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Abstract: The lattice sandwich panel may achieve in-plane zero thermal expansion (ZTE) 9 

property through a special design of upper and lower face sheets, both of which are attached with 10 

an additional layer of patch with high coefficient of thermal expansion (CTE). This type of 11 

sandwich panels with ZTE property is highly demanded for aerospace vehicles, where often suffer 12 

from large variations of temperature. The design of curved surface for the face sheet cells is 13 

necessary to achieve in-plane ZTE attribute, however, it will also result in structural stiffness 14 

reduction significantly. In this study, a novel dual-constituent lattice sandwich panel with in-plane 15 

ZTE and high structural stiffness properties is proposed, designed and analyzed. Six different 16 

kinds of cell configurations through two types of curved surface and three different patches are 17 

compared to obtain the optimal design. A further parametric study is carried out by numerical 18 

simulations to show the influences of curved surface, patch covering form, patch shape, size and 19 

thickness on cell equivalent stiffness as well as the control effectiveness of thermal deformation. 20 

Optimal cell designs that enable the sandwich panels to achieve the in-plane ZTE and high 21 

in-plane stiffness properties are also presented. The stiffness reduction for achieving in-plane ZTE 22 

is acceptable. Sufficient residual stiffness ensures the load carrying capacity of dual-constituent 23 

lattice sandwich panels. 24 

Keywords: Zero thermal expansion; Lattice structure; Sandwich panel; Multifunctional design; 25 

Metamaterial 26 

1. Introduction 27 

Lattice core sandwich panels have attracted extensive interests due to their inherent 28 

advantages of lightweight and excellent mechanical properties, and have been used in a broad 29 

range of applications in weight sensitive aerospace engineering. It is widely acknowledged that 30 

aerospace structures often experience large variations of temperature, which gives rise to 31 

extremely high thermal stress/deformation leading to structural failure. One example is that 32 

aerodynamic heating on the hypersonic vehicles during its flight results in excessibely high local 33 

thermal stress and strain, which subsequently wreck the entire aerodynamic shapes [1, 2]. Another 34 

example is in the process of earth-orbiting satellites passing from sunlight to shade, repeatedly. In 35 

this example, significant temperature changes generate undesirable thermal deformation, which 36 
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deteriorates the working spcace of on-board instruments. Consequently it leads to the loss of 37 

precision for sensitive optical telescopes [3, 4]. Therefore, it is desirable to develop advanced 38 

structures with ultralow (ideally zero) thermal expansion attribution. 39 

One direct method is to manufacture the lattice sandwich panels using natural bulk materials 40 

with low or zero CTEs. However, the inherent defects such as narrow control range of ZTE and 41 

poor mechanical performance limit their practice applications. For example, Invar is a robust 42 

material, but exhibits low thermal expansion attribute only between 0 and 1000
C. Zerodur has low 43 

thermal expansion coefficient over a larger temperature range, however, it is a type of glass 44 

ceramic that is not appropriately used for reliable load carrying structures. Fiber-reinforced [5] or 45 

particulate-reinforced [6] composites can achieve near-zero CTEs through embedding fibers or 46 

particulates of materials with negatives CTEs [7]. However, very few known materials in forms of 47 

practices that possess negative CTE can be used as reinforcements. Furthermore, great difference 48 

on CTEs between the fiber (or particulate) and the matrix may cause interface cracking on heating, 49 

which inevitably leads to the delamination failure. 50 

Metamaterials, or artificial materials with well-designed constituents of two different positive 51 

CTEs and void space are an alternative way to achieve ZTE attribute and high stiffness properties, 52 

simultaneously. A number of notable design concepts of dual-constituent for metamaterials have 53 

been proposed by Lakes [8, 9], Sigmund and Torquato [10, 11], Steeves et al. [12, 13] , Wei et al. 54 

[14, 15], Xu and Pasini [16, 17] and Zhang et al. [18, 19]. These material design concepts can be 55 

extended to the structural forms straightforwardly because there is no apparent size effect. For 56 

example, a range of lattice structures such as lattice face-sheets for sandwich panel [20], lattice 57 

cylindrical shells [21] and satellite support structures [22], are subsequently proposed based on the 58 

original mechanism developed from the lattice metamaterials. It is worth noting that the void 59 

space is necessary for combining two constituents with different CTEs to achieve the desired 60 

thermal behavior. Because of the existing of porous materials, these new-designed structures are 61 

unsuitable for the applications involving sealing, for example, the skin of supersonic vehicle [20] 62 

and containing space. 63 

In order to meet the above demand, a new design concept of dual-constituent sandwich panel 64 

with in-plane ZTE was proposed in our previous works [23]. Different with the structures 65 

consisting of porous metamaterial that achieve ZTE attribute, the upper and lower face sheets of 66 

the newly designed sandwich panels are all solid with no porosity. The ultralow in-plane thermal 67 

deformation was verified by two different structural forms: corrugated and lattice sandwich panels. 68 

However, the analysis and the optimal stiffness design of their mechanical performance have not 69 

been explored. In this work, a novel dual-constituent lattice sandwich panel is designed and 70 

analyzed, in which the weight, the mechanical performance and functionality (in-plane ZTE) are 71 

considered, simultaneously. The paper is organized in the following manner: the whole 72 



configuration for the new design of dual-constituent lattice sandwich panel is presented firstly in 73 

Section 2. Subsequently, the detailed design for the face sheet cell including the curved surface 74 

and patch configurations designs are presented in the rest of Section 2. The numerical methods 75 

that are developed to predict the cell CTEs and equivalent stiffness are presented in details in 76 

Section 3. The comprehensive evaluations on cell designs considering the efficiency of thermal 77 

deformation control and equivalent stiffness are conducted in Section 4. Finally, the conclusions 78 

are summarized in Section 5. 79 

2. Structural design 80 

As shown in Fig.1, the whole configuration of dual-constituent lattice sandwich panel with 81 

in-plane zero thermal expansion (ZTE) consists of upper and lower face sheets and a truss core. 82 

The counterintuitive properties of ultralow or near zero thermal expansion are attributed from the 83 

special design of face sheets, which are comprised of bi-layer materials with different positive 84 

coefficients of thermal expansion (CTEs) in each cell. Two bonded layers with different CTEs will 85 

give rise to transverse bending to the face sheet during the process of temperature increasing, 86 

which results in the in-plane contraction that can compensate the in-plane thermal expansion. One 87 

of the key designs to achieve the in-plane ZTE attribute for the lattice sandwich panel is that the 88 

bi-layer part of face sheets should be curved, which can enlarge the magnitude of thermal bending 89 

deformation.  90 

The truss core provides the necessary support for the face sheets by connecting four corner 91 

points of every periodic cell. In doing so, the same transverse bending deformation is ensured in 92 

the local cell to prevent the possible overall transverse deformation of face sheets during the 93 

heating. The most attractive feature is that face sheets of the sandwich panels are all solid with no 94 

porosity, which can efficiently isolate the internal environment from the external harsh 95 

environment. Therefore, this new design of sandwich panels can be placed at the outermost of 96 

structures where the sealing is needed.  97 
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Fig.1. The whole configuration of dual-constituent lattice sandwich panel. 100 

 101 

The curved surface of face sheet is necessary for generating enough curvature during the 102 

thermal expansion process, but the curved surface design will weaken the stiffness of sandwich 103 

panel, significantly. In addition, the configuration of the attached patches is another important 104 

design aspect on its stiffness and thermal expansion. In order to validate the design principles with 105 

above mentioned considerations, six face sheet cell designs through the combination of two 106 

different curved surfaces and three patch types are analyzed and compared.  107 

Although the design of curved part is necessary for achieving the in-plane ZTE, it will cause 108 

the stiffness reduction, inevitably. Therefore, the design target that the face sheets possess both 109 

high stiffness and in-plane ZTE can be achieved through designing a little curvature for the curved 110 

part and a large region for the flat part. To this end, two different curved surfaces for the cell are 111 

designed herein. Their geometry and area configurations are shown in Fig.2(a) and (b), 112 

respectively. 113 
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Fig.2. The geometry and area configurations of the two designs of curved surface of cell. (a) Type A curved surface. 116 

(b) Type B curved surface. 117 

 118 

As shown in Fig.2, for both Types A and B, the central area A is the key part that can 119 

thermally trigger the mechanism of bending adjustment. For the Type A, the geometry of area A in 120 



the curved surface can be expressed, mathematically, as follows: 121 

 122 

0 0

2 2 2 2

0 0

2 2
: 0

2 2

L L
x

Area A x y z
L L

y

  


  

     
  


             (1) 123 

where 0L  and   are the side length and the curvature radius of the center area A , and   is 124 

the curved surface angle. If the angle is small enough, the curvature radius   is simply reduced 125 

to 0 /L  , and then the Eq.(1) is rewritten as:  126 
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       (2) 127 

The surrounding area B represents the regions that are not covered by patches, and therefore 128 

will not be used for the control of the cell thermal deformation control. To improve the cell 129 

mechanical performance, the area B must be designed as flat as possible. The geometry of the area 130 

B is defined as:  131 
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(3) 133 

The areas C  in the Type A curved surface are completely flat and only contain single-constituent 134 

materials, and are expressed as, 135 
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         (4) 136 

The other design of Type B curved surface includes only a centrally spherical area that is 137 
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designed to meet the requirement of bi-directional initial curvatures for the cell thermal 138 

deformation control. Compared with the Type A curved surface, this new curved surface B design 139 

is more concise, and likely exhibit high stiffness properties because there is no redundant 140 

single-constituent curved part. The geometry of Type B curved surface is defined as follows: 141 
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             (5) 142 

Subsequently, three different patch shapes which are square, circle and cross are designed to 143 

cover both the types A and B curved surfaces. Therefore, six different cell types for the face sheets 144 

are designed and illustrated in Fig.3 (a-f) in terms of the defined geometric parameters. In order to 145 

control the number of design variables, the patch and the curved surface are both assumed to be 146 

doubly symmetric. The side length of cross-shaped patch is fixed to be 
0

/ 2L  and thus the sole 147 

in-plane design parameter 
0L   that is used to adjust the patch areas of each cell is determined. 148 

Furthermore, the volume ratio 
0 /V V  of the patch to curved surface is another design parameter 149 

considering the structural thicknesses. The volumes 
0V  and V  can be approximately evaluated 150 

by the products of the projected area and the thickness if the curved angle   is sufficiently small. 151 

The formulas for evaluating the volume ratio 
0 /V V  for each type of cell designs are given as 152 

follows: 153 
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      (6) 155 

where 
0t  and t  are the thicknesses of the patch and the curved surface, respectively.  156 

The process for cell evaluations and parameter investigations can be divided into the 157 

following three phases:  158 

(I) The evaluation on curved surface designs is performed, firstly, through comparing 159 

the cells with the same patch shape. As a representative example, a pair of cells (a) 160 

and (d) is firstly selected, and cell (e) is also added for further verification. The 161 

evaluation is mainly focused on the control efficiency of thermal deformation, i.e., 162 

the difficulty of achieving the in-plane ZTE attribute.  163 



(II) According to the results obtained in the first phase, a curved surface type with the 164 

best performance is used as the basis for the comparison of stiffness properties. 165 

During this phase, the cells (a)-(c) or (d)-(g) with the same curved surface type but 166 

different patch shapes are selected for the evaluation.  167 

(III) After the completion of phases (I) and (II), it will be straightforward to determine the 168 

best cell design among the six types of cells. The further design of patch thickness to 169 

improve the stiffness properties will be considered afterwards. 170 
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Fig.3. The six designs of cell of face sheet combining two types of curved surfaces. (a)-(c) The cells with sharing 173 

Type A curved surface. (d)-(f) The cells with sharing Type B curved surface. 174 

 175 

The cell geometric parameters are listed in Table 1. The values of curved angle   is set to 176 

be less than / 30 ( 6 ). In fact, a very large value   will significantly weaken the cell in-plane 177 

stiffness, whereas an excessively small   will be unable to trigger the thermal 178 

bending-adjustment mechanism. With respect to the material selections, theoretically, it is possible 179 

to use any arbitrary two types of materials with different positive CTEs to achieve the in-plane 180 

ZTE. For instance, the commonly available alloy Invar is taken for the curved surfaces and the 181 

Aluminum alloy is used for the patches. The material properties of Invar and Aluminum alloy are 182 

listed in Table 2. 183 

 184 



Table 1 The geometric sizes used in numerical simulation. 185 

L /m 0t /m t /m Range of   

2
5 10


  

4
5 10


  

4
5 10


  / 30 (6 )  

 186 

Table 2 The material properties [24] of Invar and Aluminum alloy used in numerical simulation. 187 

Material member 
Young’s Modulus 

( )GPa  

CTE 

( / )ppm C  

Poisson’s ratio 

v  

Density 

3( / )Kg m  

Invar (Curved surface ) 140 1.0 0.28 8100 

Al 7075-T6 (Patch) 70 22.2 0.33 2800 

3. Numerical analysis 188 

3.1 Finite element analysis for thermal expansion 189 

Due to the geometric complexities of the cell of face sheets with bi-directional curvature, it is 190 

difficult to obtain the analytical solutions of CTEs for the cell. Therefore, the finite element 191 

analysis (FEA) is conducted to verify the in-plane ZTE design objective for the dual-constituent 192 

lattice sandwich panel. The commercial software ANSYS 15.0 is used in this work to perform the 193 

finite element simulation. Since the shell element is appropriate for modeling the cells with large 194 

aspect ratio, the element type shell181 (in ANSYS) is adopted. In order to ensure the mesh quality 195 

and convergence, the models are meshed with a fine mesh size 
-4

8 10 . As a result, about 4000 196 

elements are set for each model to ensure achieving convergent results. The boundary conditions 197 

applied to the cells during FE analysis process are shown in the Fig.4. Boundary condition (1): the 198 

x-displacement of side 1 and the y-displacement of side 2 are firstly restricted. While, the 199 

x-displacements of all nodes at side 3 are coupled together; the y-displacements of all nodes at 200 

side 4 are coupled together too. The intentions of the boundary condition (1) are to prevent 201 

rigid-body displacement in X-Y plane, and simultaneously promise the thermal deformations 202 

consistence at side 2 and 3. Boundary condition (2): the z-displacements of the nodes at four 203 

corner points are restricted. The intention of the boundary condition (2) is to prevent possible 204 

overall z-displacement on heating. Actually, this boundary condition replaces the effect of truss 205 

core on the cell. Boundary condition (3): the x-rotations of both side 1 and 3 and the y-rotations of 206 

both side 2 and 4 are finally restricted. The intention of the boundary condition (3) is to replace 207 

the influences of surrounding cells. Note, the thermal deformation along cell thickness direction is 208 

varied due to the bending, and thus the displacement of the neutral plane of curved surface is used 209 



to calculate the effective CTEs. In order to directly determine the thermal deformation, the shell 210 

mid-surface is set at the middle of the cell curved surface. 211 

 212 
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Fig.4. The boundary conditions applied to face sheet cell during FE analysis process. 214 

3.2 Cell stiffness prediction based on Asymptotic Homogenization method  215 

The equivalent stiffness of face sheet cell is another important index for assessing the 216 

mechanical performance of each cell that is designed to achieve the in-plane ZTE attribute. Since 217 

no analytical solution for cell stiffness is available, the Asymptotic Homogenization Theory with 218 

finite element implement (NIAH) [25] is adopted for analyzing the periodic inhomogeneous panel 219 

and shell structures. In this method, the equivalent generalized stiffness matrix for each cell is 220 

obtained by means of considering the FEA in ANSYS as a black box. The whole procedure of 221 

NIAH for the cell stiffness prediction is presented as follows: 222 

(1) Construct the finite element analysis of the cell in ANSYS 15.0 as the procedures 223 

presented in Section 3.1. 224 

(2) Apply six (3D) nodal displacement fields 
0( )  and 

*( )  to each node, separately, 225 

and then run one static analysis for each nodal displacement field to obtain the corresponding 226 

nodal reaction force 


f  and 
*

f . The applied nodal displacement fields are defined as:  227 
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            (7) 228 

where ( , , )u v w and ( , , )x y z    are respectively the translational and rotational displacements of 229 

the shell element used in the finite element model, respectively. 230 

(3) Apply the six nodal reaction forces 


f  and 
*

f  to each node in the finite element 231 

model with periodic boundary conditions, separately. Subsequently, run one static analysis for 232 

each nodal reaction force to obtain the characteristic displacement field 


a  and 
*

a . Note, the 233 

cell is periodic in in-plane and the boundary conditions for top and bottom faces are free. 234 

(4) Apply the six characteristic displacement field 


a  and 
*

a  to each node, and then 235 

run a static analysis to obtain the corresponding nodal reaction forces 


p  and 
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p . 236 

(5) Calculate the effective stiffness moduli b

 , *b zb 

   and *zb 
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asymptotic homogenization formulas as given by: 238 
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in which 2L  is the cell projected area for 2D periodic materials, and the complete expression 240 

of equivalent generalized stiffness matrix K  is given as: 241 
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where ( , , , , , )x y xy x y xyN N N M M M  are the stress resultants and bending moments; ( , , ,x y xy x   243 

, , )y xy   are the strain, curvature and torsion;   is the characteristic parameter of periodic cell 244 

and the value of   is set as 1  herein. According to the NIAH, the equivalent stiffness matrix 245 

K  for the present dual-constituent cell is obtained and expressed as: 246 
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                      (10) 247 

Note some coupling terms in K  are very small, and thus can be considered as 0. The generalized 248 

stiffness matrix coefficient 11A  is selected as the main evaluation indices to evaluate the 249 

equivalent stiffness of all feasible ZTE cell designs. 250 

4. Results and discussion 251 

In this section, the numerical results of the CTEs and the equivalent stiffness coefficients for 252 

various cell designs are obtained for parametric study and cell design evaluation. The main 253 

concerned points in this study are the cell equivalent stiffness and the thermal deformation control 254 

efficiency. The cell design evaluation will be carried out in terms of the curved surface design, 255 

patch covering form, patch shape and size. 256 

4.1 The evaluation on the curved surface design 257 

The evaluation on the curved surface design is first performed. With the assumption that the 258 

thicknesses of both curved surface and patch are kept constant, the CTEs   of the cells (a) and 259 

(d) are determined and presented in Fig.5(a)-(b), respectively. The x  axis denotes the volume 260 

ratio 0 /V V  and the cases with different curved surface angles   are taken for comparison. As 261 

shown in Fig.5(a), the value of   decreases gradually with the increase of 0 /V V  at the 262 

beginning, and this decreasing is mainly attributed to the enhanced effect of thermal 263 

bending-adjustment mechanism driven by the larger patch size. However, with the continuous 264 

increasing of 0 /V V , the   starts to increase. As such, it seems that the thermal 265 

bending-adjustment mechanism lost its effect. Actually, the final cell   is decided through the 266 

competition between the thermal bending-contraction and the extra thermal expansion driven by 267 

the patch. When the selected patch is oversized, the in-plane bending-contraction is hardly enough 268 

to compensate overall cell thermal expansion and consequently results in the increase of  . On 269 



the other hand, the increased   reinforces the effect of thermal bending-adjustment mechanism, 270 

and as a direct result, the   decreases monotonically. It can be also noticed from Fig.5(a) that 271 

the   of some cases decrease from positive to negative, and zero CTEs can be easily obtained if 272 

the appropriate design parameters are used. In addition, some cases such as / 70   are unable 273 

to achieve the desired zero thermal expansion due to an excessive small   that leads to 274 

insufficient in-plane contractions. Thus, it is necessary to delimit the curvature design range to 275 

promise the realization of in-plane ZTE. 276 
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Fig.5. The CTEs   of dual-constituent cells with different volume ratio 
0

/V V  and included angle  . (a) 279 

Results for cell(a). (b) Results for cell(d). (c) Results for cell(e). 280 

 281 

Fig.5(b) depicts   variation with the increasing of 0 /V V  for cell(d), and the decreased 282 

trend of   is relatively slow than that of cell(a) within 0 /V V  range of 4.00% 44.89% . The 283 

reason is attributed to the poor thermal deformation control of Type B curved surface, which 284 

enables the cell(d) without providing strong bending-contraction for compensating in-plane 285 

thermal expansion. Moreover, this conclusion can be further proved through presenting the results 286 



of cell(e). In Fig.5(c), the efficiency of thermal deformation control of cell(e) is the worst, and the 287 

the expected decrease in   never show up even for the cases with smaller  . Consequently, the 288 

cell(e) with type B curved surface and circle-shaped patch is unable to obtain feasible ZTE design 289 

within all possible selections of parameters. Additionally, the circle projected area of Type B 290 

curved surface limits the maximum patch size, which leads to narrow patch design areas for 291 

producing further in-plane contraction. 292 
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Fig.6. The feasible designs of zero thermal expansion for cell(a) and (d). 295 

 296 

In order to obtain a clear comparison on thermal deformation control between cells(a) and (d), 297 

the feasible ZTE designs and corresponding design parameters are plotted in Fig.6. As shown in 298 

Fig.6, except for the case of / 57.4  , the cell(a) with Type A curved surface has two sets of 299 

ZTE designs for each curved surface angle  , whereas the cell(d) has the only one. Furthermore, 300 

compared with the cell(d), the cell(a) possesses broader curvature design range of 301 

/ 57.4 / 30  , It requires smaller patch volume for obtaining in-plane ZTE as selecting the first 302 

ZTE design with small 0 /V V . More importantly, the obvious differences between the results of 303 

two cell designs prove that the curved surface design produces non-negligible influences on 304 

thermal deformation control and the Type A curved surface with better thermal deformation 305 

control performance is appropriate for the implementation of the present cell design for achieving 306 

desired in-plane ZTE. 307 

4.2 The evaluation on the patch covering form and shape design  308 



Besides the curved surface, the configuration of patch including patch covering form and 309 

shape is another important design aspect for the efficiency of cell thermal deformation control. To 310 

this end, the cells(a)-(c) with sharing the same Type A curved surface and different patch 311 

configurations are taken as an example for comparative analysis. The CTEs variation with the 312 

increasing of 0 /V V  for all selected cells are separately shown in Fig.7(a)-(c), which gives a 313 

consistent variation trend on   and similar thermal deformation tuning range. Furthermore, with 314 

adopting the same curved surface angle  , the cell(c) with cross-shaped patch required a relative 315 

small patch volume than any other two cells. In order to further clarify this conclusion, all of the 316 

feasible designs that achieve the in-plane ZTE of the cells(a)-(c) is plotted in Fig.8. 317 
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Fig.7. The CTEs   of dual-constituent cells with different volume ratio 
0

/V V  and included angle  . (a) 321 

Results for cell(a). (b) Results for cell(b). (c) Results for cell(c). 322 

 323 



From Fig.8, it can be seen that the cells(a)-(c) with specific   generally corresponds to two 324 

sets of design parameters for in-plane ZTE. For the first ZTE designs with small 0 /V V , the patch 325 

volume decreases with the increasing of  , while the other ZTE designs with large 0 /V V  shows 326 

an opposite trend. On the other hand, the patch configuration exhibits significant influences on cell 327 

ZTE design. Clearly, the cells(b) and (c) with partially covered patch on central area A possess 328 

broader curvature design range and require relatively low 0 /V V  than that of cell(a) with 329 

completely covered patch. However, it seems that the shape of the patch has a little effect on cell 330 

ZTE design, which can be concluded from the consistent curvature design range and similar ZTE 331 

design parameters for cells(b) and (c) presented in Fig.8. 332 

 333 

         
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

   Cell (a) Zero CTE

             Cell (b) Zero CTE

             Cell (c) Zero CTE

Positive CTE

Negtive CTE

V
0
 /

 V

 (Rad)  334 

Fig.8. The feasible designs with achieving in-plane ZTE for cells (a)-(c). 335 

 336 

As the in-plane ZTE is achieved, the equivalent stiffness to be another evaluation aspect used 337 

for filtering all the feasible cell designs. Thus, the NIAH presented in Section 3.2 for predicting 338 

cell stiffness is adopted, and the generalized stiffness matrix coefficient 11A  is taken as mainly 339 

evaluation index in comparative analysis. The stiffness coefficients 11A  of the two sets of ZTE 340 

designs as given in Fig.8 are plotted in Fig.9(a)-(c), respectively. Obviously the cells(a)-(c) give 341 

the consistent trend that the 11A  of the first ZTE designs with small 0 /V V  increase with 342 

increasing of the   at the beginning, and then turn to decrease. In addition, for the second ZTE 343 

designs with large 
0 /V V , the 11A  decrease monotonously with the increase of  , and the 344 

results are all smaller than those of the first ZTE designs under the same conditions. Therefore, 345 

there exists a local maximum value of 11A  and the desired optimal designs with a combination of 346 

in-plane ZTE and high stiffness for every cell type could be found. Furthermore, compared with 347 



cells(b) and (c), the cells(a) with completely covered patch and / 45   possesses 348 

global maximum  11A   than any other designs presented in Fig.9(a)-(c). 349 
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Fig.9. The generalized stiffness matrix coefficients 
11A  for all selected cells. (a) Results for cell(a). (b) Results 353 

for cell(b). (c) Results for cell(c). 354 

 355 

However, the designs for higher stiffness will require much larger patch size than those 356 

designs with lower stiffness, such as the case of cell(b) with / 56   and / 30  . Hence, 357 

anther evaluation index of ratio of coefficient 11A  to total cell mass M  is subsequently 358 

introduced to comprehensively evaluate the cell design through combining the stiffness and 359 

weight. It should be mentioned that the discussions on the second ZTE designs are meaningless 360 

due to a lower equivalent stiffness and accompanying larger patch volume. As shown in Fig.10, 361 

with the increasing of  , the 11
A / M  for cells(a)-(c) are first increased and then decreased, and 362 

the global maximum 11
A / M  correspond to the cell design of square-shaped patch and 363 

/ 36  . Therefore, it is easily concluded that at present the optimal design is the cell(a) with 364 



square-shaped patch and the curved surface / 36  , and as the desired in-plane ZTE is 365 

achieved, the completely covering form of patch results in higher cell stiffness and lighter weight. 366 
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Fig.10. The comparison of evaluation index 
11

/A M  for cells(a)-(c) with different patch shapes. 369 

4.3 The influences of patch thickness on dual-constituent cell design 370 

In the above numerical analysis, the influences of patch thickness variation on cell thermal 371 

expansion characteristic and stiffness are not considered. In fact, this design aspect is very 372 

important and hardly to be avoided for the dual-constituent cell design that is required to achieve 373 

the high cell stiffness and in-plane ZTE, simultaneously. Therefore, as for the cell with various 374 

patch thickness, the patch volumes are needed for achieving the in-plane ZTE in Fig.11(a), and the 375 

stiffness coefficient 11A  is plotted in Fig.11(b). The cell(a) with square-shaped patch is taken as 376 

the sole research objective due to the best mechanical performance has been proved in Section 4.2. 377 

Additionally, the four kinds of   including the optimal stiffness design parameter of / 36   378 

are presented for comparison study. 379 
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Fig.11. The influences of patch thickness on face sheet cell design. (a) The patch volume needed for in-plane ZTE. 382 

(b) The influence of patch thickness on cell stiffness. 383 

 384 

As shown in Fig.11(a), the patch volumes that are needed for achieving in-plane ZTE 385 

attributes increase monotonically. The dual-constituent cells tend to become low efficiency on 386 

thermal deformation control when the patch thickness is getting thicker. In Fig.11(b), the stiffness 387 

coefficients 11A  for all cases with different   are increased firstly and then decreased along 388 

with the increasing of the patch thickness, and the optimal cell stiffness corresponds to the design 389 

parameters of / 36   and 
0 / =1.6t t . It should be mentioned that the design on patch 390 

thickness is limited by various factors such as manufacturing technology and engineering 391 

requirements, and the patch thickness keeping within the twice thickness of curved surface is 392 

plausible in practical. 393 

Additionally, the comprehensive evaluation with combination of stiffness and weight is also 394 

performed for patch thickness design. As shown in Fig.12(a), the evaluation index 11A / M  395 

increases non-monotonically with the increasing of patch thickness, and the patch designs with 396 

approximate once curved surface thickness gives higher cell stiffness and lighter weight. On the 397 

other hand, the stiffness reduction factor of dual-constituent cell is also calculated through 398 

introducing the ratio of 11A  to the corresponding stiffness coefficient 
11A  of flat panel in same 399 

geometric size, and the latter can be obtained by the analytical formula of 
2

11 / (1 )A Et v  . As 400 

shown in Fig. 12(b), the stiffness reduction factor 11 11A / A  increases with the increasing of the 401 

patch thickness at the beginning, and subsequently starts to decrease. The maximum stiffness 402 

reduction factor for cells(a) is about 0.79, which means acceptable stiffness loss and sufficient 403 

residual stiffness for load-carrying as desired in-plane ZTE characteristic is achieved.  404 
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Fig.12. The influences of patch thickness on face sheet cell design. (a) The influence of patch thickness on 407 

evaluation index 
11

/A M . (b) The stiffness reduction factor 
11 11

A / A  of face sheet cell with various patch 408 

thickness. 409 

5. Conclusion 410 

In this paper, a novel dual-constituent lattice sandwich panel with desired in-plane ZTE and 411 

surface imporous attribute is designed and analyzed. The detailed designs on basic face sheet cells 412 

for achieving the in-plane ZTE and high stiffness, simultaneously, are carried out. Six kinds of cell 413 

designs through combining two types of curved surface and various patch configurations are 414 

devised. The optimal ZTE cell design with high special stiffness is finally obtained through a 415 

serious of comparative analyses. Finally, the main design principles for guiding imporous in-plane 416 

ZTE panel design within present patch method are revealed, and the main conclusive points are 417 

summarized as follows: 418 

(1) The design of cell curved surface could prominently improve the control efficiency of the 419 

face sheet thermal deformation, and a better design of curved surface requires less patch 420 

material for achieving the desired in-plane ZTE attribute. 421 

(2) The size of curved surface angle and patch needed for tailoring cell CTEs should be well 422 

designed. Adopting excessive small curved surface angle or oversized patch may lead to cell 423 

insufficient in-plane contractions, and as a consequence, it inevitably fails in obtaining cell 424 

in-plane ZTE. 425 

(3) The patch configuration has significant influences on cell ZTE design. The cells with 426 

partially covered patch possess broader ZTE curvature design range and require relatively 427 

less patch material. However, the completely covering form of patch shows better mechanical 428 

performance of higher cell stiffness and lighter weight. 429 

(4) The patch thickness design could further improve maximum cell stiffness. Theoretically, the 430 

patch design with approximate once curved surface thickness possesses higher cell stiffness 431 

and lighter weight, simultaneously. 432 

(5) Compared with completely flat dual-constituent cell, the stiffness reduction of present cell 433 

design for in-plane ZTE is acceptable. The approximate 80% residual cell stiffness ensures 434 

the dual-constituent lattice sandwich panel possessing sufficient load carrying capacity. 435 
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