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Abstract

A new stochastic collocation finite element method is proposed for the numerical solution of elliptic boundary value

problems (BVP) with random coefficients, assuming that the randomness is well-approximated by a finite number

of random variables with given probability distributions. The proposed method consists of a finite element approx-

imation in physical space, along with a stochastic collocation quadrature approach utilizing the recent Multilevel

Sparse Kernel-Based Interpolation (MuSIK) technique (Georgoulis, Levesley & Subhan, SIAM J. Sci. Comput., 35(2),

pp. A815–A831, 2013). MuSIK is based on a multilevel sparse grid-type algorithm with the basis functions consist-

ing of directionally anisotropic Gaussian radial basis functions (kernels) placed at directionally-uniform grid-points.

We prove that MuSIK is interpolatory at these nodes, and, therefore, can be naturally used to define a quadrature

scheme. Numerical examples are also presented, assessing the performance of the new algorithm in the context of

high-dimensional stochastic collocation finite element methods.

Keywords: Stochastic collocation, PDE with random data, sparse grids, radial basis functions, high dimensional

approximation, interpolation.

1. Introduction

Uncertainty is often embedded in the mathematical modelling of physical systems via introducing randomness

in the coefficients of continuum models involving partial differential equations (PDEs). Uncertainty may come from

incompleteness of understanding the nature and/or the difficulty of accurately modelling a phenomenon. Several

approaches have appeared in addressing these challenges, such as worst-case scenario analysis (see, e.g., [3]), or via

the introduction of various probabilistic expansions. Popular families of methods of the latter kind are so-called the

polynomial chaos expansions [36, 21, 49, 30] and the Karhunen-Loève expansions [40, 41, 5, 23, 6, 4, 20, 44, 45, 51,

34] for parametrisation of the random fields. In this work, we focus on elliptic PDEs with random diffusion and load

coefficients which are modelled as random fields with given spatial correlation structure. Typically, numerical methods

for this class of problems seek to predict statistical moments of the numerical solution (such as mean, variance, etc.)

with a given probability distribution of random field which, if unknown, is approximated by a Karhunen-Loève-type

expansion [40, 41] as a combination of a finite number of random variables. This is done either by resorting to high-

dimensional deterministic settings, see, e.g., [5, 23, 6, 4, 20, 44, 45, 29, 11, 10, 19] and the references therein, or using

quasi Monte-Carlo or Multi-level Monte-Carlo techniques, see, e.g., [7, 15, 38, 18, 39, 31, 52, 28] and the references

therein.

This work is concerned with a new stochastic collocation finite element method, whereby the collocation step

is based on a novel sparse-type quadrature scheme utilizing the recent Multilevel Sparse Kernel-Based Interpolation

(MuSIK) technique [27]. To focus on this novel quadrature, we consider a fairly standard setting for the finite element

discretization and noise approximation in the context of stochastic collocation. We believe, nevertheless, that the new

collocation step is also applicable in more elaborate stochastic collocation approaches. We also mention [56], which

contains an interesting computational verification of the proposed approach.

MuSIK is a low complexity interpolation scheme, constructed via a sparse grid-type combination technique [22,

33], with the basis functions consisting of directionally anisotropic Gaussian kernels (radial basis functions) centred
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at uniform grid-points in each spatial direction. The use of Gaussian kernels, instead of polynomials (as typically

done in the literature [4, 44, 45],) enables, crucially, the use of directionally uniform grids. Therefore, the proposed

MuSIK-type quadrature is both multilevel and hierarchical with respect to the quadrature nodes between consecutive

levels. This means that improvement of the quadrature accuracy is done in a “multiresolution” fashion, whereby

the next level improves only on higher frequencies than the previous levels, i.e., adding “details”. Hence, if higher

accuracy is found to be needed after the (typically lengthy) computation, more levels are added to further improve the

accuracy without the need to discard and restart the computation.

To ensure the suitability of MuSIK in the context of numerical quadrature, we prove that MuSIK is, indeed, an

interpolant at the directionally uniform (hierarchical) sparse-grid nodes. We stress, however, that, contrary to the

standard polynomial or piecewise polynomial/spline sparse-grid interpolants [14, 4, 25], the respective MuSIK basis

functions do not form nested linear spaces at each level. Indeed, we show that the nestedness of the nodes along with

tensor-type basis functions is sufficient for a sparse-grid/combination-type scheme to be interpolatory. This result

could be of independent interest.

Another key attribute of the proposed approach is the unified treatment of random variables with both bounded and

unbounded ranges. Indeed, as MuSIK employs globally supported Gaussian kernels, they are suitable to approximate

also unbounded random variables (e.g., Gaussian random variables) upon suitable selection of the kernel center loca-

tions. In contrast, polynomial stochastic collocation approaches employ special polynomial expansions (e.g., Hermite

polynomial expansions) to treat Gaussian random variables, which are, crucially, not hierarchical. In this context, the

proposed stochastic collocation based on MuSIK, which is naturally hierarchical by construction renders itself as an

attractive alternative.

The probability space is determined by the random variables retained in the truncated Karhunen-Loève expansions

[40, 41]. The proposed method is tested numerically for an elliptic problem with up to 21 dimensions in probability

space, and for both bounded and unbounded random variables. The numerical results, highlight the good performance

of the proposed method in terms of accuracy versus degrees of freedom and dimension.

The remainder of this work is organized as follows. In Section 2, the model problem is introduced, along with the

stochastic collocation FEM framework. In Section 3, the MuSIK is reviewed and we also prove that MuSIK scheme

is interpolatory on the grid points, while in Section 4 the MuSIK-based stochastic collocation FEM is introduced.

Numerical examples are given in Section 5, while some conclusions and further directions of research are discussed

in Section 6.

2. Problem Setting

2.1. Model problem

Let D ⊂ R
d be an open polygonal domain, henceforth termed as the physical domain. Let also (Ω,F , P) be a

complete probability space, with Ω being the set of outcomes, F ⊂ 2Ω the corresponding σ-algebra of events, and

P : F → [0, 1] the probability measure. We consider the stochastic elliptic boundary value problem: find the random

field, u : Ω × D→ R, such that

−∇ · (a(ω, x)∇u(ω, x)) = f (ω, x) for x ∈ D, u(ω, x) = h(x) for x ∈ ∂D, (1)

ω ∈ Ω, P-almost everywhere in Ω, with a denoting the diffusivity coefficient, whose detailed properties are given

below and h ∈ H1/2(∂D) := {v ∈ L2(D) : ‖v‖H1/2(∂D) < +∞} where ‖v‖H1/2(∂D) := infv=γw ‖w‖H1(D) and γ denotes the

classical Sobolev trace operator. We stress, however, that more general elliptic problems involving lower order terms

and mixed boundary conditions are by all means possible to be included in the present framework. We refrain from

doing so in the interest of simplicity of the presentation.

To ensure ellipticity, we assume that

∃amin, amax ∈ (0,∞), s.t. P(ω ∈ Ω : a(ω, x) ∈ [amin, amax] ∀x ∈ D) = 1, (2)

i.e., a(ω, ·) is uniformly bounded and coercive. Also, we introduce the Hilbert spaces

VP,a := {v ∈ L2
P(Ω) ⊗ H1(D):

∫

D

EP[a|∇v|2]dx < ∞},
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with respective norm ‖v‖P,a :=
(

∫

D
EP[a|∇v|2 + |v|2]dx

)1/2
, where EP denotes the P-mean of a random field. From the

above assumptions, we can see that VP,a ⊂ VP,1, and that ‖v‖P,1 ≤ C(amin, amax)‖v‖P,a. The weak form of the problem

(1) then reads: there exists a unique u ∈ VP,a, such that, for all v ∈ L2
P
(Ω) ⊗ H1

0
(D), we have

∫

D

EP[a∇u · ∇v]dx =

∫

D

EP[ f v]dx.

The well-posedness of (1) follows from the Lax-Milgram lemma, by assuming
∫

D
EP[ f 2]dx < ∞. Then, the problem

has a unique solution u ∈ VP,a. For brevity, we also set E ≡ EP.

2.2. Finite dimensional noise assumption

A central question for this class of PDE problems is the parametrisation of the randomness in the diffusion a and

in the forcing term f . This has been studied in a number of works (see, e.g., [5, 42, 23] and the references therein).

When randomness can be completely described through a finite number of random variables of known probability

densities, the original (stochastic) problem (1) can be transformed into a deterministic one. When randomness is not

completely defined through such a finite number of random variables, the predominant way forward in the literature

has been to represent the random coefficients as expansions of infinitely many random variables and truncate these

expansions.

A widely used tool in this context is the Karhunen-Loève expansion [40, 41], which can be used to represent the

random diffusion a and load f coefficients as an expansion of infinite number of random variables, whose careful

truncation after N terms, say, results in approximations aN and fN , defined through a finite family of known random

variables.

More specifically, let g be a second order random field, with covariance cov[g] : D × D → R. We introduce the

compact and self-adjoint operator Tg : L2(D)→ L2(D) by

Tgv(·) :=

∫

D

cov[g](x, ·)v(x) dx , v ∈ L2(D),

which admits a sequence of non-negative, decreasing eigenvalues {λk}∞k=1
. The corresponding sequence of orthonormal

eigenfunctions is denoted by {φk}∞k=1
.

Using the above orthonormal set, we define a family of mutually uncorrelated real random variables, given by

Yk(ω) :=
1

λk

∫

D

(g(w, x) − E[g](x))φk(x) dx, (3)

k ∈ N, with E[Yk] = 0 and E[YiY j] = δi j for i, j, k ∈ N. We can now further define the N-term partial sum of the

Karhunen-Loève expansion gN of g, by

gN(ω, x) := E[g](x) +

N
∑

k=1

√

λkφk(x)Yk(ω), (4)

P-a.e. in Ω, with N ∈ N. Mercer’s theorem [41] then implies

lim
N→∞

{

sup
D

E[(g − gN)2]

}

= lim
N→∞

{

sup
D

( ∞
∑

k=N+1

λkφ
2
k

)}

= 0.

We stress that the practical construction of eigenpairs (λk, φk), along with the study of the eigenvalue decay are

involved topics, which we shall refrain from exploring in detail in this work; instead, we refer to [16, 53].

For the remainder of this work, we shall assume that we have at our disposal known approximations aN and

fN of the random diffusion a and load f random fields, respectively. We shall be seeking to find a random field

uN : Ω × D→ R, such that

−∇ · (aN(ω, x)∇uN(ω, x)) = fN(ω, x) for x ∈ D, uN(ω, x) = g(x) for x ∈ ∂D, (5)
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P-almost everywhere in Ω, such that uN ∈ VP,a is unique and is described by a set of N random variables [Y1, . . . ,YN],

viz., uN(ω, x) ≡ uN(Y1(ω), . . . ,YN(ω), x).

As the focus of this work is in proposing a new framework for sparse high-dimensional stochastic collocation

procedures, we shall make use of the Karhunen-Loève expansion for the log(a − amin) under the assumption that

a > amin ∀x ∈ D, almost surely in Ω to guarantee the diffusivity coefficient is bounded away from zero [45, 44],

thereby constructing an aN as in (4), with

log(aN − amin)(ω, x) = φ0(x) +
∑

1≤n≤N

√

λnφn(x)Yn(ω), (6)

with φ0(x) denoting the mean. For conditions on the well-posedness of (5), we refer to [2, 24]. We stress, however,

that the new stochastic collocation technique presented below is independent of the expansion used for a. The right

hand-side of (1) is also assumed to be well approximated by a truncated Karhunen-Loève expansion:

fN(ω, x) = c0(x) +
∑

1≤n≤N

√
µncn(x)Yn(ω).

The diffusion tensor a and forcing term f are often independent. In such a situation, the truncated Karhunen-Loève

expansions of a and f will depend on a distinct subset of [Y1, . . . ,YN] each. Nonetheless, we retain the same index N

for both in the interest of notational simplicity.

Denoting by Γk(Ω) the images of the random variables Yk (which may be unbounded), we set ΓN =
∏N

n=1 Γn(Ω).

On ΓN , we define ρ : ΓN → R+, with ρ ∈ L∞(ΓN) to be the joint probability density function of the random variables

[Y1, . . . ,YN], and we denote by L2
ρ(Γ

N) the ρ-weighted L2-space over ΓN .

Hence, (5) can be transformed to the deterministic problem: find uN ∈ L2
ρ(Γ

N) ⊗ H1(D), such that

∫

ΓN

ρ(y)

∫

D

aN∇uN · ∇v dxdy =

∫

ΓN

ρ(y)

∫

D

fNv dxdy, (7)

for all v ∈ L2
ρ(Γ

N) ⊗ H1
0
(D). The proof of existence and uniqueness for the first two statistical moments can be found

in [4]. Also, in [17] the discretization of different statistical moments for nonlinear parametric operator equations is

discussed.

2.3. Stochastic collocation FEM

The next step is to design a numerical method to approximate the solution to (7), taking into account that dim(ΓN)

can be large.

To this end, we consider a standard finite element space Vh ⊂ H1
0
(D) of degree p, with total dimension Nh, defined

on a regular triangulation Th with maximum mesh-diameter h > 0 (see, e.g., [12]).

To arrive at a practical numerical method, one needs to approximate the integral over the probability space also.

The stochastic collocation and related approaches [5, 23, 6, 4, 20, 44, 45] proceed by approximating the integral via

carefully selected quadrature rules for high dimensional problems. A typical such quadrature rule is of the form

∫

ΓN

G(y)dy ≈
∑

q∈N
wqG(yq),

for some integrable integrand G, where N is an index set, {yq : q ∈ N} is the set of abscissae and {wq : q ∈ N} the set

of weights, respectively. Such quadrature rules can arise from considering a corresponding interpolation problem for

the integrand G on {yq : q ∈ N}.
Indeed, let {θq : q ∈ N} be a Lagrange basis for the class of interpolants S at the points {yq : q ∈ N}. The

interpolation problem for the integrand seeks a function S from the space spanned by {θq : q ∈ N}, such that

G(yq) = S (yq) for all q ∈ N . Hence, we have

S (y) =
∑

q∈N
G(yq)θq(y).

4



Therefore, going back to the integral over ΓN , we consider the approximation
∫

ΓN

G(y)dy ≈
∫

ΓN

S (y)dy =
∑

q∈N
wqS (yq) =

∑

q∈N
wqG(yq), (8)

with

wq :=

∫

ΓN

θq(y) dy. (9)

Using this quadrature formula on both sides of (7), we deduce formally

∑

q∈N
wq ρ(yq)

∫

D

(

aN(yq, x)∇uN(yq, x) · ∇v(x) − fN(yq, x)v(x)
)

dx ≈ 0. (10)

These formal considerations give rise to the stochastic collocation finite element method, whereby we require (10) to

hold with strict equality. This is satisfied upon finding u
h,q

N
∈ Vh approximations to uN(yq, ·), such that

∫

D

aN(yq, x)∇u
h,q

N
(x) · ∇v(x) dx =

∫

D

fN(yq, x)v(x) dx ∀v ∈ Vh,

for each q ∈ N ; the respective approximate solution to (7) is, thus, given by

uh
N(y, x) :=

∑

q∈N
u

h,q

N
(x)θq(y).

A crucial numerical challenge in this approach is the cardinality of N . If we use tensor-product-type quadrature

rules based on univariate quadratures with r points in each direction, say, then the cardinality of N will be rN , i.e.,

the cardinality of the finite element problems to be solved grows exponentially with the dimension of ΓN . This is a

manifestation of what is typically referred to in the literature as curse of dimensionality. To address this, reduced-

complexity quadrature rules have been employed in the literature. Prominent methods in this setting are the Smolyak-

type quadratures [50], based on sparse tensor products of Gauss-Lobatto or Clenshaw-Curtis univariate rules [4, 45,

44], for bounded ΓN . The sparse quadrature node distribution of Gauss-type rules is non-hierarchical as the number

of nodes increases in each direction, while Clenshaw-Curtis based rules are hierarchical upon doubling of the nodes

in each direction. For unbounded ΓN , Smolyak-type quadratures based on univariate Hermite polynomials have been

typically used [4]. The latter do not give rise to hierarchical nodes. If more resolution is found to be required

for aforementioned quadrature rules with non-hierarchical node distributions, one has to recompute essentially a

completely different set of nodal values. Thus, within an adaptive quadrature stochastic collocation setting, Clenshaw-

Curtis type methods are preferred for bounded ΓN in the literature [44]; for unbounded ΓN , the nested Gauss-Hermite

rule in [26, 35] is preferred.

In the next section, we shall introduce a new sparse quadrature rule based on the recent multilevel sparse kernel-

based interpolation (MuSIK) method [27], which uses Gaussian kernels instead of polynomials and can be applied

to both bounded and unbounded ΓN . An attractive attribute of the MuSIK approach is its ability to provide stable

interpolation on hierarchical directionally-uniform interpolation nodes. In particular, MuSIK is able to interpolate in

a stable fashion on the standard sparse-grid node sequences for piecewise linear sparse interpolation (cf., Figure 3 for

an illustration of two dimensional node distributions at different levels.) Crucially, these sparse grid node distributions

are hierarchical between two consecutive levels of refinement and are uniform in each axiparallel direction.

This hierarchical configuration of the interpolation nodes is combined within a multilevel iteration, whereby a

more accurate interpolant is computed by adding “detail” to the previous one. Recalling that standard Gaussian kernels

are able to interpolate at an exponential rate of convergence [55], such good performance is not counter-intuitive or

unexpected.

3. Multilevel sparse kernel-based interpolation

3.1. Review of MuSIK

Here we review the multilevel sparse kernel-based interpolation method (MuSIK) introduced in [27] (where it was

abbreviated as MLSKI). We point out that the proposed MuSIK algorithm in this work is different from the original

5



MuSIK algorithm, and is more suitable for high-dimensional quadrature (cf. Remark 3). Moreover, we shall prove

that the MuSIK method is, indeed, interpolatory at the respective nodes.

Definition 1. A continuous function Φ : RN → R is said to be a positive definite kernel if
∑M

i, j=1 cic jΦ(xi − x j) > 0

for any M pairwise different points xi, i = 1, . . . ,M and for any c := [c1, . . . , cM]T with c , 0. Moreover, Φ is said to

be radial, if there exists a function φ : [0,∞) → R such that Φ(x) = φ(‖x‖) for all x ∈ RN , for some norm ‖ · ‖ of RN .

Finally, a radial positive definite kernel Φ will be referred to as radial basis function (RBF).

Examples of widely used positive definite RBFs are the Gaussians with φ(r) := exp(−c2r2), inverse multiquadrics

φ(r) := 1/
√

c2 + r2, and the family of compactly supported RBFs [54]. We shall focus on Gaussian kernels in this

work, due to their spectral accuracy in conjunction with their tensor product nature: multivariate Gaussians are tensor

products of univariate Gaussian kernels. The interpolation of data with anisotropic distribution of data sites in the

domain should be considered specially.

Definition 2. Given an RBF ϕ(‖ · −xi‖) centred at xi ∈ R
N and an invertible matrix A ∈ R

N×N , we define the

anisotropic RBF ϕA by ϕA(‖ · −xi‖) = ϕ(‖A(· − xi)‖).

For any given data sites X := {x1, . . . , xM} contained in a bounded domain Γ ⊂ R
N , we consider the interpolation

data {(xi, zi) : xi ∈ X, i = 1, . . . ,M}. Then, for ϕ positive-definite radial function, the anisotropic RBF interpolant S A

is given by

S A(x) =

M
∑

i=1

ciϕA(‖x − xi‖), x ∈ Γ;

the ci are chosen to satisfy the interpolation condition S A(xi) = zi, i = 1, . . . ,M. The invertibility of the scaling matrix

A guarantees the well-posedness of the interpolation problem for positive definite kernels [9].

To address the computational challenge posed by high dimensionality, the MuSIK is constructed as a multilevel

interpolation method on sparse grids in the sense of [14], whose node cardinality grows favourably with dimension

N; see Figure 3 for an illustration of the node distribution in standard sparse grids in two dimensions. To ensure

the well-posedness of the interpolation problem, a multivariate Boolean interpolation procedure [22], also known as

combination technique in sparse grid terminology [33], is employed.

The idea behind such classical combination/extrapolation procedures is to construct an interpolant on sparse grids

as a linear combination of smaller interpolation sub-problems. To illustrate this, we refer to Figure 1, depicting a

sparse grid as the union of directionally uniform partial grids. In the present context, anisotropically scaled Gaussians

are employed by the proposed MuSIK method as interpolants of each partial grid; the anisotropic scaling used is such

to make the mapped interpolation nodes to be globally uniform on the mapped domain. The use of Gaussian kernels,

although not crucial for the MuSIK method [27], is preferable as their tensor-product nature results to the combination

technique being interpolatory at the nodes; this is proven in Theorem 5 below.

Once each partial grid interpolant is computed, all such interpolants are linearly combined in an appropriate

fashion (to be specified below) to form a sparse kernel-based interpolant (SIK). Due to the essentially stationary

nature of the SIK method with Gaussians, convergence is accelerated via a multilevel procedure: the SIK is computed

on the coarsest grid used in the computation, which is subsequently enriched by SIK computations of the residuals at

the sparse grid nodes on the next level. The hierarchical nature of the sparse grids of different levels is particularly

convenient at this point; cf., Figure 1.

We start by defining SIK on a bounded domain Γ := [0, 1]N , to aid accessibility; the discussion on how these results

can be extended to general, possibly unbounded, tensor-product domains Γ is postponed until Section 4.2. To this end,

consider a function u : Γ → R to be interpolated. For a multi-index ℓ = (l1, . . . , lN) ∈ N
N , we define the family of

directionally uniform grids {Xℓ : ℓ ∈ N
N} consisting of the nodes xℓ,i := (xl1,i1 , . . . , xlN ,iN

), with xl j,i j
= i j2

−(l j−1), for

i j = 0, 1, . . . , 2l j−1, j = 1, . . . ,N, with the convention that l j = 1 contains 1 node at the center of the jth direction for

j = 1, . . . ,N. We also define the vector of directional meshsizes of Xℓ by hℓ = 2−(l−1) := (2−(l1−1), . . . , 2−(lN−1)). Hence,

if hli = 2−(k−1), for all i = 1, · · · ,N, Xℓ is the uniform full grid of level k; this will be denoted by X
k,N . We consider

the subset of Xk,N , given by

X̃
k,N :=

⋃

|ℓ|1=k+N

Xℓ, (11)

6



with |ℓ|1 := l1 + · · · + lN , which will be referred to as the sparse grid of level k in N dimensions, for k = 0, 1, . . . . We

refer to Figure 1 for an illustration of (11) for k = 4 and N = 2.

= ∪ ∪ ∪ ∪

Figure 1: Sparse grid X̃
4,2 via (11).

We want to evaluate the interpolant at the constituent partial grids Xℓ. As the constituent grids admit different

density in each coordinate direction, we shall make use of the anisotropic RBFs. To this end, for each multi-index

ℓ = (l1, . . . , lN), we consider the transformation matrix Aℓ ∈ RN×N with

Aℓ := diag(2l1−1, . . . , 2lN−1).

The anisotropic RBF interpolant S Aℓ of uh
N

at the points of Xℓ is then given by

S Aℓ (x) :=

Mℓ
∑

j=1

c jϕ(‖Aℓ(x − x j)‖), (12)

for x ∈ ΓN , where Mℓ is the cardinality of Xℓ and c j ∈ R are chosen so that the interpolation conditions

S Aℓ |Xℓ = uh
N |Xℓ ,

are satisfied.

To construct the sparse kernel-based interpolant (SIK) S̃ k on the sparse grid X̃
k,N , the partial grid interpolants S Aℓ

are linearly combined using the formula

S̃ k(x) =

N−1
∑

q=0

(−1)q

(

N − 1

q

)

∑

|ℓ|1=k+N−q

S Aℓ (x). (13)

We refer to Figure 2 for an illustration when N = 2 and k = 4; the interpolant, then, reads

S̃ 4(x) =
∑

|ℓ|1=6

S Aℓ (x) −
∑

|ℓ|1=5

S Aℓ (x).

= ⊕ ⊕ ⊕ ⊕

⊖ ⊖ ⊖ ⊖

Figure 2: The construction of the sparse kernel-based S̃ 4 interpolant on X̃
4,2.

For more details on the combination formula (13), we refer to [22, 33, 32]. Moreover, in Section 3.3 below, we

shall prove that (13) is an interpolant at the sparse grid nodes for the case of Gaussian kernels, or, indeed, any other

basis function constructed as tensor-product of univariate basis functions.
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It is important to note that the SIK can be implemented in a straightforward fashion using the existing standard

RBF interpolation algorithms. Each of the O(kN−1) such partial-grid constituent RBF problems can be solved indepen-

dently. The size of each partial-grid problem is O(2k), where k is the number of levels; in particular, it is independent

of the dimension N.

The next step is to consider a multilevel implementation of SIK [37, 43], in order to accelerate convergence and

to overcome the essentially stationary nature of the SIK interpolant with Gaussians.
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Figure 3: Nested-ness of sparse grids X̃k,2, k = 0, 1, . . . , 5.

The MuSIK algorithm is initialized by computing the SIK S̃ k
0

at the coarsest designated sparse grid X̃
k

0
,N and

setting ∆0 := S̃ k
0
. Then, for j = 1, . . . k, we compute ∆k to be the SIK of the residual uh

N
− ∑k−1

i=0 ∆ j on X̃
k,N . The

resulting MuSIK is then given by

S̃ ML
k :=

k
∑

j=0

∆ j. (14)

Remark 3. The MuSIK method defined above is a variant to the original one presented in [27]. Indeed, as we shall be

concerned with devising a quadrature formula below, it is possible to start the MuSIK at level 0, involving one point

only; we refer to Figure 3 for an illustration. This means that the computational overhead is reduced significantly,

allowing for more levels of the multi-level methods in high dimensional problems, than for the respective interpolation

problem, leading to, potentially, greater accuracy.

The numerical stability of RBF interpolation is, generally speaking, quite challenging due to the ill-conditioning

of the respective interpolation matrices in standard bases; we refer to [47, 48, 55, 13] for detailed discussions on this

issue. Nevertheless, in the MuSIK setting, the resulting partial-grid interpolation problems are typically sufficiently

well conditioned for computations, due to the anisotropic scaling introduced [27]. Indeed, this anisotropic scaling

exactly counteracts the anisotropy of the grid points of each partial-grid, resulting in quasi-uniform grids in the mapped

domains, on which classical radial basis functions are employed. The situation is more favourable in the current

setting of Gaussian kernels, as we shall see below, whereby the tensor product nature of the kernel can be utilised to

accurately construct Lagrange (cardinal) bases efficiently.
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3.2. Tensor products of univariate cardinal functions

Gaussian kernels on R
d can be viewed as tensor products of univariate Gaussians; this is evident also for the

anisotropic versions of Gaussians. This crucial property of Gaussians will be instrumental in both the proof of interpo-

lation of the MuSIK algorithm, and the development of fast procedures to evaluate the respective MuSIK interpolants.

We begin by considering the set of cardinal (also known as Lagrange) functions for each interpolation sub-problem

in the SIK interpolant S Aℓ (·) in (13), with the particular choice of Gaussian RBFs on the set Xℓ. Let χℓ,i be the cardinal

function on the grid indexed by ℓ for the point xℓ,i ∈ Xℓ. Let also χl j,i j
denote the univariate cardinal function in one

variable for the node xl j,i j
, with respect to the set of nodes {xl j,i j

: i j = 0, 1, . . . , 2l j−1}. Note that χl j,i j
is not necessarily

cardinal on a grid of different level lk, k , j. Hence, for j = 1, · · · , d, there exist bl j,i j
∈ R, such that

χl j,i j
(y) =

2
l j−1
∑

i j=0

bl j,i j
exp(−c2h2

l j
(y − xl j,i j

)2),

for y ∈ [0, 1]. Then, we have

z(y) :=

d
∏

j=1

χl j,i j
(y j) =

∑

xℓ,i∈Xℓ

bℓ,i exp(−c2

d
∑

j=i

h2
l j

(yi − xl j,i j
)2),

where bℓ,i =
∏d

j=1 bl j,i j
. This is exactly the form of the cardinal function based on the points in the grid Xℓ, which

implies z(y) = χℓ,i, due to the uniqueness of Gaussian interpolation.

Hence, it is possible to compute the cardinal functions for multivariate approximation by computing ab initio

(to arbitrarily high precision, e.g., by using symbolic calculators) the cardinal functions for univariate approximation

up to (for instance) 5, 9, 17, · · · , 129 equally spaced points, and store these. The approximation process would then

require no solution of linear systems, thereby, massively increasing the speed of the algorithm.

3.3. Tensor product kernels give interpolatory schemes

The combination formula (13) for polynomial-based sparse grid schemes has been proven to be interpolatory [8];

crucially, the proof relies on the nestedness of polynomial spline subspaces. Classical (isotropic) radial basis functions

on sparse grids have also been shown to be interpolatory in [48], albeit in a non-multilevel setting. The multilevel

sparse kernel-based interpolation algorithm considered in the present work, however, is characterised by multilevel

spaces which are not nested, as they are generated by different dilations of an infinitely differentiable function, in

particular, the Gaussian on each level. Note that the interpolation nodes are nested, but in the case of kernel-

based interpolation, nestedness of nodes does not imply nestedness of spanned approximation spaces. Therefore,

in order to prove that the multilevel sparse kernel-based interpolation algorithm is interpolatory, we will generalise

the aforementioned earlier results by showing that the tensor-product nature of the kernel only is sufficient to obtain

interpolation on the directionally uniform sparse-grid nodes.

In what follows, we will need to compute sums of products of binomial coefficients in a number of different

situations. One will be where we are applying the full (N − 1)th order difference operator in the definition of S k to the

number of ways of filling r ≤ N positions in the multiindex with components which sum to j. This number is

(

j + r − 1

j

)

=
( j + 1) · · · ( j + r − 1)

(r − 1)!
,

which is a polynomial of degree r−1 with respect to j, with leading term jr−1/(r−1)!. Hence, the difference operator

applied to this will result in 0 if r < N and be equal to 1, if r = N. On the other hand, we might be in the situation

where the point in question only appears for the first time in some intermediate partial grid within the MuSIK scheme.

In this case, we might not get the full difference operator applied. Let us suppose we only get a partial operator

applied:

CN,s :=

N−1
∑

j=s

(−1)N−1− j

(

N − 1

j

)(

r − 1 + j − s

j − s

)

.
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The second binomial coefficient is in this form because the point will appear once in the first grid ( j = s) and in the

number of ways multi-indices of length j − s can be put into r positions thereafter.

Let us rewrite

CN,s = (−1)N−1−t

N−1−t
∑

j=0

(−1) j

(

N − 1

j + t

)(

r − 1 + j

j

)

. (15)

If we now set

a j := (−1) j

(

N − 1

j + t

)(

r − 1 + j

j

)

,

we have

b j =
a j+1

a j

= − (r + j)(N − 1 − j − t)

( j + t + 1)( j + 1)
,

so that, since a j = 0 when j > N − 1 − t,

N−1−t
∑

j=0

a j = a0

∞
∑

j=0

j
∏

n=0

bn

=

(

N − 1

t

) ∞
∑

j=0

(r) j(t + 1 − N) j

j!(t + 1) j

=

(

N − 1

t

)

2F1(r, t + 1 − N; t + 1; 1), (16)

where (a) j = a(a + 1) · · · (a + j − 1) is the Pochhammer symbol, and 2F1 is the Gauss hypergeometric function; see

[1, Chapter 15]. Using [1, 15.1.20]

2F1(a, b; c; 1) =
Γ(c)Γ(c − a − b)

Γ(c − a)Γ(c − b)
, c − a − b > 0,

we have

2F1(r, t + 1 − N; t + 1; 1) =
Γ(t + 1)Γ(N − r)

Γ(t + 1 − r)Γ(N)
. (17)

Substituting this into (15) and (16) we see that

N−1
∑

j=t

(−1)N−1− j

(

N − 1

j

)(

r − 1 + j − t

j − r

)

= (−1)N−1

(

N − 1

t

)

Γ(t + 1)Γ(N − r)

Γ(t + 1 − r)Γ(N)
.

If t ≤ r−1, then Γ(t+1− r) = ∞, and the sum is equal to zero. If r = N, then we also have a Γ(0) in the numerator,

and then by using continuity of the Γ functions, we have

lim
ǫ→0

Γ(ǫ)

Γ(t + 1 − N + ǫ)
= (−1)N−1−t(N − 1 − t)!;

here we have used the Euler’s reflection formula; see, e.g., [1, 6.1.17]. Thus, with a slight (valid) abuse of the

applicability of (17),

N−1
∑

j=t

(−1)N−1− j

(

N − 1

j

)(

N − 1 + j − t

j − t

)

= (−1)N−1−t(−1)N−1

(

N − 1

t

)

t!(N − 1 − t)!

(N − 1)!
= 1.

We summarise the above development in the following result.
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Lemma 4. If 0 ≤ t < r ≤ N, then

N−1
∑

j=t

(−1)N−1− j

(

N − 1

j

)(

r − 1 + j − t

j − t

)

=

{

1, r = N,

0, 1 ≤ r < N.

We also refer to [46] for a related result.

We will say m<n for two multi-indices m,n ∈ Nd
0

if m j < n j for j = 1, . . ., d, and analogously for >,≤,≥. The key

challenge we face in demonstrating that the combination scheme is interpolatory is that cardinal functions for points

on one grid may not be equal to zero at points on a different grid. So let us fix a grid Xm and compute the value of

the SIK interpolant S k(xm,i) for some 0 ≤ i ≤ 2m.

For ℓ ∈ Ik,N = {ℓ ∈ Nd
0

: k ≤ |ℓ| ≤ k + N − 1}, consider the cardinal functions χℓ,k at the point xℓ,k for some k ≤ 2ℓ.

In order that χℓ,k(xm,i) be non zero we require that

χl j,k j
(xm j,i j

) , 0, j = 1, 2, · · · ,N,

which implies that

k j = i j2
l j−m j , l j ≥ m j.

If m j < l j, χl j,k j
(xm j,i j

) can be non zero.

Since xm,k ∈ Xm̃ for all m̃ ≥ m if ℓ ≥ m, then the only non-zero cardinal function we get at xm,k ∈ Xℓ is χℓ,k̃,

where k̃ j = k j2
l j−m j , j = 1, 2, · · · ,N, which takes the value 1, since xm,k = xℓ,k̃.

We will need to consider different subsets of indices as suggested above. Let A = {1, 2, · · · ,N}. Furthermore,

suppose that ω = {ω1, · · · , ωs}, s ≤ N, is an enumeration of ω, and ℓ(ω) = (lω1
, lω2

, · · · , lωs
) ∈ Ns

0
. Let ω̃ = A \ω, i.e.,

all the elements of A that are not elements of ω.

Given c ∈ N
s
0
, with c := |c|1, we fix a point y ∈ Ik,N , with y(ω) = c; y is the grid point which we are interested

to know in how many grids it belongs to. To do so, we seek the lowest index grid that y is in. To this end, there is a

unique ℓy ∈ N
N
0

with minimum size such that y = xℓy,ky
∈ Xℓy , for some ky ∈ N

N
0

with ky ≤ 2ℓy . Let |ℓy|1 = u ≥ 0.

Then, y ∈ Xℓ for all ℓ ≥ ℓy, with ℓ(ω) = c, and in what follows we compute the contribution at xm,i from cardinal

(Lagrange) functions at y arising from all grids containing y. If we only vary elements indexed by elements of ω

(recall that ω has length s), then, at level u + 1, we have multi-indices which sum to 1 in N − s positions, i.e., N − s

grids. For the next level we have multi-indices which sum to 2 in N − s positions, i.e., (N − s + 1)(N − s)/2 grids, and

so on. Letting

K(m, ω, c, j) = {ℓ ∈ Ik,N : ℓ(ω) = c, ℓ(ω̃) ≥ m(ω̃), |ℓ|1 = m̃ + c + j}, j = 0, 1, · · · ,

where m̃ = |m(ω̃)|1, we seek to compute its cardinality, denoted by card K(m, ω, c, j). When we get to level m̃ + c + j

we are restricting ourselves to the part of the sum without c which sums to c and without ℓy which sums up to u,

because this is the first level we are looking at. Since k is the level of the initial grid we are interested in, hence

k − c − u is the multi-index size we initially have for the number of grids at this level with y ∈ Ik,N . Then, we add one

each time with j.Then, we can see that

card K(m, ω, c, j) =

(

N − s − 1 + k − c − u + j

N − s − 1

)

, (18)

since we are selecting multi-indices which sum to k − c − u + j to put in the N − s positions where ℓ(ω̃) ≥ m(ω̃).

The contribution to S k,N coming from the point y from grids indexed by elements of K(m, ω, c, j) is

(−1)N−1 f (y)χℓy,ky
(xm,i)

N−1
∑

j=0

(−1) j

(

N − 1

j

)

card K(m, ω, c, j)

= (−1)N−1 f (y)χℓy,ky
(xm,i)

N−1
∑

j=0

(−1) j

(

N − 1

j

)(

N − s − 1 + k − c − u + j

N − s − 1

)

,
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using (18).

We now have two situations. Either c + u ≤ k, or c + u > k. In the former case, card K(m, ω, c, j) is a polynomial

of degree N − s− 1 in j. Therefore, Lemma 4 with t = 0, yields that the interpolant vanishes in this case. In the latter

case, we set t = c + u − k in Lemma 4. Then, the above sum becomes

N−1
∑

j=t

(−1) j

(

N − 1

j

)(

N − s − 1 + j − t

N − s − 1

)

,

which is equal to zero by Lemma 4 if t < N − s. Since ci ≤ mωi
− 1, i = 1, 2, · · · , s, we have c ≤ ∑s

i=1(mωi
− 1) =

∑s
i=1 mωi

− s. Thus, |m|1 − s ≥ c + u, and since |m|1 ≤ k + N − 1, we have c + u + s ≤ k + N − 1. Rearranging we have

t = c+ u− k ≤ N − 1− s < N − s as required. Hence, in either situation, those contributions to the interpolant coming

from points different to xm,k are zero.

We are left with computing the contribution to the interpolant at y = xm,k from grids containing xm,k. As before,

we look for grid of lowest multi-index size ℓy ∈ NN
0

, such that xm,k ∈ Xℓ. Suppose that |ℓy|1 = u. Let

K(y, j) = {|ℓ|1 = j : y ≥ ℓy}.

Then y ∈ K(y, j), for all j ≥ u and, hence

card K(y, j) =

(

N − 1 + j − u

N − 1

)

.

Then, since for ℓ ∈ K(y, j) there is unique iy ≤ 2ℓ such that xℓ,iy = y, and

χℓ,iy (y) = 1,

we have the contribution to S k,N from cardinal functions centred at y as

f (y)

N−1
∑

j=0

(−1)N−1− j

(

N − 1

j

)

card K(y, k + j)

= f (y)

N−1
∑

j=0

(−1)N−1− j

(

N − 1

j

)(

N − 1 + k + j − u

N − 1

)

.

As before we have two cases, and similarly, by Lemma 4 the sum is 1. Hence the contribution coming from y is f (y).

Thus we have already proven the following result.

Theorem 5. Assuming that the interpolation kernel has the form

ψ(y) =

d
∏

i=1

φ(yi),

then SIK and the respective MuSIK with this kernel are interpolatory.

4. Stochastic Collocation based on MuSIK

4.1. Bounded random variables

If we wish to apply MuSIK in the context of (8), we only need to calculate the weights for the anisotropic Gaussian

interpolants for each partial grid. This is an immediate consequence of the linearity of both the combination (13) and

of the multilevel enrichment procedures (14).

To this end, let ΓN :=
⊗N

i=1
[αi, βi], and we consider the interpolant

S Aℓ (y) =

Nℓ
∑

j=1

c jϕ(‖Aℓ(y − y j)‖), (19)
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of G(y) in (8) onto a (generic) partial grid. Using the tensor form of the N-variate Gaussian Lagrange basis, we deduce

∫

ΓN

S Aℓ (ξ)dξ =

Nℓ
∑

j=1

c j

N
∏

i=1

∫ βi

αi

e
−a2

i
c2(ξi−yi

j
)2

dξi =

Nℓ
∑

j=1

c j

N
∏

i=1

gi j, (20)

with Aℓ is the N × N scaling diagonal matrix with diagonal elements ai, ξi is the ith dimensional component of ξ, yi
j

is the ith dimensional component of y j, and gi j stands for the integral from the ith dimensional component of jth basis

function. A simple calculation reveals that gi j is given by

gi j =
1

aic
·
√
π

2

[

erf
(

aic(βi − yi
j)
) − erf

(

aic(αi − yi
j)
)

]

, (21)

with erf(x) := 2√
π

∫ x

0
e−t2

dt.

Therefore the integral on the left-hand side of (20) can be constructed by the linear combination of products of

gi j’s, from which the quadrature weights can be calculated.

4.2. Unbounded random variables

We now discuss the possible extension of the above MuSIK stochastic collocation method to random variables

with unbounded ranges ΓN and, in particular for Gaussian random variables. To this end, let {Yi(w) ∼ N(µi, σ
2
i
)}N

i=1
to

be N independent Gaussian random variables.

The key observation is the probability density function of Gaussian distribution decays exponentially fast on tails.

Therefore, the MuSIK quadrature rule for (10) over ΓN = R
N , with ρ involving Gaussian functions, can be arbitrarily

well approximated by interpolating the integrand on MuSIK nodes contained in the hypercubes Hk :=
⊗N

i=1
[µi −

rσi, µi + rσi], instead, with r ∈ N a user-defined constant. The resulting interpolant S Aℓ is a good approximation to

the integrands over ΓN = R
N : multivariate Gaussians used by MuSIK also decay exponentially fast outside Hk. In this

context, we set αi = −∞ and βi = ∞ for i = 1, . . . ,N, in (20).

Therefore, the proposed MuSIK stochastic collocation approach results to hierarchical node distributions also in

the case of unbounded random variables. To substantiate further this claim, we present a numerical example for the

MuSIK stochastic collocation method for Gaussian random variables in Section 5.2.

5. Numerical examples

We present a series of numerical examples highlighting the good performance of the proposed MuSIK stochastic

collocation method for the approximation of elliptic PDEs with random coefficients.

5.1. Example 1

We shall now illustrate the convergence of the new stochastic collocation method based on MuSIK for the stochas-

tic linear elliptic boundary value problem with two physical spatial dimensions (d = 2). The example here is take

from [45],

−∇ · (a(ω, x1, x2)∇u(ω, x1, x2)) = f (ω, x1, x2) in Ω × D,

u(ω, x1, x2) = 0 on Ω × ∂D, (22)

with D = [0, 1]2, a deterministic load f (ω, x1, x2) = cos(x1) sin(x2) and the random diffusion coefficient aN(ω, x1) is

independent of spatial variable x2, constructed by:

log(aN(ω, x1) − 0.5) = 1 + Y1(ω)(

√
πL

2
)1/2 +

N
∑

i=2

ξiφi(x1)Yi(ω), (23)

where

ξi := (
√
πL)1/2exp(

−(⌊ i
2
⌋πL)2

8
), if i ≥ 1, (24)
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and

φi(x1) :=



















sin(
⌊ i

2
⌋πx1

Lp
), for i even;

cos(
⌊ i

2
⌋πx1

Lp
), for i odd,

(25)

for {Yn(ω)}∞
n=1

independent random variables, uniformly distributed in the interval [−
√

3,
√

3], with zero mean and

unit variance, viz., E[Yn] = 0 and E[YnYm] = δmn for n,m ∈ N. The corresponding joint probability density function

is denoted by ρ and (23) is the truncation of an one-dimensional random field with stationary covariance

cov[log(aN − 0.5)](ξ, η)

= E[(log(a)(ξ) − E[log(a)(ξ)])(log(a)(η) − E[log(a)(η)])] = exp(
−(ξ − η)2

L2
c

),

For x1 ∈ [0, 1], let Lc be the desired physical correlation length for the coefficient a, meaning that for |ξ − η| >> Lc

two random variables a(ξ) and a(η) become uncorrelated. Then, set Lp := max{1, 2Lc} in (25), and L := Lc/Lp in (24)

and (23).

For the solution of each independent finite element problem, standard cubic Lagrange elements over a uniform

triangulation of D with 4225 unknowns are used. To study the convergence rate of the MuSIK stochastic collocation

method, we consider the problem with a fixed dimension N and investigate the error behavior with respect to the

different levels k. The implementation of this algorithm is performed in MATLAB using the ALICE high performance

computing facility at the University of Leicester. We shall focus only on the quadrature-induced part of the error.

To estimate the L2(D)-norm of the computational error ǫ in the k-th level of MuSIK, we use the approximation

‖E[ǫ]‖L2(D) ≈ ‖E[M(K,N)ΠhuN −M(k,N)ΠhuN]‖L2(D), (26)

with M(k,N) denoting the MuSIK collocation projection at level k over dimension N probability space with k =

0, 1, 2, . . . ,K, and Πh denoting finite element projection over the spatial domain D. We begin by assessing the per-

formance of the method with respect to the probability space dimension N for N = 5, 10, 14, 21, selecting correlation

length Lc := 1/64. The L2(D)-norm of the computational error ǫ against ‘Dof’ (standing for the total number of

collocation points) is given in Figure 4. As the level k increases, the observed convergence rate appears to be (at

least) algebraic. We also observe the (expected) slow deterioration of convergence rate as N increases (cf. [4, 45]

for the corresponding computations using polynomially exact quadratures). Further, to investigate the performance of

MuSIK approximation under different correlation lengths Lc, we set Lc = 1/64, 1/16, 1/2 for N = 5, 10. The results

are given in Figure 5.

The Gaussian building blocks of MuSIK include a user-defined so-called shape parameter c which affects the

convergence of the MuSIK method as well as the numerical stability of the Lagrange function computations. For a

detailed discussion on this issue for we refer to [27] and the references therein. All the above results are based on

the set of chosen shape parameters {0.01, 0.01, 0.03, 0.06, 0.085, 0.09, 0.1} for levels 1, 2, . . . , 7, which result to good

convergence rate and sufficient numerical stability. We have found that a good practical range for c to guarantee

both good convergence and numerical stability is [0.01, 0.4]. This range can be enlarged if one uses higher precision

arithmetic for the calculation of the Lagrange basis, thereby circumventing the effect of bad conditioning of the

cardinal function computations. Figure 6 shows convergence plots for the method for N = 5, 10 with two different

choices of shape parameter c: one choice is the variable shape parameter detailed above, with the second choice being

selecting a uniform shape parameter c = 0.1 for all levels.

5.2. Example 2

Next, we consider the elliptic boundary value problem (22), over the L-shaped domain D =: (−1, 1)2\[0, 1) ×
(−1, 0], with random diffusion coefficient and load function given by:

log(aN(ω, x1, x2) − 0.5) = 1 + Y1(ω) sin(πx1) + Y2(ω) sin(πx2)

+ Y3(ω) cos(πx1) + Y4(ω) cos(πx1), (27)

and f (ω, x1, x2) = 1 + exp{Y5(ω) sin(πx1) sin(πx2) + Y6(ω) cos(πx1) cos(πx2)}, respectively. We make two different

choices of independent identically distributed random variables {Yn(ω)}6
n=1

: a) uniform random variables with zero
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Figure 4: Convergence for N = 5, 10, 14, 21 with Lc = 1/64.

mean and unit variance distributed over the interval [−
√

3,
√

3], and b) Gaussian random variables satisfying the

normal distribution N(0, 1), respectively. Note that the diffusion coefficient depends on 4 random variables and the

forcing term on 2 random variables.

The solution u has low regularity at the D-origin, reflecting the typical (singular) behavior in the vicinity of re-

entrant corners. To resolve this, we use 1536 cubic elements with the physical space mesh geometrically graded

towards the origin. We are interested in the numerical results for the L2(D) approximation error of the expected value

E[uN] and of the variance Var[uN], with N = 6, under different choices of shape parameter c; the error is computed

in a completely analogous fashion to (26). We set r = 3 for the domain truncation for the case of Gaussian random

variables.

As the level k of the MuSIK algorithm increases, the observed convergence rate in both expected value and

variance are at least algebraic for a number of choices of shape parameters for both uniform and Gaussian random

variables, respectively; the respective convergence histories are given in Figures 7 and 8. As expected, the smaller

shape parameter gives smaller error independent of the levels. Nonetheless, the shape parameter appears to have an

influence on the convergence rate of the proposed MuSIK algorithm when the level is low, which appears to gradually

diminish as the level grows. The choice of shape parameter in this numerical example is such that the univariate

Lagrange basis computations admit condition numbers of 105 or less.

6. Concluding remarks

A new stochastic collocation finite element method based on the recent multilevel sparse kernel-based interpolation

for the, typically high-dimensional, quadrature step for the solution elliptic PDEs with random coefficients is proposed

and tested. The implementation of the method is fully parallelizable, while an interesting attribute in the use of

directionally uniform multilevel nested quadrature nodes for the approximation of both bounded and unbounded

random variables. As such, the development of adaptive anisotropic versions of the MuSIK-based quadrature rule,

which could lead to further complexity reduction, is feasible, since adding new (anisotropic) levels can reuse lower

level finite element computations. This, of course, could be combined with the tremendous advances in finite element

adaptive algorithms to lead to a fully adaptive hierarchical algorithmic framework; we refer to [29, 11] for some

recent results in this direction for stochastic Galerkin finite element methods. This is an interesting future direction of

research.
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Figure 6: Uniform against variable shape parameter for N = 5, 10, Lc = 1/64.
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