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Abstract

Regardless of the economic activity, decommissioning decisions are often highly complex.
This is due to the diversity of operational and local parameters, as well as the multitude of
stakeholders involved, who generally have conflicting interests. This sets up a challenging
multi-criteria decision problem on the activities to be carried out during the decommission-
ing process. This paper aims to present an overview of decision-support tools applied to
decommissioning, and covers many economic sectors, with a focus on the oil and gas sector
and on multi-criteria decision analysis (MCDA) methods. The paper delves deep into the
aspects to be considered before reaching a decision, examining the experiences and methods
found both in industrial reports and in academic papers.

Keywords: Decommissioning, Oil & Gas, Decision analysis, Multi-criteria decision
analysis, Bibliographic review

1. Introduction

Decommissioning can be deemed the last phase of the life cycle of a project. In many
cases, it can also be seen as the reverse of the installation process [161]. It essentially consists
in the deactivation of an enterprise, which often occurs because the enterprise is no longer
economically viable. Decommissioning activities are carried out in many economic sectors.
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One can decide, for instance, to deactivate a highway [154; 160], a nuclear plant [149; 147],
a solar power generation facility [58; 144], or a mining complex [7; 100; 36], among other
enterprises. This paper is particularly interested in the decommissioning process of oil and
gas production facilities [e.g., 30; 107; 50; 61].

Generally, the alternatives available for decommissioning activities are limited by regula-
tors and organizations. In addition, one may find various guidelines that should be followed,
depending upon the economic and geographical position of the company. It is also worth
pointing out that, due to the diversity of operational and local parameters throughout the
processes, the definition of clear and systematic steps will lead to a more transparent and
reproducible decision-making process. However, even when dealing with similar companies,
the premises are often unique to each project. This, in turn, renders the elaboration of
a single methodology to be applied in different sectors very difficult or even impossible.
Hence, the diversity of scenarios for decommissioning projects in the same area is essential
and should be carefully evaluated.

Due to the maturity of some economic activities, and the relatively short time span
of others, the demand for decommissioning processes has been rising steeply over the last
vears. That rise has been particularly significant in the oil and gas sector [59; 30]. Since
that sector often involves large amounts of investment, a careful process for considering
decommissioning alternatives is needed. In addition, since we are dealing with an economic
activity that affects many other sectors and disciplines, a careful mapping of the stakeholders
is required, and full consideration must be given to their needs and concerns. Furthermore,
the impacts of the decommissioning activities must be considered in relation to a variety of
factors which, in turn, may be relevant to a variety of scientific fields and disciplines. All in
all, one can see that these considerations add up to an extremely complex, multidisciplinary
decision-making process. It is this process that this paper seeks to address.

Within the oil and gas sector, decommissioning generally involves a multitude of stake-
holders in a variety of fields [140]. Government bodies, regulatory agencies, non-governmental
organizations, labour unions, operators and oil and gas companies are some examples of the
stakeholders involved. In addition, many aspects of the decommissioning activities must
be accounted for. Often, technical, environmental, social, economic, and safety issues are
considered, as suggested in the influential guideline in [110].

Due to both the problem complexity and the need to involve several stakeholders — often
with conflicting interests — a tool that is able to assist the decision-making process becomes
essential. Specially tailored for such problems, multi-criteria decision analysis (MCDA)
methods can be a natural fit for decommissioning problems [57], especially in the oil and
gas sector. There are also other modeling alternatives, such as multi-objective programmaing
(MOP) [42].

This paper aims to review the existing methods for comparing decommissioning alterna-
tives. Another objective is to identify the most common criteria and sub-criteria employed
in the literature regarding decommissioning projects in the oil and gas sector. Finally, we
also seek to identify research gaps and opportunities for future innovations.

The remainder of this paper is organised as follows. Section 2 introduces decommission-
ing processes. Section 3 features a brief overview of the main multi-criteria decision analysis
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(MCDA) methods. Section 4 covers their application to decommissioning problems, while
Section 5 provides an overview of the set of criteria applied within oil and gas decommis-
sioning processes. Next, Section 6 offers a summary of the literature and related research
opportunities. Finally, Section 7 presents concluding remarks.

2. Decommissioning processes

Before setting up a project, one generally evaluates its economic feasibility and expected
returns over time. These returns tend to increase after the onset of the project and eventually
start to decline, up to a point where the project is no longer economically attractive. At
this point, decommissioning activities often have to be carried out. In some industries,
decommissioning is already accounted for in initial technical and economic evaluations.

Perhaps because of the sensitive nature of the supply, the decommissioning of nuclear
power plants is the object of a vast body of literature [e.g., 149]. In the light of recent acci-
dents, the environmental aspects, as well as the risks associated with nuclear generation, are
receiving considerable attention in the literature [147; 149]. The decommissioning process
is particularly important because of the rather sensitive decisions regarding the final des-
tinations of various radioactive substances. Such substances require specific protocols and
specialised management processes, as well as the application of decontamination techniques.
In addition, the dismantling of structures should be planned in advance [e.g., 114]. For a
historical analysis of the main parameters that influence decommissioning decisions in the
nuclear sector, we refer to [149].

Because of the variety of factors to be considered, evaluating strategies for nuclear de-
commissioning may be a daunting task [114]. One can find in [114] some remarks on the
difficulties underlying such an evaluation, as well as a detailed statistical analysis of the re-
lation between a set of indicators and the selected decommissioning strategies. The authors
argue that the correlation between some major accidents and premature decommissioning
imposes the need for detailed planning to be carried out a priori. With another focus, Paim
and Yang [114] assess the challenges and achievements related to nuclear decommissioning
laws in Brazil and in Japan. In contrast, Yun-huan et al. [166] make an economic analysis
of nuclear dismantling in China.

As previously mentioned, the radioactive nature of some materials imposes some con-
cerns regarding decommissioning strategies. A study on the radiological impact of de-
commissioning strategies can be found in [153], whereas an analysis of a technique for the
decontamination of solid radioactive materials is presented in [119]. Covering a related topic,
Mostecak and Bedekovic [104] are interested in the applicability of dismantling strategies
that include recycling and reuse of radioactive metal waste. More specifically, in [123] one
finds a study of possible processes for the reuse of prefabricated elements in thermonuclear
fusion reactors. Finally, [151] features a study of the implementation of a nuclear material
measurement technology. The paper presents results related to contamination mapping,
waste release measurement and temperature sensing.

Decommissioning is currently a very relevant area of interest within the energy sector.
For two examples of literature dealing with wind farms and solar power, we refer to [161]
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and [74], respectively. Indeed, wind and solar power generation have become more common
and gained importance around the world [e.g., 141], which anticipates an increased demand
for decommissioning activities in these sectors in the near future. Perhaps because they are
pioneers in the deployment of a recent technology, offshore wind farm operators are often
concerned with improving the efficiency of the generation, thus relegating the analysis of end
of life processes to a secondary role [161]. Such an analysis, however, may be needed in the
near future, considering the typically short life cycle of wind turbines, which is around 20
years, as reported in [150]. In addition, the analysis becomes particularly important if one
considers the environmental impact of the operations and the large investments required. A
useful analysis can be found in [150], where an optimisation method for wind turbine design
is devised with a view to reducing decommissioning costs at the endoflife. A related analysis
is presented in [144] which highlights the necessity of identifying a suitable end-of-life for
solar panels. The authors also discuss the change of raw materials, with a view to improving
the efficiency of the production process.

When it comes to the mining sector, decommissioning is mainly concerned with the
chemical treatment to be applied in order to avoid the pollution of the soil with metallic
materials. The process of reversing the on-site and off-site impacts of the exploration phase
is referred to as mine closure or mine reclamation [7]. Such impacts are often categorized
as environmental, economic and social. These categories, in turn, encompass factors such
as health and safety, pollution, unemployment and loss of community services and facilities,
among others.

Within the transport sector, there is also a concern with finding an adequate final des-
tination for vehicles [141], submarines [72] and aircraft [62], among others. One particular
challenge is to find a suitable endoflife for hazardous construction materials which are no
longer used, but have been allowed under previous regulation and may currently pose both
environmental and health-related risks [158]. Therefore, a critical analysis of the generated
waste is needed at the time of decommissioning, with a view to finding an adequate recycling
or a sustainable development process. The decommissioning of roads also involves mecha-
nisms to mitigate future habitat degradation. The aim here is to increase the likelihood of
survival of endangered species [154]. At the operational level, it can be argued that proper
road management can mitigate the environmental impact of the road system by limiting
chronic erosion and reducing the risk associated with large-scale events [160].

Considering that the impact of decommissioning decisions and end of life management
goes farther than just the industrial environment, it is essential that industries properly
consider the perspectives of distinct stakeholders with regards to different courses of action
[25; 97; 15; 125; 29]. Indeed, discussions with respect to end-of-life activities have already
been undertaken by producers, consumers and authorities. Such discussions can be seen
as the result of increased environmental and social pressures [97], a social awareness of the
risks posed by current consumption habits [25] and the growing tendency among countries
to hold manufacturers responsible for the end of life management of their products.

This paper is focused on the evaluation of decommissioning activities within the oil and
gas sector, whose first registered decommissioning processes date back to the 1970s [30].
It can sometimes be argued that keeping the decommissioned structure in situ may be an
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appealing alternative, for example when it can be turned into an artificial reef [33; 141]. At
other times, full removal may be not a recommended course of action when environmental
aspects are considered, even if it is required by law [80]. In any case, decisions regarding the
final destination of decommissioned assets should be carefully considered, taking into account
the perspectives of stakeholders and the impact of the decisions on future generations.

Currently, the challenge of reaching a sound decision on the final destination of assets is
deepened by the increased demand for decommissioning in complex environments, involving
multi-part platforms and sub-sea systems installed in deep water [28; 116]. Hence, there is
a relatively urgent need for profound discussions on the subject [21]. However, information
availability remains an issue and specialized labour is sometimes scarce due to the recent
developments in the field. In Brazil, for example, where deepwater exploration is very
significant, one can argue that decommissioning activities are still a novelty and the lack
of expertise is evident [103]. Such a combination may lead to a long, unpredictable and
bureaucracy-driven decommissioning processes.

2.1. Decommissioning of oil and gas production facilities

The decommissioning process generally takes place when producing from an oil or gas
field becomes uneconomical. Decommissioning is often a time-consuming process in the
oil and gas sector. This is partly because it may involve the partial or total removal of
very complex structures, and partly because it is subject to many regulations from different
government bodies. For example, Hamzah [59] reports an estimated duration of three to
six years for the whole process in the United Kingdom, while also arguing that the process
can take much longer in countries with underdeveloped legal frameworks and less technical
experience.

As previously mentioned, decommissioning decisions involve multiple stakeholders. As
such, these decisions are politically sensitive and multidisciplinary in nature. The economic
and environmental impacts alone involve a large number of interest groups in a variety of
sectors, such as the fishing industry, the tourism industry and shipping companies. In
addition, the environmental aspect also attracts the attention of civil society organizations
directly related to the field. Given that these and other stakeholders possibly have conflicting
interests, one is left with the problem of finding a framework to guide the decision-maker to
a sound decision, and multicriteria methods are a natural fit [50; 61; 107].

According to the literature, the major environmental issues in decommissioning are the
potential effects in the marine ecosystem; the appropriate use and containment of hazardous
substances, including naturally occurring radioactive material (NORM) and waste manage-
ment, which includes finding a final destination for the debris accumulated over the life cycle
of a piece of equipment [5; 33; 146; 78]. For an analysis of the impacts of oil pipelines in the
fishing industry in the North Sea, in particular, we refer to [129].

Another complicating factor in decommissioning decisions is the fact that the service
providers are currently very fragmented. This results in the absence of dominant players,
and may be one of the reasons for the lack of consensus on the techniques that should be
employed. Such an environment undermines the efforts by offshore oil and gas companies
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and service providers to come up with accurate predictions of the costs and risks associated
with decommissioning activities [65].

World experiences

According to BSEE [24], the Gulf of Mexico had 2,165 rigs in 2016, and 174 of them
were decommissioned in that year. Of the decommissioned platforms, most operated in
offshore fields at depths lower than 400 ft. The North Sea, another mature exploration
area, included 23 fields being prepared for decommissioning in 2017 [111]. According to the
same reference, an estimated 800 million pounds will have been spent on decommissioning
activities in that area by 2021 . In 2016, there were 1,357 platforms in the area and 157
were decommissioned in that same year; additionally, the estimated number of units to be
decommissioned between 2017 and 2025 is 205 [111]. The average age of the rigs in the
North Sea is over 20 years. More specifically, the average age of UK platforms is 26 years,
whereas Norwegian platforms are 24 years old on average [5].

In Brazil, according to official estimates, 40% of the offshore production units have been
operating for more than 25 years. Meanwhile, units aged from 15 to 25 years account for
15% of the total. Up to 2017, only six offshore fixed platforms and five floating production
units were decommissioned [103].

To sum up, one can see that a large number of offshore oil and gas production units
around the world are at the end of their useful life, which means that these installations are
due to be decommissioned soon.

Technological challenges

One of the main challenges of decommissioning activities is created by the depth of
a significant portion of the petroleum reserves. Deep reserves demand larger pipelines to
connect wells to platforms, thus increasing the complexity of the logistics. In Brazil, for
example, according to official estimates, 34% of the currently offshore production units are
at a depth that exceeds 984feet [11]. In addition, one can observe an increase in the number
of platforms installed in deep or ultra-deep water, due to the projected exploitation of the
large pre-salt reserves. Hence, deep-water and ultra-deep-water decommissioning is soon to
become a technological, political and strategic challenge.

In addition to the depth of the water column, another important factor is the distance
to the coast, since it increases the costs associated with the transportation of structures,
equipment disposal and recycling on land. Distant production units impose enormous chal-
lenges on the operators with regards to the planning of the removal of these assets. Hence,
the time required for the successful completion of a decommissioning plan can be rather
long, which is certainly undesirable considering that the decommissioning process involves
significant costs, as well as environmental and regulatory liabilities.

Economic aspects

A singular aspect of the offshore exploration of oil and gas is that, unlike most other
productive activities, it demands significant investment in the early years of the project
This period is then followed by a period with large positive cash flows that start to
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decline at some point. After the decline, offshore E&P projects have a period of inevitable
negative cash flow. This last period encompasses all decommissioning activities and involves
no further generation of revenue [116].

According to THS Markit [65], annual global spending on offshore decommissioning is
expected to more than quadruple by 2040, and the total amount spent could reach US
$210 billion over the next 25 years. It is now a consensus that, in order to facilitate the
decommissioning phase, supporting activities should start at the onset of the development
of a field. They should then continue up to to the end of the production phase. In the
United Kingdom, the detailed and revised decommissioning programe must be submitted
by the operator approximately five years before the well production is scheduled to end [69].

Regulation

Regulations are being developed and best practices are being updated, especially for
systems that are not yet covered by legislation. Even in countries with less experience in
the sector, there is a movement to create specific legislation and best-practice guides. In
Brazil, for example, the National Petroleum Agency (ANP) is reviewing Resolution 27/2006,
regarding the deactivation of production facilities [103], in accordance with current inter-
national decommissioning practices. The agency requires the operator to submit the facility
deactivation programe for approval. The programe is comprised of a schedule and detailed
plans for cleaning operations, waste disposal and environmental recovery [10].

A report on national regulations deemed to be more mature, namely those of Norway,
the United Kingdom and the United States, can be found in [45]. The report also covered
two oil-producing countries in Southeast Asia, namely Malaysia and Thailand. In another
discussion of the decommissioning protocols in the energy sector, Heffron [60] suggested that
the rule of law should study regulations that are still poorly defined. Finally, Murray et al.
[106] discuss the importance of the marine industry in decommissioning, specifically its role
as a data access facilitator. These industries routinely collect critical environmental data
needed for sustainable management of marine ecosystems. For the North Sea, for example,
the oil and gas industry has been a dominant presence for over 50 years that has contributed
to a wealth of knowledge about the environment. As the industry begins to decommission
its offshore structures, this information will be critical for avoiding duplication of effort in
data collection and ensuring best environmental management. This paper also summarises
what the barriers and opportunities surrounding environmental data sharing are.

In summary, the decommissioning of oil and gas facilities is a relatively new challenge
worldwide. Multiple efforts are underway to establish sound legislation, standards and best-
practices guides. However, one can safely state that countries still enjoy broad discretion in
the definition of domestic regulation for deactivation activities [116].

3. Multicriteria decision analysis

Multicriteria decision analysis (MCDA) is a comparative support tool for the evaluation
of competing alternatives involving multiple criteria. It is often applied to aid in the decision-
making process when one sets distinct goals to be attained by the selected alternative, as
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briefly mentioned in Section 1. In short, MCDA provides the decision maker with some tools
to select an alternative while taking into account different perspectives [159].

One important thing to emphasise is that MCDA methods are not designed to search for
the best alternative with respect to all criteria. Instead, they identify compromises in real-
world situations when there are conflicting criteria and no such alternative exists. Therefore,
the analytic treatment applied is as important as the quality of the available information
[105]. The model construction and the method of choice are linked to the decision-making
process. Standard approaches include Analytic Hierarchy Process(AHP) [133], Preference
Ranking Organization Method (PROMETHEE) (23], Simple Additive Weighting (SAW) [49],
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) [63], Elimina-
tion and Choice Expressing the Reality (ELECTRE) [16] and Multi-Attribute Utility Theory
(MAUT) [40].

Broadly speaking, MCDA methods can be classified into three distinct approaches [e.g.,
132; 159; 115]. The first approach gives rise to the so-called single-criterion synthesis meth-
ods, which are based on the additive model. These methods allow compensation between
criteria, whereby a certain advantage in a given criterion can counterbalance a given disad-
vantage in another criterion. In addition, they establish aggregations for setting up a unique
score for each alternative. The second approach gives rise to the outranking methods, which
are classified as non-compensatory. Finally, interactive methods are general enough to be
associated with both discrete and continuous problems. For the most part, multi-objective
linear programming methods employ interactive procedures.

Table 1 summarises the main MCDA methods, showing their classification, as well as
their strengths and weaknesses. It also lists the available software that can be used to assist
in this type of analysis.

These methods are capable of assigning score values and other attributes to the available
alternatives. The complexity of the model can be seen as an inherent characteristic of an
efficient MCDA method. Ultimately, the techniques applied need to be effective enough to
satisfy the decision-maker with regard to the trade-offs and compromises considered.

4. Multicriteria methods for decommissioning studies

Since decommissioning is a complex problem, one can expect it to catch the attention
of MCDA practitioners. Indeed, many techniques have been applied to the problem, in the
interests of either methodological advances or real-world problem-solving. Nevertheless, in
spite of the variety of existing methods, there is a tendency to apply simpler methodologies
in real-world applications [e.g., 146; 31]. Often, a single-criterion synthesis approach is
preferred, whereby a weighted sum of the score of each alternative under each criterion
results in the global score of that alternative. Hence, one can say that the problem is
transformed into a mono-objective problem whose objective is to select the alternative with
the best global score.

Figure 1 details the decision-making process in decommissioning problems. Such a pro-
cess begins with the selection of a decommissioning project and ends with the evaluation of
the selected decommissioning strategy.
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Table 1: Strengths and weaknesses of multicriteria decision methods.

Method Type Strengths ‘Weaknesses Available Main application References
software areas
MakeltRational,
It contains too ExpertChoice,
It is scalable; many pairwise Decision Lens,
its hierarchical comparisons; it might HIPRE 3+, Corporate and
structure can have problems due to RightChoiceDSS, strategic policy, [49; 56]
AHP UBM casily adjust criteria and alternatives Criterium, public policy, (71; 133]
to fit many interdependence; it can EsyMind, strategic policy [138]
complex lead to inconsistencies Questfox, and planning.
problems. between criteria and ChoiceResults,
classification. 123AHP,
DECERNS
Environment,
It requires no . Decision Lab, business and finance,
assumption It does not provide a D-Sight chemistry, logistics [156; 6]
PROMETHEE O SSWHPLOn clear methodology for Lo TIISLLY, J0BISHICE '
about criteria weiehting coofficients Smart Picker Pro, and transportation, [22; 23]
being proportional. LG coe o Visual Promethee manufacture and assembly,
energy and agriculture.
It allows c@npensaﬂon Its final scores Water resource
between criteria; it has
simple calculations and do not always management, [87; 98]
SAW upm P - reflect the real - business and ’
it does not require L . ; [120; 124]
situation; the result financial
complex computer . ) .
) might not be logical. management.
programs.
Supply chain
management
It is simple; the and logistics,
pe; Lie It has hard- systems
number of steps weighting engineering
A AN aINa A Qg \ t=} t=} i . B
TOPSIS UBM remains the same cocfficient DECERNS business and [63; 165]
/O regardless of R . [124]
. attribution and marketing,
the number of . . .
. attribute judgement. environment,
attributes.
human resources
and water resource
management.
Tts process and results
It takes into account the b(\l hard to CXP]&?“‘?
uncertainty ranking can make it ELECTRE III Energy, econom [47; 55]
ELECTRE 0 and 1m rccisﬁon difficult to directly IV, Is, TRI 7 cnvironn/lc%lyt7 and tml:b ort 195; 131)
° precis identify the strengths » ' POt (132; 159]
in the analyses.
and weaknesses
of attributes.
It takes into account It needs many input data; E;(t)ll::gzl %ﬁcllz?(’(: 7 [2892478]]
MAUT UBM uncertainty; it can o ¥ mp ' - T o
. preferences must be exact. energy management [54; 79]
incorporate references. .
and agriculture. (83; 113]

|UBM - Utility Based Model; O - Outranking.

The steps of the flow chart in Figure 1 are detailed below:

e Development of a decommissioning process

Mapping of existing structures and proposal of feasible courses of action (decommis-
sioning alternatives) for each structure.

e Identification of stakeholders/literature review

Identification of people and organisations that may interfere with or be affected by
the decommissioning strategy. Their opinions are very important and may help the

9
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Figure 1: Basic concept of an MCDA process

302 decision maker select the most adequate decommissioning strategy. A literature review
303 is also relevant for understanding the problem, the available modelling techniques and
304 the potential problems and conflicts.

305 e Identification of decommissioning alternatives

306 Mapping of the technologies and procedures available in the market for each possible
307 decommissioning activity.

308 e Selection of criteria and sub-criteria

300 Mapping of the indices and variables to be evaluated in connection with each available
310 decommissioning activity. Stakeholders are expected to participate actively in the
311 process of defining the criteria based on which a decommissioning alternative will be
312 assessed.

313 e Development/adjustment of the model

314 Proposal for a decision aid tool aiming to integrate multiple criteria in the analysis.
315 The methodology can be further adapted to the specifics of a given case study.

316 e Comparison between alternatives

317 Evaluation of each alternative in terms of each selected criterion. The comparison of
318 the evaluations of the alternatives will give rise to an ordering of these alternatives.
319 MCDA techniques are often employed to generate such an ordering, considering that
320 each alternative has pros and cons which are represented by the evaluations with
21 respect to each criterion and sub-criterion.

32 e Evaluation of results

323 Sensitivity analysis to evaluate possible changes caused by small adjustments to the
324 model. In other words, one is concerned with evaluating the consistency and robustness
25 of the results obtained.
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Figure 2 and Table 2 outline of decision-making tools applied to decommissioning prob-
lems, both in the scientific literature and in business reports.

Oil & Gas
33%

Nuclear
26%

Transport
13%

Mining
20%

Figure 2: Literature review of decision making for decommissioning by sector

One can see from Figure 2 that the oil & gas (33%) and nuclear (26%) sectors account
for the majority of the mapped references. However, the mining (20%) and transport (13%)
sectors do not lag far behind.

As Table 2 shows AHP, PROMETHEE, SAW and TOPSIS, in that order, are the top
decision-making tools in the academic studies. There are also a small number of references
that employ distinct tools, such as decision-tree and goal programming. However, when it
comes to business reports, comparative assessment is by far the dominant technique. Such
a technique, which can be seen as a mono-objective formulation with a weighted objective
function, consists of particular methodologies derived from the influential guide in [110].

A detailed review of the principal decision aid techniques applied to the energy sector is
presented in the following subsections.

4.1. Applications of the AHP method in decommissioning problems

The AHP is among the tools most commonly applied to energy problems. It has been
applied, for example, to evaluate multi-attribute tasks and to assist in nuclear safety training
and procedures [96]. Sometimes it is applied in combination with other techniques [e.g., 1].
In the latter study, a facility location problem was solved by means of the combination of
a binary method, applied to determine potential areas, and a linear combination approach
employed to select candidate areas. In another study, a 3D modelling tool-assisted in the
application of the AHP framework to support decommissioning decisions for nuclear instal-
lations [88]. As part of that study, a group of experts was requested to fill up forms and
assign grades from 1 to 5 to social, technical and economic sub-criteria. Meanwhile, only
social and technical aspects were accounted for in the decommissioning problem considered
in [77], where AHP and fuzzy logic were combined to reach the results. Like [88], the paper
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Table 2: Decision-making methods for decommissioning review

Decision making methods
Reference Sector AIIP | PROMETHEE | sAw | ¢ omparative Others
Assessment

Cripps and Aabel [33] 0Oil & Gas SQ

Fowler et al. [50] Oil & Gas v

Henrion, Bernstein, and Swamy [61]2 Oil & Gas v

Na et al. [107] Oil & Gas v

Kanmkamnerd, Phanichtraiphop, and Pornsakulsakdi [81] | Oil & Gas NEBA

Smyth et al. [141] Wind power SWOT analysis

Kerkvliet and Polatidis [36] Wind power v

Shaw et al. [139] Mining v

Bascetin [14] Mining v
Articles | Soltanmohammadi et al. [143] Mining v ELECTRE

Soltanmohammadi, Osanloo, and Bazzazi [142] Mining v v

Narrci and Osanloo [108] Mining v v TOPSIS

Bangian et al. [13] Mining v

Dimitrijevic et al. [36] Mining v ELECTRE

Masoumi et al. [100] Mining v TOPSIS

Amirshenava and Osanloo [7] Mining v v TOPSIS

Kim et al. [88] Nuclear v

Kim and Song [89] Nuclear MAUT

Zachar, Daniska, and Necas [168] Nuclear OMEGA

Jeong et al. [77] Nuclear v

Poskas, Poskas, and Simonis [122] Nuclear v

Jarjies et al. [75] Nuclear Priorisation methodology

Ilg, Gabbert, and Weikard [66] Nuclear Cost-benefit analysis

Thompson and Sessions [155] Road MIP

Allison, Sidle, and Tait [4] Road Decision tree

Mergias ct al. [102] Transport v

Ahmed et al. [3] Transport v

Schmid et al. [136] Transport v

Zhang and Chen [169] Transport v

Xodus [164] Oil & Gas v

Repsol [127] Oil & Gas v

Shell [140] Oil & Gas v

Ineos [68] Oil & Gas v

Dunn, Wicks, and Wilson [39] Oil & Gas v

Ithaca [73] Oil & Gas v

BG Group [18] Oil & Gas v
Reports | Perenco & Tullow [117] Oil & Gas v

CNRI [31] Ol & Gas 7

Spirit Energy [146] Oil & Gas v

ISM [72] Transport Scenario analysis

UoP [158] Transport Scenario analysis

JAVYS [76] Nuclear v

Ghosh, Cassidy, and Kozich [53] Nuclear v

Wickham, Wilmot, and Phipps [163] Nuclear SQ

. Sudholt [147 Nuclear Goal programming

Thesis Martins [[99]] Nuclear v
AHP — Analytic Hierarchy Process; ELECTRE - ELimination and Choice Expressing the Real-
ity; MAUT — Multi-Attribute Utility Theory; MIP - Mixed Integer Programming; NEBA - Net
Environmental Benefit Analysis; OMEGA — Oracle Multicriterial General Assessment of Decom-
missioning; PROMETHEE - Preference Ranking Organization Method; SAW - Simple Additive
Weighting; SQ - Semi-quantitative and qualitative methodologies; SWOT — Strengths, Weak-
ness, Opportunities and Threats; TOPSIS - Technique for Order of Preference by Similarity to
Ideal Solution; !Particular methodologies derived from the guide Oil & Gas UK [110] and/or
companies; 2More details in [17].

;51 made use of expert judgement and employed fuzzy logic techniques to aggregate the obtained
> values. For more details on the combination of AHP and fuzzy logic, refer to [148].

353 The management of radioactive material was addressed in [122], where the AHP was
+ applied to create a ranking of the available alternatives using both quantitative and qualita-
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tive subcriteria. The same technique was employed in [107] to find suitable decommissioning
alternatives in the oil and gas sector. To alleviate the computational burden, the authors
employed a preliminary screener to reduce the dimension of the platform database. An ex-
pert evaluation that made use of the Saaty scale [134] was also applied . The same approach
was employed in the analysis of a nuclear plant decommissioning problem in [77]. Finally,
Martins [99] used AHP allied to the Geographic Information System (GIS) to select the best
spots for the construction of a repository of spent nuclear fuel. The necessary weights were
given by stakeholders.

Analyses of end of life alternatives for vehicles that made use of the AHP framework can
be found in [3; 169]. In particular, the Decision Making Trial and Evaluation Laboratory
(DEMATEL) method proposed in [3], makes use of peer-to-peer comparisons between pairs
of subcriteria, with a view to reducing their number. In this case, once the subcriteria to be
employed were identified, the paper utilised AHP and fuzzy AHP to evaluate dismantling
alternatives.

One of the most important considerations in after decommissioning is the recovery of
the degraded area. Ideally, it should return to its original conditions. However, sometimes
that can be very costly and difficult to achieve. The AHP methodology was also applied
in [14] to evaluate options for the end of life management of an open-pit mine.

The reports in [164; 127] also made use of an AHP-based peer-to-peer comparison
methodology for decommissioning subsea ducts. Their approach involved qualitative judge-
ments based on quantitative data. The main difference from the traditional AHP methodol-
ogy is precisely in the use of a qualitative scale, while in the Saaty scale [134], the qualitative
judgements are translated into quantitative scales.

4.2. Applications of the PROMETHEE method to decommissioning problems

Introduced by Brans and Vincke [23], the PROMETHEE method has been extensively
used in energy sector applications. For example, it was applied to compare energy sources
[157], evaluate routes of oil and gas pipelines [152] and select locations for solar power plants
[135]. The method has also been applied to solve a number of problems related to waste
management, such as assessing final disposal alternatives for electrical and electronic waste
[130], solid waste [32] and demolition waste [91]. In the field of decommissioning problems,
it was employed to compare end of life alternatives for offshore wind farms [86], vehicle
dismantling [136; 102] and mine reclamation [7; 142].

Kerkvliet and Polatidis [86] applied the PROMETHEE framework to aid decision-making
in the decommissioning of offshore wind farms. They considered 11 quantitative and qualita-
tive economic, environmental and social sub-criteria, which they evaluated using an ordinal
scale. To attribute the weights required by the framework, stakeholders sorted the criteria
in descending order of interest, while also admitting the possibility that pairs of criteria
might be incompatible. The final method considered linear preference functions but did not
produce an indifference threshold. The authors concluded with a sensitivity analysis with
respect to the adopted weights.

Vehicle dismantling problems were studied in [102; 136]. Gaussian and linear preference
functions were compared in [102], where the alternatives were qualitatively evaluated ac-
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cording to economic, social, environmental and technical criteria. In contrast to Kerkvliet
and Polatidis [86], Mergias et al. [102] considered the indifference threshold. = We also
observe a qualitative evaluation of criteria in [136]. The weights assigned by the stake-
holders were averaged and applied in the analysis. It is interesting to highlight the use of
the veto threshold for one sub-criterion, namely occupational risks, effectively setting up an
intolerance limit for damages to human health. Unlike in the other applications, a distinct
preference function was employed for each criterion.

4.8. Application of simple additive weighting to decommissioning problems

Simple additive weighting (SAW) is a simple and intuitive approach, and as such, it has
been used in many sectors. It has been applied in the energy sector to select renewable energy
sources [26], feeds for bio-gas plants [9] and alternative fuels for vehicles, for example. In the
decommissioning field, it has been applied in the nuclear, mining and oil and gas sectors.
One of the perceived drawbacks of the method is that it allows for trade-offs between criteria.
Hence, special attention should be paid to ensure that sensitive issues, such as environmental
and social preoccupations, are not neglected.

The JAVYS [76] report dealt with the decommissioning of a nuclear power plant. It
reinforced the importance of complying with legal regulations before a site can be released
for unrestricted use. The authors proposed the evaluation of the alternatives by means of a
single score comprised of a weighted sum of the evaluations of the criteria.

Seeking to evaluate mine closure alternatives, Shaw et al. [139] made use of an additive
aggregation model. An analogous application was studied in [109], which evaluated alter-
natives for the maintenance of a sterile stack. The sub-criteria were assigned weights from
one to five by experts and were later evaluated qualitatively.

In the field of oil and gas decommissioning, Fowler et al. [50] addressed the importance of
environmental, social and economic factors in the process of decommissioning, and enforced
the importance of allowing a flexible approach capable of encompassing all options and their
alternatives. To that end, the paper proposed a multicriteria decision approach, namely
multicriteria approval. This approach evaluates trade-offs and directly involves stakeholder
groups in the decision-making process.

4.4. Comparative assessment

The influential document in [110] can be seen as the benchmark for decommissioning
programs in the field of oil and gas. Many decommissioning reports in the United Kingdom
were based upon this guide [e.g., 18; 68; 73; 39; 140; 31]. For the most part, the methods
derived from this guide incorporate the specific characteristics of the case study in question.
The guide suggests three possible methods for evaluating alternatives. The first is qualitative
and based on color scale, while the second and third allow for the merging of quantitative
and qualitative analyses. The third method, however, allows the attribution of different
weights to the criteria, according to their perceived importance to stakeholders. Generally,
the framework underlying comparative assessment is analogous to the SAW methodology
[e.g., 68; 140]. However, since the publication of [110], comparative assessment has been
regarded as a separate framework.
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The British report from Windermere Ineos [68] addressed the issue of selecting an ade-
quate alternative for decommissioning the umbilical system of an offshore oil field by means
of comparative assessment. Twenty sub-criteria were evaluated through risk matrices that
contrasted the likelihood of occurrence (rare to very probable) with the level of impact
(negligible to catastrophic). These measures were obtained from grades assigned by the
stakeholders during a workshop. A similar approach was employed in Jacky’s report [73] on
pipelines and power cables. However, the latter study also included quantitative criteria,
such as emissions and cost. In both studies, the final score of each alternative was given as
the sum of the average of the sub-criteria scores for each of the criteria.

The BG Group [18] report also followed the guidelines in [110]. Their methodology
started with a qualitative evaluation based on a color scale, which was used to prune infea-
sible alternatives. The alternatives that remain were then evaluated according to qualita-
tive and quantitative sub-criteria. Weights were derived from the evaluation of a panel of
stakeholders of the relationships between pairs of criteria, and were then converted into a
numerical scale. Another pair of studies in the oil and gas sector were conducted through a
workshop that included consultants and stakeholders involved in the decommissioning pro-
cess [39; 31]. The comparative analysis was performed to provide a balanced analysis of
the main alternatives of removal of the substructure of the fields- in this case, total removal
and partial removal. Another industry application, this time in the nuclear sector for waste
management, was presented by Ghosh, Cassidy, and Kozich [53]. This report also applied a
colour-based methodology presented in Oil & Gas UK [110]. A decision tree was elaborated
based on this qualitative analysis, which included issues such as waste characteristics and
population size.

In [31], quantitative and qualitative evaluations were obtained and transformed into a
unitary scale. The qualitative evaluations were attributed to a panel of experts. Another
guideline, namely [35], was the foundation behind the analyses within the Bains decom-
missioning process [146]. Most of the evaluations were qualitative, but some quantitative
analyses were also necessary for some criteria, such as cost.

Finally, the influential Brent field report Shell [140] was based on the mixed quantitative
and qualitative evaluations introduced in [110]. Arguably the most extensive and elaborate
report within oil and gas decommissioning literature, it presents a discussion of the weights
and the criteria, and includes a narrative to contextualise the choices contained therein. The
report thoroughly detailed the whole process, from the identification of the decommissioning
alternatives to the evaluation of each sub-criteria for each alternative. To compare distinct
qualitative scores and quantitative indices, the authors proposed a normalized score. Once
the weights were assigned, the overall score of each alternative was calculated as the weighted
sum of the scores for each sub-criterion. The analysis terminated with a sensitivity analysis
of the arbitrary weights attributed to the criteria/sub-criteria.

4.5. Other methodologies applied to decommissioning problems

In addition to the frameworks discussed above, a number of other methodologies are also
noted in Table 2. These are briefly reviewed in the remainder of this section.
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TOPSIS: In the decommissioning sector, TOPSIS was applied for ranking post-mining
land-use possibilities [108; 100; 7]. While [108] focused on sustainability, [7] was concerned
with identifying and responding to risks. Finally, [100] focused on the treatment of the
uncertainties in the decision-maker’s preferences by means of a method combining TOPSIS
and fuzzy logic.

ELECTRE: ELECTRE is frequently used to aid in decisions in the energy sector. See
for example [94; 46], which aimed to facilitate the selection of energy sources and wind farm
locations, respectively. Despite that, when it comes to decommissioning problems, only
mine closure studies that made use of this framework were identified [143; 36]. The study
in [143] noted that, being an outranking method, ELECTRE allows for the decision-maker
to assume that certain pairs of criteria cannot be compared. This is an important quality,
given that the problem in question considers many criteria of a qualitative nature.

MAUT: Some decommissioning applications make use of the MAUT framework. Al-
ternatives for decommissioning nuclear reactors and offshore oil and gas platforms were
evaluated in [89] and [61], respectively. The utility functions in [89] were established based
on interviews with the decision-makers. A comparison between AHP and MAUT in the
context of the nuclear sector was presented in [88] The authors’ results suggest that a poten-
tial drawback of the latter method is the underlying difficulty of generating utility functions
for each criterion. On the other hand, the process of generating comparison matrices for each
pair of criteria and sub-criteria, which is required by AHP, may be quite cumbersome, espe-
cially when there is a a large number of criteria/sub-criteria. As reported in [61], a rather
large number of alternatives may be available to decommission a given piece of equipment in
the oil and gas sector. Considering all of them in a given study, however, creates increased
complexity. Hence, only alternatives that are effectively viable — economically, technically,
politically and safety-wise — should be considered. In their analysis, the authors chose to
remove some attributes from the analysis, either because of the lack of data or because of
the difficulty in evaluating criteria under which alternatives performed equivalently. The
required weights were obtained by the swing method, and a sensitivity analysis concluded
the study.

Multiobjective programming (MOP):  Multiobjective programming has been applied,
often in combination with other methodologies to aid decisions in the energy sector. The
literature relating to decommissioning problems, however, is rather scarce. A study on au-
tonomous hybrid energy systems and forest fuel treatments made use of the Pareto frontier
to unveil the dominance relations between alternatives [118]. Meanwhile, [82] featured a
combination of MOP and fuzzy logic to select suppliers, while also accounting for environ-
mental concerns. MOP is particularly frequently employed in the formulation of constraints
regarding quality control and capacity, among others. A mixed integer formulation for the
decommissioning of highways was proposed in [154] which sought a compromise between
cost minimisation and environmental concerns. Other MOP applications in the energy
sector were outlined in [126; 58]. The former employed MOP to evaluate the life cycle of
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Germany’s 2030s energy sector, while the latter considered the trade-offs between cost, prof-
itability and investment in the design of solar power plants. Finally, Sudholt [147] evaluated
the dismantling of a nuclear power plant in terms of of goal-programming and sought a trade-
off between cost, security risk and project duration. The study utilised the OMEGA model
as the main tool, supported by several software applications, such as Matlab, R and AIMMS.

Prioritisation methodology: The prioritisation methodology suggested by Jarjies et al.
[75] consists in ranking nuclear sites that need to be decommissioned according to a set of
prescribed criteria, which are evaluated individually by a decision-making committee. The
ranking is later adjusted to take consideration of social, political and economic issues. The
first step is the calculation of a quantitative surrogate risk assessment for cach facility, based
on a multiplicative chain of inventory (e.g radiological risk factor and activity concentra-
tion), containment and environmental dispersion (e.g. distance to population and distance
to surface water) factors. Each of those factors is divided into value ranges that are related
to a score. The second step is called sensitivity analysis, and aims to mitigate the subjectiv-
ity of score attribution by arbitrarily adjusting the scores within a Monte Carlo simulation
routine. In the last step, the decision committee arbitrarily adjusts the ranking, taking into
consideration both the deterministic results and the Monte Carlo simulation.

Cost-benefit analysis: Ilg, Gabbert, and Weikard [66] compared strategies for handling
low —and —medium level nuclear waste from a potash mine, which can cause long-term
water contamination. The study resulted in the identification of three possible so-called de-
commissioning options. Here, the selection of the decommissioning strategy was performed
by means of a comparison between expected investment costs and expected social damage
costs (economic, environmental and health damage costs). In addition, the paper also ap-
plied a cost minimisation approach that accounted for the uncertainty regarding the stability
of the rock formation and groundwater contamination.

Decision tree: A decision tree is a hierarchical method consisting of decisions and their
consequences. For more details about this method, see Rokach and Maimon [128]. It was
applied to evaluate the cost-effectiveness of alternatives for the deactivation of a forest road
in [4]. The problem was decomposed into several management actions (e.g. deactivating or
not the road) and their respective outcomes. This study also included the costs and benefits
of the consequences of each event in the decision process.

SWOT analysis: Smyth et al. [141] proposed an ad hoc evaluation of environmental and
economic concerns for each decommissioning alternative (partial and complete removal). To
support the decision, they employed the SWOT (Strengths, Weakness, Opportunities and
Threats) analysis management tool. For more details regarding the tool, refer to Kotler [90].
The analysis is based on previous knowledge, literature and the judgement of specialists.
Together with ecosystem services evaluation and in light of the principles for successful and
sustainable environmental management outlined in Elliott [43], the authors concluded that
the potential ecological, technical and legal issues could be overcome. Furthermore, they

17




566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

suggested that leaving the structure in place would be a better option.

Scenario analysis: This approach is similar to comparative assessment. The difference is
that different possibilities for the weights are evaluated and the final decision is discretionary,
based on the assessment of the solution for each combination of weights. The approach was
applied in [158] to aid the decision on ship dismantling activities. There, the criteria were
evaluated one at a time by means of a mono-objective optimization approach, each analysis
comprising a scenario. Finally, many combinations of weights also gave rise to different sce-
narios, whose evaluations were provided to the decision-maker to motivate a final decision.
A similar scenario analysis was also applied to support the decision on the dismantling of
nuclear-powered submarines [72]. The scenarios were generated by Monte Carlo simulation,
taking into account the uncertainties in the assignment of weights to objectives.

Semi-quantitative and qualitative methodologies: Cripps and Aabel [33] ranked alter-
natives for use and demolition of oil and gas platforms in the North Sea, making use of a
semi-quantitative assessment of environmental and socioeconomic impacts. This methodol-
ogy prescribes degrees of environmental impact. The rationale is to use the scores as a way
to classify the alternatives and the impacts associated with each option. Their approach
does not explicitly make use of weights, even though users can still rank the results ac-
cording to their own judgement. Similarly, the report in [163] assessed two options for the
decommissioning plan of a nuclear power plant, comparing them in terms of labour, public
health, safety, environmental impacts and economic aspects.

Net environmental benefit analysis - NEBA: NEBA is a tool frequently applied to evalu-
ate environmental aspects in decision-making processes. So far, it has had limited application
in decommissioning problems [81; 162; 38]. One can argue that the application of NEBA to
decommissioning studies is still in the early stages. Indeed, it still lacks endorsement by the
various regulatory regimes governing decommissioning throughout the world [44].

However, NEBA has emerged as perhaps one of the most useful comparative cost /benefit
assessment approaches for weighing the environmental risks, benefits and costs of different
plausible decommissioning options [162]. The tool aims to validate the evaluation of response
options, and compares the expected response effectiveness with the potential environmental
impacts of offshore activities. The ideal output of a NEBA process is the selection of response
technique(s) that minimise the overall impacts on the environment and promote the most
rapid recovery and restoration of the affected area.

It was applied in offshore jacket decommissioning in the oil and gas sector [81] as a
complement to a previous evaluation of decommissioning alternatives that accounted for
technical, safety and environmental aspects. Its evaluation was based on the opinion of
experts and considered services losses and gains of each alternative in terms of impacts,
recovery, benefit duration and post-recovery. The evaluation was founded on the expected
deviation from a baseline scenario. The techniques were also applied in [38] as a comparative
assessment tool to aid in decisions on drill cuttings piles.

Generally, NEBA is used for comparing and ranking net environmental benefits associ-
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ated with multiple alternatives to manage oil spills, based on risk analysis [41]. This tool can
be incorporated into the project planning phase, as it allows for the assessment of different
response strategies to a possible scenario, as illustrated in [64; 34; 2]. It can also be applied
to identify response strategies that minimise long-term effects after accidents [52; 20; 145].

Some studies focused on providing input data for NEBA studies [12; 51; 137; 112; 19].
An analysis of the applicability of Bayesian inference in the analysis of net environmental
benefit during the oil spill process was presented in [12]. In contrast, Frantzen et al. [51]
aimed to identify the long and short-term oil spill effects on Iceland scallops. Another
study simulated the influence of the wind in the dispersion of a chemical used for combating
oil spills in the German coastal area [137], while a similar work verified the influence of
chemically dispersed oil on an amphipod [112]. Finally, the work in [19] focused on Spill
Impact Mitigation Assessment (SIMA), which was used to refine NEBA.

4.6. Miscellaneous

Some studies combine frameworks in order to address the shortcomings of a given method
or blend distinct approaches.

The main techniques applied in studies related to the energy sector in general, and
decommissioning problems in particular, make use of arbitrary weights. Hence, the process
of generating these weights becomes an important sub-problem in the studies. An intuitive
solution to this problem is to have experts or stakeholders establish pairwise comparisons
among the criteria and then apply AHP in the resulting matrix to generate the weights.
Such a solution has been applied in a number of studies [e.g., 143; 142; 108; 100; 7]. After
the weights are assigned, an MCDA method is then selected for the subsequent analysis.
ELECTRE and PROMETHEE were the selected methods in [143] and [142], respectively.
Under these approaches, the output is the dominance relation among the alternatives, as
established under the method —specific parameters selected by the decision-makers. In
contrast, TOPSIS and SAW were both utilised in [108]. TOPSIS was also employed in
[7] and compared to PROMETHEE II as a decision aid in a post-mining land selection
problem. Finally, fuzzy and TOPSIS were applied together in [100] to solve an analogous
problem.

Other case studies are solved under different frameworks in order to validate the results
while also comparing the frameworks. As an example, we refer to [36], where a land recla-
mation problem was solved by means of the PROMETHEE and ELECTRE methods. In
this particular study, both methods yielded similar results.

The surveyed combinations of MCDA methods, both for generating weights and validat-
ing results, are summarised in Figure 3. Literature that applies two different methods in
order to compare final results is highlighted in blue.

5. Criteria considered in MCDA oil and gas models

The articles and reports on decommissioning problems within the oil and gas industry are
invaluable sources of information, not only about the models and techniques applied, but also
with respect to the adopted criteria. They also provide information on the characteristics
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Figure 3: Literature review of MCDA applied to decommissioning, showing works that incorporate different
methods

[139],[76]
[50]

SAW

of installations, equipment and structures decommissioned or undergoing decommission, as
well as on the decommissioning techniques available at the time of the project.

Tables 3 and 4 summarise the criteria considered in the reviewed studies. The former
presents technical, societal, and economic criteria, while the latter outlines their environmen-
tal and safety counterparts. The diversity of sub-criteria reinforces the need for multi-criteria
decision aids. Perhaps the one exception to that is [107], in which the decision-making pro-
cess was based mainly on technical aspects, such as structural integrity and platform type.

In order to make the decision process easier to understand, a hierarchical approach
including criteria and sub-criteria is generally applied [110]. It is also important to select
criteria that are transparent, easily applicable and that cover the major aspects of the
problem being studied [67], as perceived by the decision-makers and stakeholders.

Regardless of the criteria selected, it is essential that the results of evaluations be made
available to the decision-makers at the onset of the decision-making process [110; 101]. The
evaluations can be objective or subjective, quantitative or qualitative, and can be obtained
through data compilation, quantitative models, expert panels or stakeholder opinion. It
is also important to make sure that the criteria do not overlap or are strongly correlated
because, in that case, the decision can be biased. Some common drawbacks of the studies
are listed in the literature, such as lack of criteria description, which makes it difficult to
understand and interpret the issues contemplated in the criteria; or insertion of irrelevant
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Table 3: Oil and gas decommissioning criteria review - technical, societal and economic

Reports

Articles

BG Group[18§]
Spirit Energy [146]

Henrion et al. [61]
Fowler et al. [50]

<«| Marathon Oil [39]

< | Shell [140]
<| Ithaca [73]
<| Xodus [164]

Technical feasibility

< | Repsol [127]

5| Na et al. [107)

<|<|INEOS [68]

Risk of major project failure

\
\

<| | Perenco [117]

Ease of recovery from excursion

<|/4| |<|CNR International [31]

N

Technology demands/track records

AN

Weather sensitivity v

N

Technical

Platform type?

Weight management?

Logistics requirements?

Structural integrity®

SSENENEN

Recreational fishing acess

Effects on comercial fisheries vV |V VI vV v

Residual effect on navigation or other access

Employment v v v

(\
NENENEN

Impact on communities VIV Vv|Y VvV

Taxation concessions

Economic stimulus

Societal

Cultural impingements

Public access

Public sentiment

Diving opportunities

Clear seabed

Unobstructed ocean view

ANENENENENENENEN

Amenities® v

Residual liability including
monitoring and remediation if necessary

Liability for property damage

Liability for personal injury

NEN

Cost risk and uncertainty v

Replacement of construction materials

Landfill

Economic

Onshore processing

Personnel

Mobilisation of support vessels

ANENENENEN

Cost VIiIVIVIVIVIVIVIV|Y

v

v

Merged cells represents a single criteria that correspond to the others indicated.

1 In this article, the subcriteria are part of ’logistics requirement’ criteria.
2 [107] covers only technical criteria. Those criteria are subdivided into 20 sub-criteria.

3 The risk from any near-shore and onshore operations and end-points on any aspect of the amenity or

infrastructure of the environment.
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Table 4: Oil and gas decommissioning criteria review - Environmental and Safety

Reports

Articles

Repsol [127]

Ithaca [73]

INEOS [68]

Xodus [164]
BG Group[18]

Marathon Oil [39]

Spirit Energy [146]

Perenco [117]

Henrion et al. [61]

Fowler et al. [50]

Na et al. [107]

Environmental

Operational environmental impacts

</ Shell [140]

| CNR International [31]

Production of exploitable biomass

Q\

Legacy environmental impacts

AN

Effect on water column

Alteration of trophic webs

Alteration of hydrodynamic regimes

Facilitation of disease

ANENEN

Waste

Impacts of end-points?

Proportion of material recycled

Proportion of material landfilled

Contamination

Seabed disturbance and/or habitat alteration

ANEN

Hydrocarbon release from pipelines

Chemical discharge

ANENEN

ANENENENEN

Accidental spills

Noise underwater and onshore

ANENENENEN

Conservation species

Conservation sites

/1

Protection from trawling

Spread of invasive species

ANENENEN

Estimated discard to sea

Energy use

Gaseous emissions

NEN

ANEN

Safety

Safety risk to offshore project personnel

Safety risk to onshore project personnel

Safety risk to other users of the sea’

ANENENENEN

SSENENEN

ASENENENEN

Residual risk to third parties?

SSENENENEEN

SNENENENENEN

ANENENEN

High-consequence events

ANENENENENENEN

SNENENENENENEN
NENENENENEEN

Exposure to toxic construction materials

Exposure to drilling mud

SNENEN

Risk to divers during decommissioning operations

v

v

v

Merged cells represents a single criteria that correspond to the others indicated.

1 Separate sub-criteria for marine mammals and marine birds.
2 The impacts of offshore and near shore end-points on any aspect of the marine environment. Impacts of
onshore end-points on any ecological aspect of the terrestrial environment.
3 The risk that each decommissioning option poses to other sea users. These might include fishermen,
shipping crews and others .
4 The risk that each decommissioning option poses to third assets and vessels. These can include pipelines,
cables, support vessels etc.
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or very similar criteria. For further details, refer to [110; 101].

An approach to tackle the potential overlap of criteria was proposed in [92]. This study
introduced boundary conditions intended to exclude i) irrelevant criteria, which present
similar evaluations for all alternatives; i) criteria whose evaluation lacks actual or estimated
data; iii) criteria that present a very large degree of subjectivity (e.g., the wvalue of ocean
landscape preservation will largely vary depending on the stakeholder’s perspective) and iv)
criteria whose evaluation is too small to make any difference. The criteria that made the
selection process were inputted in the comparative tool described in [61].

Despite the consensus regarding a relatively large set of criteria and sub-criteria [e.g.,
110; 35; 101}, regional issues may add an invaluable element. Accordingly, the decision-
maker should carefully consider the additional criteria and sub-criteria that are particularly
relevant to a given region. The underlying characteristics of a given decommissioning process
may also give rise to distinct criteria and sub-criteria. For instance, decommissioning sub-
sea structures is rather different from decommissioning a topside structure. Hence, it is only
natural that a subset of the (sub)criteria will differ from one to the other. Nevertheless,
it should be mentioned that the influential recommendations in [110; 35] led to a certain
degree of standardisation of the sub-criteria set, particularly in British technical reports.
Table 4 illustrates, for example, the nearly universal adoption of the sub-criteria “safety risk
to offshore project personnel” and “effects on commercial fisheries”.

6. Research gaps and opportunities

The literature review demonstrates that many efforts have been made to improve the
decision-support methodologies in decommissioning processes. Especially in the oil and
gas sector, legislation and guidelines have been elaborated [e.g., 140; 101; 37], mainly in
developed countries and in consolidated exploration areas, such as the North Sea and the
Gulf of Mexico. However, there is still a need for a robust methodology for deep and ultra-
deep waters.

The basic criteria to be analysed in the methodology appear to be already consolidated,
as mentioned in Section 5. However, it is important that the decision-makers pay attention
to the peculiar characteristics of each project. The best option is to select and evaluate the
sub-criteria on a case-by-case basis, considering the singularities of each project.

Despite the advances made, several research gaps and open problems remain. To the
best of our knowledge, no investigation has been performed to detect overlap and correlation
among criteria in oil & gas industrial cases, despite the existing guidelines [110] and rec-
ommendations in the literature [167; 84; 92]. Therefore, we recommend the development of
standard guidelines and methodologies aimed at avoiding the definition of correlated crite-
ria. The dependencies and correlations should be checked a priori, in order to avoid multiple
evaluations of the same phenomenon.

In terms of subcriteria analysis, it is important to incorporate uncertainty into the judge-
ment of both qualitative and quantitative variables. It is clear from the literature review
that the main methods that have been applied for uncertainty treatment are fuzzy logic [e.g.,
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77], Monte Carlo simulation [e.g., 61] and linguistic terms [e.g., 146; 73]. The overall perfor-
mance evaluation can be very sensitive to the local evaluation of certain criteria. Therefore,
identifying how these variations can change the final decision is crucial for defining a robust
methodology.

Additionally, the weight assignment is usually arbitrary, often making use of the opinions
of specialists [e.g., 86; 158]. One can use AHP to convert pairwise comparisons into a set
of weights [e.g., 143; 142; 7]. Such a process involves considerable subjectivity, and could
benefit from a standard guideline on weight attribution.

To mitigate the drawbacks of arbitrary weight attribution, authors often resort to vary-
ing the adopted weights within a sensitivity analysis routine [e.g., 140; 61; 86; 136]. These
routines, however, can be very limited, due to a poor exploration of the possible weights
to be assigned. Indeed, the analysis generally consists of varying the weight of a single
(sub)criterion at a time, considering only a small number of possibilities. This can re-
sult in poor exploration of the high-dimensional space of weights, which, in turn, may
increase the risk of making a biased decision. Methods able to identify how changes in
the multi-dimensional space of weights affect the selection of the decommissioning activi-
ties would certainly contribute to the development of the field. Since we are dealing with
high-dimensional spaces, machine learning techniques could be explored.

Finally, decommissioning activity is projected to undergo significant growth between now
and 2040 [70]. Such growth should be accompanied by the development of flexible laws and
regulations, with a view to promoting a better environment for the operators. Currently,
the market is very fragmented [65]. The activity needs to be denser and involve a greater
amount of skilled labour so it can be carried out effectively.

7. Concluding remarks

The end of life of oil and gas exploration structures has become a worldwide concern, and
the focus of many discussions involving regulators, companies and government entities. The
objective is to generate sound guidelines regarding the selection and adoption of decommis-
sioning strategies. This article analyses decommissioning in multiple economic sectors, with
a focus on oil and gas. It summarises the methods that have been used for decommissioning
decision-making, as well as the criteria that have been selected to guide the decision process
within the oil and gas sector.

Due to the large number of actors interested in decommissioning in the most diverse
areas, it is important that multiple criteria be analysed in order to make a decision. It
is generally agreed upon that the selected criteria should cover economic, environmental,
technical, social and safety concerns. Regarding the subcriteria, it is important to highlight
that each problem has its peculiarities. As a result, it should be clear that subcriteria are
not necessarily the same for different localities. In order to properly account for local factors,
one should consult with the stakeholders and conduct a thorough literature review.

MCDA methods are confirmed in the literature as powerful tools to address complex
decision-making problems. Although other methods, such as cost-benefit and decision trees,
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can also be applied to decommissioning problems, MCDA is widely applied to support de-
commissioning decisions, as it has the advantage of aggregating views from different stake-
holders. In view of the diversity of decommissioning options and the potentially large number
of alternatives associated with each one, developing a model and adjusting its parameters
is essential to attaining better results and to promoting transparency. Such a model may
demand multiple techniques and tools in order to address the complexity of the problem.

The review emphasised that AHP is one of the most-used methods for decommissioning
decisions in many areas [93; 121]. It is a simple technique that generates global scores for
each alternative, and it is generally used as a secondary tool for weight attribution. There
is also frequent application of outranking methods, such as PROMETHEE, which are used
to translate the preference relations established by decision-makers.

In addition, technical reports tend to use their own methodology to select an appropriate
alternative for decommissioning offshore installations, called comparative assessment. The
comparative assessment guideline for decommissioning programs [110] has been used as a
basis for multiple approaches. It is generally similar to the SAW method, and is based
on the opinions of stakeholders. The method is intuitive, with simple calculations, and
can be performed without complex software. However, it is a simplified technique, which
allows compensation between the criteria, and may fail to integrate multiple preferences.
It is expected that the forthcoming work will improve decommissioning decision-making
techniques.
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