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Abstract
Motivated by observational studies that report associations between schizophrenia and traits, such as poor diet,
increased body mass index and metabolic disease, we investigated the genetic contribution to dietary intake in a
sample of 335,576 individuals from the UK Biobank study. A principal component analysis applied to diet question
item responses generated two components: Diet Component 1 (DC1) represented a meat-related diet and Diet
Component 2 (DC2) a fish and plant-related diet. Genome-wide association analysis identified 29 independent single-
nucleotide polymorphisms (SNPs) associated with DC1 and 63 SNPs with DC2. Estimated from over 35,000 3rd-degree
relative pairs that are unlikely to share close family environments, heritabilities for both DC1 and DC2 were 0.16
(standard error (s.e.)= 0.05). SNP-based heritability was 0.06 (s.e.= 0.003) for DC1 and 0.08 (s.e= 0.004) for DC2. We
estimated significant genetic correlations between both DCs and schizophrenia, and several other traits. Mendelian
randomisation analyses indicated a negative uni-directional relationship between liability to schizophrenia and
tendency towards selecting a meat-based diet (which could be direct or via unidentified correlated variables), but a bi-
directional relationship between liability to schizophrenia and tendency towards selecting a fish and plant-based diet
consistent with genetic pleiotropy.

Introduction
Schizophrenia is a chronic mental disorder with typical

onset in early adulthood and a lifetime risk of approxi-
mately 0.7–0.9%1. Affected individuals have a life expec-
tancy that is reduced by an average of 14.5 years relative
to the general population2. The primary factor con-
tributing to increased mortality is cardiovascular disease
(CVD)3. Weight gain and obesity, which are common in
schizophrenia4, are important risk factors for CVD5.
Notably, evidence of shared genetic factors between
schizophrenia and obesity has been reported, but not in

the direction expected from epidemiological data. Genetic
correlations estimated from genome-wide association
study (GWAS) results from independently collected
schizophrenia case-control samples and other traits show
a significant negative genetic correlation (rg) of schizo-
phrenia risk with body mass index (BMI) (rg=−0.10, s.e.
= 0.03, p= 0.0002)6. There is no evidence for a genetic
relationship between schizophrenia and Type 2 diabetes
(rg=−0.028, s.e.= 0.06, p= 0.62) or coronary artery
disease (rg=−0.0, s.e.= 0.05, p= 1.0)7. These results
imply that if genetic factors also contribute to the asso-
ciations between metabolic syndrome and schizophrenia,
this is a likely complex relationship.
Dietary intake has a causal association with obesity and

people with schizophrenia tend to have an unhealthy diet,
higher in fat and refined sugar and low in fruit and
vegetables4,8. We hypothesised that there might be an
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underlying genetic susceptibility to the self-selected diet-
ary composition in individuals with schizophrenia and
that this would be manifest as a significant genetic cor-
relation between schizophrenia and self-selected diet
measured in a community sample. A twin study of 18–19-
year-olds (N= 2865) reported heritability (h2) estimates
for vegetable eating of 54% (95% CI: 47–59%) and for
meat or fish-eating of 44% (95% CI: 38–51%)9. These
estimates may be inflated by shared family environment.
Meta-analyses of GWASs for macronutrient intake (i.e.,
protein, carbohydrate and fat intake) have confirmed
associations between consumption of carbohydrates, fat
and protein with the fibroblast growth factor 21 (FGF21)
gene and associations of consumption of protein intake
with the fat mass and an obesity-associated locus
(FTO)10–12. Significant genetic correlations between pro-
tein intake and BMI (rg= 0.23) have been reported, but
no significant evidence for genetic correlations between
any macronutrient types and schizophrenia (rg= <
0.07)10. Larger samples are needed to replicate these
findings and to elucidate further how diet correlates with
other traits at the genetic level.
Our study aimed to investigate (1) genetic influences on

dietary intake using GWAS data from the UK Biobank13;
(2) whether there is shared genetic susceptibility between
dietary intake and schizophrenia and (3) if so, whether
there was any statistical evidence consistent with a causal
relationship between SNPs are bi-directional using Men-
delian Randomisation. We also explored genetic correla-
tions of dietary intake with a number of other traits with
available GWAS summary statistics.

Materials/subjects and methods
Study sample
The United Kingdom Biobank (UKB) is a major

community-based longitudinal study with extensive
genetic and phenotypic information of over 500,000 par-
ticipants aged 40–69 years from across the UK during
2006–2010. The study design and sample characteristics
have been extensively described elsewhere13.

Ethics statement
This research has been conducted using the UK Bio-

bank resource under application number 12505 and fol-
lows UK Biobank’s Ethics and Governance Framework.

Generic diet questionnaire
All participants completed a generic diet questionnaire

(UKB, category:100052) that was used to estimate the
average consumption of fruit, vegetables (raw and cooked),
fish (oily and non-oily), meat (processed, beef, lamb, pork),
bread, cheese, cereal, tea, coffee and drinking water.
We only included responses from individuals at the

questionnaire at the first time-point as only a small

proportion had completed the questionnaire twice. We
standardised the diet questionnaire responses for each
item, and we set values that were >3.5 standard deviations
from the mean to 3.5 standard deviations. Given the high
correlation between question responses, we summarised
the questionnaire information by conducting a principal
component analysis (PCA)14. Since questions about bread,
cheese, cereal, tea, coffee and drinking water had low
loadings on the components (<0.08), we excluded these
questions from the PCA and repeated the PCA using only
the questions about fruit, vegetables, fish, and meat con-
sumption. Three eigenvalues were greater than 1. We
selected the first two factors, factor 1 (Diet Component 1,
DC1), explaining 23% of the variance of the included
questionnaire items and representing a meat-related diet
(high intake of processed meat, poultry, beef, lamb and
pork), and factor 2 (Diet Component 2, DC2), explaining
18% of the variance and representing a fish and plant-
related diet (high intake of raw and cooked vegetables,
fruit, oily and non-oily fish) (Fig. 1). The third factor,
accounted for only 12% of the variance and was not as
interpretable as DC1 and DC2 and, therefore, we did not
include it in our analysis (Supplementary Fig. 1). A
schematic diagram with the number of individuals
excluded at each stage is provided in Supplementary Fig. 2
and the distributions of the anthropometric traits of the
final sample are provided in Supplementary Fig. 3. By
design the phenotypic correlation between DC1 and DC2
is zero; the phenotypic correlations between diet com-
ponents are in Supplementary Table 1. We excluded from
the sample individuals with a BMI that was more or
<3 standard deviations from the mean based on their sex
and individuals with a diagnosis of anorexia nervosa (ICD-
10 code: F50 and ICD-9 code: 307.1) and/or schizo-
phrenia, schizotypal and delusional disorders (ICD-10
codes: F20-F29 and ICD-9 codes: 290–299). Taking into
account that data on individuals who follow special diets
was only available for 58,985 participants, we did not
include this information in our analyses.

Genotypes
The genotype measures and quality control (QC) of the

UKB data have been described extensively by the UKB
group15 (also see Supplementary Note for more infor-
mation). We utilised the latest July 2018 genotype release
of imputed data from UKB. We only included individuals
of White European descent with genetic data. Ancestry
was defined using a combination of self-report informa-
tion on ethnic background and genetic information as
described16. The total number of markers included was
25,921,788. Principal components were calculated with
genotyped variants used by the ukb (identified from the
ukb_snp_qc.txt file) and passing additional QC filters (as
applied in to unrelated white European set; geno 0.05,
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pHWE 10-6, MAF > 0.01). Genotyped SNP used by the
UKB had already been LD pruned (r2 < 0.1) and had long-
range LD regions removed (Table S12 UKB QC doc-
umentation). There were 137,102 SNP included in the
analysis. Genetic principal components were calculated
for the unrelated white European set using flashPCA17

then projected onto the related individuals.
The number of individuals with complete phenotypic

and genotypic data was 335,576.

Statistical analyses
The UK Biobank provided KING kinship coefficients

and the fraction of markers, which share no alleles
identical-by-descent15. We identified likely 100 twin,
12,957 full-sibling, 3354 parent–offspring, 6092 second-
and 37,947 third-degree relationship pairs in our Eur-
opean individuals following the procedure outlined in
Bycroft et al.18. We then estimated the phenotypic cor-
relation (rp) for each group or relatives and approximated
the heritability of DC1 and DC2 (residuals after regression
on covariates) within each class as rp/aR; where aR is the
average coefficients of relationship (i.e., monozygotic
twins aR= 1, full siblings aR= 0.5, parent–offspring aR=
0.5, second-degree aR= 0.25 and third-degree aR= 0.125)
relatives). This approximation assumes that the rp reflects
only shared additive genetic contributions. Since close
family member share non-additive genetic and family/
social networks, contributions from such factors would
generate higher rp/aR for close relatives compared to

more distant relatives. We also estimated rp/aR for BMI,
as a benchmark.
For our GWA analyses, we used the DC1 and DC2

residuals after regressing on covariates of (1) year of birth,
(2) sex, (3) month of assessment, (4) assessment centre,
(5) batch and (6) 100 genetic PCs. To obtain a better
understanding of DC1 and DC2, we also compared their
geographical distribution19 using the whole sample vs. the
sample on unrelated Europeans after regressing out the
covariates (Supplementary Figs. 4 and 5). We decided to
adjust for 100 genetic PCs given that diet is a trait that is
likely to vary within subpopulations.
We used the BOLT-LMM software package20 to model

the associations between SNPs and the residuals of the
two phenotypes, DC1 and DC2. BOLT-LMM uses a
mixed model that uses genetic data to account for
population structure and relatedness between individuals.
The threshold for significance of associations was a
p-value < 5 × 10−8.
We used the FUMA web application to identify inde-

pendent significant SNPs with a genome-wide significant
p-value (<5 × 10−08) that are in approximate linkage dis-
equilibrium with each other at r2 < 0.1 and to generate
Manhattan and Quintile–Quintile plots and achieve SNP
functional annotations21.
We performed gene analysis and gene-set analysis with

MAGMA v1.6 using FUMA21 using the association ana-
lysis summary statistics. Taking into account that the UK
Biobank imputation used both 1000 genomes and
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Fig. 1 Loadings of diet components (DCs).
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Haplotype Reference Consortium (HRC) reference panels
while FUMA only uses 10,000 genomes as a reference
panel, it is likely that our gene-set analyses may be based
on an incomplete set of variants. Gene expression analysis
was obtained from GTEx v6 (https://www.gtexportal.org/
home/) integrated by FUMA22 (Supplementary Note).
We estimated genetic correlations between schizo-

phrenia23 and other complex traits using linkage dis-
equilibrium (LD) score regression through LD Hub v1.9.0
(http://ldsc.broadinstitute.org/centers/)7 and GWAS
summary statistics. 235 traits were examined using LD
hub, and the Bonferroni corrected p-value threshold for
significance is 0.05/470= 1 × 10−4. For traits that had
estimated genetic correlations significantly different from
0 with DC1 or DC2, we used the gsmr R-package to
implement Generalised Summary-data-based Mendelian
Randomisation to test for bi-directional genetic associa-
tions24. Heterogeneity in dependent instrument (HEIDI)
outlier analyses were implemented to exclude SNPs that
have significant pleiotropic effects.
We used the summary-data-based Mendelian rando-

misation (SMR) software25 to examine if the association of
an SNP with the phenotype is mediated through gene
expression, a tool to help prioritise GWAS results for
follow-up functional studies. We used the following
summary data expressed: (1) brain-expressed: expression
quantitative trait loci (eQTL) meta-analysis data where we
tested 7324 probes and DNA methylation quantitative
trait loci (mQTL) summary data where we tested 92,867
probes from26. The Bonferroni adjusted p-value threshold
for eQTL analyses was 0.05/7324= 6.8 × 10−6 and for the
mQTL was 0.05/92,867= 5.4 × 10−7; (2) blood-expressed:
eQTL summary data from the CAGE data set27, where we
tested 8468 probes and mQTL data from the Brisbane
Systems Genetics Study and the Lothian Birth Cohorts of
1921 and 1936 from28 where we tested 92,867 probes. The
Bonferroni adjusted p-value threshold for eQTL analyses
was 0.05/8468= 5.9 × 10−6 and for mQTL was 0.05/
91,578= 5.4 × 10−7. We conducted a number of sensi-
tivity analyses (Supplementary Note).

Results
Diet components (DCs)
In all, 335,576 individuals (46% males) had complete

genotypic and phenotypic data and were included in a
PCA to generate two independent diet components (DCs)
(see Methods, Supplementary Table 2). DC1 represented
a meat-related diet and DC2 a fish and plant-related diet
(Fig. 1 and Supplementary Table 1). DC1 was associated
with younger age (b=−0.01, p < 0.001) (i.e., a 1-year
increase in year of birth was associated with a decrease in
DC1 by 0.01 standard deviations) and females were more
likely to have a lower DC1 score (b=−0.38, p < 0.001)
(Supplementary Table 3). DC2 was also associated with
younger age (b=−0.03, p < 0.001), but in contrast to
DC1, females were more likely to have a higher DC2 score
(b= 0.28, p < 0.001) (Supplementary Table 3). Month of
questionnaire administration was also significantly asso-
ciated with DC1 (less meat eating in summer) and DC2
(more fish and plant eating in summer). We report ana-
lyses of standardised DC1 and DC2 residuals after
regression on covariates, including age, sex, month of
questionnaire, assessment centre, genotyping batch and
100 genetic principal components (PCs).
To determine if genetic factors contribute to these DCs,

we identified pairs of 1st, 2nd and 3rd-degree relatives and
estimated phenotypic correlations (rp). As expected, rp
increased with the coefficient of relationship (aR), and the
rp/aR estimates were higher for close relatives. For 3rd-
degree relatives, coefficients of non-additive genetic rela-
tionship and influences of a shared common environment
are expected to be small, so rp/aR provides estimates of
the trait heritability (h2). We estimate h2 of 0.16 for DC1
and 0.16 for DC2 (Table 1).

Genome-wide association study
For DC1, 29 independent SNPs reached genome-wide

significance (p < 5 × 10−8; Fig. 2, Supplementary Table 4,
Supplementary Data File, Supplementary Fig. 6). The
proportion of variance explained by genome-wide com-
mon genetic variants (h2SNP) is 0.055 (s.e.= 0.003), i.e., 31%

Table 1 Phenotypic correlations and heritability of DC1 and DC2 within each relationship class.

DC1 DC2 BMI

Avg. coefficient of
relationship (aR)

Phenotypic
correlation (rp)

rp/aR (s.e.) Phenotypic
correlation (rp)

rp/aR(s.e.) Phenotypic
correlation (rp)

rp/aR (s.e.) Na

Monozygotic twins 1 0.46 0.46 (0.08) 0.46 0.46 (0.08) 0.75 0.75 (0.09) 100

Full siblings 0.5 0.16 0.32 (0.02) 0.13 0.26 (0.02) 0.25 0.50 (0.02) 12,957

Parent–offspring 0.5 0.16 0.32 (0.04) 0.14 0.28 (0.03) 0.28 0.56 (0.04) 3354

Second-degree relatives 0.25 0.04 0.16 (0.05) 0.04 0.16 (0.05) 0.10 0.40 (0.05) 6092

Third-degree relatives 0.125 0.02 0.16 (0.04) 0.02 0.16 (0.04) 0.07 0.56 (0.04) 37,947

anumber of pairs; s.e. standard error.

Niarchou et al. Translational Psychiatry           (2020) 10:51 Page 4 of 11

https://www.gtexportal.org/home/
https://www.gtexportal.org/home/
http://ldsc.broadinstitute.org/centers/


of the h2 estimated from 3rd-degree relatives. Among the
top-associated loci was the chromosome 19 apolipopro-
tein E gene (APOE, rs429358, p= 4.5 × 10−13, C allele b=
−0.02), with the APOE protein a significant cholesterol
transporter that has been directly related to low-density
lipoprotein cholesterol29,30 and mostly known for its
associations with Alzheimer’s disease31. Here, the C allele,
associated with higher risk of Alzheimer’s disease32 was
negatively correlated with the meat-related diet. Another
strongly associated locus was the chromosome 22,
rs429358 SNP that maps to the FGF21 gene, replicating
previous GWASs on macronutrient intake11,12. This locus
was also associated with the individual questionnaire
items (Supplementary Table 5) providing further validity
on their associations with food consumption. In gene-
based analyses there were 41 genes significantly associated
with DC1 (Supplementary Table 6), including the neu-
ronal growth regulator 1 (NEGR1) gene (p= 5.7 × 10−15)
a BMI-related gene33–35. Seven gene-sets reached statis-
tical significance (Supplementary Table 7). The top three
gene-sets were related to synaptic plasticity, a process

related to memory and learning36 that is also found dis-
rupted in people with schizophrenia37.
For DC2 h2SNP was 0.078 (0.004), or 44% of the esti-

mated h2 estimated from 3rd-degree relatives. There
were 63 independent genome-wide significant SNPs
(p < 5.0 × 10−8; Fig. 2, Supplementary Table 8, Sup-
plementary Data File, Supplementary Fig. 6), and
260 genes (Supplementary Table 6) that achieved sta-
tistical significance in their respective association
analysis tests.
Fat mass and the obesity-associated protein (FTO) gene

(p= 4.4 × 10−17), one of the most extensively studied
genes in the field of food consumption and obesity, was
associated with DC2 at the gene analysis further sup-
porting previous candidate gene studies38–40.
Two gene-sets achieved statistical significance (Sup-

plementary Table 7). The top-associated gene-set was the
Nikolsky breast cancer 20q11 amplicon gene-set (i.e.,
genes within amplicon 20q11 that were identified in a
copy number alterations study of 191 breast tumour
samples) was associated with DC2 (p= 1.4 × 10−08).

Fig. 2 Manhattan plot for diet components 1 and 2.

Niarchou et al. Translational Psychiatry           (2020) 10:51 Page 5 of 11



In silico functional analyses
Integration of association results with GTEx gene

expression across 30 tissue types showed that SNP asso-
ciations were significantly enriched in the brain tissue
gene-set for both DC1 and DC2 while DC1 was also
significantly enriched in the pituitary gland tissue gene-set
(Supplementary Figs. 7 and 8). To investigate in silico
putative functional relevance of loci, we integrated eQTL,
i.e., SNP gene expression associations) and mQTL
summary statistics expressed in the brain and blood tis-
sues26–28 using the SMR method25. The analyses highlight
>200 genes for which association with self-selected diet
have the strongest evidence-base (Supplementary Table
9). Results include associations putatively mediated
through gene expression for both DC1 and DC2 with
neuronal growth regulator 1 (NEGR1) and the ribosomal
protein L31 pseudogene 12 (RPL31P12), both of which
have been consistently associated with BMI41,42, educa-
tional attainment43, intelligence44 and major depressive
disorder45. In addition SMR association analyses link DC1
and Histone Cluster 1 H2B Family Member F
(HIST1H2BF) that has been associated with hip cir-
cumference46 and body height47, and DC2 with IKAROS
family zinc finger 3 (IKZF3) gene that has been associated
with inflammatory bowel disease48 and family with
sequence similarity 167 member A (FAM167A) gene that
has been associated with systemic lupus erythematosus49.

Cross-trait analyses
Genetic correlations between DC1 or DC2 with other traits

estimated from publicly available GWAS summary statistics
(Figs. 3 and 4, and Supplementary Table 10, Supplementary

Table 11) show significant estimates with schizophrenia and
a number of other traits. In particular, there was a negative
genetic correlation between schizophrenia and DC1 (rg=
−0.13, s.e.= 0.03, p= 2.0 × 10−6) and positive genetic cor-
relation between schizophrenia and DC2 (rg= 0.16, s.e.=
0.03, p= 9.4 × 10−8). Since DC1 and DC2 are orthogonal
(i.e., phenotypically uncorrelated), they were also genetically
uncorrelated (rg=−0.03, s.e.= 0.03, p= 0.30).
DC1 showed a significant negative genetic correlation with

anorexia nervosa (rg=−0.18, s.e.= 0.03, p= 5.02 × 10−08)
and positive genetic correlations with waist circumference
(rg= 0.14, s.e.= 0.03, p= 3.8 × 10−06) and waist-to-hip-ratio
(rg= 0.14, s.e.= 0.03, p= 5.13 × 10−06) (Fig. 3).
DC2 was positively correlated to bipolar disorder (rg=

0.23, s.e.= 0.04, p= 6.9 × 10−08) , chronotype (rg= 0.13,
s.e.= 0.03, p= 4.2 × 10−05), BMI (rg = 0.26, s.e.= 0.03,
p = 5.16 × 10−19) and other BMI-related traits while
negative genetic correlations were found with age at
menarche (rg=−0.16, s.e.= 0.03, p= 4.9 × 10−09) and
intelligence (rg=−0.13, s.e.= 0.03, p= 4.2 × 10−05). We

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

Anorexia Nervosa

Schizophrenia

Waist-to-hip ra�o

Waist circumference

(*) Body mass index

(*) Obesity class 1

(*) Hip circumference

(*) Overweight

(*) Extreme bmi

(*) Obesity class 2

Age at Menarche

Bipolar disorder

PGC cross-disorder analysis

(*) Childhood obesity

Height; Females at age 10 and males at age 12

Chronotype

Intelligence

rg

Significant gene�c correla�ons of DC1 and DC2

DC2

DC1

Fig. 3 Significant genetic correlations of DC1 and DC2.

Fig. 4 Genetic correlations between DC1, DC2, BMI, schizophrenia.

Niarchou et al. Translational Psychiatry           (2020) 10:51 Page 6 of 11



also conducted genetic correlations analyses for the DC1
per sex separately but the results were similar for both
sexes (Supplementary Tables 16 and 17).

Mendelian randomisation (MR) analyses
Given the significant genetic correlations between the

DCs and other traits we used MR analyses (via the GSMR
method50) to investigate if there is statistical evidence
consistent with uni- or bi-directional relationships
between the correlated traits.
MR analyses between DC1 and schizophrenia were

weakly significant when DC1 was an outcome, where for
1 standard deviation liability to schizophrenia there was a
reduction of 0.03 standard deviations of DC1 (bDC1|SCZ=
−0.03, s.e.= 0.003, p= 2 × 10−02) but were not significant
when DC1 was the exposure (Table 2).
MR analyses between DC2 and schizophrenia were bi-

directionally significant (Table 2). Particularly, when DC2
was an outcome, for 1 standard deviation liability to
schizophrenia there was an increase of 0.05 standard
deviations of DC2 (bDC2|SCZ= 0.05; s.e.= 0.00, p= 3.2 ×
10−06, number of independent SNP instruments (NSNP)=
118). When DC2 was an exposure, for 1 standard devia-
tion change in DC2 the odds of liability to schizophrenia
increased 1.43 fold (bSCZ|DC2= 1.43, s.e.= 0.10, p= 1 ×
10−03, NSNP= 46).
MR analyses between DC1 and waist hip ratio and DC1

and anorexia nervosa were not significant.
Interestingly, BMI was associated with DC2 when DC2

was an outcome (bDC2|BMI= 0.15, s.e.= 0.01, p= 4.9 ×
10−39, NSNP= 82), but not when DC2 was an exposure

(bBMI|DC2= 0.07, s.e.= 0.04, p= 0.06, NSNP= 44) (Sup-
plementary Fig. 9). Thus, there is no evidence for a high
consumption of fruit, vegetables and fish being causally
related to an increase in BMI, consistent with observa-
tional studies51 and dietary population guidelines52 rather
the observed correlations are a result of tendency to have
increased consumption of fruit, vegetables and fish as a
(direct or indirect) consequence of high BMI, which may
reflect that, in general, individuals with high BMI con-
sume larger quantities of all types of food.

Discussion
Dietary intake
Our study is the largest to investigate the genome-wide

associations of dietary intake. We applied PCA to diet
questionnaire item responses and identified two inde-
pendent diet components, with high DC1 representing
high-meat consumption and high DC2 reflecting high
consumption of fish and plant-related products. This
analysis enabled us to undertake GWAS analyses of
quantitative measures of self-reported dietary intake.
Variation between people in dietary intake as repre-

sented by DC1 and DC2 is predominantly driven by non-
genetic factors, consistent with it being primarily influ-
enced by a variety of socioeconomic and psychological
factors, including lifestyle, culture and health beliefs53.
Nonetheless, both DC1 and DC2 were moderately heri-
table (both 16% Table 1) in line with reports from twin
studies9,54 and consistent with animal studies that imply
biological driving forces underpinning self-selection of
diet55. The proportion of variance explained by genome-

Table 2 Generalised summary-data-based Mendelian randomisation (GSMR) results.

Outcome Exposure

DC1 DC1

Exposure b s.e. p NSNP Outcome b s.e. p NSNP

Schizophreniaa −0.03 0.00 2.0E-02 118 Schizophrenia 0.98 0.16 8.9E-01 24

Anorexia Nervosa n/a n/a n/a n/ab Anorexia Nervosaa 0.49 0.38 6.0E-01 26

Waist hip ratio −0.01 0.02 6.4E-01 31 Waist hip ratio 0.06 0.06 3.2E-01 21

DC2 DC2

b s.e. p NSNP b s.e. p NSNP

Schizophreniaa 0.05 0.00 3.2E-06 118 Schizophreniaa 1.43 0.10 1.0E-03 46

Bipolara 0.05 0.01 6.0E-03 16 Bipolara 1.92 0.13 3.3E-07 46

Intelligence −0.04 0.02 5.0E-02 13 Intelligence −0.08 0.06 2.0E-01 38

Age at Menarche −0.01 0.01 1.7E-01 71 Age at Menarche −0.18 0.06 2.0E-03 45

Chronotypea 0.08 0.03 1.6E-01 11 Chronotypea 1.07 0.04 7.0E-02 50

BMI 0.15 0.01 4.8E-39 82 BMI 0.07 0.04 6.0E-02 44

DC diet component, NSNP number of single-nucleotide polymorphisms, b; abeta coefficient on the liability scale, in bold are statistically significant associations.
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wide SNPs was 6% and 8% for DC1 and DC2. Hence this
common variation explains 31% and 44% of the estimated
heritability, respectively. Twenty-nine independent loci
passed the GWA threshold for DC1 and sixty three for
DC2. The FGF21 gene reached GWA significance in the
gene-wide analyses for both DC1 and DC2 (which were
phenotypically and genetically uncorrelated), replicating
previous GWA studies on macronutrient intake11,12.
Moreover, 4 out of 7 brain mQTL SNPs and 6 out of 12
blood-expressed mQTL SNPs were associated with DC1.
Five mQTL SNPs and one eQTL SNP expressed in the
brain and eight mQTL SNPs expressed in the blood were
associated with DC2 were at the 19q13.3 locus, including
the izumo sperm-egg fusion 1 (IZUMO1) gene, the MEF2
activating motif, and SAP domain containing transcrip-
tional regulator (MAMSTR) gene and the RAS-interacting
protein 1 (RASIP1) gene supporting a role of the 19q13.3
locus in diet intake10–12.

Dietary intake and schizophrenia
Our primary hypothesis that there would be a genetic

correlation between dietary intake and schizophrenia was
supported. It is important to note that we chose to examine
food type consumption rather than macronutrient intake, a
decision informed by a published GWA meta-analysis (n=
91,114) that did not find evidence of a phenotypic rela-
tionship of macronutrient intake and schizophrenia10.
Based on the diet questionnaire data available, our DCs
reflect self-selected diet composition and quantity.
We found that genetic factors contributing to high DC2

values, indicating higher consumption, mainly, of fish (oily
and non-oily) and cooked vegetables were positively and
significantly correlated with genetic factors associated
with schizophrenia (regardless of whether BMI was
included as a covariate in analyses) (Supplementary table
12). On first consideration, taking into account wealth of
evidence indicating that higher consumption of fruit and
vegetables is related to a variety of positive health and
psychological outcomes, including decreasing risk for
cancer and heart disease56,57, lower incidence of depres-
sion58, better emotional health59, greater happiness and
life-satisfaction60,61, the direction of our association of
dietary intake and schizophrenia seems unexpected.
However, our results suggest a more complex relationship
between self-selected diet and schizophrenia risk, and that
the reported negative health consequences of schizo-
phrenia are likely to be consequences of factors associated
with the illness (e.g., lack of access to care, economic
disadvantage) or drug treatment (where drugs targeting
schizophrenia pathways could impact DC2 pathways).
Mendelian Randomisation analyses indicated that while
results were consistent with schizophrenia being related
with a reduction of DC1, that the relationship between
schizophrenia and DC2 is more likely to reflect pleiotropy.

Dietary intake and BMI
Given the wording of the dietary questions used to

generate the DCs, we expect that the DCs reflect both
dietary compositions and quantity. Hence, a relationship
with BMI and other obesity-related traits is expected.
Indeed, we found a strong genetic correlation between
DC1 and waist circumference and genetic correlations
between DC2 and many BMI-related traits, including
obesity and being overweight. We decided not to include
these traits as covariates to our analysis to avoid potential
biases arising from using residuals62 and from con-
ditioning on heritable covariates63. However, as a sensi-
tivity analysis, we re-ran our analyses adjusting DC1 and
DC2 for BMI and then, as predicted63 observed a sig-
nificant genetic correlation between DC2 and BMI (Sup-
plementary Tables 13 & 14), and an induced correlation
between the DC1 and BMI; these results affirmed our
decision not to adjust for BMI at the phenotypic level. We
also used Genome-Wide Inferred Study (GWIS)64, where
we conditioned DC1 on waist circumference and DC2 on
BMI; this analysis forces the genetic correlation between
the conditioned trait (e.g., DC2 conditioned on BMI) and
the conditioning trait (e.g., BMI) to be zero. In that case,
all the previously significant genetic correlations between
DC1, DC2 and the other traits became non-significant
(Supplementary Table 15), even though the overlap in
liberally associated SNPs was low (Supplementary Fig. 9).
Our results illustrate the complex relationship between
the DCs and obesity-related traits, with DC1 and DC2
independent dimensions; the former related to waist cir-
cumference and waist/hip ratio, and the latter associated
with BMI. The relationship between DC2 and BMI is
particularly complex. The genetic correlation is in the
direction of genetic factors associated with eating more
fish, fruit and vegetables as associated with higher BMI.

Implications
The low-heritability estimates of DC1 and DC2 attest to

dietary intake being a mostly environmental, and there-
fore potentially modifiable, behavioural trait65. Although
we observed genetic correlations between genetic liability
to dietary choice, schizophrenia, and bipolar disorder, the
patterns of results from the MR tests suggested this is
likely to be primarily the result of genetic pleiotropy. In
other words, some of the alleles that influence dietary
choice also influence liability to psychiatric disorder, but
those alleles do not do so by their effects on diet itself.
Nevertheless, given that diet and nutrition affect biologi-
cal processes potentially involved in psychiatric (and
definitely in some physical disorders), such as inflamma-
tion66, oxidative processes67, and brain plasticity68, it is
important to further examine potentially shared pathways
between dietary intake and disease to gain a better
understanding of the underlying biology. Although the
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direction of the association results between the DCs and
schizophrenia was unexpected, similar seemingly para-
doxical results have been type found for 2 diabetes (T2D).
Zhu et al.50 recently used GSMR Mendelian randomisa-
tion to report a negative association between BMI and
type 2 diabetes (T2D), despite BMI being a known risk
factor (confirmed through randomised control trial69).
They interpret the relationship between BMI and T2D as
a complex mixture of causality, reverse causality and
pleiotropy. It seems that this broad interpretation is likely
to represent the relationship between dietary intake, BMI
and schizophrenia.

Limitations
We used a self-report questionnaire to assess dietary

intake. Although this is the typical assessment method
used in large population-based studies70, there is evidence
that higher BMI is associated with under-reporting of the
quantity of food consumption71,72 and that individuals
tend to under-report unhealthy foods and over-report
consumption of fruit and vegetables73. The assessment we
used is subjective and reflects a significant limitation of
population and community studies of nutritional science
in general74. Another limitation is that diet changes over
time75. The UK biobank participants are not representa-
tive of the population in certain sociodemographic char-
acteristics76. Finally, ascertainment bias could lead to
collider bias (i.e., spurious associations between two
unrelated traits, which is driven by each being associated
with a trait that influences participation in the study)77.
Therefore, our findings need to be tested in other cohorts.

Conclusions
Although the heritability of diet intake measures is low,

we identified many independent genome-wide significant
loci associated with our two DC traits, genetic correla-
tions, as well as possible causal and shared genetic path-
ways with schizophrenia and many other traits. Our study
adds evidence-based results to the growing recognition of
the need of a holistic approach in the context of disorders
of the brain. Further studies are needed to help gain a
better understanding on the role of diet, nutrition and
metabolic traits in disease onset, disease progression and
treatment.

Acknowledgements
This research has been conducted using the UK Biobank Resource under
Application Number 12505. This study was funded by the Wellcome Trust
(110222/Z/15/Z)(MN).

Author details
1Institute for Molecular Biosciences, University of Queensland, Brisbane, QLD,
Australia. 2Medical Research Council Centre for Neuropsychiatric Genetics and
Genomics, Division of Psychological Medicine and Clinical Neurosciences,
Cardiff University, Cardiff, UK. 3Vanderbilt Genetics Institute, Vanderbilt
University Medical Center, Nashville, Tennessee, United States. 4Max Kelsen,
Beyond AI, Brisbane, Australia. 5Esthonian Genome Centre, Institute of

Genomics, University of Tartu, Tartu, Estonia. 6Queensland Brain Institute,
University of Queensland, Brisbane, QLD, Australia. 7Queensland Centre for
Mental Health Research, The Park Centre for Mental Health, Wacol, QLD,
Australia. 8National Centre for Register-Based Research, Aarhus University,
Aarhus, Denmark

Conflict of interest
The authors declare that they have no conflict of interest.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Supplementary Information accompanies this paper at (https://doi.org/
10.1038/s41398-020-0688-y).

Received: 11 June 2019 Revised: 8 November 2019 Accepted: 20 November
2019

References
1. van Os, J. & Kapur, S. Schizophrenia. Lancet 374, 635–645 (2009).
2. Hjorthøj, C., Stürup, A. E., McGrath, J. J. & Nordentoft, M. Years of potential life

lost and life expectancy in schizophrenia: a systematic review and meta-
analysis. Lancet Psychiatry 4, 295–301 (2017).

3. Hjorthoj, C., Sturup, A. E., McGrath, J. J. & Nordentoft, M. Years of potential life
lost and life expectancy in schizophrenia: a systematic review and meta-
analysis. Lancet Psychiatry 4, 295–301 (2017).

4. Manu, P. et al. Weight gain and obesity in schizophrenia: epidemiology,
pathobiology, and management. Acta Psychiatr. Scandinavica 132, 97–108
(2015).

5. Caemmerer, J., Correll, C. U. & Maayan, L. Acute and maintenance effects of
non-pharmacologic interventions for antipsychotic associated weight gain
and metabolic abnormalities: a meta-analytic comparison of randomized
controlled trials. Schizophr. Res. 140, 159–168 (2012).

6. Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from
polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295
(2015).

7. Zheng, J. et al. LD Hub: a centralized database and web interface to perform
LD score regression that maximizes the potential of summary level GWAS
data for SNP heritability and genetic correlation analysis. Bioinformatics 33,
272–279 (2017).

8. Stokes, C. & Peet, M. Dietary sugar and polyunsaturated fatty acid con-
sumption as predictors of severity of schizophrenia symptoms. Nutr. Neurosci.
7, 247–249 (2004).

9. Smith, A. D. et al. Genetic and environmental influences on food preferences
in adolescence. Am. J. Clin. Nutr. 104, 446–453 (2016).

10. Merino, J. et al. Genome-wide meta-analysis of macronutrient intake of 91,114
European ancestry participants from the cohorts for heart and aging research
in genomic epidemiology consortium. Mol. Psychiatry, https://doi.org/10.1038/
s41380-018-0079-4 (2018).

11. Chu, A. Y. et al. Novel locus including FGF21 is associated with dietary mac-
ronutrient intake. Hum. Mol. Genet. 22, 1895–1902 (2013).

12. Tanaka, T. et al. Genome-wide meta-analysis of observational studies shows
common genetic variants associated with macronutrient intake. Am. J. Clin.
Nutr. 97, 1395–1402 (2013).

13. Sudlow, C. et al. UK biobank: an open access resource for identifying the
causes of a wide range of complex diseases of middle and old age. PLoS Med.
12, e1001779 (2015).

14. Tyrrell, J. et al. Gene-obesogenic environment interactions in the UK Biobank
study. Int J. Epidemiol. 46, 559–575 (2017).

15. Bycroft, C. et al. Genome-wide genetic data on ~500,000 UK Biobank parti-
cipants. bioRxiv, https://doi.org/10.1101/166298 (2017).

16. Yengo, L. et al. Imprint of assortative mating on the human genome. Nat.
Human Behav. 2, 948–954 (2018).

17. Abraham, G. & Inouye, M. Fast principal component analysis of large-scale
genome-wide data. PLoS ONE 9, e93766 (2014).

Niarchou et al. Translational Psychiatry           (2020) 10:51 Page 9 of 11

https://doi.org/10.1038/s41398-020-0688-y
https://doi.org/10.1038/s41398-020-0688-y
https://doi.org/10.1038/s41380-018-0079-4
https://doi.org/10.1038/s41380-018-0079-4
https://doi.org/10.1101/166298


18. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and
genomic data. Nature 562, 203–209 (2018).

19. Abdellaoui, A. et al. Genetic correlates of social stratification in Great Britain.
Nat. human Behav. 3, 1332–1342 (2019).

20. Loh, P. R. et al. Efficient Bayesian mixed-model analysis increases association
power in large cohorts. Nat. Genet. 47, 284–290 (2015).

21. Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. FUMA: functional
mapping and annotation of genetic associations. bioRxiv, https://doi.org/
10.1101/110023 (2017).

22. Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional
mapping and annotation of genetic associations with FUMA. Nat. Commun. 8,
1826 (2017).

23. Ripke, S. et al. Biological insights from 108 schizophrenia-associated genetic
loci. Nature 511, 421 (2014).

24. Zhu, Z. et al. Causal associations between risk factors and common diseases
inferred from GWAS summary data. bioRxiv, https://doi.org/10.1101/168674
(2017).

25. Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies
predicts complex trait gene targets. Nat. Genet. 48, 481–487 (2016).

26. Qi, T. et al. Identifying gene targets for brain-related traits using transcriptomic
and methylomic data from blood. Nat. Commun. 9, 2282 (2018).

27. Lloyd-Jones, L. R. et al. The genetic architecture of gene expression in per-
ipheral blood. Am. J. Hum. Genet. 100, 228–237 (2017).

28. McRae, A. et al. Identification of 55,000 replicated DNA methylation QTL.
bioRxiv, https://doi.org/10.1101/166710 (2017).

29. Willer, C. J. et al. Discovery and refinement of loci associated with lipid levels.
Nat. Genet. 45, 1274–1283 (2013).

30. Surakka, I. et al. The impact of low-frequency and rare variants on lipid levels.
Nat. Genet. 47, 589–597 (2015).

31. Jun, G. et al. A novel Alzheimer disease locus located near the gene encoding
tau protein. Mol. Psychiatry 21, 108–117 (2016).

32. National Institute on Aging/Alzheimer’s Association Working Group.
Apolipoprotein E genotyping in Alzheimer’s disease. Lancet 347,
1091–1095 (1996).

33. Akiyama, M. et al. Genome-wide association study identifies 112 new loci for
body mass index in the Japanese population. Nat. Genet. 49, 1458 (2017).

34. Thorleifsson, G. et al. Genome-wide association yields new sequence variants
at seven loci that associate with measures of obesity. Nat. Genet. 41, 18–24
(2009).

35. Graff, M. et al. Genome-wide analysis of BMI in adolescents and young adults
reveals additional insight into the effects of genetic loci over the life course.
Hum. Mol. Genet. 22, 3597–3607 (2013).

36. Martin, S. J., Grimwood, P. D. & Morris, R. G. Synaptic plasticity and
memory: an evaluation of the hypothesis. Annu. Rev. Neurosci. 23,
649–711 (2000).

37. Forsyth, J. K. & Lewis, D. A. Mapping the consequences of impaired synaptic
plasticity in Schizophrenia through development: an integrative model for
diverse clinical features. Trends Cogn. Sci. 21, 760–778 (2017).

38. Cecil, J. E., Tavendale, R., Watt, P., Hetherington, M. M. & Palmer, C. N. An
obesity-associated FTO gene variant and increased energy intake in children.
N. Engl. J. Med. 359, 2558–2566 (2008).

39. Timpson, N. J. et al. The fat mass- and obesity-associated locus and dietary
intake in children. Am. J. Clin. Nutr. 88, 971–978 (2008).

40. Park, S. L. et al. Association of the FTO obesity risk variant rs8050136 with
percentage of energy intake from fat in multiple racial/ethnic populations: the
PAGE study. Am. J. Epidemiol. 178, 780–790 (2013).

41. Winkler, T. W. et al. The influence of age and sex on genetic associations with
adult body size and shape: a large-scale genome-wide interaction study. PLoS
Genet. 11, e1005378 (2015).

42. Locke, A. E. et al. Genetic studies of body mass index yield new insights for
obesity biology. Nature 518, 197–206 (2015).

43. Okbay, A. et al. Genome-wide association study identifies 74 loci associated
with educational attainment. Nature 533, 539 (2016).

44. Hill, W. D. et al. A combined analysis of genetically correlated traits identifies
187 loci and a role for neurogenesis and myelination in intelligence. Mol.
Psychiatry, https://doi.org/10.1038/s41380-017-0001-5 (2018).

45. Wray, N. R. et al. Genome-wide association analyses identify 44 risk variants
and refine the genetic architecture of major depression. Nat. Genet. 50,
668–681 (2018).

46. Shungin, D. et al. New genetic loci link adipose and insulin biology to body fat
distribution. Nature 518, 187–196 (2015).

47. Wood, A. R. et al. Defining the role of common variation in the genomic and
biological architecture of adult human height. Nat. Genet. 46, 1173–1186
(2014).

48. Liu, J. Z. et al. Association analyses identify 38 susceptibility loci for inflam-
matory bowel disease and highlight shared genetic risk across populations.
Nat. Genet. 47, 979–986 (2015).

49. Lee, Y. H., Bae, S. C., Choi, S. J., Ji, J. D. & Song, G. G. Genome-wide pathway
analysis of genome-wide association studies on systemic lupus erythematosus
and rheumatoid arthritis. Mol. Biol. Rep. 39, 10627–10635 (2012).

50. Zhu, Z. et al. Causal associations between risk factors and common diseases
inferred from GWAS summary data. Nat. Commun. 9, 224 (2018).

51. Rolls, B. J., Ello-Martin, J. A. & Tohill, B. C. What can intervention studies tell us
about the relationship between fruit and vegetable consumption and weight
management? Nutr. Rev. 62, 1–17 (2004).

52. World Health Organisation. Food Based Dietary Guidelines in the WHO European
Region. (World Health Organisation, 2003).

53. Nestle, M. et al. Behavioral and social influences on food choice. Nutr. Rev. 56,
S50–S64 (1998).

54. Fildes, A. et al. Nature and nurture in children’s food preferences. Am. J. Clin.
Nutr. 077867 (2014).

55. Overmann, S. R. Dietary self-selection by animals. Psychol. Bull. 83, 218–235
(1976).

56. Bazzano, L. A. The high cost of not consuming fruits and vegetables. J. Am.
Dietetic Assoc. 106, 1364–1368 (2006).

57. Bellavia, A., Larsson, S. C., Bottai, M., Wolk, A. & Orsini, N. Fruit and vegetable
consumption and all-cause mortality: a dose-response analysis. Am. J. Clin.
Nutr. 98, 454–459 (2013).

58. McMartin, S. E., Jacka, F. N. & Colman, I. The association between fruit
and vegetable consumption and mental health disorders: evidence
from five waves of a national survey of Canadians. Prev. Med. 56,
225–230 (2013).

59. Kulkarni, A. A., Swinburn, B. A. & Utter, J. Associations between diet quality and
mental health in socially disadvantaged New Zealand adolescents. Eur. J. Clin.
Nutr. 69, 79–83 (2015).

60. Rooney, C., McKinley, M. C. & Woodside, J. V. The potential role of fruit and
vegetables in aspects of psychological well-being: a review of the literature
and future directions. Proc. Nutr. Soc. 72, 420–432 (2013).

61. Blanchflower, D. G., Oswald, A. J. & Stewart-Brown, S. Is psychological well-
being linked to the consumption of fruit and vegetables? Soc. Indic. Res. 114,
785–801 (2013).

62. Holmes, M. V. & Davey Smith, G. Problems in interpreting and using GWAS of
conditional phenotypes illustrated by ‘alcohol GWAS’. Mol. Psychiatry, https://
doi.org/10.1038/s41380-018-0037-1 (2018).

63. Aschard, H., Vilhjalmsson, B. J., Joshi, A. D., Price, A. L. & Kraft, P. Adjusting for
heritable covariates can bias effect estimates in genome-wide association
studies. Am. J. Hum. Genet. 96, 329–339 (2015).

64. Nieuwboer, H. A., Pool, R., Dolan, C. V., Boomsma, D. I. & Nivard, M. G. GWIS:
genome-wide inferred statistics for functions of multiple phenotypes. Am. J.
Hum. Genet. 99, 917–927 (2016).

65. Birch, L. L. & Ventura, A. K. Preventing childhood obesity: what works? Int. J.
Obes. 33, S74 (2009).

66. de Haan, J. -J. et al. Postshock intervention with high-lipid enteral
nutrition reduces inflammation and tissue damage. Ann. Surg. 248,
842–848 (2008).

67. Mayne, S. T. Antioxidant nutrients and chronic disease: use of biomarkers of
exposure and oxidative stress status in epidemiologic research. J. Nutr. 133
(Suppl 3), 933S–940S (2003).

68. Murphy, T., Dias, G. P. & Thuret, S. Effects of diet on brain plasticity in animal
and human studies: mind the gap. Neural Plast. 2014, 563160 (2014).

69. Look Ahead Research Group, Wing, R. R. Long-term effects of a lifestyle
intervention on weight and cardiovascular risk factors in individuals with type
2 diabetes mellitus: four-year results of the Look AHEAD trial. Arch. Intern. Med.
170, 1566–1575 (2010).

70. Tanaka, T. Genetics of energy and macronutrient intake in humans. Curr. Nutr.
Rep. 3, 170–177 (2014).

71. Livingstone, M. B. & Black, A. E. Markers of the validity of reported energy
intake. J. Nutr. 133(Suppl 3), 895S–920S (2003).

72. Tooze, J. A. et al. Psychosocial predictors of energy underreporting in a large
doubly labeled water study. Am. J. Clin. Nutr. 79, 795–804 (2004).

73. Lafay, L. et al. Does energy intake underreporting involve all kinds of food or
only specific food items? Results from the Fleurbaix Laventie Ville Sante (FLVS)

Niarchou et al. Translational Psychiatry           (2020) 10:51 Page 10 of 11

https://doi.org/10.1101/110023
https://doi.org/10.1101/110023
https://doi.org/10.1101/168674
https://doi.org/10.1101/166710
https://doi.org/10.1038/s41380-017-0001-5
https://doi.org/10.1038/s41380-018-0037-1
https://doi.org/10.1038/s41380-018-0037-1


study. Int. J. Obes. Relat. Metab. Disord.: J. Int. Assoc. Study Obes. 24, 1500–1506
(2000).

74. Brignardello, J., Holmes, E. & Garcia-Perez, I. in Advances in Food and Nutrition
Research, Vol. 81 (ed. Toldrá, F.) 231–270 (Academic Press, 2017).

75. Stevenson, R. J. Psychological correlates of habitual diet in healthy adults.
Psychol. Bull. 143, 53–90 (2017).

76. Fry, A. et al. Comparison of sociodemographic and health-related character-
istics of UK biobank participants with those of the general population. Am. J.
Epidemiol. 186, 1026–1034 (2017).

77. Munafo, M. R., Tilling, K., Taylor, A. E., Evans, D. M. & Davey Smith, G. Collider
scope: when selection bias can substantially influence observed associations.
Int J. Epidemiol. 47, 226–235 (2018).

Niarchou et al. Translational Psychiatry           (2020) 10:51 Page 11 of 11


	Genome-wide association study of dietary intake in the UK biobank study and its associations with schizophrenia and other traits
	Introduction
	Materials/subjects and methods
	Study sample
	Ethics statement
	Generic diet questionnaire
	Genotypes
	Statistical analyses

	Results
	Diet components (DCs)
	Genome-wide association study
	In silico functional analyses
	Cross-trait analyses
	Mendelian randomisation (MR) analyses

	Discussion
	Dietary intake
	Dietary intake and schizophrenia
	Dietary intake and BMI
	Implications
	Limitations

	Conclusions
	ACKNOWLEDGMENTS




