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Background: 

Small extracellular vesicles (SEVs), have a diameter between 30-150nm and 

play a key role in cell-cell communication. As cells cultured in 3D versus 2D 

behave differently, this project aimed to assess whether there were differences 

in SEVs derived from human oral mucosa lamina propria-progenitor cells 

(OMLP-PCs) cultured in a 3D matrix compared to traditional 2D monolayer 

cultures.  

Methods: 

OMLP-PCs were cultured in 3D type I collagen matrices or on traditional 2D 

tissue culture plastic. Cell morphology and viability were assessed by light 

microscopy, actin staining and trypan blue staining.  SEVs secreted by 

OMLP-PCs were purified and quantitatively analyzed by a BCA assay and 

nanoparticle tracking analysis (NTA; nanosight™). SEVs were further 

characterized by flow cytometry.  SEV proliferative function was assessed by 

a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. 

Results: 

Cells cultured in 3D grew well as observed by light microscopy and phalloidin 

staining with cells branching in three-dimensions (as opposed to the cells 

grown as monolayers on tissue culture plastic). NTA demonstrated a 

significantly higher number of SEV-sized particles in the conditioned medium 

of cells grown in 3D type I collagen matrices versus a 2D monolayer (P<0.01). 

Like SEVs from 2D culture, SEVs from 3D culture demonstrated a particle size 

within the expected SEV range. Tetraspannin analysis confirmed that 



3D-derived SEVs were positive for typical, expected tetraspannins. Cell 

proliferation analysis demonstrated that SEVs produced through 3D cell 

culture conditions, significantly reduced the proliferation of skin fibroblasts 

when compared to SEVs from 2D monolayers (P<0.05). 

Conclusion: 

3D culture of OMLP-PCs produced typical SEVs but in a greater amount than 

when the same cells were cultured in 2D.  The downstream proliferative 

potential of the SEVs was influenced by the initial culture methodology.  

Future work should now assess the potential effects of 3D SEVs on key wound 

healing activities. 
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1. Introduction 

Small extracellular vesicles (SEVs) are the smallest of the cell derived vesicles 

and are of endosomal origin with a diameter of 30-150 nm and a buoyant 

floatation density of 1.10~1.20 g/cm3 in sucrose (1). SEVs secreted from cells 

both in vitro and in vivo play a key role in cell-cell communication (2) during 

both pathological process and physiological process such as tissue repair (3) 

and stem cell maintenance (4). It is widely accepted that SEVs demonstrate 

similar biological functions as the cells from which they are derived (5). 

Existing SEV isolation methods are based on size, structure and membrane 

proteins, with the SEVs needing to be well characterized to differentiate them 

from other protein complexes and extracellular vesicles. The characterization 

of SEVs mainly depends on morphological and landmark protein analysis 

including the analysis of tetraspanins (CD9, CD63 and CD81; (6)).  Low SEV 

production levels are one of the most critical issues hampering the application 

of SEVs as therapeutics.  Typically, the effective dose of SEVs is around 

10-100 g/mouse whilst the typical yield from 2D monolayer cultures is only 

around 1 g/mL (7). Thus, a more effective culture method which could 

enhance the production and/or function of SEVs would be clinically welcomed. 

Whist many adult stem/stromal cell populations have been reported, oral 

mucosal lamina propria-progenitor cells (OMLP-PCs) are a novel adult stem 

cell population isolated from the buccal mucosa that demonstrate significant 

advantages (ease of isolation, clonal expansion and high potency) over the 

more commonly studied bone marrow derived mesenchymal stromal cells 

(MSCs) (8). OMLP-PCs are thought to contribute to the scarless wound 



healing ability of the oral mucosa (9).  OMLP-PCs are also multipotent (10), 

immunosuppressive (11) and anti-bacterial (12).  

In recent years, it has been reported that paracrine factors derived from stem 

cells are the main facilitators in driving tissue repair. For example, factors 

derived from bone marrow stromal cells can promote macrophage and 

endothelial cell migration/recruitment and thus enhance wound healing (13), 

and paracrine factors derived from adult stem cells also play a key role in 

myocardial protection and neovascularization processes thus enhancing the 

reparative process of infracted hearts (14). It has now been reported that the 

paracrine signalling molecules which mediate such repair processes include 

SEVs (14). For example, SEVs can enhance fibroblast proliferation (15, 16) 

and migration towards a wound (17), prevent myofibroblast formation via 

SEV-derived microRNAs (18) and stimulate wound angiogenesis (15, 19).  In 

vivo studies have reported that SEVs can significantly increase wound healing 

rates and reduce scar widths (20).  Hence, due to their functions, ease of 

storage and simplified delivery mechanisms SEV therapies are being actively 

developed and could replace current cell therapeutic approaches (21).  

It is well reported that cells cultured in a 3-dimensional (3D) matrix perform 

differently compared to cells cultured on traditional 2-dimensional (2D) tissue 

culture plastic (22).  3D cell culture involves the use of a scaffold or matrix 

that influences the survival, growth and differentiation of cells; mimicking in 

vivo conditions within the body (23).  For example, fibroblasts play a key role 

in the skin wound healing process (24). Compared to traditional monolayer 

cultures, 3D cell cultures provide a more complex physical environment with 



cells acquiring a markedly different geometry and demonstrating altered 

migration and matrix remodelling capacities (25).  

Studies investigating SEVs from 2D versus 3D culture conditions have 

demonstrated that 3D culture conditions can still promote the production of 

SEVs (22).  Specifically, it has been reported that SEVs derived from human 

MSCs cultured under 3D conditions can improve functional recovery after 

traumatic brain injury and, compared to 2D SEVs, provided a better outcome in 

spatial learning (22). This suggests that 3D cell culture might be an 

advantageous method to produce functional SEVs.   

However, what is clear to date is that there have been very few studies 

assessing the effects of 3D (in vivo-like) environments on SEV efficacy and 

therapeutic potential and it is not yet known whether SEVs isolated from cells 

after 3D culture are functionally different from SEVs isolated from traditional 

2D cell culture.  Hence, in this study, the yield of SEVs isolated from oral 

progenitor 2D and 3D cultures was compared as well as their function in a 

simple in vitro proliferative assay.  

 

2. Materials and Methods 

2.1 Cell culture 

OMLP-PCs and skin fibroblasts were isolated and expanded by members of 

the Regenerative Biology Group (School of Dentistry, Cardiff University) as 

previously described (8). OMLP-PCs were cultured in basal medium 

(Dulbecco’s Minimal Essential Medium (DMEM) supplemented with 100g/mL 



L-Glutamine, 1% (v/v) Antibiotics/Antimycotics) supplemented with 10% (v/v) 

Fetal Bovine Serum (FBS) (SCM; Serum Containing Medium).  Every 5-7 

days, cells were passaged at around 80% confluency by the addition of 0.05% 

(v/v) Trypsin (Gibco) and then re-seeded at a density of 2x103 cells/cm2.  

Cells in culture were fed with SCM every 2-3 days. 

 

2.2   Imaging of cells 

Brightfield images of cells were captured using a Nikon Eclipse TS100 

microscope equipped with a Cannon LA DC 58E digital camera. Confocal 

images were captured using a Leica SP5 confocal laser scanning microscope. 

 

2.3 Collection of 2D Conditioned Medium  

OMLP-PC conditioned medium (CM) was collected from monolayers of cells 

that had been maintained for at least 2 passages in SCM made up with SEV 

depleted FBS (SEV-FBS) in place of regular FBS.  SEV-FBS was produced 

by ultracentrifugation of FBS at 100,000xg for 18-20 hrs at 4˚C in a Beckman 

Coulter XP100 ultracentrifuge with a 70Ti fixed angle rotor before being 

passed through a 0.2µm and then a 0.1µm filter (MerkMillipore; Massachusetts, 

USA).  Cells were seeded at a density of 4000 cells/cm2 and left in culture for 

48 hrs until 50-60% confluent.  Medium was then removed and replaced with 

fresh SEV-depleted SCM and cells returned to culture for 72 hrs until 85-95% 

confluent before the CM was collected. The collected CM was centrifuged at 

500xg for 7 mins to pellet any dead cells. To remove any remaining debris or 

microvesicles the supernatant collected was next centrifuged at 10,000xg for 7 



mins then collected again and filtered through a 0.2µm filter.  CM was either 

used immediately for vesicle isolation or stored at -80˚C until required. 

 

2.4 Fabrication of 3D type I collagen lattices and collection of 

conditioned medium 

3D type I collagen lattices were set up in 60mm bacteriological grade plates 

using 2.4mL 2x DMEM (0.48mL 10x DMEM, 0.12mL 1M NaHCO3, 0.048mL 

100x Glutamine, 0.048mL 100x Non-Essential Amino Acids, 1.68mL Sterile 

H2O and 0.06mL 1M NaOH), 0.6mL SEV-FBS, 0.6mL 0.1M NaOH, 1.8mL rat 

tail type I collagen (1.7mg/mL; First Link) and 5x105 OMLP-PCs made up in 

0.6mL of SEV-depleted SCM.  Lattices were left to polymerize for 1 hr at 37C 

then 6mL of low concentration SEV-depleted FBS media (3% FBS) was added 

on the top of the lattice.  To produce CM for larger scale SEV isolation, 

150mm plates were utilized with all regents/cells scaled up accordingly and 

CM was processed as above. 

 

2.5.  Cell cytoskeleton staining 

Phalloidin staining was undertaken according to the manufacturer’s 

instructions. In brief, lattices were washed with Phosphate Buffered Saline 

(PBS) before fixing with 4% (v/v) paraformaldehyde at room temperature. After 

30 mins the lattice was washed twice with PBS and stained with 1nM 

Phalloidin-Atto-594 (Sigma-Aldrich) for 30 mins.  The lattice was then washed 

3 times with PBS and the nuclei counterstained with 10μM Hoechst 33258. 



Confocal images were captured using a Leica SP5 Laser scanning confocal 

microscope. 

 

2.6.  Assessment of OMLP-PC viability  

To assess the viability of OMLP-PCs in 2D and in 3D lattices, 5.4x105 

OMLP-PCs were seeded into either 6 well plates or a 60mm diameter type I 

collagen lattice. After 72 hrs cells in 2D were trypsinised and resuspended in 

SCM.  Also, after 72 hrs the collagen matrix was degraded with 1mg/mL 

collagenase for 1 hr at 37˚C.  Following digestion, cells were pelleted by 

centrifugation at 350xg for 5 mins.  Viable cell counts were then untaken by 

mixing equal volumes of cells and 0.05% (w/v) trypan blue and then counting 

on a haemocytometer under a microscope. 

 

2.7. OMLP-PC SEVs isolation  

SEVs were isolated from CM using a commercially available kit (ExoSpin; Cell 

Guidance Systems; Cambridge, UK) involving a two stage SEV purification 

protocol (precipitation and size exclusion column).  If frozen, CM was thawed 

rapidly in a 37oC water bath before adding a half volume of ‘buffer A’ (e.g. 5mL 

buffer added to 10mL CM) and incubated overnight at 4˚C.  CM/buffer was 

centrifuged at 16,000xg using a Beckman Coulter Optima LE 80-K 

ultracentrifuge for 2 hrs to pellet any EVs.  Pelleted material was collected in 

1mL of PBS before passing through an ExoSpin Midi column. Fractions 7-13 

were collected as these contain the SEVs.  Fractions 7-13 were then 



concentrated, using a 100KDa molecular weight cut off filter resulting in 

OMLP-PC SEVs.  

 

2.8 BCA assay 

SEV protein concentration was determined using a MicroBCA Protein Assay 

(ThermoFisher Scientific) according to manufacturer’s protocol.  A standard 

curve was produced with a serial dilution from 2000μg/mL Bovine Serum 

Albumin (BSA).  SEVs were diluted between 1:5-1:10 so that they would fit on 

the scale.  SEV protein concentrations were calculated based on absorbance 

values and the standard curve.  

 

2.9 Nanoparticle Tracking Analysis 

Nanoparticle tracking analysis (NTA) (NanoSight LM10 HS microscope, 

NanoSight Ltd, Amesbury, UK) was used to analyze the size and 

concentration of SEVs.  The SEVs were diluted in ddH2O at 1:100 for testing.  

Under the action of Brownian Motion, the particle movement trails were 

recorded and captured by the camera connected to NTA system.  The NTA 

system was used to analyze the results with the particle detection threshold 

set to 2 and the screen gain to 10. 

 

2.10. FACS analysis 



25μg of SEVs isolated from either 2D or 3D cultures, were bound to 20L of 

CD63 coated Dynabeads (Thermo Fisher, USA) in a 100L final volume 

overnight at 4˚C made up in 0.1% (w/v) sterile filtered BSA (Isolation buffer).  

Following an overnight incubation, beads and SEVs were captured using a 

Dynal® MPC-L magnet for 1 min.  The supernatant was removed and beads 

washed in 300L of isolation buffer. Tubes were then placed back on the 

magnet and the supernatant removed before resuspending the beads in 100L 

of isolation buffer for staining.  Either the IgG control or test antibodies were 

added; IgG1 FITC (50μg/mL), IgG1 PE (50μg/mL), CD81 FITC (50μg/mL), 

CD63 FITC (50μg/mL) or CD9 PE (50μg/mL) (all from Miltenyi, Germany). 

Primary antibodies were incubated at 4˚C in the dark for 30mins.  After this 

incubation beads were washed twice with isolation buffer and finally 

resuspended in 400L of isolation buffer for analysis. Samples were analyzed 

on a FACSCanto II Flow cytometer (BD Biosciences) equipped with a 488nm 

and 535nm laser excitation source. A minimum of 10,000 events were 

recorded per sample.  Fluorophore-conjugated immunoglobulins were used 

as controls.  All data was analyzed using the software package FlowJo 

version vX0.7. 

 

2.11.  MTT assay  

Skin fibroblasts were seeded at a density of 1 x103 cells/well (100L SCM) into 

test wells of a 96-well plate with 4 blank wells containing medium only as a 

control group. Cells were allowed to adhere for 24h in SCM.  After 24 hrs 

culture, the medium was changed to serum free medium to growth arrest the 



cells.  After a further 24hrs SEVs (from either 2D or 3D culture) were added at 

concentrations 0-100μg/mL.  Plates were incubated for a further 3 or 5 days. 

On the day of assessment, 20μL of 5mg/mL MTT (dissolved in PBS and 

0.22m filtered) was added into each well and incubated for 4 hrs at 37oC.  

After 4 hrs the solution containing MTT and medium was carefully removed 

and 100μL Dimethyl Sulphoxide was added followed by an incubation for 30 

mins at 37oC. The absorbance of the solution was read in a plate reader (540 

nm).  Each replicate was set up as n=6 with each experiment repeated at 

least 3 times.  

 

2.12. Statistical Analysis 

SPSS was used to analysis data produced and present data as the mean ± 

standard error of the mean (SEM) or standard deviation (SD). After 

determining equal variances and normal distribution, one or two-way analysis 

of variance (ANOVA), Bartlett’s test and the Kolmogorov-Smirnov test were 

used respectively to compare the mean. Unpaired two-tailed Student’s t-tests 

was used to demonstrate the statistical significance, with confidence limits set 

at 95 % and P-values of < 0.05 considered significant. 

  



3. Results 

3.1 Evaluation of cells cultured in 2D and 3D environments 

OMLP-PCs were seeded into type I collagen lattices and cultured over a 

period of 120 hrs.  Over this time the cells reorganized the lattice such that its 

diameter was reduced (Fig. 1A).  Cell morphology within these lattices 

demonstrated that the cells were viable and they were observed to spread out 

and taken on stellate morphology (Figs. 1B-E).  Assessment of cell viability 

and number demonstrated no significant differences between cells cultured in 

2D monolayers versus 3D lattices over a 72 hr period (Figs. 2A&B; P>0.05).  

 

3.2 SEV production in 2D monolayers versus 3D type I collagen lattices 

To investigate any differences in the yield of SEVs produced in 2D versus 3D 

conditions, the particle concentration of the purified SEVs was determined by 

NTA.  As demonstrated in Fig. 3A, the concentration of SEVs derived from 3D 

was significantly higher than from 2D monolayers (P<0.01).  Figs. 3B&C 

demonstrate the modal particle size for both 2D- and 3D-derived SEVs.  3D 

derived SEVs demonstrated a modal size of 118.1nm whilst 2D SEVs 

demonstrated a modal size of 92.9 nm, both within the expected range for 

SEVs. SEVs are also known to be enriched in tetraspannins; CD9, CD81 and 

CD63 (6).  To analyse tetraspannin expression on EVs, vesicles were 

captured on CD63 coated beads and then levels of tetraspannins determined 

by flow cytometry.  As shown in Fig. 4, SEVs produced by both 3D and 2D 

culture of OMLP-PCs were positive for CD9, CD63 and CD81. 



 

3.3 Functional assessment of SEVs derived from cells cultured in 2D and 

3D 

To investigate the effects of SEVs derived from OMLP-PCs cultured in 

monolayer and 3D conditions on cellular proliferation, skin fibroblasts were 

cultured with/without SEVs before an MTT assay was undertaken.  After 3 

days in culture there was no significant difference in the proliferation of the skin 

fibroblasts when they were exposed to either 2D or 3D SEVs (Fig. 5; P>0.05). 

However, after 5 days there was a significant, dose dependent, increase in cell 

growth on exposure to the 2D SEVs (P<0.05 at 100g/mL and P<0.01 at 50 

g/mL). However, such an effect was not observed for the 3D SEVs (which 

failed to drive cell proliferation (P>0.05).  

 

 

  



4. Discussion 

It is well reported that cells cultured in 2D and 3D generally perform differently, 

as 3D cell culture allows cells to grow in a complex, immersive physical 

structure which is similar to the environment in vivo (26).  SEVs, which 

contain varying cargos, can work as the messengers among cells and it could 

be these vesicles that are key in driving differential cell behavior in 2D and 3D 

environments.  Hence, the aim of this study was to compare SEVs from 

OMLP-PCs cultured in 2D and 3D (type I collagen) environments.   

OMLP-PCs survived well with the 3D collagenous environment, spreading out 

and reorganizing the lattice. The particles derived and collected from both 2D 

and 3D conditions were confirmed as SEVs by NTA analysis and flow 

cytometry - particles demonstrated a modal size of between 30-130nm and 

positivity for the tetraspannins (CD9, CD81 and CD63) as would be expected 

for SEVs (27).  NTA analysis demonstrated that the concentration of SEVs 

derived from 2D cultures was lower than that derived from 3D cultures 

however, there was no significant difference in modal size between them.  

This suggests that utilization of 3D cell culture systems could increase SEVs 

yield potentially offering a route to wider scale up if optimized further. In 

support of the findings in this paper, the yield of SEVs derived from 3D MSCs 

has also been reported to be increased when such cells were cultured in 3D 

environments (28). Furthermore, according to the research of Reka which 

utilizes bioreactors, 3D cell culture can potentially increase SEV yield by up to 

20 times when compared to 2D monolayer cultures (28). 



An MTT assay demonstrated that SEVs derived from 2D cell culture were 

functionally different to SEVs derived from 3D cultures in increasing fibroblast 

proliferation.  This indicates that the culture environment plays an important 

role in the functionality of the secreted EVs.  Unlike Zhang et al. (22), in this 

paper it was observed that 2D SEVs drove an increase in cell proliferation 

whereas 3D culture derived SEVs did not.  A key difference is that these 

SEVs were produced from cells as a part of a static 3D cell culture system 

which may influence the cells ability to be exposed to oxygen and nutriments 

and o to clear out waste metabolites.  Furthermore, as there are differing 

cargos that constitute the SEV make up (29), it would be expected that a 

different cell population (in this case OMLP-PCs) would result in different SEV 

cargo loading and hence this would lead to a different functionality of such 

entities.  Also, in the experiments reported here both frozen and fresh CM 

was utilized for SEV isolation.  The work of Mijung et al (30) reports that the 

best storage condition for exosomes (SEVs) is in a frozen state.  Hence, the 

fact that SEVs were either used fresh or from frozen stocks in the studies 

presented here suggests that little difference would be observed, 

Interestingly, the findings reported here demonstrated that 2D-derived SEVs 

can stimulate cell proliferation whilst 3D (more in vivo-like)-derived SEVs do 

not.  This actually may represent a distinct advantage typical of the 

anti-scarring nature of the oral mucosa in that fibroblast number can be 

effectively controlled, something not observed during normal fibrosis/scarring.  

Further investigations are therefore warranted to determine the future potential 

of 3D-derived SEVs as anti-scarring therapies.  
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