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Liposomal delivery of hydrophobic RAMBAs provides good bioavailability 

and significant enhancement of retinoic acid signalling in neuroblastoma 

tumour cells 

Abstract 

Retinoid treatment is employed during residual disease treatment in neuroblastoma, where the 

aim is to induce neural differentiation or death in tumour cells. However, although 

therapeutically effective, retinoids have only modest benefits and suffer from poor 

pharmacokinetic properties. In vivo, retinoids induce CYP26 enzyme production in the liver, 

enhancing their own rapid metabolic clearance, while retinoid resistance in tumour cells 

themselves is considered to be due in part to increased CYP26 production. Retinoic acid 

metabolism blocking agents (RAMBAs), which inhibit CYP26 enzymes, can improve retinoic 

acid pharmacokinetics in pre-clinical neuroblastoma models. Here we demonstrate that in 

cultured neuroblastoma tumour cells, RAMBAs enhance retinoic acid action as seen by 

morphological differentiation, AKT signalling and suppression of MYCN protein. Although 

active as retinoid enhancers, these RAMBAs are highly hydrophobic and their effective 

delivery in humans will be very challenging. Here we demonstrate that such RAMBAs can be 

loaded efficiently into cationic liposomal particles, where the RAMBAs achieve good 

bioavailability and activity in cultured tumour cells. This demonstrates the efficacy of 

RAMBAs in enhancing retinoid signaling in neuroblastoma cells and shows for the first time 

that liposomal delivery of hydrophobic RAMBAs is a viable approach, providing novel 

opportunities for their delivery and application in humans.  

Keywords: neuroblastoma, retinoic acid, liposome, RAMBA, CYP26, neural differentiation 

Abbreviations: RAMBA, retinoic acid metabolism blocking agent; ATRA, all-trans retinoic 

acid; 13-cis-RA, 13-cis retinoic acid 
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Introduction 

Neuroblastoma is a paediatric, peripheral nervous system cancer, accounting for 15% of 

childhood cancer deaths [1] and it presents a stubborn clinical challenge. In aggressive 

disease, multimodal treatments are followed by maintenance treatment for residual disease, 

which includes the vitamin A derivative, retinoic acid (RA) [2]. RA induces neuroblastoma 

tumour cell differentiation or death in a range of neuroblastoma-derived cells in culture [3,4]. 

Although it is uncertain exactly how RA influences tumour cell behaviour in patients, the 

treatment does provide modest improvements in event-free survival [2,5]. Nevertheless, the 

approach of dosing infants and young children with 13-cis retinoic acid (13-cis-RA) is 

challenging, with sub-optimal exposure [2,6] and dose-limiting toxicities [2,6]. RA action in 

vivo is further hampered by its rapid metabolism by cytochrome P450 enzymes in the liver 

and the tumour [7]. Chronic induction of P450 enzymes may also underlie a proportion of RA 

resistance cases [8,9]. Further improvements in RA efficacy in vivo are therefore needed and 

this could be relevant to a range of cancers where retinoids are employed therapeutically 

[10,11]. 

In neuroblastoma treatment, 13-cis-RA is viewed as a pro-drug, with its isomer, all-

trans RA (ATRA), being the biological effector inside cells [12,13] [14]. ATRA 

transcriptionally auto-induces P450 enzymes of the CYP26 subclass, triggering its own 

destruction. These enzymes have thus become druggable targets of interest, since they are 

largely responsible for RA clearance during treatment (Thatcher and Isoherranen, 2009). 

CYP26 inhibitors are known as RA metabolism blocking agents (RAMBAs) and they hold 

the potential of improving the clinical benefit of retinoid treatments. Numerous RAMBAs 

exist [15,16,17 ,18-20] and these can raise the effective intracellular concentrations or serum 

concentrations of RA [18,21]. One of these, liazorole, decreases the induced loss of ATRA in 

serum in acute promyelocytic leukemia patients [22], suggesting a potential approach for 
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suppressing retinoid resistance. Another RAMBA, R116010, is highly CYP26-specific with 

low IC50 and good anti-tumour activity in RA-treated breast cancer models [13,23,24]. 

R116010 also blocks CYP26 action both in SH-SY5Y neuroblastoma cells and in the liver, 

leading to increased serum levels of both ATRA and 13-cis-RA in mice [18]. It is possible 

therefore that RAMBAs could enhance retinoid action in neuroblastoma tumour cells 

themselves, inducing differentiation, cell death and N-Myc suppression, although this has not 

been demonstrated directly.  

To further improve the pharmacokinetics of retinoids in vivo, there is a need for more 

effective delivery systems for some of the most potent RAMBAs. In this study we have used 

RAMBAs based on imidazole (RAMBA C2) and on triazole (RAMBA C17), these having 

similar, high specificities and in vitro EC50 values to R116010 [19,20]. C2 and C17, however, 

are highly hydrophobic compounds and impractical for use in standard oral or intravenous 

delivery and are therefore not suitable as drugs in this form. Improved delivery and targeting 

of drugs can nevertheless be achieved using nanotechnology, as evidenced in pre-clinical data 

using several drugs in neuroblastoma [25-27] and other solid tumours [28]. Liposomes for 

example have successfully enhanced drug actions by improving stability, serum longevity and 

therapeutic efficacy [29]. They are suitable for hydrophobic compounds and may also 

override drug resistance mechanisms  [30,31]. Nanoparticles are also known to take 

advantage of tumour vascular leakiness to more specifically access tumour cells in solid 

tumours including neuroblastoma [25,28,32]. For RAMBAs this approach has not been 

documented to date and we hypothesised that liposomal delivery would improve 

bioavailability and making such compounds more accessible for use in humans. Our 

experimental model in cultured tumour cells would thus provide a proof of principle that 

could potentially augment future application of RAMBA-based therapy in vivo.  

The objectives in this study were therefore to first demonstrate the effectiveness of 

RAMBAs in enhancing a range of RA actions in neuroblastoma cells, and then to provide a 
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proof of principle that RAMBAs can be effectively delivered to tumour cells using liposomal 

systems. 

 

Materials and Methods 

Chemicals and antibodies 

 

Chemicals were from Sigma Aldrich unless otherwise stated. ATRA and 13-cis-RA (Sigma-

Aldrich) were dissolved in either ethanol or DMSO at 10mM or 50mM, respectively, and 

protected from light at -20
o
C. RAMBAs methyl 2,2-dimethyl-3-[4-(naphthalen-2-

ylamino)phenyl]-3-(1H- 1,2,4-triazol-1-yl)propanoate [compound 17; C17; molecular weight 

400.5] and methyl 3-(1H-imidazol-1-yl)- 2,2-dimethyl-3-(4-(naphthalen-2-

ylamino)phenyl)propanoate [compound 2; C2; molecular weight 399.5] were generated as 

described [19] and were dissolved in ethanol at 50mM (C17) and 1mM (C2; maximal 

solubility in this solvent). Antibodies were sourced as follows: anti-N-myc (B8.4.B; Insight 

Biotechnology); anti-phospo-Ser472-AKT (ab4060; Cell Signaling Technology);  anti-AKT 

(ab9272; Cell Signaling Technology);  anti-pan-TRK (sc7268 and F0908; Insight 

Biotechnology); anti-actin (A5316; Sigma Aldrich); anti-GAPDH (14C10; Cell Signaling 

Technology). HRP-linked secondary antibodies were purchased from DAKO Ltd. 

 

Cell Culture 

Human immortalised cell lines SK-N-SH and IMR32 were obtained from ATCC, 

KELLY/N206 were a gift from Frank Speleman, University of Ghent (STR genotyped), and 

LAN-5 were from the Children’s Oncology Group Repository, Texas, USA. All cells have 

been validated by short tandem repeat profiling (LGC Standards) and are mycoplasma tested. 

Cells were maintained at 37C, 5% CO2. SK-N-SH were cultured in Minimum Essential 

Medium Eagle, 1% penicillin/streptomycin, 10% fetal bovine serum and 2mM L-glutamine. 
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LAN-5 and N206 cells were cultured in RPMI 1640+GlutaMAX
TM

 (Invitrogen), 10% fetal 

bovine serum and 1% penicillin/streptomycin, with 25mM HEPES pH7 (Fisher Scientific).  

 

Immunoblotting 

Cells were lysed in 50mM Tris-Base pH7.6, 150mM NaCl, 1% Triton X-100, 1x Protease 

Inhibitors, 25mM sodium fluoride, 1mM sodium vanadate. Proteins were separated by 

polyacrylamide electrophoresis and transferred to PVDF (Immobilon-P). Immunodetection 

was performed using HRP-linked secondary antibodies, and Pierce ECL 2 Substrate (Thermo 

Scientific) and chemiluminescence film (Amersham Hyperfilm ECL, GE Healthcare).  

 

Liposomes 

The lipids 1,2-di-O-octadecenyl-3-trimethylammonium propane (DOTMA), 1,2-Dioleoyl-sn-

glycero-3-phosphocholine (DOPC) and cholesterol were purchased from Avanti Polar Lipids. 

For empty liposomes DOTMA, DOPC and cholesterol were dissolved in chloroform in a final 

volume of 500µL at a molar ratio of 37.5% : 37.5% : 25%. RAMBA C2 and C17 were 

dissolved in ethanol and added at a 10% molar ratio to lipids DOTMA (35%), DOPC (35%), 

and cholesterol (20%). Chloroform was rotary evaporated (BÜCHI Labortechnik AG) and 

lipids were rehydrated in nuclease-free water, rotating overnight, to form liposomes at either 

1mg/ml or 2mg/ml lipids. For the 2mg/ml mixture, this equates to the equivalent of 1.1mM 

DOTMA, 0.11mM DOPC and 0.64mM cholesterol, and in these liposomes the RAMBAs 

were packaged at a maximal potential concentration of 95.7μg per mL (0.24mM) in the 

liposome solution. After synthesis, liposomes were sonicated for 30-45 min, with the aim of 

achieving a mean size of between 80-160 nm. Size and charge were assessed with a Zetasizer 

Nano ZS (Malvern Panalytical, UK). Liposomes were stored at 4°C. To dialyze liposomes, 

slide-A-Lyzer
TM

 MINI devices (Thermo Fisher Scientific, Massachusetts, USA; molecular 
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weight 10 kDa; capacity 15mL) were used with 500 µL liposomes and this was dialyzed 

against 13.5ml distilled water for 24 h at 4
o
C, with one water change.  

  

 

Cell viability assays 

Cells were plated at 3000 cells per well in 96-well plates. After 24 hr, triplicate wells of cells 

were treated with chemicals and incubated for five or six days, then assayed for cell number 

using resazurin (R&D systems) as per the manufacturer’s guidelines. Reaction product was 

measured using fluorescence at 540 nm excitation and 590 nm emission wavelengths, in a 

FLUOstar Optima (BMG Labtech, Aylesbury, UK). 

 

Neurite outgrowth assays 

Cells were treated and either then photographed live or after 4% paraformaldehyde fixation. 

Five to ten fields of view were captured under phase contrast per tissue culture well. Neurites 

greater than one cell body length were measured using the NeuroJ plugin for ImageJ and cell 

bodies were counted using the “point-count” function. Light microscopy was performed at 

the Light Microscopy Core Facility, UCL GOS Institute of Child Health. Where statistical 

analysis was used, a univariate ANOVA analysis was performed using SPSS with 95% 

confidence intervals. Post-hoc tests included a Bonferroni adjustment and a Dunnett test 

where stated. 

  

Real Time PCR 

LAN5 and SK-N-SH cells were plated at 3 x 10
5
 per well in 6-well plates. The next day, cells 

were treated with 0.1μM or 0.5μM ATRA. After 72 h, RNA was extracted and DNAse treated 

using the TURBO DNA-free kit (Ambion) according to the manufacturer’s recommendations. 

cDNA was synthesized from 1µg of total RNA using Transcriptor First Strand cDNA 
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synthesis (Roche) according to the manufacturer’s recommendations. Real-time PCR was 

performed using iTaq Universal SYBR Green Supermix (Bio-Rad) in triplicate for the 

CYP26A1 primers (forward: GGC CTT AGG AGC TGT GTA GG; reverse: TTG TCC ACA 

GGA TAC ACG GT) and a GAPDH control was used for normalization (forward: 

ATGACATCAAGAAGGTGGC; reverse: CATACCAGGAAATGAGCTTG). The 

thermocycling program was one cycle at 95°C for 5 min, 95°C for 15 seconds, 60°C for 1 

min, followed by 40 cycles of 95°C for 15 seconds and 60°C for 1 min (CFX96 Real- Time 

System, C1000 Touch Thermal Cycler, Bio-Rad). Melt curve analyses were performed from 

65°C to 95°C, over 5 min. Fold changes in CYP26A1 mRNA were calculated according to 

the equation: 2 
(-△△Ct)

. 

 

RNAseq analysis 

RNA was extracted and 250ng was processed using Illumina’s TruSeq RNA sample prep kit 

version 2 (p/n RS-122-2001) according to the manufacturer’s instructions. mRNA was 

isolated using Oligo dT beads and the purified mRNA was chemically fragmented. cDNA 

was generated using Reverse Transcriptase and random primers. Indexing Adaptors were 

ligated and the cDNA libraries were amplified by PCR. Samples were sequenced on a 

NextSeq 500 (Illumina, San Diego, US) using a 43bp paired end run. Data was converted to 

fastq using Illumina bcl2fastq v2 and aligned to reference using TopHat2 

(http://www.genomebiology.com/2013/14/4/R36/abstract). Duplicate reads were removed 

(Picard v1.100) and transcript abundance estimated with Python package HTSeq 

(http://dx.doi.org/10.1093/bioinformatics/btu638). Differential expression was determined 

using DESeq2 (http://doi.org/10.1186/s13059-014-0550-8). 
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UV detection of RAMBA 

For standard curve measurement, RAMBAs were dissolved in ethanol and scanned for 

absorbance from 200-450nm in a UVIKON UV spectrophotometer with Lab Power Junior 

software. To quantify C2 RAMBA in liposomes, the pre- and post-dialysis mixtures were 

diluted 1:9 with ethanol and scanned at OD315. Background absorbance of the lipids was 

measured at OD315, using empty liposomes similarly dissolved in ethanol. 

 

Results 

 

RAMBA induction of CPY26A1 transcription 

It is unclear what pattern of expression there is of CYP26 paralogues in neuroblastoma 

tumour cells. We thus analyzed expression of CYP26A-C using RNAseq datasets from 

tumour cell lines LAN5, SK-N-SH, KELLY and IMR32 (Figure 1A). LAN5 and SK-N-SH 

cell samples were either untreated or treated with ATRA (5µM) for 24 h. KELLY and IMR32 

samples were from untreated cells only. CYP26C mRNA is not detected except for very low 

levels in IMR32. CYP26B1 is expressed in all lines in basal conditions and is the most 

abundant paralogue in KELLY and IMR32. CYP26A1 is expressed basally in each cell type 

except KELLY. CYP26B1 and CYP26A1 are strongly induced up to 10000-fold by ATRA in 

LAN5 and SK-N-SH. CYP26C1 is induced by ATRA, but only up to ten-fold, in LAN5 and 

SK-N-SH cells. In this study therefore, the RAMBA effects are likely to be predominantly 

acting through CYP26A1 and CYP26B1.  

In our experiments we used two RAMBA compounds, one based on an imidazole 

structure (C2) and one on triazole (C17) [19] (Figure 1B). C2 and C17 have IC50 values of 

3nM and 0.35nM, respectively, against CYP26 enzymes in vitro and can enhance CYP26A1 

mRNA induction by ATRA in SH-SY5Y [19]. To assess RAMBA activity SK-N-SH cells 

(Figure 1C), cells were treated with ATRA at either 0.5µm or 0.1µM, with or without the 
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addition of C2 at 2µM or C17 at 1µM. When using ethanol-solubilised RAMBAs in SKNSH 

cells the control cells contained the equivalent amount of ethanol solvent (less than 0.2% v/v). 

ATRA stimulated CYP26A1 transcription up to 1000-fold, whereas the addition of either C2 

or C17 induced a 20-30-fold further stimulation of transcription. These data are therefore 

consistent with previous findings in SH-SY5Y [19], with the RAMBAs strongly enhancing 

RA’s ability to stimulate CYP26A1 transcription.  

Stimulation of Morphological Differentiation by RAMBAs 

RAMBAs can enhance retinoid-induced differentiation in breast cancer cells [24,33], 

but the equivalent biological or biochemical responses downstream of RA in neuroblastoma 

cells have yet to be demonstrated. A key characteristic of retinoid action in neuroblastoma 

cells is the induction of neuronal differentiation, characterised by highly elongated neurites 

with growth cones and neuron-like cell bodies [3]. To assess differentiation, C2 and C17 were 

used alone or in combination with ATRA to treat SK-N-SH cells. Morphological 

differentiation was gauged by neurite outgrowth and the neuronal cell morphology. In 

contrast to RAMBA on breast cancer cells [24,33], RAMBAs C2 and C17 alone had no 

obvious morphological effect in SK-N-SH (Figure 2A). The combination treatments of 

RAMBAs plus ATRA, however, consistently led to a more extreme morphological 

differentiation compared with ATRA alone, generating more rounded and phase-bright 

neurons with extensive processes compared with the more phase dark, polygonal phenotype 

of ATRA-treated cells (Figure 2A). These observations indicate that C2 and C17 can enhance 

retinoid-stimulation of morphological differentiation. Neurite length quantitation showed that 

RAMBAs themselves did not affect neurite outgrowth, whereas ATRA treatment did enhance 

outgrowth (Figure 2B). Combination treatments showed that RAMBAs enhanced this ATRA-

induced neurite elongation. Increasing the concentration of C17 from 1µM to 10µM did not 
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further increase the neurite effect. C2 and C17 RAMBAs can thus enhance the cellular 

differentiation driven by ATRA in SK-N-SH cells. 

Biochemical enhancement of retinoid action by RAMBAs 

Retinoid stimulation of neuroblastoma cells induces a wide range of biochemical 

changes, including enhancement of AKT phosphorylation, which is required for neurite 

elongation in ATRA-treated SK-N-SH cells [34,35]. If RAMBAs can enhance the 

biochemical actions of ATRA, then we should observe a combination effect on AKT 

phosphorylation. SK-N-SH cells were treated with 0.1µM ATRA for 72 h in the absence or 

presence of either 0.5µM or 2µM C2. Figure 2C and 2D show that C2 can indeed enhance the 

level of pAKT generated by ATRA. This effect was more pronounced with the lower C2 

concentration.  

Delivery of RAMBAs using liposomes 

So far, we have provided the first demonstration that RAMBAs C2 and C17 can enhance both 

the biochemical and morphological measures of ATRA signalling in SK-N-SH neuroblastoma 

cells. C2 and C17 can be delivered to cells after ethanol solubilisation, but their high 

hydrophobicity would significantly limit their use in humans. A key objective of this work 

was therefore to assess whether similar RAMBA bioavailability can be facilitated by 

incorporating these molecules into liposomal nanocomplexes. This would be a proof of 

principle that nanotechnology could facilitate cellular delivery of such RAMBAs, potentially 

increasing their therapeutic applicability.  

To test liposomal delivery, the C2 and C17 RAMBAs were incorporated into 

liposomes composed of DOTMA, DOPC and cholesterol (molar ratios 37.5%: 37.5%: 25%) 

suspended in water (see Methods). These kinds of liposome formulations are very effective 

for cellular delivery [36][37]. After sonication, positively charged liposomes with an average 
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size of 91nm (C17), 123 nm (C2) and 133 nm (empty) were obtained, with average PDI 

values from 0.42-0.47. (Table 1).  We tested only cationic liposomal formulations in order to 

minimise charge-dependent, non-specific uptake into cultured cells [38]. These liposome 

solutions would contain, maximally, 240µM of the RAMBAs and the data below are 

presented on the basis of this maximal, theoretical incorporation of RAMBAs into the 

liposomes. The tolerance of neuroblastoma cells for our liposomes allowed us to deliver up to 

2µM of RAMBA without excessive liposomal cytotoxicity. At this dose of RAMBA, a final 

concentration of 8.3µg/ml of total lipid would be added to the media. Liposomes were left on 

cells for the whole treatment period, unless otherwise stated.  

The C17 RAMBA liposomes were initially used to treat SK-N-SH cells, to determine 

cellular tolerance and enhancement of ATRA-induced differentiation. The data show that 

liposomal C17 enhances ATRA-induced neurite elongation as effectively as ethanol-dissolved 

C17 (Figure 3A; compare to Figure 2). SK-N-SH cells were also tested with RAMBA C2 

packaged in liposomes (Figure 3B). As additional controls, empty liposomes were used, in 

media with or without added ATRA. Once again, liposome packaging of C2 permits the 

RAMBA to enhance the ATRA-induced neurite elongation by approximately 60% (p-value 

0.06). Preliminary data from LAN5 cells, another line that differentiates in response to 

ATRA, show a similar trend (not shown). Liposome-treated cells again showed that RAMBA 

co-treatment with ATRA enhanced the morphological shift towards highly rounded cell 

bodies (Figure 4; compare to Figure 2). These data collectively indicate that RAMBAs C2 

and C17 can be successfully delivered to neuroblastoma cells in liposomes, where they 

enhance ATRA-dependent differentiation to a similar level as seen with ethanol-delivered 

RAMBAs (compare Figure 2 with Figure 4). 

Empty liposome treatment generated no morphological effects (Figure 4). However, 

when combined with ATRA, we did sometimes observe an increased refractility of cells, but 

not as extreme as with the RAMBA liposome (Figure 4). Although not currently understood, 
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empty liposomes may have some limited propensity to enhance ATRA, possibly by binding 

to retinoic acid through their positive charge or by attracting retinoic acid through its 

hydrophobic quality. 

 

Liposomal RAMBAs enhance ATRA-induced AKT signalling 

As shown above in Figure 2, RAMBAs can enhance pAKT levels in the presence of 

ATRA. To assess whether liposomal RAMBAs retain this activity, SK-N-SH cells were 

treated with C17 liposomes and ATRA (Figure 5A). The combination treatments again 

enhance pAKT levels above those seen with single treatments. Further experiments were 

carried out with C2 liposomes, empty liposomes and lower levels of ATRA (0.05µM) (Figure 

5B). Again, the C2 liposomes specifically increased pAKT stimulation in combination with 

ATRA. This effect may be close to maximal with 0.5µM C2, since 2µM C2 showed a lesser 

stimulation of pAKT (although not statistically different from the 0.5µM mean), possibly due 

to mild detrimental effects of the higher lipid treatment. pAKT activation was comparable 

between ethanol-delivered C2 and liposomal C2 (compare Figure 5 and Figure 2C). 

Preliminary data using C17 also shows pAKT stimulation (Supplementary Figure 2). 

 

N-myc suppression by RAMBAs and retinoids 

C2 and C17 are capable of enhancing ATRA actions as judged by pAKT and 

differentiation. A further outcome of retinoid treatment in neuroblastoma cells is the 

suppression of N-myc protein levels [39,40]. We therefore tested whether liposomal 

RAMBAs were capable of enhancing N-myc suppression by ATRA. The MYCN-amplified 

cell line LAN5 was treated with liposomes and low levels of ATRA for 24 h. Figure 5C 

shows the modest N-Myc response with ATRA at this 0.05µM dose, but an enhanced 

suppression of N-Myc in cells treated with the ATRA and C2 liposome combination.  
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The collective data therefore indicate that RAMBAs encapsulated in liposomes have 

good bioavailability in neuroblastoma cells and are effective at augmenting ATRA signalling 

as evidenced by enhanced neurite elongation, AKT phosphorylation and N-myc suppression. 

 

Sustained morphological differentiation after RAMBA liposome delivery. 

Previous data in the field indicates that liposomes bind to cells maximally within 4-6 h 

[41,42]. We wished to test if liposomal RAMBAs retained extended activity after a short 

cellular treatment. We treated LAN5 cells with liposomes for 24h and this cell media was 

then removed and replaced with fresh media containing only ATRA. Figure 6 shows that C2 

liposome pre-treatment still led to enhanced ATRA-dependent neurite elongation, 6 days after 

liposome removal. Thus, RAMBAs in liposomes can be delivered to these tumour cells and 

will trigger a sustained, combination response with ATRA for several days. 

 

ATRA suppression of cell growth is enhanced by liposomal RAMBAs 

RAMBAs enhance retinoid-induced growth suppression in breast cancer cells [24,33], 

but the equivalent has yet to be demonstrated in neuroblastoma cells. RA increases 

differentiation in some neuroblastoma cell lines and in others it can reduce proliferation as 

well as, or instead of differentiation. We therefore tested the ability of liposomal RAMBAs to 

enhance the ability of ATRA to suppression cell proliferation.  

When used alone, ATRA suppressed LAN5 and KELLY cell proliferation. We also 

compare 13-cis-RA to ATRA, since 13-cis-RA is used clinically in neuroblastoma treatment. 

A broadly comparable pattern of growth suppression was observed (Figure 7A, 7B). In 

KELLY the EC50 value for ATRA was approximately 0.6µM, and 0.3µM for 13-cis-RA. In 

LAN5, both EC50 values were approximately 0.3µM. This indicates that under these 

conditions the two retinoids act similarly in LAN5, and in KELLY the 13-cis-RA is slightly 
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more effective. The 13-cis-RA is thus likely isomerised efficiently into intracellular ATRA in 

these cells. 

The cells’ responses to treatment with either empty liposomes or C2-containing 

liposomes were assessed. Cells were treated with 80nM or 160nM ATRA, well below its 

EC50, for 6 days, alongside either 0.5µM C2 liposomes or the equivalent amount of empty 

liposomes to match the lipid dose. C2 liposomes were able to significantly suppress growth in 

ATRA-treated KELLY and LAN5 cells compared with minimal growth suppression by 

ATRA alone (Figure 7C, 7D). In ATRA-treated KELLY cells, C2 liposomal treatment 

suppressed growth more than the empty liposomes. In LAN5 cells, both liposome 

formulations somewhat suppressed cell proliferation at 0µM ATRA, although this did not 

reach significance. C2 liposomes plus ATRA showed a suppression of LAN5 growth 

compared with ATRA alone, whereas the empty liposomes did not. At higher levels of ATRA 

up to 1µM, the C2 liposomes could still suppress cell growth (Supplementary Figure 3). 

These data demonstrate that C2 liposomes can enhance the growth suppression driven by 

ATRA, corroborating what was found with neurite elongation, N-myc suppression and AKT 

activation.  

  

C2 packaging efficiency in liposomes 

The experiments described so far assumed the maximal dose estimates of C2 and C17 

when encapsulated in liposomes. Maximal encapsulation, however, is not routinely achieved 

with lipsomal formulations. During the completion of our biochemical and cellular analyses, 

we were able to successfully develop a UV assay and this was used to assess the actual 

RAMBA concentrations in liposomal formulations. 

RAMBAs were first solubilised in ethanol and UV absorbance scans were performed 

from 200-450nm (Figure 8A). A peak at 315nm was chosen for generating a standard curve 

since this wavelength showed low background absorbance by empty liposomes (see below). 
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To calculate the amount of C2 and C17 present in liposomes, each batch of RAMBA 

liposomes was dissolved in ethanol at 10% v/v, and UV scans performed (Figure 8B). Empty 

liposomes were similarly scanned for background subtraction. The physical parameters of 

these particular liposomes are given in Supplementary Table 1. Compared to the maximal 

theoretical packaging value of 240µM, the actual encapsulation efficiency of the RAMBAs 

was 64-79% for C2 and 71-91% for C17 (Figure 8B). Based on this, the doses used in our 

cellular experiments with liposomal RAMBAs could be overestimated from between 10% to 

30%.  

We also assessed RAMBA retention in the liposomes, by dialysing the liposomes over 

24 h and quantifying the remaining RAMBA (Figure 8B). This showed that 72-84% of C2 

remained encapsulated after dialysis, and 81-95% of C17 was retained. The C17 sample 3 was 

left for 4 days before dialysis and these still retained 95% of the original RAMBA, indicating 

that nearly all of the RAMBA is retained over this extended time period.  

To test if the RAMBA liposomes retained activity after dialysis, we tested the ability 

of dialysed C2 liposomes to induce morphological differentiation and AKT activation. The 

dialysed liposomes retained their qualitative effects on ATRA-induced differentiation, 

generating highly rounded, phase bright neurons (Supplementary Figure 1). Biochemically, 

the dialysed liposomes also enhanced ATRA stimulation of pAKT levels similarly to their 

non-dialysed liposome counterparts over this shorter 24 hr assay (Figure 8C). 
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Discussion 

RA has proven to be a beneficial biological therapeutic in leukaemia and 

neuroblastoma and in several keratinization disorders [11,43]. Although the potential clinical 

benefits of retinoids are broad, there are significant, practical challenges with their systemic 

delivery. For paediatric diseases such as neuroblastoma in particular, dosing is physically 

difficult and off-target toxicity is well documented [44,45]. ATRA and 13-CisRA also have 

poor pharmacokinetics and are metabolised in vivo by induced CYP26 enzymes [2,6]. Lastly, 

retinoid resistance often develops in cancer patients, being caused in part by sustained 

upregulation of the same CYP26 enzymes [7-9,46]. Given the relatively modest clinical 

benefit of current RA treatment in neuroblastoma [2] , there is a continued need to understand 

whether there is greater efficacy still be gained and where the long term potential lies.  

Interest in RAMBAs in recent years has focussed on whether these RA metabolism 

blockers could be practicable tools for enhancing RA efficacy and reducing resistance. 

RAMBAs may also increase the intracellular activity of RA without significantly increasing 

its systemic toxicity. Previous work by Armstrong and co-workers had shown that the CYP26 

inhibitor R116010, co-applied with 13-cis-RA in animals, reduces 13-Cis-RA metabolism in 

the liver, leading to higher levels of serum 13-cis-RA and ATRA, plus greater CYP26A1 

transcription in xenografted SH-SY5Y tumours [18]. This study demonstrated that CYP26-

specific RAMBAs sustained increased 13-cis-RA levels in the blood, showing a systemic 

benefit. Extrapolation to humans is uncertain, however, since the specificity of R116010 

towards murine CYP enzymes was questioned. Although R116010 has also been shown to 

suppress breast cancer cell growth [47] this drug was not developed further and clinical trials 

did not progress. Instead of R116010, we used RAMABA C2 and C17 here to assess 

RAMBA potential in cultured neuroblastoma cells. C2 has a similar IC50 to R116010 (3 nM), 

whereas the IC50 of C17 is ten-fold lower (0.35nM) [19].  These RAMBAs could therefore be 
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very effective CYP26 inhibitors for use in vivo, but only if they can be delivered at effective 

doses. However, their high hydrophobicity presents a barrier to this, and we have addressed 

this in this study by testing their delivery to cells using liposome nanotechnology. 

RAMBAs C2 and C17 delivered after ethanol solubilization alongside ATRA, induced 

high levels of CYP26A1 mRNA transcription in SK-N-SH cells, agreeing with previous 

studies [19]. We then demonstrated for the first time that C2 and C17, when dissolved in 

ethanol and combined with ATRA, could stimulate ATRA-dependent neuronal differentiation 

as judged by increased neurite elongation, and increased pAKT activation. These RAMBAs 

can therefore enhance ATRA action at a morphological and biochemical level in these tumour 

cells. To our knowledge RAMBAs have not be delivered using nanotechnology before and 

we have therefore provided the first demonstration that these hydrophobic molecules can be 

incorporated effectively into liposomes. In such a context, they retain bioavailability and an 

activity that is at least comparable to that seen with their ethanol-dissolved counterparts. 

These liposomal RAMBAs enhanced ATRA-driven neurite extension and AKT activation in 

SK-N-SH cells, led to greater suppression of N-myc protein and enhanced the growth-

suppressive properties of ATRA. Collectively, these data demonstrate that CYP26-specific 

hydrophobic RAMBAs can be effectively incorporated into liposomes where their 

bioavailability remains effective at enhancing ATRA actions in neuroblastoma-derived cell 

lines 

These effects of liposomal RAMBAs were achieved using combined retinoid 

concentrations as low as 50-80nM in KELLY and IMR32 cells, a level that is readily 

achievable clinically [48] [49]. The serum levels of 13-Cis-RA given to children in current 

dosing regimens peaks at a mean of  2.8 µM  [48] or 6.9 µM [49], depending on the study, but 

then drops rapidly to sub-micromolar levels within 6 hours. This raises the possibility that co-

treatment with liposomal RAMBAs such as C2 or C17 may be able to prolong the effective, 

active dose of retinoids in cells, or may even allow lower, less toxic retinoid doses to be used 
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in vivo. Of perhaps more relevance, the liposomal approach, if targeted correctly, could 

increase the local action of retinoids while minimising off-target toxicities in normal tissues. 

Furthermore, our sequential treatment of cells with liposomes then with ATRA, indicated that 

a single liposomal delivery can generate a sustained enhancement of ATRA-induced 

differentiation over several days. This could be of clinical relevance if translated to a similar 

effect in vivo, as an infrequent dose of RAMBA nanocomplexes may enhance and prolong the 

action of the currently used, daily retinoid treatment. This warrants pre-clinical studies in vivo 

in order to test this hypothesis. 

One question with RAMBAs is what their best target in vivo would be. For example, 

should they be targeted to the liver, where there is significant CYP26 induction, or to the 

tumours tissues? Our study was done in tissue culture, focussing on the tumour-derived cells 

themselves, where the RAMBAs are certainly effective. Their effectiveness systemically in 

vivo is more difficult to predict at this stage. Retinoids are efficiently destroyed in the liver 

and so it could be argued that RAMBAs should be targeted there in order to maintain 

systemic retinoid levels. Nevertheless, it may be equally effective to target the solid tumours 

themselves directly. The possibility of delivering RAMBAs alongside RA in combined 

liposome formulations should also be considered.  

Although the liposomes employed in our study are conventional in design and suitable 

for in vitro experiments, further modifications will be required for optimal targeting in vivo 

[27,50]. These modifications include alterations in concentration of the neutral lipid 

cholesterol to reduce toxicity, or incorporation of polyethylene glycol (PEG), which reduces 

aggregations and binding of serum proteins. Targeting peptides should also be considered, for 

directed uptake into neuroblastoma tumours, as demonstrated in xenografts [51,52], where 

they can extravasate and concentrate in the tumour, potentially using the enhanced permeation 

and retention effect [53]. There are numerous further liposome formulations in the clinic or in 

trials, with a range of biophysical and biochemical properties [25,27,28], so optimised tumour 
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cell targeting should be achievable. Improved targeting may again facilitate the use of lower 

systemic doses of retinoic acid in children.  

We noted that our empty liposomes appeared to sometimes weakly enhance the effects 

of ATRA. The liposomes’ positive charge could possibly play a role in adsorbing ATRA 

under some circumstances and future studies could evaluate if neutral or anionic liposomes 

have similar effects. As an alternative approach, we would also consider co-incorporation of 

RAMBAs and retinoic acids into cationic liposomes for co-delivery in vivo. This may further 

reduce off-target toxicities of the retinoids. 

In conclusion, hydrophobic RAMBAs derived from imidazole and triazole scaffolds 

with high specificity for CYP26 enzymes, can be delivered successfully to neuroblastoma 

cells in liposomes. They enhance the cellular and biochemical actions of RA in SK-N-SH, 

LAN5, IMR32 and KELLY cells. Not all neuroblastoma tumour cells however will induce 

CYP26 in response to RA [18] and so, as with most drugs approaches, the benefits of 

RAMBAs may be restricted to RA-responsive neuroblastoma tumours and resistant tumours 

where resistance is CYP26 enzyme-based. Use of nanotechnology to deliver RAMBAs could 

also be considered for applications in other cancers such as basal cell carcinoma [54] , 

lymphoid malignancies [55]  and others, where retinoids are either used clinically or show 

promise from pre-clinical models [10 ]. This study has provided a proof of principle and the 

basis for further investigation of nanotechnology as a delivery pathway for hydrophobic 

RAMBAs in combination with retinoids, with the goal of increasing the efficacy of retinoid 

actions in target tissues and improving clinical outcomes. 
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Figure Legends 

 

Figure 1.  

A, RNAseq analysis of LAN5, SK-N-SH (SH), KELLY and IMR32 cells shows the relative amounts 

of mRNA present for genes CYP26A1, CYP26B1 and CYP26C1. mRNA levels after ATRA treatment 

for 24 h is also shown for LAN5 and SH cells. B, chemical structures of compounds C2 and C17, 

with their respective IC50 values against CYP26A1 (Gomaa, M. S., et al. 2011. J Med Chem 54(19): 

6803-6811). C, Quantitative PCR was carried out on SK-N-SH cells after treatments with ATRA, 

RAMBA C2 and C17 and in combinations. Treatments were for 72 h. The relative abundance of 

CYP26A1 mRNA is shown, normalised to untreated cells at 1.0. Error bars are standard deviations of 

triplicate, technical replicates (n=1). 

 

Figure 2.  

A, SK-N-SH cells were treated with ATRA alone, or in combination with RAMBA C2 or 

C17, for 72 h. RAMBAs by themselves had no effect on cell morphology. In combination 

with ATRA, RAMBAs induce a highly rounded, refractile morphology (insets). Scale bar = 

50µm (25µm for insets). B, SK-N-SH cells were treated with 0.1µM ATRA and RAMBAs 

C2 and C17 for 72 h and neurite lengths were measured (n=3). Standard deviations are 

shown. ANOVA comparisons show where mean neurite lengths are significantly longer 

compared with ATRA alone (Bonferroni and Dunnet post-hoc corrections *p<0.05; 

**p<0.01). C, SK-N-SH cells were treated for 72 h with ATRA, RAMBA C2 and 

combinations. Immunoblotting shows relative levels of pAKT and AKT present in cell 

lysates. D, protein bands were quantified and mean pAKT intensities were normalised against 

AKT and compared using ANOVA (n=3). Controls are untreated cells. SD are shown, 

**p<0.01 compared to ATRA alone. 
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Figure 3.  

A, SK-N-SH cells were treated for 72 h with 0.1µM ATRA, C17-containing liposomes, or 

combinations of the two. Controls (con) are untreated and maximal concentrations of 

RAMBAs are indicated. Neurites were measured and statistical comparison made against the 

mean of ATRA single treatment. SD are shown, *P<0.05, **p<0.01; n=3. B, SK-N-SH cells 

were treated for 72 h with 0.1µM ATRA, C2-containing liposomes, empty liposomes, and 

combinations (n=3). SD are shown, *p<0.05, **p<0.01 using ANOVA.  

 

Figure 4.  

A, SK-N-SH cells were treated for 72 h with 0.1µM ATRA, 2µM C2 liposomes (C2), 0.5µM 

C17 liposomes (C17) and combinations thereof. Phase contrast images show that liposomal 

RAMBAs in combination with ATRA generated highly rounded, neuron-like cells (arrows); 

2x enlargements are shown below the main panels.  B, SK-N-SH cells treated for 72 h with 

empty liposomes (EL) with or without 0.05µM ATRA, and 0.5µM C17 liposomes plus 

0.05µM ATRA. Scale bar = 50µm for rows 2,4 5; 100µM for rows 1 and 3. Maximal, 

hypothetical concentrations of the RAMBAs are indicated. 

 

Figure 5.  

A, SK-N-SH cells were treated for 72 h with ATRA, C17 liposomes (C17 lipo), or 

combinations. Immunoblotting shows levels of pAKT and AKT; the untreated lane is from 

the same blot. B, a second experiment is shown in which SK-N-SH were treated with ATRA 

alone, or in combinations with empty liposomes or C2 liposomes (C2 lipo). Immunoblotting 

of pAKT and AKT are shown. C, LAN5 cells were treated for 24 h with 0.1µM ATRA alone 

and in combinations with empty liposomes and C2-containing liposomes. Immunoblotting 

shows levels of N-myc and actin. Two independent experiments are shown and maximal, 

hypothetical concentrations of the RAMBAs are indicated. 

Acc
ep

te
d 

M
an

us
cr

ipt



 

 

Figure 6. SK-N-SH cells were treated with empty liposomes or C2 liposomes for 24 h. The 

media was then replaced, with and without 0.05µM ATRA, and the cells were cultured for 6 

more days. Neurite lengths were measured and means +/- SD are shown (n=3). ANOVA 

shows significant difference *p<0.05. 

 

Figure 7. A and B, KELLY and LAN5 cells were plated in 96-well plates and grown in the 

presence of a range of concentrations of ATRA or 13-cis-RA. The relative cell survival was 

measured after 6 days and plotted with means and SD (n=3); zero ATRA is treated as 100% 

survival. C and D, Cell proliferation rates were assessed in KELLY and LAN5 cells after 

treatment for 6 days with zero, 80nM or 160nM ATRA, plus either empty liposomes or C2-

containing liposomes at 0.5µM C2 (maximal concentration) (n=3). ANOVA analysis was 

performed, and SD are shown. *p<0.05; ns, not significant (p>0.05). 

 

Figure 8.  

Assessment of the loading and retention of RAMBAs in liposomes. A, A UV 

spectrophotometric scan of 100µM C17 dissolved in ethanol. B, table showing independent 

preparations of liposomes tested for the amount of RAMBA present, expressed as a 

percentage of the theoretical maximum of 240µM. The percentage of this RAMBA that 

remained after a 24hr dialysis against distilled water is given, as well as the time delay 

between liposome synthesis and the dialysis. C, Immunoblot of pAKT, AKT and actin from 

KELLY cells that were treated for 24 h with C2-containing liposomes before (C2) or after 

(C2-D) dialysis, empty liposomes before (EL) or after (EL-D) dialysis, with or without co-

treatment with 0.1µM ATRA (RA).   
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Supplementary Figure 1. Morphological differentiation of SK-N-SH cells with dialyzed C2 

liposomes. 

SK-N-SH cells were treated for 6 days with empty liposomes (native and dialyzed), 50µM C2 

liposomes (native and dialyzed), 0.05µM ATRA, and combinations thereof. ATRA induces 

morphological differentiation, whereas addition of C2 liposomes, either native or dialyzed, 

induces more extreme cell body rounding reflecting mature neurons. Empty liposomes do not 

induce this more extreme differentiation. Scale bar = 100µm 

 

Supplementary Figure 2. Stimulation of pAKT by both C2 and C17. 

Western immunoblots showing pAKT and AKT levels in SKNSH cells after treatments with 

ATRA and RAMBAs C2 and C17.  Cells were treated for 72 hr with 0.1µM ATRA, with and 

without 0.5µM C2 or 0.5µM C17 (RAMBAs dissolved in ethanol). 

 

Supplementary Figure 3. Dose responses of KELLY and LAN5 cells to ATRA in the 

presence or absence of liposomes containing C2 RAMBA.  

A, an example experiment with KELLY cells plated in triplicate in 96-well plates and treated 

with a range of ATRA from 2.5µM downwards in 2-fold steps (0.1% final DMSO added to 

all these wells). To these wells, either C2 liposomes were added to provide 1.1µM C2, or the 

equivalent quantity of empty liposomes were used to match lipid content. Cells were treated 

for 7 days before analysis with resazurin. The control c is cells treated with just C2 liposomes 

(approx. 7µg/ml final lipid); control c1 is cells treated with C2 liposomes plus 0.1% DMSO. 

B, A single experiment shown of LAN5 cells treated with a range of ATRA from 5µM 

downwards in 2-fold steps, in the presence of 0.5µM C2 in liposomes (final concentration of 

approx. 3.5µg/ml lipids), or empty liposomes. Controls c and c1 are similar to those in A. 

Cells were treated for 5 days before analysis with resazurin. 
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Supplementary Figure 4. UV scan data of liposomes and RAMBAs 

A, example UV scan of 50µM C2 in 100% ethanol. B, example UV scan of empty liposomes 

at 10% w/v in ethanol (effectively 0.1mg/ml lipids). C, example scans of c17 liposomes  

overlaid with empty liposome scans (both at 10% v/v in ethanol). Scans used a 1cm path-

length in quartz cuvettes at room temperature. 

 

Table 1. Liposome parameters. 

Independent batches of liposomes were made (n, number of batches) and analysed in a 

Zetasizer Nano ZS for size (diameter in nm), polydispersity index (PDI) and average charge 

(mV). The standard deviation of each set of batches is given. 

 

Supplementary Table 1. Parameters of liposomes used for RAMBA loading and dialysis 

studies 

Independent batches of liposomes were made containing either C2 or C17. These were 

analysed in a Zetasizer Nano ZS analyser for parameters of size (mean diameter in nm), 

polydispersity index (PDI) and average charge (mV).  
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Table 1. Liposome Parameters 
 

Liposome content Average 
Size in nm 

(range) 

SD Average 
PDI 

SD Average 
Charge (mV) 

SD 

RAMBA C17 (n=3) 90.9 (82-107) 12.3 0.42 0.02 64.0 7.9 

RAMBA C2 (n=6) 123.0 (80-164) 30.4 0.42 0.09 62.5 4.6 

Empty (n=6) 133 (100-154) 20.5 0.47 0.14 63.0 5.1 
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