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Novel signatures of dark matter in laser-interferometric gravitational-wave detectors
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Dark matter may induce apparent temporal variations in the physical “constants”, including the electromag-
netic fine-structure constant and fermion masses. In particular, a coherently oscillating classical dark-matter field
may induce apparent oscillations of physical constants in time, while the passage of macroscopic dark-matter
objects (such as topological defects) may induce apparent transient variations in the physical constants. In this
paper, we point out several new signatures of the aforementioned types of dark matter that can arise due to
the geometric asymmetry created by the beam-splitter in a two-arm laser interferometer. These new signatures
include dark-matter-induced time-varying size changes of a freely suspended beam-splitter and associated
time-varying shifts of the main reflecting surface of the beam-splitter that splits and recombines the laser
beam, as well as time-varying refractive-index changes in the freely suspended beam-splitter and time-varying
size changes of freely suspended arm mirrors. We demonstrate that existing ground-based experiments already
have sufficient sensitivity using existing data to probe extensive regions of the unconstrained parameter space
in models involving oscillating scalar dark-matter fields and domain walls composed of scalar fields. In the
case of oscillating dark-matter fields, Michelson interferometers—in particular, the GEO 600 detector—are
especially sensitive. The sensitivity of Fabry-Perot-Michelson interferometers, including LIGO, VIRGO, and
KAGRA, to oscillating dark-matter fields can be significantly increased by making the thicknesses of the freely
suspended Fabry-Perot arm mirrors different in the two arms. Not-too-distantly separated laser interferometers
can benefit from cross-correlation measurements in searches for effects of spatially coherent dark-matter fields.
In addition to broadband searches for oscillating dark-matter fields, we also discuss how small-scale Michelson
interferometers, such as the Fermilab holometer, could be used to perform resonant narrowband searches for
oscillating dark-matter fields with enhanced sensitivity to dark matter. Finally, we discuss the possibility of
using future space-based detectors, such as LISA, to search for dark matter via time-varying size changes of and
time-varying forces exerted on freely floating test masses.
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I. INTRODUCTION

While the existence of dark matter (DM) is well established
from astrophysical and cosmological observations, the eluci-
dation of its precise nature remains one of the most important
problems in contemporary physics. Since extensive searches
for DM particles of relatively high masses (e.g., weakly
interacting massive particles) through their possible nongrav-
itational effects have not yet produced a strong positive result,
in recent years the possibility of searching for low-mass (sub-
eV) DM candidates has been receiving increased attention.
There are numerous well-motivated DM candidates of this
type, including the canonical axion, axion-like particles, and
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dilatons, which may form a coherently oscillating classical
field and/or stable solitonic field configurations known as
topological defects (such as domain walls). Searches for such
low-mass DM candidates via possible particle-like signatures
(such as recoils, energy depositions, and ionisations) are
practically impossible since the individual nonrelativistic DM
particles in this case carry very small momenta. Instead, one
can take advantage of the fact that low-mass DM particles
must have large occupation numbers if they comprise the
observed DM content of the Universe (the average local cold
DM density is given by ρDM ≈ 0.4 GeV/cm3 [1]) and look for
wavelike and other coherent signatures of these DM fields. In
recent years, a number of novel ideas have emerged to search
for low-mass DM using precision measurement techniques
from the fields of atomic and optical physics; see [2,3] for
recent overviews.

DM may induce apparent temporal variations in the phys-
ical “constants”, including the electromagnetic fine-structure
constant α, as well as the electron and nucleon masses me and
mN , via certain nongravitational interactions with standard-
model (SM) fields [4]. In particular, a coherently oscillat-
ing classical DM field may induce apparent oscillations of
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physical constants in time [5,6], while the passage of topo-
logical defects may induce apparent transient variations in
the physical constants [7,8]. Some possible effects of such
time-varying physical constants in laser interferometers and
optical cavities, including time-varying changes of solid sizes
and laser frequencies, were explored in [5,9]. Several clock-
cavity comparison experiments searching for DM-induced
time-varying physical constants have been conducted recently
[10–12]. Experiments of this type are mainly sensitive to
oscillation frequencies up to ∼Hz (equivalently timescales
down to ∼s). However, we would also like to precisely probe
even higher oscillation frequencies (audio-band frequencies
and beyond), which also are interesting from the point of view
of current astrophysical observations.

In this work, we propose new ways of searching for DM
with laser interferometers. A two-arm laser interferometer is
typically used to detect small changes in the difference of
the optical path lengths in the two arms of the interferometer.
Since the two arms of an interferometer are practically equal
in terms of optical path length, time-varying arm length
fluctuations, and changes in the laser frequency due to a
homogeneous DM field are common mode, and their effects
are therefore strongly suppressed in the output signal. There
is, however, a geometric asymmetry created by the beam-
splitter in a two-arm laser interferometer. We point out that
the beam-splitter and arm mirrors of an interferometer, if
freely suspended, can produce differential optical-path-length
changes if one or more of the physical constants of nature vary
in time (and space). A nonzero output signal, namely a phase
difference between the two arms of the interferometer, can
arise in several ways. If the DM field is homogeneous across
the entire interferometer, then the main observable effect will
generally arise from the freely suspended beam-splitter. A
freely suspended beam-splitter would experience time-vaying
size changes about its center-of-mass, thus shifting back-and-
forth the main reflecting surface that splits and recombines the
laser beam (see the inset in Fig. 1). Additionally, (generally
smaller) time-varying changes in the refractive index of the
beam-splitter would change the optical path length across the
beam-splitter. On the other hand, if the DM field is inhomo-
geneous over an interferometer, then substantial observable
effects may also arise from time-varying size changes of the
freely suspended arm mirrors (see Figs. 1 and 2). In some
situations, the output signal can be significantly enhanced
if the arm mirrors have different physical characteristics
(in particular, different thicknesses).

Laser interferometry has been optimized over decades to
develop ultra-sensitive gravitational-wave detectors, which
have recently been employed spectacularly to directly observe
gravitational waves on Earth for the first time [20,21]. Ad-
ditionally, smaller-scale interferometers have more recently
been utilized to search for non-gravitational-wave phenom-
ena, such as quantum-geometry effects that may arise at the
Planck scale [15,16]. Future space-based laser-interferometric
gravitational-wave detectors, such as LISA [22], are currently
under development. In this paper, we explore signatures of
DM in ground- and space-based laser interferometers. We
estimate the sensitivities of these detectors to the physical
parameters of models of DM consisting of a coherently oscil-
lating classical field or domain walls. Searches for coherently

FIG. 1. Simplified layout of a dual-recycled Michelson inter-
ferometer, such as GEO 600 [13,14] and the Fermilab holometer
[15,16]. Dual recycling denotes the combination of power recycling
and signal recycling. PRM: power recycling mirror; BS: beam-
splitter of thickness l; ETMX, ETMY: end arm mirrors (test masses);
SRM: signal recycling mirror; PD: photodetector. The inset shows
the beam routing through the beam-splitter. The beam-splitting sur-
face typically has a power reflectivity of R = 50%. The opposing
face of the beam-splitter, denoted by AR, is antireflective coated. For
clarity, we have omitted the single folding of the arms in GEO 600,
as well as the second colocated interferometer of the Fermilab
holometer; furthermore, the Fermilab holometer does not have a
signal recycling mirror SRM.

oscillating classical DM fields share similarities with searches
for continuous as well as for stochastic gravitational waves,
while searches for domain-wall objects share similarities

FIG. 2. Simplified layout of a dual-recycled Fabry-Perot-
Michelson interferometer, such as Advanced LIGO [17],
VIRGO [18], and KAGRA [19]. PRM: power recycling mirror;
BS: beam-splitter; ITMX, ETMX, ITMY, ETMY: arm mirrors (test
masses); SRM: signal recycling mirror; PD: photodetector. The arm
mirrors (test masses) are separated by the distances Lx and Ly, which
are 4 km in the case of LIGO.
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with searches for gravitational-wave bursts. Based on our
estimates, we emphasise that existing laser interferometers,
particularly the GEO 600 Michelson interferometer [13,14],
already have sufficient sensitivity using existing data to probe
extensive regions of unconstrained parameter space in these
models, including scalar DM fields oscillating at frequencies
in the range ∼100 Hz–10 kHz and scalar-field domain walls
with transverse sizes of up to several km. The sensitivity of
Fabry-Perot-Michelson interferometers, including LIGO [17],
VIRGO [18], and KAGRA [19], to oscillating DM fields can
be significantly increased by making the thicknesses of the
freely suspended Fabry-Perot arm mirrors different in the
two arms. In this case, the sensitivity of these experiments
to conventional gravitational-wave searches, which can be
performed simultaneously with our suggested DM searches,
would not necessarily be degraded. Not-too-distantly sepa-
rated laser interferometers can benefit from cross-correlation
measurements in searches for the effects of spatially coherent
dark-matter fields. In addition to broadband searches for oscil-
lating DM fields, we also discuss how small-scale Michelson
interferometers could be used to perform resonant narrowband
searches for oscillating DM fields with enhanced sensitivity to
underlying DM interactions.

The structure of our paper is as follows. In Sec. II, we
discuss how DM can induce apparent temporal variations in
the physical constants and derive the effects of such variations
on freely suspended beam-splitters, as well as freely sus-
pended and freely floating test masses. In Sec. III, we consider
the specific model of a coherently oscillating classical DM
field; we derive the effects of an oscillating DM field on
ground- and space-based laser interferometers and estimate
the sensitivities of existing, modified, and future experiments
to the underlying DM parameters. In Sec. IV, we consider the
specific model of topological defects in the form of domain
walls; we derive the effects of domain walls on ground- and
space-based laser interferometers and estimate the sensitivi-
ties of existing and future experiments to the underlying DM
parameters. Finally, in Sec. V, we summarize our findings and
discuss DM searches with laser interferometers in the context
of other measurements.

Throughout this work, unless explicitly stated otherwise,
we shall adopt the natural system of units h̄ = c = 1, where
h̄ is the reduced Planck constant and c is the speed of light in
vacuum. In this paper, we express the interferometer output in
terms of the difference of the optical path lengths in different
arms of an interferometer.

II. THEORY AND EFFECTS OF DARK-MATTER-INDUCED
VARYING PHYSICAL “CONSTANTS”

A. Nongravitational interactions of scalar fields

A scalar (spinless, even-parity) field φ can couple to the
SM fields in a number of possible ways. Generally, the sim-
plest possibility involves linear-in-φ interactions as follows:

Llin
int = φ

�γ

FμνFμν

4
−

∑
f

φ

� f
m f f̄ f , (1)

where the first term represents the coupling of the scalar field
to the electromagnetic field tensor F , while the second term

represents the coupling of the scalar field to the SM fermion
fields f , with m f the “standard” mass of the fermion, and
f̄ = f †γ 0 the Dirac adjoint. The linear couplings in (1) can
be generated, e.g., via the super-renormalizable interaction of
φ with the Higgs field; see [23,24] for more details. These
linear couplings, however, may be absent, e.g., as a result of an
underlying Z2 symmetry (invariance under the transformation
φ → −φ). In this case, the simplest possibility would involve
quadratic-in-φ interactions

Lquad
int =

(
φ

�′
γ

)2 FμνFμν

4
−

∑
f

(
φ

�′
f

)2

m f f̄ f . (2)

Comparing the terms in Eqs. (1) and (2) to the relevant
terms in the SM Lagrangian

LSM ⊃ −FμνFμν

4
−

∑
f

q f JμAμ −
∑

f

m f f̄ f , (3)

where q f is the electric charge carried by the fermion f ,
Jμ = f̄ γ μ f is the electromagnetic 4-current and Aμ is the
electromagnetic 4-potential, we see that the linear interactions
in Eq. (1) effectively alter the fine-structure constant and
fermion masses according to

α → α

1 − φ/�γ

≈ α

(
1 + φ

�γ

)
, m f → m f

(
1 + φ

� f

)
,

(4)

while the quadratic interactions in Eq. (2) effectively alter the
constants according to

α → α

1 − (φ/�′
γ )2

≈ α

[
1 +

(
φ

�′
γ

)2]
,

m f → m f

[
1 +

(
φ

�′
f

)2]
. (5)

B. Size changes of beam-splitter and test masses

Time-varying α and particle masses alter the geometric
sizes of solid objects. The length of a solid is given by
L ∼ NaB, where N is the number of lattice spacings and
aB = 1/(meα) is the atomic Bohr radius. In the adiabatic limit,
the size of a solid body thus changes according to(

δL

L

)
0

≈ δaB

aB
= −δα

α
− δme

me
. (6)

Additionally, there are also small relativistic corrections asso-
ciated with electromagnetic processes and finite-nuclear-mass
effects [5,25]. The former affect the α-dependence in Eq. (6)
and scale roughly as ∝ (Zα)2 with the nuclear charge Z ,
while the latter affect the me/mN -dependence and are of the
order ∼me/mN ≈ 5×10−4. We thus see that the relativistic
corrections are negligibly small in most common materials
(including silica and sapphire) and only become nonnegligible
in the heaviest stable elements [where their size is ∼20% of
the nonrelativistic contribution in Eq. (6)].

The expression in Eq. (6) is only valid in the adiabatic limit,
when the solid can optimally respond to the slow perturbations
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induced by the DM field. To model more general perturba-
tions, we can treat the response of a solid to perturbations
associated with a particular Fourier-driving-frequency com-
ponent f within the simple model of a strongly underdamped
driven harmonic oscillator (damping parameter ζ � 1), not-
ing that the length perturbations of the solid are induced by
an external field [26]. In this case, the steady-state response of
the solid size changes is given by(

δL

L

)
f

=
(

δL

L

)
0

× 1√
[1 − ( f / f0)2]2 + (2ζ f / f0)2

, (7)

where (δL/L)0 is the fractional size change in the adiabatic
limit [see Eq. (6)], and f0 is the frequency of a fundamental
vibrational mode of the solid. There are three limiting cases in
Eq. (7).

(1) When f � f0, the size changes of the solid are in-
dependent of the driving frequency and coincide with the
adiabatic case in Eq. (6). The size oscillations of the solid are
in phase with the oscillating DM field.

(2) When f ≈ f0, the size changes of the solid are en-
hanced by the large quality factor Qmech = 1/(2ζ ) 	 1 com-
pared to the adiabatic case. The size oscillations of the solid
lag behind the oscillating DM field by a phase factor of π/2.

(3) When f 	 f0, the size changes of the solid are sup-
pressed by the factor ( f0/ f )2 � 1 compared to the adiabatic
case. The size oscillations of the solid lag behind the oscillat-
ing DM field by a phase factor of π .

All of the relevant optical components in ground-based
gravitational-wave detectors are approximately cylindrically
symmetric. In this case, the fundamental frequency of the
longitudinal vibrational mode is given by

f0 = vs

2Li
, (8)

where vs is the sound speed in the solid component (typically
of the order of half-dozen km/s in most commonly used
materials) and Li is the length of the component.

C. Refractive-index changes in beam-splitter

Time-varying α and particle masses also affect the propa-
gation of a light beam through the beam-splitter via alteration
of the refractive index of the beam-splitter. To estimate the
size of these effects, we assume that the laser (angular)
frequency ω is much larger than all of the phonon-mode
frequencies of the beam-splitter and adopt a simple Lorentz
model with a single electronic mode of frequency ω0, in the
regime of normal dispersion, ω0 > ω. In this case, far away
from the electronic resonance, the expression for the refractive
index of a dielectric material reads

n ≈ √
εr , (9)

with the relative permittivity given by

εr ≈ 1 + ξNα

me

1

ω2
0 − ω2

≈ 1 + ξNα

meω
2
0

(
1 + ω2

ω2
0

)
, (10)

where N is the number density of atoms in the dielectric
material and ξ is a numerical constant that is independent of
the physical constants. Let us first consider the nondispersive
term ξNα/(meω

2
0 ) in Eq. (10). Since N ∝ 1/a3

B = (meα)3 and
ω0 ∝ meα

2, the combination of parameters ξNα/(meω
2
0 ) is

independent of the physical constants. Hence the main effects
of varying physical constants on the index of refraction arise
through the dispersive term ω2/ω2

0 in Eq. (10)

δn

n
≈ ω

n

∂n

∂ω

(
δω

ω
− δω0

ω0

)
≈ ω

n

∂n

∂ω

(
δω

ω
− 2

δα

α
− δme

me

)
.

(11)

Most experiments use a laser of wavelength λ ≈ 1 μm and
a silica beam-splitter, for which n ≈ 1.5 and ω/n · ∂n/∂ω ≈
5×10−3. If the laser is stabilized to a high-finesse reference
cavity, in which the length of the solid spacer between the
mirrors is allowed to vary naturally, and the cavity length
changes are adiabatic, then by Eq. (6) we have δω/ω =
−δLcav/Lcav ≈ δα/α + δme/me, giving

δn

n
≈ −5×10−3 δα

α
. (12)

On the other hand, if the laser is stabilized to a high-finesse
reference cavity, in which the cavity length is independent of
the length of the spacer between the mirrors (e.g., through
the use of a multiple-pendulum suspension system for the
mirrors), or if the cavity length changes are sufficiently rapid
[see Eq. (7)], then δω/ω is approximately independent of
changes in the physical constants. In this case, we instead have

δn

n
≈ −5×10−3

(
2
δα

α
+ δme

me

)
. (13)

In all existing ground-based gravitational-wave detectors, the
laser is ultimately stabilized to the common-mode interferom-
eter arm length, which is isolated against length fluctuations
(via the suspension points) via multiple-pendulum suspension
systems for the mirrors, and so in this case Eq. (13) applies
[27].

D. Center-of-mass displacements of test masses

By analogy with the acceleration that a test particle or test
mass experiences in the presence of a spatial gradient in a
potential, spatial gradients in α and the particle masses give
rise to accelerations on test particles and test masses of mass
Mtest [28]:

δatest = −∇Mtest

Mtest
. (14)

The overall mass of an atom with Z 	 1 consists of three
different types of contributions:

Matom ≈ AmN + Zme + aCZ2

A1/3
, (15)

where A is the total nucleon number of the nucleus. The
last term in Eq. (15) denotes the energy associated with the
electrostatic repulsion between protons in a spherical nucleus
of uniform electric-charge density, with aC ≈ 0.7 MeV.

Most ground-based experiments employ beam-splitters
and test masses made of silica. In this case, the relative
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contributions to the total test mass from the nucleon masses,
electron mass, and Coulomb energy are ≈1, ≈3×10−4 and
≈1.4×10−3, respectively. LISA employs Au-Pt alloy (≈60:40
ratio) test masses. In this case, the relative contributions to the
total test mass from the nucleon masses, electron mass, and
Coulomb energy are ≈1, ≈2×10−4 and ≈4×10−3, respec-
tively.

III. COHERENTLY OSCILLATING CLASSICAL
DARK-MATTER FIELDS

A. Dark-matter theory

Feebly interacting, low-mass (sub-eV) spinless particles
are well-motivated candidates for DM. Perhaps the most
renowned particle of this category is the canonical axion,
which is a pseudoscalar (odd-parity) particle. Apart from
the axion, low-mass scalar particles (such as the dilaton)
may also exist in nature. Low-mass spinless particles can
be produced nonthermally in the early Universe via the
“vacuum misalignment” mechanism [29–31], and they can
subsequently form a coherently oscillating classical field [32]:
φ ≈ φ0 cos(ωφt ), where the angular frequency of oscillation is
given by ωφ ≈ mφc2/h̄, with mφ being the mass of the spinless
particle. Although these DM particles are typically produced
with very small kinetic energies, they become virialised
during the formation of galactic structures (vvir ∼ 300 km/s
locally), giving these particles the finite coherence time:
τcoh ∼ 2π/(mφv2

vir ) ∼ 106tosc; i.e., �ωφ/ωφ ∼ 10−6 (see [33]
for details of the expected lineshape). In other words, the os-
cillations of this galactic DM field are practically monochro-
matic, with a quality factor of Qφ ∼ 106. The oscillating DM
field carries the nonzero time-averaged energy density

〈ρφ〉 ≈ ρφ ≈ m2
φφ2

0

2
, (16)

and satisfies the nonrelativistic equation of state 〈pφ〉 � 〈ρφ〉,
making it an ideal candidate for cold DM. If spinless particles
comprise the entirety of the observed DM, then their reduced
de Broglie wavelength cannot exceed the DM halo size of
the smallest dwarf galaxies (Rdwarf ∼ 1 kpc). This places the
following lower bound on their mass: mφ � 10−22 eV, which
can be relaxed if these particles make up only a subdominant
fraction of the observed DM. In this section, we focus on
the linear interactions of the field φ in Eq. (1). We mention
that one may also separately consider the case of quadratic
interactions of the field φ in Eq. (2), see [5,6,34] for the
various intricacies of such types of interactions.

B. Michelson interferometers (GEO 600, Fermilab holometer)

Consider a power- and possibly signal-recycled (dual-
recycled if both) laser interferometer without Fabry-Perot
resonators in the two arms, as illustrated by the simplified
layout in Fig. 1. Archetypes of this Michelson configuration
include the GEO 600 interferometer (L = 600 m without ac-
count of the single folding of the arms, l = 8 cm) and the
Fermilab holometer (L = 40 m, l = 1.3 cm). The input laser
beam is fed into the power recycling cavity consisting of the
mirror “PRM” and the Michelson interferometer consisting of
the beam-splitter “BS” and mirrors “ETMX” and “ETMY”.

When operating at destructive interference at the dark port, the
power recycling cavity enhances the circulating power, thus
enhancing shot-noise-limited sensitivity. The signal recycling
mirror “SRM” (if present) increases the low-frequency sen-
sitivity of the Michelson interferometer. The inset in Fig. 1
shows how the laser beam traverses the beam-splitter.

The interferometer output can be expressed in terms of
the difference of the optical path lengths in the two arms of
the interferometer, �L = Lx − Ly, with Lx ≈ Ly. DM-induced
time-varying changes in the size of a freely suspended beam-
splitter of thickness l will shift the main reflecting surface
(power reflectivity of R = 50%) by the amount δl/2 in the
frame of the interferometer. Assuming a nominal angle of
the beam-splitter with respect to the interferometer arms of
45◦, we have δLx ≈ δ[

√
2nl − l/(2

√
2) − w/2], where for

simplicity we have omitted a geometric correction factor from
Snell’s law of refraction, and δLy = −δl/(2

√
2) − δw/2,

where w is the thickness of the freely suspended arm mirrors
“ETMX” and “ETMY” (w = 10 cm for the GEO 600 detec-
tor, while w = 1.3 cm for the Fermilab holometer). Hence we
have

δ(Lx − Ly) ≈
√

2(n · δl + l · δn) . (17)

Michelson interferometers typically do not use a usual refer-
ence cavity to stabilize the laser. Instead, the laser is stabilized
to the common-mode interferometer arm length, which is
isolated against length fluctuations (via the suspension points)
via multiple-pendulum suspension systems for the mirrors.
In this case, Eq. (13) applies for δn, while δl is governed
by Eq. (7). Hence for a DM oscillation frequency fDM well
below the frequency of the fundamental vibrational mode of
the beam-splitter f0,BS, we have

δ(Lx − Ly)

L
≈

√
2nl

L

(
−δα

α
− δme

me

)
, (18)

which is the case for the entire optimal frequency range of the
GEO 600 detector. On the other hand, for fDM 	 f0,BS, we
have

δ(Lx − Ly)

L
≈

√
2nl

L

(
−10−2 δα

α
− 5×10−3 δme

me

)
. (19)

In the case of the Fermilab holometer, f0,BS ≈ 200 kHz. We
note that the interferometer arm length L = (Lx + Ly)/2 can
be eliminated from Eqs. (18) and (19), but is included here
to be consistent with the conventional strain calibration of the
interferometer output.

The sensitivity of measurements with a single interferome-
ter (such as the GEO 600 detector) to an oscillating DM field
with finite coherence time τcoh improves with the integration
time tint as ∝ (tint )−1/2 in the temporally coherent regime
tint � τcoh, and then continues to improve as ∝ (tintτcoh)−1/4

in the temporally incoherent regime tint � τcoh. On the other
hand, the sensitivity of cross-correlation measurements with
a pair of independent and isolated interferometers (such as
the two colocated interferometers of the Fermilab holometer)
improves as ∝ (tint )−1/2 for all integration times, provided
that the DM field is spatially coherent over the entire appa-
ratus (meaning that two identical interferometers would see
the same DM signal in this case). In the current Fermilab
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holometer setup, L = 40 m and the spatial separation between
the two independent interferometers is 0.9 m. Since both of
these length scales are much smaller than the reduced de
Broglie wavelength of an oscillating DM field for the entire
optimal frequency range of the Fermilab holometer, the DM
field is therefore spatially coherent over the entire holometer.

In Michelson interferometers of the type discussed thus
far, the DM effects on the beam-splitter give the main con-
tribution to the output signal. Let us briefly also discuss some
possible subleading contributions to the output signal. There
are common-mode effects associated with temporal variations
of the laser frequency and interferometer arm lengths. Since
the two arms of an interferometer are practically equal in
length, these common-mode effects are strongly suppressed
in the output signal (and moreover the latter common-mode
effect is further suppressed in the detector’s optimal frequency
range due to the multiple-pendulum suspension systems for
the mirrors). An oscillating DM field also induces common-
mode time-varying size changes of the arm end mirrors
“ETMX” and “ETMY”, which cancel for a homogeneous
DM field φ = φ0 cos(mφt ) if these mirrors have the same
thickness. In reality, there is a small nonzero contribution to
the output signal due to a phase difference in the oscillating
DM field between the two arm end mirrors since in the
laboratory frame of reference an oscillating DM field contains
a position-dependent term: φ = φ0 cos(mφt − pφ · r), where
pφ ≈ mφ〈vφ〉 is the average momentum of a DM particle
as seen in the laboratory frame. In this case, there is an
effect suppressed by ∼L/λ̄dB � |vφ| ∼ 10−3 in the optimal
frequency range of ground-based detectors. Incidentally, since
l,w � L, this also justifies treating the beam-splitter and test
masses as point-like objects.

Using Eqs. (4), (16), (18), and (19), we estimate the current
sensitivities of GEO 600 [13,14] and the Fermilab holometer
using both of its colocated interferometers [15,16] to the
linear interactions of the DM field φ with the photon and
electron in Eq. (1). We present these estimates as solid lines in
Fig. 3 (red = GEO 600, purple = Fermilab holometer using
both of its colocated interferometers), assuming that the φ

particles saturate the average local cold DM density of ρDM ≈
0.4 GeV/cm3. We note that, because the amplitude and effects
of the oscillating DM field scale as ∝ 1/mφ , the sensitivities of
the detectors to the underlying DM interactions in Eq. (1) peak
at frequencies somewhat lower than the optimal frequencies
for characteristic strains.

C. Fabry-Perot-Michelson interferometers
(LIGO, VIRGO, KAGRA)

Consider now a dual-recycled Fabry-Perot-Michelson in-
terferometer of the type shown in the simplified layout in
Fig. 2. Archetypes of this configuration include the LIGO
(L = 4 km, l = 6 cm), VIRGO (L = 3 km, l = 5.5 cm) and
KAGRA (L = 3 km, l = 8 cm) interferometers. In contrast to
the layout of a dual-recycled Michelson interferometer (see
Fig. 1), the additional mirrors “ITMX” and “ITMY” form
Fabry-Perot resonators in each arm. While these Fabry-Perot
cavities increase the strain sensitivity of the interferometer to
gravitational waves, they generally reduce the effective sensi-
tivity of the interferometer to DM effects on the beam-splitter

since, in this case, for each to-and-back passage across the
beam-splitter, the laser beam encounters N 	 1 to-and-back
passages within the Fabry-Perot cavities. In this case, Eq. (17)
is modified accordingly:

δ(Lx − Ly)eff ≈
√

2

Neff
(n · δl + l · δn) . (20)

The bandwidth of the Fabry-Perot-Michelson interferometer
is determined by the total propagation time of photons through
the Fabry-Perot arm cavities, but is increased (in the case of
LIGO, VIRGO, and KAGRA) by the signal recycling mirror
(which in this configuration effectively shortens the number
of roundtrips for those photons that carry signal information
in the measurement band). For DM oscillation frequencies
below this modified bandwidth of the Fabry-Perot-Michelson
interferometer, we have 1/Neff ≈ 1/N . However, for DM os-
cillation frequencies above the modified bandwidth of the
Fabry-Perot-Michelson interferometer, 1/Neff increases ap-
proximately linearly with fDM due to the finite propagation
speed of photons. If the thicknesses of the freely suspended
Fabry-Perot arm mirrors in both arms are equal (and compa-
rable to the beam-splitter thickness), then the quasi-common-
mode effects of an oscillating DM field on the arm mirrors,
as discussed in Sec. III B, are subleading in the optimal
frequency range of the detector, provided that N � 103. In
the current LIGO setup, l = 6 cm, w = 20 cm, and N ∼ 102,
so the beam-splitter effect in Eq. (20) indeed gives the main
contribution to the output signal in this case; however, the
quasi-common-mode effects on the arm mirrors in this case
are not as strongly suppressed (compared to the beam-splitter
effect) as they are in the case of a Michelson interferometer
(see Sec. III B).

While some Fabry-Perot-Michelson interferometers use a
small-scale reference cavity to initially lock the laser, the
laser is ultimately locked and stabilized to the common-
mode interferometer arm length, which is isolated against
length fluctuations (via the suspension points) via multiple-
pendulum suspension systems for the mirrors. In this case,
Eq. (13) applies for δn. The entire optimal frequency range
of the LIGO detector lies well below the frequency of the
fundamental vibrational mode of the beam-splitter, and so δl
is governed by the adiabatic formula (6). Thus, we have

δ(Lx − Ly)eff

L
≈

√
2nl

NeffL

(
−δα

α
− δme

me

)
. (21)

If the thicknesses of mirrors “ETMX” and “ITMX” differ
by an amount �w with respect to the thicknesses of mirrors
“ETMY” and “ITMY”, then there will be an additional con-
tribution to the output signal given by

δ(Lx − Ly)

L
≈ −�w

L

(
−δα

α
− δme

me

)
. (22)

In the current LIGO interferometers, |�w| ≈ 80 μm, and so
in this case the contribution in Eq. (22) will be smaller than
the DM effect on the beam-splitter in Eq. (21) for the entire
optimal frequency range of the LIGO detector. However, it is
possible to significantly increase the sensitivity of a Fabry-
Perot-Michelson interferometer to time-varying α and me by
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FIG. 3. From top to bottom: Physical parameter spaces for the linear interactions of an oscillating DM field φ with the electromagnetic
field (photon), electron, and nucleons, as functions of the DM particle mass mφ . The solid lines denote the estimated sensitivities of current
ground-based laser interferometers (red = GEO 600, blue = LIGO, purple = Fermilab holometer). The dashed blue line denotes the projected
sensitivity of a single modified LIGO interferometer, in which the thicknesses of the Fabry-Perot mirrors in one of the interferometer arms are
changed by 10%, and operating at the design sensitivity of Advanced LIGO, while the thin dashed blue line denotes the analogous sensitivity
for a pair of modified LIGO interferometers. The dashed purple line denotes the estimated sensitivity of a single small-scale Michelson
interferometer operating in the resonant narrowband regime near room temperature, with Q ∼ 106 and covering a DM particle mass range
of �mφ/mφ ≈ 1, while the thin dashed purple line denotes the analogous sensitivity for a pair of colocated interferometers. The solid green
line denotes the projected sensitivity of the space-based LISA interferometer in its standard configuration, while the dashed green line denotes
the projected sensitivity of LISA with some of its Au-Pt alloy test masses replaced by Be test masses. All of these sensitivities assume a
total integration time of tint ∼ 108 s and saturation of the average local cold DM density of ρDM ≈ 0.4 GeV/cm3. The region in grey denotes
existing non-DM-based constraints from fifth-force experiments [35–38]. The regions in yellow denote existing DM-based constraints from
experiments involving clock-clock comparisons [39,40], clock-cavity comparisons [11,12,41,42], and the AURIGA resonant-bar detector [43].
The region in blue denotes constraints derived in the present work from the consideration of time-varying center-of-mass displacements of
LIGO’s test masses in the LIGO-O1 data using the results of data analysis taken from [44]. The region in pale green represents the region of
parameter space that is technically natural for a new-physics cutoff scale of � ∼ 10 TeV.
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making the thicknesses of the freely suspended Fabry-Perot
arm mirrors sufficiently different in the two arms.

Using Eqs. (4), (16), (21), and (22), we estimate the
sensitivities of LIGO [17] in both its current configuration
and in a modified configuration where the arm mirrors in
the two arms have appreciably different thicknesses (we take
�w/w = 10% for concreteness) to the linear interactions of
the DM field φ with the photon and electron in Eq. (1). We
present these estimates as blue lines in Fig. 3 (solid line =
current configuration and single detector, dashed line = mod-
ified configuration and single detector, thin dashed line =
modified configuration and both detectors [45]), assuming that
the φ particles saturate the average local cold DM density.
Note the difference in the shapes of the curves for single
detectors at higher frequencies due to the dominant effect
from the arm mirrors in the modified case, compared to the
case where the beam-splitter effect dominates. The sensitivity
of cross-correlation measurements using both LIGO detectors
is enhanced compared to measurements using a single LIGO
detector by the factor ∼(tint/τcoh)1/4 	 1. Laser interferome-
ters of different types (e.g., one Michelson interferometer and
one Fabry-Perot-Michelson interferometer) can also benefit
significantly from cross-correlation measurements, provided
that their individual sensitivities to the underlying DM inter-
action parameters are similar.

D. Resonant narrowband experiments

In Secs. III B and III C, we considered broadband detec-
tion strategies. In this section, we consider the possibility
of resonant narrowband searches with laser interferometers.
The crucial observation is that the oscillations of the galac-
tic DM field are expected to be practically monochromatic,
with a quality factor of Qφ ∼ 106. We begin with small-
scale Michelson interferometers, having in mind the Fermi-
lab holometer as a possible platform. If the DM oscillation
frequency matches the fundamental frequency of the longi-
tudinal vibrational mode of the beam-splitter (≈200 kHz for
the Fermilab holometer), then, according to Eq. (7), the DM-
induced time-varying size changes of the beam-splitter will be
enhanced by the factor Q = min{Qφ, Qmech}:

δ(Lx − Ly)

L
≈

√
2Qnl

L

(
−δα

α
− δme

me

)
. (23)

Materials with quality factors comparable to the DM quality
factor of Qφ ∼ 106 are available. However, to achieve the
desired mechanical quality factor of at least Qmech ∼ 106 (and
hence an overall quality factor of Q ∼ 106), one would need
to ensure that the clamps which support the beam-splitter are
designed in such a way as not to degrade the overall quality
factor.

For simplicity, we neglect higher-order-harmonic vibra-
tional modes in the ensuing discussion and, furthermore,
assume that the measurements are limited by Brownian ther-
mal noise. By the equipartition theorem, the potential energy
associated with the longitudinal vibrational mode of the beam-
splitter is given by MBSω

2
0,BS〈x2〉/2 = kBT/2, where 〈x2〉 is

the mean-square displacement of the reflecting surface, T is
the temperature, and kB is the Boltzmann constant. In the
vicinity of the longitudinal vibrational mode resonance, the

thermal-noise amplitude spectral density is hence given by

ASD (thermal noise) =
√

QkBT

2πMBS f 3
0,BS

. (24)

We thus see that beam-splitters of larger transverse sizes are
advantageous with regards to thermal noise (in the current
Fermilab holometer setup, MBS = 130 g). By cooling the sys-
tem from room temperature to liquid-helium temperature, the
thermal noise can be reduced by a factor of ∼10. Brownian
thermal noise, being broadband, scales as ∝ Q1/2, and so the
signal-to-noise ratio in such resonant narrowband experiments
scales as ∝ Q1/2.

To scan over a range of different DM particle masses,
one must incrementally vary the fundamental resonance fre-
quency. One can alter f0,BS by changing the thickness of
the beam-splitter via ablation and polishing. For very small
incrementations of f0,BS, it would generally be more efficient
to incrementally change the temperature of the system. Near
room temperature, silica has a thermal expansion coefficient
of ∼10−6 K−1 and a sound speed of vs ≈ 6 km/s, while sap-
phire has a thermal expansion coefficient of ∼10−5 K−1 and a
sound speed of vs ≈ 10 km/s. The relative sound speed change
in silica is ∼10−3 over a temperature interval of �T ∼ 10 K
near room temperature, which would cover a frequency range
of � f0,BS/ f0,BS ∼ 10−3 over the same temperature interval,
see Eq. (8). Beam-splitter thicknesses in the range ∼1–10 cm
are routinely used in existing Michelson interferometers. In
dedicated experiments, beam-splitter thicknesses in the range
few mm–30 cm may be achievable. Thus, fundamental fre-
quencies of the beam-splitter in the range ∼10 kHz–1 MHz
can reasonably be covered. This frequency range overlaps
with the frequency range of proposed resonant narrowband
experiments with resonant-mass detectors [46].

Just like the broadband searches discussed in Secs. III B
and III C, the sensitivity of such narrowband searches with a
single Michelson interferometer improves with the integration
time as ∝ (tint )−1/2 for tint � τcoh, then as ∝ (tintτcoh)−1/4 for
tint � τcoh, while the sensitivity of these narrowband searches
with a pair of colocated Michelson interferometers improves
as ∝ (tint )−1/2 for all integration times. Using Eqs. (4), (16),
(23), and (24), we estimate the sensitivities of a single small-
scale Michelson interferometer and a pair of colocated small-
scale Michelson interferometers using the above narrowband
approach and operating near room temperature to the linear
interactions of the DM field φ with the photon and electron
in Eq. (1), assuming that the measurements are limited by
Brownian thermal noise and that all of the dimensions of
the beam-splitter are altered in a proportional manner. We
present these estimates as the dashed and thin dashed purple
lines, respectively, in Fig. 3, for Q ∼ 106, covering a DM
particle mass range of �mφ/mφ ≈ 1 and assuming that the
φ particles saturate the average local cold DM density. We
note that, because the amplitude of the DM field scales as
∝ 1/mφ and that the resonant condition fDM = f0,BS implies
the scaling relation l ∝ 1/mφ for a fixed sound speed [see
Eq. (8)], the size of the resonantly enhanced DM effects in
our proposed narrowband experiments scales roughly as ∝
1/m2

φ . This scaling strongly favors such narrowband searches
at lower DM particle masses.
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As mentioned in Sec. III C, some Fabry-Perot-Michelson
interferometers use reference cavities to initially lock the
laser. In such cases, there can be a similar resonant en-
hancement when the DM oscillation frequency matches the
fundamental frequency of the longitudinal vibrational mode
of the reference cavity. For a typical reference cavity length of
Lcav ∼ 0.5 m and most commonly used materials, the funda-
mental frequency of the longitudinal vibrational mode within
the cavity is f0,cav ∼ 6 kHz, see Eq. (8). Since it is generally
preferable to lock and stabilize the laser to the common-
mode interferometer arm length, rather than to a small-scale
reference cavity, it seems difficult to take advantage of this
resonant enhancement factor in practice for most Fabry-
Perot-Michelson interferometers. It may be possible though
for the VIRGO interferometer, where the reference cavity is
suspended within the main vacuum envelope and thus is in a
lower-noise environment than the reference cavity in LIGO.
For this method to work, the readout of the reference cavity
length would have to be sufficiently sensitive.

One may alternatively modify broadband clock-cavity
comparison experiments of the type considered in [9–12,42]
to scan over a range of DM particle masses where the refer-
ence cavity length changes are resonantly enhanced. In this
case, we have [47]

δ(ωcavity/ωatom)

ωcavity/ωatom
≈ Q

(
δα

α
+ δme

me

)
, (25)

where we have assumed that the relative sensitivity coeffi-
cients of the atomic transition frequency ωatom to apparent
changes in α and me are much smaller than Q. Most reference
cavities have quality factors well in excess of the DM quality
factor of Qφ ∼ 106, giving an overall quality factor of Q ∼
106 in this case. Reference cavities with lengths in the range
∼0.1–1 m are readily available, meaning that fundamental fre-
quencies of the cavity in the range ∼3–30 kHz can reasonably
be covered.

E. Space-based experiments (LISA)

Let us briefly discuss space-based laser interferometry
experiments. The archetypal example in this case is LISA,
which is a three-arm interferometer in a triangular geometry
(L ≈ 2.5×109 m). On board each of the three spacecrafts
is a pair of quasi-freely floating cubic test masses of side
length s = 4.6 cm. At the low DM oscillation frequencies
that lie in the optimal frequency range of the LISA detector
(∼10−4 − 10−1 Hz), the test cube size changes are described
by the adiabatic formula (6)

δs

s
≈ −δα

α
− δme

me

≈ −
√

2ρφ

mφ

cos(mφt )

(
1

�γ

+ 1

�e

)
, (26)

where we used Eqs. (4) and (16) in the second line. Addi-
tionally, the freely floating Au-Pt test cubes will experience a
time-varying acceleration in accordance with Eq. (14). For the
oscillating DM field φ = φ0 cos(mφt − pφ · r), we find

δatest ≈ − √
2ρφvφ sin(mφt )

×
(

4×10−3

�γ

+ 2×10−4

�e
+ 1

�N

)
, (27)

where we again used Eqs. (4) and (16). The freely floating test
masses will, therefore, undergo the following time-varying
center-of-mass displacements:

δxtest ≈ +
√

2ρφvφ

m2
φ

sin(mφt )

×
(

4×10−3

�γ

+ 2×10−4

�e
+ 1

�N

)
. (28)

We note that the time-varying size changes and center-of-
mass displacements of the test cubes in Eqs. (26) and (28),
respectively, are out of phase with respect to each other by
the factor π/2, and that the former effect scales as ∝ 1/mφ ,
while the latter scales as ∝ 1/m2

φ . Additionally, in contrast to
the DM-induced time-varying size changes of the test cubes,
the DM-induced time-varying center-of-mass displacements
of the test cubes are anisotropic, meaning that the resulting
observable signatures will strongly depend on the orientation
of the detector and its components with respect to vφ .

The LISA interferometer operates on the principle of time-
delay interferometry, which basically involves measuring a
particular linear combination of the three arm lengths to
cancel the laser phase noises that would otherwise be im-
printed in length measurements of the unequal (and natu-
rally time-varying) arm lengths of the interferometer. Hence
the common-mode effects of a homogeneous DM field
φ = φ0 cos(mφt ) on test masses in different spacecrafts will
cancel to leading order. In particular, center-of-mass dis-
placements of identical test masses by a homogeneous DM
field correspond to the translation of the entire system.
The leading nonvanishing contribution to the output signal
arises due to phase differences in the oscillating DM field,
φ = φ0 cos(mφt − pφ · r), between pairs of spacecraft, and
so the DM-induced effects on the pairs of test masses in
Eqs. (26) and (28) will be effectively suppressed by the
factor ∼L/λ̄dB � 1. It is possible to significantly increase the
sensitivity of LISA to time-varying α and me by replacing
some of the freely floating Au-Pt alloy test masses by test
masses made of much lighter elements (such as Be, Al,
and/or Ti) [48]. In this case, some of the common-mode
suppression would be lifted due to the maximally different
mass-energy contributions of elements from different regions
of the periodic table, see Eq. (15). Using Eqs. (26) and (28),
we estimate the projected sensitivities of LISA [22] in both its
standard configuration and with our suggested modification
(we suppose that some of the Au-Pt alloy test masses are
replaced by Be test masses for concreteness) to the linear
interactions of the DM field φ with the photon, electron, and
nucleons in Eq. (1). We present these estimates as green lines
in Fig. 3 (solid line = standard configuration, dashed line =
modified configuration), assuming that the φ particles saturate
the average local cold DM density.

In space-based laser-interferometric detectors, the time-
varying center-of-mass displacements of the test masses are
generally more important than the time-varying size changes
of the test masses. Indeed, the ratio of the two effects, modulo
different material-dependent sensitivity coefficients, is of the
order ∼vφ/(mφs), which is 	1 in the optimal frequency
range of the LISA detector. In contrast, in ground-based
Michelson interferometers, the (common-mode-suppressed)

033187-9



H. GROTE AND Y. V. STADNIK PHYSICAL REVIEW RESEARCH 1, 033187 (2019)

time-varying center-of-mass displacements of (identical) test
masses and beam-splitter are generally less important than
time-varying size changes of the beam-splitter. In this case,
the ratio of the two effects, modulo different system/material-
dependent sensitivity coefficients, and geometric factors, is of
the order ∼v2

φL/l , which is �1 for a typical ground-based
detector [49]. Using Eq. (28), together with the relevant sen-
sitivity coefficients for silica test masses presented following
Eq. (15), we estimate the current sensitivities of ground-based
laser interferometers to the linear interaction of the DM field
φ with nucleons in Eq. (1). We present these estimates as solid
lines in Fig. 3 (red = GEO 600, blue = LIGO, purple = Fer-
milab holometer using both of its colocated interferometers),
assuming that the φ particles saturate the average local cold
DM density. Using the results of the recent data analysis in
[44] that searched for analogous time-varying center-of-mass
displacements of LIGO’s test masses in the LIGO-O1 data due
to dark-photon interactions (instead of scalar interactions), we
place bounds on the linear interactions of the DM field φ with
the photon, electron, and nucleons in Eq. (1). These LIGO-O1
bounds are denoted by the blue region in Fig. 3. We note
that, in contrast to the beam-splitter effect in Eq. (21), there is
no 1/Neff suppression factor in Fabry-Perot-Michelson inter-
ferometry searches for time-varying center-of-mass displace-
ments of the beam-splitter and test masses. We also note that
DM-induced time-varying center-of-mass displacements of
freely suspended interferometer components are phenomeno-
logically more interesting for dark-photon interactions [44,50]
due to the lack of an extra velocity suppression factor vφ � 1
compared to the scalar interactions considered in the present
work (see Eqs. (27) and (28), as well as [51,52]).

F. Local dark-matter overdensities

For DM particle masses corresponding to the optimal
frequency ranges of ground-based laser interferometers, it
is possible for the DM density near the surface of Earth
to be many orders of magnitude greater than the average
local cold DM density of ρDM ≈ 0.4 GeV/cm3 inferred from
galactic rotation curve measurements for our Galaxy. Such
a situation may arise, e.g., due to the capture of an over-
dense region of DM by the gravitational well of Earth or the
Sun. This is in stark contrast to laboratory experiments that
search for DM with particle masses mφ ∼ 10−22 eV (see, e.g.,
[39,40,53,54]), where the Heisenberg uncertainty principle
prevents the gravitational collapse of such ultra-low-mass
DM fields on length scales shorter than their reduced de
Broglie wavelength (which is astronomical in this case). We
focus on two specific cases of static and uniformly distributed
overdensities of DM that are centered on the Sun and Earth,
respectively.

For a spherical DM overdensity centered on the Sun, the
most stringent bounds on the largest allowable DM density
near Earth’s surface generally come from planetary ephemeris
measurements. For a spherical DM overdensity of radius
R ≈ 1 AU, the largest allowable DM density near Earth’s
surface is ∼105 times the average local cold DM density [55].
In this case, the DM particles are assumed to be gravitationally
bound to the Sun. By the virial theorem, 〈v2

φ〉 ≈ GM�/R ∼
10−8 at the position of Earth. Since the DM particles are

also assumed to be localized within the sphere of radius R,
we further require that λ̄dB � R, which sets the requirement
mφ � 10−14 eV. This is serendipitous because this includes
the entire optimal frequency ranges of current ground-based
laser interferometers. Additionally, the quality factor associ-
ated with the DM oscillations is Qφ ∼ 108 in this case, which
is ∼100 times larger than in the usual “galactic picture”.

For a spherical DM overdensity centered on Earth, the most
stringent bounds on the largest allowable DM density near
Earth’s surface generally come from a combination of lunar
laser ranging and geodetic surveyance measurements. For a
spherical DM overdensity of radius R ≈ 60R⊕, the largest
allowable DM density near Earth’s surface is ∼1011 times
the average local cold DM density [56]. In this case, the DM
particles are assumed to be gravitationally bound to Earth.
By the virial theorem, 〈v2

φ〉 ≈ GM⊕/R⊕ ∼ 10−9 near Earth’s
surface. Since the DM particles are assumed to be localized
within the sphere of radius R, we require that λ̄dB � R, which
sets the requirement mφ � 10−11 eV. This is fortunate, as this
includes the entire optimal frequency range of the current
Fermilab holometer. In this case, the quality factor associated
with the DM oscillations is Qφ ∼ 109, which is ∼103 times
larger than in the usual “galactic picture”.

We note that the sensitivities of ground-based laser inter-
ferometers to the underlying DM interactions are enhanced
with respect to non-DM-based experiments for the scenarios
discussed in this section, not only because of the increased
DM density (the size of the DM effects scale as ∝ √

ρφ for
linear interactions, while non-DM effects are independent of
ρφ), but also because of the increased coherence time τcoh ∝
Qφ (which diminishes the role of incoherent averaging for
measurements with a single interferometer when tint � τcoh

and, in the case of resonant narrowband experiments, may
increase the signal-to-noise ratio by increasing the overall
quality factor Q). Another possible way for the DM density
near the surface of Earth to be greatly enhanced is via the
formation and subsequent capture of DM objects that are
bound by their own self-gravity and self-interactions [57].

IV. TOPOLOGICAL DEFECTS

A. Theory of topological defects

Topological defects are stable solitonic configurations of
DM fields that may be produced as a result of a phase
transition in the early Universe [58]. These (possibly macro-
scopic) objects may come in a variety of dimensional-
ities: zero-dimensional (0 D, monopoles), one-dimensional
(1 D, strings), or two-dimensional (2 D, domain walls).
As a simple illustrative example, consider a real spinless
field φ in one spatial dimension with the self-potential
V (φ) = σ (φ2 − η2)2, which has two energetically equivalent
vacua at φ = +η and φ = −η. In this case, a stable domain
wall with the transverse profile φ(x) = η tanh(mφx), where
mφ = √

ση, will form between the two vacua. The transverse
size of this domain wall is set by the reduced Compton
wavelength of the underlying field, d ∼ 1/mφ , and any phys-
ical effects produced by this wall arise only at the boundary
between the two vacua. The energy density stored inside a
domain wall is given by ρinside ∼ m2

φφ2
m ∼ φ2

m/d2, where φm

is the amplitude (relative to the vacuum states) of the field φ
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inside the wall. A network of finite-sized domain walls can
account for the observed DM. We can express the amplitude
φm in terms of the energy density associated with a domain-
wall network ρTDN, the typical speed of a wall vTD (locally,
vTD ∼ 300 km/s), and the average time between encounters of
a system (e.g., Earth) with a wall T :

φ2
m ∼ ρTDNvTDT d . (29)

If domain walls of a single type comprise the entirety of the
observed DM, then their largest dimension(s) cannot exceed
the DM halo size of the smallest dwarf galaxies. This places
the following upper bound on their transverse size: d � 1 kpc,
which can be relaxed if these objects make up only a subdom-
inant fraction of the observed DM. In this section, we focus on
the quadratic interactions of the field φ in Eq. (2). We mention
that one may also separately consider the case of Yukawa-type
interactions of DM with SM matter and the effects of the
resulting Yukawa force between a passing topological defect
and the test masses of a detector, see [59] for more details.

B. Experiments

The passage of a domain wall through a laser-interfero-
metric detector can result in similar signatures to those
produced by conventional gravitational waves. One key
difference between the two types of signatures is that domain
walls are expected to pass through a detector with a relative
speed of vTD ∼ 10−3, rather than at the speed of light. Also,
since the velocity distribution of domain walls is expected to
be Maxwell-Boltzmannian (with a local average velocity of
approximately zero), the “event” rate should be maximal for
domain walls coming from the direction of the dark-matter
“wind” (that is, from the direction towards which the Solar
System is moving).

The form of the output signal due to the passage of a
domain wall through a laser interferometer will depend on
several factors, including the size and geometry of the detec-
tor, the relative speed and direction of motion of the domain
wall with respect to the detector, as well as the transverse size
and cross-sectional profile of the wall. Rather than performing
detailed numerical simulations of expected output signals,
which we defer for future studies, let us consider the general
features of domain-wall searches with laser interferometers,
to estimate the sensitivities of these types of detectors to the
quadratic interactions of the field φ in Eq. (2).

From Eqs. (5) and (29), we see that the magnitude of the
domain-wall effects on the freely suspended components of
a ground-based detector (or freely floating test masses of a
space-based detector) scale as ∝ d . For d � L, the output
signal will generally contain appreciable power at and above
the characteristic frequency of f ∼ vTD/L, which typically
lies in the optimal frequency range of the detector. Addition-
ally, there is generally no common-mode suppression in this
case, in contrast to searches for oscillating DM fields (see
Sec. III). On the other hand, for d 	 L, the output signal
will generally be peaked at the characteristic frequency of f ∼
vTD/d , which typically lies well below the optimal frequency
range of the detector, and there will also be common-mode
suppression in this case. Hence we expect the sensitivity of
a particular detector to the quadratic interactions of φ to be

maximal for defects of transverse size d ∼ L. We also point
out that, in contrast to searches for oscillating DM fields, there
is generally no 1/Neff suppression of the output signal due
to transient α or me variations induced by a passing domain
wall on a Fabry-Perot-Michelson interferometer (compare to
Sec. III C).

For domain walls of transverse size greater than the thick-
nesses of the freely suspended (or freely floating) components
of a detector, the wall can envelop the entirety of the regions
of the components that are relevant for the interferometry
measurement. In this case, from Eqs. (5), (6), and (29), the
maximum size change of a test mass is given by(

δLtest

Ltest

)
max

∼ −ρTDNvTDT d

[(
1

�′
γ

)2

+
(

1

�′
e

)2]
. (30)

For domain walls of transverse size less than the thicknesses
of the freely suspended (or freely floating) components of
a detector, the wall cannot envelop the components in their
entirety. For a domain wall traveling parallel (in terms of
its normal vector) to one of the arms of a ground-based
detector, the size changes of the test masses in that arm will
be suppressed compared to that in Eq. (30) by the factor
∼d/Ltest � 1. On the other hand, for a domain wall traveling
perpendicular to one of the arms of a ground-based detector,
the size changes of that arm’s test masses in the region through
which the laser beam traverses will only be suppressed if the
transverse size of the domain wall is smaller than the diameter
of the laser beam. In the second case, the duration of the
passage will also be smaller compared to the case when the
domain wall travels parallel to the arm.

The freely suspended components of a ground-based de-
tector (or freely floating test masses of a space-based detector)
will also experience transient accelerations in accordance with
Eq. (14). The passage of a domain wall with d 	 Ltest through
a test mass occurs within a time interval of �t ∼ d/vTD.
In this case, the freely suspended silica components of a
ground-based detector will undergo the following maximum
center-of-mass displacements:

|δxtest|max

∼ ρTDNT d2

vTD

[
1.4×10−3

(�′
γ )2

+ 3×10−4

(�′
e)2

+ 1

(�′
N )2

]
, (31)

while on the other hand the Au-Pt test cubes of LISA will un-
dergo the following maximum center-of-mass displacements:

|δxtest|max

∼ ρTDNT d2

vTD

[
4×10−3

(�′
γ )2

+ 2×10−4

(�′
e)2

+ 1

(�′
N )2

]
, (32)

where we again used Eqs. (5) and (29). On the other hand, the
passage of a domain wall with d � Ltest through a test mass
occurs within a time interval of �t ∼ Ltest/vTD, but the test
mass (more precisely, a small portion ∼d/Ltest � 1 thereof)
sees an appreciably nonzero gradient of the domain wall only
during a total time interval of �t ∼ d/vTD. In this case, the
maximum center-of-mass displacement of a test mass will be
suppressed compared to that in Eqs. (31) or (32) by the factor
∼d/Ltest � 1.
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Using Eqs. (5), (30), (31), and (32), and noting the sup-
pression factors for thin domain walls discussed above, we
estimate the current sensitivities of GEO 600 [13,14], LIGO
[17], and the Fermilab holometer using both of its colocated
interferometers [15,16], as well as the projected sensitivity of
LISA [22], to the quadratic interactions of the domain-wall
field φ with the photon, electron, and nucleons in Eq. (2).
We present these estimates as solid lines in Fig. 4 (red
= GEO 600, blue = LIGO, purple = Fermilab holometer
using both of its co-located interferometers, green = LISA),
assuming an average time between encounters of Earth and
a domain wall of T ∼ 1 year and that the domain-wall net-
work saturates the average local cold DM density of ρDM ≈
0.4 GeV/cm3. For simplicity, in arriving at these estimates,
we have neglected any possible excitation of underlying me-
chanical resonances associated with the detector that may
arise due to the passage of a sufficiently thin (and/or quickly
moving) domain wall. Furthermore, in the case of the Fer-
milab holometer, we have also neglected the fact that when
the transverse size of a passing domain wall is smaller than
the spatial separation between the two independent interfer-
ometers (0.9 m in the current setup), if the domain wall at
some moment in time simultaneously envelops one pair of
test masses, then at another moment in time the domain wall
might not simultaneously envelop another pair of test masses.
In this case, the cross-correlation signal would be diminished;
however, the individual interferometers would still respond in
the usual manner described above. We note that, in contrast
to oscillating DM fields (see Sec. III), the transient center-
of-mass displacements of the test masses due to the passage
of a domain wall generally dominate over the transient size
changes of the test masses, not only in space-based detectors,
but also in ground-based detectors since, in the case of domain
walls of transverse size d � L there is generally no common-
mode suppression and hence no suppression factor of the form
∼L/λ̄dB � 1.

V. DISCUSSION

In this paper, we have pointed out and explored in detail
several new effects of DM on the components of laser inter-
ferometers. The estimated sensitivities of existing, modified,
and future laser-interferometry experiments to oscillating DM
fields and domain walls are presented in Figs. 3 and 4,
respectively. We see that existing ground-based laser interfer-
ometers already have sufficient sensitivity using existing data
to probe extensive regions of unconstrained parameter space
in both of these DM models. In particular, ground-based laser
interferometry experiments are primarily sensitive to higher
scalar masses compared to the optimal mass ranges of clock
and atom interferometry [64] experiments.

In the case of oscillating DM fields, Michelson inter-
ferometers are especially sensitive. In particular, the ex-
isting GEO 600 detector already offers up to two orders
of magnitude more sensitivity than the best current (non-
DM-based) constraints from fifth-force experiments [35–38]
in the scalar particle mass range few×10−13 eV � mφ �
few×10−11 eV, and at least eight orders of magnitude more
sensitivity than recent DM searches via clock-cavity com-
parison experiments [12] in the same mass range. For

scalar particle masses in the range several×10−11 eV � mφ �
several×10−9 eV, dedicated resonant narrowband searches
using small-scale Michelson interferometers operating near
room temperature may improve in sensitivity by up to two
orders of magnitude compared to previous fifth-force exper-
iments and by at least six orders of magnitude compared
to the recent DM searches of [12,41,42]. The sensitivity
of Fabry-Perot-Michelson interferometers to oscillating DM
fields can be increased by making the thicknesses of the freely
suspended Fabry-Perot arm mirrors different in the two arms
of the interferometer, offering up to five orders of magnitude
more sensitivity than previous fifth-force experiments for a
relative difference in thickness of only 10% and using a pair
of LIGO interferometers operating at the design sensitivity of
Advanced LIGO. The sensitivity of LISA to oscillating DM
fields can be increased by replacing some of the freely floating
Au-Pt alloy test masses by test masses made of much lighter
elements, offering up to a few-dozen times more sensitivity
than previous fifth-force experiments.

In the case of domain walls, existing ground-based laser
interferometers are particularly sensitive to domain walls with
transverse sizes of up to several km, offering a sensitivity
of up to eight orders of magnitude beyond all other existing
experiments and measurements [10,60–63]. The Fermilab
holometer, with its two colocated Michelson interferometers,
and especially a global network of laser interferometers would
benefit from their ability to disentangle correlated domain-
wall-induced signatures from uncorrelated noise sources. The
space-based LISA interferometer, with its enormous “aperture
size”, will be sensitive to domain walls with transverse sizes
of up to several million km.

We emphasize that our newly suggested signatures of
DM in laser interferometers scale to the first power of the
underlying DM interaction parameters [∝ 1/�X in the case
of linear interactions and ∝ 1/(�′

X )2 in the case of quadratic
interactions], whereas conventional non-DM signatures scale
to the second power of the same interaction parameters [∝
1/�2

X in the case of linear interactions and ∝ 1/(�′
X )4 in the

case of quadratic interactions]. This more favorable scaling
for our proposed searches will be especially advantageous for
improving the sensitivities of future laser interferometers to
similar DM signatures.

Finally, we briefly discuss the issue of technical natural-
ness, which formally requires the corrections to the scalar par-
ticle mass mφ from radiative processes involving the nongrav-
itational interactions in Eqs. (1) and (2) to be smaller than the
“bare” mass contribution. For the linear couplings in Eq. (1),
the 1-loop corrections to m2

φ are δm2
φ ∼ [me�/(4π�e)]2 for

the scalar-electron coupling and δm2
φ ∼ [�2/(4π�γ )]2 for

the scalar-photon coupling, where � is a new-physics cutoff
scale, which we assume to be independent of the other mass-
energy scales appearing in Eq. (1). Technical naturalness
thereby requires �e � me�/(4πmφ ) for the scalar-electron
coupling and �γ � �2/(4πmφ ) for the scalar-photon cou-
pling. We present these technically natural regions as pale
green regions in Fig. 3 for � ∼ 10 TeV. We see that existing
and modified ground-based laser interferometers have the
ability to probe sizable regions of technically natural parame-
ter space for the scalar-electron coupling.
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FIG. 4. From top to bottom: Physical parameter spaces for the quadratic interactions of a domain-wall field φ with the electromagnetic
field (photon), electron, and nucleons, as functions of the transverse size of a domain wall d . The solid lines denote the estimated sensitivities
of current ground-based laser interferometers (red = GEO 600, blue = LIGO, purple = Fermilab holometer). The solid green line denotes the
projected sensitivity of the space-based LISA interferometer. All of these sensitivities assume a domain-wall transit speed of vTD ∼ 300 km/s,
an average time between encounters of Earth and a domain wall of T ∼ 1 year, and that the domain-wall network saturates the average local
cold DM density of ρDM ≈ 0.4 GeV/cm3. The region in grey denotes existing model-independent constraints from astrophysical observations
[60] and short-range tests of gravity [60,61]. The regions in yellow denote existing constraints from domain-wall searches using a pair of
colocated clocks referenced to a common cavity [10] and via networks of clocks [62,63].

033187-13



H. GROTE AND Y. V. STADNIK PHYSICAL REVIEW RESEARCH 1, 033187 (2019)

ACKNOWLEDGMENTS

We are grateful to Valery Frolov for helpful discussions
on the reference cavities of laser-interferometric gravitational-
wave detectors and the signal-to-noise ratio scaling of reso-
nant narrowband experiments, as well as helpful comments
on the manuscript. We thank Harald Lück for comments on

the cross-correlation analysis of colocated interferometers.
We thank Kenneth A. Strain and GariLynn Billingsley for
information about the LIGO test masses. We thank Peter Wolf
for helpful discussions. Y.V.S. was supported by the Hum-
boldt Research Fellowship from the Alexander von Humboldt
Foundation and by the World Premier International Research
Center Initiative (WPI), MEXT, Japan.

[1] M. Tanabashi et al. (Particle Data Group), Review of particle
physics, Phys. Rev. D 98, 030001 (2018).

[2] Y. V. Stadnik and V. V. Flambaum, Searches for new particles
including dark matter with atomic, molecular and optical sys-
tems, arXiv:1806.03115.

[3] M. S. Safronova, D. Budker, D. DeMille, D. F. J. Kimball,
A. Derevianko, and C. W. Clark, Search for new physics with
atoms and molecules, Rev. Mod. Phys. 90, 025008 (2018).

[4] We stress the term “apparent” here since DM fields are external
fields that perturb physical systems, in a similar manner to how,
say, an external electric field perturbs the energy levels of an
atom.

[5] Y. V. Stadnik and V. V. Flambaum, Searching for Dark Matter
and Variation of Fundamental Constants with Laser and Maser
Interferometry, Phys. Rev. Lett. 114, 161301 (2015).

[6] Y. V. Stadnik and V. V. Flambaum, Can Dark Matter Induce
Cosmological Evolution of the Fundamental Constants of Na-
ture?, Phys. Rev. Lett. 115, 201301 (2015).

[7] A. Derevianko and M. Pospelov, Hunting for topological dark
matter with atomic clocks, Nat. Phys. 10, 933 (2014).

[8] Y. V. Stadnik and V. V. Flambaum, Searching for Topological
Defect Dark Matter via Nongravitational Signatures, Phys. Rev.
Lett. 113, 151301 (2014).

[9] Y. V. Stadnik and V. V. Flambaum, Enhanced effects of varia-
tion of the fundamental constants in laser interferometers and
application to dark-matter detection, Phys. Rev. A 93, 063630
(2016).

[10] P. Wcislo, P. Morzynski, M. Bober, A. Cygan, D. Lisak, R.
Ciurylo, and M. Zawada, Experimental constraint on dark mat-
ter detection with optical atomic clocks, Nat. Astron. 1, 0009
(2016).

[11] C. Kennedy, E. Oelker, T. Bothwell, D. Kedar, L. Sonderhouse,
E. Marti, S. Bromley, J. Robinson, and J. Ye, Constraints on
ultralight dark matter with an optical lattice clock, Bull. Am.
Phys. Soc. DAMOP 63, H06.00005 (2018).

[12] S. Aharony, N. Akerman, R. Ozeri, G. Perez, I. Savoray, and
R. Shaniv, Constraining rapidly oscillating scalar dark matter
using dynamic decoupling, arXiv:1902.02788.

[13] H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky,
and H. Vahlbruch, First Long-Term Application of Squeezed
States of Light in a Gravitational-Wave Observatory, Phys. Rev.
Lett. 110, 181101 (2013).

[14] K. L. Dooley et al., GEO 600 and the GEO-HF upgrade
program: Successes and challenges, Class. Quantum Grav. 33,
075009 (2016).

[15] A. S. Chou et al., First Measurements of High Frequency
Cross-Spectra from a Pair of Large Michelson Interferometers,
Phys. Rev. Lett. 117, 111102 (2016).

[16] A. S. Chou et al., The Holometer: An instrument to probe
Planckian quantum geometry, Class. Quantum Grav. 34,
065005 (2017).

[17] D. V. Martynov et al., Sensitivity of the advanced LIGO de-
tectors at the beginning of gravitational wave astronomy, Phys.
Rev. D 93, 112004 (2016); 97, 059901 (2018).

[18] F. Acernese et al., Advanced Virgo: A second-generation inter-
ferometric gravitational wave detector, Class. Quantum Grav.
32, 024001 (2015).

[19] Y. Aso, Y. Michimura, K. Somiya, M. Ando, O. Miyakawa, T.
Sekiguchi, D. Tatsumi, and H. Yamamoto (The KAGRA Col-
laboration), Interferometer design of the KAGRA gravitational
wave detector, Phys. Rev. D 88, 043007 (2013).

[20] B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo
Collaboration), Observation of Gravitational Waves from a Bi-
nary Black Hole Merger, Phys. Rev. Lett. 116, 061102 (2016).

[21] B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo
Collaboration), GW170817: Observation of Gravitational
Waves from a Binary Neutron Star Inspiral, Phys. Rev. Lett.
119, 161101 (2017).

[22] K. Danzmann et al., LISA: Laser Interferometer Space An-
tenna. A proposal in response to the ESA call for L3 mission
concepts (European Space Agency, Paris, 2017), accessed Dec
7, 2019, https://www.elisascience.org/files/publications/LISA_
L3_20170120.pdf.

[23] F. Piazza and M. Pospelov, Sub-eV scalar dark matter through
the super-renormalizable Higgs portal, Phys. Rev. D 82, 043533
(2010).

[24] Y. V. Stadnik and V. V. Flambaum, Improved limits on in-
teractions of low-mass spin-0 dark matter from atomic clock
spectroscopy, Phys. Rev. A 94, 022111 (2016).

[25] L. F. Pasteka, Y. Hao, A. Borschevsky, V. V. Flambaum, and
P. Schwerdtfeger, Material Size Dependence on Fundamental
Constants, Phys. Rev. Lett. 122, 160801 (2019).

[26] We note that an externally driven damped harmonic oscillator
and a parametrically driven damped harmonic oscillator exhibit
the same qualitative behavior in the present context.

[27] The finite thicknesses of the power recycling mirror and end
arm mirrors, which form the reference cavity for the laser, do,
in fact, give very small corrections to δω/ω and δn/n. These
small corrections to δω/ω, coupled with the deliberately small
geometric arm length difference in actual laser interferometers,
also give a negligibly small contribution to the output signal.

[28] We note that anisotropic inhomogeneities in the elemental
composition of a test mass can also result in an acceleration on
the test mass without there necessarily being a spatial gradient
in α or the particle masses. However, for high-quality test
masses that are made of practically homogeneous materials, the

033187-14

https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.030001
http://arxiv.org/abs/arXiv:1806.03115
https://doi.org/10.1103/RevModPhys.90.025008
https://doi.org/10.1103/RevModPhys.90.025008
https://doi.org/10.1103/RevModPhys.90.025008
https://doi.org/10.1103/RevModPhys.90.025008
https://doi.org/10.1103/PhysRevLett.114.161301
https://doi.org/10.1103/PhysRevLett.114.161301
https://doi.org/10.1103/PhysRevLett.114.161301
https://doi.org/10.1103/PhysRevLett.114.161301
https://doi.org/10.1103/PhysRevLett.115.201301
https://doi.org/10.1103/PhysRevLett.115.201301
https://doi.org/10.1103/PhysRevLett.115.201301
https://doi.org/10.1103/PhysRevLett.115.201301
https://doi.org/10.1038/nphys3137
https://doi.org/10.1038/nphys3137
https://doi.org/10.1038/nphys3137
https://doi.org/10.1038/nphys3137
https://doi.org/10.1103/PhysRevLett.113.151301
https://doi.org/10.1103/PhysRevLett.113.151301
https://doi.org/10.1103/PhysRevLett.113.151301
https://doi.org/10.1103/PhysRevLett.113.151301
https://doi.org/10.1103/PhysRevA.93.063630
https://doi.org/10.1103/PhysRevA.93.063630
https://doi.org/10.1103/PhysRevA.93.063630
https://doi.org/10.1103/PhysRevA.93.063630
https://doi.org/10.1038/s41550-016-0009
https://doi.org/10.1038/s41550-016-0009
https://doi.org/10.1038/s41550-016-0009
https://doi.org/10.1038/s41550-016-0009
http://meetings.aps.org/Meeting/DAMOP18/Session/H06.5
http://arxiv.org/abs/arXiv:1902.02788
https://doi.org/10.1103/PhysRevLett.110.181101
https://doi.org/10.1103/PhysRevLett.110.181101
https://doi.org/10.1103/PhysRevLett.110.181101
https://doi.org/10.1103/PhysRevLett.110.181101
https://doi.org/10.1088/0264-9381/33/7/075009
https://doi.org/10.1088/0264-9381/33/7/075009
https://doi.org/10.1088/0264-9381/33/7/075009
https://doi.org/10.1088/0264-9381/33/7/075009
https://doi.org/10.1103/PhysRevLett.117.111102
https://doi.org/10.1103/PhysRevLett.117.111102
https://doi.org/10.1103/PhysRevLett.117.111102
https://doi.org/10.1103/PhysRevLett.117.111102
https://doi.org/10.1088/1361-6382/aa5e5c
https://doi.org/10.1088/1361-6382/aa5e5c
https://doi.org/10.1088/1361-6382/aa5e5c
https://doi.org/10.1088/1361-6382/aa5e5c
https://doi.org/10.1103/PhysRevD.93.112004
https://doi.org/10.1103/PhysRevD.93.112004
https://doi.org/10.1103/PhysRevD.93.112004
https://doi.org/10.1103/PhysRevD.93.112004
https://doi.org/10.1103/PhysRevD.97.059901
https://doi.org/10.1103/PhysRevD.97.059901
https://doi.org/10.1103/PhysRevD.97.059901
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1103/PhysRevD.88.043007
https://doi.org/10.1103/PhysRevD.88.043007
https://doi.org/10.1103/PhysRevD.88.043007
https://doi.org/10.1103/PhysRevD.88.043007
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1103/PhysRevLett.119.161101
https://www.elisascience.org/files/publications/LISA_L3_20170120.pdf
https://doi.org/10.1103/PhysRevD.82.043533
https://doi.org/10.1103/PhysRevD.82.043533
https://doi.org/10.1103/PhysRevD.82.043533
https://doi.org/10.1103/PhysRevD.82.043533
https://doi.org/10.1103/PhysRevA.94.022111
https://doi.org/10.1103/PhysRevA.94.022111
https://doi.org/10.1103/PhysRevA.94.022111
https://doi.org/10.1103/PhysRevA.94.022111
https://doi.org/10.1103/PhysRevLett.122.160801
https://doi.org/10.1103/PhysRevLett.122.160801
https://doi.org/10.1103/PhysRevLett.122.160801
https://doi.org/10.1103/PhysRevLett.122.160801


NOVEL SIGNATURES OF DARK MATTER IN … PHYSICAL REVIEW RESEARCH 1, 033187 (2019)

resulting observable effects are generally subleading compared
to those due to spatial gradients in α or the particle masses.

[29] J. Preskill, M. B. Wise, and F. Wilczek, Cosmology of the
invisible axion, Phys. Lett. B 120, 127 (1983).

[30] L. F. Abbott and P. Sikivie, A cosmological bound on the
invisible axion, Phys. Lett. B 120, 133 (1983).

[31] M. Dine and W. Fischler, The not-so-harmless axion, Phys. Lett.
B 120, 137 (1983).

[32] In order for particles to form a classical field, there must be a
large number of such particles within their reduced de Broglie
volume; i.e., nφλ̄

3
dB 	 1. For DM particles that saturate the ob-

served average local cold DM density of ρDM ≈ 0.4 GeV/cm3,
this requirement is readily satisfied by DM particles with
sub-eV masses.

[33] A. Derevianko, Detecting dark-matter waves with a network of
precision-measurement tools, Phys. Rev. A 97, 042506 (2018).

[34] A. Hees, O. Minazzoli, E. Savalle, Y. V. Stadnik, and P. Wolf,
Violation of the equivalence principle from light scalar dark
matter, Phys. Rev. D 98, 064051 (2018).

[35] P. Touboul, G. Métris, M. Rodrigues, Y. André, Q. Baghi, J.
Bergé, D. Boulanger, S. Bremer, P. Carle, R. Chhun et al.,
MICROSCOPE Mission: First Results of a Space Test of the
Equivalence Principle, Phys. Rev. Lett. 119, 231101 (2017).

[36] J. Berge, P. Brax, G. Metris, M. Pernot-Borras, P. Touboul, and
J.-P. Uzan, MICROSCOPE Mission: First Constraints on the
Violation of the Weak Equivalence Principle by a Light Scalar
Dilaton, Phys. Rev. Lett. 120, 141101 (2018).

[37] G. L. Smith, C. D. Hoyle, J. H. Gundlach, E. G. Adelberger,
B. R. Heckel, and H. E. Swanson, Short-range tests of the
equivalence principle, Phys. Rev. D 61, 022001 (1999).

[38] N. Leefer, A. Gerhardus, D. Budker, V. V. Flambaum, and Y. V.
Stadnik, Search for the Effect of Massive Bodies on Atomic
Spectra and Constraints on Yukawa-Type Interactions of Scalar
Particles, Phys. Rev. Lett. 117, 271601 (2016).

[39] K. Van Tilburg, N. Leefer, L. Bougas, and D. Budker, Search
for Ultralight Scalar Dark Matter with Atomic Spectroscopy,
Phys. Rev. Lett. 115, 011802 (2015).

[40] A. Hees, J. Guena, M. Abgrall, S. Bize, and P. Wolf, Search-
ing for an Oscillating Massive Scalar Field as a Dark Matter
Candidate Using Atomic Hyperfine Frequency Comparisons,
Phys. Rev. Lett. 117, 061301 (2016).

[41] E. Savalle, B. M. Roberts, F. Frank, P.-E. Pottie, B. T.
McAllister, C. B. Dailey, A. Derevianko, and P. Wolf, Novel
approaches to dark-matter detection using space-time separated
clocks, arXiv:1902.07192.

[42] D. Antypas, O. Tretiak, A. Garcon, R. Ozeri, G. Perez, and
D. Budker, Scalar Dark Matter in the Radio-Frequency Band:
Atomic-Spectroscopy Search Results, Phys. Rev. Lett. 123,
141102 (2019).

[43] A. Branca et al., Search for an Ultralight Scalar Dark Matter
Candidate with the AURIGA Detector, Phys. Rev. Lett. 118,
021302 (2017).

[44] H.-K. Guo, K. Riles, F.-W. Yang, and Y. Zhao, Searching for
dark photon dark matter in LIGO O1 data, arXiv:1905.04316.

[45] The spatial separation between the two LIGO detectors is
3000 km, and so an oscillating DM field is spatially coherent
over both detectors for all DM particle masses of interest.

[46] A. Arvanitaki, S. Dimopoulos, and K. Van Tilburg, Sound of
Dark Matter: Searching for Light Scalars with Resonant-Mass
Detectors, Phys. Rev. Lett. 116, 031102 (2016).

[47] We note that for phenomenologically interesting interaction
strengths of an oscillating DM field with a quality factor of
Qφ ∼ 106, even resonantly enhanced DM-induced cavity length
fluctuations are not sufficiently large to change the standing-
wave mode number of the laser field inside the cavity (typical
mode numbers are ∼106).

[48] Obviously, “exchanging” test masses on a satellite mission such
as LISA would be the scope of a new mission.

[49] We note that, for the optimal frequency ranges of ground-based
laser interferometers, the non-common-mode components of
DM-induced time-varying displacements of the parts of Earth
directly in contact with the structures connected to the pivot
points of two different test-mass systems correspond to time-
varying size changes of (the solid) Earth at frequencies well
above the fundamental vibrational frequency of Earth, and so
are strongly suppressed (as are isotropic DM-induced time-
varying size changes of Earth), meaning that the pivot points
are practically unaffected by the DM interactions under consid-
eration. Furthermore, the optimal frequency ranges of ground-
based detectors lie well above the normal-mode frequencies of
their double-pendula suspension systems for the test masses,
meaning that the test masses respond to DM-induced time-
varying forces as though they were free (i.e., the test masses
respond inertially in this case).

[50] A. Pierce, K. Riles, and Y. Zhao, Searching for Dark Photon
Dark Matter with Gravitational-Wave Detectors, Phys. Rev.
Lett. 121, 061102 (2018).

[51] A. Arvanitaki, J. Huang, and K. Van Tilburg, Searching for
dilaton dark matter with atomic clocks, Phys. Rev. D 91, 015015
(2015).

[52] S. Morisaki and T. Suyama, On the detectability of ultra-
light scalar field dark matter with gravitational-wave detectors,
arXiv:1811.05003.

[53] C. Abel, N. J. Ayres, G. Ban, G. Bison, K. Bodek, V. Bon-
dar, M. Daum, M. Fairbairn, V. V. Flambaum, P. Geltenbort
et al., Search for Axionlike Dark Matter through Nuclear Spin
Precession in Electric and Magnetic Fields, Phys. Rev. X 7,
041034 (2017).

[54] C. Smorra et al., Direct limits on the interaction of an-
tiprotons with axion-like dark matter, Nature 575, 310
(2019).

[55] E. V. Pitjeva and N. P. Pitjev, Relativistic effects and
dark matter in the Solar system from observations of plan-
ets and spacecraft, Mon. Not. R. Astron. Soc. 432, 3431
(2013).

[56] S. L. Adler, Placing direct limits on the mass of earth-bound
dark matter, J. Phys. A 41, 412002 (2008).

[57] A. Banerjee, D. Budker, J. Eby, H. Kim, and G. Perez,
Relaxion stars and their detection via atomic physics,
arXiv:1902.08212.

[58] A. Vilenkin, Cosmic strings and domain walls, Phys. Rep. 121,
263 (1985).

[59] E. D. Hall, R. X. Adhikari, V. V. Frolov, H. Müller, and
M. Pospelov, Laser interferometers as dark matter detectors,
Phys. Rev. D 98, 083019 (2018).

[60] K. A. Olive and M. Pospelov, Environmental dependence of
masses and coupling constants, Phys. Rev. D 77, 043524
(2008).

[61] E. G. Adelberger, B. R. Heckel, S. Hoedl, C. D. Hoyle, D. J.
Kapner, and A. Upadhye, Particle-Physics Implications of a

033187-15

https://doi.org/10.1016/0370-2693(83)90637-8
https://doi.org/10.1016/0370-2693(83)90637-8
https://doi.org/10.1016/0370-2693(83)90637-8
https://doi.org/10.1016/0370-2693(83)90637-8
https://doi.org/10.1016/0370-2693(83)90638-X
https://doi.org/10.1016/0370-2693(83)90638-X
https://doi.org/10.1016/0370-2693(83)90638-X
https://doi.org/10.1016/0370-2693(83)90638-X
https://doi.org/10.1016/0370-2693(83)90639-1
https://doi.org/10.1016/0370-2693(83)90639-1
https://doi.org/10.1016/0370-2693(83)90639-1
https://doi.org/10.1016/0370-2693(83)90639-1
https://doi.org/10.1103/PhysRevA.97.042506
https://doi.org/10.1103/PhysRevA.97.042506
https://doi.org/10.1103/PhysRevA.97.042506
https://doi.org/10.1103/PhysRevA.97.042506
https://doi.org/10.1103/PhysRevD.98.064051
https://doi.org/10.1103/PhysRevD.98.064051
https://doi.org/10.1103/PhysRevD.98.064051
https://doi.org/10.1103/PhysRevD.98.064051
https://doi.org/10.1103/PhysRevLett.119.231101
https://doi.org/10.1103/PhysRevLett.119.231101
https://doi.org/10.1103/PhysRevLett.119.231101
https://doi.org/10.1103/PhysRevLett.119.231101
https://doi.org/10.1103/PhysRevLett.120.141101
https://doi.org/10.1103/PhysRevLett.120.141101
https://doi.org/10.1103/PhysRevLett.120.141101
https://doi.org/10.1103/PhysRevLett.120.141101
https://doi.org/10.1103/PhysRevD.61.022001
https://doi.org/10.1103/PhysRevD.61.022001
https://doi.org/10.1103/PhysRevD.61.022001
https://doi.org/10.1103/PhysRevD.61.022001
https://doi.org/10.1103/PhysRevLett.117.271601
https://doi.org/10.1103/PhysRevLett.117.271601
https://doi.org/10.1103/PhysRevLett.117.271601
https://doi.org/10.1103/PhysRevLett.117.271601
https://doi.org/10.1103/PhysRevLett.115.011802
https://doi.org/10.1103/PhysRevLett.115.011802
https://doi.org/10.1103/PhysRevLett.115.011802
https://doi.org/10.1103/PhysRevLett.115.011802
https://doi.org/10.1103/PhysRevLett.117.061301
https://doi.org/10.1103/PhysRevLett.117.061301
https://doi.org/10.1103/PhysRevLett.117.061301
https://doi.org/10.1103/PhysRevLett.117.061301
http://arxiv.org/abs/arXiv:1902.07192
https://doi.org/10.1103/PhysRevLett.123.141102
https://doi.org/10.1103/PhysRevLett.123.141102
https://doi.org/10.1103/PhysRevLett.123.141102
https://doi.org/10.1103/PhysRevLett.123.141102
https://doi.org/10.1103/PhysRevLett.118.021302
https://doi.org/10.1103/PhysRevLett.118.021302
https://doi.org/10.1103/PhysRevLett.118.021302
https://doi.org/10.1103/PhysRevLett.118.021302
http://arxiv.org/abs/arXiv:1905.04316
https://doi.org/10.1103/PhysRevLett.116.031102
https://doi.org/10.1103/PhysRevLett.116.031102
https://doi.org/10.1103/PhysRevLett.116.031102
https://doi.org/10.1103/PhysRevLett.116.031102
https://doi.org/10.1103/PhysRevLett.121.061102
https://doi.org/10.1103/PhysRevLett.121.061102
https://doi.org/10.1103/PhysRevLett.121.061102
https://doi.org/10.1103/PhysRevLett.121.061102
https://doi.org/10.1103/PhysRevD.91.015015
https://doi.org/10.1103/PhysRevD.91.015015
https://doi.org/10.1103/PhysRevD.91.015015
https://doi.org/10.1103/PhysRevD.91.015015
http://arxiv.org/abs/arXiv:1811.05003
https://doi.org/10.1103/PhysRevX.7.041034
https://doi.org/10.1103/PhysRevX.7.041034
https://doi.org/10.1103/PhysRevX.7.041034
https://doi.org/10.1103/PhysRevX.7.041034
https://doi.org/10.1038/s41586-019-1727-9
https://doi.org/10.1038/s41586-019-1727-9
https://doi.org/10.1038/s41586-019-1727-9
https://doi.org/10.1038/s41586-019-1727-9
https://doi.org/10.1093/mnras/stt695
https://doi.org/10.1093/mnras/stt695
https://doi.org/10.1093/mnras/stt695
https://doi.org/10.1093/mnras/stt695
https://doi.org/10.1088/1751-8113/41/41/412002
https://doi.org/10.1088/1751-8113/41/41/412002
https://doi.org/10.1088/1751-8113/41/41/412002
https://doi.org/10.1088/1751-8113/41/41/412002
http://arxiv.org/abs/arXiv:1902.08212
https://doi.org/10.1016/0370-1573(85)90033-X
https://doi.org/10.1016/0370-1573(85)90033-X
https://doi.org/10.1016/0370-1573(85)90033-X
https://doi.org/10.1016/0370-1573(85)90033-X
https://doi.org/10.1103/PhysRevD.98.083019
https://doi.org/10.1103/PhysRevD.98.083019
https://doi.org/10.1103/PhysRevD.98.083019
https://doi.org/10.1103/PhysRevD.98.083019
https://doi.org/10.1103/PhysRevD.77.043524
https://doi.org/10.1103/PhysRevD.77.043524
https://doi.org/10.1103/PhysRevD.77.043524
https://doi.org/10.1103/PhysRevD.77.043524


H. GROTE AND Y. V. STADNIK PHYSICAL REVIEW RESEARCH 1, 033187 (2019)

Recent Test of the Gravitational Inverse-Square Law, Phys.
Rev. Lett. 98, 131104 (2007).

[62] B. M. Roberts, G. Blewitt, C. Dailey, M. Murphy, M. Pospelov,
A. Rollings, J. Sherman, W. Williams, and A. Derevianko,
Search for domain wall dark matter with atomic clocks on board
global positioning system satellites, Nat. Commun. 8, 1195
(2017).

[63] P. Wcislo et al., New bounds on dark matter coupling from a
global network of optical atomic clocks, Sci. Adv. 4, eaau4869
(2018).

[64] A. Arvanitaki, P. W. Graham, J. M. Hogan, S. Rajendran,
and K. Van Tilburg, Search for light scalar dark matter with
atomic gravitational wave detectors, Phys. Rev. D 97, 075020
(2018).

033187-16

https://doi.org/10.1103/PhysRevLett.98.131104
https://doi.org/10.1103/PhysRevLett.98.131104
https://doi.org/10.1103/PhysRevLett.98.131104
https://doi.org/10.1103/PhysRevLett.98.131104
https://doi.org/10.1038/s41467-017-01440-4
https://doi.org/10.1038/s41467-017-01440-4
https://doi.org/10.1038/s41467-017-01440-4
https://doi.org/10.1038/s41467-017-01440-4
https://doi.org/10.1126/sciadv.aau4869
https://doi.org/10.1126/sciadv.aau4869
https://doi.org/10.1126/sciadv.aau4869
https://doi.org/10.1126/sciadv.aau4869
https://doi.org/10.1103/PhysRevD.97.075020
https://doi.org/10.1103/PhysRevD.97.075020
https://doi.org/10.1103/PhysRevD.97.075020
https://doi.org/10.1103/PhysRevD.97.075020

