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Abstract

Recently, we have revealed an intrinsic instability of metals due to surface plasma waves (SPWs) and
raised the prospect of using it to create lossless SPWs. The counter-intuitive nature of this finding
prompts one to ask, why had not this instability been disclosed before, given the long history of this
subject? If this instability does exist, how far is it from reality? The present work is devoted to answering
these questions. To this end, we derive a unified macroscopic theory of SPWs that applies to any type
of electron dynamics, be theylocal or non-local, classical or quantum-mechanical. In light of this
theory, we analyze the behaviors of SPWs according to several electron dynamics models, including
the widely used local dielectric model, the hydrodynamic model and the specular reflection model, in
addition to the less common semi-classical model. We find that, in order to unveil the instability, one
must (i) self-consistently treat surface effects without any of the usually imposed auxiliary conditions
and (ii) include translation symmetry breaking effects in electron dynamics. As far as we are
concerned, none existing work had fulfilled both (i) and (ii). To assess the possibility of realizing the
instability, we analyze two very important factors: the dielectric interfacing the metal and inter-band
transitions, which both were ignored in our recent work. Whereas inter-band absorption—together
with Landau damping—is shown adverse to the instability, a dielectric brings it closer to occurrence.
One may even attain it in common plasmonic materials such as silver under not so tough conditions.

1. Introduction

Electron density ripples propagating along metal surfaces, known as surface plasma waves (SPWs), have been
intensively pursued as a promising enabler of nano photonics [1-4]. A fundamental issue hampering further
progress is concerned with energy losses [5]. SPWslose energy fast due to Joule heating, Landau damping and
inter-band absorption alongside others such as radiation losses [5]. It has been suggested that these losses—
especially those due to Landau damping—are intrinsic and cannot be significantly reduced without the addition
of external gain medium [5-9]. They would ultimately handicap the functionalities of SPWs [5, 6].

Our recent work [10—12] challenged the above view and found that, thanks to an incipient instability, the
losses may well be reduced to any level without taking energy from outside. A critical point was shown to exist at
YT = 1,where 7" is the thermal electronic collision rate and -, is a positive-definite quantity. At the critical
point, the energy released from the Fermi sea—at rate -y,—just compensates for the dissipation due to electronic
collisions and SPWs become lossless [12]. This instability was revealed through a semi-classical model (SCM,
based on Boltzmann’s transport equation) of SPWs. Given the highly counter-intuitive nature of this possibility
and the long history on this subject dated back to late 1950s [13], the following questions must then be answered:
Why has the criticality not been discovered in earlier work and what is missing in those work? While it is not widely
used in the study of SPWs, the SCM had certainly been considered before [14, 15]. Yet nobody had claimed
lossless SPWs.
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The main purpose of the present paper is to answer the above question. Our strategy is to construct a universal
theory of SPWs that is applicable to any type of electron dynamics, be they local or non-local, classical or quantum-
mechanical. In light of this theory, the properties of SPWs are then analyzed with several common electron
dynamics models, including the local dielectric model (DM) [13], the classical hydrodynamic model (HDM)
[16—19] and the specular reflection model (SRM) [20-22] in addition to the SCM. The chief result obtained
through this analysis is that, in order to unveil the instability, (i) a SPW theory must self-consistently deal with
physical surfaces, and (ii) translation symmetry breaking effects must be included in the electron dynamics.
Amongst these models, only the SCM is capable of (i), but previous work based on the SCM had all failed with
respect to (i). This explains why the existing work had failed to hit upon the possibility of lossless SPWs.

In existing work based on non-local models, auxiliary conditions have usually been imposed [23-26], mostly
assuming no normal current on surfaces, as in the hard-wall picture adopted in computational studies [27-30].
From a conceptual point of view, however, these conditions are obviously incompatible with local models and
arise only due to an incomplete description of physical surfaces [31]. We will show that the conventional
treatment of SPWs via auxiliary conditions does not recover the standard textbook SPWs in the local models. We
prescribe a simple yet complete macroscopic description of physical surfaces, which remedies the conceptual
deficiency and allows to derive a universal SPW theory accounting for surface effects self-consistently.

As asecondary purpose, we wish to address an experimentally interesting issue, that is, how far is the instability
from reality and how can it be achieved? In general, 7' is comparable to the characteristic plasma frequency w,, even
in defect-free materials and at zero temperature [32]. This is because 7' is the collision rate at the SPW frequency,
which is in the order of a few eV's in metals and thus effects as an effective high temperature of tens of thousands of
Kelvins opening up alarge phase volume for electron scattering. One then expects o7 < 1 usually. In order to
devise a practically useful method of enhancing y,, we employ our theory to analyze two important factors affecting
7o' a dielectric interfacing the metal supporting SPWs and inter-band transition effects, which were ignored in
[10-12]. We find that, inter-band absorption (as well as Landau damping) strongly reduces 7y,, whereas topping a
dielectric can significantly increase -y,. In this way the instability may well be in reach in a single crystal of silver.

This paper is organized as follows. We develop a universal macroscopic SPW theory in the next section and
applyitto the DM, the HDM and the SRM in section 4. Section 3 includes a discussion of a phenomenological
approach to inter-band transition effects to make the paper self-contained. Section 5 is devoted to a thorough
treatment of SPWs within the SCM. Dielectric and inter-band effects are analyzed. We assess the possibility of
creating lossless SPWs by the SCM and conclude the paper in section 7. In appendices A and B, we discuss some
historical misconceptions regarding the SPWs in the HDM and the SRM, respectively.

2. Universal theory of SPWs

In this section, we present a general theory of charge density waves in semi-infinite metals (SIMs). Extension to
systems of other geometries is straightforward and will be considered elsewhere. The theory is formulated in
terms of universal physical concepts and makes no resort to the particulars of electron dynamics. Itis a
macroscopic theory, thus valid as long as the thickness (d;, typically a few lattice constants) of the microscopic
surface layer, which forms between the vacuum and the bulk metal, is much smaller than the SPW wavelength A.
In this paper, by ‘macroscopic’ we always mean d,/A < 1, with no regard to electron dynamics.

Retardation effects are neglected throughout this paper, which is reasonable provided the SPW phase
velocity is much less than the speed of light in vacuum.

2.1. Macroscopic description of surfaces

The SIM under consideration is assumed to occupy the region z > 0 and bounded by a flat interface /surface
macroscopically located at z = 0. The other half space is either the vacuum or a dielectric with dielectric
constant €4, see figure 1. The surface is assumed flat on the the macroscopic scale so that translation symmetry is
preserved along the surface, but it may be ragged on the scale of Fermi wavelength and therefore can diffusively
scatter electron waves. We shall use the vector x = (r, z) to denote a point in space, wherer = (x, y) is the planar
projection of x. Further, x, = (r, 0) denotes a point on the surface and t denotes time.

In a macroscopic description of SPWs, one usually considers the metal as a medium for an electromagnetic
field and seeks surface localized (polariton) solutions of the governing Maxwell’s equations [33]. The procedure
is to write down the waves for (an infinite metal) on the metal side and those (for an infinite dielectric) on the
dielectric side, and then invoke conditions to match those waves at the surface. With local dynamics, the usual
Maxwell’s boundary conditions would do the job. With non-local dynamics, however, they are insufficient.
Historically, auxiliary conditions—mostly assuming zero normal current at the surface [14, 15, 17, 25]—have
been invented as a remedy since 1950s [23], which however treat the symptoms not the cause. The causeis a
conceptual deficiency in the knowledge of surfaces [31]. Considering that a real microscopic surface can hardly
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Figure 1. Sketch of the system: SPWs are propagating along the interface between a metal and a dielectric. A point in space is denoted by
its position vector x = (r, z), wherer = (x, y) is the planar projection. The position of a point on the interface is denoted by x, = (r, 0).

be specified even for the simplest material due to preparation procedures, one might deem it hopeless to have a
complete description. The following elementary analysis suggests otherwise.

Let us imagine bringing two materials (A and B) in contact, and an interfacial layer of thickness d—in the
order of a few lattice constants—shall form in between. We may characterize this layer by a surface potential ¢,
which should quickly decay to zero in the bulk regions outside the interfacial layer. The exact microscopic profile
of the layer varies from one case to another and can hardly be known a priori. Despite this, we may still write
down a generic form for the electric current density j(x, £) in the whole system including the interfacial layer. To
this end, we observe that in the bulk regions where ¢, vanishes, the form of j(x, f) can be completely specified
with the respective dynamic equations for the infinite materials, apart from some parameters (such as the Fuchs
parameter, see section 5) that encode the effects of surface scattering on the electron waves. Let us denote by
Ja/5(x, 1) the forms of j(x, t) in the bulk region of A/B. Microscopically, j evolves from J 4 in the bulk region of A,
through a rapid variation in the interfacial layer, to J in the bulk region of B. Formally, we can write for the uth
component of the current density thatj,(x,t) = Ja, (X, ) W, (2) + Jp (X, )(1 — w,(2)), where the profile
functions w,(z) approach unity in the bulk region of A and zero in that of B. The exact profile of w,,(z) depends
on the microscopic details of the interfacial layer. On the scale of A, however, the interfacial layer appears
infinitely thin and w,,(z) reduce to the Heaviside step function ©(z), where ©(z > 0) = 1and O(z < 0) = 0,in
amacroscopic theory. One thus ends up with

i 1) =Jalx, )O@) + Jp(x, ) (1 — O(2)). (Y]

This holds valid for any w,,(z) and is thus a general and complete macroscopic description of a physical interface,
aslongas a perturbation on one side does not cause significant responses on the other.

To recapitulate, equation (1) elegantly captures two importance physical consequences of an interface: the
rapid variation of the current density through the step function O(z) and the surface scattering effects on
electron dynamics through the parameters contained in the bulk forms These scattering effects—including the
symmetry breaking effects—have been ignored in most models except for the SCM. In general J , and J s are not
equal on the interface, as is certainly the case for local dynamics models, and charges accumulate in the
interfacial layer. Such capacitive effects would be mistakenly erased under auxiliary conditions, which often
dictate continuity of current across the interface, e.g. the vanishing of normal current at the metal-vacuum
interface.

2.2. Charge density waves

Now we derive the equations of motion for the charge density p(x, t) = en(x, t), where e denotes the charge of an
electron and n(x, t) is the deviation from the mean electron density #,, in the SIM. Our starting point is the
equation of continuity. Specifying equation (1) to the SIM, we have j(x, ) = O(2) J(x, t), where J(x, ) is the
current density in the metal. The equation of continuity then reads

Dtp(x’ t) + Ox - j(X, t)y=0, D= 4+ Oy

Here we have included a global relaxation term — p(x;, £)/7 to account for the thermal relaxation of non-
equilibrium charges due to microscopic electronic collisions driving the system toward thermodynamic
equilibrium. In terms of J(x, #), this equation becomes
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DtP(X: t) + 8}( : ](X) t) = —@/(Z)]z(xo, t)) (2)

where ©/(z) = 0,0(z). The right-hand term of this equation signifies the capacitive effects, which is critical in
the energy conversion process but had been overlooked until our recent work [12]. This term was also noticed by
Fetter in studying the edge plasmon in two-dimension systems [19].

Without loss of generality, we may assume a quasi-plane wave for the fields and write p(x, t) = p(z)e'®—«"
and similarly for J(x, ) and the electric field E(x, ), where the wave vectork = (k > 0,0) is directed along the
positive x-axis for the sake of definiteness. In general the frequency w = w, — i7yis complex. The relation between
wand k is determined by the wave equations to be established in what follows. Equation (2) thus becomes

—iwp(z) + V - J(2) = =, (0)0'(2), V = (ik, 9,), 3)
where © = w + i/7 and J,(xo, t) = J,(0)e®"~“". We shall write @ = w; + i, so that
y=1/T—% 4

by definition. We shall see that -y, is negative in all models except for the SCM, in which it is positive-definite
thanks to a fundamental physical reason.
For linear responses, J(z) can be related to E(z) as follows

@ = % [dou 2 wEE, ©)

L V=X,),2Z

where 0,,(z, Z', w) is the conductivity tensor. Considering that E(z) linearly depends on p(z), we can define a
linear operator H with kernel H(z, z’) so that

Fip(z) = f dZ'H(z, ) p(2) = —i@V - J(2). 6)
Itis easy to show that

H(z, Z') = iwz j:o dz"V,0,,(z, 2", WV, k(2" — 2'),
v

where V” = (ik, 9,7) and Vi(z) is the kth Fourier component of the Coulomb interaction V (x) = 1/|x|. Now
equation (3) can be transformed into

(H — &)p(z) = SO'(z), S =i, (0). )

Note that S does not depend on z. Since p(z) is defined only for z > 0, we can introduce a cosine Fourier
transform

2 o0
= — d .

p(2) wfo q p, c0s(qz)

In terms of p, equation (7) can be rewritten as
fo dq'(H(q, q") — @*6(q — 9 py = S. (8)
Here
H(g, q) = Efoo dz foo dz’ cos(qz) H(z, z')cos(q'z")
m Jo 0

is the matrix element between the cosine waves. Finally, we close equation (8) by the fact that J,(0) and hence S
are also linear functionals of p,. We can thus write

e, GK, w)
S= j; dq—K2 Pp ©)

whereK = (k,0, q), K> = k¥* + q”and G is a kernel given by
GK, w) = Z—G}foo dzfao dz’ c0s(42) 0,,,(0, z’, W)V, Vi (2’ — 2).
ir Jo 0

As akey result of this paper, equations (8) and (9) constitute a complete description of self-sustained charge
density waves in SIMs. Their basic structures are valid regardless of the underlying electron dynamics encoded in
Hand G.

2.3. Universal secular equation for SPWs

Equation (8) is an inhomogeneous linear equation with a source term. Equations of this type generally admit of
two classes of solutions, depending on whether S vanishes or not. Solutions with S = 0 represent nothing but the
bulk plasma waves, while those with S = 0 represent localized waves, i.e. SPWs in our system. The spectra of
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these two classes generally do not overlap. Had we imposed auxiliary boundary conditions as is usually done in
the literature, SPWs would not exist at all.

To find the ‘secular’ equation for SPWs, we wish to make a simplification, which is not necessary but will make
the resulting expressions more transparent. To this end, let us look at some general properties of ,,,(z, 2, w). For
an infinite system without boundaries, the translational symmetry is preserved along z-axis as well as along the
surface plane, in which case o, only depends on z — 2. For SIMs, however, that symmetry is broken and o, must
in general depend on zand z’ separately. It shall prove useful to decompose o, into two parts, o, ., and o, .,
where 0y, ,,,is defined to be that of the infinite system and depends only on z — z’ while o ,,,, signifies pure surface
effects. Namely,

02, 2/, w) = 0y, (z — 2/, W) + (2, 25 w).

Accordingly, H and G also each contain two parts arising from 03, ,,,,and o ,,,, respectively. Let us then write
‘H = Hp + H,. Now that it reflects on the properties of plasma waves of an infinite system, 7, must be diagonal
in the g-space, i.e. Hy(q, ¢') = Q*(K, w)6(q — q'), where Q(K, w) is a frequency that only depends on K. By
definition, one can easily show that the dielectric function of an infinite system is given by

O2(K, w)

@2

eK,w)y=1-— (10)
As for 'H,, it gives rise to scattering of plasma waves. Nevertheless, for bulk waves the scattering due to a surface
should be insignificant and may be treated perturbatively, as we did in [10, 11]. To the lowest order in this
perturbation, we may simply put

H(q, q") = (K, w)b(q — ). (11)

This expression contains complete information of bulk plasma waves. As expected, the zeros of €(K, w) give the
dispersion €,(K ) of these waves.

We analogously write G = G, + G;. Note that via equation (9) G, determines ], at the pointz = Oina
infinite system, for which, however this point is none more special than any other points. Thus, G, can only be a
constant that does not depend on g and it is therefore purely due to the local part of 0y, ,,,(z — Z'). This part must
be isotropic for the jellium model and it can be written as ¢, 6 (z — z") o (w), where §,,,,is the Kronecker symbol
and o(w) is to be discussed further. It follows that G, = —4iwo (w) kB, where we have taken into account the
effect of the dielectric via the factor 3 = 2¢; /(1 + ¢,); see details below. We now obtain

G(K, w) = —4iwo(W)kB + G(K, w). (12)

We see that G, describes translation symmetry breaking effects. As to be seen later, it is missing from the DM, the
HDM and the SRM. The positive-definiteness of vy, arises solely through this term and therefore cannot be
captured in these models.

For SPWs, § = 0. Inserting equation (11) in (8) and using (9), we find

< dg G w)
€S(k, w) =1- L Pm =0, (13)

which determines the SPW frequency w, and damping rate -yas a function of k. This is another key result of this
paper. The SPW charge density is obtained as

S S 1
pq - QZ(K, w) _ @2 B g(_E(K, W) ) (14)

The resulting p(z) is peaked about the surface.
Equations (13) and (14) constitute a universal description of SPWs. They are valid irrespective of the
underlying electron dynamics, which enter only through €(K, w) and G(K, w).

2.4. Dielectric effects

Let us place a dielectric with dielectric constant e ;,—which can be complex—on the side z < 0. The electrostatic
fields are affected by this dielectric, which can be calculated with the method of mirror charges. Let the mirror
charge density in the dielectricbe p,(x, t) = p;(z)e!®T=“ Itis easy to show that [34]

e < 0) =~ “p(=2). (15)

The electrostatic potential ¢ (x, t) = ¢(z)e'®T~", obeying Poisson’s equation 024 (x, t) + 47 (p(x, t) +
p;(%, 1)) = 0,is then obtained as
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Table 1. A comparison of various models in light of the present universal theory of SPWs. DM: classical dielectric model. HDM:
hydrodynamic model. SRM: specular reflection model. SCM: semi-classical model. For the sake of simplicity, ¢, = 0and ¢; = 1 have been
used in the expressions given in this table. K = (k, 0, q). Gy = (k/m) wfﬂ where w, denotes the characteristic plasma frequency of the
metal. F = (m/2n/)? deV(— e}’ v(K - v/@)*(1 — K - v/@)~!, where vis the velocity of electrons of mass m. ¢ (K, w) is the dielectric
function of the infinite system, whose zeros give the dispersion of bulk plasma waves. SPWs are determined by this secular equation:

_ 00 dg GK,w) 1
=1+ jo R 2 Ko

= 0. The solution to this equation is written as w = w, — 1. In the SCM, an extra contribution 7, arises due

to symmetry breaking effects contained in G,. Very interestingly, 7y = 7, — Vandau — Vinterband CANNOt be negative.
Quantity DM HDM SRM SCM
Symmetry breaking effects No No No Yes
XK, w) wp Qi = W) + Brik? wh + 4”;;“ wh + 4”;;@
G(K, w) Gy R Go2 Gy , Gy + gs
e(K, w) | 179122M 17% 17%
Damping ratey ! + Yinterband ! + Yinterband ! + Yinterband + “VLandau ! + Vinterband + VLandau — s
2 o0 _ o
6) = == [ dz e M () + py(). (16)
k J-
In the metal, where z > 0, the electric field E(z) = —V¢(z) = (Ex(2), 0, E,(2)) then follows as
. 00 4kpq k
E.(2) = —1f dg ——(2cos(qz) — Be™) (17)
0 K?
and
E.(z) = f dg —q(ﬂsin(qZ) - ﬁe*"z), (18)
0 K2\ k

where Bhas been given in the above. See that E,(0) and hence G, are enhanced by the factor 3, which is why this
factor appears in equation (12). Physically this is because the surface sits between the charges in the metal and
those in the dielectric and spatially separates them.

3. Inter-band transition effects

The dynamics models to be considered in the next two sections only describe the currents from electrons in the
conduction band. Realistically, valence electrons can also contribute by virtual inter-band transitions. In this
paper, for the sake of simplicity, we account for these inter-band transition effects by a phenomenological
approach [35-37]. The observation is that, valence electrons are usually tightly held to their host atoms and the
energy bands are largely non-dispersion, and thus their electrical responses are mostly local and not susceptible
to the presence of boundaries. We may then describe this response by a local conductivity function o,(w), so that
the electrical current density due to the valence electrons is given by

5@ = 0 (WE(). (19)

Usually o,,(w) may be modeled in the Lorentz form. It is related to the inter-band dielectric function by

€p(w) = 4mio,(w) /@, which can be measured for example by means of ellipsometry or computed by density
functional theory. €,(w) contains a real part €,,(w) and an imaginary part €,/(w). While ¢,,(w) acts to shield the
conduction electrons, €,;(w)—which is always positive—leads to inter-band absorption. Being basically an
atomic property, €, is not sensitive to temperature.

4.SPWsin DM, HDM and SRM

While the theory established in section 2 is universal, the behaviors of SPWs do depend on electron dynamics
through €(K, w) and G(K, w). In this section, we apply the theory to examine SPWs within several common
electron dynamics models: the DM, the HDM and the SRM. SPWs in the SCM will be thoroughly treated in the
next section. We show that the usually quoted SPW solution in the HDM is false and clarify the origin of SPWs in
the SRM. A summary of this analysis is tabulated in table 1, and a comparison between the properties of the
SPWs according to these models is illustrated in figure 2, where the quantity 1 /| € (k, w)|is mapped out.

4.1.Local DM
This is the standard model for SPWs. Unlike other models, it does not require and is incompatible with any
auxiliary conditions. Here we reproduce by our theory the well-known properties of SPWs in this model.

6
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Figure 2. Illustration of the quantity | &, (k, w)|~! for (a) the HDM, (b) the SRM and (c) the SCM, all at w, T = 8. The peak at given k
marks out the dispersion wy(k) of SPWs while its width measures the decaying rate -y of these waves. It is clear that yis much smaller
than 7! in the SCM, in contrast to the HDM and SRM. In (¢), a diffusely scattering surface, i.e. p = 0is used.
According to the DM, the current density due to conduction electrons is given by
2
1w P
Jom(2) = opm(w)E(2), opm(w) = S (20)
W 4T

where w, = \/47mnge?/m is the characteristic plasma frequency of the metal with 7 and e being the effective
mass and charge of an electron, respectively. The total current density J(z) then is

Jp(2) + Jom(2) = (opm(w) + 0p(w))E(2),
yielding 0 (w) = opm(w) + 0, (w). From equation (6) one finds Q) dispersionless, given as
Q(w) = w?, — Wep(w).

Bulk plasma waves. Equating g with ©? yields the frequency wy, by and damping rate v, py for bulk plasma
waves. For w, T — 00 and assuming ¢,(w) independent of w, they are given by

w Wp o /w 1 n 1 €pi
DM — —F———> b,DM / Wh,DM = - .
1+ €pr Wh,DMT 21+ €

Note that bulk waves bear no dielectric effects, i.e. no dependence on €. The damping rate 7, py arises due to
thermal collisions and inter-band absorption.
SPWs. The electrical conductivity is purely local and thus G; = 0. As such, G(K, w) becomes

Go = (kB/m)Q(w).

Substituting this into equation (13), we immediately arrive at the often quoted frequency w, pm and damping
rate v, pm for SPWs. Neglecting absorption in the dielectric, i.e. assuming real 4 we find
Wp YoM 1 €pi

1
Ws,DM = ) + = .
J1+ e+ €pr Ws, DM Ws,DMT 214 €5+ €pr

In this model, the SPW charge density is completely localized on the surface, p(z) = p,0'(z), where

p. = S/(Q5 — @?) gives the areal charge density. See that the dielectric tends to reduce the SPW damping rate.
Traditionally [38], the above results have been obtained by treating the metal as a simple dielectric with

dielectric constant € (w) = 1 — 3 /@2 Then exponentially decaying electromagnetic (EM) waves (or

electrostatic potentials in the quasi-static limit) are written down on the metal and the dielectric sides, and

Maxwell’s boundary conditions are used to match the waves to obtain the above frequency and damping rate of

SPWs. Our theory works directly with charge density rather than EM waves. The two approaches are equivalent.

4.2. Hydrodynamic model (HDM)

The DM assumes a purely local relation between the current density and the electric field. The HDM extends the
DM by inclusion of leading-order non-local corrections. Recently, this model has attracted lots of attention in
plasmonics and quantum forces [39—41]. It has also been synergized with density functional theory in the
quantum HDM [42-45] to study local plasmon resonances on metal particles.

7
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In the HDM, Q° includes leading-order dependence on K and is given by
QHDM == QZ + K2V0 >

where v, is a parameter. The dielectric function' then reads eypy = 1 — Q¥py/ @2 The bulk waves are similar
to those in the DM except for some dispersion with K.

As in the DM, no symmetry breaking effects are included in the HDM. G(K, w) is then the same as that for the
DM. Now equation (13) transforms into the following

kG Q5 > dg 1
P M L, @1
™ LU 0 K? €HDM

which determines the SPWs in the HDM by our theory. Note that the integrand contains no poles or resonances
near the solutions, as the SPW spectra are always gapped from the bulk wave spectra gratifying egpy = 0. For
vy = 0, the HDM reduces to the DM and so do the SPWs, as expected. With ¢; = 0and ¢, = 0, the equation
simplifies to

oo
1+ = f dg 1 =0, (22)
00 K €HDM

where we have used the fact that ey is even in g and that w? o/ @? ~ 2 for the solutions to this equation. As
shown in appendix A, it leads to a linear dispersion of w; versus k. As in the DM, the SPW damps due to thermal
collisions and inter-band absorption, at rate v ypm & Vs, pm apart from some dispersion effects.

In the literature, the condition that J,(0) = 0is usually imposed in the HDM [15, 17]. This would mean
S = 0and therefore would exclude any SPWs according to our theory. Nevertheless, SPWs have been claimed to
exist under this condition. In what follows we briefly show that this claim is false, more details to be found in
appendix A.

For illustration, we take ¢, = 0 and ¢; = 0.Impose S = 0 and the wave equation becomes
(Qpp — @) p, = 0,or equivalently in the real space

(@* — (w + vgk?) + vioHp(z) = 0. (23)

The claimed SPW solution is then sought of the form p(z) = poe™ . Substituting this in the equation leads to
@* = wj + v; (k* — £2). Imposing J(0) = 0 gives another relation, wg = vgr(k + k), which expresses the
balance between the electronic pressure and the electric force at the surface. Here w, = w, / V2. Those two
relations specify the solution. Combined, theylead to ©@? ~ w} + wj 3k. Nevertheless, this solution does not
reduce in thelimit vy = 0 to the SPWs found by Ritchie with the DM. Actually, « diverges in this limit, yielding
f p(z)dz ~ k=1 = 0, 1i.e. the solution is empty of charges. This false solution is also what was observed in
[14,15,47].Itis plausible that existing ab initio calculations have only observed this false solution as well [28]. A
comprehensive account may merit a future study.

Although the false solution and the correct solution are conceptually disparate, their dispersion relations are
quite similar, as shown in appendix A.

4.3. Specular reflection model (SRM)
A natural step to go beyond the HDM is to use the full form of €2 rather than the approximation Qypy.
Equation (22) then becomes

© dg 1
1 = 0. 24
T foc K2€(K w) ( )

This is exactly the equation established by Marusak and Ritchie in 1966 for the SRM [20]. Our derivation makes
it clear that the SRM is just an extension of the HDM. From this point of view, one may also conclude that the
usually claimed SPWs in the HDM are false, because they are not solutions of equation (24) in the HDM limit.

In contrast with the DM and the HDM, SPWs in the SRM can also decay via Landau damping, because of an
imaginary partin €2 associated with electron-hole excitations. Thus, the SPW damping rate is v srm & Ys,pm +
“ViLandaw S€€ the next section for further discussion on this.

We wish to point out a logical inconsistency in the original contrivance of the SRM. There are two elements
in this contrivance: (i) as nominally expected, electron waves impinging on the surface are assumed to be
specularly reflected back, and (ii) a sheet of ‘fictitious’ charges exactly localized on the surface. Element (i) would
mean J,(0) = 0and hence, by our theory, no SPWs would materialize. Then how do those waves come about?

! Note that ey differs from the bulk dielectric function that is usually quoted in the literature, which reads 1 — w; / (@* — K*). This
function can be easily obtained from equations (A2) and (A5) by adding an external term E,,, to Eand taking Oy - Eexe = 47p,- The
dielectric function then by definition is given by p,. /(p. + p). The difference arises from two non-equivalent approaches to the HDM, see
[46] for more discussions.
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The answer rests with element (ii). In appendix B, we show that the fictitious charge sheet reinstates the
capacitive effects lost under element (i). Actually, SPWs appear as a pole of this fictitious charge density.

As with the HDM and the DM, the SRM contains no symmetry breaking effects, i.e. G;is absent from these
models. To account for these effects, further improvement is required, leading to the SCM.

5.SPWs in the SCM

In the SCM one calculates the electric currents in terms of a distribution function f (x, v, t) defined in the single-
particle phase space. As usual, we write it as a sum of the equilibrium part f; (¢ (v)) and the non-equilibrium part
g(%, v, D). fy(€) is taken to be the Fermi-Dirac function at zero temperature. £(v) = mv*/2 is the dispersion of the
conduction band. Within the relaxation time approximation and the regime of linear responses, g (x, v, t) =
g (v, z)e'®T=«D gatisfies the following Boltzmann’s equation

X1+ 9,)g(v, 2) + ef'o(e)v - E(z) /v, = 0. (25)
Here A = iy, /@ with@ = @ — k,and f/y = 0.f,(c) = (2/m)6(v> — vf), where m s the electron effective
mass and v the Fermi velocity.

Physical causality [10] requires that v, = Im(w) > 0; otherwise, reflected electron waves would come
before incident waves. Together with equation (4), we may conclude that the SPW damping rate is always in
shortof 771, i.e. ~71 < 1,in non-reconcilable contrast with other models.

With vy, > 0, the general solution to equation (25) can be written as

! Z ,

¢v, 2) = ei(C(v) _ g f dz'es E(z’)), (26)
v, 0

where C(v) = g(v, 0) is the non-equilibrium deviation on the surface to be determined by boundary conditions.

We require g(v, z) = 0 distant from the surface, i.e. z — oo. For electrons moving away from the surface,
v, > 0, this condition is automatically fulfilled. For electrons moving toward the surface, v, < 0, itleads to

/ o9
Cv) = v f dz/e?/?E(Z), v, <O. (27)
v, 0
It follows that
/ 00 .
gv,z) = ooV f dz’ €5 E(Z)), v, <O. (28)
1Z] z

To determine C(v) for v, > 0, the boundary condition at z = 0 has to be used, which, however, depends on
surface properties. We adopt a simple picture first conceived by Fuchs [48] and then widely used in the study of
for instance anomalous skin effect [49-52]. According to this picture a fraction p i.e. the Fuchs parameter varying
between zero and unity, of the electrons impinging on the surface are specularly reflected back, i.e.

gV, z=0)=pg(v,z=0), v.= V¥ —V), ¥ =0. (29)

This condition is identical with the condition used in [12] but differs from thatin [10, 11] except for p = 0.1t
follows that

l 00 ,
Cv)=—p o VO"— . fo dz’ e 3 E(Z), wv.>0. (30)

Equations (26)—(30) fully specify the distribution function for the electrons.
The electrical current density due to the conduction electrons is then calculated as

J.(z) = (m/2m/)? f v evg (v, 2). 31)
Note that the charge density is not given by
p(x, t) = (m/2n/i)? eitkr—wt) fd3v eg (v, 2).

The reason is simple: the as-obtained g(v, z) is for the bulk region and not valid on the surface, because equation
(3.1) involves no surface potentials, see section 2.1. Actually, J (x, ) and p(x, t) obey the equation

(8t + I/T)p(x) t) + ax : Ic(x> t) =0

rather than the equation of continuity (see equation (2)), automatically embodying the condition that J,(0) = 0.
This underlies the incorrect conclusion drawn by Harris and others [14].

9
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5.1. The positive-definiteness of ~,

We substitute the expression of E(z) given by equations (17) and (18) into (26)—(30) and perform the integration
over z'. We find it instructive to split g(v, z) into two parts, one denoted by g;,(v, z) and the other by g(v, z). They
are given by

o0 4p
g, (v, 2) = —ef’of qu_§(2F+ cos(qz) + 2iF — sin(qz) — BFye %), (32)
0
where we have introduced the following functions,
1 K-v K- v
EXK, w,v) = — + . 33
B ) Z[Q—K-v w—K-v,] 33)

Note that F, ,_ is an even/odd function of v,. In addition,

k*

v (k*-v
Fk)_) = — =
o(k, @, v) R ;(

@

I
), k* = (k, 0, ik). (34)
Moreover, we have

o [, 40
& (v, 2) = O(v) (—efp)e™ j; dq?ZWFo(k, @, v) — ppFo(k, @, v-) + 2(p — DEK, @, v)].  (35)

One may show that g,(v, z) can also be obtained directly by Boltzmann’s equation for an infinite system. Thus,
this part contains exactly the responses of an infinite system. It is independent of surface properties, i.e. showing
no dependence on the Fuchs parameter p, and the electrons incident on the surface (i.e. with v, < 0) and those
departing it (i.e. with v, > 0) appear on equal footing in its expression.

On the other hand, g,(v, z) signifies pure surface effects: it exists only for departing electrons, as indicated by
the Heaviside function ©(v,) in its expression, and it depends on p thus reflecting on surface roughness. If we
keep only g,(v, z), the SRM will be revisited, making it evident that the SRM does not correspond to the limit of
p = 1(specularly reflecting surface), in contrast with its nominal meaning.

Another important feature of g(v, z) lies in its dependence on z, i.e. g (v, z) o €!%*/% o e~ %%/*, which
implies that v, > 0inaccord with causality (see also preceding remarks above equation (26)). Otherwise, it
would diverge far away from the surface.

5.2.Q and Gin the SCM

The conduction current density is also written in two parts, J(z) = J,(2) + J«(2), whereJ,, /(z) are defined via
equation (31) with g(v, z) replaced by g;,/(v, 2). For small kv /@, we may keep only the first term in the series of
Fy(k, @, v).Itis then straightforward to show that

Jo(2) = opm(w)E(2) + Jsrm(2)s (36)

where Jspm(2) is responsible for the extension made through the SRM beyond the DM. It is given by
Jsion(@) = [ DgDN 1eF' (K, @, v)cos(qz), (37)
Jz(2) =i [ DDV v.F' (K, @, v)sin(g2), (38)

where we have defined a short-hand

3 hc 4p,
3 _ | m g 3o( 261
[Dap... = (27”5) J < [@vi=er..

together with these functions

1[ (K - v)? N (K -v.)? ]

F. (K, @ Vv)=—
+{ ) 2|1 -K:-v/o 1-K-v. /@

See that Jsga (0) = 0, which makes no contribution to G. Now the total current density becomes
J(2) = Jp(2) + Js(2) + Jp(2).

By definitions (6) and (11), we find

470K - F(K, @)

DK, w) = R(w) + =

(39)

’In [10,11],] sgm Was called J'. The expressions given there were typographically flawed, which though does not affect any statements or
other expressions given in those work.

10
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where Fis an odd function of @ and given by
m Y X - v/@)?
FK, w) =|— Bv(—efg) v—-—>t", 40
&, @) (27r/7)f v efO)vl—K-v/w (40)

Partially performing the integral, we obtain

(41)

2 1 3
Qz(Kw)—w[l—w6p+3@ dr r ]

wf, 2 @ Ju 1 —1Kvg/o |

The real part of this expression approximates wi (1 + %K 2 / k;) in the long wavelength limit, corresponding to
the HDM limit with vy = {/3/5vg. Herek, = w,/vg.
Landau damping. Obviously, the second term in equation (39) generally contains an imaginary part even in

the collision/ess limit where 7' is vanishingly small, due toa poleat @ = K - v in the integrand of the integral in
F. This part gives rise to Landau damping. For o /w, < 1, wefind for & = w, + i,

QX(K, w) ~ 0+———ij —43m4 lﬂ—3@@wp—u@. (42)
ws / KVF —r 2 \ Kvg

Here P takes the principal value. The sign of the second line depends on the sign of 7,. Only for v, > 0, itis
negative leading to damping, in line with causality. Equation (42) shows that, for bulk waves Landau damping
exists only for sufficiently large K. For SPWs, however, Landau damping always exists, because q runs over all
positive values in the secular equation (13).

A major improvement of the SCM over the SRM comes through the quantity G(K, w). In the SRM and its
descendents, G = G contains no symmetry breaking effects. In the SCM, one finds G = G, + G, where G;
stems from J(0) and is given by

G(K, w)—41w( ) f &Ev v, (—e¥f o) [BF(k, @, v) — pBFo(k, @, v-) + 2(p — DF (K, @, v)], (43)

where >’ indicates that the integral is restricted to departing electrons, i.e. v, > 0. Note that G, depends linearly
onp.

5.3. The frequency and losses of SPWs
With 2 and G, we now proceed to solve equation (13) to find the frequency w, and damping rate -y of SPWs in
the SCM.

Analytical analysis. As said before, the most significant improvement of the SCM over the SRM is through the
term G,. We wish to do an approximate analysis to explicitly demonstrate how G, = G’; 4 1G” affects w,and 7.
For this purpose, letus write G = G’ 4+ iG"and Q = Q' + 1Q" aswellase = ¢’ + ie”, and assume that

Yo/ws G /G and 2" /€Y are all small quantities. Then, one can show that the real part of equation (13) gives

1 qu(K W)
)

1+ — (K, o) ~ 0, (44)

w;

which determines the SPW frequency w,. The imaginary part of equation (13) yields vy, as

Yo = ws(1; — M) (45)
where the contribution
dq G"(K, Ws)/ dq G'(K, wy)
== 46
™ zﬁ ’m%)JﬁKzﬁKw o

stems directly from the imaginary part G’—which equals G”—of G, and

20 dgq G’ (K,ws) Q" (K,w) €' (K,ws) — 1
fo KK w) UK w) K w)
00 dg G’ (K,w)
fo K2 €2 (K, wy)

My = (47)

comes directly from the imaginary part 2”of ). For stable systems, 1, must be non-negative.
Note that 2”signifies Landau damping and inter-band absorption, as is clear from equation (42). As such, we
may further split 7y = 7} 20400 + Minterband> SO that the SPW damping rate becomes

v T+ YLandau T+ Vinterband — Yo (48)

where Yy, dauinterband,s = WsTLandau,interband,» the first term represents Joule heating, the second and the third
stand for Landau damping and inter-band absorption, respectively, while the last one is completely new due to
G" = G",. For models where G, = 0, e.g. the DM, the HDM and the SRM, this new term is absent.

11
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For the SCM, however, G;is finite. Retaining only the first term in the series of Fy, we find

(1 + p) Bkws, . 3
G, ~ —T" + 8iw(p — 1)(27%) f> Bv v,(—e' ) E (K, @, V).

The second line here approximately corresponds to iG”;. In general G”; < 0 and hence 7, > 0. This implies that
symmetry breaking effects tend to counteract the conventional damping and destabilize the metal. Our
numerical solutions shall demonstrate that v, is non-negative, in accord with the general argument given in
section 5.1.

In the long wavelength limit k ~ 0, one has k/K? ~ 6 (g). Under this approximation, equation (44)
becomes

7G' (Ko, wy)
2kw?

S

€' (Ko, ws) + 0. (49)
Here Ky = (k, 0). For models with G; = 0, one immediately recovers from this equation the relation that
€4 + €’ = 0as expected. For the SCM, however, one finds instead

2
1 w
¢+ fd[l _ %—’;] —o. (50)

w

This leads to

1/2

L+ ép+ e

This result differs considerably from what is expected of other models. It shows that the value of the SPW
frequency depends on surface conditions.
If we replace in equation (46) €’ (K, w;) with its non-dispersive part, as is reasonable for small k, then we find

1 1+ e foc d G”S(K’ ws)
O b

2 (52)
2wp 1+ (1 +p)/2 K2

s =~

which implies that inter-band transitions have little effect on 7, whereas a dielectric can enhance it by as much as
200%. This is to be borne out in numerical analysis in what follows.

Numerical analysis. We solve equation (13) numerically to find w;and vy and how they vary with kand €;. We
present the results for diffuse surfaces with p = 0 only. In equation (13), the integral over g extends to infinity. In
numerical calculations, we impose a cutoff .. Roughly, g. ~ a~', where ais a lattice constant. For metals, this
means q. ~ kg ~ k. Inall the numerical results presented here, we have chosen g. = 1.5k, For q.beyond this
value, both w;and 7, quickly converge, confirming that the results are independent of the choice of g.’. Our
results should be taken with a grain of salt for very small k < w; /c = k, Vg /c ~ 0.01k,, where cis the speed of
light in vacuum, because of retardation effects neglected in our theory.

The results are displayed in figures 3 and 4. In figure 3, we show & = w; + i, asa function of k for various €,
but without inter-band transition effects (¢, = 0). As seen in figure 3(a), in agreement with the analytical
expression of w;, increasing e, leads to smaller w;. Note that w;is considerably larger than what would be
obtained by other models due to surface effects. Meanwhile, vy, increases with increasing €, as seen in figure 3(b),
in accord with equation (52). This increase comes from the factor 3, i.e. the presence of a dielectric enhances the
electric field at the surface; see equations (17) and (18).

The effects of inter-band absorption and Landau damping are illustrated in figure 4. Here we plot y, for
€4 = 1 under several circumstances as described in the figure. We see that inter-band transitions can strongly
diminish v, in two ways, as can be deduced from equations (51) and (52). Firstly, there is the screening effect (the
curve with €, = 5). This leads to smaller w, and hence smaller -y, while leaving 77, unaffected. Secondly, inter-
band absorption further reduces 7, (see the curve with ¢, = 5 + 0.5i). As for Landau damping, it is sizable and
generally increases with k; see [5, 12]. As such, o decreases as k increases. In relation to this feature, we should
mention a size effect [11]: in films of thickness d, v, is strongly suppressed and quickly diminishes to zero when
the wavelength becomes longer than d. Echoing this, one can show that v, ~ kvg vanishes for k ~ 0in the
SIM [46].

? The solutions to equation (13) are independent of the choice of g. as long as the latter is sufficiently large. For example, for k = 0.07k,, we
find that @ /w, = 0.93 4 0.095i, 0.95 + 0.09%, 0.95 + 0.099i, 0.96 + 0.098 for q,/k, = 1.5, 3.0, 4.5, 6.0, respectively. Thereis no
difference within the numerical resolution +0.005. More discussions on this can be found in [46].
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Figure 3. Frequency w,and dampingrate y = 7-! — ~, of SPWs by the SCM. The results are obtained by numerically solving
equation (13) without inter-band transition effects. w, is the characteristic frequency of the metal and k, = w,/vg with vy being the
Fermi velocity. Solid lines are guides to the eye.
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Figure 4. Effects of inter-band absorption and Landau damping on . The results are obtained by numerically solving equation (13)
for e; = 1. Exclusion of Landau damping is done by dropping the imaginary part of (K, w). Solid lines are guides to the eye.

6. Possible lossless SPWs by the SCM

According to the SCM, the SPW loss rate is vy = i Yo- In view of energy conversion, the expression implies a
competition between the loss due to thermalization and the gain due to energy transferred from the electrons to
the waves [12]. Should the condition v,7 = 1 be fulfilled, lossless SPWs may be produced. In this section, we
discuss this possibility against two common plasmonic metals: silver and aluminum.

Note that 7" is the collision rate at the SPW frequency w,. Even at zero temperature and in defect-free
samples, there is sufficient phase space—available due to the effective temperature /7w /kg—for electronic
scattering and thus 7' is comparable to w,. Up to our knowledge, there is virtually no direct data on 7' forany
materials. We then opt to estimate it by the following formula [32],

5 2
T /T yid kg T
T_l ~ Vresidual + 4V0(E) L % + wp(ﬁi}_P) > (53)
where Vyesidua 1S the residual rate given by
2

2v Wy | w
Vresidual ~ = + _Pz =1 + “Yimpurity- (54)

5 4m°\ wp

Here the first contribution comes from phonon scattering, the second from electron—electron scattering and the
third due to impurity scattering to be neglected hereafter. The second term generally underestimates the
electron—electron rate in noble metals and Al by a few times [53]". The coefficient v ~ kg Tp // may be

4 More detailed calculations [53] shows that the second term in equation (54) should be multiplied by a factor (w°/12) P A (fiw, /€5) where T
and A are constants with their product of the order of 0.4—for noble metals and Al [62]—related to the geometry of the Fermi surface.
Similarly, the third term in equation (53) should be multiplied by the same factor. For noble metals and Al this factor is around 1.5. However,
for sodium and potassium it is nearly zero.
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Figure 5. vy, for SPWsin Agand Al at various €, In both metals, y, is enhanced with a dielectric. Solid lines are guides to the eye.

determined from the slope of the phononic part of the D.C. conductivity at temperatures higher than the Debye
temperature Tp. Equation (54) shows that 7,esiqua may well amount to quite a few percentages of w, for metals.

Silver. In silver electronic transitions involving the 55 and 4d bands have a dramatic effect on the properties of
SPWs [35, 54, 55], leading to /i, ~ 3.69 eV and 7w}, ~ 3.92 eV atlong wavelengths, both lying far below the
characteristic frequency /i, = 9.48 eV. Experimentally [32, 56], it was found that /2y ~ 0.1eV ~ 0.01/&v, in
consistency with the value of T, &~ 220 K for Ag. The electron—electron scattering rate according to
equation (54) would be less than one percent of w,, while experimental measurements and more accurate
expressions [53] place it about 0.02w,,. As such, we may reasonably take 7, 4,. ~ 0.03w, as an estimate.

The damping rate y can be read out from the line shape of the electron energy loss spectra (EELS). The
temperature dependence of 7y has been recorded on a high-quality Ag single crystal by means of EELS [57, 58].
The data indicates that at low temperature v amounts to less than one percent of wj, a value a few times smaller
than the as-projected Yiesiquar- If Landau damping and inter-band absorption are also counted, the discrepancy
can be more dramatic. In light of the present theory, this discrepancy gives an estimate of 7y,. The values suggest
that 5, has substantially compensated for the collision losses, i.e. Yy ~ Viesiaual @ borne out in the following
analysis.

To evaluate ~y,, €,(w) needs to be supplied. Combining a semi-quantum model and ellipsometry as well as
transmittance-reflectance measurements, Raki€ et al [36] employed KK analysis and prescribed a parametrized
dielectric function—¢& (w) in their notation—for the inter-band contribution. Here, we use their fitting as an
input for €,(w) but with a number of caveats. Firstly, their dielectric function was deduced from measurements
assuming the conventional electromagnetic responses without any surface effects considered in the present
paper. These effects, however, should be considered when analyzing ellipsometry and reflectance spectra. A
future study will be made to address this issue. Secondly, their function very poorly reproduces the electron
energy loss spectra and the reflectance spectra, especially near the SPW frequency of interest. Thirdly, their
function does not give an accurate partition into inter-band and intra-band contributions, e.g. w, ~ 8 eV was
used rather than the widely agreed 9.48 eV [55], which may overestimate the inter-band transition effects.
Finally, their function is defined only for real frequency, and thus in general not suitable for €,(w), where wis
complex. To remedy this point, we substitute ér(b) [Re(w)]for €,(w), which should be reasonable if v/w, < 1.

The results are displayed in figure 5(a), where the computed 7, is exhibited as a function of k at various values
of €;. While 7, for SPWs supported on a pristine Ag surface (i.e. ¢; = 1) is negligibly small and way below
Yeesiduab DY Using a dielectric it can be significantly enhanced at long wavelengths beyond 7,esiquar- This trend is
consistent with equation (52). The fact that vy, can be made higher than ,¢siqua1 suggests the possibility of
compensating for the plasmonic losses completely in Ag. The situation is shown in figure 6. By interfacing the
metal with alossless dielectric of e; = 5 and cooling it down toward a critical temperature T* ~ 120 K, one can
diminish the netlosses as much as desired. It should be mentioned that, ¢, s the constant at the frequency w;
aswell.

Aluminum. Inter-band transitions in Al are widely considered less pronounced than in Ag. Nevertheless,
their presence can still be felt, e.g. in the difference between the values of fuw, ~ 12.6 eV and /av, = 15.3 V.
These numbers were obtained by density functional theory [59] and experimental fitting [37]. In addition,

Jaws == 10.7 eV [60, 61]. Vresiaual May be deduced from the experimental measurements performed by Sinvani
etal[62] and others [63]. These authors measured the low temperature dependence of the d.c. resistivity p of AL
Their datashows that p ~ p, + AT? + B(T/Tp)’, where p, stems from impurity and lattice dislocation
scattering while A and B are constants characterizing electron—electron scattering and electron—phonon
scattering, respectively. Analyzing the data, the authors found that A &~ 0.21 p$2 cm K2 (alower bound) and
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Figure 6. The possibility of compensating for the SPW losses in Ag. A critical temperature T" exists where o7 = 1. Cooling down the
system toward T* reduces the losses to a vanishingly small level. Here 7~ is calculated by equation (53) with T, = 220 Kand
iy = 0.1eV.

B~ 4.9 x 10* 4 cmfor T, = 430 K. From this we obtain 1 ~ 0.18w, and the residual electron—electron
scattering rate—a few times larger than what would be obtained with equation (54) [32]—approximating
0.14w,, yielding v, 4. &~ 0.21w,. Itis noted that this value is comparable to the width (~1.5 eV, nearly 0.12w,)
of the electron energy loss peak near the frequency of the bulk plasma waves in Al [60]. The as-obtained v, (and
hence V;esiqual) Tepresents probably an overestimate”.

To compute vy, we again resort to the fitting function constructed by Rakié et al [37] and have it in place of
€p(w) in our theory, in the same way as we did in the case of Ag. It goes without saying that the same caveats
should be kept in mind. The results are shown in figure 5(b). As expected, 7y, is comparable to that in the absence
of inter-band transitions (see figure 3(b)), as these transitions are weak in Al. As is with Ag, v, of SPWsin Al can
also be fortified—but to a lesser extent—by a dielectric. Nevertheless, the enhanced v, still falls short of Yyegidual
unless for very long wavelengths where retardation effects need to be properly accounted for.

The calculations reported in the above have assumed p = 0. For surfaces strongly reflecting electrons (i.e.

p > 0),7, could be much lower [12]. We also point out that additional losses such as due to SPWs converted into

radiation are not considered. They can be absorbed in the definition of 7.

7. Conclusions

In order to answer the two questions posed at the beginning of this paper, i.e. (i) why had not previous work hit at
the possibility of lossless SPWs and (ii) how far is the latter from reality, we have derived a universal macroscopic
theory of SPWs that applies to any electron dynamics. In light of the theory, our answer to question (i) is simple:
lossless waves are possible only within a self-consistent description of physical surfaces that takes care of
translation symmetry breaking effects, a condition not met in existing work. As for question (ii), we can only
suggest an optimistic prospect rather than an answer due to various uncertainties in inter-band transition
effects: our estimate shows that lossless waves may well be within the reach in some materials.

Our results reveal two contradictory views regarding SPW losses, as compared in table 1. According to the
conventional framework, as exemplified by the DM, the HDM and the SRM,

,Y(l) =714 YLandau + Yinterband

and thus the SPW loss rate cannot be smaller than either of 7" and Y1 angau. On the other hand, within the SCM,
atotally different picture emerges, giving

7(2) =71- Y0, Y0 = s — 7YLandau — 7interband>
which suggests that the loss rate is always smaller than 7! Here, = nyws, see equation (51). To directly
contrast these two views, one has to measure separately 7~ ' and . While the latter can be measured in many
ways, the former is difficult to be directly measured. In what follows, we mention some indirect observations
defying v" but supporting 7.

The often quoted resistivity for Al at room temperature is around 3 ££2 cm, see [70]. Using this to evaluate the contribution of the
electron—phonon scattering to 7~ would give 1y & 0.01w), a much smaller value than what would be obtained with the low temperature
datain [62, 63]. This discrepancy might be due to the uncertainty as to the actual scattering mechanism responsible for the resistivity at low
temperatures.
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Firstly, we note that 7* naturally resolves a long-standing puzzle, that of the apparent insignificance of
Landau damping even at very short wavelengths [38]. For example, in single crystal Ag, the loss rate measured by
EELS[57, 58] is ~1%w, even for k ~ 1 nm™ ', whereas Viandan ~ KkVE ~ 10%w,. This discrepancy is inexplicable
by 4", but easily comprehensible by 4, i.e. Landau damping has been overcompensated by ..

Secondly, we note that the loss rate of bulk plasma waves differs from that of SPWs primarily because of the
absence of v, in the former, as least in materials where inter-band effects are not important. In those materials,
bulk waves should be generally much more lossy than SPWs, an observation that seems in consistency with
experience. For example [64], the loss rates for the SPWs and the bulk waves in potassium are 0.1eV /7%~ ! and
0.24eV /i~ !, respectively, while those in cesium are 0.23eV /4! and 0.75eV 777}, respectively. In spite of these, the
general situation is obviously unclear at this stage.

Finally, we mention an experiment performed on a van der Waals structure by Iranzo et al [65]. These
authors were able to confine propagating plasmon between a graphene layer and a metal array to the atomic limit
without sacrificing its lifetime, which obviously beats the limit set by Landau damping. From an energy
conversion point of view [12], the plasmon in such a structure is not much different from the surface plasmon on
ametal surface. Their result is compatible with v?: in ultimate confinement +, tends to zero due to increase of
Landau damping (figure 4), leaving the loss rate saturating at 7', as observed. We anticipate a similar trend for
the losses of local plasmon resonance on metal particles.

In the SCM we have assumed that the ground state of the underlying metal be simply the Fermi sea. The fact
that «y can be made negative means an instability of the Fermi sea. Upon entering such circumstances, the metals
are expected to undergo a transition into a different stable state, of which the electrical responses cannot be
captured by our current SCM calculations. We will clarify the nature of this transition in the future.

The results reported in this work should be of broad interest to the researchers working in plasmonics,
surface science and condensed matter physics. We hope that experimentalists will find the results fascinating
enough to put their hands on them.
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Appendix A. SPWsin the HDM

Here we show that the usually claimed SPWs in the HDM are incompatible with the waves in the DM. We put
€, = 0and ¢; = 1for simplicity. In the HDM, the electrons are treated as a fluid described by two field
quantities: the velocity field v(x, t) and the electron density field ny + n(x, t), where n(x, t) denotes the deviation
from the mean density #4. The charge density is then p(x, ) = n(x, t)e and the current density is
J(x, t) = e(ng + n(x, t))v(x, t), which in the linear responses regime becomes J(x, ) = ngev(x, t).

A small fluid element of volume 6V feels a force consisting of two portions: the electric force nyedVE(x, t)
and the pressure due to density variation —m§ Vg yn(x, t). Now the laws of mechanics states that in the linear
regime one has

nom(at + l)v(x, t) = noeE(x, t) — mviOxn(x, t), (A1)
T

Here shear viscosity effects have been ignored. Now assuming n(x, t) = n(x)e " and similarly for v(x, t)and
other field quantities, we obtain the current density as

1 wf, 2
J®) = —| —E®) — vyOxp(X) |, (A2)
47

w

the divergence of which is then given by
Oy - J(x) = é(wi ~ ) p(). (A3)

Combining this equation with the equation of continuity, one obtains the wave equation for the charge density.
The usually quoted SPWs. In the standard but erroneous prescription for SPWs in this model, one takes
J.(X0) =0, or equivalently

v,(x0) = 0. (A4)
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Here x( denotes a point on the surface. The continuity equation reads
—iwp(x) + Ok - J(x) = 0. (A5)
In conjunction with equation (A3), one finds

Wy — @ — v 9Hpx) =0, (A6)

which is equation (23) given in section 2.3. One then seeks solutions of the form p(x) = p(z)e!** and similarly
for other quantities. Further, taking p(z) = p,e™ " and substituting it in equation (A6), we obtain

wf, + gk — K?) — @? = 0. (A7)
The boundary condition (A4) requires
w2
4—7’;Ez 0) =3 p'(0) = —kvipp  p'(2) = 0:p(2). (A8)
Itis easy to show that
2
E,(0) = — o
k+ kK

With this it follows from equation (A8) that
wi = virk + k), wy= wp/ﬁ. (A9)

Combining this relation with equation (A6), we arrive at

2= w% + WO‘Vok. (AlO)

@
This is the usually quoted dispersion relation claimed for the SPWs in the HDM. As briefly captured in section 2.3,
this claim is plainly false: in the limit vy — 0, & ~ v, ' diverges and hence j; ~ dz p(2) = pyk™t ~ pyvo
vanishes, thus in contradiction with the DM. This would also erroneously imply that E,(z) did not change sign
across the surface charge layer. It was essentially this erroneous solution that had been identified by Harris [14] and
Garcia etal [15] in their study based on Boltzmann’s equation. It is plausible that this is also so with works
employing a more microscopic approach such as the density functional theory, at least those using the so-called
‘infinite barrier’ model for mimicking the surface [30]. For example, Feibelman identified a solution of uniform
potential and hence empty of charges but with frequency w,, / 2 in the long wavelength limit [47], exactly in
this kind.

SPWs in the HDM by the present theory. In our theory, no restrictions are placed on J,(x,) and thus the

equation of continuity reads

—iop(x) + Ox - J(x) = —0'(2) . (x0) (A1)
Using equation (A3) and taking p(x) = p(z)e'® and similarly for other quantities, one finds
(W + vok? — v 07 — @) p(2) = i@].(0)0'(2). (A12)

Now we introduce the Fourier transform for
o}
p(z) = Q/m) fo dqg P, €0s(qz2).
It follows that

J(0) = (i/@)(w}, /4m) E;(0) = opmE (0).

This implies that p/(0) = 0, which must hold for any p(z) that reduces to the Dirac function §(z) desired in the
DM limit. In conjunction with

E.(0) = — j; dg—", (A13)

we find from equation (A11) that

2
Wy > k 1

47 Jo qsz;—i—vosz—a)z (A1

which is just equation (21) displayed in section 2.3. The dispersion relation obtained by this equation has been

plotted in figure A1(a), where the relation (A10) is displayed together for comparison. Both exhibit a linear

dependence on k but with different slopes. Our theory predicts a slightly bigger slope.
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Figure A1. SPWs in the HDM. In panel (a), the dispersion relation obtained by equation (A14) is plotted. The erroneous solution,
equation (A10), which is widely quoted as the SPW dispersion, is shown alongside for comparison. As for the charge density, one has
p(z) ~ vy 'e "% for znot so close to the surface. The exponent x’ ~ v ! is shown in panel (b). The erroneous solution states that
p(z) ~ e "4, where r is shown also in (b).

Let us have a look at the profile of p(z). According to our theory,

p(z) = iw],(0) f:—/qz cos(qz)(wy + v K* — @)L,
With § = qv/w,and K = Kwy/ wpaswellas Z = zw, /v, it can be rewritten as
i/, (0)
p(z) = Mp(Z), (A15)
WpVo
where
p(z) = f :—/qz cos(§z)(1 + K> — (@ /wp)?) . (A16)

!
e "% where

One can show that not so close to the surface p(z) = P
0 /<p

K = ﬁ\/l TRk (@ /wy)?
Yo

with k = kvy/ wy. Thus,

![p&)dzziwkm) 1

wf, 1+ k- (w/wp)z'

For k = 0, it reduces to that for the DM. The dependence of x”on k is shown in figure A1(b), alongside that of &.

Appendix B. Origin of SPWs in the SRM

The widely used SRM assumes that the electrons be specularly reflected off a surface. One would then expect that
J. = 0and no SPWs would exist in this model. However, in the main text we have shown that what the SRM
actually does is an extension of the HDM. The question then is, how do SPWs originate in the SRM? Here we
show that the answer lies with the ‘fictitious’ charge sheet assumed in the model.

We follow the SRM formalism as explained in many papers [20, 26, 66—69] and employ it to study the
response to an external distribution of charge p,,, (z; k, w) placed outside the metal. We take
Lot @ K, W) = py(k, w)(z — z) for simplicity, where z, < 0.1In the SRM, the total electrostatic potential,
Dot (@ k, w) = ¢(z5 k, w) + @, (2 k, w), where ¢ is the potential produced by the induced charges
p(z; k, w),iswritten

Dot k, w) = O(2)9,,(z; k, w) + O(—2)9,(2; k, w), (B1)
where ¢,, and ¢, are the potentials in the so-called pseudo-metal and pseudo-vacuum, respectively. These are
further defined by

47

m/v , m/v k, , B2
Qe ) Pon (@) o) ®2

(bm/V(Qw w) =
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where ¢, ,,(Q, w) = fj; dz e~i# /v (2 K, w) is the ordinary Fourier transform, Q = (k, q), €,(Q, w) =

€(Q, w), 6(Q, w) = land 05’”/ ¥ (k, w) is the fictitious surface charge density. In addition, p;’;{ Visrelated to pey;
as follows

p:({v(z; k, w) = O(2) p. (Fz; k, w) + O(—2) p (£7; k, w). (B3)
Itfollows that p! (Q, w) = Oand
P (Q, w) = 2py(k, w)cos(gz,). (B4)
Equations (B1)—(B3) define the SRM. Requiring the continuity of the dielectric displacement at z = 0 leads to
o'k, w) = —ol(k, w) = g(k, w). (B5)
This can be further fixed by requiring the continuity of ¢, atz = 0. One finds
ok, w) = 2p,(k, w) cosh(kzo)G;SIRM k, w), (B6)
where €, srp 1S as given in section 4.3, i.e.
esrmk, w) =1+ % j:: %

The zeros of this quantity give poles of o; corresponding to SPWs in the SRM, thus revealing that the fictitious
charge sheet is responsible for the SPWs in the SRM.
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