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Introduction
Understanding the underlying causes of age-related memory 
decline remains a priority. One approach is to relate individual 
variations in cognition with variations in the microstructure of 
either grey or white matter. This study adopted the latter approach, 
focussing on hippocampal formation connections, reflecting the 
consensus view that the hippocampal formation and its pathways 
comprise a vital hub for age-sensitive forms of memory (Erickson 
and Barnes, 2003; Mitchell et al., 2000; Sexton et al., 2010). We, 
therefore, examined microstructural properties of the fornix, the 
principal pathway by which the hippocampus communicates 
directly with sites beyond the temporal lobe (Bubb et al., 2017; 
Poletti and Creswell, 1977).

Diffusion tensor imaging (DTI) provides a means to explore fornix 
status and aging. This technique, which uses the diffusion of water to 
derive indirect measures of white matter microstructure (Jones, 2010; 
Jones and Leemans, 2011), has repeatedly revealed fornix alterations 
with healthy aging (e.g. Douet and Chang, 2015; Jang et al., 2011; Ly 
et al., 2016; Metzler-Baddeley et al., 2011, 2012, 2019a; Sasson et al., 

2010). Notably, aspects of memory including recall (Gazes et al., 
2019; Metzler-Baddeley et al., 2011, 2012; Zamroziewicz et al., 2017) 
and working memory (Zahr et al., 2009) have been variously related to 
DTI-based fornix measures, including fractional anisotropy (FA) and 
mean diffusivity (MD).

Previous studies have typically treated the fornix as a unitary 
tract. In fact, it is a complex, bidirectional pathway with two 
main subdivisions, the precommissural fornix and the postcom-
missural fornix. While the precommissural fornix innervates 
orbital and medial prefrontal cortices and carries projections both 
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to and from the basal forebrain, the postcommissural fornix 
innervates the anterior thalamus and hypothalamus, including the 
mammillary bodies (Aggleton et al., 2015; Dillingham et al., 
2015; Mathiasen et al., 2019; Poletti and Creswell, 1977). Given 
how the prefrontal cortex is particularly sensitive to aging 
(Lemaitre et al., 2012; Raz et al., 1997) and the basal forebrain 
shows age-related neuronal loss (McGeer et al., 1984), it would 
be expected that white matter pathways connecting these struc-
tures, that is, precommissural fornix, would be similarly affected 
by age. We would expect such age-related differences in the pre-
commissural fornix to be accompanied by impairments in fron-
tal-mediated executive functions. The predictions are not so clear 
for postcommissural fornix. There is no evidence of age-related 
neuronal loss in the mammillary bodies but some suggestion of 
white matter–related atrophy that could reflect a loss of fornix 
inputs (Wilkinson and Davies, 1978; but see Begega et al., 1999). 
Two studies have examined the effects of aging on precommis-
sural and postcommissural fornix. The first (20 females, age 23–
66 years) found no age-related changes for FA, axial diffusivity 
(AD), or radial diffusivity (RD) in either fornix subdivision 
(Chen et al., 2015). A second study (44 participants, age 53–
93 years) did find age-related correlations for MD, AD, and RD 
in the postcommissural fornix (Christiansen et al., 2016). As 
such, there is no clear consensus as to how these tracts are 
affected by aging and how any such changes may relate to age-
related differences in cognition.

This study compared the precommissural and postcommis-
sural fornix by moving beyond previously applied DTI analyses 
(Christiansen et al., 2016) to examine white matter microstruc-
tural components in more detail in a larger cohort of 149 healthy 
individuals (age 38–71 years). The additional analyses involved 
indices of apparent axon microstructure from multi-component 
diffusion-based neurite orientation dispersion and density imag-
ing (NODDI; Zhang et al., 2012) alongside indices from quanti-
tative magnetization transfer (qMT; Sled, 2018) and 
T1-relaxometry (see section ‘Methods’) that are more sensitive to 
myelin in white matter than diffusion-based metrics. Furthermore, 
a comprehensive battery of cognitive tasks helped to determine 
whether memory functions are more closely aligned with hip-
pocampal–diencephalic connections and, hence, with postcom-
missural fornix, while executive control is more closely aligned 
with prefrontal cortex and, hence, precommissural fornix 
(Christiansen et al., 2016; Williams et al., 2019).

Methods
This study was approved by the Cardiff University School of 
Psychology Research Ethics Committee (EC.14.09.09.3843R2). 
In accordance with the World Medical Association Declaration of 
Helsinki, all participants provided written informed consent.

Participants

Participants were community-dwelling individuals recruited 
from the Cardiff University School of Psychology’s community 
panel, employee notice board, Internet, and poster advertise-
ments, as part of the Cardiff Ageing and Risk of Dementia Study 
(CARDS; Metzler-Baddeley et al., 2019a, 2019b). Participants 
were required to have a good command of the English language 
and no history of neurological disease (e.g. Parkinson’s disease, 

Huntingdon’s disease, multiple sclerosis), psychiatric disease 
(e.g. major depressive disorder, bipolar disorder, schizophrenia), 
or substance dependency. Participants were also excluded if they 
had suffered a moderate to severe head injury with loss of con-
sciousness, had high risk of cardio-embolic incidents (e.g. severe 
heart failure, cardiac aneurysm, aortic stenosis), significant large-
vessel disease, or magnetic resonance imaging (MRI) contraindi-
cations (e.g. pacemaker, stents).

Demographic and health information about general and life-
style risk factors for dementia were collected from 211 volunteers, 
of which 166 went on to undergo cognitive testing and MRI scan-
ning at the Cardiff University Brain Research Centre (CUBRIC). 
The mean age of participants was 55.8 years (SD = 8.1) with a 
range of 38–71 years. The participants, of whom 94 were female, 
had a mean of 16.6 (SD = 3.3) years of full-time education.

Cognitive assessment

The National Adult Reading Test (NART; Nelson, 1991) was 
administered to acquire a basic measure of verbal intelligence 
while the Mini Mental State Examination (MMSE; Folstein 
et al., 1975) was used to screen for cognitive impairment. 
Participants were asymptomatic (MMSE: M = 29.1, SD = 1) and 
scored at a slightly above mean levels of intelligence according 
to the NART (M = 116.7, SD = 6.6).

Immediate and delayed (30 min) verbal and visual recall was 
assessed with the Rey Auditory Verbal Learning Test (RAVLT; 
Rey, 1941) and the complex Rey figure (Schmidt, 1996). Short-
term topographical memory was measured with the Four 
Mountains Test (Chan et al., 2016). Spatial navigation was assessed 
with a virtual Morris Water Maze Task (vMWMT; Hamilton et al., 
2009) that required participants to find a hidden platform in a water 
pool. This task comprised six blocks of four trials each. The first 
block was a practise block to familiarise participants with the task. 
Blocks 2–5 were the experimental blocks where participants had to 
navigate to a hidden platform. Block 6 was a motor control condi-
tion, where participants navigated to a visible platform. Outcome 
measures for the vMWMT were mean total latencies, first move 
latencies, and total path lengths for each block. In addition, partici-
pants completed a battery of computerised assessments from the 
Cambridge Brain Sciences laboratory (www.cambridgebrain-
sciences.com; Hampshire et al., 2012; Owen et al., 2010), designed 
to be sensitive to working memory and executive function. This 
battery involved an adapted version of the Stroop test, assessments 
of digit and spatial span, intra-dimensional and extra-dimensional 
(IDED) attention set shift, deductive grammatical reasoning, as 
well as tests of spatial imagery and planning (Hampshire Trees; 
self-ordered spatial tasks) and the learning of the location of par-
ticular objects on a screen (paired-associate object-in-location 
learning (PAL)). Outcome measures for the Cambridge Brain 
Sciences tasks were response latencies and mean and maximum 
number of correct responses.

Multi-parametric MRI scanning protocol

MRI data were acquired at CUBRIC on a 3T MAGNETOM 
Prisma clinical scanner (Siemens Healthcare, Erlangen, Germany) 
utilising a 32-channel receive-only head coil. The MRI acquisi-
tion and preprocessing protocols have been published (Metzler-
Baddeley et al., 2019a, 2019b). Whole-brain High Angular 

www.cambridgebrainsciences.com
www.cambridgebrainsciences.com
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Resolution Diffusion Imaging (HARDI; Tuch et al., 2002) data 
were collected using a spin-echo echo-planar dual-shell sequence 
with diffusion encoded along 90 isotropically distributed direc-
tions (30 directions at b-value = 1200 s/mm2, 60 directions at 
b-value = 2300 s/mm2). An additional six non-diffusion-weighted 
scans were acquired with dynamic field correction with the fol-
lowing parameters: repetition time (TR) = 9400 ms, echo time 
(TE) = 67 ms, 80 slices, 2 mm slice thickness, field of view (FOV) 
= 256 mm × 256 mm × 160 mm, GeneRalized Autocalibrating 
Partial Parallel Acquisition (GRAPPA) acceleration factor = 2, 
acquisition time: ~15 min.

High-resolution T1-weighted anatomical images were 
acquired with a three-dimensional (3D) magnetization-prepared 
rapid gradient-echo (MP-RAGE) sequence comprising 176 
slices with the following parameters: TR = 2300 ms, 
TE = 3.06 ms, TI = 850 ms, flip angle θ = 9°, 1 mm slice thick-
ness, FOV = 256 mm, acquisition time: ~6 min.

To acquire metrics in relation to myelin, an optimised 3D 
MT-weighted gradient-recalled echo sequence (GRE; Cercignani 
and Alexander, 2006) with the following parameters was used: 
TR = 32 ms, transthoracic echocardiography (TTE) = 2.46 ms, 
Gaussian MT pulse duration t = 12.8 ms, FA = 5°, FOV = 24 cm, 
2.5 mm × 2.5 mm × 2.5 mm resolution. The off-resonance irradia-
tion frequencies (Θ) and their corresponding saturation pulse nom-
inal flip angles (ΔSAT) for the 11 MT-weighted images were 
optimised using the Cramer–Rao lower bound optimization. They 
were as follows: Θ = [1000, 1000, 2750, 2768, 2790, 2890, 1000, 
1000, 12,060, 47,180, 56,360] Hz and their corresponding ΔSAT 
values = [332°, 333°, 628°, 628°, 628°, 628°, 628°, 628°, 628°, 
628°, 332°]. The longitudinal relaxation time, T1, of the system 
was estimated by acquiring three 3D (GRE) volumes with three 
different flip angles (θ = 3°, 7°, 15°) using the same acquisition 
parameters as employed in the MT-weighted sequence (TR = 32 ms, 
TE = 2.46 ms, FOV = 24 cm, 2.5 mm × 2.5 mm × 2.5 mm resolu-
tion). Data for computing the static magnetic field (B0) were col-
lected using two 3D GRE volumes with different echo-times 
(TE = 4.92 and 7.38 ms, respectively; TR = 330 ms; FOV = 240 mm; 
slice thickness: 2.5 mm; Jezzard and Balaban, 1995).

MRI data processing and white matter 
microstructural indices

The two-shell diffusion-weighted HARDI data were split into 
b = 1200 and 2400 s/mm2 data and were separately corrected for 
artefacts due to diffusion-weighted induced gradients and head 
motion in ExploreDTI (Version 4.8.3 Leemans et al., 2009) 
using appropriate reorientation of the encoding vectors (Leemans 
and Jones, 2009). To correct for echo-planar imaging (EPI)-
induced geometrical distortions, the diffusion-weighted image 
volumes were warped to down-sampled T1-weighted images 
(1.5 mm × 1.5 mm × 1.5 mm; Irfanoglu et al., 2012). After pre-
processing, the NODDI model (Zhang et al., 2012) was fitted to 
the dual-shell HARDI data with the fast, linear model fitting 
algorithms of the Accelerated Microstructure Imaging via 
Convex Optimization (AMICO) framework (Daducci et al., 
2015) to gain the following diffusion signal components as esti-
mates of axonal microstructure: hindered diffusion (FA and 
MD), restricted diffusion (intracellular signal fraction (ICSF)), 
free water (isotropic signal fraction (ISOSF)), and axon orienta-
tion dispersion (orientation dispersion index (ODI)).

The qMT-based metrics were the macromolecular proton 
fraction (MPF) and the forward exchange rate kf (Sled, 2018) as 
well as the longitudinal relaxation rate R1 (1/T1) from T1-
relaxometry (Callaghan et al., 2015; Rooney et al., 2007). MPF 
and R1 are sensitive to the myelin content in white matter 
(Callaghan et al., 2015; Ceckler et al., 1992; Koenig, 1991; 
Levesque et al., 2010; Rooney et al., 2007; Schmierer et al., 
2007; Serres et al., 2009) while kf, an index of the rate of the 
magnetization transfer process (Sled, 2018), has been proposed 
to reflect metabolic efficiency of mitochondrial function 
(Giulietti et al., 2012) and has been shown to be sensitive to neu-
roinflammation (Harrison et al., 2015).

MPF, kf, and R1-maps were obtained by first co-registering 
each participant’s MT-weighted GRE volumes to the MT-volume 
with the most contrast using a rigid body (6 degrees of freedom) 
registration using Elastix (Klein et al., 2020) to correct for inter-
scan motion. To obtain these maps, the 11 MT-Weighted GRE 
images and T1-maps were then modelled by Ramani’s two pool 
pulsed MT approximation (Ramani et al., 2002). To remove vox-
els where apparent data appeared solely due to noise, FMRIB’s 
fslmaths programme was used to threshold MPF maps to an 
upper intensity limit of 0.3 and kf maps to an upper limit of 3.

Finally, all whole-brain microstructural metric maps were 
spatially aligned to the down-sampled reference image of the T1-
weighted anatomical volume in within-subject space using linear 
affine registration with 12 degrees of freedom in FMRIB’s Linear 
Image Registration Tool (FLIRT).

Tractography

The RESDORE algorithm (Parker, 2014) identified outliers 
within the HARDI data. Following this, whole brain tractography 
was completed using in-house software (Parker, 2014) for each 
subject on the 60 direction b = 2400 s/mm2 HARDI data using the 
damped Richardson–Lucy (dRL) algorithm (Dell’acqua et al., 
2010). For tract reconstruction, peaks in dRL fiber orientation 
density function (fODF) were estimated for each voxel. By this 
method, the proportion of fibers in each voxel at that point in 
each direction is estimated, providing information about complex 
fiber configurations. The dRL algorithm interpolated local fODF 
estimates and, from these data, tracking was carried out from 
seed points located at the vertices of a 2 mm × 2 mm × 2 mm grid. 
Streamlines were propagated from each seed point and tracking 
continued along the peak fODF with steps of 0.5 mm. Tracking 
continued until peak values fell below a threshold of 0.05 or the 
angle of the tract exceeded an angle of 45°. Streamlines with 
lengths over 500 mm or below 10 mm were excluded.

Fornix

Fiber tracts were manually reconstructed using ExploreDTI ver-
sion 4.8.3 (Leemans et al., 2009). A 3D reconstruction of the 
whole fornix was completed using the waypoint region of inter-
est (ROI) protocol outlined by Christiansen et al. (2016). This 
involved the placement of ‘AND’, ‘OR’ and ‘NOT’ gates, accord-
ing to Boolean logic, to isolate fibers of interest from whole brain 
tractography data. Guided by a series of anatomical landmarks, 
ROIs were manually drawn on native space color-coded FA maps 
(Pajevic and Pierpaoli, 1999) by operators blind to participants’ 
identity.
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The fornix was reconstructed by placing an OR gate encom-
passing the entire fornix on a coronal slice six slices posterior to 
the slice containing the anterior commissure (see Figure 1). 
Captured fibers that were not consistent with the known path of 
the fornix were excluded from the reconstruction by the place-
ment of a series of NOT gates located: on a coronal slice imme-
diately anterior to the genu of the corpus callosum, on the axial 
slice immediately superior to the body of the corpus callosum, on 
a coronal slice immediately posterior to the splenium of the cor-
pus callosum, on an axial slice at the upper limit of the pons, and 
on sagittal slices on either side of the fornix capturing the fibers 
of the anterior commissure.

Precommissural and postcommissural fornix

To distinguish the precommissural fornix, the gates used to cap-
ture the whole fornix were utilised but with the addition of an 
AND gate placed on an axial slice anterior to the anterior commis-
sure and a NOT gate placed on the same slice but posterior to the 
anterior commissure (see Figure 1). The same gates were utilised 
for the postcommissural fornix but with the placement of the addi-
tional AND and NOT gates reversed to capture those fibers run-
ning posterior to the anterior commissure. Only fibers up to the 
crus of the fornix were included in precommissural and postcom-
missural reconstructions in order to minimise overlap between the 
two fiber populations and to avoid fiber ‘jumping’. For this pur-
pose, the ‘splitter’ tool within ExploreDTI 4.8.3 was utilised to 
extract only those fibers in each subdivision located anterior to the 
OR gate. Aside from minor modifications, this method followed 
that previously used to distinguish these fornix subdivisions 
(Christiansen et al., 2016). It was anticipated that the postcommis-
sural subdivision would principally reflect the hippocampal–
hypothalamic fibers in this pathway (Christiansen et al., 2016).

For each participant, the reconstructed fiber paths of the for-
nix and its precommissural and postcommissural subdivisions 

were used as masks and intersected with the whole brain maps of 
the eight microstructural metrics (FA, MD, ICSF, ISOSF, ODI, 
MPF, R1, kf) to extract mean tract scores.

Statistical analysis

Statistical analyses were carried out in SPSS version 23 (IBM 
Corp, 2011). Before analyses were completed, cognitive scores 
and all microstructural metrics for each tract were inspected for 
outliers, defined as values lying beyond three standard devia-
tions from the mean score. Outliers were removed from subse-
quent analyses.

The values for each of the metrics for the precommissural and 
the postcommissural fornix were compared. As the metrics were 
normally distributed, Pearson’s correlations were run in conjunc-
tion with paired-samples t-tests to determine both the extent to 
which values were correlated as well as the likelihood that values 
differed between the two tract subdivisions. Analyses then exam-
ined the relationship between the metrics for each tract and par-
ticipants’ age to determine whether differential age effects were 
present across the two subdivisions. For all sets of tests, multiple 
comparisons were corrected with a false discovery rate (FDR) of 
5% using the Benjamini–Hochberg procedure (Benjamini and 
Hochberg, 1995) and analyses showing potential differences 
between tracts were followed up with post hoc comparisons of 
correlation coefficients using directional Steiger Z-tests (Steiger, 
1980; see also Lee and Preacher, 2013).

As three experimenters were involved in completing the man-
ual tractography, intraclass correlation coefficients (ICCs) and 
their 95% confidence intervals were calculated to assess the reli-
ability of metrics extracted for the tracts of interest. A two-way-
mixed-effects model was used to calculate absolute agreement 
across raters. Single measure values are reported comparing met-
rics extracted from tractography performed by one experimenter 
(B.M.C.) with those extracted from tracts reconstructed by one of 

Figure 1. Example region of interest placements for tract extraction. (a) A depicts the whole fornix reconstruction, (b) depicts the precommissural 
fornix, and (c) depicts the postcommissural fornix. The location of the anterior commissure is indicated by the pink square in (b) and (c).



Coad et al. 5

the other two experimenters (E.C., R.L.). There are currently no 
standardised interpretations for ICC values. Following the rec-
ommendations by Koo and Li (2016), we interpreted ICC values 
below 0.5 as poor, 0.5–0.75 as moderate, 0.75–0.9 as good, and 
above 0.9 as excellent.

For the cognitive data, exploratory factor analyses (EFAs) 
with unweighted least squares and orthogonal varimax rotation 
with a maximum of 5000 iterations for conversion were applied 
to the scores from all cognitive tests. This procedure sought to 
extract concise, meaningful dimensions from the large array of 
cognitive data with which to compare the precommissural and 
postcommissural pathways. Only variables with communali-
ties of >0.4 were included in the final EFA (Osborne et al., 
2008). After inspection of Cattell’s scree plot (Cattell, 1966), 
factors with an eigenvalue exceeding 2 were extracted and fac-
tor loadings exceeding 0.5 were considered for the interpreta-
tion of the factors.

The resulting cognitive factors were then entered as depend-
ent variables into linear hierarchical regression models, which 
first tested for the effects of age, sex, and years of education and 
second for the effects of all microstructural indices in the whole 
fornix, the precommissural fornix, and postcommissural fornix in 
a stepwise fashion.

Of the 166 participants who completed cognitive assessment 
and MRI, data from 17 individuals were excluded. For 11 of 
these individuals, it was not possible to reliably reconstruct the 
fornix. Further to this, six individuals were excluded as the for-
nix was reconstructed but it was not possible to isolate one or 
both tract subdivisions. Subsequent comparisons showed that 
the 17 excluded participants were, on average, older than those 
retained (t(164) = –3.948, p = < 0.001), but did not differ with 
regard to years of education (p = 0.3), sex (p = 0.4), MMSE 
(p = 0.8), or NART-IQ (p = 0.55). For the remaining sample of 
149 individuals, there were no significant differences in age 
(p = 0.85), years of education (p = 0.95), or NART (p = 0.95) 
between males and females. However, men performed slightly 
poorer on the MMSE [t(147) = 2.5, p = 0.014]. 

Results

Relationship between age and 
microstructural metrics of the whole fornix

For the fornix as a whole, seven outlying (3 + SD from mean) 
microstructural scores were identified. Two of these were 
obtained from a single participant. These outlying data points 
were excluded from further analysis, although non-outlying val-
ues from the same participants were retained. Significant correla-
tions were observed between age and all metrics of interest, apart 
from ICSF (see Table 1).

Fornix subdivisions

For the fornix subdivisions, nine individuals had at least one met-
ric defined as an outlier. Six of these cases had more than one 
outlier. All outlying data points were excluded from further anal-
ysis, although non-outlying values from the same participant 
were retained.

Initial comparisons showed that for all measures, the metric 
values for the precommissural and postcommissural fornix were 

significantly correlated with each other (Figure 2). At the same 
time, all the actual metric values for the precommissural and 
postcommissural fornix differed significantly from each other 
(Figure 2).

ICCs for microstructural metrics of 
precommissural and postcommissural 
fornices

Overall, the reliability of the metrics across the raters was good. 
For all tracts, greater agreement was seen for the postcommis-
sural fornix than for the precommissural fornix (see Table 2) 
reflecting greater tractography consistency across raters for the 
postcommissural than the precommissural fornix. The ICCs 
across both tracts were particularly good for MPF, kf, R1, ICSF, 
and ODI, some of which could be considered excellent in the 
postcommissural fornix. The ICC for ISOSF in the postcommis-
sural fornix was also good but in the precommissural fornix only 
moderate. However, poor agreement was observed for FA in both 
tracts and for MD in the precommissural fornix. Thus, while 
most metrics may be considered reliable, caution should be 
applied to the interpretation of FA and MD.

Relationship between age and 
microstructural metrics of precommissural 
and postcommissural fornices

There were significant positive correlations between age and MD 
or ISOSF and significant negative correlations between age and 
MPF or R1 in both precommissural and postcommissural for-
nices, and these correlations did not differ between the pathways 
(Figure 3). An age-related reduction was also observed for kf in 
the postcommissural fornix.

No significant associations were observed between age and 
FA or ODI for either the precommissural or the postcommissural 
fornix (Figure 2), despite both indices being associated with age 
when the whole fornix was considered (Table 1). Finally, as with 
the whole fornix, neither pathway showed an age-related correla-
tion with ICSF.

Table 1. Pearson’s correlation coefficients (r) for the relationship 
between age and microstructural metrics of interest from 
reconstructions of the whole fornix.

Metric r pB-Hadj

FA –0.46 <0.000001
MD 0.30 0.00023
ICSF –0.02 0.817
ISOSF 0.36 0.00001
ODI 0.23 0.006
MPF –0.46 <0.000001
R1 –0.41 <0.000001
kf –0.40 <0.000001

FA: fractional anisotropy; MD: mean diffusivity; ICSF: intracellular signal 
fraction; ISOSF: isotropic signal fraction; ODI: orientation dispersion index; MPF: 
macromolecular proton fraction; pB-Hadj: Benjamini–Hochberg adjusted p-values; 
FDR: false discovery rate.
5% FDR corrected correlations are highlighted in italics.
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Relationship between white matter metrics 
and cognitive performance

After exclusion of variables with communalities of <0.4 (Stroop, 
Hampshire Tree, Recall of List B in RAVLT, Four Mountains 
Test, copying of Rey figure, intra-dimensional shift, and reversal 
for one dimension), and only including factors with an eigenvalue 

of >2, EFA led to seven factors, explaining together 49% of the 
variance in the cognitive data (Table 3). The first factor captured 
‘Verbal Recall’ with high loadings on the RAVLT. The second fac-
tor captured elements of ‘Motor speed and planning’ with high 
loadings on first move latencies in the hidden platform and motor 
control blocks as well as total latencies in the motor control condi-
tion of the vMWMT. A third factor captured ‘Spatial Navigation’ 
with high loadings on path length and total latencies in the hidden 
platform conditions of the vMWMT. The fourth factor captured 
‘Attention Set’ with high loadings on the intra-dimensional com-
ponents of the IDED task. The fifth factor captured ‘Visuospatial 
Memory’ with loadings on spatial span and immediate and 
delayed recall of the Rey Figure. The sixth ‘Working Memory’ 
factor loaded highly on digit span and spatial search, and the sev-
enth ‘Paired Associate Learning’ factor on the object-location 
PAL task.

Hierarchical regression analyses

To assess which microstructural indices accounted for differ-
ences in the cognitive components, hierarchical regression 
analyses were carried out that first accounted for the effects of 
age, sex, and education before testing for the effects of all 
microstructural indices in a stepwise fashion. For the Verbal 
Recall factor, 13% of the data (F(3, 98) = 4.9, p = 0.003) were 

Figure 2. Correlations (r) between microstructural indices in the precommissural and the postcommissural fornix and between-tract comparisons for 
each microstructural index. 
FA: fractional anisotropy; MD: mean diffusivity; ICSF: intracellular signal fraction; ISOSF: isotropic signal fraction; ODI: orientation dispersion index; MPF: macromolecular 
proton fraction.
*pB-Hadj < 0.001; **pB-Hadj < 0.000001.

Table 2. Interclass correlation coefficients and their 95% confidence 
intervals for precommissural and postcommissural fornix.

Precommissural fornix 
(95% CI)

Postcommissural fornix 
(95% CI)

FA 0.20 (–0.25–0.58) 0.12 (–0.31–0.51)
MD 0.42 (–0.02–0.73) 0.71 (0.40–0.88)
ICSF 0.75 (0.47–0.89) 0.83 (0.63–0.93)
ISOSF 0.58 (0.19–0.81) 0.76 (0.49–0.90)
ODI 0.78 (0.54–0.91) 0.90 (0.76–0.96)
MPF 0.73 (0.43–0.88) 0.96 (0.90–0.98)
R1 0.85 (0.67–0.94) 0.97 (0.91–0.99)
kf 0.76 (0.49–0.90) 0.86 (0.68–0.94)

CI: confidence interval; FA: fractional anisotropy; MD: mean diffusivity; ICSF: 
intracellular signal fraction; ISOSF: isotropic signal fraction; ODI: orientation 
dispersion index; MPF: macromolecular proton fraction.
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explained by the first model with a significant contribution 
from sex (beta = 0.36, pB-Hadj < 0.001). For the Motor Speed 
and Planning factor, 18% of the data (F(3, 98) = 7.1, p < 0.001) 
were accounted for by the first model alone with age as signifi-
cant predictor (beta = 0.41, pB-Hadj < 0.001). Adding the micro-
structural indices did not improve the fit of the regression 
models for either factors.

For the Visuospatial Memory factor, the first model explained 
8% of the data (F(3, 98) = 2.8, p = 0.045) with a contribution from 
age (beta = –0.26, p = 0.01). Adding the microstructural indices 
increased the model fit significantly (ΔR2 = 0.04, F(1, 97) = 4.9, 
p = 0.03). The final model accounted for 12% of the data (F(4, 
97) = 3.4, p = 0.012) with contributions from precommissural for-
nix ISOSF (beta = –0.22, p = 0.03) and age (beta = –0.24, p = 0.019). 
However, these variables did not survive 5% FDR correction.

For the Paired Associate Learning factor, the first model was 
non-significant (p = 0.55). Adding the microstructural compo-
nents, increased the fit of the model (ΔR2 = 0.04, F(1, 96) = 4.4, 
p = 0.038). The final model explained 11% of the data (F(5, 
96) = 2.4, p = 0.042) with a significant contribution from post-
commissural ODI (beta = –0.29, pB-Hadj = 0.02) and a trend for 
postcommissural ISOSF (beta = 0.23, p = 0.038, pB-Hadj = 0.09).

There were no significant results for the regression models for 
the Spatial Navigation (p = 0.06), Attention Set (first model 
p = 0.37, second model p = 0.13), and Working Memory factors 
(first model p = 0.28, second model p = 0.07).

Discussion
The fornix and its major subdivisions were studied in a healthy 
aging cohort and it proved possible to distinguish the precommis-
sural from the postcommissural fornix (see also Chen et al., 
2015; Christiansen et al., 2016; Yeo et al., 2013). Only for a small 
minority of participants (~10%), the subdivisions could not be 
reconstructed, a problem most apparent in older participants. A 
central goal was to go beyond conventional DTI indices as they 
are difficult to interpret in terms of biological tissue properties 
(Beaulieu and Allen, 1994; De Santis et al., 2014). Instead, we 
studied the white matter microstructure of the fornical subdivi-
sions with multi-parametric indices from multi-component diffu-
sion, and more myelin-sensitive indices from qMT and 
T1-relaxometry. These indices were found to have better repro-
ducibility than conventional FA and MD (Table 2; see also Koller 
et al., 2019).

Whole fornix

Consistent with, but also extending previous studies, the fornix 
displayed age-associated changes for almost all of the metrics, 
with FA showing particularly strong effects (see also Chen et al., 
2015; Gazes et al., 2019; Ly et al., 2016; Sala et al., 2012). The 
sole exception was the ICSF, an estimate of intracellular restricted 
diffusion that may give a proxy measure of axon density assumed 

Figure 3. Correlations (r) between metrics of interest and age, as well as a comparison of correlation coefficients across precommissural and 
postcommissural fornix (z). 
FA: fractional anisotropy; MD: mean diffusivity; ICSF: intracellular signal fraction; ISOSF: isotropic signal fraction; ODI: orientation dispersion index; MPF: macromolecular 
proton fraction.
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to vary with the number and the size of axons (Assaf et al., 2004; 
Zhang et al., 2012). In a related CARDS cohort study (Metzler-
Baddeley et al., 2019) that used automatic, rather than manual, 
reconstructions of the fornix, aging was again associated with 
fornix differences in all NODDI and qMT metrics except for 
ICSF. These close similarities, alongside the results from other 
studies (Chen et al., 2015; Gazes et al., 2019; Sala et al., 2012), 

highlight the robustness of aging upon the large majority of 
measures of whole fornix microstructure.

Some of the strongest age-related effects came from measures 
known to be sensitive to myelin in white matter (MPF, R1, kf). This 
pattern accords with a post-mortem study of rhesus monkeys, which 
found an age-related loss of myelinated axons and an increase in 
altered myelin sheaths, but preservation of unmyelinated fibers 

Table 3. Rotated factor matrix of the exploratory factor analysis within the cognitive data (rotation methods: Varimax with Kaiser normalisation).

Cognitive scores Verbal recall Motor speed 
and planning

Spatial 
navigation

Attention 
set

Visuospatial 
memory

Working 
memory

Paired associate 
learning

Rey Auditory Verbal Learning Test
 List A first IR 0.73  
 List A second IR 0.87  
 List A third IR 0.83  
 List A fourth IR 0.81  
 List A fifth IR 0.73  
 List A sixth IR 0.83  
 List A DR 0.84  
Virtual Morris Water Maze Task
 FM Block2 0.70  
 FM Block3 0.66  
 FM Block4 0.63  
 FM Block5 0.61  
 FM Block6 0.69  
 TL Block2 0.56  
 TL Block5 0.54  
 TL Block6 0.72  
 PL Block2 0.64  
 PL Block3 0.51  
 PL Block4 0.56  
 PL Block5 0.67  
Rey complex figure
 IR 0.56  
 DR 0.63  
Spatial span
 Maximum 0.66  
 Mean 0.66  
Intra-dimensional and extra-dimensional attention shift
 ID two dimensions 0.57  
 ID overlapping features 0.63  
 ID reversal 0.61  
 ID shift 0.52  
 Total duration 0.82  
Digit span
 Maximum 0.74  
 Mean 0.73  
Spatial search
 Maximum 0.53  
 Mean 0.50  
Paired associate learning
 Maximum 0.90
 Mean 0.95

DR: delayed recall; ED: extra-dimensional; FM: first move latencies; ID: intra-dimensional; IR: immediate recall; PL: path length; RT: reaction time; TL: total latency.
Loadings of >0.5 are displayed.
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(Peters et al., 2010). The present findings also build on other  
imaging analyses, which indicate that fornix maturation peaks in late 
adolescence (Douet and Chang, 2015) with subsequent volume 
reductions in healthy aging (e.g. Amaral et al., 2018; Douet and 
Chang, 2015) that partly reflect a loss of myelinated fibers. The 
overall conclusion from present and previous research is that myeli-
nated fornix fibers are particularly sensitive to aging. There was, 
however, no apparent age-related effect on fornix ICSF (see also 
Metzler-Baddeley et al., 2019), suggestive of a preservation of 
apparent axon density.

Precommissural versus postcommissural fornix. While the 
precommissural reconstructions should contain septal fibers 
alongside hippocampal projections to the ventral striatum, basal 
forebrain, medial and orbital frontal cortices, the postcommis-
sural reconstructions should principally contain projections to the 
hypothalamus, including the mammillary bodies (Christiansen 
et al., 2016). Despite the many hippocampal–thalamic fibers in 
the postcommissural fornix, it was presumed that they would 
comprise far less of the reconstructions given their diffuse, short 
trajectories on reaching the diencephalon (Mathiasen et al., 
2019). It is also presumed that the fibers in the two fornix subdi-
visions originate from overlapping parts of the hippocampal for-
mation (Aggleton, 2012), only fully separating as the body of the 
fornix approaches the columns.

All eight diffusion indices derived in this study were highly 
inter-correlated between the two tract subdivisions (Figure 2). 
This is consistent with previous observations of intra-individual 
correlations between microstructural metrics across white matter 
tracts (Penke et al., 2010). However, despite the many correla-
tions, the absolute values of all diffusion metrics differed between 
the two fornix subdivisions (Figure 2). The NODDI and qMT 
metrics in this study suggest that the precommissural fibers may 
perhaps be smaller (ICSF) and have lower myelin-related proper-
ties (MPF, kf, R1) and, hence, a higher free water component 
(ISOSF) than postcommissural fibers. Precommissural fibers 
also showed higher axon orientation dispersion (ODI). This pat-
tern of differences may partly reflect how axons in the precom-
missural fornix disperse in order to reach their multiple targets 
while those in the descending postcommissural fornix remain 
largely compact until reaching the posterior hypothalamus 
(Mathiasen et al., 2019; Poletti and Creswell, 1977). Nevertheless, 
FA was higher, and MD lower, in the precommissural relative to 
the postcommissural fornix, despite a previous report of higher 
FA in the postcommissural than precommissural fornix (Yeo 
et al., 2013). This apparent inconsistency may arise from the use 
of different seed ROIs, most notably for the postcommissural for-
nix, allied to its greater curvature and how that part of the fornix 
passes through many diffuse pathways in the rostral hypothala-
mus. However, given the poor reproducibility of FA and MD in 
both tracts, these results should be interpreted with caution and 
may not accurately reflect the microstructural differences 
between precommissural and postcommissural fornices.

Similarly, despite age being strongly correlated with whole for-
nix FA, this same correlation was not significant for either the pre-
commissural or postcommissural fornix. This was likely due to the 
poor reproducibility of FA in both tracts. Another interpretation is 
that age-related changes in fornix FA are more strongly driven by 
alterations to the body of the fornix. Consistent with this sugges-
tion, age correlations in FA, RD, and AD were found to be limited 

to the caudal body and left crus of the fornix (Chen et al., 2015). 
Likewise, Christiansen et al. (2016) failed to find a significant age 
relationship between FA and the anterior body of the fornix, which 
included the columns. Meanwhile, in a study including even older 
participants (Jang et al., 2011), decreasing FA with age was found 
in the body, crus, and columns of the fornix, suggesting that all 
parts of the tract can contribute. Taken together, the implication is 
that whole fornix provides the most consistent target for associat-
ing age with FA, when using sufficient age ranges.

Christiansen et al. (2016) previously reported age correla-
tions with RD, MD, and AD in the postcommissural but only 
trends in the precommissural fornix. Here, with appreciably 
larger sample size, we found evidence for age-related increases 
in MD and ISOSF and reductions in MPF and R1 for both 
tracts. Age-related reductions in kf were only observed for the 
postcommissural fornix, and no age correlations were present 
for ICSF or ODI. Consistent with the findings for the whole 
fornix, this pattern suggests that age-related reductions in 
apparent axon myelin rather than in apparent axon density or 
orientation may underpin age-related tissue loss in both sub-
components of the fornix.

The final goal was to consider cognitive functions. Based on 
connectivity, the postcommissural fornix might be expected to be 
the more strongly associated with changes in long-term memory as 
it contains projections from the hippocampus to interlinked struc-
tures (the mammillary bodies and anterior thalamic nuclei) repeat-
edly implicated in human diencephalic amnesia and spatial memory 
in rodents (Aggleton and Brown, 1999; Carlesimo et al., 2011; 
Harding et al., 2000; Vann and Nelson, 2015). Additional evidence 
comes from correlations between mammillary body volume and 
performance on tests of recall (Tsivilis et al., 2008; Vann et al., 
2009). Meanwhile, the precommissural fornix provides the direct 
route from the hippocampus to the prefrontal cortex (Aggleton 
et al., 2015), suggesting an involvement in executive or control pro-
cesses (Miller and Cohen, 2001). The basal forebrain–hippocampal 
connections carried by the precommissural fornix contribute to hip-
pocampal theta and acetylcholine and may therefore be  linked to 
attention and spatial flexibility (Baxter and Chiba, 1999).

Consistent with its hippocampal–diencephalic connec-
tions, the postcommissural fornix was associated with the 
Paired Association Learning factor. A parallel can be seen 
with evidence that object-in-place learning by monkeys is 
dependent on the integrity of the fornix and mammillary bod-
ies (Gaffan, 1994; Parker and Gaffan, 1997), that is, the post-
commissural fornix. However, as spatial learning relies on a 
network of medial temporal lobe brain regions including the 
hippocampus (Burgess et al., 2002), it is not surprising that 
postcommissural fornix contributions did not completely 
explain all of the variation in the PAL data, nor was it associ-
ated with other spatial cognitive factors.

Variations in Verbal Memory performance was best predicted 
by sex (with women performing better in the RAVLT than men, 
see Metzler-Baddeley et al., 2019a) and variation in motor speed 
and planning by age. There was a trend for precommissural 
microstructure to predict variation in Visuospatial Memory, with 
high loadings on spatial span and the free recall of the Rey figure. 
While this result was not significant after FDR correction, pre-
commissural fornix contributions to strategic aspects of visuos-
patial recall would be consistent with its connectivity to prefrontal 
cortex regions (Eichenbaum, 2017).



10 Brain and Neuroscience Advances

In summary, these findings suggest that the postcommissural 
fornix is involved in aspects of visual spatial learning, a result 
that accords with the diencephalic regions innervated by this for-
nix subdivision. Nevertheless, there is evidence that in the 
absence of this postcommissural pathway, other networks can 
compensate (Vann et al., 2011). Indeed, the lack of clear fornix 
subdivision dissociations could indicate that both tracts may 
contribute, albeit in different ways, to common cognitive tasks.
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