 
returns; #3 presents the results for the AR-Jump model 
with GARCH variances estimated using the multistep 
model; #4 and #5 display the results for the GARCH 
and CGARCH model estimated on unfiltered data for 
comparison; and #6 presents the results for the out-of-
sample option pricing errors for the ARJ-GARCH with 
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jumps in mean and variance, following Christoffersen 
et al. (2008) estimates by maximum likelihood. Recall 
that, for brevity, we only have reported the in-sample 
parameter estimates for the f irst three models. The 
remaining three model parameter estimates are avail-
able in the Online Supplement.

A useful approach to loss function analysis is to 
treat alternative methods separately and then compare 
the properties in light of the differences that each loss 
function is designed to detect. We start by reviewing the 
results from Exhibit 7, which reports the RMSE for the 
log values of the dollar option price. To convert these 
into dollar equivalents we compute exp(R−SE) − 1.

Moving from the upper left in the exhibit, we 
can see that the six models perform very differently 
for relatively short maturity options. Exceptionally, the 
jump-filtered GARCH is consistently the best performer 
(recall that it was statistically not the best fit in terms 
of likelihood). None of the models appear to fully cap-
ture the Black–Scholes option-implied “smirk” pricing 
near-the-money options more effectively than out-of-
the-money or heavily in-the-money options. The jump-
filtered GARCH consistently fits the options better than 
the other models (including both of the GARCH with 
jumps models, #3 and #6). Following our discussion on 
the numerical stability of the CGARCH, we see that the 
jump-filtered and non-jump-filtered CGARCH offer 
consistently poor RMSE performance out-of-sample. In 
addition, moving down the table from 0–75-day matu-
rity options, 75–100-day options and longer maturities, 
we see that the GARCH on the jump-filtered returns 
provides the lowest out-of-sample RMSE. Moving 
across the aggregate errors from all the stocks to the 
S&P 500 index options, we also can observe that the 
index options are uniformly priced more accurately than 
the options on the individual stocks. Notice that for the 
index the differentials in the pricing errors between the 
six models are now extremely modest. For instance, 
shorter maturity options from 0 to 75 days to maturity 
are almost uniformly smaller than a dollar for our candi-
date models (#1 to #3), with the minimum error being 
for the S  ⁄K = 0.75, for the GARCH of exp(0.284) − 
1 ≡ 32.84 cents and the maximum being jointly the 
GARCH and the CGARCH for heavily in-the-money 
S  ⁄K > 1.5 options, being exp(0.497) − 1 ≡ 64.38 cents.

Moving down the center of Exhibit 7 for the S&P 
500 index options, we can see that the pricing discrep-
ancy (for all models) is mostly attributable to heavily 

out-of-the-money long-maturity options T − t > 250 
and S  ⁄K < 0.75. Noticeably, the CGARCH estimated 
on the unfiltered data appears to perform very poorly. 
The CGARCH on jump-filtered data, however, does 
not perform so poorly in the overall aggregate (center 
block, last row) and each of the models that either filter 
jumps or directly incorporate them into the specification 
perform well, albeit the overall best performer (by less 
than a cent) is the GARCH on unfiltered data.

The mean results for IBM paint a totally dif-
ferent picture. Recall that there are 22,641 contracts 
for IBM. Therefore, it is unlikely that the RMSEs are 
due to small-sample properties. The first point to note 
is that the AR-Jump model performs far better than 
the GARCH or the CGARCH estimated on jump-
filtered returns. Indeed, for IBM the degree of fit for 
the multistage estimated AR-Jump GARCH model is 
exceptional. For instance, 75–100-day options (which 
contain one of the lowest sample counts at 49 for near-
the-money options) exhibit a pricing accuracy of near 
exp(0.024) − 1 = 2.43 cents for in-the-money contracts 
1.025 < S ⁄K ≤ 1.25. This performance is largely superior 
to the jumps in mean and variance model #6 and indeed 
for all the other models herein. For IBM, the AR-Jump 
model estimated stepwise from mixed-frequency data is 
very dominant, with a pricing error of less than 46 cents 
overall (exp(0.378) − 1 = 0.4594).

RMSEs are very standard in the out-of-sample 
forecasting literature. Nonetheless, one issue frequently 
encountered is that they tend to be biased upward by 
a small number of dramatically poor-fitting forecast–
realization pairs. Median absolute errors (or more com-
monly MAEs) provide a useful robust alternative. In 
Exhibit 8 we present the median absolute deviation 
(MAD). The first point to note is that for the overall 
results (reported in the last row), the MAE is consistently 
lower than the RMSE, indicating that large errors are 
indeed shifting the average higher. The stability issue for 
the CGARCH model is also remarkable, as this model 
considerably benefits from using the MAD rather than 
the RMSE for S&P 500 options.

It is interesting to note, however, that for the 
203,587 options contracts on individual stocks the MAE 
does not deviate substantially from the RMSE for any 
of the models. This suggests that the pricing for a col-
lection of individual stocks is a rather more complicated 
exercise than for an individual stock such as IBM or 
the S&P 500. Thus, in line with anecdotal evidence, 
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E X H I B I T  6
Multistep Maximum Likelihood Estimates for the AR–Jumps Model with GARCH Variances Using High–Frequency Data

(continued)

BA IBM

1.483e+00

[5.762e–02]

–2.648e–02

[1.369e+00]

–1.285e–08

[1.259e+02]

9.089e–01

[1.029e–02]

1.524e–05

[1.442e–02]

3.133e+01

[1.006e–06]

7.427e–03

[1.696e+01]

1.740e–01

[5.521e+02]

5.938e–05

[5.002e+03]

–6.625e–02

[4.100e–04]

1.369e–03

[2.666e+00]

1.255e+04

λ
z

λ
y

ω

β

α

γ

χ
0

ρ

ϕ

µ
J

µ

σ
J

σ

L*
t,T

AA

–1.627e+00

[9.930e–02]

–3.088e–03

[1.140e+02]

–3.384e–06

[4.668e–02]

9.934e–01

[5.407e–02]

5.083e–06

[2.569e–02]

–1.152e+01

[2.421e–06]

9.676e–04

[1.293e–01]

9.832e–01

[2.460e+01]

2.510e–01

[1.406e+00]

–5.677e–02

[1.407e–02]

8.287e–04

[4.345e+01]

8.718e+03

AXP

1.095e+00

[5.617e–02]

–4.535e–03

[6.299e–01]

–2.935e–06

[4.173e–02]

9.842e–01

[3.922e–02]

4.300e–06

[3.307e–02]

3.343e+01

[2.654e–06]

1.534e–03

[9.635e–02]

9.887e–01

[6.515e–01]

2.209e–01

[4.953e–02]

–3.997e–02

[9.380e–03]

8.191e–04

[8.035e+01]

1.050e+04

3.333e–01

[2.869e–02]

–1.564e–03

[1.932e+01]

–3.726e–06

[7.292e–02]

9.782e–01

[7.414e–02]

8.275e–06

[4.642e–02]

1.032e+01

[1.651e–06]

5.173e–03

[2.247e–01]

7.747e–01

[6.795e–01]

3.625e–01

[1.164e–01]

–4.534e–02

[1.084e–02]

8.181e–04

[1.600e+02]

1.135e+04

CATAA

2.195e–01

[6.051e–02]

–3.989e–03

[1.812e+00]

–1.514e–06

[9.663e–02]

9.907e–01

[6.026e–02]

2.071e–06

[4.637e–02]

4.260e+01

[3.763e–06]

3.042e–03

[1.078e–01]

9.529e–01

[1.821e–01]

1.911e–01

[9.819e–02]

–3.889e–02

[4.394e–03]

8.703e–04

[1.167e+01]

9.953e+03

CVX

–6.052e–01

[–]

–9.920e–31

[–]

–2.152e–166

[–]

9.681e–01

[–]

3.197e–06

[–]

1.263e+01

[–]

2.725e–03

[–]

9.865e–01

[–]

2.958e–01

[–]

–2.103e–02

[–]

1.228e–06

[–]

9.197e+03

DD

–7.258e–01

[3.405e–02]

–3.614e–03

[5.181e+00]

–3.600e–06

[2.455e–02]

9.882e–01

[7.765e–02]

5.319e–06

[3.249e–02]

1.814e+01

[1.781e–06]

8.085e–04

[1.803e–01]

9.542e–01

[2.519e–01]

1.308e–01

[8.540e–02]

–5.232e–02

[4.836e–03]

9.018e–04

[1.865e+01]

1.147e+04

DIS

–6.175e–01

[3.939e–02]

–1.937e–03

[4.355e+00]

–4.454e–07

[2.493e+00]

9.326e–01

[2.411e–02]

1.587e–05

[3.248e–02]

1.331e+01

[1.130e–06]

1.219e–03

[4.593e–01]

9.357e–01

[6.209e–01]

1.533e–01

[4.977e–01]

–6.642e–02

[2.011e–03]

8.841e–04

[7.317e+02]

1.171e+04

GE

–5.640e–02

[4.569e–02]

–5.657e–03

[1.414e+00]

–2.195e–06

[3.888e–02]

9.831e–01

[3.315e–02]

3.493e–06

[2.033e–02]

4.719e+01

[2.331e–06]

2.409e–03

[8.169e–02]

9.525e–01

[6.007e–01]

3.918e–01

[1.529e–01]

–4.446e–02

[5.313e–03]

8.586e–04

[3.508e+01]

1.260e+04

HD

–5.865e–01

[9.933e–02]

–8.025e–05

[6.812e+00]

–9.620e–09

[4.657e+00]

9.954e–01

[8.460e–02]

1.652e–08

[3.080e–02]

4.718e+02

[4.850e–04]

1.272e–02

[8.399e–02]

9.819e–01

[8.775e–02]

4.463e–01

[9.368e–02]

–1.764e–03

[1.067e–01]

1.827e–02

[4.634e–03]

1.146e+04

HPQ

1.202e+00

[4.177e–02]

–1.446e–03

[1.616e+01]

–1.966e–06

[6.171e–02]

9.909e–01

[5.975e–02]

3.228e–06

[2.131e–02]

2.244e+01

[3.819e–06]

1.390e–02

[4.492e–02]

3.992e–01

[7.963e–01]

2.262e–01

[2.754e–02]

–5.908e–02

[3.751e–03]

8.450e–04

[1.274e+01]

7.483e+03

Author Draft for Review
 only



2
4

   
F
o

rec
a
stin

g O
ptio

n
s P

ric
es U

sin
g D

isc
rete T

im
e V

o
latility M

o
d

els E
stim

ated
 at M

ix
ed

 T
im

esc
a

les 
Sprin

g 2020

E X H I B I T  6  (continued)
Multistep Maximum Likelihood Estimates for the AR–Jumps Model with GARCH Variances Using High–Frequency Data

Notes: The specification is: R r h yt z t y t t t ty t

1/2+r λ +h λ +h z1/2 + µ χzzr t y t th t+rr λ hz t χy h zth ∗h1/2 ∗ , where t t0 1t 1χ =t χ +0 ρχ + ξη1 −tξη  and h h ht th t t( )z ht th1/2 2)β + α hhh  is the GARCH specification. 

The Hessian of the maximized log–likelihood t T,0

∗
Lt

∗  is used to compute standard errors. Note that in the case of CVX the Hessian indicates that the standard errors vanish toward zero. 
Bootstrap resampling and reconditioning of the Hessian suggest that the standard errors are in line with the other 20 data sets. Note that μ∗ computed numerically from the pair of equations: 

J J

2µ = µ −J νσ∗  and 
J J

e
1

2
2 2

χ = χ∗ ν σ2 +νµ
, /(1 )0χ = χ −/(10 ρ . A color version of this exhibit appears in the online edition of this article.
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1.000e+01

[3.160e+07]
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–3.174e–07
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7.492e–01
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1.480e–01

[4.670e–01]

–4.687e–02

[4.690e–04]

1.583e–03

[2.890e+00]

1.338e+04

1.152e+00

[3.981e–02]

–3.408e–03

[1.665e+03]

–3.395e–06

[8.766e–03]

9.883e–01

[4.538e–02]
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3.233e–01

[3.461e–02]
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[3.411e–01]
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[3.003e–02]

9.773e–01

[2.171e–02]

4.581e–06

[1.467e–02]

5.275e+01

[1.566e–06]

4.202e–03
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1.424e–08

[7.620e+04]

6.854e–01
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[2.722e–05]

–3.419e–03

[1.789e–03]

–1.186e–06
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9.551e–01

[3.362e–07]
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[3.044e–10]

1.050e+02
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1.000e–01

[8.833e–11]
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[1.308e–04]

5.000e–01
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–1.174e–02
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7.834e–04

[8.620e–01]
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SPX

3.120e+00
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2.201e–06
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[1.017e–01]
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–6.430e–03

[6.640e–02]

7.629e–03
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–1.468e–02

[9.146e–02]
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[5.077e+00]

–5.400e–06
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[5.445e–02]
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[1.034e–02]

1.658e+01

[9.464e–07]
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[8.571e+00]
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–3.385e–10
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8.513e–01

[9.642e–03]

1.938e–05

[1.506e–02]

2.838e+01

[1.669e–06]

6.037e–04

[3.430e–01]

9.769e–01

[3.472e–01]

3.668e–02

[2.876e–01]

–3.660e–02

[1.515e–01]

1.015e–01

[2.913e–02]

9.711e+03

VZ

–9.779e–01

[4.235e–02]

–5.469e–03

[2.192e+03]

–3.126e–06

[1.445e–02]

9.891e–01

[3.857e–02]

5.277e–06

[1.181e–02]

1.092e+01

[2.293e–06]

1.483e–03

[2.291e+03]

4.885e–01

[1.938e+02]

5.988e–01

[1.362e+02]

–1.445e–04

[1.420e+03]

7.868e–04
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9.835e+03
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[1.339e–02]
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[1.959e+03]

–7.225e–07

[9.999e–03]

9.976e–01

[2.898e–02]

7.268e–07

[8.963e–03]

4.829e+01

[8.885e–07]

1.956e–03

[2.138e+03]

6.188e–01

[9.881e+01]

7.527e–01
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–1.739e–04
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[2.174e+02]

1.218e+04
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E X H I B I T  7
Mean Out-Of-Sample Option Pricing Error

All Stocks S&P 500 Index IBM

0 < T – t < 75

0 < S/K ≤ 0.75

0.75 < S/K ≤ 0.975

0.975 < S/K ≤ 1.025

1.025 < S/K ≤ 1.25

1.25 < S/K ≤ 1.50

S/K > 1.5

75 < T – t ≤ 100

0 < S/K ≤ 0.75

0.75 < S/K ≤ 0.975

0.975 < S/K ≤ 1.025

1.025 < S/K ≤ 1.25

1.25 < S/K ≤ 1.50

S/K > 1.5

100 < T – t ≤ 150

0 < S/K ≤ 0.75

0.75 < S/K ≤ 0.975

0.975 < S/K ≤ 1.025

1.025 < S/K ≤ 1.25

1.25 < S/K ≤ 1.50

S/K > 1.5

150 < T – t ≤ 250

0 < S/K ≤ 0.75

0.75 < S/K ≤ 0.975

0.975 < S/K ≤ 1.025

1.025 < S/K ≤ 1.25

1.25 < S/K ≤ 1.50

S/K > 1.5

T – t > 250

0 < S/K ≤ 0.75

0.75 < S/K ≤ 0.975

0.975 < S/K ≤ 1.025

1.025 < S/K ≤ 1.25

1.25 < S/K ≤ 1.50

S/K > 1.5

Mean

#1

1.292

1.000

0.778

0.806

0.799

1.027

0.967

0.922

0.980

1.135

1.145

1.091

1.242

0.910

1.006

1.063

1.085

1.055

1.502

1.145

0.892

0.943

0.886

1.035

1.988

1.413

0.913

0.535

0.655

0.744

1.032

#2

3.038

2.479

2.637

2.924

2.609

2.727

2.246

2.915

2.831

3.175

2.777

2.658

2.573

2.506

2.665

3.021

2.738

2.701

2.777

2.884

2.873

2.406

2.633

2.864

4.528

2.994

2.174

1.941

1.962

1.789

2.702

#3

1.390

1.644

1.302

1.527

1.982

1.405

1.477

2.019

1.706

1.616

1.642

1.412

1.709

1.472

2.071

1.787

1.724

1.770

1.871

1.384

1.237

1.734

1.571

1.458

1.757

1.526

1.279

1.500

1.791

1.492

1.609

#4

1.352

1.082

0.831

0.848

0.811

1.133

1.061

1.035

1.142

1.246

1.232

1.176

1.345

0.994

1.155

1.152

1.152

1.162

1.533

1.257

0.968

0.927

0.920

1.133

2.312

1.498

0.941

0.585

0.655

0.681

1.111

#5

2.129

1.667

1.493

1.509

1.483

1.944

1.961

1.709

1.850

2.117

2.051

1.997

1.649

1.545

1.743

1.888

1.872

1.823

2.084

1.992

1.683

1.693

1.570

1.818

3.373

2.433

1.737

1.288

1.164

1.236

1.817

#6

1.992

1.605

1.769

1.883

1.808

1.700

2.104

1.803

1.812

1.855

1.794

1.838

1.781

1.658

1.766

1.764

1.838

1.813

1.632

1.301

1.395

1.668

1.671

1.716

1.603

1.470

1.442

1.403

1.421

1.221

1.685

#1

0.284

0.408

0.433

0.491

0.497

0.324

0.224

0.244

0.266

0.214

0.259

0.205

0.128

0.226

0.250

0.279

0.246

0.196

0.553

0.519

0.474

0.360

0.335

0.397

2.919

1.120

1.008

1.007

0.898

1.004

0.526

#2

0.283

0.407

0.432

0.491

0.497

0.323

0.218

0.240

0.263

0.210

0.255

0.201

0.122

0.221

0.244

0.275

0.243

0.192

0.552

0.520

0.474

0.358

0.333

0.396

3.001

1.134

1.028

1.025

0.912

1.029

0.530

#3

0.338

0.391

0.410

0.465

0.473

0.326

0.285

0.281

0.294

0.253

0.307

0.258

0.271

0.260

0.279

0.322

0.278

0.245

0.490

0.485

0.452

0.367

0.348

0.385

2.986

0.988

0.820

0.818

0.829

0.943

0.522

#4

0.277

0.400

0.425

0.485

0.491

0.316

0.207

0.230

0.254

0.200

0.246

0.192

0.111

0.211

0.233

0.265

0.235

0.184

0.545

0.514

0.468

0.350

0.326

0.389

3.079

1.142

1.037

1.035

0.920

1.049

0.528

#5

1.322

1.586

1.587

1.673

1.674

1.272

1.005

1.194

1.208

1.147

1.150

1.058

1.108

1.266

1.323

1.216

1.079

1.060

1.858

1.771

1.599

1.444

1.335

1.477

5.205

2.494

2.484

2.462

2.156

2.194

1.647

#6

0.883

0.905

0.888

1.029

1.057

0.723

0.706

0.677

0.758

0.599

0.760

0.636

0.303

0.596

0.623

0.789

0.711

0.613

0.970

1.059

1.049

0.853

0.842

0.875

3.861

1.495

1.248

1.153

1.175

1.305

0.972

#1

1.082

0.746

0.584

0.514

0.409

0.602

0.288

0.236

0.237

0.207

0.167

0.188

1.363

0.886

0.737

0.677

0.598

0.560

2.259

1.349

1.007

1.257

0.972

0.669

2.927

1.652

1.077

0.568

0.655

0.168

0.822

#2

2.188

1.688

1.445

1.318

1.149

1.340

0.959

0.848

0.858

0.758

0.682

0.725

2.557

1.864

1.650

1.545

1.400

1.358

4.128

2.647

2.113

2.493

2.100

1.643

5.369

3.216

2.338

1.568

2.002

0.710

1.823

#3

0.494

0.299

0.209

0.175

0.122

0.263

0.068

0.045

0.047

0.036

0.024

0.041

0.671

0.392

0.306

0.274

0.232

0.207

1.188

0.728

0.530

0.627

0.443

0.271

1.456

0.870

0.544

0.218

0.478

0.079

0.378

#4

1.050

0.708

0.545

0.475

0.371

0.576

0.252

0.201

0.203

0.174

0.137

0.160

1.340

0.854

0.702

0.643

0.564

0.525

2.345

1.357

0.992

1.237

0.940

0.632

3.079

1.659

1.066

0.529

0.924

0.160

0.814

#5

2.021

1.800

1.328

1.362

1.753

1.690

2.458

1.340

3.002

1.190

1.321

1.274

2.038

1.776

1.319

1.801

1.321

1.725

3.836

2.657

2.897

2.153

1.927

1.941

4.982

2.843

2.215

2.036

2.310

1.490

2.061

#6

4.172

3.890

3.691

3.575

3.404

3.408

3.248

3.073

3.095

2.879

2.791

2.826

4.351

3.942

3.842

3.698

3.506

3.510

2.712

2.482

2.484

3.389

3.406

3.111

2.835

3.122

3.174

2.929

2.492

1.813

3.229
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our results suggest that for certain individual stocks, 
options contracts are extraordinarily difficult to price. 
For the S&P 500 models #1 to #4 and #6 are all very 
consistent. However, the CGARCH estimated on the 
unfiltered returns performs relatively poorly (similarly 
to the RMSE case) for most contracts’ moneyness and 
maturity and while most of the models perform badly for 
heavily out-of-the-money S  ⁄K < 0.75 and long-maturity 
T − t > 250 contracts, the CGARCH on unfiltered 
returns performs particularly poorly out-of-sample.

Remarkably, we note that for IBM #3, the multi-
stage AR-Jump model estimated from mixed-frequency 
data provides the best fit by a considerable margin across 
most contract types. The MAE for out-of-sample con-
tract pricing drops below one cent for heavily in-the-
money (S  ⁄K > 1.5) and intermediate maturity 75 < 
T − t < 100 options, suggesting that for IBM the AR-
Jump is capturing out-of-sample the option smirk. This 
performance is replicated for long-maturity smirks, 
where the S  ⁄K > 1.5, T − t > 250 MAE is also less 
than one cent. Of course, as the maturity lengthens, 
the convexity of the implied volatility smile decreases. 
Nevertheless, long-term equity options such as LEAPS 
are generally very difficult to correctly price for heavily 
out-of-the-money and heavily in-the-money options.

CONCLUSIONS

This paper has introduced a new method for 
esti mating the parameters for a jump GARCH model 
using mixed-frequency data to disentangle the high-
speed jumps for continuous volatility, and combining 
these with jump premiums from near-the-money, 
short-maturity options. We then estimated this model 
in sample using tick data for the S&P 500 and a selec-
tion of 20 stocks from the DOW 30 components for 
the 1996–2010 period. We have collected a very large 
sample of options from 2010 onward, and estimated the 
out-of-sample fit for the predicted options prices for our 
jump model versus alternative GARCH models esti-
mated using jump-filtered and unfiltered daily returns. 
Our results are mixed. For IBM stock options, our jump 
model outperforms all others by more than an order of 
magnitude for many maturity moneyness combina-
tions. However, for the S&P 500, the GARCH model 
estimated on jump-filtered returns appears to domi-
nate. Nevertheless, the median performance of each 
of the models is very close, except for the CGARCH 

model that contains a substantial persistence equation. 
The CGARCH performs consistently poorly across all 
our test cases, and we partly attribute this issue to inherent 
instabilities in the pricing mechanism. However, we also 
find that not filtering jumps from the continuous com-
ponent appears to be a major factor for the deterioration 
of the CGARCH pricing performance. Our results are 
derived from a very large test bed of tick data and options 
contracts. Remarkably, this is a substantial innovation 
over previous research that has typically focused on cali-
bration and pricing performance relative to much smaller 
options data sets. Indeed, for options requiring Monte 
Carlo estimation of AR-Jump models this appears to be 
the largest out-of-sample exercise of its type.

The heterogeneity of the results, particularly in 
aggregate for individual stocks, illustrates the inherent 
difficulty in correctly pricing options through a struc-
tural model. However, the performance of the AR-Jump 
model for a large cross-section of IBM call options paves 
the way for structural models with jumps and GARCH 
or stochastic volatilities that match the performance of 
options models directly calibrated to the implied vola-
tility surface. Finally, we have presented a substantial 
body of evidence to suggest that the CGARCH model 
does not provide numerically stable options prices, and 
the use of this model to forecast options prices out of 
sample may be ill advised.
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ADDITIONAL READING

An Improved Estimation Method for a Family 
of GARCH Models
PASCAL LÉTOURNEAU

The Journal of Derivatives

https://jod.pm-research.com/content/27/1/67

ABSTRACT: This article proposes an improved estimation and 

calibration method to a family of GARCH models. The suggested 

method fixes one parameter such that the unconditional kurtosis of the 

model matches the sample kurtosis. An empirical analysis using Engle 

and Ng’s (1993) NGARCH(1,1) model shows that the method 

dominates previous estimation methods in multiple ways. The optimi-

zation problem is simplified and made less sensitive to initial values. 

The optimization time, both when estimating based on historical 

returns and calibrating to option prices, is reduced by roughly 50%. 

The in-sample fit is barely affected, while the option pricing, both in 

sample and out of sample, is improved.
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VIX Futures Pricing with Affine Jump-GARCH 
Dynamics and Variance-Dependent Pricing 
Kernels
XINGLIN YANG, PENG WANG, AND JI CHEN

The Journal of Derivatives

https://jod.pm-research.com/content/27/1/110

ABSTRACT: Volatility Index (VIX) futures are among the most 

actively traded contracts at the Chicago Board Options Exchange, 

in response to the growing need for protection against volatility risk. 

The authors develop a new class of discrete-time and closed-form VIX 

futures pricing models, in which the S&P 500 returns follow the 

time-varying infinite-activity Normal Inverse Gaussian (NIG) and 

finite-activity compound Poisson (CP) jump-GARCH models, and 

which are risk-neutralized by the variance-dependent pricing kernel 

used by Christoffersen et al. (2013). They estimate these models 

using several data sets, including the S&P 500 returns, VIX Index, 

and VIX futures. The empirical results indicate that the time-varying 

NIG and CP jump-GARCH models significantly outperform the 

Heston-Nandi (HN) GARCH model in asset returns fitting and 

VIX futures pricing.

Ensuring More Is Better:  On the Simultaneous 
Application of Stock and Options Data to Estimate the 
GARCH Options Pricing Model
CHARLES CHANG, HUNG-WEN CHENG, 
AND CHENG-DER FUH

The Journal of Derivatives

https://jod.pm-research.com/content/26/1/7

ABSTRACT: The most common approach in fitting option pricing 

models to market data is first to make an assumption about the 

underlying asset’s returns process and then develop an option pricing 

model for that process that is tested against market option prices. The 

returns process is estimated from historical data, option values are 

computed, and then compared against a cross-section of prices from 

the options market. Unfortunately, this often does not work well, 

and plainly it is inefficient in its use of the data. However, efforts to 

combine returns data from the asset market and prices from the options 

market into a single estimation have also not had much success. In 

this article, Chang, Cheng, and Fuh propose a new procedure to 

combine data from both markets in the estimation, in which options are 

assumed to be subject to random pricing noise relative to model values. 

The additional slack gives the estimator better ability to match prices 

in both markets. The article contrasts the performance of the full model 

approach with an approach that only uses stock prices or options prices 

to fit an option pricing model based on an underlying GARCH 

process. The value of the combined approach is demonstrated both 

theoretically as an asymptotic result in the model and also in a Monte 

Carlo simulation.
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