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Abstract
Recently, we have revealed an intrinsic instability ofmetals due to surface plasmawaves (SPWs) and
raised the prospect of using it to create lossless SPWs. The counter-intuitive nature of thisfinding
prompts one to ask, why had not this instability been disclosed before, given the long history of this
subject? If this instability does exist, how far is it from reality? The present work is devoted to answering
these questions. To this end, we derive a unifiedmacroscopic theory of SPWs that applies to any type
of electron dynamics, be they local or non-local, classical or quantum-mechanical. In light of this
theory, we analyze the behaviors of SPWs according to several electron dynamicsmodels, including
thewidely used local dielectricmodel, the hydrodynamicmodel and the specular reflectionmodel, in
addition to the less common semi-classicalmodel.We find that, in order to unveil the instability, one
must (i) self-consistently treat surface effects without any of the usually imposed auxiliary conditions
and (ii) include translation symmetry breaking effects in electron dynamics. As far as we are
concerned, none existingwork had fulfilled both (i) and (ii). To assess the possibility of realizing the
instability, we analyze two very important factors: the dielectric interfacing themetal and inter-band
transitions, which bothwere ignored in our recent work.Whereas inter-band absorption—together
with Landau damping—is shown adverse to the instability, a dielectric brings it closer to occurrence.
Onemay even attain it in commonplasmonicmaterials such as silver under not so tough conditions.

1. Introduction

Electron density ripples propagating alongmetal surfaces, known as surface plasmawaves (SPWs), have been
intensively pursued as a promising enabler of nano photonics [1–4]. A fundamental issue hampering further
progress is concernedwith energy losses [5]. SPWs lose energy fast due to Joule heating, Landau damping and
inter-band absorption alongside others such as radiation losses [5]. It has been suggested that these losses—
especially those due to Landau damping—are intrinsic and cannot be significantly reducedwithout the addition
of external gainmedium [5–9]. Theywould ultimately handicap the functionalities of SPWs [5, 6].

Our recent work [10–12] challenged the above view and found that, thanks to an incipient instability, the
lossesmaywell be reduced to any level without taking energy fromoutside. A critical point was shown to exist at
γ0τ=1, where τ−1 is the thermal electronic collision rate and γ0 is a positive-definite quantity. At the critical
point, the energy released from the Fermi sea—at rate γ0—just compensates for the dissipation due to electronic
collisions and SPWs become lossless [12]. This instability was revealed through a semi-classicalmodel (SCM,
based onBoltzmann’s transport equation) of SPWs.Given the highly counter-intuitive nature of this possibility
and the long history on this subject dated back to late 1950s [13], the following questionsmust then be answered:
Whyhas the criticality not been discovered in earlier work andwhat ismissing in those work?While it is not widely
used in the study of SPWs, the SCMhad certainly been considered before [14, 15]. Yet nobody had claimed
lossless SPWs.
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Themainpurpose of thepresent paper is to answer the above question.Our strategy is to construct a universal
theory of SPWs that is applicable to any type of electrondynamics, be they local ornon-local, classical or quantum-
mechanical. In light of this theory, the properties of SPWsare then analyzedwith several commonelectron
dynamicsmodels, including the local dielectricmodel (DM) [13], the classical hydrodynamicmodel (HDM)
[16–19] and the specular reflectionmodel (SRM) [20–22] in addition to the SCM.The chief result obtained
through this analysis is that, inorder tounveil the instability, (i) a SPWtheorymust self-consistently dealwith
physical surfaces, and (ii) translation symmetry breaking effectsmust be included in the electron dynamics.
Amongst thesemodels, only the SCMis capable of (ii), but previouswork basedon the SCMhadall failedwith
respect to (i). This explainswhy the existingwork had failed to hit upon the possibility of lossless SPWs.

In existing work based on non-localmodels, auxiliary conditions have usually been imposed [23–26], mostly
assuming no normal current on surfaces, as in the hard-wall picture adopted in computational studies [27–30].
From a conceptual point of view, however, these conditions are obviously incompatible with localmodels and
arise only due to an incomplete description of physical surfaces [31].Wewill show that the conventional
treatment of SPWs via auxiliary conditions does not recover the standard textbook SPWs in the localmodels.We
prescribe a simple yet completemacroscopic description of physical surfaces, which remedies the conceptual
deficiency and allows to derive a universal SPW theory accounting for surface effects self-consistently.

As a secondary purpose,wewish to address an experimentally interesting issue, that is, how far is the instability
from reality andhow can it be achieved? In general,τ−1 is comparable to the characteristic plasma frequencyωp, even
indefect-freematerials and at zero temperature [32]. This is becauseτ−1 is the collision rate at the SPWfrequency,
which is in theorder of a few eVs inmetals and thus effects as an effective high temperature of tens of thousands of
Kelvins opening up a large phase volume for electron scattering.One then expectsγ0τ<1usually. Inorder to
devise a practically usefulmethodof enhancingγ0, we employ our theory to analyze two important factors affecting
γ0: a dielectric interfacing themetal supporting SPWsand inter-band transition effects,whichwere ignored in
[10–12].Wefind that, inter-band absorption (aswell as Landaudamping) strongly reducesγ0, whereas topping a
dielectric can significantly increase γ0. In thisway the instabilitymaywell be in reach in a single crystal of silver.

This paper is organized as follows.We develop a universalmacroscopic SPW theory in the next section and
apply it to theDM, theHDMand the SRM in section 4. Section 3 includes a discussion of a phenomenological
approach to inter-band transition effects tomake the paper self-contained. Section 5 is devoted to a thorough
treatment of SPWswithin the SCM.Dielectric and inter-band effects are analyzed.We assess the possibility of
creating lossless SPWs by the SCMand conclude the paper in section 7. In appendices A andB,we discuss some
historicalmisconceptions regarding the SPWs in theHDMand the SRM, respectively.

2.Universal theory of SPWs

In this section, we present a general theory of charge density waves in semi-infinitemetals (SIMs). Extension to
systems of other geometries is straightforward andwill be considered elsewhere. The theory is formulated in
terms of universal physical concepts andmakes no resort to the particulars of electron dynamics. It is a
macroscopic theory, thus valid as long as the thickness (ds, typically a few lattice constants) of themicroscopic
surface layer, which forms between the vacuumand the bulkmetal, ismuch smaller than the SPWwavelengthΛ.
In this paper, by ‘macroscopic’we alwaysmean ds/Λ= 1, with no regard to electron dynamics.

Retardation effects are neglected throughout this paper, which is reasonable provided the SPWphase
velocity ismuch less than the speed of light in vacuum.

2.1.Macroscopic description of surfaces
The SIMunder consideration is assumed to occupy the region z�0 and bounded by aflat interface/surface
macroscopically located at z=0. The other half space is either the vacuumor a dielectric with dielectric
constant òd, see figure 1. The surface is assumed flat on the themacroscopic scale so that translation symmetry is
preserved along the surface, but itmay be ragged on the scale of Fermiwavelength and therefore can diffusively
scatter electronwaves.We shall use the vector x=(r, z) to denote a point in space, where r=(x, y) is the planar
projection of x. Further, x0=(r, 0) denotes a point on the surface and t denotes time.

In amacroscopic description of SPWs, one usually considers themetal as amedium for an electromagnetic
field and seeks surface localized (polariton) solutions of the governingMaxwell’s equations [33]. The procedure
is towrite down thewaves for (an infinitemetal) on themetal side and those (for an infinite dielectric) on the
dielectric side, and then invoke conditions tomatch thosewaves at the surface.With local dynamics, the usual
Maxwell’s boundary conditionswould do the job.With non-local dynamics, however, they are insufficient.
Historically, auxiliary conditions—mostly assuming zero normal current at the surface [14, 15, 17, 25]—have
been invented as a remedy since 1950s [23], which however treat the symptoms not the cause. The cause is a
conceptual deficiency in the knowledge of surfaces [31]. Considering that a realmicroscopic surface can hardly
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be specified even for the simplestmaterial due to preparation procedures, onemight deem it hopeless to have a
complete description. The following elementary analysis suggests otherwise.

Let us imagine bringing twomaterials (A andB) in contact, and an interfacial layer of thickness ds—in the
order of a few lattice constants—shall form in between.Wemay characterize this layer by a surface potentialfs,
which should quickly decay to zero in the bulk regions outside the interfacial layer. The exactmicroscopic profile
of the layer varies fromone case to another and can hardly be known a priori. Despite this, wemay still write
down a generic form for the electric current density j(x, t) in thewhole system including the interfacial layer. To
this end, we observe that in the bulk regionswherefs vanishes, the formof j(x, t) can be completely specified
with the respective dynamic equations for the infinitematerials, apart from some parameters (such as the Fuchs
parameter, see section 5) that encode the effects of surface scattering on the electronwaves. Let us denote by
JA/B(x, t) the forms of j(x, t) in the bulk region ofA/B.Microscopically, j evolves from JA in the bulk region ofA,
through a rapid variation in the interfacial layer, to JB in the bulk region ofB. Formally, we canwrite for theμth
component of the current density that jμ(x, t)=JA, μ(x, t)wμ(z)+JB,μ(x, t)(1−wα(z)), where the profile
functionswα(z) approach unity in the bulk region ofA and zero in that ofB. The exact profile ofwμ(z) depends
on themicroscopic details of the interfacial layer. On the scale ofλ, however, the interfacial layer appears
infinitely thin andwα(z) reduce to theHeaviside step functionΘ(z), whereΘ(z�0)=1 andΘ(z<0)=0, in
amacroscopic theory. One thus ends upwith

t t z t zj x J x J x, , , 1 . 1A B= Q + - Q( ) ( ) ( ) ( )( ( )) ( )

This holds valid for anywμ(z) and is thus a general and completemacroscopic description of a physical interface,
as long as a perturbation on one side does not cause significant responses on the other.

To recapitulate, equation (1) elegantly captures two importance physical consequences of an interface: the
rapid variation of the current density through the step functionΘ(z) and the surface scattering effects on
electron dynamics through the parameters contained in the bulk formsThese scattering effects—including the
symmetry breaking effects—have been ignored inmostmodels except for the SCM. In general JA and JB are not
equal on the interface, as is certainly the case for local dynamicsmodels, and charges accumulate in the
interfacial layer. Such capacitive effects would bemistakenly erased under auxiliary conditions, which often
dictate continuity of current across the interface, e.g. the vanishing of normal current at themetal–vacuum
interface.

2.2. Charge density waves
Nowwe derive the equations ofmotion for the charge density ρ(x, t)=en(x, t), where e denotes the charge of an
electron and n(x, t) is the deviation from themean electron density n0, in the SIM.Our starting point is the
equation of continuity. Specifying equation (1) to the SIM,we have j(x, t)=Θ(z) J(x, t), where J(x, t) is the
current density in themetal. The equation of continuity then reads

t tx j x, , 0, .t t tx
1 r t+ ¶ = = + ¶-( ) · ( )

Herewe have included a global relaxation term−ρ(x, t)/τ to account for the thermal relaxation of non-
equilibrium charges due tomicroscopic electronic collisions driving the system toward thermodynamic
equilibrium. In terms of J(x, t), this equation becomes

Figure 1. Sketchof the system: SPWsare propagating along the interface between ametal and a dielectric. A point in space is denotedby
its position vectorx=(r, z), where r=(x, y) is the planar projection. The positionof a point on the interface is denotedbyx0=(r, 0).
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t t z J tx J x x, , , , 2t zx 0 r + ¶ = -Q¢( ) · ( ) ( ) ( ) ( )

whereΘ′(z)=∂zΘ(z). The right-hand termof this equation signifies the capacitive effects, which is critical in
the energy conversion process but had been overlooked until our recent work [12]. This termwas also noticed by
Fetter in studying the edge plasmon in two-dimension systems [19].

Without loss of generality,wemay assume aquasi-planewave for thefields andwrite t zx, e r tkir r= w-( ) ( ) ( · )

and similarly for J(x, t) and the electricfieldE(x, t), where thewave vectork=(k�0, 0) is directed along the
positive x-axis for the sake of definiteness. In general the frequencyω=ωs−iγ is complex.The relationbetween
ω and k is determined by thewave equations to be established inwhat follows. Equation (2) thus becomes

z z J zJ ki 0 , i , , 3z zwr- +  = - Q¢  = ¶¯ ( ) · ( ) ( ) ( ) ( ) ( )

where iw w t= +¯ and J t Jx , 0 ez z
r tk

0
i= w-( ) ( ) ( · ).We shall write is 0w w g= +¯ , so that

1 40g t g= - ( )

by definition.We shall see that γ0 is negative in allmodels except for the SCM, inwhich it is positive-definite
thanks to a fundamental physical reason.

For linear responses, J(z) can be related toE(z) as follows

J z z z z E zd , , , 5
x y z, , ,

òå s w= ¢ ¢ ¢m
m n

mn n
=

( ) ( ) ( ) ( )

whereσμν(z, z′,ω) is the conductivity tensor. Considering thatE(z) linearly depends on ρ(z), we can define a
linear operator ̂ with kernel z z, ¢( ) so that

z z z z z zJd , i . 6 òr r w= ¢ ¢ ¢ = - ˆ ( ) ( ) ( ) ¯ · ( ) ( )

It is easy to show that

z z z z z V z z, i d , , ,k
0

 òåw s w¢ =     - ¢
mn

m mn n
¥

( ) ¯ ( ) ( )

where∇″=(ik,∂z″) andVk(z) is the kth Fourier component of the Coulomb interactionV x x1=( ) ∣ ∣. Now
equation (3) can be transformed into

z S z S J, i 0 . 7z
2 w r w- = Q¢ =( ˆ ¯ ) ( ) ( ) ¯ ( ) ( )

Note that S does not depend on z. Since ρ(z) is defined only for z�0, we can introduce a cosine Fourier
transform

z q qz
2

d cos .q
0
òr

p
r=

¥
( ) ( )

In terms of ρq, equation (7) can be rewritten as

q q q q q Sd , . 8q
0

2ò w d r¢ ¢ - - ¢ =
¥

¢( ( ) ¯ ( )) ( )

Here

q q z z qz z z q z,
2

d d cos , cos
0 0

 ò òp
¢ = ¢ ¢ ¢ ¢

¥ ¥
( ) ( ) ( ) ( )

is thematrix element between the cosinewaves. Finally, we close equation (8) by the fact that Jz(0) and hence S
are also linear functionals of ρq.We can thuswrite

S q
G

K

K
d

,
, 9q

0 2ò
w

r=
¥ ( ) ( )

whereK=(k, 0, q),K2=k2+q2 andG is a kernel given by

G z z qz z V z zK,
2

i
d d cos 0, , .k

0 0
ò òw

w
p

s w= ¢ ¢ ¢ ¢ -mn n
¥ ¥

( ) ¯ ( ) ( ) ( )

As a key result of this paper, equations (8) and (9) constitute a complete description of self-sustained charge
density waves in SIMs. Their basic structures are valid regardless of the underlying electron dynamics encoded in
 andG.

2.3. Universal secular equation for SPWs
Equation (8) is an inhomogeneous linear equationwith a source term. Equations of this type generally admit of
two classes of solutions, depending onwhether S vanishes or not. Solutions with S=0 represent nothing but the
bulk plasmawaves, while thosewith S¹ 0 represent localizedwaves, i.e. SPWs in our system. The spectra of
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these two classes generally do not overlap.Hadwe imposed auxiliary boundary conditions as is usually done in
the literature, SPWswould not exist at all.

Tofind the ‘secular’ equation for SPWs,wewish tomake a simplification,which is not necessary butwillmake
the resulting expressionsmore transparent. To this end, let us look at some general properties ofσμν(z, z′,ω). For
an infinite systemwithout boundaries, the translational symmetry is preserved along z-axis aswell as along the
surface plane, inwhich caseσμνonlydepends on z−z′. For SIMs, however, that symmetry is broken andσμνmust
in general dependon z and z′ separately. It shall prove useful to decomposeσμν into twoparts,σb,μν andσs,μν,
whereσb,μν is defined tobe that of the infinite systemanddepends only on z−z′whileσs,μν signifies pure surface
effects.Namely,

z z z z z z, , , , , .b s, ,s w s w s w¢ = - ¢ + ¢mn mn mn( ) ( ) ( )

Accordingly, andG also each contain two parts arising fromσb,μν andσs,μν, respectively. Let us thenwrite

b s  = + . Now that it reflects on the properties of plasmawaves of an infinite system, b must be diagonal
in the q-space, i.e. q q K q q, ,b

2 w d¢ = W - ¢( ) ( ) ( ), whereΩ(K,ω) is a frequency that only depends onK. By
definition, one can easily show that the dielectric function of an infinite system is given by

K
K

, 1
,

. 10
2

2
 w

w
w

= -
W( ) ( )

¯
( )

As for s , it gives rise to scattering of plasmawaves. Nevertheless, for bulkwaves the scattering due to a surface
should be insignificant andmay be treated perturbatively, as we did in [10, 11]. To the lowest order in this
perturbation, wemay simply put

q q K q q, , . 112 w d¢ = W - ¢( ) ( ) ( ) ( )

This expression contains complete information of bulk plasmawaves. As expected, the zeros of ò(K,ω) give the
dispersion òb(K ) of thesewaves.

We analogously writeG=Gb+Gs. Note that via equation (9)Gb determines Jz at the point z=0 in a
infinite system, forwhich, however this point is nonemore special than any other points. Thus,Gb can only be a
constant that does not depend on q and it is therefore purely due to the local part ofσb,μν(z−z′). This partmust
be isotropic for the jelliummodel and it can bewritten as z zd d s w- ¢mn ( ) ( ), where δμν is the Kronecker symbol
andσ(ω) is to be discussed further. It follows that G k4ib ws w b= - ¯ ( ) , wherewe have taken into account the
effect of the dielectric via the factor 2 1 ;d d b = +( ) see details below.Wenowobtain

G k GK K, 4i , . 12sw ws w b w= - +( ) ¯ ( ) ( ) ( )

We see thatGs describes translation symmetry breaking effects. As to be seen later, it ismissing from theDM, the
HDMand the SRM.The positive-definiteness of γ0 arises solely through this term and therefore cannot be
captured in thesemodels.

For SPWs, S¹ 0. Inserting equation (11) in (8) and using (9), wefind

k
q

K

G

K

K
, 1

d ,

,
0, 13s

0 2 2 2
 òw

w
w w

= -
W -

=
¥

( ) ( )
( ) ¯

( )

which determines the SPW frequencyωs and damping rate γ as a function of k. This is another key result of this
paper. The SPWcharge density is obtained as

S

K

S

K,

1

,
. 14q 2 2 2 

r
w w w w

=
W -

= -
⎛
⎝⎜

⎞
⎠⎟( ) ¯ ¯ ( )

( )

The resulting ρ(z) is peaked about the surface.
Equations (13) and (14) constitute a universal description of SPWs. They are valid irrespective of the

underlying electron dynamics, which enter only through ò(K,ω) andG(K,ω).

2.4.Dielectric effects
Let us place a dielectric with dielectric constant òd—which can be complex—on the side z<0. The electrostatic
fields are affected by this dielectric, which can be calculatedwith themethod ofmirror charges. Let themirror
charge density in the dielectric be t zx, ed d

tk rir r= w-( ) ( ) ( · ). It is easy to show that [34]

z z0
1

1
. 15d

d

d




r r< = -
-
+

-( ) ( ) ( )

The electrostatic potential t zx, e tk rif f= w-( ) ( ) ( · ), obeying Poisson’s equation t tx x, 4 ,x
2f p r¶ + +( ) ( ( )

tx, 0dr =( )) , is then obtained as
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z
k

z z z
2

d e . 16k z z
dòf

p
r r= ¢ ¢ + ¢

-¥

¥
- - ¢( ) ( ( ) ( )) ( )∣∣ ∣ ∣

In themetal, where z�0, the electric fieldE(z)=−∇f(z)=(Ex(z), 0, Ez(z)) then follows as

E z q
k

K
qzi d

4
2 cos e 17x

q kz

0 2ò
r

b= - -
¥

-( ) ( ( ) ) ( )

and

E z q
k

K

q

k
qzd

4
2 sin e , 18z

q kz

0 2ò
r

b= -
¥

-⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( )

whereβ has been given in the above. See thatEz(0) and henceGb are enhanced by the factorβ, which is why this
factor appears in equation (12). Physically this is because the surface sits between the charges in themetal and
those in the dielectric and spatially separates them.

3. Inter-band transition effects

The dynamicsmodels to be considered in the next two sections only describe the currents from electrons in the
conduction band. Realistically, valence electrons can also contribute by virtual inter-band transitions. In this
paper, for the sake of simplicity, we account for these inter-band transition effects by a phenomenological
approach [35–37]. The observation is that, valence electrons are usually tightly held to their host atoms and the
energy bands are largely non-dispersion, and thus their electrical responses aremostly local and not susceptible
to the presence of boundaries.Wemay then describe this response by a local conductivity functionσp(ω), so that
the electrical current density due to the valence electrons is given by

z zJ E . 19p ps w=( ) ( ) ( ) ( )

Usuallyσp(ω)may bemodeled in the Lorentz form. It is related to the inter-band dielectric function by
4 ip p w p s w w=( ) ( ) ¯ , which can bemeasured for example bymeans of ellipsometry or computed by density

functional theory. òp(ω) contains a real part òpr(ω) and an imaginary part òpi(ω).While òpr(ω) acts to shield the
conduction electrons, òpi(ω)—which is always positive—leads to inter-band absorption. Being basically an
atomic property, òp is not sensitive to temperature.

4. SPWs inDM,HDMand SRM

While the theory established in section 2 is universal, the behaviors of SPWs do depend on electron dynamics
through ò(K,ω) andG(K,ω). In this section, we apply the theory to examine SPWswithin several common
electron dynamicsmodels: theDM, theHDMand the SRM. SPWs in the SCMwill be thoroughly treated in the
next section.We show that the usually quoted SPWsolution in theHDM is false and clarify the origin of SPWs in
the SRM.A summary of this analysis is tabulated in table 1, and a comparison between the properties of the
SPWs according to thesemodels is illustrated infigure 2, where the quantity 1/ k, w∣ ( )∣ ismapped out.

4.1. LocalDM
This is the standardmodel for SPWs.Unlike othermodels, it does not require and is incompatible with any
auxiliary conditions. Herewe reproduce by our theory thewell-known properties of SPWs in thismodel.

Table 1.A comparison of variousmodels in light of the present universal theory of SPWs. DM: classical dielectricmodel. HDM:
hydrodynamicmodel. SRM: specular reflectionmodel. SCM: semi-classicalmodel. For the sake of simplicity, òp=0 and òd=1 have been
used in the expressions given in this table.K=(k, 0, q). G k p0

2p w= ( ) , whereωp denotes the characteristic plasma frequency of the

metal. m e fF v v K v K v2 d 13 3 2
0

2 1 òp w w= - ¢ - -( ) ( ) ( · ¯ ) ( · ¯ ) , where v is the velocity of electrons ofmassm. K, w( ) is the dielectric
function of the infinite system,whose zeros give the dispersion of bulk plasmawaves. SPWs are determined by this secular equation:

1 0s
q

K

G K

K0

d , 1

,2 2
ò= + =w

w w

¥ ( )
¯ ( )

. The solution to this equation is written asω=ωs − iγ. In the SCM, an extra contribution γs arises due

to symmetry breaking effects contained inGs. Very interestingly, s0 Landau interbandg g g g= - - cannot be negative.

Quantity DM HDM SRM SCM

Symmetry breaking effects No No No Yes

Ω2(K,ω) ω2
p Bv Kp FHDM

2 2 2 2wW = + p K

K F2 4
2w + pw̄ ·

p K

K F2 4
2w + pw̄ ·

G K, w( ) G0 G0 G0 G Gs0 +
K, w( ) 1 p

2

2-
w

w̄
1 HDM

2

2-
w

W

¯
1

2

2-
w
W
¯

1
2

2-
w
W
¯

Damping rate γ 1
interbandt g+- 1

interbandt g+- 1
interband Landaut g g+ +-

s
1

interband Landaut g g g+ + --
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According to theDM, the current density due to conduction electrons is given by

z zJ E ,
i

4
, 20

p
DM DM DM

2

s w s w
w

w

p
= =( ) ( ) ( ) ( )

¯
( )

where n e m4p 0
2w p= is the characteristic plasma frequency of themetal withm and e being the effective

mass and charge of an electron, respectively. The total current density J(z) then is

z z zJ J E ,p pDM DMs w s w+ = +( ) ( ) ( ( ) ( )) ( )

yielding pDMs w s w s w= +( ) ( ) ( ). From equation (6) onefindsΩ2 dispersionless, given as

.p p0
2 2 2w w w wW = -( ) ( )

Bulk plasmawaves. EquatingΩ2
0 with 2w̄ yields the frequencyωb,DM and damping rate γb,DM for bulk plasma

waves. For pw t  ¥ and assuming òp(ω) independent ofω, they are given by

1
,

1 1

2 1
.b

p

pr
b b

b

pi

pr
,DM ,DM ,DM

,DM



w
w

g w
w t

=
+

= +
+

Note that bulkwaves bear no dielectric effects, i.e. no dependence on òd. The damping rate γb,DM arises due to
thermal collisions and inter-band absorption.

SPWs. The electrical conductivity is purely local and thusGs=0. As such,G(K,ω) becomes

G k .0 0
2b p w= W( ) ( )

Substituting this into equation (13), we immediately arrive at the often quoted frequencyωs,DM and damping
rate γs,DM for SPWs.Neglecting absorption in the dielectric, i.e. assuming real òd, wefind

1
,

1 1

2 1
.

p

d pr

pi

d pr
s,DM

s,DM

s,DM s,DM 

 

w
w g

w w t
=

+ +
= +

+ +

In thismodel, the SPWcharge density is completely localized on the surface, ρ(z)=ρsΘ′(z), where
Ss 0

2 2r w= W -( ¯ ) gives the areal charge density. See that the dielectric tends to reduce the SPWdamping rate.
Traditionally [38], the above results have been obtained by treating themetal as a simple dielectric with

dielectric constant 1 0
2 2 w w= - W( ) ¯ . Then exponentially decaying electromagnetic (EM)waves (or

electrostatic potentials in the quasi-static limit) are written down on themetal and the dielectric sides, and
Maxwell’s boundary conditions are used tomatch thewaves to obtain the above frequency and damping rate of
SPWs.Our theoryworks directly with charge density rather than EMwaves. The two approaches are equivalent.

4.2.Hydrodynamicmodel (HDM)
TheDMassumes a purely local relation between the current density and the electric field. TheHDMextends the
DMby inclusion of leading-order non-local corrections. Recently, thismodel has attracted lots of attention in
plasmonics and quantum forces [39–41]. It has also been synergizedwith density functional theory in the
quantumHDM [42–45] to study local plasmon resonances onmetal particles.

Figure 2. Illustration of the quantity k,s
1 w -∣ ( )∣ for (a) theHDM, (b) the SRMand (c) the SCM, all atωpτ=8. The peak at given k

marks out the dispersionωs(k) of SPWswhile its widthmeasures the decaying rate γ of these waves. It is clear that γ ismuch smaller
than τ−1 in the SCM, in contrast to theHDMand SRM. In (c), a diffusely scattering surface, i.e. p=0 is used.
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In theHDM,Ω2 includes leading-order dependence onK and is given by

K v ,HDM
2

0
2 2

0
2W = W +

where v0 is a parameter. The dielectric function1 then reads 1HDM HDM
2 = - W / 2w̄ . The bulkwaves are similar

to those in theDMexcept for some dispersionwithK.
As in theDM, no symmetry breaking effects are included in theHDM.G(K,ω) is then the same as that for the

DM.Now equation (13) transforms into the following

k q

K
1

d 1
0, 210

2

2 0 2
HDMò

b
p w

+
W

=
¥

¯
( )

which determines the SPWs in theHDMbyour theory. Note that the integrand contains no poles or resonances
near the solutions, as the SPWspectra are always gapped from the bulkwave spectra gratifying òHDM=0. For
v0=0, theHDMreduces to theDMand so do the SPWs, as expected.With òd=0 and òp=0, the equation
simplifies to

k q

K
1

d 1
0, 22

2
HDMòp

+ =
-¥

¥
( )

wherewe have used the fact that òHDM is even in q and that 2p
2 2w w »¯ for the solutions to this equation. As

shown in appendix A, it leads to a linear dispersion ofωs versus k. As in theDM, the SPWdamps due to thermal
collisions and inter-band absorption, at rate γs,HDM≈γs,DM apart from some dispersion effects.

In the literature, the condition that Jz(0)=0 is usually imposed in theHDM [15, 17]. This wouldmean
S=0 and therefore would exclude any SPWs according to our theory.Nevertheless, SPWshave been claimed to
exist under this condition. Inwhat followswe briefly show that this claim is false,more details to be found in
appendix A.

For illustration, we take òp=0 and òd=0. Impose S=0 and thewave equation becomes
0qHDM

2 2w rW - =( ¯ ) , or equivalently in the real space

v k v z 0. 23p z
2 2

0
2 2

0
2 2w w r- + + ¶ =( ¯ ( ) ) ( ) ( )

The claimed SPWsolution is then sought of the form ρ(z)=ρ0e
−κz. Substituting this in the equation leads to

v kp
2 2

0
2 2 2w w k= + -¯ ( ). Imposing Jz(0)=0 gives another relation,ω2

0=v20κ(k+κ), which expresses the
balance between the electronic pressure and the electric force at the surface.Here 2p0w w= . Those two
relations specify the solution. Combined, they lead to k2

0
2

0w w w b» +¯ . Nevertheless, this solution does not
reduce in the limit v0=0 to the SPWs found byRitchie with theDM.Actually,κ diverges in this limit, yielding

z zd 01ò r k~ =-( ) , i.e. the solution is empty of charges. This false solution is alsowhat was observed in
[14, 15, 47]. It is plausible that existing ab initio calculations have only observed this false solution aswell [28]. A
comprehensive accountmaymerit a future study.

Although the false solution and the correct solution are conceptually disparate, their dispersion relations are
quite similar, as shown in appendix A.

4.3. Specular reflectionmodel (SRM)
Anatural step to go beyond theHDM is to use the full formofΩ rather than the approximationΩHDM.
Equation (22) then becomes

k q

K K
1

d 1

,
0. 24

2 òp w
+ =

-¥

¥

( )
( )

This is exactly the equation established byMarusak andRitchie in 1966 for the SRM [20]. Our derivationmakes
it clear that the SRM is just an extension of theHDM. From this point of view, onemay also conclude that the
usually claimed SPWs in theHDMare false, because they are not solutions of equation (24) in theHDM limit.

In contrast with theDMand theHDM, SPWs in the SRMcan also decay via Landau damping, because of an
imaginary part inΩ associatedwith electron-hole excitations. Thus, the SPWdamping rate is γs,SRM≈γs,DM+
γLandau, see the next section for further discussion on this.

Wewish to point out a logical inconsistency in the original contrivance of the SRM. There are two elements
in this contrivance: (i) as nominally expected, electronwaves impinging on the surface are assumed to be
specularly reflected back, and (ii) a sheet of ‘fictitious’ charges exactly localized on the surface. Element (i)would
mean Jz(0)=0 and hence, by our theory, no SPWswouldmaterialize. Then howdo thosewaves come about?

1
Note that òHDMdiffers from the bulk dielectric function that is usually quoted in the literature, which reads K v1 p

2 2 2
0
2w w- -( ¯ ). This

function can be easily obtained from equations (A2) and (A5) by adding an external termEext toE and taking E 4x ext extpr¶ =· . The
dielectric function then by definition is given by ext extr r r+( ). The difference arises from twonon-equivalent approaches to theHDM, see
[46] formore discussions.
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The answer rests with element (ii). In appendix B, we show that the fictitious charge sheet reinstates the
capacitive effects lost under element (i). Actually, SPWs appear as a pole of this fictitious charge density.

Aswith theHDMand theDM, the SRMcontains no symmetry breaking effects, i.e.Gs is absent from these
models. To account for these effects, further improvement is required, leading to the SCM.

5. SPWs in the SCM

In the SCMone calculates the electric currents in terms of a distribution function f (x, v, t)defined in the single-
particle phase space. As usual, wewrite it as a sumof the equilibriumpart f v0 e( ( )) and the non-equilibriumpart
g(x, v, t). f0(ε) is taken to be the Fermi–Dirac function at zero temperature. ε(v)=mv2/2 is the dispersion of the
conduction band.Within the relaxation time approximation and the regime of linear responses, g tx v, , =( )
g zv, e tk ri w-( ) ( · ) satisfies the following Boltzmann’s equation

g z ef z vv v E, 0. 25z z
1

0l e+ ¶ + ¢ =-( ) ( ) ( ) · ( ) ( )

Here vi zl w= ˜ with kvxw w= -˜ ¯ and f f m v v20 0
2

F
2e d¢ = ¶ = -e ( ) ( ) ( ), wherem is the electron effective

mass and vF the Fermi velocity.
Physical causality [10] requires that Im 0;0 g w= ( ¯ ) otherwise, reflected electronwaves would come

before incident waves. Together with equation (4), wemay conclude that the SPWdamping rate is always in
short of τ−1, i.e. γτ<1, in non-reconcilable contrast with othermodels.

With γ0�0, the general solution to equation (25) can bewritten as

g z C
ef

v
z zv v

v
E, e d e , 26

z

z
0

0

z z

ò= -
¢

¢ ¢-l l
¢⎛

⎝⎜
⎞
⎠⎟( ) ( ) · ( ) ( )

whereC(v)=g(v, 0) is the non-equilibriumdeviation on the surface to be determined by boundary conditions.
We require g(v, z)=0 distant from the surface, i.e. z  ¥. For electronsmoving away from the surface,
vz>0, this condition is automatically fulfilled. For electronsmoving toward the surface, vz<0, it leads to

C
ef

v
z z vv

v
Ed e , 0. 27

z

z
z

0

0
ò=

¢
¢ ¢ <l

¥
¢( ) · ( ) ( )

It follows that

g z
ef

v
z z vv

v
E, d e , 0. 28

z z
z

0 z z

ò=
¢

¢ ¢ <
¥

l
¢-( ) · ( ) ( )

TodetermineC(v) for vz>0, the boundary condition at z=0 has to be used, which, however, depends on
surface properties.We adopt a simple picturefirst conceived by Fuchs [48] and thenwidely used in the study of
for instance anomalous skin effect [49–52]. According to this picture a fraction p i.e. the Fuchs parameter varying
between zero and unity, of the electrons impinging on the surface are specularly reflected back, i.e.

g z p g z v v v vv v v, 0 , 0 , , , , 0. 29x y z z = = = = -- -( ) ( ) ( ) ( )

This condition is identical with the condition used in [12] but differs from that in [10, 11] except for p=0. It
follows that

C p
ef

v
z z vv

v
Ed e , 0. 30

z
z

0

0

z ò= -
¢

¢ ¢- ¥
- l

¢( ) · ( ) ( )

Equations (26)–(30) fully specify the distribution function for the electrons.
The electrical current density due to the conduction electrons is then calculated as

z m e g zJ v v v2 d , . 31c
3 3 òp=( ) ( ) ( ) ( )

Note that the charge density is not given by

t m eg zx v v, 2 e d , .kx t3 i 3 òr p= w-˜( ) ( ) ( )( )

The reason is simple: the as-obtained g(v, z) is for the bulk region andnot valid on the surface, because equation
(3.1) involves no surface potentials, see section 2.1. Actually, Jc(x, t) and tx,r̃( ) obey the equation

t tx J x1 , , 0t cxt r¶ + + ¶ =( ) ˜( ) · ( )

rather than the equation of continuity (see equation (2)), automatically embodying the condition that Jz(0)=0.
This underlies the incorrect conclusion drawn byHarris and others [14].
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5.1. The positive-definiteness ofγ0
We substitute the expression of E(z) given by equations (17) and (18) into (26)–(30) and perform the integration
over z′.Wefind it instructive to split g(v, z) into two parts, one denoted by gb(v, z) and the other by gs(v, z). They
are given by

g z ef q
K

F qz F qz Fv, d
4

2 cos 2i sin e , 32b
q kz

0
0 2 0ò

r
b= - ¢ + - -

¥

+
-( ) ( ( ) ( ) ) ( )

wherewe have introduced the following functions,

F K v
K v

K v

K v

K v
, ,

1

2
. 33w

w w
=

-


-


-

-

⎡
⎣⎢

⎤
⎦⎥( ¯ ) ·

¯ ·
·

¯ ·
( )

Note that F+/− is an even/odd function of vz. In addition,

F k kk v
k v

k v

k v
k, , , , 0, i . 34

l

l

0
1

*
*

*
*åw

w w
=

-
= =

=

¥ ⎛
⎝⎜

⎞
⎠⎟( ¯ ) ·

¯ ·
·

¯
( ) ( )

Moreover, we have

g z v ef q
K

F p F p Fv k v k v K v, e d
4

, , , , 2 1 , , . 35s z
q

0
i

0 2 0 0
z

vz ò
r

b w b w w= Q - ¢ - + -
¥

- +
w( ) ( )( ) [ ( ¯ ) ( ¯ ) ( ) ( ¯ )] ( )¯

Onemay show that gb(v, z) can also be obtained directly by Boltzmann’s equation for an infinite system. Thus,
this part contains exactly the responses of an infinite system. It is independent of surface properties, i.e. showing
no dependence on the Fuchs parameter p, and the electrons incident on the surface (i.e. with vz<0) and those
departing it (i.e. with vz>0) appear on equal footing in its expression.

On the other hand, gs(v, z) signifies pure surface effects: it exists only for departing electrons, as indicated by
theHeaviside functionΘ(vz) in its expression, and it depends on p thus reflecting on surface roughness. If we
keep only gb(v, z), the SRMwill be revisited,making it evident that the SRMdoes not correspond to the limit of
p=1 (specularly reflecting surface), in contrast with its nominalmeaning.

Another important feature of gs(v, z) lies in its dependence on z, i.e. g zv, e es
z v z vi z z0µ µw g-( ) ˜ , which

implies that γ0�0 in accordwith causality (see also preceding remarks above equation (26)). Otherwise, it
would diverge far away from the surface.

5.2.Ω andG in the SCM
The conduction current density is alsowritten in two parts, Jc(z)=Jb(z)+Js(z), where Jb/s(z) are defined via
equation (31)with g(v, z) replaced by gb/s(v, z). For small kvF w̄, wemay keep only the first term in the series of
F k v, ,0 w( ¯ ). It is then straightforward to show that

z z zJ E J , 36b DM SRMs w= +( ) ( ) ( ) ( ) ( )

where JSRM(z) is responsible for the extensionmade through the SRMbeyond theDM. It is given by2

J z q v F qzv K v, , cos , 37x xSRM,
3 ò w= ¢+( ) ( ¯ ) ( ) ( )

J z q v F qzv K vi , , sin , 38z zSRM,
3 ò w= ¢-( ) ( ¯ ) ( ) ( )

wherewe have defined a short-hand

q
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3 2

0

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⎜ ⎟⎛
⎝

⎞
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togetherwith these functions

F K v
K v

K v

K v

K v
, ,

1

2 1 1
.

2 2

w
w w

¢ =
-


-


-
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⎤
⎦⎥( ¯ ) ( · )

· ¯
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See that JSRM,z(0)≡ 0, whichmakes no contribution toG. Now the total current density becomes

z z z zJ J J J .b s p= + +( ) ( ) ( ) ( )

By definitions (6) and (11), wefind

K
K

K F K
,

4 ,
, 392

0
2

2
w w

pw w
W = W +( ) ( ) ¯ · ( ¯ ) ( )

2
In [10, 11], J SRMwas called J′. The expressions given therewere typographicallyflawed, which though does not affect any statements or

other expressions given in thosework.
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where F is an odd function of w̄ and given by

m
e fF K v v

K v

K v
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2
d
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3
3 2
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2

 òw
p

w
w

= - ¢
-

⎜ ⎟⎛
⎝

⎞
⎠( ¯ ) ( ) ( · ¯ )

· ¯
( )

Partially performing the integral, we obtain
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The real part of this expression approximates K k1p p
2 3

5
2 2w +( ) in the longwavelength limit, corresponding to

theHDM limit with v v3 50 F= . Here kp=ωp/vF.
Landau damping. Obviously, the second term in equation (39) generally contains an imaginary part even in

the collisionless limit where τ−1 is vanishingly small, due to a pole at K vw =¯ · in the integrand of the integral in
F. This part gives rise to Landau damping. For γ0/ωp=1, we find for is 0w w g= +¯

K r
r

Kv r Kv
Kv,

3

2
d i
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Here  takes the principal value. The sign of the second line depends on the sign of γ0. Only for γ0>0, it is
negative leading to damping, in linewith causality. Equation (42) shows that, for bulkwaves Landau damping
exists only for sufficiently largeK. For SPWs, however, Landau damping always exists, because q runs over all
positive values in the secular equation (13).

Amajor improvement of the SCMover the SRMcomes through the quantityG(K,ω). In the SRMand its
descendents,G=G0 contains no symmetry breaking effects. In the SCM, onefindsG=G0+Gs, whereGs

stems from Js(0) and is given by

G
m

v e f F p F p FK v k v k v K v, 4i
2

d , , , , 2 1 , , , 43s z

3
3 2

0 0 0
 òw w

p
b w b w w= - ¢ - + -

>
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⎝
⎞
⎠( ) ¯ ( )[ ( ¯ ) ( ¯ ) ( ) ( ¯ )] ( )

where ‘>’ indicates that the integral is restricted to departing electrons, i.e. vz�0.Note thatGs depends linearly
on p.

5.3. The frequency and losses of SPWs
WithΩ andG, we nowproceed to solve equation (13) tofind the frequencyωs and damping rate γ of SPWs in
the SCM.

Analytical analysis. As said before, themost significant improvement of the SCMover the SRM is through the
termGs.Wewish to do an approximate analysis to explicitly demonstrate how G G Gis s s= ¢ +  affectsωs and γ.

For this purpose, let uswriteG=G′+iG″and iW = W¢ + W as well as i  = ¢ + , and assume that
γ0/ωs,G″/G′ andΩ″/Ω′ are all small quantities. Then, one can show that the real part of equation (13) gives
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which determines the SPW frequencyωs. The imaginary part of equation (13) yields γ0 as

, 45s s0 0g w h h» -( ) ( )

where the contribution
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stems directly from the imaginary partG″—which equals G″s—ofG, and

47
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comes directly from the imaginary partΩ″ofΩ. For stable systems, η0must be non-negative.
Note thatΩ″signifies Landau damping and inter-band absorption, as is clear from equation (42). As such, we

may further split 0 Landau interbandh h h= + , so that the SPWdamping rate becomes

, 48s
1

Landau interbandg t g g g» + + -- ( )

where s s sLandau,interband, Landau,interband,g w h= , thefirst term represents Joule heating, the second and the third
stand for Landau damping and inter-band absorption, respectively, while the last one is completely new due to
G″=G″s. Formodels whereGs=0, e.g. theDM, theHDMand the SRM, this new term is absent.
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For the SCM, however,Gs isfinite. Retaining only thefirst term in the series of F0, wefind

G
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( )
¯ ( ) ( ) ( ¯ )

The second line here approximately corresponds to iG″s. In generalG″s�0 and hence ηs�0. This implies that
symmetry breaking effects tend to counteract the conventional damping and destabilize themetal. Our
numerical solutions shall demonstrate that γ0 is non-negative, in accordwith the general argument given in
section 5.1.

In the longwavelength limit k∼0, one has k K q2 pd» ( ). Under this approximation, equation (44)
becomes

K
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k

K
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2
0. 49s
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 w
p w

w
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¢
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HereK0=(k, 0). Formodels withGs=0, one immediately recovers from this equation the relation that
òd+ò′=0 as expected. For the SCM, however, onefinds instead
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This result differs considerably fromwhat is expected of othermodels. It shows that the value of the SPW
frequency depends on surface conditions.

If we replace in equation (46) K , s w¢( )with its non-dispersive part, as is reasonable for small k, thenwefind
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which implies that inter-band transitions have little effect on ηs, whereas a dielectric can enhance it by asmuch as
200%. This is to be borne out in numerical analysis inwhat follows.

Numerical analysis.We solve equation (13)numerically tofindωs and γ0 and how they varywith k and òd.We
present the results for diffuse surfaces with p=0 only. In equation (13), the integral over q extends to infinity. In
numerical calculations, we impose a cutoff qc. Roughly, qc∼a−1, where a is a lattice constant. Formetals, this
means qc∼kF∼kp. In all the numerical results presented here, we have chosen qc=1.5kp. For qc beyond this
value, bothωs and γ0 quickly converge, confirming that the results are independent of the choice of qc

3. Our
results should be takenwith a grain of salt for very small k c k v c k0.01s p pFw » ~ , where c is the speed of
light in vacuum, because of retardation effects neglected in our theory.

The results are displayed infigures 3 and 4. Infigure 3, we show is 0w w g= +¯ as a function of k for various òd
butwithout inter-band transition effects (òp=0). As seen infigure 3(a), in agreement with the analytical
expression ofωs, increasing òd leads to smallerωs. Note thatωs is considerably larger thanwhatwould be
obtained by othermodels due to surface effects.Meanwhile, γ0 increases with increasing òd, as seen infigure 3(b),
in accordwith equation (52). This increase comes from the factorβ, i.e. the presence of a dielectric enhances the
electric field at the surface; see equations (17) and (18).

The effects of inter-band absorption and Landau damping are illustrated infigure 4.Herewe plot γ0 for
òd=1 under several circumstances as described in the figure.We see that inter-band transitions can strongly
diminish γ0 in twoways, as can be deduced from equations (51) and (52). Firstly, there is the screening effect (the
curvewith òp=5). This leads to smallerωs and hence smaller γ0, while leaving η0 unaffected. Secondly, inter-
band absorption further reduces γ0 (see the curvewith òp=5+0.5i). As for Landau damping, it is sizable and
generally increases with k; see [5, 12]. As such, γ0 decreases as k increases. In relation to this feature, we should
mention a size effect [11]: infilms of thickness d, γ0 is strongly suppressed and quickly diminishes to zerowhen
thewavelength becomes longer than d. Echoing this, one can show that γ0∼kvF vanishes for k∼0 in the
SIM [46].

3
The solutions to equation (13) are independent of the choice of qc as long as the latter is sufficiently large. For example, for k=0.07kp, we

find that i i i0.93 0.095 , 0.95 0.099 , 0.95 0.099 , 0.96 0.098pw w = + + + +¯ for q k 1.5, 3.0, 4.5, 6.0c p = , respectively. There is no
difference within the numerical resolution±0.005.More discussions on this can be found in [46].
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6. Possible lossless SPWsby the SCM

According to the SCM, the SPW loss rate is γ=τ−1−γ0. In view of energy conversion, the expression implies a
competition between the loss due to thermalization and the gain due to energy transferred from the electrons to
thewaves [12]. Should the condition γ0τ=1 be fulfilled, lossless SPWsmay be produced. In this section, we
discuss this possibility against two commonplasmonicmetals: silver and aluminum.

Note that τ−1 is the collision rate at the SPW frequencyωs. Even at zero temperature and in defect-free
samples, there is sufficient phase space—available due to the effective temperature ks Bw —for electronic
scattering and thus τ−1 is comparable toωp. Up to our knowledge, there is virtually no direct data on τ

−1 for any
materials.We then opt to estimate it by the following formula [32],
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where γresidual is the residual rate given by
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Here thefirst contribution comes fromphonon scattering, the second from electron–electron scattering and the
third due to impurity scattering to be neglected hereafter. The second term generally underestimates the
electron–electron rate in noblemetals andAl by a few times [53]4. The coefficient k TB D0 n ~ may be

Figure 3. Frequencyωs and damping rate 1
0g t g= -- of SPWs by the SCM. The results are obtained by numerically solving

equation (13)without inter-band transition effects.ωp is the characteristic frequency of themetal and kp=ωp/vFwith vF being the
Fermi velocity. Solid lines are guides to the eye.

Figure 4.Effects of inter-band absorption and Landau damping on 0g . The results are obtained by numerically solving equation (13)
for òd=1. Exclusion of Landau damping is done by dropping the imaginary part ofΩ(K,ω). Solid lines are guides to the eye.

4
More detailed calculations [53] shows that the second term in equation (54) should bemultiplied by a factor 12 p

3
Fp w eGD( ) ( )/ / whereΓ

andΔ are constants with their product of the order of 0.4—for noblemetals andAl [62]—related to the geometry of the Fermi surface.
Similarly, the third term in equation (53) should bemultiplied by the same factor. For noblemetals andAl this factor is around 1.5.However,
for sodium and potassium it is nearly zero.
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determined from the slope of the phononic part of theD.C. conductivity at temperatures higher than theDebye
temperatureTD. Equation (54) shows that γresidualmaywell amount to quite a few percentages ofωp formetals.

Silver. In silver electronic transitions involving the 5s and 4d bands have a dramatic effect on the properties of
SPWs [35, 54, 55], leading to 3.69sw » eV and 3.92bw » eV at longwavelengths, both lying far below the
characteristic frequency 9.48pw = eV. Experimentally [32, 56], it was found that 0.1eV 0.01 p0 n w~ ~ , in
consistencywith the value ofTD≈220 K for Ag. The electron–electron scattering rate according to
equation (54)would be less than one percent ofωp, while experimentalmeasurements andmore accurate
expressions [53] place it about 0.02ωp. As such, wemay reasonably take 0.03 presidualg w~ as an estimate.

The damping rate γ can be read out from the line shape of the electron energy loss spectra (EELS). The
temperature dependence of γhas been recorded on a high-quality Ag single crystal bymeans of EELS [57, 58].
The data indicates that at low temperature γ amounts to less than one percent ofωp, a value a few times smaller
than the as-projected γresidual. If Landau damping and inter-band absorption are also counted, the discrepancy
can bemore dramatic. In light of the present theory, this discrepancy gives an estimate of γ0. The values suggest
that γ0 has substantially compensated for the collision losses, i.e. γ0∼γresidual, as borne out in the following
analysis.

To evaluate , p0 g w( )needs to be supplied. Combining a semi-quantummodel and ellipsometry aswell as
transmittance-reflectancemeasurements, Rakić et al [36] employedK–K analysis and prescribed a parametrized
dielectric function— r

b wˆ ( )( ) in their notation—for the inter-band contribution.Here, we use their fitting as an
input for òp(ω) butwith a number of caveats. Firstly, their dielectric functionwas deduced frommeasurements
assuming the conventional electromagnetic responses without any surface effects considered in the present
paper. These effects, however, should be consideredwhen analyzing ellipsometry and reflectance spectra. A
future studywill bemade to address this issue. Secondly, their function very poorly reproduces the electron
energy loss spectra and the reflectance spectra, especially near the SPW frequency of interest. Thirdly, their
function does not give an accurate partition into inter-band and intra-band contributions, e.g.ωp≈8 eVwas
used rather than thewidely agreed 9.48 eV [55], whichmay overestimate the inter-band transition effects.
Finally, their function is defined only for real frequency, and thus in general not suitable for òp(ω), whereω is
complex. To remedy this point, we substitute Rer

b wˆ [ ( )]( ) for òp(ω), which should be reasonable if γ/ωs=1.
The results are displayed infigure 5(a), where the computed γ0 is exhibited as a function of k at various values

of òd.While γ0 for SPWs supported on a pristine Ag surface (i.e. òd=1) is negligibly small andway below
γresidual, by using a dielectric it can be significantly enhanced at longwavelengths beyond γresidual. This trend is
consistent with equation (52). The fact that γ0 can bemade higher than γresidual suggests the possibility of
compensating for the plasmonic losses completely in Ag. The situation is shown infigure 6. By interfacing the
metal with a lossless dielectric of òd=5 and cooling it down toward a critical temperatureT*∼120 K, one can
diminish the net losses asmuch as desired. It should bementioned that, òd is the constant at the frequencyωs

aswell.
Aluminum. Inter-band transitions inAl arewidely considered less pronounced than inAg.Nevertheless,

their presence can still be felt, e.g. in the difference between the values of ÿωp≈12.6 eV and 15.3bw » eV.
These numbers were obtained by density functional theory [59] and experimental fitting [37]. In addition,

10.7sw » eV [60, 61]. γresidualmay be deduced from the experimentalmeasurements performed by Sinvani
et al [62] and others [63]. These authorsmeasured the low temperature dependence of the d.c. resistivity ρ of Al.
Their data shows that AT B T T0

2
D

5r r» + + ( ) , where ρ0 stems from impurity and lattice dislocation
scatteringwhileA andB are constants characterizing electron–electron scattering and electron–phonon
scattering, respectively. Analyzing the data, the authors found that A 0.21 p cm K 2» W - (a lower bound) and

Figure 5. γ0 for SPWs inAg andAl at various òd. In bothmetals, γ0 is enhancedwith a dielectric. Solid lines are guides to the eye.
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B 4.9 104 m» ´ W cm forTD=430 K. From this we obtain 0.18 p0n w» and the residual electron–electron
scattering rate—a few times larger thanwhat would be obtainedwith equation (54) [32]—approximating
0.14ωp, yielding 0.21 presidualg w» . It is noted that this value is comparable to thewidth (∼1.5 eV, nearly 0.12ωp)
of the electron energy loss peak near the frequency of the bulk plasmawaves in Al [60]. The as-obtained ν0 (and
hence γresidual) represents probably an overestimate5.

To compute γ0, we again resort to the fitting function constructed byRakić et al [37] and have it in place of
òp(ω) in our theory, in the sameway aswe did in the case of Ag. It goes without saying that the same caveats
should be kept inmind. The results are shown in figure 5(b). As expected, γ0 is comparable to that in the absence
of inter-band transitions (see figure 3(b)), as these transitions areweak inAl. As is withAg, γ0 of SPWs inAl can
also be fortified—but to a lesser extent—by a dielectric. Nevertheless, the enhanced γ0 still falls short of γresidual
unless for very longwavelengths where retardation effects need to be properly accounted for.

The calculations reported in the above have assumed p=0. For surfaces strongly reflecting electrons (i.e.
p>0), γ0 could bemuch lower [12].We also point out that additional losses such as due to SPWs converted into
radiation are not considered. They can be absorbed in the definition of τ−1.

7. Conclusions

In order to answer the two questions posed at the beginning of this paper, i.e. (i)why had not previouswork hit at
the possibility of lossless SPWs and (ii) how far is the latter from reality, we have derived a universalmacroscopic
theory of SPWs that applies to any electron dynamics. In light of the theory, our answer to question (i) is simple:
lossless waves are possible only within a self-consistent description of physical surfaces that takes care of
translation symmetry breaking effects, a condition notmet in existingwork. As for question (ii), we can only
suggest an optimistic prospect rather than an answer due to various uncertainties in inter-band transition
effects: our estimate shows that lossless wavesmaywell bewithin the reach in somematerials.

Our results reveal two contradictory views regarding SPW losses, as compared in table 1. According to the
conventional framework, as exemplified by theDM, theHDMand the SRM,

1 1
Landau interbandg t g g= + +-( )

and thus the SPW loss rate cannot be smaller than either of τ−1 and γLandau. On the other hand, within the SCM,
a totally different picture emerges, giving

, ,s
2 1

0 0 Landau interbandg t g g g g g= - = - --( )

which suggests that the loss rate is always smaller than τ−1. Here γs=η0ωs, see equation (51). To directly
contrast these two views, one has tomeasure separately τ−1 and γ.While the latter can bemeasured inmany
ways, the former is difficult to be directlymeasured. Inwhat follows, wemention some indirect observations
defying γ(1) but supporting γ(2).

Figure 6.The possibility of compensating for the SPW losses in Ag. A critical temperatureT* exists where γ0τ=1. Cooling down the
system towardT* reduces the losses to a vanishingly small level. Here τ−1 is calculated by equation (53)withTD=220 K and

0.10n = eV.

5
The often quoted resistivity for Al at room temperature is around 3 mW cm, see [70]. Using this to evaluate the contribution of the

electron–phonon scattering to τ−1 would give 0.01 p0n w» , amuch smaller value thanwhat would be obtainedwith the low temperature
data in [62, 63]. This discrepancymight be due to the uncertainty as to the actual scatteringmechanism responsible for the resistivity at low
temperatures.
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Firstly, we note that γ(2) naturally resolves a long-standing puzzle, that of the apparent insignificance of
Landau damping even at very short wavelengths [38]. For example, in single crystal Ag, the loss ratemeasured by
EELS [57, 58] is 1% pw~ even for k∼ 1 nm−1, whereas kv 10% pLandau Fg w~ ~ . This discrepancy is inexplicable
by γ(1), but easily comprehensible by γ(2), i.e. Landau damping has been overcompensated by γs.

Secondly, we note that the loss rate of bulk plasmawaves differs from that of SPWs primarily because of the
absence of γ0 in the former, as least inmaterials where inter-band effects are not important. In thosematerials,
bulkwaves should be generallymuchmore lossy than SPWs, an observation that seems in consistencywith
experience. For example [64], the loss rates for the SPWs and the bulkwaves in potassium are 0.1eV 1- and
0.24eV 1- , respectively, while those in cesium are 0.23eV 1- and 0.75eV 1- , respectively. In spite of these, the
general situation is obviously unclear at this stage.

Finally, wemention an experiment performed on a van derWaals structure by Iranzo et al [65]. These
authors were able to confine propagating plasmon between a graphene layer and ametal array to the atomic limit
without sacrificing its lifetime, which obviously beats the limit set by Landau damping. From an energy
conversion point of view [12], the plasmon in such a structure is notmuch different from the surface plasmon on
ametal surface. Their result is compatible with γ(2): in ultimate confinement γ0 tends to zero due to increase of
Landau damping (figure 4), leaving the loss rate saturating at τ−1, as observed.We anticipate a similar trend for
the losses of local plasmon resonance onmetal particles.

In the SCMwe have assumed that the ground state of the underlyingmetal be simply the Fermi sea. The fact
that γ can bemade negativemeans an instability of the Fermi sea. Upon entering such circumstances, themetals
are expected to undergo a transition into a different stable state, of which the electrical responses cannot be
captured by our current SCMcalculations.Wewill clarify the nature of this transition in the future.

The results reported in this work should be of broad interest to the researchers working in plasmonics,
surface science and condensedmatter physics.We hope that experimentalists willfind the results fascinating
enough to put their hands on them.
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AppendixA. SPWs in theHDM

Herewe show that the usually claimed SPWs in theHDMare incompatible with thewaves in theDM.Weput
òp=0 and òd=1 for simplicity. In theHDM, the electrons are treated as a fluid described by twofield
quantities: the velocity field v(x, t) and the electron density field n0+n(x, t), where n(x, t) denotes the deviation
from themean density n0. The charge density is then t n t ex x, ,r =( ) ( ) and the current density is

t e n n t tJ x x v x, , ,0= +( ) ( ( )) ( ), which in the linear responses regime becomes t n e tJ x v x, ,0=( ) ( ).
A smallfluid element of volume δV feels a force consisting of two portions: the electric force n e V tE x,0 d ( )

and the pressure due to density variation m Vv n tx,x0
2d- ¶ ( ). Now the laws ofmechanics states that in the linear

regime one has

n m t n e t mv n tv x E x x
1

, , , , A1t x0 0 0
2

t
¶ + = - ¶⎜ ⎟⎛

⎝
⎞
⎠ ( ) ( ) ( ) ( )

Here shear viscosity effects have been ignored. Now assuming n t nx x, e ti= w-( ) ( ) and similarly for tv x,( ) and
otherfield quantities, we obtain the current density as
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the divergence of which is then given by

vJ x x
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w
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¯
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Combining this equationwith the equation of continuity, one obtains thewave equation for the charge density.
The usually quoted SPWs. In the standard but erroneous prescription for SPWs in thismodel, one takes

Jz(x0)≡ 0, or equivalently

v x 0. A4z 0 º( ) ( )
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Here x0 denotes a point on the surface. The continuity equation reads

x J xi 0. A5xwr- + ¶ =¯ ( ) · ( ) ( )

In conjunctionwith equation (A3), one finds

v x 0, A6p
2 2

0
2 2w w r- - ¶ =( ¯ ) ( ) ( )

which is equation (23) given in section 2.3.One then seeks solutions of the form zx e kxir r=( ) ( ) and similarly
for other quantities. Further, taking z e z

0r r= k-( ) and substituting it in equation (A6), we obtain

v k 0. A7p
2

0
2 2 2 2w k w+ - - =( ) ¯ ( )

The boundary condition (A4) requires
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It is easy to show that
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With this it follows from equation (A8) that

v k , 2 . A9p0
2

0
2

0w k k w w= + =( ) ( )

Combining this relationwith equation (A6), we arrive at

v k. A102
0
2

0 0w w w= +¯ ( )

This is theusually quoted dispersion relation claimed for the SPWs in theHDM.Asbriefly captured in section 2.3,
this claim is plainly false: in the limit v v0,0 0

1k ~ - diverges andhence z z vd
0 0

1
0 0ò r r k r= ~

¥ -( )
vanishes, thus in contradictionwith theDM.Thiswould also erroneously imply thatEz(z)did not change sign
across the surface charge layer. It was essentially this erroneous solution that hadbeen identified byHarris [14] and
Garcia et al [15] in their study basedonBoltzmann’s equation. It is plausible that this is also sowithworks
employing amoremicroscopic approach such as the density functional theory, at least those using the so-called
‘infinite barrier’model formimicking the surface [30]. For example, Feibelman identified a solution of uniform
potential andhence empty of charges butwith frequency 2pw in the longwavelength limit [47], exactly in
this kind.

SPWs in theHDMby the present theory. In our theory, no restrictions are placed on Jz(x0) and thus the
equation of continuity reads

z Jx J x xi . A11zx 0wr- + ¶ = -Q¢¯ ( ) · ( ) ( ) ( ) ( )

Using equation (A3) and taking zx e kxir r=( ) ( ) and similarly for other quantities, onefinds

v k v z J zi 0 . A12p z z
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Nowwe introduce the Fourier transform for
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It follows that
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This implies that ρ′(0)=0, whichmust hold for any ρ(z) that reduces to theDirac function δ(z) desired in the
DM limit. In conjunctionwith
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wefind from equation (A11) that
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which is just equation (21) displayed in section 2.3. The dispersion relation obtained by this equation has been
plotted infigure A1(a), where the relation(A10) is displayed together for comparison. Both exhibit a linear
dependence on k butwith different slopes. Our theory predicts a slightly bigger slope.
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Let us have a look at the profile of ρ(z). According to our theory,
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With q qv0=˜ /ωp and K Kv0=˜ /ωp aswell as z z vp 0w=˜ , it can be rewritten as
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One can show that not so close to the surface z e
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For k 0=˜ , it reduces to that for theDM.The dependence ofκ′ on k is shown infigure A1(b), alongside that ofκ.

Appendix B.Origin of SPWs in the SRM

Thewidely used SRMassumes that the electrons be specularly reflected off a surface. Onewould then expect that
Jz=0 andno SPWswould exist in thismodel. However, in themain text we have shown thatwhat the SRM
actually does is an extension of theHDM.The question then is, howdo SPWs originate in the SRM?Herewe
show that the answer lies with the ‘fictitious’ charge sheet assumed in themodel.

We follow the SRM formalism as explained inmany papers [20, 26, 66–69] and employ it to study the
response to an external distribution of charge z k; ,extr w( ) placed outside themetal.We take

z z zk k; , ,ext 0 0r w r w d= -( ) ( ) ( ) for simplicity, where z0<0. In the SRM, the total electrostatic potential,
z z zk k k; , ; , ; ,tot extf w f w f w= +( ) ( ) ( ), wheref is the potential produced by the induced charges

z k; ,r w( ), is written

z z z z zk k k; , ; , ; , , B1m vtotf w f w f w= Q + Q -( ) ( ) ( ) ( ) ( ) ( )

wherefm andfv are the potentials in the so-called pseudo-metal and pseudo-vacuum, respectively. These are
further defined by

Q
Q

Q
Q k,

4

,
, , , B2m v

m v

m v
s
m v

2 ext
f w

p
w

r w s w= +( )
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[ ( ) ( )] ( )

Figure A1. SPWs in theHDM. In panel (a), the dispersion relation obtained by equation (A14) is plotted. The erroneous solution,
equation (A10), which is widely quoted as the SPWdispersion, is shown alongside for comparison. As for the charge density, one has

z v e z
0

1r ~ k- - ¢( ) for z not so close to the surface. The exponent v0
1k¢ ~ - is shown in panel (b). The erroneous solution states that

z e zr ~ k-( ) , whereκ is shown also in (b).
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where z zQ k, d e ; ,m v
qz

m v
iòf w f w=

-¥

¥ -( ) ( ) is the ordinary Fourier transform, qQ k Q, , ,m w= =( ) ( )
Q Q, , , 1v w w =( ) ( ) and k,s

m vs w( ) is thefictitious surface charge density. In addition, m v
extr is related to ρext

as follows
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It follows that Q, 0v
extr w =( ) and
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ext 0 0r w r w=( ) ( ) ( ) ( )

Equations (B1)–(B3) define the SRM.Requiring the continuity of the dielectric displacement at z=0 leads to

k k k, , , . B5s
m

s
v

ss w s w s w= - =( ) ( ) ( ) ( )

This can be further fixed by requiring the continuity offtot at z=0.One finds

kzk k k, 2 , cosh , , B6s 0 0 s,SRM
1s w r w w= -( ) ( ) ( ) ( ) ( )

where òs,SRM is as given in section 4.3, i.e.

k q

Q Q
k, 1

d

,
.s,SRM 2


òw

p w
= +

-¥

¥
( )

( )

The zeros of this quantity give poles of ss corresponding to SPWs in the SRM, thus revealing that thefictitious
charge sheet is responsible for the SPWs in the SRM.
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