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Forecasting Options Prices Using
Discrete Time Volatility Models
Estimated at Mixed Timescales

GIOVANNI CALICE, JING CHEN, AND JULIAN WILLIAMS

—— KEY FINDINGS

ally equity traded prices.

* In this paper, we present a new method for estimating the parameters for a jump GARCH
model. We provide a series of empirical tests of the efficacy of the GARCH type option
models. We analyse the S&P 500 index and for a sample of 20 individual equities sampled
from the Dow Jones 30. Our out-of-sample test covers over a third of a million individu-

» We find three primary empirical results. First, pre-filtering for jumps improves the accu-
racy of options models based on GARCH processes. Second, for certain stocks, models
that explicitly incorporate jumps substantially outperform all other models. Third, for the
S&P500, the GARCH model estimated on jump-filtered returns appears to dominate.

ABSTRACT: Option pricing models traditionally
have utilized continuous-time frameworks to derive
solutions or Monte Carlo schemes to price the con-
tingent claim. Typically these models were calibrated
to discrete-time data using a variety of approaches.
Recent work on GARCH based option pricing
models have introduced a set of models that easily
can be estimated via MLE or GMM directly from
discrete time spot data. This paper provides a series
of extensions to the standard discrete-time options
pricing setup and then implements a set of various
pricing approaches for a very large cross-section of
equity and index options against the forward-looking
traded market price of these options, out-of-sample.
Our analysis provides two significant findings. First,
we provide clear evidence that including autoregressive
jumps in the options model is critical in determining
the correct price of heavily out-of-the money and
in-the-money options relatively close to maturity.
Second, for longer maturity options, we show that
the anticipated performance of the popular component

GARCH models, which exhibit long persistence in
volatility, does not materialize. We ascribe this result
in part to the inherent instability of the numerical
solution to the option price in the presence of com-
ponent volatility. Taken together, our results suggest
that when pricing options, the first best approach is to
include jumps directly in the model, preferably using
Jjumps calibrated from intraday data.

TOPICS: Options, volatility measures*

ption pricing on equities and
equity indexes has been the sub-
ject of extended discussion since
Black, Scholes and Merton pro-
vided their foundational insights. The devel-
opment of this research area has focused on
continuous-time models and tractable solu-
tions that are either set around the log-normal
pricing paradigm or use stochastic volatility
potentially in the presence of jumps.
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In discussing the 1987 crash, Bates (1996) noted that
in the analysis of options without the formal empirical and
quantitative analysis of both the historical data of the under-
lying market and forward-looking calibration from the
options market, complete insight into either market would
prove elusive. Part of our contribution is to add another
dimension to this context. Asset pricing in both markets
is also dependent on the analysis of multiple timescales.
We demonstrate that when including discontinuous jumps
and the use of at least two timescales, the extra informa-
tion provided is more important to forecasting the value
of options than to improving the maximum likelihood
estimation of the underlying data-generating process.

In a separate tract of finance research, in discrete
time-series econometrics, the generalized autoregres-
sive conditionally heteroskedastic (GARCH) model
has proved extremely popular for a variety of applica-
tions related to forecasting volatility in discrete time.
However, the consistent composition of the two models
in an analytic framework has been a more recent phe-
nomenon. In an important series of contributions, Bates
(1996), Heston and Nandi (2000), and Christoffersen
et al. (2008), among others, have provided a signifi-
cant step forward in tractable options pricing not seen
since the derivation of the original Black and Scholes
models and their subsequent extensions in the early and
mid-1970s. The key insight of these seminal papers is to
combine discrete-time models of volatility and jumps
with risk-neutral dynamics.

Most strikingly, the results of Christoffersen et al.
(2008) suggested that for S&P 500 index options, a highly
persistent form of GARCH model, the CGARCH, pro-
vides the best out-of-sample performance when pricing
contracts against those reported in the market, for all
maturities and money-ness. This was especially impor-
tant as the comparison models included an autoregres-
sive Poisson point process driving the jump diffusion.
This result goes against much of the preceding litera-
ture and industry practice for which Poisson type jump
processes are considered essential, in particular for the
pricing of near-maturity options, which are not at- or
near-the-money.

This paper makes three main contributions to the
literature. First, we provide a series of empirical tests of
the efficacy of the GARCH type option models sug-
gested in Christoffersen et al. (2008) out-of-sample for
both the S&P 500 index and for a sample of 20 individual
equities sampled from the DOW Jones 30. Our major
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contribution is to propose alternative estimation proce-
dures over the domain of models, and provide evidence
from a far larger pool of equities and equity indexes for
this analysis. Our primary argument is that jumps are an
intraday feature and that maximum likelihood evidence
at a daily frequency, commonly used in option pricing,
inefficiently detects the intraday jump phenomena.
Using a heterogeneous timescale approach should yield
a better fit when comparing estimated versus market
prices of options. A key benefit of this strategy is that it
avoids the problems identified in Durham et al. (2015),
who note that the standard maximum likelihood esti-
mator of the unobserved volatility and jump processes
does not meet the normal requirements of a standard
filter for an AR-Jump model. In this case the jumps are
partially observed, such that the existence of N, > 0 is
imputed from high frequency data at an a-priori stage.

Second, our out-of-sample test covers over a third
of a million individually traded prices sampled from the
Options Price Reporting Authority (OPR A) data feed
for 2012 and 2013, and this is, to our knowledge, the
largest data set ever constructed. Third, we implement
an original estimation method for the jump intensity
process that uses data at both the daily and intraday fre-
quencies. In summary, we believe that this is the most
comprehensive study of its type ever undertaken, and
that it should provide a reasonably definitive conclusion
to the debate on the performance of this model.

Our results indicate two important facets. First, if
the option pricing model does not, or cannot, explicitly
incorporate jumps in its estimation stage, then pre-fil-
tering for jumps improves the accuracy of options models
based around standard GARCH processes. Second, for
certain stocks, such as IBM, models that explicitly incor-
porate jumps substantially outperform all other models.
However, for the S&P 500 index, the results are less con-
clusive. Here, the standard GARCH model of Heston
and Nandi (2000) outperforms all others out-of-sample
for both root mean square error (RMSE) and median
absolute error (MAE). This level of accuracy is in line
with that found for similar modeling fitting against actual
options data, such as that found in Ballotta et al. (2017).

The rest of this paper is organized as follows: The
next section briefly reviews related studies and highlights
our contribution to the existing literature. Then we
describe our methodology and the rationale regarding
the key assumptions in our forecasting and estimation
procedures. Then we describe our rich data set, and
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then present and discuss the empirical results. The final
section concludes with some suggestions for extended
work in this area.

MOTIVATION AND RELATED LITERATURE

Jumps are often considered primarily to be a short
term phenomenon, and prior empirical studies focused
on near maturity, near the money options. Our dataset
encompasses a broad range of maturities and we show
that the relative effectiveness of different option pricing
tools is significantly affected by monieness and maturity.

Indeed, several studies have argued that jumps
either do not exist or are being spuriously detected; see
for instance Bajgrowicz and Scaillet (2009) who utilize
a short sample of data for the Dow Jones constituents
and argue that sudden price movements are more likely
the result of a “sudden burst of volatility.” How sudden
a “burst” is required to shift the likelihood of a 3% jump
from effectively zero to 0.02% in a day? It needs to be a
burst that amounts to reducing the number of standard
deviations between the current price and the out-of-the-
money threshold from 364 to 2.87. The answer is just
a little above 1,000% annualized; when a log-normal
distribution approaches this level of variance the mode
of the distribution is indistinguishable from zero.

At alower-frequency modeling, clustering in vola-
tility and sudden discontinuous jumps in returns has
been a topic of substantial interest since the inception
of the financial economics literature. Motivated by the
need for accurate estimation of volatility to price deriva-
tives contracts, Roberts (1959) and Merton (1976) were
among the first to discuss the non-Gaussian properties
of returns in relation to derivatives contracts.

The ARCH/GARCH models of Engle (1982)
and Bollerslev (1986) were the first to explicitly capture
autoregressive clustering of volatility in a time series
framework. The standard form of the GARCH models
and most of the endless contemporary variations do not
provide simple closed-form solutions to the price of a
contingent claim on an asset exhibiting return behavior
with these effects. However, as previously noted, several
recent contributions have derived closed-form solutions;
two of the most prominent are those of Heston and
Nandi (2000) and Christoftersen et al. (2008).

The general consensus in the mainstream option
pricing literature is to assume that the GARCH vola-
tility component is a continuous diffusion component
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of returns and all other cadlag components are referred
to as discontinuous jumps. A useful summary of the
current state of art on discretely sampling continuous
diffusions can be found in Mykland and Zhang (2009).
An important feature of the literature on modeling vola-
tility is that while unbiased estimates of volatility are
possible for most types of continuous diffusions with
fixed time horizons T, given increasing sampling fre-
quency, this is not true for the drift.

A recent strand of the literature has focused on
extracting the discontinuous jump component from the
continuous diffusion. This is motivated in part by ver-
sions of the example we described above. When options
are traded near maturity, any price that deviates substan-
tively from |S, — K| must be driven by some very short
term time component. Over longer maturities this is
less important. However, for continuous trading, small
differences in pricing of the contingent claim can be
extremely critical. It should also be noted that, even ex-
post maturity, there is no definitive “correct” price for
a contingent claim of this type. Therefore, the purpose
of an option pricing model is to correctly predict the
market price of an option and not |S, — K].

On this note, Andersen et al. (2002) have docu-
mented empirically that the inclusion of jumps reduces
systematic bias in continuous-time stochastic volatility
models based around the specification first presented in
Heston (1993). The magnitude of the results in Andersen
et al. (2002) are broadly representative of the improve-
ment in fit when including the jump process in the
underlying diffusion. A non-exhaustive list of examples
of similar results, for both discrete- and continuous-
time models, can be found in Chan and Maheu (2002);
Jorion (1998); Maheu and McCurdy (2004), and Palm
and Vlaar (1993).

More specific forms of jumps, for instance Poisson-
normal jumps, have been found to improve the fit from
the historical evolution of the underlying asset process
to that inferred by the options market. See for instance
Bakshi et al. (1997), Bates (1996, 2006), Chernov
et al. (2003), Eraker et al. (2003), Eraker (2004), and
Pan (2002), among others. In fact there is no empirical
evidence to indicate that the exclusion of a jump pro-
cess from the underlying can actually improve the fit
of the predicted option price to the prices observed in
the market.

Pricing options tends to be primarily from low
frequency (circa daily). However, jumps generally
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are thought to be a “high-frequency” phenomenon.
Ait-Sahalia (2004) offers a comprehensive summary on
jump diffusion models and their applications to asset
pricing in addition to a substantial discussion on how
to filter the jump component from the continuous dif-
fusion from high-frequency data. The motivation for
extracting the jump component primarily lies in the
impact of jumps on portfolio risk management and
derivative pricing. The presence of jumps requires a sub-
stantial adjustment to derivative pricing models. In par-
ticular, the dynamics of the intensities (a latent variable)
of a jump component present a variety of challenges.
Ait-Sahalia (2004) develops a method for extracting the
quadratic variation of the continuous diffusion for the
two common forms of jumps, infinitely active Lévy and
finitely active Poisson.

Other empirical work in this area has focused
on extracting finitely active jumps—see, for example,
Andersen et al. (2003), Barndorff-Nielson and Shephard
(2004), Barndorft-Nielson and Shephard (2006), Tauchen
and Zhou (2011), and more recently Fuertes and Olmo
(2012). Visual inspection of the return series suggests that
during the sample period some jumps have occurred.
However, these discontinuities are mostly visible at the
higher sampling frequencies. Option pricing models that
contain persistent volatility or jump effects, such as that
demonstrated in Christoftersen et al. (2008), are usually
calibrated from daily data. However, a growing body of
the econometric literature (see for instance Tauchen and
Zhou, 2011) suggest that filtering for jumps at relatively
low frequencies (such as daily or weekly data) is problem-
atic, if not unfeasible. Therefore a model estimated only
on daily returns might well be inconsistently and/or inac-
curately calibrated if only fitted to low frequency data.

Christoffersen and Jacobs (2004) find that for
option valuation purposes the best fitting model is a
parsimonious GARCH model that allows only for vola-
tility clustering and standard leverage effects.

Corsi et al. (2013) develop a reduced form discrete-
time stochastic volatility option pricing model that
exploits the information of high-frequency data, which
is the measure of realized volatility. By modeling the
conditional mean of the volatility process using the Het-
erogeneous Autoregressive (HAR) multi-components
model, they show, through an application to the SP500
index options, that this model outperforms competing
GARCH-type and other stochastic volatility option
pricing models.
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Babaoglu et al. (2017) introduce a new class of
models that incorporate three features: multiple vola-
tility components, fat-tailed return innovations, and
a variance-dependent price kernel. They apply these
models on the SP500 option prices and find economi-
cally and statistically significant improvements over the
benchmark SV option pricing model.

Overall, in the literature there is not a clear-cut
consensus on the importance of jumps in options pricing.
For example, Bakshi et al. (1997) demonstrate substantial
benefits from including jumps in prices, whereas Bates
(2000) find that such benefits are economically small,
if not negligible. Furthermore, while studies using the
time series of returns unanimously support jumps in
prices, they disagree with respect to the importance of
jumps in volatility. One plausible explanation for the
above disparities is that most papers use data covering
only short time periods. Since jumps are rare, short sam-
ples are likely to either over- or under-represent jumps
and/or periods of high or low volatility, and thus could
generate disparate results.

Broadie et al. (2007) use an extensive data set of
S&P 500 futures options from January 1987 to March
2003 and find that adding price jumps to a square-root
stochastic volatility (SV) model improves the cross-sec-
tional fit by almost 50%. This is consistent with the large
impact reported in Bakshi et al. (1997), but contrasts
with the negligible gains documented in Bates (2000),
Pan (2002), and Eraker (2004). Without any risk pre-
mium constraints, the SVJ and SVCJ models perform
similarly in and out of sample. This is not surprising,
as price jumps, which generate significant amounts of
skewness and kurtosis, and stochastic volatility are clearly
the two most important components for describing the
time series of returns or for pricing options. Ait-Sahalia
(2004), Carr and Wu (2003), and Huang and Tauchen
(2005) also find evidence for jumps in prices.

Tauchen and Todorov (2010) have proposed a new
continuous process to describe activity levels, which
essentially extends the Blumenthal-Getoor index to Ito
semi-martingales. This study focuses on the activity
signature function and suggests a more effective way of
making non-parametric inference for generalized activi-
ties with finite sample but removing bias documented
in the literature (see Ait-Sahalia and Jacod 2009a and
(2009b, and Mykland et al. 2005). The model setups
compare a pure-jump model to a pure-jump model with
continuous component, and shows that the latter appears
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to be the better model, for example, for examining jump
activities in financial series.

Jacod and Todorov (2009) propose a bivariate dis-
crete model to detect the occurrence of common jumps
(at least one jump found simultaneously at the same time)
or disjoint jumps. This study contributes to the litera-
ture by addressing the issue of existence of systematic
jumps. Such models are not only theoretically important
because of their simple and novel structure, but also
practically useful. For example, at the aggregated market
level, such a model can be used to explain whether mul-
tiple asset prices jump simultaneously, which forms a
more systematic pattern, or vice versa, remain primarily
an idiosyncratic phenomenon. The simulation methods
prove that the process works for both infinite and some
finite samples. In conclusion, these papers agree that
diffusive stochastic volatility and jumps in prices are
important, but they disagree over the importance of
jumps in volatility.

Part of our approach is, therefore, to extract
the jump component from the high-frequency data
using the method of Tauchen and Zhou (2011) and
then separately to estimate the daily volatility using
the canonical GARCH type frameworks, namely the
Component GARCH of Engle and Lee (1999) and the
GARCH model with jumps, as proposed by Christof-
fersen et al. (2006) and Christoffersen et al. (2008),
derived from the setting introduced by Heston and
Nandi (2000).

When comparing option prices predicted from an
underlying time series to market prices of options, the
choice of the loss function is relatively critical; this is
discussed at length in Christoffersen and Jacobs (2004).
However, the major choice of the loss function advocated
in Christoffersen and Jacobs (2004), the RMSE, con-
trasts with much of the contemporary literature on out-
of-sample loss forecasting; see for instance Giacomini
and Rossi (2010). While the RMSE applied directly to
the actual and forecasted prices provides a useful “dollar”
amount for the average pricing error, the option has
a lower bound at zero. Hence, overpricing the option
can be more significantly penalized than underpricing.
This is particularly acute for heavily out of the money
options, with prices intrinsically near zero. We therefore
compute the RMSE on the log price of the predicted
and realized option. We also provide RMSE error tables
in the Online Supplement.
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METHODOLOGY

We use intraday data to detect and extract jumps
from returns. We follow a three-step procedure. We
start by fitting an AR process to the arrival intensi-
ties of the AR-Jump process. In a second step, we fit a
GARCH model to the jump-filtered returns. Finally,
we impose the jump-filtered GARCH parameters on
an AR-GARCH process and impute the AR process
from the filtered returns. Against this setup, we develop
a series of base cases. First, we estimate the AR-Jump-
GARCH model fitted via maximum likelihood esti-
mation at the daily timescale. Second, we estimate the
AR-Jump-GARCH model with GARCH parameters
imposed after we have extracted the jumps and the AR-
jump model then fitted using maximum likelihood
estimation. Finally, we compare these fits to a Compo-
nent GARCH (CGARCH) model (the best-performing
model in Christoftersen et al. 2008) and a basic GARCH
specification. In each instance we compare in-sample fits
via the fitted log-likelihoods, and most importantly we
document how each model performs out-of-sample in
the forward pricing of options.

The Price Process Assumptions

The basic price process of interest is the natural
logarithm of the quoted price denoted s(T), where ¢, <
T < T, which is assumed to be a diffusion that exhibits
varying volatility at heterogeneous timescales and
potentially exhibiting discontinuous jumps. The objec-
tive of this paper is to infer the optimal approach to
fitting the process to data and evaluate its performance
in pricing stock options. The basic process of interest
is as follows:

ds(ty=pdt+o,dW(t)+ JdN(T), M

where ¢ is a daily index, [, is a daily level of drift, ©,
is a daily level of volatility, assumed to be of the form
o, = \/hT where £, is a daily conditional variance and
J.~ N(“’J’Gi) is a random jump size. The random pro-
cesses /(1) and N(T) are respectively a Wiener process
and a Poisson point process such that (T + A) — /(1) ~
NO,A) and P(N(T+A)— N(T)=n) = e **(},A)" / n!,
where %, is the arrival intensity of the Poisson process
and n is an integer.
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For option pricing purposes, we assume that L,
is determined by the model characteristics. Therefore,
the key objects of interest are G, and },. We assume
a variety of models for 6, and %,. Our basic specifi-
cation is that ¢, is a GARCH model and }, is a sta-
tionary autoregressive process (AR-]). For our basic
comparison, we follow Christoffersen et al. (2008)
and compare a persistent, component GARCH model
(denoted GARCH) and an AR-] model with a vola-
tility mean-reverting GARCH model. Our approach
is to fit the models in two stages. First, we extract the
jumps by analyzing intra-daily data using a standard
jump detection technique. We then fit the GARCH
model to the de-jumped data at the daily frequency.
For the final part of our analysis, we utilize the fitted
models to price options and compare the goodness of
fit to real options data via a proportional RMSE loss
function.

Jump Detection and Extraction

Let us consider a high-frequency uniformly sam-
pled grid indexed by i. The price diffusion is assumed
to be sampled at T, € {1,,...,T,}, where T, — T, V, €
{0, ..., n — 1} is constant over a day again indexed by t.
Therefore, the time interval T, to T,— 1 is a single day of
trading for the asset with log prices discretely recorded
by S, ;. We assume that t € {1,..., T} is a single year of
data, usually = 252 trading days.

Our objective is to separate f:o 6’ds from
,[;: (62 +X,0)ds and hence identify the jump and
continuous diffusion components of the daily return
s(t,) — s(T,). Let 5, be the log price for a regularly spaced
grid at time index T, If the process describing s(T) is as
that given in (1) then RV, = X} 1> — J.zu (62 +1.07)ds,
where r.=S,,— S, Weassume that the contribution
of the drift term |, over the course of a day is negligible
and hence tends to zero. Following Barndorff-Nielson
and Shephard (2004) and Tauchen and Zhou (2011), we
define an alternative estimator, the bipower variation,
that converges to EJ o’ds.

The bipower variation, BV] is a member of
a family of jump robust power estimators and has
proven popular for jump detection approaches. This is
defined as BV, =35, Ir,._||,]. In the absence of
Poisson jumps BI, — &°. However, in the presence

of jumps 6’ — BV, - f:ﬂ A.6%ds and the variation of
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7, =& — BV, is asymptotically normal. As such, we

t
can construct a standardized test such that

Z =267 ((’/4+1-5)

1max[1,TQ,/BV,))?, Z ~ N(0,1)
with estimated jump size j, = sgn(R,)(RV, - BV))"”

lN(z,)zMz’)’ where sgn is the signum function, 1 is

the indicator function, Z" is a standardized critical
z-score, and N(Z) is the cumulative distribution func-
tion for a normal distribution with lower integrator z
and R, = ¥ r,;. The term TQ, is the without-jumps
estimate of the quarticity of the continuous diffu-
sion and is estimated using the tripower quarticity,
suggested in Barndorff-Nielson and Shephard (2004) and
Tauchen and Zhou (2011), among others. In this case,

- 4 o 4/3 4/3 4/3
TQ, — [ olds =y, 25 ln 1l L1

where W, = 2°T((k + 1)2)/T(1/2) and T'(k) denotes the
N(Z)=N(Z) be the
{0, 1} count of at least one jump on day f. An issue that
arises is the problem of N, > 1 jumps. Note that the implicit
assumption in Barndorff-Nielson and Shephard (2004)
and the explicit assumption in Tauchen and Zhou (2011)
is that N, = {0, 1}. If we assume explicitly that the count
process is Poisson then P(N, > 1) > 0, by construction.

I

Euler’s Gamma function. Let N, =1

A simple approach is to assume that on a daily basis %, will
be sufficiently small that the at-most one jump restriction
does not cause substantial issues to the identification of
X, from the time series of N,. However, two alternative
approaches exist. A first method is to sub-divide a day into
blocks and sequentially test for jumps within those blocks.
However, as the day is chopped into ever smaller blocks
of time, the sample gets shorter for each block. A possible
solution would be to shift to a higher sampling frequency,
but this gives rise to potentially misleading issues such
as stale prices. A second procedure is to compute J, on
the basis of the jump existence and then use a bootstrap
resampling with replacement and robustly estimate W, and
G,. For our pricing purposes, we will utilize an iterative
approach based on maximum likelihood scores for our
assumed jump process with GARCH.

We define a semi-parametric estimator for the
count AR process in the spirit of Harvey and Fernandes
(1989) and Heinen (2003). This is effectively an autore-
gressive conditional Poisson model (ACP) of the form

%= %o +P% +ER,, 0)
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where the 6 symbol for the parameter 0 is used
to distinguish the parameters and fitted intensi-
ties %, of the AR process from the nonparametric
intraday jump detection analysis. Recall that for a
Poisson process 1,
variance, and autocorrelation of this process are
E(N,)=%=X,/(1-p), var(N)=E(N,-}) =% and
corr(N,,N, )=p"'p/(1-p°) respectively. This leaves
us with two parameters, p and %, that we can directly
observe from the theoretical moments of the process
and & which we can solve from the filtration where
E(N,)=%, and & — T (N, —%,)’ given the variance
constraint in a second step. We can over-identify the

= N, — %, the unconditional mean,

parameters by computing s > 1, Vs € N, autocorrelations.
We then have two choices. We can embed the jumps
in mean only or alternatively we can embed the jumps
in both mean and variance as in Christoffersen et al.
(2008). For our main specification we will embed the
jumps in both mean and variance.

Using Mixed Frequency Data

Multiscale volatility estimation has received con-
siderable attention in the literature recently. However,
this has mostly focused on measuring ex-post quadratic
variation. In order to price options under specific mod-
eling assumptions, we need to utilize the multi-times-
cale data in a slightly different manner.

A simple iterative procedure for updating the
counts and hence extracting the jump intensities is as
follows:

Step 0: For each observation, compute the “jump
free” return R, = R, — ] and fit the GARCH
model of your ch01ce. Using the model

hY ~ GARCH,

the coefficients from this pre-filtered GARCH
in mean model also can be used as a bench-
mark against the unfiltered returns.

Step 1: Compute the initial unconditional mean and
standard deviation from the detected jumps:
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Step 2:

Step 3:

This follows the Tauchen and Zhou (2011)
assumption that only one jump has occurred
within a day. It is possible to simply threshold
these jumps and ascribe extra jumps to out-
liers. However, we can improve the estima-
tion accuracy of detecting multiple jumps by
computing the conditional jump intensity and
commuting the overall likelihood of the pro-
cess for one potentially additional jump.

Set the initial count to unity, N =1 for
all detected Jumps J # 0 and compute ¥.”,
p"" and hence £” by solving simultaneously
the unconditional mean and autocorrela-
tion noted above. Utilize these coefficients
to construct a candidate time series of ¥'".
Then impose these model coefticients with
the computed A, ﬂy), and 69) on the fol-
lowing log-likelihood:

LR;N, = j,Q, )
= 1In2r(h” + j(&'P)%))
_(Rt - X(zj) ;\' X

X GHR))
2(th +GJ) .

+

&)
The likelihood function has only one param-
eter: the jump compensator A_. Therefore,

()= angmax 3, LRGN =5 2,.)
VAL

Compute the likelihood score for each obser-
vation L£(R,;0") at the optimum, where
0" = {Xiﬁ,ﬂ(}),ﬁ(}),kf)} is the collection
of parameters, the superscript in brackets
defining those parameters that will be updated
in the following steps. Define an arbitrary
threshold In(c,), where ¢, is a lower bound,

1% or 0.1%. For these observations
add +1 to the jump counter, N¥ = N? +1
if L(R; 6" 'y < In(c,). For days with multlple
jumps we assume that the jumps are of equal
size. We therefore compute a new mean and
standard deviations for the j Jumps denoted TR Y
and G ' and subsequently %", p** and hence

E? from the time new series N,
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Step 4: Maximize the new updated log-likelihood
function X L(R;N® =;Q ) if it is
greater than X" L(R;N" = j,Q_)) at the
optimum, then repeat Steps 2 and 3. If it is
equal or lower, discard the new parameters

6 and keep 00,

In the Online Supplement, we provide a proof,
under a fairly general data-generating process and some
Monte Carlo studies, to demonstrate the consistency
of the iterative scheme above. Notice that the penalty
for over-guessing N for any given day spills over in
subsequent days through the updated %'”. This process
is mediated by the autoregressive parameter p. We set
¢, to be 0.1% for our models. For example, a time f,
log-likelihood of below —6.908 triggers an additional
candidate jump. Additionally, notice that this approach
only works well when the true average jump size is less
than the true standard deviation W, < 6,. Thus, small
jumps are not generating log-likelihoods greater than
one standard deviation away from W, and erroneously
being awarded extra jumps and hence degrading the
total log-likelihood. However, our results indicate that
the mean detected jumps are between —0.12% and +0.7%
with standard deviations of between 1.5% and 9%—that
is, over one order of magnitude larger.

The Chosen GARCH Models

While jump models have no closed-form solu-
tion for the option price, the risk-neutral dynamics for
certain types of discrete-time models can be explicitly
determined. For GARCH models there is a significant
restriction on the autoregressive form of the volatility
model to ensure that (a) the risk-neutral dynamics can
be easily derived and (b) the resultant option price has
a closed-form solution.

This natural limitation is discussed in Christoffersen
et al. (2008), who compare a persistent GARCH model
with an AR-J model with a more standard GARCH
specification with mean reversion. We implement this
experimental design. Our major contribution is to pro-
pose alternative estimation procedures over the domain
of models and provide evidence from a far larger pool of
equities and equity indexes for this analysis.

Let ﬁt = IEO o7ds be the daily quadratic variation.

We assume that ﬁ[ is a discrete GARCH process varying
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at a daily timescale, and we follow Christoffersen
et al. (2008) by setting the spot variance process for the
GARCH and CGARCH to be, respectively:

hr+1 =0+ Bhr + (X(Zt - ‘Yh}/z )25 (4)
and

hay =4, 4B =)+ ol(z, =V h"7) =1+ 71q), )

g, = 0+pq, +Q((z] —1)—2y,h%z). ©)

The noise term z, in our notation, in the absence
of jumps, will be fz:’] W(s)ds =W(t,)-W(t,) and r, =
s(tT,) — s(t,). Therefore, over a single day, the continuous
part of the price is a geometric Brownian motion GBM
with constant volatility. For option pricing purposes, the
drift term, in the absence of jumps, is

R =r+hh, +hilz,, )
where r is the daily return on a risk-free instrument
of same maturity as the option and A is a coefficient
that determines the risk premium. The without-jumps
models are fitted using a standard maximum likelihood
estimator assuming Gaussian innovations. Hence, £, , is
the Gaussian log-likelihood function for a sample ¢, T,
with the vector 8 collecting the relevant collection of
parameters 0 = {A, o, B,vy, ®} for the GARCH model
and 0 = {A, 0, B,7,,7,, ®,p, 9} for the CGARCH model.
Finally, we denote by ﬁfr, the evolution of the log-
likelihood at its maxima.

The AR-Jump with GARCH
Density Function

Similarly to the volatility model, we assume again
that the process driving the intensity of these jumps
is autoregressive at a daily frequency, but uniform at
the intraday timescale. Let jumps J, be normally dis-
tributed with mean and standard deviation W, and o,
respectively. The distribution of jumps is assumed not
to be time varying. For a given day, the arrival rate per
intraday block of time is denoted %,. From our previous
notation, there is a process ¥, which we assume to be
X, —~ AR(1). We can think of ), as the constant rate
of jump arrivals over a single day and it is therefore
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scalable to the intraday grids that we specified above—
for instance Y, is the five minute arrival rate when A is
5/(24 X 60). ¥, by contrast is fixed to being the daily
intensity rate.

The additivity property of Poisson processes
implies that nY, = X,, that is, while ¥, is autoregressive
at a daily timescale, 7, is constant over a day. As such,
the probability mass of a jump arrival is continuously
and equally distributed over the trading day. Therefore,
during a day, the price process s(t) will be a jump dif-
fusion process combining a continuous diffusion with
constant volatility and a cadlag process with constant
jump arrival. This follows the implicit assumptions of
Tauchen and Zhou (2011), who assumed at most one
jump a day. More complex models that permit intraday
volatility are of course easily specified, but these have
two disadvantages. The first is the need for persistence
over many days in the volatility and intensity processes.
Second, for a model that captures both intraday and
inter-day volatility and intensity persistence, the option
pricing model becomes far less tractable with a question-
able degree of improvement. We therefore assume an
autoregressive modeling structure to the evolution of
X, which is at a daily frequency, within the day. The
likelihood of a jump occurring is the same for any given
fraction of that day:

R, =r+MAh +

t+1

A4z, +y, T ©)

XI = 5(0 + Pf(H + &ﬂ,_w )

where € is the information set for the filtration of the
intensity process, whereby P(N, = j;Q, _)=¢ "/ /L.
The disturbance term M, is determined recursively such
thatn, = E(N, ;Q, )— %, ,-Similarly E(N ;Q,) = / o)
P(N, = j;Q,)and this is derived recursively from
P(ZET;ZJQQ[)ZL(R,QN[ZJ:Q/)P( =5, u/(z;t)
L(R;:N, = j,Q, )P(N, = j;Q))). Where the filtration
function is given by

L(R;N, =j.Q,,)

~(R=h =, %~ =v6 )T’
2(h+07)

(l’l + jo )1/2 (10)

and y is a compound Poisson random variable with mean
W, and variance (53. Note that we now have two risk
premium coefficients, namely A_and A, .
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Risk-Neutral Dynamics

For the pricing of options we must recast the param-
eters of the empirical model to provide a set of risk-neutral
dynamics. This is equivalent to a change of measure in a
constant volatility framework. Given some of the subtle
adjustments to our framework, it is worth re-stating the
risk-neutral pricing models from Christoffersen et al. (2008).
In summary, we compare three basic pricing approaches:
the GARCH and the CGARCH, which are computed
using the Kolmogorov backward method, and the AR]J-
GARCH, for which the price is computed via Monte Carlo
simulation. In each case, we write down the risk-neutral
price and then proceed to derive the functional form or
infer the price of the option. The risk-neutral dynamics for
the Heston and Nandi (2000) model are given by

=r+MA, . +

H»‘\ t+1

(1

[+7 [+1

b = 0+ Bh + 0z — Y'Y, (12)
where Y =y+ A+ 1/2and =, ~N(0,1). In a note-
worthy contribution to this area, Christoffersen et al.
(2008) demonstrate that the CGARCH risk-neutral
dynamics are given by

=r+Ah,, + (13)

t+1 r+7 r+1

—q)+ (= =YY =1+ y7h)
(14)

Voh'?) =(1+77h)),  (15)

ht+1 = qt+1 + B*

Qi =W +P'q, +O((2, —

where the risk-neutral parameters (denoted by the (*)
term) are defined by

B" =B +a(y” —v)+ 0¥, —7,) (16)

P =p+aly; —Y)+O —,) (17)

Y=Y, +A+1/2, i€{l,2}. (18)

The final baseline option pricing model is the
ARJ-GARCH. The risk-neutral dynamics for the mean,
variance, and jump equations are as follows:

R, = =r+Ah, +}")er+ R hey 2+ 70, _Hjifﬂ (19)

t+1
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b= 0+ Bh +o=] +y =y B 0)

t

x= g )

where the evolution of ¥, is from (8), v is the market
price of risk and P =, —VGi, Y =y+3+A) and

A= —l)exp(=1/ 2v°G’ = VIi,). The noise com-
ponents 2, and y, are respectively a normally dis-
tributed random variable under a risk-neutral measure
transformed from z, and a Poisson jump with normally
distributed jump size y, ~ /\/‘(}J;,GJ) with a Poisson
count N, ~ Poisson(),). It is worth noting that the
term (A, =W)X, forces the discounted price process
to be a martingale.

We now have an unknown parameter Vv, that needs
to be derived from the maximum likelihood estimates of
the model specified in equation 8. The option prices for
the autoregressive jump models in mean and variance,
by construction, must be derived from the risk-neutral
prices rather than using a complete market approach. We
follow Pan (2002), albeit modified to jumps in the first
and second moments and including the explicit autore-
gressive jump construction. This has the disadvantage
that the value of vV needs to be calibrated by simulation
rather than via a numerical integration approach which
is, of course, computationally quicker.

Unfortunately, analytical long-run moments for
this type of process are not possible to compute (if
they were then the option could be solved without
recourse to simulation). We need thus to compute first
“physical” maximum likelihood estimates and then
impute V. Christoffersen et al. (2008) suggest that v
can be “solved for numerically from the physical MLE
estimates” and we argue this to be possible when the
intensity process ), is time invariant. However, experi-
mentation indicates that relying on the approach of Pan
(2002) provides far better results.

The Pan (2002) approach is relatively straightfor-
ward albeit computationally intensive.

Step 1: Estimate the observed data-generating process
from the estimation window of the under-
lying sample.

Step 2: Choose a lower bound on v and impute the

- (mx (y W
risk-neutral parameters Ky s W and Y.

Generate the time series ' and h" under
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the risk-neutral dynamics. Next collect a daily
sample of very near maturity, at-the-money,
options.

Step 3: Pan (2002) recommends less than 25 days. We
posit that a fair test is to collect the average
price of 15 to 25 (for stocks this is required
for coverage) day at the money option prices
for each day in the sample and compute the
average maturity 1" — t. Next generate 10,000
draws for each day starting from %" and A"
and compute the undercounted estimated
price of each option, under v. Using the
rule:

10,000
z max(Sl(,];1= - K,0)

1=1

Di* _

' 10,000

— j“” max(S\" = K,0)d Q"s

and hence the option price from C!” =¢ " ™

where Q" is the risk-neutral measure under

>

v” and collect the root mean squared log
difference between the observed C and C'.
Recall that we denoted this as M.

Step 4: Compute a new market price of jump risk
from the rule v = v + & for the aiteration.
Where £is a computationally manageable step
size and repeat Step 2.

We suggest two termination conditions: first iter-
ative, if M > M, then record v = v. However,
as noted in Pan (2002), the error in the first moment
can be problematic. We therefore advocate searching
over a range V""" to V™, which is easily encoded in
parallel, and then identifying the v smallest pricing

; (a)
error min(M").

Pricing the Options Using CGARCH
and GARCH Models

As discussed above, for the GARCH and CGARCH
models, closed-form solutions exist for the pricing of the
options. The pricing formulas are in the form of iden-
tification of the functions Ny(9, 0) and N, (3, 0), where
0 is the vector of parameters of the GARCH (0 = {A, a.,
B. . ®}) and CGARCH (6 = {A, &, B, Y;, Y2 @, p, 0})

models and ¥ is the vector of parameters of the option
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O={, T, K, S, r}. In both cases, the closed-form solution
is derived using the characteristic function. In particular,
for each case the local characteristic function f(t, T, $)
for each option is derived using Kologmorov’s backward
method. The price of the call option is of the form

C = ¢ ""E (max(S, — K,0))
= SN (19,6) — Ke ""'N . (9,6),

where E; is the time f conditional expectation under
risk-neutral distribution. For the GARCH model,
Heston and Nandi (2000) derive the moment gener-
ating function for any number of lags in the AR and
MA components of the model. The functions N (1, 0)
and N, (1, 0) are defined as follows:

N(0.6)= 5+ [d,(@)do.

=

N (0,6)= 5+ [d,(0)d0, @2)

where

K™ f*(t,T,0+1)
i$S,e "

K™ f(t,T,0)
ipS e

d,(0) = Re , and

di(0)=Re ; (23)

where £ (t, TO) = f(t, Ti0), f(0) is the moment-generating
function, over ¢ moments for the candidate process.
Let ¢ be the unconditional moments; for the first-order
version of the GARCH model, the moment-generating
function is given by f(t,T,0) = S ™" where

t

Az = At+1 + Vq) - Bt+1(‘0 y %ln(l y Z(XBt-H )s
B,=o(h+7)— 37" +BB,, (24)

with the time T boundary condition is that A= B.=0.
Heston and Nandi (2000) provide extensive coverage
of the GARCH approach utilizing the Kolmogorov’s
backward induction equation to identify the above
moment-generating function. Christoftersen et al. (2008)
extend the approach for the GARCH to the CGARCH
form. Setting f(1,T,¢) = Ste™ ™ 7iw* Bt 1 be the
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moment-generating function with recursive coefficients,
then

Ar = A1+7 + ﬂl) - <(X’B1,z+1 + (sz,rH)

~+In(1-20B,,,, — 2B, )+ ®B, .,  (25)

1,t+1 2,t+1

(oy,B,,,, + ¢Y,)’

B, =BB,,,, +A0+2 26
1t B L+ o 1— 2O°B1,f+1 _ 2(PBz,f+1 (26)
oy B, . +oy,)
Bj[ — B, " + 7\.(1) + 2 ( Y1 1,41 (py_) (27)
h B 1- 2(XB1,t+I - 2(PB2,:+1

and terminal conditions A, = B,, T'=B,, T= 0, effec-
tively adding the component structure to the original
GARCH specification. However, the GARCH model
has a deliberate structure that imposes certain regularity
conditions on the characteristic function (see the tech-
nical Appendix in Heston and Nandi 2000), and from
the complexity of the CGARCH component equation
it 1s effectively impossible to recover analytically con-
firmation that the CGARCH will converge in an iden-
tical fashion. In order to address this, we will explore
the CGARCH pricing function in more detail using
numerical examples.

Numerical Stability of the Pricing
Algorithms

For the GARCH and CGARCH models the
objective is to compute the functions N, (%, 0), i € {S, K}
via numerical quadrature. The option pricing literature
that encompasses the popular Heston (1993) approach
proffers a considerable discussion on the numerical sta-
bility of such an approach; see Albrecher et al. (2006)
for a discussion of the “Little Heston Trap” problem
that can substantiate itselfin the computation of options
under stochastic volatility. Notice that the major issue is
the branch cut in the complex plane for the solutions to
the characteristic function. The Heston model is argu-
ably the simplest nontrivial model that can be computed
via fast Fourier transform or numerical quadrature of
the characteristic function, and the existence of two
roots in the complex plane for this model poses several
problems for numerical implementation. The Heston
and Nandi (2000) GARCH model essentially collapses
to the Heston (1993) model as At — 0 and similarly

THE JOURNAL OF DERIVATIVES 11



provides a well-defined branch cut that we can identify.
However, the CGARCH model is more complicated in
this sense and numerical implementation poses prob-
lems. The problem of the branch cut in the evaluation
of the function is that at the cut numerical evaluations
can exhibit substantial errors, an obvious issue being
singularities that result in indefinite evaluations.

To overcome this issue, some publicly available
algorithms for the CGARCH pricing model appear to
solve this by arbitrary truncation at ¢ = 10. However,
this truncation also causes problems that deteriorate the
accuracy of the option price, as for many out-of-the-
money strikes the function has not yet fully converged
to zero at ¢ = 10. Several quadrature methods are com-
monly used to solve the types of integrals found in
equation 22, and standard implementation techniques
are available in most numerical analytical tools such as
MatLab or Mathematica. To illustrate that the effect
stems from the moment-generating function and not
the quadrature method we implement three proce-
dures: Simpson’s rule, the Gauss—Konrod rule, and
the trapezoidal or brute force integration. We also
have implemented the option pricing method in both
Mathematica (which uses variable or arbitrary precision
arithmetic) and MatLab that uses IEEE standard double
precision arithmetic.

From a practical standpoint, using an arbitrary
precision arithmetic to price a large number of options
is effectively impossible, as each option requires a sub-
stantial amount of computation time to derive the price,
even using a large cluster. Hence, we demonstrate the
instability of the CGARCH model for a pair of options.
In Exhibit 5 we present CGARCH parameter esti-
mates for our models compared with those found in
see the technical Appendix Heston and Nandi (2000)
and Christoffersen et al. (2008) for the S&P 500 index
(highlighted in bold red for our estimated and bold black
for Heston and Nandi (2000) and Christoffersen et al.
(2008)). For comparison we will use the parameters
from the non-jump-filtered returns. Using these param-
eters, we analyze the following pair of options: a 100-
day at-the-money call and a 300-day in-the-money call
where /K = 1.3. We will assume that in all cases the
conditional variance is /i, = 0.35° and for the CGARCH
the component volatility is ¢, = 0.0179°, the average g,
from our CGARCH model with no jump filtration. Let
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11!
@ =+ [ds(@)de.

[}
L@ =5+ [d, 09 (8)

In Exhibit 1 we observe, over a range of initial
stock-prices, the explosive point for an example set of
evaluations of dy(0). While the spectral functions d (0)
and d(0) for the GARCH model converge to zero after
a finite number of iterations, the CGARCH versions of
the functions dy(¢) and d,(¢) do not. In fact, they stabi-
lize and then after a finite number of iterations the func-
tion destabilizes and explodes. A further complication
is that for the two different option models the point at
which the CGARCH functions d (¢) and d,(0) destabi-
lize diverges substantially, and consistently deriving this
threshold has proved elusive. Our approach is to system-
atically vary the upper limit of integration and then use
a Haar wavelet (a local average) to detect the point of
relative flatness and hence the correct values of N -

Note that the stability of the estimates deterio-
rates when jumps are incorrectly omitted from the
option pricing model. Consider a data-generating
process for R, =R, + J,, where R, is the continuous
diffusion component with GARCH volatilities and J,
is the jump component. While the option is biased if
the option price is based solely on R, rather than R,
the contamination of the auto-regressive jumps causes
greater problems for the CGARCH model in correctly
pricing options, and this contamination has differential
effects across maturities and money-ness. We will show
that the jump-filtered GARCH and CGARCH models
perform at least as well as, and in many cases better
than, GARCH and CGARCH models estimated on
unfiltered returns. The bias in the price also will vary
with the properties of the jump model. We find that
the deterioration in the performance of the CGARCH
when jumps are omitted is substantial.

Out-of-Sample Forecasting

The final aspect of our analysis is an “acid-test”
of the volatility model in comparing the computed
call option prices to traded options out-of-sample. We
therefore estimate the various GARCH models over
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ExHIBIT 1

Numerical Stability of CGARCH Option Pricing Function. Evaluation of [¢ 4 (¢)d phi with Respect to an Arbitrary
Truncation ¢ the Ordinate Values on the Left Plot are Multiplied by a Factor of 10 for Visualization Purposes

Initial Convergent Evaluations

4T . T T

0 20 40 60

0

o Terminal Explosive Evaluations
51 T . T T

/)t d(9)dd

2475 248 2485 249 2495 250

0

Notes: The left-hand plot illustrates the evaluations of m d (§)d phi with respect to the upper bound & Many implementations of these types of model
truncate O to around the 10th moment. We can see from this simple example where A = —0.2049, B = 0.9132, o. = 1.3201e—07, 7y, = 415,

® = 6.8328¢—07, p = 0.9855, @ = 2.8006e—06, Y, = 2.0134e—10, h,= 0.35" and q,= 0.0179". The option being priced is 50 days to maturity and
the risk-free rate is set to 0.25%. Note that the ordinate values for the right-hand plot are already in the range *1e199 when ¢ = 247.5. This provides a
fairly complicated numerical problem to solve, as the function slowly deviates toward the singularity, an error that has been noted in this type of approach

to pricing options.

the sample period up to the onset of our options data
sample in 2010. An important aspect of pricing options
is to ensure that intraday effects do not add noise and/
or bias to the results. Our options are sampled each
day from the OPR A data feed at 4 p.m. and matched
to the underlying assets price at that time. This is
considered to be time t. The conditional variances
and jump intensities used in the option pricing are
taken from the previous day’s closing stock or index
return f — 1, and are therefore ex ante and not ex post.
Hence, we assume that i, and %, are known and that
the parameters of the model rolling forward are taken
from the preceding estimation window, from 1996
to 2010, which is the full history of the available tick
data from Thomson-Reuters. To test for parameter
instability we implement the fixed window, rolling
window, and recursive tests described in Giacomini
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and Rossi (2010) and find very little variation for most
of the models except the CGARCH when estimated
on the raw returns, not filtered for jumps. Here the
rolling window reveals a substantial change in the ®
coefficient in the ¢, equation during 2010 for the S&P
500 index, and several stocks appear to violate the
bootstrapped maximal fluctuation test from Giacomini
and Rossi (2010) critical boundary at 90%, but not at
95%. Therefore, we still adopt the fixed estimation
window coefficients for the CGARCH, to maintain
parity with the other models.

Call Option Loss Functions and Experiments

Let C,(8) and C,(9,,6, ,) be the actual recorded
call option price and the model predicted call option
price for day f. The parameter vectors are partitioned
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as follows. First, the option-specific information
is given by U, = {S,K,r, T} where S, is the actual
stock price at the time of trade, K is the strike price,
ris the current risk free rate, and T is the maturity.
The one-day-lagged information 0,_, is model specific.
For the GARCH model this is 8, = {®,B, o, 7, 4},
for the CGARCH model 0, , = {®,p, 0, B,Y,, Y, 1, 9,}
and for the ARJ-GARCH 0,_, = {o,a,B,Y, 7Ly,\/,
G, W, h, X,}. Following Christoffersen and Jacobs
(2004), we set up a loss function approach by set-
ting F(C, (9,), C:’].’[(ﬁt,ehl)) = F(Sj’,) where j indexes
the M () call options with O € © characteristics in
our sample. The summary loss statistics are the root
mean and root median forecast errors:

J=1

F,,(®) = /median(F(3,,)). (30)

We choose the loss function F(§, ) to be in terms
of square of the log differences:

F@)= M)y "G, 29)

F@,,)=IC, (%)-InC, (9,6, ,) (31)

We then assign each option to a moneyness-
maturity bin and compute the root mean of the quadratic
losses.

There are of course a very large number of combi-
nations that can be studied within an empirical analysis
of this form. In order to present the results in a relatively
contained manner we choose 20 moneyness-maturity
bins with four maturities, 0 < T — ¢ < 50, 50 < T'< 100,
100 < T — t £ 500, T > 500, and five stratifications of
moneyness, 0 < S/K<0.75,075<S/K<1,1 < S/K<
1.25,1.25 < S/K £ 1.5, and S/K > 1.5.

We restrict ourselves to presenting six models.
We also implement a further pair of models: the gener-
alized affine realized volatility model of Christoffersen
et al. (2012) and the doubly stochastic poisson model of
Scott (1997), calibrated only to historical options data.
However, the results for both models were very mark-
edly inferior to the CGARCH model estimated using
unfiltered returns, the worst-performing model from
our chosen group. Code and results for these models are
available in our online supplementary material.
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#1 GARCH Estimated by Maximum Likelihood
on jump-filtered returns.

Option prices via numerical integration of
die{S,K}'

#2 CGARCH Estimated by Maximum Likelihood
on jump-filtered returns.

Option prices via numerical integration of
die{S,K}'

#3 GARCH with AR-Jumps Estimated via the
iterative approach from mixed frequency data
as outlined above.

#4 GARCH Estimated by Maximum Likelihood
on unfiltered returns.

Option prices via numerical integration of
die{S,K}'

#5 CGARCH Estimated by Maximum Likelihood
on unfiltered returns.

Option prices via numerical integration of

d. .
i€{S,K}
#6 GARCH with AR-Jumps Estimated by Max-
imum Likelihood on unfiltered returns.

Options priced via Monte Carlo simulation.

The first three models mirror essentially
Christoffersen et al. (2008) for both stocks and the S&P
500 index. We disaggregate the presentation of the results
for the S&P 500 index options from the individual stocks.
Furthermore, to illustrate the consistency across indi-
vidual stocks, we present two cases: IBM and Johnson
and Johnson (Code JNJ). We then report the mean
squared errors for all the individual stocks combined.

DATA AND PREPROCESSING

When conducting a study of this type the probity
and sources of the data are of critical importance. It is
therefore instructive to carefully detail the data collec-
tion approach to illustrate any potential sources of bias.
We collect our stock and index data from the Thomson-
Reuters Tick History (TRTH) data service, which in
turn pulls data directly from the exchange feeds. For the
pre-2005 period this is by exchange and post-2005 this
is from the National Market System (NMS) for both the
underlying stocks and the options via OPRA.

When conducting intraday volatility studies, the
econometrician has the discretion of using the mid-price
halfway between the best bids and best asks (the inside
spread) or the actual traded prices. We choose the actual
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trades, as (a) this is the price that the option will be priced
against and (b) this type of tick data is consistent with the
stock index data. Note that by license we are not per-
mitted to release source tick data. Nevertheless, the time
series of daily returns, realized volatilities, bipower varia-
tion, tripower quarticities, and inferred jumps for our
one-minute data is available in the Online Supplement.

The historical stock and index sample pulls data
available from January 1, 1996, and ends on March 6,
2014, the entirety of the TRTH available history, cov-
ering 17 years for 20 individual stocks sampled from
the components of the Dow Jones Industrial Average
and the intraday S&P 500 index. Notably, some stocks
(for instance Chevron, Verizon, and Home Depot) start
slightly later in the data feed. The estimation of the
underlying models is conducted on the daily aggregate
returns, denoted R, (see above for a detailed explanation).

The options data are sampled from the OPR A data
feed via TRTH from January 1, 2010, to March 6, 2014.
It is important to point out that the source options data
from the OPR A NMS is vast. Therefore, our filtering
approach is as follows. We pull only the options traded
in the five minutes after 4 p.m. EST weekdays. Note
that the vast majority of options trades are conducted
in Chicago on the CME, while the underlying tickers
are mostly traded in New York and New Jersey, so the
time zones are different. We time stamp all the trading
data relative to GMT to ensure that stocks and options
are synchronized. All live maturity dates from January 2,
2010, to March 6, 2014, are included. For each avail-
able contract type (each code contains a maturity date
and a strike price) for our underlying assets we compute
the open-interest weighted price of all trades within
the five-minute time period of interest. This is accom-
plished by an algorithm within the data service. Hence,
the number of source contracts used to compute open-
interest-weighted price is unknown. However, pulling
the raw data for the S&P 500 index options for a few days
indicated that it is in the thousands for the at-the-money
options and in the hundreds for the out-of-the-money
options. Therefore, while for brevity we refer to the
data as 347,612 contracts, it is more appropriate to refer
to it as 347,612 maturity-strike-ticker-code-day aver-
ages for the five-minute sample in question. All options
are restricted to the European type from the data feed.
Exhibit 2 provides details of the sample characteristics.

Despite the active nature of the equity options
market, some stocks have missing or very few maturity-
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moneyness combinations; this is illustrated in Exhibit 3,
which cuts up the sample by contract population in bins.
It should be noted that the S&P 500 index options have
a much wider range of available strike prices registered
on the OPRA-NMS system. Accordingly, over one-
third of the sample comes from this contract type. This
source of data is roughly that which provides the end-
of-day prices reported in the OptionMetrics data set.
However, we choose 4 p.m. to eliminate potential end-
of-day eftects. This appears to be consistent with market
practice, most notably for individual stocks.

The historical data set, therefore, consists of over
2 billion trades and/or updates from the S&P 500 index
and 20 stocks randomly selected from the Dow Jones
30. The GARCH models are fitted on the filtered data
up to January 1, 2010. However, for the remaining data
we compute the forward recursion of the models until
the end of the sample on March 6, 2014. This is an
average of 538,322 trades or updates per day and 93,030
firm days in the sample, making this one of the largest
scale studies of its type, on RV alone. The option data
set spans January 1, 2010, to March 6, 2014, and con-
sists of 347,612 traded option contracts. Again, to our
knowledge this is one of the largest data sets ever con-
structed for option pricing problems involving Monte
Carlo estimations.

ANALYSIS AND ECONOMIC IMPLICATIONS

In this section, we first summarize the parameter
estimates in-sample for our new approach to fitting the
models to the underlying data using mixed frequencies
for the estimation window. Finally, we review the mean
and median results for the models out-of-sample for our
options data.

In-Sample Model Estimates

We begin our discussion with the maximum like-
lihood estimations to document the consistency of the
estimates across our individual stocks and the index and
to demonstrate that our results for the stocks are not
driven by one rogue miscalibrated MLE. In Exhibit 3 we
provide a summary of our option contracts across firms
and the S&P 500 index. The final column, in bold, shows
the summary for the total number of contracts for just
the firms, and the middle column highlighted in bold
presents the number of contracts for the S&P 500 index.
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EXHIBIT 2
Sample Characteristics

Market Price
Average Ticks Number of No. of Options of Jum Risk

Codes Name per Day Days in Sample Total Ticks Contracts (v in Basis Points)
T AT&T 35,758 4,641 165,952,878 11,206 209.61
AA Alcoa 27,545 4,658 128,304,610 10,299 449.09
AXP American Express 21,061 4,604 96,964,844 10,266 252.64
BA Boeing 14,371 4,628 66,508,988 12,773 252.63
CAT Caterpillar 18,470 4,640 85,700,800 8,720 521.46
CVX Chevron 33,048 3,212 106,150,176 8,948 695.00
KO Coca Cola 20,694 4,608 95,357,952 8,366 830.60
DIS Dupont 21,549 4,606 99,254,694 7,899 245.22
DD Disney 15,097 4,584 69,204,648 9,938 130.17
GE General Electric 58,028 4,716 273,660,048 7,910 287.85
HPQ Home Depot 46,298 3,084 142,783,032 8,646 398.66
HD Hewlett Packard 26,473 4,631 122,596,463 8,473 913.71
IBM Int. Bus. Mach. 17,168 4,637 79,608,016 22,641 521.31
INJ Johnson and Johnson 23,857 4,619 110,195,483 10,524 27.99
MCD McDonalds 16,187 4,611 74,638,257 7,401 530.29
PG Procter and Gamble 22,714 4,596 104,393,544 9,401 154.50
PFE Pfizer 43,148 4,689 202,320,972 8,744 781.19
SPX S&P 500 Index 2,142 4,543 9,731,106 144,025 46.63
UTX United Technologies 12,346 4,563 56,334,798 9,604 925.62
\4 Verizon 34,030 3,526 119,989,780 14,792 178.68
WMT Wallmart 28,338 4,634 131,318,292 7,036 604.56
Total 538,322 93,030 2,340,969,381 347,612

Notes: For computational reasons, we restrict ourselves to 20 stocks randomly selected from the Dow 30 and the S&EP 500 index; note that we use the
intraday index, which is updated roughly every 15 seconds during the trading day. Thus, the number of informed updates is relatively stable at just over
2,000. Our data come directly from the Reuters-America feed that computes the update and this appears to contain more than the 1,560 updates expected
for the 390 minutes of the trading day. The S&EP 500 depository receipt (SPDR), an S&EP 500 exchange traded fund, has a higher update frequency.
However, this is an “equal-weight” version of the S&P 500 and it is not the reference index for the S&EP 500 index options. The codes in column one are
used throughout the paper. Average ticks per day are the average number of trades in a day. The number of trading days for each sample includes all days
where there are more than 60 price changes. In practice, we have only dropped one day, for AA, in the whole sample, due to the lack of variation in ticks.
Total ticks are provided to give an overview of the whole historical data set. Number of options contracts shows the total sample size for 2010 to 2014, for
our out-of-sample testing period. Market price of jump risk is computed from the autoregressive jump model maximum likelihood parameters using
end-of-day short-maturity near-the-money options, in our estimation windouw.

We are relatively fortunate in that the number of
available contracts for the individual stocks is relatively
even across our bins. However, certain bins do stand
out. For instance, we can observe a very large number
of long maturity options with maturity in excess of 250
days. This must be noted as a critical issue for the S&P
500. In fact, the standardized option strikes mean that
the number of available contracts that are out-of-the-
money by more than 25% are in short supply. This is a
result very similar to that found in Pan (2002) where the
available strikes are dependent on the exchanges issuing
new standardized strike-maturity codes. For options of
longer maturity, more strike-maturity combinations are
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issued and hence we have a larger sample for the cross-
section of strikes. It is also noteworthy that the bin sizes
are not identical. Hence, we can capture more inter-
esting pricing errors for near-the-money and heavily
in- and out-of-the-money conditions.

In Exhibit 4 we present the maximum likelihood
estimates for the stocks and the S&P 500 index for the
jump-filtered data generated from the tick-by-tick
returns for the GARCH model. The term £ denotes
the evaluation of the maximized log-likelihood, when
the models are estimated using the assumption of con-
ditional normality. The last column in bold presents for
comparison the estimates of Christoffersen et al. (2008)
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on a longer daily sample of unfiltered returns. The direct
comparator is the column in bold, which shows our
results for the jump-filtered daily returns on the S&P
500 index. It is also interesting to compare the point esti-
mates from Heston and Nandi (2000), who computed A
= 0.205 compared to values that are about one order of
magnitude higher for both Christoffersen et al. (2008)
and our own estimates for the jump-filtered data. Simi-
larly, the values of ® = 5.02e—6, o0 = 1.32e—6 and B =
0.589 appear very different from our own estimates and
those suggested in Heston and Nandi (2000). Indeed,
the long run volatilities suggested in Heston and Nandi
(2000) appear radically different from those computed
herein and in Christoffersen et al. (2008)—at between
8% and 10% for Heston and Nandi (2000) and between
13% and 17% for Christoffersen et al. (2008) and our
jump-filtered results respectively for the S&P 500. Recall
that the long-run variance is h=@+o)/(1-B-oay’)
and using the “rule-o0f-16,” the annualized volatility is

therefore v/252h . This discrepancy seems less likely due

to the intercept ®, found to be 2.101e—17 by Christof-
fersen et al. (2008) and 8.847¢—13 from the jump-filtered
data, and might be more related to the estimation of
B, which as both Christoffersen et al. (2008) and the
jump-filtered returns indicate, is close to unity vis-a-vis
the 0.589 suggested in Heston and Nandi (2000). Due
to the requirements of the jump filtration step and data
availability, our results run over the 1996-2014 period,
a shorter sample than in Christoffersen et al. (2008).

Note that at the individual stock level, the variation
in the parameters is quite high. IBM is an interesting
example in that it appears to provide us with as close
to an “ideal” stock as possible. For IBM the risk pre-
mium is A = —0.5 and the long-run annualized volatility
is 21%. For all stocks the standard errors indicate that
the asymmetry Y parameters are high (in the high teens
and sometimes in the 100s), but none are close to the
421 value reported in Heston and Nandi (2000). In fact
Verizon (VZ) and Walmart (WMT) have small nega-
tive values for 7y that are not statistically significant. The
persistence parameter 3 is uniformly high, at above 0.9
for most stocks except Coca-Cola (KO) and Walmart
but also uniformly below unity.

The results from Heston and Nandi (2000) for
imputing the parameters of the model by nonlinear least
squares from a small sample of options are even more at
odds with the results found herein and as documented
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in Christoffersen et al. (2008). While this is a relatively
trivial exercise with our short maturity near-the-money
option data, the results are extremely volatile and good-
ness of fit is several orders of magnitude away from our
version of the Pan (2002) approach. This is available
from the authors or can be computed very quickly using
the Matlab code from this study. We therefore omit a
detailed analysis from our discussion.

For the GARCH model (more than a decade since
its introduction) we suggest that, while the GARCH
option pricing framework may be closer to a structural
model of options prices than the Black—Scholes model
or other more primitive stochastic volatility models, the
maximum likelihood parameter estimates still appear
somewhat unstable, although far less unstable than the
comparison between the results in Christoffersen et al.
(2008) and Heston and Nandi (2000). Note that cross-
sectionally the parameter estimates for individual stocks
are very stable for the jump-filtered returns and indeed
the jump-filtered returns do not exhibit substantial
variation from the unfiltered returns (see the Online
Supplement).

The CGARCH results presented in Exhibit 5 are
again very consistent with our jump-filtered results and
those found in Christoffersen et al. (2008). For the S&P
500 (center column in bold) we find A to be highly
consistent with the GARCH (similarly to Christoffersen
et al. 2008). For our jump-filtered results we find that
Y,, the asymmetry parameter in the component equa-
tion, is about 50% larger. We ascribe this variation to
the 2007-2010 financial crisis period. The CGARCH
model performs less consistently than the GARCH
across the individual stocks, and the variation between
the jump-filtered parameter estimates and the unfiltered
estimates (Online Supplement), both individually and
on average, is more pronounced. We will see from the
option pricing performance that the CGARCH appears
more acutely vulnerable to a lack of filtering jumps than
the GARCH (possibly due to the component equation
specification). Recall that we have restricted ourselves to
the case when p is a free parameter, and in each case the
point estimate of p is less than unity. Auxiliary likeli-
hood ratio testing (not presented for space reasons) shows
that for several cases, such as Boeing (BA), Caterpillar
(CAT), and Dupont (DD), the restriction of p =1 cannot
be rejected at a 95% confidence level. Overall, the results
indicate uniformly that the component persistence is
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high for both filtered and unfiltered returns, in line with
Christoffersen et al. (2008).

It is worth stressing that our AR-Jump model
with GARCH differs slightly from Christoftersen et al.
(2008) in that we explicitly allow the jump intensity to
vary stochastically. In Exhibit 6 we report the parameter
estimates from our multistep estimation framework for
the AR-Jump model with GARCH volatilities. Once
again we report the estimates from Christoffersen et al.
(2008) in bold in the last column. However, in this case
they are not directly analogous for two reasons. First,
our primary specification does not allow for jumps in
variance. Indeed, this is a second maximum likelihood
only estimation that is reported in the Online Supple-
ment and corresponds to model #6 in our option com-
parison table. For brevity, we do not fully elucidate the
results here. However, they are less consistent than the
GARCH and CGARCH models with the equivalent
results in Christoffersen et al. (2008). Second and more
importantly, we allow the intensities to be autoregres-
sive. Hence, two more parameters have to be identified
rather than simply having a single long-run intensity.

We will present some interesting features of the
results in Exhibit 6. However, it is important to note the
speed advantage offered by estimating the model using
the multistep approach outlined in the previous section.
In contrast to the unfiltered MLE approach used to esti-
mate the model parameters from daily unfiltered data,
the MLE procedure, while iterative, only has to optimize
the log-likelihood function for the jump risk premium.
The preceding steps from the tick data are determined
using descriptive statistics in a single step. The GARCH
model used to extract the conditional variances is a five-
parameter optimization and is also extremely fast. In
contrast, full maximum likelihood estimation of the
jump model requires an 11-dimensional optimization,
and the computation of the optimal parameters is very
slow. It is worth stressing that the log-likelihoods for the
reported parameters (MS), while lightly lower than those
reported for a fully optimized system (MLE), almost
uniformly are lower than one-half of a chi-squared at
95%, ie., L3 =L <1/2)7(1,0.95). This suggests
that the real data behaves in a statistically similar manner
to the Monte Carlo study performed in the Online
Supplement. Furthermore, the log-likelihoods, reported
in Exhibit 6, are uniformly higher than the CGARCH
and nested GARCH models, and in most cases substan-
tially greater than 1/2)’(6, 0.95) from the GARCH,
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indicating that the joint restriction on the jump param-
eters is rejected. This is far more clear-cut than the like-
lihood ratio testing between the N and CGARCH cases
(a restriction of three degrees of freedom). We also per-
formed likelihood ratio tests to compare the AR versus
constant jump intensity and found that the restriction
was rejected each time, as is customary in the option
pricing literature.

In summary, our results indicate that the max-
imum likelihood estimation of the models for filtered
and unfiltered returns does change the fit to the under-
lying data, although not dramatically. We conclude this
section by analyzing our out-of sample options results,
for which we find substantial variation. Nevertheless, we
want to reinforce the main theme of the present paper as
the results are most likely driven by the inherent proper-
ties of the models and not due to substantial variation in
the quality of fitting to the underlying data.

Out-of-Sample Options Results

Exhibits 7 and 8 present the root mean mean and
median absolute errors, respectively. Recall that the loss
functions here are relative valued, as they are reported
from the squared differences in the natural logarithm
of actual and predicted options prices. The bins corre-
spond to those found in Exhibit 3. However, for brevity
we present only three blocks of results on the central
tendency of the out-of-sample pricing errors: First,
those for the individual stocks as an aggregate; second,
the results for the S&P 500 index, for comparison with
Christoffersen et al. (2008) and Heston and Nandi
(2000); and finally the results for IBM, which we chose
as being a fairly archetypal stock from the in-sample
model parameter estimates, and which has a sufficient
number of options to provide a meaningful comparison
to the aggregate stock data and the index.

The models are ordered using the summary out-
lined above. Therefore, #1 presents the option pricing
errors for the GARCH model estimated on jump-
filtered returns; #2 reports the option pricing errors
for the CGARCH model estimated on jump-filtered
returns; #3 presents the results for the AR-Jump model
with GARCH variances estimated using the multistep
model; #4 and #5 display the results for the GARCH
and CGARCH model estimated on unfiltered data for
comparison; and #6 presents the results for the out-of-
sample option pricing errors for the ARJ-GARCH with
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jumps in mean and variance, following Christoffersen
et al. (2008) estimates by maximum likelihood. Recall
that, for brevity, we only have reported the in-sample
parameter estimates for the first three models. The
remaining three model parameter estimates are avail-
able in the Online Supplement.

A useful approach to loss function analysis is to
treat alternative methods separately and then compare
the properties in light of the differences that each loss
function is designed to detect. We start by reviewing the
results from Exhibit 7, which reports the RMSE for the
log values of the dollar option price. To convert these
into dollar equivalents we compute exp(R—SE) — 1.

Moving from the upper left in the exhibit, we
can see that the six models perform very differently
for relatively short maturity options. Exceptionally, the
jump-filtered GARCH is consistently the best performer
(recall that it was statistically not the best fit in terms
of likelihood). None of the models appear to fully cap-
ture the Black—Scholes option-implied “smirk” pricing
near-the-money options more effectively than out-of-
the-money or heavily in-the-money options. The jump-
filtered GARCH consistently fits the options better than
the other models (including both of the GARCH with
jumps models, #3 and #6). Following our discussion on
the numerical stability of the CGARCH, we see that the
jump-filtered and non-jump-filtered CGARCH offer
consistently poor RMSE performance out-of-sample. In
addition, moving down the table from 0—75-day matu-
rity options, 75—100-day options and longer maturities,
we see that the GARCH on the jump-filtered returns
provides the lowest out-of-sample RMSE. Moving
across the aggregate errors from all the stocks to the
S&P 500 index options, we also can observe that the
index options are uniformly priced more accurately than
the options on the individual stocks. Notice that for the
index the differentials in the pricing errors between the
six models are now extremely modest. For instance,
shorter maturity options from 0 to 75 days to maturity
are almost uniformly smaller than a dollar for our candi-
date models (#1 to #3), with the minimum error being
for the S/K = 0.75, for the GARCH of exp(0.284) —
1 = 32.84 cents and the maximum being jointly the
GARCH and the CGARCH for heavily in-the-money
S/K > 1.5 options, being exp(0.497) — 1 = 64.38 cents.

Moving down the center of Exhibit 7 for the S&P
500 index options, we can see that the pricing discrep-
ancy (for all models) is mostly attributable to heavily
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out-of-the-money long-maturity options T — ¢t > 250
and S/K < 0.75. Noticeably, the CGARCH estimated
on the unfiltered data appears to perform very poorly.
The CGARCH on jump-filtered data, however, does
not perform so poorly in the overall aggregate (center
block, last row) and each of the models that either filter
jumps or directly incorporate them into the specification
perform well, albeit the overall best performer (by less
than a cent) is the GARCH on unfiltered data.

The mean results for IBM paint a totally dif-
ferent picture. Recall that there are 22,641 contracts
for IBM. Therefore, it is unlikely that the RMSEs are
due to small-sample properties. The first point to note
is that the AR-Jump model performs far better than
the GARCH or the CGARCH estimated on jump-
filtered returns. Indeed, for IBM the degree of fit for
the multistage estimated AR-Jump GARCH model is
exceptional. For instance, 75-100-day options (which
contain one of the lowest sample counts at 49 for near-
the-money options) exhibit a pricing accuracy of near
exp(0.024) — 1 = 2.43 cents for in-the-money contracts
1.025 < S/K £ 1.25. This performance is largely superior
to the jumps in mean and variance model #6 and indeed
for all the other models herein. For IBM, the AR-Jump
model estimated stepwise from mixed-frequency data is
very dominant, with a pricing error of less than 46 cents
overall (exp(0.378) — 1 = 0.4594).

R MSEs are very standard in the out-of-sample
forecasting literature. Nonetheless, one issue frequently
encountered is that they tend to be biased upward by
a small number of dramatically poor-fitting forecast—
realization pairs. Median absolute errors (or more com-
monly MAEs) provide a useful robust alternative. In
Exhibit 8 we present the median absolute deviation
(MAD). The first point to note is that for the overall
results (reported in the last row), the MAE is consistently
lower than the RMSE, indicating that large errors are
indeed shifting the average higher. The stability issue for
the CGARCH model is also remarkable, as this model
considerably benefits from using the MAD rather than
the RMSE for S&P 500 options.

It is interesting to note, however, that for the
203,587 options contracts on individual stocks the MAE
does not deviate substantially from the RMSE for any
of the models. This suggests that the pricing for a col-
lection of individual stocks is a rather more complicated
exercise than for an individual stock such as IBM or
the S&P 500. Thus, in line with anecdotal evidence,
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our results suggest that for certain individual stocks,
options contracts are extraordinarily difficult to price.
For the S&P 500 models #1 to #4 and #6 are all very
consistent. However, the CGARCH estimated on the
unfiltered returns performs relatively poorly (similarly
to the RMSE case) for most contracts’ moneyness and
maturity and while most of the models perform badly for
heavily out-of-the-money S/K < 0.75 and long-maturity
T — t > 250 contracts, the CGARCH on unfiltered
returns performs particularly poorly out-of-sample.
Remarkably, we note that for IBM #3, the multi-
stage AR-Jump model estimated from mixed-frequency
data provides the best fit by a considerable margin across
most contract types. The MAE for out-of-sample con-
tract pricing drops below one cent for heavily in-the-
money (S/K > 1.5) and intermediate maturity 75 <
T — t < 100 options, suggesting that for IBM the AR-
Jump is capturing out-of-sample the option smirk. This
performance is replicated for long-maturity smirks,
where the S/K > 1.5, T — t > 250 MAE is also less
than one cent. Of course, as the maturity lengthens,
the convexity of the implied volatility smile decreases.
Nevertheless, long-term equity options such as LEAPS
are generally very difficult to correctly price for heavily
out-of-the-money and heavily in-the-money options.

CONCLUSIONS

This paper has introduced a new method for
estimating the parameters for a jump GARCH model
using mixed-frequency data to disentangle the high-
speed jumps for continuous volatility, and combining
these with jump premiums from near-the-money,
short-maturity options. We then estimated this model
in sample using tick data for the S&P 500 and a selec-
tion of 20 stocks from the DOW 30 components for
the 19962010 period. We have collected a very large
sample of options from 2010 onward, and estimated the
out-of-sample fit for the predicted options prices for our
jump model versus alternative GARCH models esti-
mated using jump-filtered and unfiltered daily returns.
Our results are mixed. For IBM stock options, our jump
model outperforms all others by more than an order of
magnitude for many maturity moneyness combina-
tions. However, for the S&P 500, the GARCH model
estimated on jump-filtered returns appears to domi-
nate. Nevertheless, the median performance of each
of the models is very close, except for the CGARCH
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model that contains a substantial persistence equation.
The CGARCH performs consistently poorly across all
our test cases, and we partly attribute this issue to inherent
instabilities in the pricing mechanism. However, we also
find that not filtering jumps from the continuous com-
ponent appears to be a major factor for the deterioration
of the CGARCH pricing performance. Our results are
derived from a very large test bed of tick data and options
contracts. Remarkably, this is a substantial innovation
over previous research that has typically focused on cali-
bration and pricing performance relative to much smaller
options data sets. Indeed, for options requiring Monte
Carlo estimation of AR-Jump models this appears to be
the largest out-of-sample exercise of its type.

The heterogeneity of the results, particularly in
aggregate for individual stocks, illustrates the inherent
difficulty in correctly pricing options through a struc-
tural model. However, the performance of the AR-Jump
model for a large cross-section of IBM call options paves
the way for structural models with jumps and GARCH
or stochastic volatilities that match the performance of
options models directly calibrated to the implied vola-
tility surface. Finally, we have presented a substantial
body of evidence to suggest that the CGARCH model
does not provide numerically stable options prices, and
the use of this model to forecast options prices out of
sample may be ill advised.
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ADDITIONAL READING

An Improved Estimation Method for a Family
of GARCH Models

PASCAL LETOURNEAU

The Journal of Derivatives
https://jod.pm-research.com/content/27/1/67

ABSTRACT: This article proposes an improved estimation and
calibration method to a family of GARCH models. The suggested
method fixes one parameter such that the unconditional kurtosis of the
model matches the sample kurtosis. An empirical analysis using Engle
and Ng’s (1993) NGARCH(1,1) model shows that the method
dominates previous estimation methods in multiple ways. The optimi-
zation problem is simplified and made less sensitive to initial values.
The optimization time, both when estimating based on historical
returns and calibrating to option prices, is reduced by roughly 50%.
The in-sample fit is barely affected, while the option pricing, both in
sample and out of sample, is improved.
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VIX Futures Pricing with Affine Jump-GARCH
Dynamics and Variance-Dependent Pricing
Kernels

XINGLIN YANG, PENG WANG, AND J1 CHEN

The Journal of Derivatives
https://jod.pm-research.com/content/27/1/110

ABSTRACT: Volatility Index (VIX) futures are among the most
actively traded contracts at the Chicago Board Options Exchange,
in response to the growing need for protection against volatility risk.
The authors develop a new class of discrete-time and closed-form VIX
futures pricing models, in which the S&P 500 returns follow the
time-varying infinite-activity Normal Inverse Gaussian (NIG) and
finite-activity compound Poisson (CP) jump- GARCH models, and
which are risk-neutralized by the variance-dependent pricing kernel
used by Christoffersen et al. (2013). They estimate these models
using several data sets, including the S&P 500 returns, VIX Index,
and VIX futures. The empirical results indicate that the time-varying
NIG and CP jump-GARCH models significantly outperform the
Heston-Nandi (HN) GARCH model in asset returns fitting and
VIX futures pricing.

Ensuring More Is Better: On the Simultaneous
Application of Stock and Options Data to Estimate the
GARCH Options Pricing Model

CHARLES CHANG, HUNG-WEN CHENG,

AND CHENG-DER FuH

The Journal of Derivatives
https://jod.pm-research.com/content/26/1/7

ABSTRACT: The most common approach in fitting option pricing
models to market data is first to make an assumption about the
underlying asset’s returns process and then develop an option pricing
model for that process that is tested against market option prices. The
returns process is estimated from historical data, option values are
computed, and then compared against a cross-section of prices from
the options market. Unfortunately, this often does not work well,
and plainly it is inefficient in its use of the data. However, efforts to
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combine returns data from the asset market and prices from the options
market into a single estimation have also not had much success. In
this article, Chang, Cheng, and Fuh propose a new procedure to
combine data from both markets in the estimation, in which options are
assumed to be subject to random pricing noise relative to model values.
The additional slack gives the estimator better ability to match prices
in both markets. The article contrasts the performance of the full model
approach with an approach that only uses stock prices or options prices
to fit an option pricing model based on an underlying GARCH
process. The value of the combined approach is demonstrated both
theoretically as an asymptotic result in the model and also in a Monte
Carlo simulation.
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