GARDY ORCA - Online Research @
CARDY® Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/128226/

This is the author’s version of a work that was submitted to / accepted for publication.
Citation for final published version:

Fernandes De Arruda, Edilson, Pereira, Basilio B., Thiers, Clarissa A. and Tura, Bernardo R. 2019. Optimal
testing policies for diagnosing patients with intermediary probability of disease. Artificial Intelligence in
Medicine 97, pp. 89-97. 10.1016/j.artmed.2018.11.005
Publishers page: http://dx.doi.org/10.1016/j.artmed.2018.11.005
Please note:

Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may

not be reflected in this version. For the definitive version of this publication, please refer to the published
source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made
available in ORCA are retained by the copyright holders.




Optimal testing policies for diagnosing patients with
intermediary probability of disease

Edilson F. Arruda®, Basilio B. Pereira®, Clarissa A. Thiers®, Bernardo R.
Tura®

% Universidade Federal do Rio de Janeiro, Instituto Alberto Luiz Coimbra de Pos
Graduacgao e Pesquisa de Engenharia, Programa de Engenharia de Producao, Caixa
Postal 68507, Rio de Janeiro RJ 21941-972, Brasil.

b Instituto Nacional de Cardiologia, Rua das Laranjeiras 374, Laranjeiras, Rio de
Janeiro, RJ, 22.240-006, Brasil.

Abstract

This paper proposes a stochastic shortest path approach to find an optimal
sequence of tests to confirm or discard a disease, for any prescribed optimality
criterion. The idea is to select the best sequence in which to apply a series of
available tests, with a view at reaching a diagnosis with minimum expenditure
of resources. The proposed approach derives an optimal policy whereby the
decision maker is provided with a test strategy for each a priori probability of
disease, aiming to reach posterior probabilities that warrant either immediate
treatment or a not-ill diagnosis.
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1. Introduction

Physicians are naturally Bayesian (Gill et al., 2005). Upon receiving a
patient, they often intuitively process epidemiological data, anamnesis in-
formation, as well as the results of physical examination to reach, either
implicitly or explicitly, an estimate of the patient’s a-priori probability of
having a given discase. If that probability is found insufficient to warrant
a diagnosis, the physician may find it necessary to prescribe one or more
available specialized tests. It is worth pointing out that a probability may
be deemed insufficient either because it is too high to discard a discase or
too low to confirm it (e.g., Pauker and Kassirer, 1980).

The utility of sequential testing to help clinicians reach a diagnosis has
been found in early investigations (e.g, Hall, 1967; Hall et al., 1985; Weintraub
et al., 1984), and the Bayesian approach underlying testing and screening
remains a current subject of discussion (Hamm and Beasley, 2014). Recently,
Lin et al. (2012) proposed an approach to aggregate different test results in
order to reach better diagnosis.

Many works in the literature are concerned with finding a good test-
ing strategy for the diagnosis of a given disease. For example, Ferreira et al.
(2014) and Bertoldi et al. (2016) devised arbitrary testing strategies for coro-
nary disease and compared these strategies to select one with an adequate
performance. Whereas these approaches can guide clinicians in their choice
of tests, they fail to examine all possible combinations of tests, given that
one has to test each strategy separately. Moreover, the problem is solved in
a static fashion and the paths for diagnosis are defined a-priori, regardless of

the posterior probability of disease after testing. Such an strategy is often
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called open loop, as opposed to a closed loop strategy, which would consider
the current state of the system before reaching a decision on the next test
to be taken (e.g., 777). It is the the latter strategy that we explore in this
paper.

This paper proposes a dynamic model for sequential testing, taking a
Bayesian approach to sequentially derive the posterior probability of disease,
given the a-priori probability and the result of the last test.

Such a model is related to sequential hypothesis testing problems (SHTP)
(e.g. 77?Cui and Mahajan, 2015), but there are fundamental differences.
Firstly, the proposed problem features a limited number of specialized tests
and each test can only be applied once; hence, the number of observations
is limited. SHTP, in contrast, seek an optimal sequence of sensing actions
before reaching a decision on which hypothesis to select; but the actions
merely define how the next sample will be acquired and one can take as
many samples as needed (7).

Another distinguishing feature of the proposed model with respect to
SHTP is that the sampling cost is variable, for it depends on the selected
specialized test. SHTP, on the other hand, often seek to find a balance be-
tween the number of observations and the accuracy of the selected hypothesis,
assuming a constant cost of sample acquisition. Indeed, the proposed for-
mulation is more general in that it does not impose any constraint on the
structure of the cost function.

The proposed model is similar to that of Cui and Mahajan (2015), who
solve a sequential hypothesis testing problem by means of a Markov model

with absorption. For the studied problem, the target set can be comprised of



55

60

65

70

75

the posterior probabilities of disease which warrant an immediate diagnosis,
as proposed by Pauker and Kassirer (1980). These probabilities are either
in a low-probability interval, for which the patient is very likely not-ill and
should only be observed; or in a high-probability interval, for which the pa-
tient is very likely sick and should commence immediate treatment. Hence,
one is now faced with a stochastic sequential decision making problem that
is terminated upon reaching the target set, or running out of tests. This
problem is known in the literature as stochastic shortest path (e.g., Bert-
sekas, 2012) and can be readily solved by means of a dynamic programming
algorithm.

To the best of our knowledge, this is the first study that incorporates
a Bayesian approach into a Markov model to determine an optimal testing
sequence for clinical diagnosis. This results in a stochastic shortest path
model which allows the decision maker to find the optimal testing strategy
by means of a dynamic programming algorithm, which implicitly compares
all possible testing policies. Moreover, whenever a strategy exists which
terminates in the target set, the resulting optimal policy is guaranteed to
reach a diagnosis; that may not be the case when the testing strategy is
arbitrarily prescribed, as often happens.

A nice by-product of the proposed approach is that it finds the optimal
policy with regards to the prescribed optimality criterion, and that policy can
be used as a benchmark for the incorporation of new technology in health-
care. For example, if a new test is developed, its cost should be compared to
that of the most economical testing policy, to enable decision makers to weigh

the potential benefits against the increase in the overall cost up to diagnosis.
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The proposed approach is illustrated by an evaluation of the available test-
ing strategies for diagnosing coronary artery disease for the Brazilian public
health system. We find the optimal testing strategy with respect to total
cost and compare it to the optimal strategy with regards to correct diagnosis
probability. The results show that, while the most economical strategy is
slightly inferior in terms of the probability of correct diagnosis, it produces
significant savings with respect to the competing policy.

This paper is organized as follows. Section 2 introduces the problem and
develops a mathematical model for it. The proposed formulation is presented
in Section 2.1 and the solution procedure is presented in Section 2.2. Section
3 features numerical examples, including an evaluation of testing strategies
for coronary artery disease, in the perspective of the Brazilian public health

system. Finally, Section 4 concludes the paper.

2. Mathematical model

Suppose that a physician, after carrying out a thorough physical exam
and a detailed anamnesis, reaches the conclusion that the patient’s a-priori
probability of having a given disease is p € (0, 1). Given this probability, two

situations arise:

(i) The physician can consider this probability small or large enough to reach
a diagnosis, deciding either that the patient is probably not ill and
should be observed, or that the patient is likely to be ill and treatment
should be initiated;

(ii) Upon considering this probability not sufficient to reach a diagnosis,
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the physician may recommend that the patient undergo one or more

specialized tests.

Whenever she selects the latter alternative, the physician uses the re-
sults of the tests to update the previously assigned probability of disease,
thus reaching a posterior probability, which may still be perfected by fur-
ther tests, if necessary. Typically, tests are performed in sequence, up to
the moment a diagnosis is reached (e.g., Pauker and Kassirer, 1980); how-
ever some strategies may prescribe a maximum number of exams whereby
the last exam results in a diagnosis, regardless of the posterior probability of
disease resulting from it (e.g., Ferreira et al., 2014; Bertoldi et al., 2016).

For modeling purposes, one may assume that there exist two probability
intervals that yield a diagnosis: an interval of small probabilities I; and an

interval of large probabilities 5, such that
I, = {O, bl), I, = (bg, 1], 0<b <by <. (1)

Whenever the posterior probability of disease falls within the interval I1, a not
ill diagnosis is reached; conversely, when the posterior probability of disease
belongs to interval Iy, the physician decides that the patient is probably ill
and should commence treatment. Finally, whenever none of the previous
alternatives occur, further testing is needed.

Assume that the physician can choose from a set of n available tests
T =A{Ty, ..., T,}. Suppose also that no single test T, € T, i =1, 2,..., n,
can be applied twice. That means that a second test T; € T provides no fur-
ther evidence on the presence or absence of disease with respect to the first.
Assume also that the tests, given the patient’s state, are statistically indepen-

dent. Following the notation in (Pereira and Pereira, 2005), let P(Dy) = p

6
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be the a-priori probability that the patient is ill, also known as prevalence.

Then, it follows that:

P(T"|Dy)p 2)
T Dy)p+ P(TF|D-)(1 = p)’

ﬁ+(,—ri7 p) = P(

where p, (T}, p) is the posterior probability that the patient is ill given a
positive test T; and an a-priori probability of disease p. In addition, D, rep-
resents presence of illness, D_ denotes a healthy patient, and T, represents
a positive test T;.

Finally, we can also write:

P(T|Dy)p (3)
T; |Dy)p+ P(T7|D-)(1 = p)’

ﬁ%ﬂmﬁ=m

where p_ (T}, p) is the posterior probability that the patient is ill given a
negative test T; and an a-priori probability of disease p, and 7 represents a
negative test T;. For a detailed treatment of diagnostic tests in medicine, we

refer the interested reader to (Pereira and Pereira, 2005).

2.1. Shortest path formulation

Let £ > 0, k € Z be the number of tests performed so far, and let process
X, k > 0, be the current probability of disease, p, given the results of the
k tests performed so far. The state space of process Xy, is Sx = [0, 1].

Recalling the intervals in (1), we reach a diagnosis whenever X € I; or
Xy € I. Hence, whenever X, € I = [by, by], one should select a new test to
be performed. Let Yy, & > 0 be a binary vector whose i — th component -
Yy (7) - represents test T; € T'; if Yy (i) = 1, the patient has already undertaken

test 7; and it is no longer an option; otherwise, if Yy (i) = 0, this test was
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not performed yet and remains as an option. The state space of process Y}
is defined as Sy = {0, 1}", where n is the number of available tests.

Let Z = (X, Yx) be the stochastic process representing the evolution of
the diagnosis, and let S = Sx x Sy denote its state space. For each state
z=(p,y) €8, let A(z) = {T; : y(i) = 0} denote the available tests at state
z, and let A = U,egA(2) denote the action space. If Zj, = z and test a € A(z)

is selected, then the process goes to state Z; 1 = w € S with probability

;

P(T1p) = pP(T7 D) + (1 = p) P(TTID-), it w = (p4(Ti p), §°),

Pzw =\ P(T, |p) = pP(T, D) + (L= p) P(T|D-), ifw = (p-(Ti, p), ¥°),

0, otherwise,
\

where
y(i), ifi#a,
1, ifi =a.

Eq. (4) yields that, if test Ty, is positive, the next a-priori probability is the
posterior probability given T." and P(D,) = p; otherwise, the next a-priori
probability of disease is the posterior probability given 7. and P(D,) = p.
With regards to process Yi, k > 0, Y11 equals Yy except for component a,
which is changed from 0 to 1 because test T, will have been applied at the
next step. Note that the ¢ — th component of 7, represents test ¢ and is one
whenever test i is already taken, and nil otherwise. Since Eq. (4) evaluates
the effect of performing test a, no other test will be performed and hence the
components of y that do not concern test a will not be changed. In addition,
the component that concerns test a is changed to one, since now test a will

be effectively taken at the next state.
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Let 7 : S — A denote a stationary control policy, which yields a single
test T, to be performed at each state z € S, and let Il be the set of feasible
stationary control policies. For the sake of consistency, we add action a =0

to each state z in the set
F={z=(x,y)eS:xelorxc L} (5)

This action corresponds to selecting no further tests and is the one to be
taken in F', the set of states that warrant an immediate diagnosis.

To guide our choice, let us define a positive cost function ¢: Sx A — R,.
For each state z = (x,y) € S, ¢(z, a) represents the cost of taking test a at
state z. For z ¢ F' this cost function may represent, for example, the cost of
test a, or any other performance function of interest. For a given state z € F',
on the other hand, we only need to define ¢(z, 0) - no additional test is needed
at this state - which represents an end cost, i.e. the cost of reaching diagnosis
at state z. Typically, the target states with disease probability closer to 0 or
1 will have lower end costs, for they yield more precise diagnoses.

To guarantee that a diagnosis will be reached whenever possible, we make

c(z,a) =M < oo,Va € A(z), if z = (z,y) ¢ Fandy =1, ..., 1], (6)

where M is a very large penalty, to ensure that a path without diagnosis is
always avoided if possible. In addition, we create an artificial cemetery state
A with phA =1, Va € A and ¢*(A,a) =0, Ya € A. We also make

1, ifz=(zr,y)¢ Fandy=1[1,...,1];

Pzn =
0, otherwise.
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This ensures that, whenever the system runs out of tests before reaching
a diagnosis, a penalty M is incurred and the system is transitioned into
cemetery state A. The equation above also implies that the system will
transition to the cemetery state whenever the last test is taken, but the
resulting posterior probability is not in the diagnosis intervals I; or I, defined
in Eq. (1).

We emphasize that (6) applies to states for which all possible tests have
already been performed. Hence, the formulation makes certain that strate-
gies which do not reach a diagnosis are always outperformed by those that
do. Consequently, whenever a strategy exists which reaches diagnosis for all
intermediate probabilities, we are guaranteed to find an optimal policy with
the same property.

For each state z € S : x ¢ F, let
V™(z)=E {Zc(Zk,w(Zk)ﬂXo = z} (7)

k=0
be the cost-to-go function of state z, where 7 = min{k > 0: X}, € (FUA)}
is the time the system either reaches a diagnosis or runs out of tests under

policy m. The objective of the decision maker is to find an optimal policy

7m* € II such that
V()2 V™ (2) <V™(2), Vz€S, andr €Il (8)

Problem (8) is a classical stochastic shortest path problem, and it can be solved

by means of a classical value iteration algorithm (e.g., Bertsekas, 2012).

Remark 1. Constraint (6) makes sure that, whenever there is a probability

that the bounds for ill and/or not-ill diagnosis cannot be reached from some

10



o anitial state zg, we will have V*(z9) > M. This indicates that either the
diagnosis thresholds should be updated or a new, more efficient test, should

be added to the miz.

2.2. Solution of the shortest path formulations

To solve problem (8), we employ the classical value iteration algorithm

s (e.g., Bertsekas, 2012), detailed below.

Algorithm 1 (Stochastic shortest path algorithm).

1. Vo <+ 0, make k =0, and choose a tolerance tol.

2. Forallze€ S:z ¢ F, make

Vit1(2) = min {c(z, a) + Zpngk(z)} ,
wesS
where p%,, is determined from Eq. (4) and F is defined in (5).
180 3. € |Viyr — Vi, k+— k+ 1.
4. If € > tol, return to step 2.
5. Forallze€ S:2z¢ F, V*(z) = Vi(z)
7*(2) « arg min {c(z, a)+ Zpngk(z)} :

a€A(z) es

Note that the output of algorithm 1 is a mapping from state to action,
which assigns a single action 7%(2) to be taken whenever the system visits a
15 given state z € S. The value function obtained in Step 5 corresponds to the

optimal expected cost up to diagnosis, starting from X, = z.

11
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Algorithm 1 is a classical dynamic programming routine (e.g., Bertsekas,
2012). To implement it, one needs first to enumerate all possible states
of the system. Each state is a vector of n + 1 components, containing a
probability of disease and n binary values, each representing a distinct test
in T; € T, which will be assigned 1 if T} is already taken and zero otherwise.
Then, for each state, one has to keep a record of all actions available, i.e.
tests not already taken, and assign the specific cost for each pair (state,
action), denoted by c¢(z,a). After that, one uses (5) to evaluate p?, for all
possible w € S and keeps record of these values. Then, after all parameters
are obtained and stored, one can easily implement the algorithm using any
standard programming language, such as R, Matlab, C++, etc. The output
of the algorithm gives, for each possible intermediate probability of disease
and subset of tests taken, the next test that should be taken among those

still left.

3. Numerical Examples

In this section, we apply the proposed formulation in two distinct set-
tings. In the first subsection, the approach is employed to compare tests for
Coronary artery disease (CAD). The second subsection is concerned with the
application of the approach when some of the available tests present random

likelihood ratios.

3.1. Testing for Coronary Artery Disease
In this section, we apply the proposed formulation for comparing Coro-
nary artery disease (CAD) tests (Heijenbrok-Kal et al., 2007). The avail-

able tests are exercise electrocardiography (Ex-ECGQG), stress echocardiogra-

12
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phy (ECHO), single-photon emission computed tomography (SPECT), com-
puted tomography coronary angiography (CTA), or stress cardiac magnetic
resonance imaging (C-MRI).

Table 1 depicts some characteristics of these tests (7). Test threshold and
treatment threshold are respectively the values of b; and by in Eq. (1), which
are specific of the exam. For the example, however, we will employ [; =
[0,0.2) and I, = (0.6, 1], thus making b; = 0.2 and by = 0.6, which are close
to the thresholds of the Ex-ECG exam, used as a benchmark due to its small
cost. The values in the last column of Table 1 are the 2016 reimbursement of
the Brazilian public health system (SUS) for Ex-ECG, ECHO and SPECT.
Unfortunately, CTA and stress C-MRI are not yet incorporated into the
collection of procedures financed by SUS. Hence, for the sake of analysis, we
estimated CTA and C-MRI costs based on similar currently reimbursed tests,
respectively chest CT and rest C-MRI. These costs were adjusted according
to the ratios between them and those of the studied exams, as found in the
Brazilian private sector. The properties of each exam described in Section 2

are presented in Table 2 (7).

Table 1: Characteristics of the Tests.

Test Test Threshold | Treatment Threshold | SUS Reimbursement (R$)
Ex-ECG 0.22 0.58 30.00
ECHO 0.10 0.72 165.00
CTA 0.06 0.81 328.54
C-MRI 0.16 0.80 361.25
SPECT 0.12 0.80 791.39

13



Table 2: Properties of the Tests. Source: (?)

Test Sensitivity | Specificity Positive Negative
Likelihood Ratio | Likelihood Ratio

Ex-ECG 0.67 0.71 2.31 0.46

ECHO 0.79 0.87 6.07 0.24

CTA 0.87 0.91 9.60 0.14

C-MRI 0.89 0. 76 3.70 0.14

SPECT 0.87 0.81 4.57 0.16

We solved problem (8) to find the optimal testing strategy for all integer
values of intermediate a priori probability of disease (in percentage points),
with respect to both the overall cost of diagnosis and the probability of
correct diagnosis. To find the optimal strategy with respect to the overall
cost, we define

c(z,a) = f(a), Vz€ S\ F, a € A,

in Eq. (7); where f(a) is the cost of exam a, given in the last column of
Table 1.

In contrast, to find the optimal policy with respect to the probability of
correct diagnosis, i.e. the policy that maximizes the probability of correct

diagnosis, we set:

4

0, if ¢ F,
c(z,a) = —(1=p), ifze€ Fandx < by,
—p, if z€ Fand x > bs.

\
In the expression above, the numbers in the right hand side represent the
opposite of the posterior probability of correct diagnosis. Note that, if p < by

the diagnosis is not ill, but the probability of disease is p, therefore, a correct

14
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diagnosis will be reached with probability (1—p). Correspondingly, if p > b,
the diagnosis will be that the patient is ill, but the probability of being
ill is actually p. The opposites are used because Problem (8) was defined
as a minimization problem and our objective is to maximize the objective
function.

Table 3 describes the optimal cost policy, comprised of the sequence of
tests to be taken for each a-priori probability of disease. Note that this policy
prescribes Ex-ECG as the first test for a-priori probabilities in the intervals
[20%, 31%)] and [40%,60%]. For the lower probabilities a not-ill diagnosis is
reached with a negative result, whereas a positive result is inconclusive and
demands ECHO as the second test. If the second test is taken, its result
either confirms of discards the disease. For the higher interval, the patient
is classified as sick if the Ex-ECG result is positive; otherwise, the result
is inconclusive and again ECHO is selected as the second test, which closes
the diagnosis as not-ill upon a negative result or sick if the test is positive.
For intermediate probabilities of disease, from 32% to 39% a single ECHO
test suffices to reach either a sick or not-ill diagnosis, depending on the test
result.

Table 4 depicts the optimal diagnosis policy, i.e. the policy which max-
imizes the probability of correct diagnosis. This policy is significantly more
complex than the optimal cost policy in Table 3. Note that a single CTA
test suffices to reach a diagnosis for a-priori probabilities in the intervals
[30%, 34%] and [40%, 50%)]. For a-priori probabilities from 20% to 29% the
first exam is either MRI or SPECT and reaches a diagnosis upon a negative

result. A positive result of the first test is inconclusive and requires a second

15



Table 3: Optimal Cost Policy

Pre Test First Next Test Total Correct Diagnosis
Probability (%) Test If Positive If Negative Cost Probability (%)
20 Ex-ECG ECHO - R$90.39 87.90
21 Ex-ECG ECHO - R$91.02 87.13
22 Ex-ECG ECHO - R$91.64 87.24
23 Ex-ECG ECHO - R$92.27 86.49
24 Ex-ECG ECHO - R$92.90 85.62
25 Ex-ECG ECHO - R$93.53 85.68
26 Ex-ECG ECHO - R$94.15 85.06
27 Ex-ECG ECHO - R$94.78 84.39
28 Ex-ECG ECHO - R$95.41 84.16
29 Ex-ECG ECHO - R$96.03 83.53
30 Ex-ECG ECHO - R$96.66 83.72
31 Ex-ECG ECHO - R$163.98 85.43
32 ECHO - - R$165.00 84.54
33 ECHO - - R$165.00 84.13
34 ECHO - - R$165.00 84.39
35 ECHO - - R$165.00 84.67
36 ECHO - - R$165.00 83.96
37 ECHO - - R$165.00 84.26
38 ECHO - - R$165.00 83.95
39 ECHO - - R$165.00 84.29
40 Ex-ECG - ECHO R$122.07 74.30
41 Ex-ECG - ECHO R$121.44 74.86
42 Ex-ECG - ECHO R$120.82 75.29
43 Ex-ECG - ECHO R$120.19 75.35
44 Ex-ECG - ECHO R$119.56 75.35
45 Ex-ECG - ECHO R$118.94 75.73
46 Ex-ECG - ECHO R$118.31 75.84
47 Ex-ECG - ECHO R$117.68 76.34
48 Ex-ECG - ECHO R$117.05 76.85
49 Ex-ECG - ECHO R$116.43 77.02
50 Ex-ECG - ECHO R$115.80 77.56
51 Ex-ECG - ECHO R$115.17 77.99
52 Ex-ECG - ECHO R$114.55 77.73
53 Ex-ECG - ECHO R$113.92 78.30
54 Ex-ECG - ECHO R$113.29 78.89
55 Ex-ECG - ECHO R$112.67 78.99
56 Ex-ECG - ECHO R$112.04 79.60
57 Ex-ECG - ECHO R$111.41 79.42
58 Ex-ECG - ECHO R$110.78 80.06
59 Ex-ECG - ECHO R$110.16 80.22
60 Ex-ECG - ECHO R$109.53 80.89

w0 test, CTA for a 20% a-priori probability and ECHO for the remaining val-

ues, whose result determines the diagnosis. For a-priori probabilities higher

16
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than 51% the first exam is ECHO, which reaches a diagnosis if the result is
positive; otherwise, a second test is selected, either MRI or SPECT, which
reaches a diagnosis.

The results in Tables 3 and 4 illustrate the potential of the proposed
method, which finds the best available policy with regards to the chosen per-
formance function. Table 4 also suggests that the optimal policy, which may
be readily obtained by the shortest path algorithm, may be quite complex.
This contrasts with typical approaches which compare a limited set of previ-
ously designed policies, finding the best of these pre-conceived policies (e.g.,
Bertoldi et al., 2016; Ferreira et al., 2014). Naturally, decision makers tend
to design relatively simple policies, often arbitrating a diagnosis regardless
of the posterior probability after the last test. Moreover, as these methods
do not evaluate all possible policies, the resulting strategy may be far from

optimal. Figure 1 depicts the posterior probability of correct diagnosis for

1 [l Optimal Cost Policy
[C"]Optimal Diagnosis Policy

M

A Pr|or| Probabllny of Disease (/)

Probability of Correct Diagnosis
o =] o o =] o
W - o o ~ ©

o
N

o

o

Figure 1: Correct Diagnosis Comparison

both the optimal policy with respect to overall cost and the optimal policy

17



Table 4: Optimal Diagnosis Policy

Pre Test First Next Test Total Correct Diagnosis
Probability (%) Test If Positive If Negative Cost Probability (%)
20 MRI CTA - R$482.81 94.21
21 SPECT ECHO - R$928.85 94.23
22 SPECT ECHO - R$930.56 94.35
23 MRI ECHO - R$610.34 93.84
24 MRI ECHO - R$610.24 93.95
25 MRI ECHO - R$612.38 93.78
26 MRI ECHO - R$612.00 93.29
27 MRI ECHO - R$613.95 93.29
28 MRI ECHO - R$497.51 92.84
29 MRI ECHO - R$498.68 92.80
30 CTA - - R$328.54 89.46
31 CTA - - R$328.54 89.69
32 CTA - - R$328.54 89.92
33 CTA - - R$328.54 90.18
34 CTA - - R$328.54 89.45
35 Ex-ECG - MRI R$483.29 92.71
36 Ex-ECG - SPECT R$736.39 92.89
37 Ex-ECG - SPECT R$733.46 92.82
38 Ex-ECG - SPECT R$731.47 92.97
39 Ex-ECG - MRI R$548.13 92.67
40 CTA - - R$328.54 88.99
41 CTA - - R$328.54 89.36
42 CTA - - R$328.54 89.33
43 CTA - - R$328.54 89.15
44 CTA - - R$328.54 89.13
45 CTA - - R$328.54 89.56
46 CTA - - R$328.54 89.00
47 CTA - - R$328.54 89.00
48 CTA - - R$328.54 89.46
49 CTA - - R$328.54 88.94
50 CTA - - R$328.54 89.44
51 ECHO - MRI R$422.53 90.38
52 ECHO - SPECT R$639.50 90.45
53 ECHO - SPECT R$633.56 90.41
54 ECHO - SPECT R$628.76 90.83
55 ECHO - MRI R$413.03 90.67
56 ECHO - MRI R$409.80 91.14
57 ECHO - MRI R$407.63 91.10
58 ECHO - MRI R$405.43 90.97
59 ECHO - MRI R$403.20 91.19
60 ECHO - MRI R$399.93 91.17

with respect to correct diagnosis. Unsurprisingly, the latter outperforms the

former for all intermediate a priori probabilities of disease, but the differences
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Figure 2: Cost to Diagnosis Comparison

are more pronounced in the rightmost half of the graphic. Observe that only
the value x of the pair z = (p,y) is depicted. That happens because we only
depict states with y = (0, 0, 0, 0, 0)7, for we are interested in the path to
diagnosis of a newly arrived patient, who has taken no test so far. The same
remains true for all analyses that follow.

Figure 2 features the overall costs of the optimal cost policy versus those
of the optimal diagnosis policy. Note that we have a pronounced difference
in costs, with larger differences for some selected values of prior probabilities.

A closer look at Figures 1 and 2 yields that the optimal diagnosis policy
delivers slightly increased probabilities of correct diagnosis with respect to
the most economical test strategy (policy). However, these increases demand
substantial extra expenses. For a better evaluation of the costs and benefits of

both strategies, Figure 3 presents the normalized cost per percentage point of
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Figure 3: Comparison of Overall Cost per Percentage Point of Correct Diagnosis

right diagnosis for both strategies. One can see that getting a right diagnosis
is much more economical by applying the optimal cost policy.

It is worth pointing out that there is no official guideline of the Brazilian
government regarding the sequence of tests to be performed. However, there
seems to be a consensual strategy among physicians in Brazil to take first the
Ex-ECG, whenever possible, followed by either CTA or SPECT and then, if
necessary, ECHO. We point out that such an strategy is similar to the strat-
egy in Table 3 for higher probabilities of disease. However, as it prioritizes
more costly tests, it is generally more expensive than the optimal cost policy
in Table 3. For that reason, and also to provide a policy with the minimum

number of tests, we chose to focus our analysis in the optimal diagnostic pol-
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icy. We refer the interested reader to Appendix A for a thorough evaluation
of the current practice and a comparison with the optimal strategies found

in this section.

Remark 2. It is worth pointing out that the decision maker must be aware
that the physicians’ estimate of the probability of the disease prior to tests
15 subjective, and thus may vary, possibly resulting in different test policies.
In that sense, an analysis of the robustness of the policy to small variations
i such an evaluation should be carried out on a case-by-case basis. With
regards to the characteristics of the tests, i.e. their respective probabilities
of false positive and false negative results, they do influence the outcome.
However, their overall influence can be readily assessed in an analysis of the

probability of correct diagnosis, such as that in Figure 1.

3.2. Experiments with a Uncertain Likelihood Ratios and Without a Pre-

scribed Diagnostic Region

This section explores possible generalizations of the approach. We present
some ad-hoc experiments designed to illustrate some potential uses of the
proposed approach. Firstly, we consider that no diagnostic region was pre-
scribed, hence the physician would continue testing until he is satisfied with
the posterior probability of disease, or until he runs out of tests to take. To

help guide the system into a desirable region, we set a penalty

S(p) = —plog(p) = (1 — p)log(1 — p)

for each intermediate probability of disease p. Such a penalty is an entropy

function (7), often employed in the as a measure of quality of information.
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We set
c(z,a) =af(a) + (1 — a)es(x), 9)

where the latter term is a penalty that increases with the uncertainty of the
diagnosis, while the former is the cost of taking test a. For the example,
three tests are available, whose parameters appear in Table 5. It is worth
pointing out that test 3 possesses random likelihood ratios. This means that
one does not know a-priori what the likelihood ratios of the test will be. In
particular, the eventual likelihood ratios of an application of test 3 are drawn
from the uniform probability distributions U(-) specified in Table 5, over the

intervals in parenthesis.

Table 5: Properties of the Tests.

Test | Sensitivity | Specificity Positive Negative
Likelihood Ratio | Likelihood Ratio

1 0.8 0.9 5 0.2
2 0.8 0.9 4 0.1
3 0.8 0.9 U4 —5) U(0.1—0.2)

The costs are f(1) = f(2) = 1.5 and f(3) = 0.8. Observe that Test 1
is more precise than test 2 for positive results, whereas the opposite is true
for negative results. Test 3 is less expensive than the former two, at the
cost of some variation in precision. The uniform distribution implies that a
positive test will result in an interval of equally likely posterior probabilities

of disease, the same happening to a negative result. The idea is to emulate a
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variation in the precision of the test results and verify the effect of it in the
optimal policy.

For a = 1, the first test of the optimal strategy, i.e. the selected test for
states z = (p,y) : y = [0, 0, 0], is selected according to the following rule:

1, if0.08<p<0.13,
First test (o« =1) = (10)

2, otherwise.
We see that, when the focus is solely on the costs of the tests, the least
expensive test is the first in the nearly all cases. The next rule defines the
second test of the optimal strategy when the first test was test 3:

1, ifp = 0.03,
Second test (after test3, a = 1) = (11)

2, otherwise.
Observe that the optimal policy assigns test 2 following test 3 whenever the
probability of disease after the first test is different from 0.03(3%).
Equation (12) below depicts the results for @ = 0, which favors more

precise tests:

( 4

p <0.07
0.14 < p <0.15

First test = 0.72< p <75 (12)

0,95 < p < 0.99

2, otherwise.
\

Observe that test 2 is chosen as the first test in most cases, with test 3

being selected for some low and high a-priori probabilities. Whenever test 2
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is selected as the first test, the optimal policy prescribes test 3 as the next.
For intermediate values of «, the optimal policy generally coincides with that
for a = 1, except for very small values in the vicinity of zero, for which the

optimal policy equals that of v = 0.

4. Concluding Remarks

This paper proposes a stochastic shortest path model to find the optimal
testing strategy for diagnosing a given disease. The model allows the decision
maker to prescribe a testing strategy for each a-priori probability of disease,
thus determining the optimal sequence of tests, which may vary depending
on the results of the tests. Provided that a policy exists which warrants a
diagnosis for all intermediate probabilities of disease, the optimal policy is
guaranteed to reach a target set and makes sure that the posterior probability
after the last test warrants an immediate diagnosis.

The proposed model is dynamic, as the decisions depend on the evolution
of the a-priori probabilities after each test, and allow the decision maker to
establish a benchmark policy in terms of any given performance criterion.
This benchmark can be employed in the evaluation of new technologies for

disease detection.
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Appendix A. Results for the Current Practice

This section presents the results on the probability of correct diagnosis,
as well as the total expected cost up to diagnosis for the current consensual
practice for diagnosing Coronary Artery Disease in Brasil. The policy, which
is described at the end of Section 3.1, is detailed in Table A.6. The results
are further detailed in Figures A.4 and A.5.

Comparing the results in Tables 3 and 4 with those in Table A.6 , one is
able to reach some conclusions regarding the strengths and weaknesses of each
approach. One can observe that the current practice is more costly than the
optimal cost policy and less costly than the optimal diagnosis policy, which
is expected. In contrast, the current practice is outperformed by the optimal
diagnosis policy with respect to the probability of correct diagnosis. However,
it is at least as good as the optimal cost policy in terms of probabilities of
correct diagnosis.

Figure A.4 summarizes the results with respect to the probability of cor-
rect diagnosis. Observe that the current practice can be seen as a compromise
between the two extreme policies. To evaluate the quality of the compromise,
Figure A.5 conveys the cost per percentage point of correct diagnosis. One
can notice that the optimal cost policy is at least as cost efficient as the
current practice, while also presenting significantly better performances for

most of the intermediate probabilities of disease.
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Table A.6: Current Consensual Practice for CAD Testing in Brazil

Pre Test First Next Test Total Correct Diagnosis
Probability (%) Test If Positive If Negative Cost Probability (%)
20 Ex-ECG CTA - R$150,25 0,90
21 Ex-ECG CTA - 151,49 0,89
22 Ex-ECG CTA - 152,74 0,89
23 Ex-ECG CTA - 153,99 0,88
24 Ex-ECG CTA - 155,24 0,88
25 Ex-ECG CTA - 156,49 0,88
26 Ex-ECG CTA - 157,74 0,87
27 Ex-ECG CTA - 158,98 0,87
28 Ex-ECG CTA - 160,23 0,87
29 Ex-ECG CTA - 161,48 0,86
30 Ex-ECG CTA - 162,73 0,86
31 Ex-ECG CTA - 163,98 0,85
32 Ex-ECG CTA - 165,23 0,85
33 Ex-ECG CTA - 166,48 0,85
34 Ex-ECG CTA - 167,72 0,84
35 Ex-ECG CTA CTA 358,54 0,91
36 Ex-ECG CTA CTA 358,54 0,91
37 Ex-ECG CTA CTA 358,54 0,91
38 Ex-ECG CTA CTA 358,54 0,91
39 Ex-ECG CTA CTA 358,54 0,92
40 Ex-ECG - CTA 213,33 0,77
41 Ex-ECG - CTA 212,08 0,77
42 Ex-ECG - CTA 210,83 0,78
43 Ex-ECG - CTA 209,58 0,78
44 Ex-ECG - CTA 208,33 0,78
45 Ex-ECG - CTA 207,08 0,79
46 Ex-ECG - CTA 205,83 0,79
47 Ex-ECG - CTA 204,59 0,79
48 Ex-ECG - CTA 203,34 0,80
49 Ex-ECG - CTA 202,09 0,80
50 Ex-ECG - CTA 200,84 0,80
51 Ex-ECG - CTA 199,59 0,81
52 Ex-ECG - CTA 198,34 0,81
53 Ex-ECG - CTA 197,10 0,81
54 Ex-ECG - CTA 195,85 0,82
55 Ex-ECG - CTA 194,60 0,82
56 Ex-ECG - CTA 193,35 0,82
57 Ex-ECG - CTA 192,10 0,83
58 Ex-ECG - CTA 190,85 0,83
59 Ex-ECG - CTA 189,60 0,83
60 Ex-ECG - CTA 188,36 0,83
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Figure A.4: Correct Diagnosis Comparison, Including Current Practice
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Figure A.5: Comparison of Overall Cost per Percentage Point of Correct Diagnosis, In-

cluding Current Practice
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