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Modélisation Mathématique et Analyse Numérique

hp–VERSION DISCONTINUOUS GALERKIN METHODS FOR

ADVECTION–DIFFUSION–REACTION PROBLEMS ON POLYTOPIC MESHES

ANDREA CANGIANI1, ZHAONAN DONG1, EMMANUIL H. GEORGOULIS2

and PAUL HOUSTON3

Abstract. We consider the hp–version interior penalty discontinuous Galerkin finite element method
(DGFEM) for the numerical approximation of the advection–diffusion–reaction equation on general
computational meshes consisting of polygonal/polyhedral (polytopic) elements. In particular, new hp–
version a priori error bounds are derived based on a specific choice of the interior penalty parameter
which allows for edge/face–degeneration. The proposed method employs elemental polynomial bases
of total degree p (Pp–basis) defined in the physical coordinate system, without requiring the mapping
from a given reference or canonical frame. Numerical experiments highlighting the performance of
the proposed DGFEM are presented. In particular, we study the competitiveness of the p–version
DGFEM employing a Pp–basis on both polytopic and tensor–product elements with a (standard)
DGFEM employing a (mapped) Qp–basis. Moreover, a computational example is also presented which
demonstrates the performance of the proposed hp–version DGFEM on general agglomerated meshes.

Résumé. ...

1991 Mathematics Subject Classification. 65N30, 65N50, 65N55.

...

1. Introduction

Discontinuous Galerkin methods have enjoyed considerable success, especially during the last 15 years and
are now considered a standard variational framework for the numerical solution of many classes of problems
involving partial differential equations (PDEs). The origins of the discontinuous Galerkin finite element method
(DGFEM, for short) can be traced back to the early 1970s for the numerical solution of first–order hyperbolic
problems [45] and for the weak imposition of inhomogeneous boundary conditions for elliptic problems [42].
The use of discontinuous/nonconforming approximation spaces in the context of finite element methods also
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first appeared around the same time [12, 13]; for reviews of some of the main developments in the subject, we
refer to the monographs [27,28] and the articles [8, 24].

The interest in DGFEMs can be attributed to a number of factors: classical DGFEMs, such as interior
penalty methods, have typically minimal communication, in the sense that only direct face-element neigh-
bours are coupled through the exploitation of appropriate numerical fluxes; this has important advantages
for imposing boundary conditions and also for parallel efficiency. Additionally, DGFEMs can incorporate a
wealth of numerical fluxes into their formulation, leading to stable discretizations in the context of multi-scale
problems. Moreover, meshes containing hanging-nodes and elemental polynomial bases consisting of locally
variable polynomial degrees are also admissible, owing to the lack of pointwise continuity requirements across
the mesh-skeleton. Also, powerful solvers are now available for the resulting linear systems; indeed, both domain
decomposition preconditioners, see, for example, [1, 2, 4, 5, 29, 39], and the references cited therein, as well as
multigrid solvers, cf. [6, 7, 17, 18], have been developed.

More recently, DGFEMs on meshes containing extremely general element shapes, such as general polygons
in two dimensions and polyhedra in three dimensions, have been proposed [3, 14–16, 21, 28, 33, 40, 50]. Such
meshes can naturally be combined with DGFEMs due to their element-wise discontinuous approximation. To
support such a variety of element shapes, without any detrimental affect on the local approximation properties
of the underlying DGFEM, polynomial spaces defined in the physical frame, rather than mapped polynomials
from a reference element, are typically employed. In our recent work [21], an hp–version DGFEM of interior
penalty (IP) type for linear elliptic problems on meshes consisting of d–dimensional polytopic elements (i.e.,
polygons for d = 2 and polyhedra for d = 3) was proposed and analysed. A key aspect of the method proposed
in [21], is that the scheme remains well-defined and practical in the presence of arbitrarily small/degenerate
(d − k)–dimensional element facets, k = 1, . . . , d − 1, where d denotes the spatial dimension. A by-product of
the approach developed in [21] was the proposal of physical frame Pp–type bases, i.e., local polynomial spaces of
total degree p, for the case when the underlying polytopes are simply quadrilateral/hexahedral, compared to the
standard approach of employing a mapped tensor-product Qp polynomial basis, i.e., tensor-product polynomials
of degree p in each spatial variable. Indeed, it was demonstrated numerically that the DGFEM employing a
Pp–type basis achieves a faster rate of convergence, with respect to the number of degrees of freedom present
in the underlying finite element space, as the polynomial degree p increases, for a given fixed mesh, than the
respective DGFEM employing a (mapped) Qp basis on tensor-product elements.

In this work, we extend the results of [21] to cover hp–version IP DGFEMs for a general class of linear
advection–diffusion–reaction PDE problems, often referred to as equations with nonnegative characteristic form.
DGFEMs for this class of problems on quadrilateral meshes were first proposed and analysed in [35]. Here,
we derive a priori bounds for the hp–version IP DGFEM for this class of PDE problems. Due to the lack
of hp–approximation results for the local L2–projection operator on polytopic elements, it is not possible to
directly generalise the analysis from [35] to meshes consisting of such elements. To address this issue, we prove
an inf-sup condition for the underlying DGFEM, with respect to a stronger streamline–diffusion type norm, for
simple advection coefficients, thereby extending respective results from [9,19,20,37] to the current setting. This
naturally leads to a priori bounds for the hp–version DGFEM for this general class of linear PDE problems on
very general polytopic meshes with possibly arbitrarily small/degenerate (d − k)–dimensional element facets,
k = 1, . . . , d− 1.

This work is structured as follows. In Section 2, we introduce the model problem and define the set of
admissible subdivisions of the computational domain. In Section 3 we formulate the IP DGFEM; Section 4
presents relevant hp–approximation results. The stability and a priori analysis of the proposed method is then
undertaken in Section 5. The practical performance of the IP DGFEM is studied in Section 6 through a series
of numerical examples. Finally, in Section 7 we summarize the work presented in this paper and draw some
conclusions.
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2. Preliminaries

For a Lipschitz domain ω ⊂ R
d, d ≥ 1, we denote by Hs(ω) the Hilbertian Sobolev space of index s ≥ 0 of

real–valued functions defined on ω, endowed with the seminorm | · |Hs(ω) and norm ∥ · ∥Hs(ω). Furthermore,
we let Lp(ω), p ∈ [1,∞], be the standard Lebesgue space on ω, equipped with the norm ∥ · ∥Lp(ω). Finally, |ω|
denotes the d–dimensional Hausdorff measure of ω.

2.1. Model problem

Let Ω be a bounded open polyhedral domain in R
d, d = 2, 3, and let Γ signify the union of its (d − 1)–

dimensional open faces. We consider the advection-diffusion-reaction equation

Lu ≡ −∇ · (a∇u) + b · ∇u+ cu = f, in Ω, (2.1)

where c ∈ L∞(Ω), f ∈ L2(Ω), and b := (b1, b2, . . . , bd)
⊤ ∈ [W 1

∞(Ω)]d. Here, a = {aij}di,j=1 is a symmetric
positive semidefinite tensor whose entries aij are bounded, piecewise continuous, real-valued functions defined
on Ω̄, with

ξ⊤a(x)ξ ≥ 0 ∀ξ ∈ R
d, a.e. x ∈ Ω̄. (2.2)

Under the above hypothesis, (2.1) is termed a partial differential equation with nonnegative characteristic form.
We denote by n(x) = {ni(x)}di=1 the unit outward normal vector to Γ at x ∈ Γ and introduce the Fichera

function b · n to define

Γ0 =
{

x ∈ Γ : n(x)⊤a(x)n(x) > 0
}

,

Γ− =
{

x ∈ Γ\Γ0 : b(x) · n(x) < 0
}

, Γ+ =
{

x ∈ Γ\Γ0 : b(x) · n(x) ≥ 0
}

.
(2.3)

The sets Γ− and Γ+ are referred to as the inflow and outflow boundary, respectively. Note that Γ = Γ0∪Γ−∪Γ+.
If Γ0 is nonempty, we subdivide it into two disjoint subsets ΓD and ΓN whose union is Γ0, with ΓD nonempty
and relatively open in Γ, on which we consider the boundary conditions for (2.1):

u = gD on ΓD ∪ Γ−, n · (a∇u) = gN on ΓN, (2.4)

and also adopt the hypothesis that b · n ≥ 0 on ΓN, whenever ΓN is nonempty. Additionally, we assume that
the following positivity hypothesis holds: there exists a positive constant γ0 such that

c0(x)
2 := c(x)− 1

2
∇ · b(x) ≥ γ0 a.e. x ∈ Ω. (2.5)

The well-posedness of the boundary value problem (2.1), (2.4) has been studied in [36].

2.2. Finite element spaces

Let T be a subdivision of the computational domain Ω into disjoint open polygonal (d = 2) or polyhedral
(d = 3) elements κ such that Ω̄ = ∪κ∈T κ̄ and denote by hκ the diameter of κ ∈ T ; i.e., hκ := diam(κ). In the
absence of hanging nodes/edges, we define the interfaces of the mesh T to be the set of (d − 1)–dimensional
facets of the elements κ ∈ T . To facilitate the presence of hanging nodes/edges, which are permitted in T , the
interfaces of T are defined to be the intersection of the (d − 1)–dimensional facets of neighbouring elements.
In the case when d = 2, the interfaces of a given element κ ∈ T will always consist of line segments ((d − 1)–
dimensional simplices). For d = 3, we assume that each interface of an element κ ∈ T may be subdivided into
a set of co-planar triangles. With this in mind we use the terminology ‘face’ to refer to a (d − 1)–dimensional
simplex (line segment or triangle for d = 2 or 3, respectively), which forms part of the boundary (interface)
of an element κ ∈ T . For d = 2, the face and interface of an element κ ∈ T necessarily coincide with each
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other, while in three–dimensions this may no longer be the case, since the boundary of a general polyhedron
may consist of planar polygons which are not triangular.

As in [21], we assume that a sub-triangulation into faces of each mesh interface is given if d = 3, and denote
by E the union of all open mesh interfaces if d = 2 and the union of all open triangles belonging to the sub-
triangulation of all mesh interfaces if d = 3. In this way, E is always defined as a set of (d − 1)–dimensional
simplices. Further, we write Eint to denote the union of all open (d− 1)–dimensional element faces F ⊂ E that
are contained in Ω, and let Γint := {x ∈ Ω : x ∈ F, F ∈ Eint}. Further assumptions on the class of admissible
meshes will be outlined later on in Section 4.

Given κ ∈ T , we write pκ to denote the (positive) polynomial degree of the element κ, and collect the pκ in
the vector p := (pκ : κ ∈ T ). We then define the finite element space Sp

T with respect to T and p by

Sp

T := {u ∈ L2(Ω) : u|κ ∈ Ppκ
(κ), κ ∈ T },

where Ppκ
(κ) denotes the space of polynomials of total degree pκ on κ. As in [21], we point out that the

local elemental polynomial spaces employed within the definition of Sp

T are defined in the physical coordinate
system, without the need to map from a given reference or canonical frame. We define the broken Sobolev space
Hs(Ω, T ) with respect to the subdivision T up to composite order s as follows

Hs(Ω, T ) = {u ∈ L2(Ω) : u|κ ∈ Hsκ(κ) ∀κ ∈ T }. (2.6)

For u ∈ H1(Ω, T ), we define the broken gradient ∇hu by (∇hu)|κ = ∇(u|κ), κ ∈ T , which will be used to
construct the forthcoming DGFEM.

2.3. Trace operators

For any element κ ∈ T , we denote by ∂κ the union of (d− 1)–dimensional open faces of κ. Then, the inflow
and outflow parts of ∂κ are defined as follows

∂−κ = {x ∈ ∂κ, b(x) · nκ(x) < 0}, ∂+κ = {x ∈ ∂κ, b(x) · nκ(x) ≥ 0},

respectively, where nκ(x) denotes the unit outward normal vector to ∂κ at x ∈ ∂κ. Given κ ∈ T , the trace
of a function v ∈ H1(Ω, T ) on ∂−κ, relative to κ, is denoted by v+κ . Further, if ∂−κ\Γ is nonempty, then for
x ∈ ∂−κ\Γ there exits a unique κ′ ∈ T such that x ∈ ∂+κ

′; with this notation, we denote by v−κ the trace of
v|κ′ on ∂−κ\Γ. Hence the upwind jump of the (scalar-valued) function v across a face F ⊂ ∂−κ\Γ is denoted
by

⌊v⌋ := v+κ − v−κ .

Next, we introduce some additional trace operators. Let κi and κj be two adjacent elements of T and let x
be an arbitrary point on the interior face F ⊂ Γint given by F = ∂κi ∩ ∂κj . We write ni and nj to denote the
outward unit normal vectors on F , relative to ∂κi and ∂κj , respectively. Furthermore, let v and q be scalar- and
vector-valued functions, which are smooth inside each element κi and κj . By (vi,qi) and (vj ,qj), we denote
the traces of (v,q) on F taken from within the interior of κi and κj , respectively. The averages of v and q at
x ∈ F are given by

{{v}} :=
1

2
(vi + vj), {{q}} :=

1

2
(qi + qj),

respectively. Similarly, the jump of v and q at x ∈ F ⊂ Γint are given by

[[v]] := vi ni + vj nj , [[q]] := qi · ni + qj · nj ,

respectively. On a boundary face F ⊂ Γ, such that F ⊂ ∂κi, κi ∈ T , we set

{{v}} = vi, {{q}} = qi, [[v]] = vini [[q]] = qi · ni,
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with ni denoting the unit outward normal vector on the boundary Γ.

Remark 2.1. The jump operator [[·]] is independent of face orientation, while the sign of the upwind jump
operator ⌊·⌋ depends on the direction of the flow.

3. Interior Penalty Discontinuous Galerkin Method

In this section, we introduce the hp–version DGFEM discretization of the model problem (2.1), (2.4). For
simplicity of presentation, we suppose that the entries of the diffusion tensor a are constant on each element
κ ∈ T , i.e.,

a ∈ [S0
T ]

d×d
sym . (3.1)

Our results can easily be extended to the case of general a ∈ L∞(Ω)d×d
sym based on employing the modified

DGFEM proposed in [32]. In the following,
√
a denotes the (positive semidefinite) square-root of the symmetric

matrix a; further, āκ := |√a|22|κ, where | · |2 denotes the l2–norm.
The IP DGFEM is given by: find uh ∈ Sp

T such that

B(uh, vh) = ℓ(vh) (3.2)

for all vh ∈ Sp

T . Here, the bilinear form B(·, ·) : Sp

T × Sp

T → R is defined as the sum of two parts:

B(u, v) := Bar(u, v) +Bd(u, v),

where the bilinear form Bar(·, ·) accounts for the advection and reaction terms:

Bar(u, v) :=
∑

κ∈T

∫

κ

(

b · ∇u+ cu
)

v dx

−
∑

κ∈T

∫

∂−κ\Γ

(b · n)⌊u⌋v+ ds−
∑

κ∈T

∫

∂−κ∩(ΓD∪Γ−)

(b · n)u+v+ ds. (3.3)

The bilinear form Bd(·, ·) takes care of the diffusion term:

Bd(u, v) :=
∑

κ∈T

∫

κ

a∇u · ∇v dx+

∫

Γint∪ΓD

σ[[u]] · [[v]] ds

−
∫

Γint∪ΓD

(

{{a∇hu}} · [[v]] + {{a∇hv}} · [[u]]
)

ds. (3.4)

Furthermore, the linear functional ℓ : Sp

T → R is defined by

ℓ(v) :=
∑

κ∈T

∫

κ

fv dx−
∑

κ∈T

∫

∂−κ∩(ΓD∪Γ−)

(b · n)gDv+ ds

−
∫

ΓD

gD

(

(a∇hv) · n− σv
)

ds+

∫

ΓN

gNv ds. (3.5)

The nonnegative function σ ∈ L∞(Γint ∪ ΓD) appearing in (3.4) and (3.5) is referred to as the discontinuity-
penalization parameter ; its precise definition, which depends on the diffusion tensor a and the discretization
parameters, will be given in Lemma 5.1.
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4. Approximation and Inverse Estimates

In this section, we revisit some polynomial approximation and inverse estimates in the context of general
polytopic elements from [21]. Furthermore, we derive a new extension of a standard inverse estimate for
polynomial functions. To this end, we introduce the following set of mesh assumptions.

Assumption 4.1. The subdivision T is shape regular in the sense of [23], i.e., there exists a positive constant
Cshape, independent of the mesh parameters, such that:

∀κ ∈ T ,
hκ

ρκ
≤ Cshape,

with ρκ denoting the diameter of the largest ball contained in κ.

Assumption 4.2. There exists a positive constant CF , independent of the mesh parameters, such that

max
κ∈T

(card {F ⊂ Γ ∪ Γint : F ⊂ ∂κ}) ≤ CF .

Remark 4.1. We note that Assumption 4.2 naturally imposes the condition that the number of hanging nodes
and the number of faces that each element κ in the finite element mesh T possesses is uniformly bounded under
mesh refinement.

As in [21], we require the existence of the following coverings of the mesh.

Definition 4.1. A (typically overlapping) covering T♯ = {K} related to the polytopic mesh T is a set of shape-
regular d–simplices K, such that for each κ ∈ T , there exists a K ∈ T♯, with κ ⊂ K. Given T♯, we denote by Ω♯

the covering domain given by Ω♯ :=
(

∪K∈T♯
K̄
)◦
, where, for a closed set D ⊂ R

d, D◦ denotes the interior of D.

Assumption 4.3. There exists a covering T♯ of T and a positive constant OΩ, independent of the mesh
parameters, such that the subdivision T satisfies

max
κ∈T

Oκ ≤ OΩ,

where, for each κ ∈ T ,

Oκ := card {κ′ ∈ T : κ′ ∩ K ̸= ∅, K ∈ T♯ such that κ ⊂ K} .

As a consequence, we deduce that

diam(K) ≤ Cdiamhκ,

for each pair κ ∈ T , K ∈ T♯, with κ ⊂ K, for a constant Cdiam > 0, uniformly with respect to the mesh size.

We remark that Assumption 4.3 ensures that the amount of overlap present in the covering T♯ remains
bounded as the computational mesh T is refined. The proceeding hp–approximation results and inverse esti-
mates for polytopic elements are based on referring back to d–dimensional simplices, where standard results can
be applied; see, for example, [10, 11, 22,41]. With this in mind, we introduce the following definition.

Definition 4.2. For each element κ in the computational mesh T , we define the family Fκ
♭ of all possible

d–dimensional simplices contained in κ and having at least one face in common with κ. The notation κF
♭ will

be used to indicate a simplex belonging to Fκ
♭ and sharing with κ ∈ T a given face F .

Functions defined on Ω can be extended to the covering domain Ω♯ based on employing the following extension
operator, cf. [47].
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Theorem 4.1. Let Ω be a domain with a Lipschitz boundary. Then there exists a linear extension operator
E : Hs(Ω) → Hs(Rd), s ∈ N0, such that Ev|Ω = v and

∥Ev∥Hs(Rd) ≤ C∥v∥Hs(Ω),

where C is a positive constant depending only on s and Ω.

With the above notation, we now quote Lemma 4.2 from [21].

Lemma 4.1. Let κ ∈ T , F ⊂ ∂κ denote one of its faces, and K ∈ T♯ denote the corresponding simplex such
that κ ⊂ K, cf. Definition 4.1. Suppose that v ∈ L2(Ω) is such that Ev|K ∈ H lκ(K), for some lκ ≥ 0. Then,

given Assumption 4.3 is satisfied, there exists Π̃v, such that Π̃v|κ ∈ Ppκ
(κ), and the following bounds hold

∥v − Π̃v∥Hq(κ) ≤ C
hsκ−q
κ

plκ−q
κ

∥Ev∥Hlκ (K), lκ ≥ 0, (4.1)

for 0 ≤ q ≤ lκ, and

∥v − Π̃v∥L2(F ) ≤ C|F |1/2h
sκ−d/2
κ

p
lκ−1/2
κ

Cm(pκ, κ, F )1/2∥Ev∥Hlκ (K), lκ > d/2, (4.2)

where

Cm(pκ, κ, F ) = min

{

hd
κ

supκF
♭
⊂κ |κF

♭ |
,

1

p1−d
κ

}

.

Here, sκ = min{pκ + 1, lκ} and C is a positive constant, that depends on the shape-regularity of K, but is
independent of v, hκ, and pκ.

We now consider the derivation of hp–version inverse estimates, which are sharp with respect to (d − k)–
dimensional, k = 1, . . . , d − 1, element facet degeneration. To this end, we first recall the following definition,
cf. [21].

Definition 4.3. Let T̃ denote the subset of elements κ, κ ∈ T , such that each κ ∈ T̃ can be covered by at most
mT shape-regular simplices Ki, i = 1, . . . ,mT , such that

dist(κ, ∂Ki) > Cas diam(Ki)/p
2
κ,

and
|Ki| ≥ cas|κ|

for all i = 1, . . . ,mT , for some mT ∈ N and Cas, cas > 0, independent of κ and T , where pκ denotes the
polynomial degree associated with element κ, κ ∈ T .

The motivation for Definition 4.3 comes from the following result, which is derived in [31] and is instrumental
in proving the inverse estimate stated in Lemma 4.3 below.

Lemma 4.2. Let K be a shape-regular simplex. For each v ∈ Pp(K), there exists a simplex κ̂ ⊂ K, having
the same shape as K and faces parallel to the faces of K, with dist(∂κ̂, ∂K) > Cas diam(K)/p2(> 0), for some
constant Cas > 0, independent of v, K and p, such that

∥v∥L2(κ̂) ≥
1

2
∥v∥L2(K).

We now recall from [21] the following inverse estimate for general polytopes, which is sharp with respect to
degeneration of one or more of its (d− k)–dimensional, k = 1, . . . , d− 1, facets.
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Lemma 4.3. Let κ ∈ T , F ⊂ ∂κ denote one of its faces, and T̃ be defined as in Definition 4.3. Then, for each
v ∈ Pp(κ), we have the inverse estimate

∥v∥2L2(F ) ≤ CINV(p, κ, F )
p2|F |
|κ| ∥v∥2L2(κ)

, (4.3)

where

CINV(p, κ, F ) := Cinv



















min

{

|κ|
supκF

♭
⊂κ |κF

♭ |
, p2d

}

, if κ ∈ T̃ ,

|κ|
supκF

♭
⊂κ |κF

♭ |
, if κ ∈ T \T̃ ,

and κF
♭ ∈ Fκ

♭ is as in Definition 4.2. Furthermore, Cinv is a positive constant, which, if κ ∈ T̃ , depends on

the shape regularity of the covering of κ given in Definition 4.3, but is always independent of |κ|/ supκF
♭
⊂κ |κF

♭ |
(and, therefore, of |F |), p, and v.

The following assumption plays a key role in deriving the extension of the standard inverse estimate for the
H1-(semi)norm.

Assumption 4.4. Every polytopic element κ ∈ T \T̃ , admits a sub-triangulation into at most nT shape-regular
simplices si, i = 1, 2, . . . , nT , such that κ̄ = ∪nT

i=1s̄i and

|si| ≥ ĉ|κ|

for all i = 1, . . . , nT , for some nT ∈ N and ĉ > 0, independent of κ and T .

Lemma 4.4. Given Assumptions 4.1-4.4 are satisfied, for each v ∈ Pp(κ), the inverse estimate

∥∇v∥2L2(κ)
≤ C̃inv

p4

h2
κ

∥v∥2L2(κ)
, (4.4)

holds, with constant C̃inv independent of the element diameter hκ, the polynomial order pκ, and the function v,
but dependent on the shape regularity of the covering of κ, if κ ∈ T̃ , or the sub-triangulation of κ, if κ ∈ T \T̃ .

Proof. Here, we only consider the case when κ ∈ T̃ ; for κ ∈ T \T̃ the inverse inequality follows in a straight-
forward manner by exploiting the sub-triangulation introduced in Assumption 4.4, together with the standard
inverse estimate applied to each sub-simplex. Given κ ∈ T̃ , we have a covering of κ by shape-regular simplices
Kj , j = 1, . . . ,mT , with |Kj | ≥ cas|κ|, cf. Definition 4.3. The shape-regularity Assumption 4.1, in conjunction
with the trivial relation hd

κ ≥ |κ| ≥ ρdκ, yields

hd
Kj

≥ |Kj | ≥ cas|κ| ≥ casρ
d
κ ≥ cas

(

hκ

Cshape

)d

, (4.5)

where hKj
denotes the diameter of Kj . Hence, hKj

≥ (cas)
1/dhκ/Cshape. The standard inverse inequality

applied on Kj yields

∥∇v∥L2(Kj) ≤ C2
p2

hKj

∥v∥L2(Kj), (4.6)
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where the positive constant C2 is independent of p, hKj
, and v; see [46] for details. Employing (4.6) and

Definition 4.3 again, we deduce that

∥∇v∥2L2(κ)
≤

mT
∑

j=1

∥∇v∥2L2(Kj)

≤ C2

mT
∑

j=1

p4

h2
Kj

∥v∥2L2(Kj)

≤
C2C

2
shape

(cas)2/d
p4

h2
κ

mT
∑

j=1

∥v∥2L2(Kj)
. (4.7)

Let κ̂j ⊂ Kj denote the simplex given by Lemma 4.2; then by the same Lemma 4.2 and Definition 4.3, we have

1

4
∥v∥2L2(Kj)

≤ ∥v∥2L2(κ̂j)
≤ ∥v∥2L2(Kj∩κ), (4.8)

since κ̂j ⊂ κ, and hence κ̂j ⊂ Kj ∩ κ ⊂ Kj , cf. [21]. Combining (4.7) and (4.8), we deduce that

∥∇v∥2L2(κ)
≤

4C2C
2
shapemT

(cas)2/d
p4

h2
κ

∥v∥2L2(κ)
≡ C̃inv

p4

h2
κ

∥v∥2L2(κ)
, (4.9)

as required. □

Remark 4.2. We point out that Assumption 4.1, which imposes the shape regularity of the mesh T , is only
needed for the proof of Lemma 4.4; this result extends the classical inverse estimate, bounding the H1-seminorm
of a polynomial function with its L2-norm, to polytopic elements. We note, however, that such inverse estimates
depend on the shape regularity of the elements, even in the case of simplicial elements, cf. [49]. An alternative
hp–version inverse inequality, analogous to Lemma 4.4, with explicit dependence on the shape-regularity, is
derived in [6].

5. A priori error bound for the DGFEM

The a priori error analysis will employ an inconsistent formulation of the diffusion part of the bilinear form,
cf. [43], for example. We define, for all u, v ∈ S := H1(Ω) + Sp

T , the bilinear form

B̃(u, v) := Bar(u, v) + B̃d(u, v), (5.1)

where

B̃d(u, v) :=
∑

κ∈T

∫

κ

a∇u · ∇v dx+

∫

Γint∪ΓD

σ[[u]] · [[v]] ds

−
∫

Γint∪ΓD

(

{{aΠ2(∇hu)}} · [[v]] + {{aΠ2(∇hv)}} · [[u]]
)

ds,

and the linear functional ℓ̃ : Sp

T → R by

ℓ̃(v) :=
∑

κ∈T

∫

κ

fv dx−
∑

κ∈T

∫

∂−κ∩(ΓD∪Γ−)

(b · n)gDv+ ds

−
∫

ΓD

gD

(

aΠ2(∇hv) · n− σv
)

ds+

∫

ΓN

gNv ds.
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Here, Π2 : [L2(Ω)]
d → [Sp−1

T ]d denotes the L2–projection onto the finite element space [Sp−1

T ]d. We then
rewrite the discrete problem with the inconsistent formulation in the equivalent form: find uh ∈ Sp

T such that

B̃(uh, vh) = l̃(vh) ∀vh ∈ Sp

T . (5.2)

In view of the error analysis, we introduce the DGFEM-norm |∥·|∥DG as the sum of two parts as follows:

|∥v|∥2DG := |∥v|∥2ar + |∥v|∥2d,

where

|∥v|∥2ar :=
∑

κ∈T

(

∥c0v∥2L2(κ)
+

1

2
∥v+∥2∂−κ∩(ΓD∪Γ−) +

1

2
∥v+ − v−∥2∂−κ\Γ +

1

2
∥v+∥2∂+κ∩Γ

)

, (5.3)

with c0 as in (2.5), and

|∥v|∥2d :=
∑

κ∈T

∥√a∇v∥2L2(κ)
+

∫

Γint∪ΓD

σ|[[v]]|2 ds. (5.4)

Here, ∥ · ∥τ , τ ⊂ ∂κ, denotes the (semi)norm associated with the (semi)inner product (v, w)τ =
∫

τ
|b · n|vw ds.

The following relation holds

Bar(v, v) = |∥v|∥2ar (5.5)

for all v ∈ S, cf. [35]. The continuity and coercivity of the inconsistent diffusion bilinear form B̃d(·, ·), with
respect to the DGFEM-norm |∥·|∥d, is established by the following lemma.

Lemma 5.1. Let σ : Γ\ΓN → R+ be defined facewise by

σ(x) :=















Cσ max
κ∈{κ1,κ2}

{

CINV(pκ, κ, F )
āκp

2
κ|F |
|κ|

}

, x ∈ F ⊂ Γint, F = ∂κ1 ∩ ∂κ2,

CσCINV(pκ, κ, F )
āκp

2
κ|F |
|κ| , x ∈ F ⊂ ΓD, F = ∂κ ∩ ΓD,

(5.6)

with Cσ > 0 large enough, and independent of pκ, |F |, and |κ|; here CINV is defined as in Lemma 4.3. Then,
given Assumption 4.2 holds, we have that

B̃d(v, v) ≥ Ccoer
d |∥v|∥2d for all v ∈ S, (5.7)

and
B̃d(w, v) ≤ Ccont

d |∥w|∥d |∥v|∥d for all w, v ∈ S, (5.8)

where Ccont
d and Ccoer

d are positive constants independent of the discretization parameters.

Proof. The proof can be viewed as an extension of the analogous result derived in [21] for the Poisson equation, to
a second–order elliptic PDE with general positive semidefinite diffusion tensor a; for details, we refer to [32]. □

5.1. Inf-Sup Condition

The hp–version a priori error analysis presented in [35] relies on the derivation of optimal hp–approximation
results for the trace of the local L2–projection operator on a given face of an element κ in the finite element
mesh T , cf. also [22] for analogous results on simplices. Due to the lack of analogous hp–approximation results
for the local L2–projection operator on polytopic elements, it is not possible to directly generalise the analysis
from [35] to meshes consisting of such elements. To address this issue we prove an inf-sup condition for the

inconsistent bilinear form B̃(·, ·), with respect to the following streamline DGFEM-norm.
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Definition 5.1. The streamline DGFEM-norm is defined by:

|∥v|∥2s := |∥v|∥2DG +
∑

κ∈T

τκ∥b · ∇v∥2L2(κ)
, (5.9)

where

τκ := min

{

1

∥b∥L∞(κ)
,
1

σ̃κ

}

h⊥
κ

p2κ
∀κ ∈ T , (5.10)

for pκ ≥ 1, and σ̃κ is given by

σ̃κ := Cσ max
F⊂∂κ

{

max
κ̃∈{κ,κ′}
F⊂∂κ∩∂κ′

{

Cinv
āκ̃p

2
κ̃

h⊥
κ̃

d
}}

∀κ ⊂ T , d = 2, 3, (5.11)

where Cinv is defined as in Lemma 4.3. The constant σ̃κ may be zero locally where āκ = 0; in this case it is
understood that τκ takes the value of the first term in (5.10). Further, the mesh parameter h⊥

κ is defined as
follows:

h⊥
κ := min

F⊂∂κ

supκF
♭
⊂κ |κF

♭ |
|F | d ∀κ ∈ T , d = 2, 3, (5.12)

with κF
♭ as in Definition 4.2. We further deduce the relation

h⊥
κ ≤ hκ. (5.13)

Remark 5.1. We recall from Definition 4.2 that κF
♭ denotes the family of simplices contained in κ and sharing

a face F with κ. From the geometrical property of d–dimensional simplices, it is easy to see that h⊥
κ is the

minimum over all faces F , F ⊂ ∂κ, of the maximum of the set of all heights of the d–dimensional simplices κF
♭

sharing a (d− 1)–dimensional face F with κ.

Remark 5.2. With a mild loss of generality, the case pκ = 0, relevant to the hyperbolic regime, is excluded from
Definition 5.1 and throughout this paper. However, if the underlying problem is strictly hyperbolic and pκ = 0
is selected for all κ ∈ T , then the streamline DGFEM-norm reduces to the advection-reaction DGFEM-norm
|∥·|∥ar defined in (5.3); in this setting, the proceeding analysis is trivial.

By employing the definition of h⊥
κ , together with an upper bound on the constant CINV(p, κ, F ) defined in

Lemma 4.3, the inverse estimate (4.3) can be written in the following manner. For each v ∈ Pp(κ), F ⊂ ∂κ, we
have

∥v∥2L2(F ) ≤ CINV(p, κ, F )
p2|F |
|κ| ∥v∥2L2(κ)

≤ Cinv
|κ|

supκF
♭
⊂κ |κF

♭ |
p2|F |
|κ| ∥v∥2L2(κ)

≤ Cinv
p2

h⊥
κ

d∥v∥2L2(κ)
. (5.14)

Further, from the definition of σ|F given in (5.6), in conjunction with the definition of h⊥
κ , cf. (5.12), we deduce

the following bound

σ̃κ ≥ σ|F , F ⊂ ∂κ ∀κ ∈ T . (5.15)

For the reminder of this article we assume the following standard condition on b:

b · ∇hξ ∈ Sp

T ∀ξ ∈ Sp

T , (5.16)

cf. [35]. Under the above assumption, we prove the inf-sup condition for the bilinear form B̃(·, ·), with respect
to the streamline DGFEM-norm (5.9).
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Theorem 5.1. Given Assumptions 4.1, 4.2, and 4.4 hold, there exists a positive constant Λs, independent of
the mesh size h and the polynomial degree p, such that:

inf
ν∈Sp

T
\{0}

sup
µ∈Sp

T
\{0}

B̃(ν, µ)

|∥ν|∥s|∥µ|∥s
≥ Λs, (5.17)

where the discontinuity-penalization parameter σ is as defined in (5.6).

Proof. For all ν ∈ Sp

T , we select µ := ν + ανs, νs|κ = τκb · ∇ν for all κ ∈ T , where α is a positive real number,
chosen sufficiently small, cf. (5.32) below. By (5.16), we note that µ ∈ Sp

T ; the theorem now follows from the
two bounds:

|∥µ|∥s ≤ C∗|∥ν|∥s, (5.18)

and

B̃(ν, µ) ≥ C∗|∥ν|∥2s , (5.19)

with Λs = C∗/C
∗, where C∗ and C∗ are positive constants, independent of h and p.

We begin by proving (5.18). We first bound each term arising in the norm |∥·|∥ar of νs, where νs|κ = τκb ·∇ν,
κ ∈ T . Employing Lemma 4.4 together with (5.10), the lower bound on c0 given in (2.5), and inequality (5.13),
gives

∑

κ∈T

∥c0νs∥2L2(κ)
≤ ∥c0∥2L∞(Ω)

∑

κ∈T

τ2κ∥b · ∇ν∥2L2(κ)

≤ ∥c0∥2L∞(Ω)C̃inv

∑

κ∈T

τ2κ
p4κ∥b∥2L∞(κ)

h2
κ

∥ν∥2L2(κ)

≤ ∥c0∥2L∞(Ω)

C̃inv

γ0

∑

κ∈T

∥c0ν∥2L2(κ)
≤ C1|∥ν|∥2s . (5.20)

Using the inverse estimate (5.14), we deduce that

∑

κ∈T

(1

2
∥ν+s ∥2∂−κ∩(ΓD∪Γ−) +

1

2
∥ν+s − ν−s ∥2∂−κ\Γ +

1

2
∥ν+s ∥2∂+κ∩Γ

)

≤
∑

κ∈T

∥b∥L∞(κ)τ
2
κ

∑

F⊂∂κ

∥b · ∇hν∥2L2(F )

≤ CFCinvd
∑

κ∈T

τκ
p2κ∥b∥L∞(κ)

h⊥
κ

(

τκ∥b · ∇ν∥2L2(κ)

)

≤ C2|∥ν|∥2s . (5.21)

Similarly, employing Lemma 4.4, the streamline diffusion term, cf. (5.9), can be bounded as follows:

∑

κ∈T

τκ∥b · ∇νs∥2L2(κ)
≤

∑

κ∈T

τκ∥b∥2L∞(κ)

(

τ2κ∥∇(b · ∇ν)∥2L2(κ)

)

≤
∑

κ∈T

C̃invτ
2
κ

p4κ∥b∥2L∞(κ)

h2
κ

(

τκ∥b · ∇ν∥2L2(κ)

)

≤
∑

κ∈T

C̃inv

(

τκ∥b · ∇ν∥2L2(κ)

)

≤ C3|∥ν|∥2s ; (5.22)

here, we have again exploited a bound on τκ, κ ∈ T , and (5.13), cf. above.
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Secondly, we consider the diffusion component |∥·|∥d of the streamline DGFEM-norm of νs. This time, the
second term on the right hand side of (5.10) is used as an upper bound on τκ, κ ∈ T . Thereby, employing
Lemma 4.4, the definition of σ̃κ in (5.11), and (5.13), we get

∑

κ∈T

∥√a∇νs∥2L2(κ)
≤

∑

κ∈T

āκτ
2
κ∥∇(b · ∇ν)∥2L2(κ)

≤
∑

κ∈T

C̃invτκ
āκp

4
κ

h2
κ

(

τκ∥b · ∇ν∥2L2(κ)

)

≤
∑

κ∈T

C̃inv
āκp

2
κ

σ̃κhκ

(

τκ∥b · ∇ν∥2L2(κ)

)

≤ C̃inv

CσCinvd

∑

κ∈T

τκ∥b · ∇ν∥2L2(κ)
≡ C4

∑

κ∈T

τκ∥b · ∇ν∥2L2(κ)
≤ C4|∥ν|∥2s . (5.23)

Finally, employing (5.14) and noting that σ|F ≤ σ̃κ for F ⊂ ∂κ, κ ∈ T , gives

∫

Γint∪ΓD

σ|[[νs]]|2 ds ≤ 2
∑

κ∈T

τ2κ
∑

F⊂∂κ∩(Γint∪ΓD)

σ∥b · ∇hν∥2L2(F )

≤ 2CFCinvd
∑

κ∈T

τκ
σ̃κp

2
κ

h⊥
κ

(

τκ∥b · ∇ν∥2L2(κ)

)

≤ C5

∑

κ∈T

(

τκ∥b · ∇ν∥2L2(κ)

)

≤ C5|∥ν|∥2s . (5.24)

Combining the above bounds, we deduce that

|∥νs|∥s ≤ Ĉ|∥ν|∥s, (5.25)

where Ĉ =
√
C1 + C2 + C3 + C4 + C5. Exploiting the triangle inequality, we have that

|∥µ|∥s ≤ |∥ν|∥s + α|∥νs|∥s ≤ (1 + αĈ)|∥ν|∥s ≡ C∗(α)|∥ν|∥s, (5.26)

which gives the desired bound stated in (5.18).

Next we prove (5.19). To this end, we observe that B̃(ν, µ) = B̃(ν, ν) + αB̃(ν, νs). Considering the second

term B̃(ν, νs) first, we note that the advection-reaction part of the bilinear form Bar(ν, νs) is given by

Bar(ν, νs) =
∑

κ∈T

∫

κ

τκ(b · ∇ν)2 + cν(τκb · ∇ν) dx

−
∫

∂−κ\Γ

(b · n)⌊ν⌋(τκb · ∇ν)+ ds−
∫

∂−κ∩(ΓD∪Γ−)

(b · n)ν+(τκb · ∇ν)+ ds. (5.27)
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Employing Lemma 4.4, together with the lower bound on c20 given in (2.5), the second term in (5.27) may be
bounded as follows:

|
∑

κ∈T

∫

κ

cν(τκb · ∇ν) dx| ≤
∑

κ∈T

∥c∥L∞(Ω)∥ν∥L2(κ)∥τκb · ∇ν∥L2(κ)

≤
∑

κ∈T

∥c∥L∞(Ω)∥ν∥L2(κ)

(

C̃
1/2
inv τκ

p2κ∥b∥L∞(κ)

hκ
∥ν∥L2(κ)

)

≤
∑

κ∈T

C̃
1/2
inv ∥c∥L∞(Ω)

γ0
∥c0ν∥2L2(κ)

. (5.28)

To estimate the boundary terms present in (5.27), we exploit the inverse estimate (5.14), the definition of τκ
given in (5.10), together with the Cauchy-Schwarz inequality; thereby, we get

|
∑

κ∈T

(

∫

∂−κ\Γ

(b · n)⌊ν⌋(τκb · ∇ν)+ ds+

∫

∂−κ∩(ΓD∪Γ−)

(b · n)ν+(τκb · ∇hν)
+ ds

)

|

≤
∑

κ∈T

∥ν+ − ν−∥∂−κ\Γ

(

∑

F⊂∂−κ\Γ

∥b∥
1
2

L∞(κ)τκ∥b · ∇hν∥L2(F )

)

+
∑

κ∈T

∥ν+∥∂−κ∩(ΓD∪Γ−)

(

∑

F⊂∂−κ∩(ΓD∪Γ−)

∥b∥
1
2

L∞(κ)τκ∥b · ∇hν∥L2(F )

)

≤ C2
FCinvd

(

∑

κ∈T

∥ν+ − ν−∥2∂−κ\Γ + ∥ν+∥2∂−κ∩(ΓD∪Γ−)

)

+
∑

κ∈T

τκ
4
∥b · ∇ν∥2L2(κ)

≤ C2
FCinvd

∑

κ∈T

(

∥ν+ − ν−∥2∂−κ\Γ + ∥ν+∥2∂−κ∩(ΓD∪Γ−) + ∥ν+∥2∂+κ∩Γ

)

+
∑

κ∈T

τκ
4
∥b · ∇ν∥2L2(κ)

. (5.29)

Using (5.5), together with the bounds (5.28) and (5.29), we deduce that

Bar(ν, µ) ≥
(

1− αC̃
1/2
inv ∥c∥L∞(Ω)

γ0

)

∑

κ∈T

∥c0ν∥2L2(κ)
+ α

∑

κ∈T

(

τκ − τκ
4

)

∥b · ∇ν∥2L2(κ)
.

+
(1

2
− αC2

FCinvd
)

∑

κ∈T

(

∥ν+ − ν−∥2∂−κ\Γ + ∥ν+∥2∂−κ∩(ΓD∪Γ−) + ∥ν+∥2∂+κ∩Γ

)

. (5.30)

Next, we consider the diffusion part of bilinear form, i.e., B̃d(ν, νs). From the continuity of B̃d(·, ·) stated in
(5.8), together with the bounds given in (5.23) and (5.24), we get

B̃d(ν, νs) ≤ Ccont
d |∥ν|∥d|∥νs|∥d ≤ Ccont

d |∥ν|∥d
√

C4 + C5

(

∑

κ∈T

τκ∥b · ∇ν∥2L2(κ)

)
1
2

≤ (Ccont
d )2(C4 + C5)|∥ν|∥2d +

∑

κ∈T

τκ
4
∥b · ∇ν∥2L2(κ)

.

Exploiting the coercivity of the bilinear form B̃d(·, ·), cf. (5.7), gives

B̃d(ν, µ) ≥
(

Ccoer
d − α(Ccont

d )2(C4 + C5)
)

|∥ν|∥2d − α
∑

κ∈T

τκ
4
∥b · ∇ν∥2L2(κ)

. (5.31)
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Finally, combining (5.30) and (5.31), the following bound holds:

B̃(ν, µ) = Bar(ν, µ) + B̃d(ν, µ)

≥
(

1− αC̃
1/2
inv ∥c∥L∞(Ω)

γ0

)

∑

κ∈T

∥c0ν∥2L2(κ)
+ α

∑

κ∈T

(

τκ − τκ
4

− τκ
4

)

∥b · ∇ν∥2L2(κ)
.

+
(1

2
− αC2

FCinvd
)

∑

κ∈T

(

∥ν+ − ν−∥2∂−κ\Γ + ∥ν+∥2∂−κ∩(ΓD∪Γ−) + ∥ν+∥2∂+κ∩Γ

)

.

+
(

Ccoer
d − α(Ccont

d )2(C4 + C5)
)(

∑

κ∈T

∥√a∇ν∥2L2(κ)
+

∫

Γint∪ΓD

σ|[[ν]]|2 ds
)

.

The coefficients in front of the norms arising on the right hand side of the above bound are all positive for
sufficient small α, namely if

α < min

{

γ0

C̃
1/2
inv ∥c∥L∞(Ω)

,
1

2C2
FCinvd

,
Ccoer

d

(Ccont
d )2(C4 + C5)

}

. (5.32)

Since the constants in (5.32) are independent of the discretization parameters, we conclude that (5.19) holds as
long as α is chosen according to (5.32). □

Remark 5.3. Theorem 5.1 extends the analogous result derived for DGFEMs on meshes comprising of simplices
presented in [19,20], to general polytopic elements. It also improves those results in the sense that here the inf-
sup constant Λs is also independent of the polynomial degree p.

Remark 5.4. The above inf-sup condition has been derived under the assumption that (5.16) holds, hence
limiting the validity of the present analysis to problems with piecewise linear convection fields b. However,
an analogous inf-sup condition still holds for general b, if we replace the test space Sp

T by Wp

T := span(v +
αvs, vs|κ = τκΠ2(b · ∇v), κ ∈ T , v ∈ Sp

T ), endowed with the streamline DGFEM-norm |∥v|∥2s̃ := |∥v|∥2DG +
∑

κ∈T τκ∥Π2(b · ∇v)∥2L2(κ)
. This approach, though, results in suboptimal, with respect to the polynomial degree

p, a priori error bounds, cf. Remark 5.7 below.

5.2. Error analysis

In this section, we derive an a priori error bound for the IP DGFEM (5.2). First, we point out that Galerkin

orthogonality does not hold due to the inconsistency of B̃(·, ·). Thereby, we derive the following abstract error
bound in the spirit of Strang’s second lemma.

Lemma 5.2. Let u be the analytical solution of (2.1), (2.4), and uh be the IP DGFEM solution satisfying
(5.2). Assuming the inf-sup condition derived in Theorem 5.1 holds, we have that

|∥u− uh|∥s ≤ |∥u− Π̃u|∥s +
1

Λs
sup

ω∈Sp

T
\{0}

|B̃(Π̃u− u, ω)|
|∥ω|∥s

+
1

Λs
sup

ω∈Sp

T
\{0}

|B̃(u, ω)− l̃(ω)|
|∥ω|∥s

, (5.33)

where Π̃ is the operator defined in Lemma 4.1.

Proof. This follows in a standard manner, based on Strang’s second lemma. □

We now derive the main result of this paper.

Theorem 5.2. Let Ω ⊂ R
d, d = 2, 3, be a bounded polyhedral domain, and T = {κ} be a subdivision of

Ω consisting of general polytopic elements satisfying Assumptions 4.1, 4.2 and 4.4. Further, let T♯ = {K}
denote the associated covering of Ω consisting of shape-regular d–simplices as in Definition 4.1, which satisfies
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Assumption 4.3. Let uh ∈ Sp

T be the IP DGFEM approximation to u ∈ H1(Ω) defined by (5.2) with the
discontinuity-penalization parameter given by (5.6), and suppose that u|κ ∈ H lκ(κ), lκ > 1 + d/2, for each
κ ∈ T , such that Eu|K ∈ H lκ(K), where K ∈ T♯ with κ ⊂ K. Then, the following error bound holds:

|∥u− uh|∥2s ≤ C
∑

κ∈T

h2sκ
κ

p2lκκ

(

Gκ(F,Cm, pκ, τκ) +Dκ(F,CINV, Cm, pκ)
)

∥Eu∥2Hlκ (K), (5.34)

where

Gκ(F,Cm, pκ, τκ) = ∥c0∥2L∞(κ) + γ2
κ + τ−1

κ + τκβ
2
κp

2
κh

−2
κ + āκp

2
κh

−2
κ

+βκpκh
−d
κ

∑

F⊂∂κ

Cm(pκ, κ, F )|F |+ pκh
−d
κ

∑

F⊂∂κ∩(Γint∪ΓD)

Cm(pκ, κ, F )σ|F |, (5.35)

and

Dκ(F,CINV, Cm, pκ) = āκ

(

p3κh
−d−2
κ

∑

F⊂∂κ∩(Γint∪ΓD)

Cm(pκ, κ, F )σ−1|F |

+p4κ|κ|−1h−2
κ

∑

F⊂∂κ∩(Γint∪ΓD)

CINV(pκ, κ, F )σ−1|F |
)

, (5.36)

with sκ = min{pκ + 1, lκ} and pκ ≥ 1. Here, γκ = ∥c1∥L∞(κ), with c1(x) := (c(x)−∇ · b(x))/(c0(x)), c0 as in
(2.5), and βκ = ∥b∥L∞(κ). The positive constant C is independent of the discretization parameters.

Proof. Our starting point is the bound (5.33) given in Lemma 5.2. To bound the first term on the right-hand
side of (5.33), we employ the approximation results in Lemma 4.1, together with Assumption 4.2; thereby, we
get

|∥u− Π̃u|∥2s ≤ C
∑

κ∈T

h2sκ
κ

p2lκκ

(

∥c0∥2L∞(κ) + τκ∥b∥2L∞(κ)

h−2
κ

p−2
κ

+ āκ
h−2
κ

p−2
κ

+ ∥b∥L∞(κ)
h−d
κ

p−1
κ

∑

F⊂∂κ

Cm(pκ, κ, F )|F |

+
h−d
κ

p−1
κ

∑

F⊂∂κ∩(Γint∪ΓD)

Cm(pκ, κ, F )σ|F |
)

∥Eu∥2Hlκ (K). (5.37)

Next, we define η = u− Π̃u and embark on bounding the second term on right-hand side of (5.33). Exploiting
element-wise integration by parts, the advection-reaction bilinear form Bar(·, ·), cf. (3.3), can be bounded as
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follows:

|Bar(η, ω)| ≤ |
∑

κ∈T

(

∫

κ

(c−∇ · b)ωη dx−
∫

κ

(b · ∇ω)η dx+

∫

∂−κ\Γ

(b · n)⌊ω⌋η− ds

+

∫

∂+κ∩Γ

(b · n)ω+η+ ds
)

|

≤
∑

κ∈T

(

∥c0ω∥L2(κ)∥c1η∥L2(κ) + ∥τ
1
2
κ b · ∇ω∥L2(κ)∥τ

− 1
2

κ η∥L2(κ) + ∥ω+ − ω−∥∂−κ\Γ∥η−∥∂−κ\Γ

+∥ω+∥∂+κ∩Γ∥η+∥∂+κ∩Γ

)

≤
(

∑

κ∈T

∥c1η∥2L2(κ)
+
∑

κ∈T

τ−1
κ ∥η∥2L2(κ)

+ 2
∑

κ∈T

∥η−∥2∂−κ\Γ + 2
∑

κ∈T

∥η+∥2∂+κ∩Γ

)
1
2

×
(

|∥ω|∥2ar +
∑

κ∈T

τκ∥b · ∇ω∥2L2(κ)

)
1
2

.

We now derive a bound for B̃(η, ω) by employing the above result in conjunction with the continuity of B̃d(·, ·);
thereby, we get

|B̃(η, ω)| = |Bar(η, ω) + B̃d(η, ω)|
≤

(

∑

κ∈T

∥c1η∥2L2(κ)
+
∑

κ∈T

τ−1
κ ∥η∥2L2(κ)

+ 2
∑

κ∈T

∥η−∥2∂−κ\Γ

+2
∑

κ∈T

∥η+∥2∂+κ∩Γ

)
1
2
(

|∥ω|∥2ar +
∑

κ∈T

τκ∥b · ∇ω∥2L2(κ)

)
1
2

+ Ccont
d |∥η|∥d|∥ω|∥d

≤
(

∑

κ∈T

γ2
κ∥η∥2L2(κ)

+
∑

κ∈T

τ−1
κ ∥η∥2L2(κ)

+ 2
∑

κ∈T

∥η−∥2∂−κ\Γ + 2∥η+∥2∂+κ∩Γ

+(Ccont
d )2

∑

κ∈T

∥√a∇η∥2L2(κ)
+ (Ccont

d )2
∫

Γint∪ΓD

σ|[[η]]|2 ds
)

1
2 |∥ω|∥s.

Hence, by applying the approximation results in Lemma 4.1, we have the following bound:

sup
ω∈Sp

T
\{0}

|B̃(Π̃u− u, ω)|
|∥ω|∥s

≤ C

(

∑

κ∈T

h2sκ
κ

p2lκκ

(

γ2
κ + τ−1

κ + āκ
h−2
κ

p−2
κ

+ ∥b∥L∞(κ)
h−d
κ

p−1
κ

∑

F⊂∂κ

Cm(pκ, κ, F )|F |

+
h−d
κ

p−1
κ

∑

F⊂∂κ∩(Γint∪ΓD)

Cm(pκ, κ, F )σ|F |
)

∥Eu∥2Hlκ (K)

)
1
2

. (5.38)

Finally, we consider the residual due to the inconsistent formulation given by the third term in (5.33). From
the definition of the original and inconsistent bilinear forms given by (3.4) and (5.1), respectively, we deduce
that

B̃(u, ω)− l̃(ω) =

∫

Γint∪ΓD

{{a(∇hu−Π2(∇hu))}} · [[ω]] ds,
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where Π2 denotes the vector-valued L2–projection onto the finite element space [Sp−1

T ]d, cf. [21]. Employing
the Cauchy Schwarz inequality gives

sup
ω∈Sp

T
\{0}

|B̃(u, ω)− l̃(ω)|
|∥ω|∥s

≤
(

∫

Γint∪ΓD

σ−1|{{a(∇hu−Π2(∇hu))}}|2 ds
)

1
2

.

Writing Π̃ to denote the vector-valued generalization of the hp–projection operator Π̃ given in Lemma 4.1, we
note that

∫

Γint∪ΓD

σ−1|{{a(∇hu−Π2(∇hu))}}|2 ds

≤
∫

Γint∪ΓD

σ−1|{{a(∇hu− Π̃(∇hu))}}|2 ds+
∫

Γint∪ΓD

σ−1|{{aΠ2(Π̃(∇hu)−∇hu)}}|2 ds

≡ I + II.

To bound Term I, proceeding as above gives

I ≤ C
∑

κ∈T

āκ
h
2(sκ−1)
κ

p
2(lκ−1)
κ

h−d
κ

p−1
κ





∑

F⊂∂κ∩(Γint∪ΓD)

Cm(pκ, κ, F )σ−1|F |



 ∥Eu∥2Hlκ (K).

Exploiting the inverse inequality stated in Lemma 4.3, the L2–stability of the projector Π2, and the approxi-
mation results stated in Lemma 4.1, we deduce that

II ≤ C
∑

κ∈T

āκ
h
2(sκ−1)
κ

p
2(lκ−1)
κ

|κ|−1

p−2
κ





∑

F⊂∂κ∩(Γint∪ΓD)

CINV(pκ, κ, F )σ−1|F |



 ∥Eu∥2Hlκ (K).

Hence, the following bound holds:

sup
ω∈Sp

T
\{0}

|B̃(u, ω)− l̃(ω)|
|∥ω|∥s

≤ C

(

∑

κ∈T

āκ
h2sκ
κ

p2lκκ

(

h−d−2
κ

p−3
κ

∑

F⊂∂κ∩(Γint∪ΓD)

Cm(pκ, κ, F )σ−1|F |

+
|κ|−1h−2

κ

p−4
κ

∑

F⊂∂κ∩(Γint∪ΓD)

CINV(pκ, κ, F )σ−1|F |
)

∥Eu∥2Hlκ (K)

)1/2

. (5.39)

Finally, the error bound (5.34) follows by combining the error bounds in (5.37), (5.38), (5.39) with Lemma
5.2. □

Remark 5.5. We note that the above hp–version a priori bound for the IP DGFEM (5.2) holds without the
need to impose any assumption concerning the relative size of the faces F , F ⊂ ∂κ, of a given polytopic element
κ ∈ T . If b ≡ 0 and c ≡ 0 on Ω, then the streamline DGFEM-norm degenerates to the diffusion DGFEM-
norm |∥·|∥d defined in (5.4) and the problem becomes the pure diffusion problem, which is independent of τκ
with constants βκ and γκ equal to zero. Furthermore, the inf-sup condition is equivalent to the coercivity of
the bilinear form B̃d(·, ·). This can be used to derive an error bound, analogous to the error bound (5.34),
which generalises the result presented in [21] for the Poisson equation with constant diffusion. Moreover, in this
setting, for uniform orders pκ = p ≥ 1, h = maxκ∈T hκ, sκ = s, s = min{p + 1, l}, l > 1 + d/2, under the
assumption that the diameter of the faces of each element κ ∈ T is of comparable size to the diameter of the
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corresponding element, i.e., diam(F ) ∼ hκ, h
⊥
κ ∼ hκ, F ⊂ ∂κ, κ ∈ T , so that |F | ∼ h

(d−1)
κ , the a priori error

bound of Theorem 5.2 reduces to

|∥u− uh|∥d ≤ C
hs−1

pl−
3
2

∥u∥Hl(Ω).

This coincides with the analogous result derived in [35] for standard meshes consisting of simplices or tensor-
product elements. Here, we have employed Lemma 4.1 and Theorem 4.1, together with Assumption 4.3, assuming
that for such element domains CINV(pκ, F ) = O(1) and Cm(pκ, F ) = O(1) uniformly for each face F ⊂ ∂κ for
all κ ∈ T . This error bound is h optimal and p suboptimal by p1/2.

Remark 5.6. Consider the purely hyperbolic case when the diffusion tensor a ≡ 0. In this case, the constants
āκ and σ̃κ are identically zero and the term Dκ(F,CINV, Cm, pκ) vanishes due to the consistency of the bilinear
form Bar(·, ·). Then, the streamline DGFEM-norm is actually stronger than the advection-reaction DGFEM-
norm |∥·|∥ar defined in (5.3) and τκ = O(hκ

p2
κ
) by (5.10). In this case, for uniform orders, cf. Remark 5.5 above,

the a priori error bound of Theorem 5.2 yields

|∥u− uh|∥ar ≤ |∥u− uh|∥s ≤ C
hs− 1

2

pl−1
∥u∥Hl(Ω).

Hence, the above hp–bound is optimal in h and suboptimal in p by p1/2. In this case, our bound generalizes the
error estimate derived in [35] to general polytopic meshes under the same assumption b · ∇ξ ∈ Sp

T , ξ ∈ Sp

T .

Remark 5.7. As noted in Remark 5.4, the case of general convection fields b can be treated, based on employing
an inf-sup condition with different test and trial spaces. In this setting, the present analysis can easily be adapted
to utilize such an inf-sup condition, together with the exploitation of the L2–projector Π2 onto the polytopic
element κ ∈ T ; however, this yields an error bound in the |∥·|∥ar norm that is optimal in h but suboptimal
in p by p3/2 for the purely hyperbolic problem. We also point out that if we modify the DGFEM by including
the streamline-diffusion stabilization term as in [34], then an hp–optimal bound can be derived without the
assumption that b · ∇hξ ∈ Sp

T , ξ ∈ Sp

T .

6. Numerical examples

We present a series of computational examples to numerically investigate the asymptotic convergence be-
haviour of the proposed IP DGFEM on general meshes consisting of polytopic elements. As in [21], the integrals
arising in the bilinear and linear forms B(·, ·) and ℓ(·), respectively, are computed based on employing a quad-
rature scheme defined on a sub-tessalation of each polytopic element in the underlying finite element mesh.
Throughout this section, the IP DGFEM solution uh defined by (3.2) is computed with the constant Cσ ap-
pearing in the discontinuity-penalization parameter σ defined in Lemma 5.1 equal to 10. Given the computations
already presented in [21] for pure diffusion problems, here we concentrate on studying the performance of the
proposed IP DGFEM in the hyperbolic and mixed parabolic–hyperbolic setting. To this end, we first study a
pure hyperbolic problem (diffusion matrix a ≡ 0) in Section 6.1. Secondly, we consider an advection-diffusion-
reaction problem with degenerate, anisotropic diffusion matrix a in Section 6.2. Within these examples, we
employ polygonal meshes generated using the general-purpose mesh generator PolyMesher, cf. [48]. Finally, in
Section 6.3, we study the convergence behaviour of the underlying DGFEM for a purely hyperbolic problem in
three dimensions on general polytopes generated based on employing agglomeration.

Throughout this section, we compare the performance of employing Pp–polynomial bases on polytopic meshes,
with Pp– and Qp–polynomial bases defined on standard tensor-product meshes.

6.1. Example 1

In this first example, we let Ω be the square domain (−1, 1)2, and choose

a ≡ 0, b = (2− y2, 2− x), c = 1 + (1 + x)(1 + y)2; (6.1)
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Figure 6.1. Example 1: Uniform polygonal mesh, consisting of 256 elements.

the forcing function f is selected so that the analytical solution to (2.1), (2.4) is given by

u(x, y) = 1 + sin(π(1 + x)(1 + y)2/8), (6.2)

cf. [35].
We investigate the asymptotic behaviour of the hp–version DGFEM on a sequence of successively finer

polygonal and uniform quadrilateral meshes for different values of the polynomial degree p. Three settings are
compared: uniform quadrilateral meshes and local polynomial bases consisting of either Pp or Qp polynomials,
and polygonal meshes and local polynomial bases consisting of Pp polynomials; the three cases are referred to
as, respectively, DGFEM(P), DGFEM(Q), and DGFEM. The polygonal meshes used for DGFEM are gener-
ated using the Polymesher mesh generator, cf. [48]; a typical mesh, consisting of 256 elements, is depicted in
Figure 6.1.

We first examine the convergence behaviour of the three schemes with respect to h–refinement, with fixed
polynomial p, for p = 1, . . . , 6. In Figure 6.2 we plot the error, measured in terms of both the L2(Ω) and
DGFEM-norm, against the square root of the number of degrees of freedom in the underlying finite element
space Sp

T . Here, we clearly observe that ∥u− uh∥L2(Ω) and |∥u− uh|∥DG converge to zero at the optimal rates

O(hp+1) and O(hp+ 1
2 ), respectively, as the mesh size h tends to zero for each fixed p. The latter set of results

confirm the optimality of Theorem 5.2, cf. Remark 5.6, in the case when polygonal elements are employed. We
point out that the (optimal) convergence rate observed when the error is measured in terms of the L2(Ω) norm is
not guaranteed on general meshes, cf. [44] (optimal convergence of ∥u−uh∥L2(Ω) has been established in [25,26],
but only for special classes of triangular elements.) From Figure 6.2, we also observe that polygonal and square
meshes deliver almost identical results given the same number of degrees of freedom, when Pp elements are used
(cf. the errors attained by DGFEM and DGFEM(P)). By comparison, the use of tensor-product polynomials,
i.e. the DGFEM(Q) scheme, leads to a marginal decrease in both error quantities.

Finally, in Figure 6.3 we investigate the convergence behaviour of the three schemes under p–refinement,
for fixed h. Here, uniform polygonal and square meshes consisting of 64, 256, 1024, and 4096 elements are
employed. For each mesh, we plot ∥u − uh∥L2(Ω) and |∥u− uh|∥DG against the square root of the number of
degrees of freedom in Sp

T . In each case we clearly observe exponential convergence. We observe that, under
p–refinement, the efficiency of employing local Pp polynomials is apparent. Indeed, both the DGFEM and
DGFEM(P) schemes lead to a significant reduction in the error, when measured in terms of both the L2(Ω)
and DGFEM-norms, for a fixed number of degrees of freedom, when compared with the DGFEM(Q) scheme,



TITLE WILL BE SET BY THE PUBLISHER 21

Dof
1/2

10
1

10
2

10
3

||u
-u

h ||
L 2

(Ω
)

10-15

10-10

10-5

100

p=1

p=2

p=3

p=4

p=5
p=6

DGFEM
DGFEM(P)
DGFEM(Q)

Mesh Number
2 3 4 5 6 7

O
rd

er
 o

f C
on

ve
rg

en
ce

0

1

2

3

4

5

6

7

8

9

10

p=1

p=2

p=3

p=4

p=5

p=6

DGFEM
DGFEM(P)
DGFEM(Q)

(a)

Dof1/2
101 102 103

|||
 u

-u
h|||

D
G

10-10

10-5

100

p=1

p=2

p=3

p=4

p=5
p=6

DGFEM
DGFEM(P)
DGFEM(Q)

Mesh Number
2 3 4 5 6 7

O
rd

er
 o

f C
on

ve
rg

en
ce

0

1

2

3

4

5

6

7

8

9

p=1

p=2

p=3

p=4

p=5

p=6

DGFEM
DGFEM(P)
DGFEM(Q)

(b)

Figure 6.2. Example 1: Convergence of the DGFEM under h–refinement for p = 1, 2, . . . , 6.
(a) ∥u− uh∥L2(Ω); (b) |∥u− uh|∥DG.

cf. [21]. As before, the DGFEM and DGFEM(P) schemes give almost identical results in terms of the size of
the discretization error, for a fixed number of degrees of freedom, though in some instances, the former scheme
is slightly more accurate.

6.2. Example 2

In this second example, we consider a partial differential equation with nonnegative characteristic form of
mixed type. To this end, we let Ω = (−1, 1)2, and consider the PDE problem:

{

−x2uyy + ux + u = 0, for − 1 ≤ x ≤ 1, y > 0,

ux + u = 0, for − 1 ≤ x ≤ 1, y ≤ 0,
(6.3)
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Figure 6.3. Example 1: Convergence of the DGFEM under p–refinement. Left: ∥u−uh∥L2(Ω);
Right: |∥u− uh|∥DG; (a) Meshes consisting of 64 and 256 elements; (b) Meshes consisting of
1024 and 4096 elements.

with analytical solution:

u(x, y) =

{

sin( 12π(1 + y)) exp(−(x+ π2x3

12 )), for − 1 ≤ x ≤ 1, y > 0,

sin( 12π(1 + y)) exp(−x), for − 1 ≤ x ≤ 1, y ≤ 0,
(6.4)

cf. [30]. This problem is hyperbolic in the region y ≤ 0 and parabolic for y > 0. In order to ensure continuity
of the normal flux across y = 0, where the partial differential equation changes type, the analytical solution has
a discontinuity across the line y = 0, cf. [35].

To highlight one of the advantages of employing finite element methods with discontinuous piecewise poly-
nomial spaces, we consider a special class of quadrilateral and polygonal meshes for which the discontinuity in
the analytical solution lies on element interfaces only; for the case when polygonal elements are employed, a
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Figure 6.4. Example 2: Modified uniform polygonal mesh, consisting of 256 elements

typical mesh is shown in Figure 6.4. In this setting, following [35], we modify the discontinuity-penalization
parameter σ, cf. (5.6), so that σ vanishes on edges which form part of the interface y = 0; this ensures that the
(physical) discontinuity present in the analytical solution is not penalized within the underlying scheme. In this
case, the hp–DGFEM behaves as if the analytical solution were smooth, in the sense that exponential rates of
convergence are observed for both the L2(Ω) and DGFEM-norm of the error under p–refinement, cf. Figure 6.5.
As in the previous example, we again observe that the slope of the convergence curves for both the DGFEM
and DGFEM(P) schemes are steeper than the corresponding convergence curve obtained when local polynomial
bases consisting of tensor-product polynomials (Qp basis) are employed, cf. the numerical results presented for
the DGFEM(Q) scheme. The DGFEM and DGFEM(P) schemes give once more very similar results in terms
of the size of the computed error for a given number of degrees of freedom. Nevertheless, we notice more clearly
that the use of polygonal elements leads to a slight improvement when considering ∥u − uh∥L2(Ω). As noted
in [21], cf. also [35], the improvement in the L2(Ω) norm when polygons are employed, in comparison with
square elements, is attributed to the increase in interelement communication.

6.3. Example 3

In this final example, we investigate the performance of the proposed DGFEM on sequences of polyhedral
meshes in three dimensions for a purely hyperbolic problem. To this end, we consider a three–dimensional
variant of the two–dimensional problem considered in Section 6.1. In particular, we let Ω be the unit cube
(0, 1)3 and set

a ≡ 0, b = (−y, z, x), c = xy2z;

f is then selected so that the analytical solution to (2.1), (2.4) is

u(x, y) = 1 + sin(πxy2z/8). (6.5)

In this section the DGFEM solution is computed on general polyhedral meshes, stemming from the agglom-
eration of a given (fixed) fine mesh Tf . More precisely, we employ a fine mesh consisting of approximately 1M
tetrahedral elements (1019674 elements, to be precise). The coarse agglomerated mesh T is then constructed
based on exploiting the graph partitioning package METIS [38]. In order for METIS to partition the mesh Tf ,
the logical structure of the mesh is first stored in the form of a graph, where each node represents an element
domain of Tf , and each link between two nodes represents a face shared by the two elements represented by
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Figure 6.5. Example 2: Convergence of the DGFEM under p–refinement. Left: ∥u−uh∥L2(Ω);
Right: |∥u− uh|∥DG; (a) Meshes consisting of 64 and 256 elements; (b) Meshes consisting of
1024 and 4096 elements.

the graph nodes. The partition of Tf constructed by METIS is produced with the objective of minimizing the
number of neighbours among each of the resulting partitions. In Figure 6.6, we show (the surface mesh of) the
polyhedral meshes generated by METIS, which consist of 64, 512, 4096, and 32768 elements.

In Figure 6.7 we investigate the h–version convergence behaviour of the DGFEM on both the polyhedral
meshes depicted in Figure 6.6 and uniform hexahedral meshes, using local Pp polynomial bases; denoted by
DGFEM and DGFEM(P), respectively. As already noted in Section 6.1, we again observe that ∥u − uh∥L2(Ω)

and |∥u− uh|∥DG converge to zero at the optimal rates O(hp+1) and O(hp+ 1
2 ), respectively, as the mesh size h

tends to zero for each fixed p when the DGFEM(P) scheme is employed on uniform tensor-product elements.
Moreover, we observe that the DGFEM-norm of the error, when general polyhedral elements are employed, is
very similar to the corresponding quantity computed for the DGFEM(P) scheme. However, we observe a slight
degradation of ∥u−uh∥L2(Ω), when the DGFEM scheme is employed, when compared to the case when uniform
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(a) (b)

(c) (d)

Figure 6.6. Example 3: Agglomerated meshes. (a) 64 elements; (b) 512 elements; (c) 4096
elements; (d) 32768 elements.

hexahedral elements are exploited. For brevity, the corresponding results for the DGFEM(Q) are omitted;
though, we note again that, for fixed p, this approach is more efficient as the mesh is uniformly refined.

Finally, we study the performance of the DGFEM, DGFEM(P), and DGFEM(Q) schemes under p–refinement,
for a given fixed mesh. To this end, in Figure 6.8 we plot both ∥u−uh∥L2(Ω) and |∥u− uh|∥DG against the third
root of the number of degrees of freedom in Sp

T . As in the previous numerical examples, we again observe the
superiority of employing local polynomial bases of total degree p in comparison with full tensor-product bases
of degree p in each coordinate direction.
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Figure 6.7. Example 3: Convergence of the DGFEM under h–refinement for p = 1, 2, 3, 4.
(a) ∥u− uh∥L2(Ω); (b) |∥u− uh|∥DG

.

7. Concluding Remarks

In this article, we have analyzed the hp–version of the DGFEM for PDEs with nonnegative characteristic form
on general meshes, consisting of polytopic elements. Here, general classes of polytopic elements are admitted,
including elements with degenerating (d − k)–dimensional facets, k = 1, . . . , d − 1. The underlying analysis
exploits novel hp–version approximation and inverse inequalities, together with the inf-sup condition derived
in Theorem 5.1; this latter result generalizes the corresponding condition developed in [19, 20]. Numerical
experiments have been presented which not only confirm the theoretical results derived in this paper, but
also demonstrate the efficiency of employing local polynomial spaces of total degree p, defined in the physical
coordinate system, compared with tensor-product polynomial bases, mapped from a given reference or canonical
frame, under p–refinement.
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Figure 6.8. Example 3: Convergence of the DGFEM under p–refinement. (a) ∥u− uh∥L2(Ω);
(b) |∥u− uh|∥DG.
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cations (Berlin) [Mathematics & Applications]. Springer, Heidelberg, 2012.
[29] X. Feng and O.A. Karakashian. Two-level additive Schwarz methods for a discontinuous Galerkin approximation of second

order elliptic problems. SIAM J. Numer. Anal., 39(4):1343–1365 (electronic), 2001.
[30] E.H. Georgoulis. Discontinuous Galerkin methods on shape-regular and anisotropic meshes. D.Phil. Thesis, University of

Oxford, 2003.
[31] E.H. Georgoulis. Inverse-type estimates on hp-finite element spaces and applications. Math. Comp., 77(261):201–219 (elec-

tronic), 2008.
[32] E.H. Georgoulis and A. Lasis. A note on the design of hp-version interior penalty discontinuous Galerkin finite element methods

for degenerate problems. IMA J. Numer. Anal., 26(2):381–390, 2006.

[33] S. Giani and P. Houston. hp–Adaptive composite discontinuous Galerkin methods for elliptic problems on complicated domains.
Num. Meth. Part. Diff. Eqs., 30(4):1342–1367, 2014.
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[36] P. Houston and E. Süli. Stabilised hp–finite element approximation of partial differential equations with nonnegative charac-
teristic form. Computing, 66(2):99–119, 2001.
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