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ABSTRACT  16 
Augmented and virtual reality have the potential to provide a step-change in productivity in 17 
the construction sector; however, the level of adoption is very low. This paper presents a 18 
systematic study of the factors that limit and drive adoption in the construction sector-19 
specific context. A mixed research method was employed, combining qualitative and 20 
quantitative data collection and analysis. Eight focus groups with 54 experts and an online 21 
questionnaire were conducted. Forty-two limiting and driving factors were identified and 22 
ranked.  Principal Component Analysis was conducted to group the identified factors into a 23 
smaller number of factors based on correlations. Four types of limiting factors and four 24 
types of driving factors were identified. The main limitation of adoption is that AR and VR 25 
technologies are regarded as expensive and immature technologies that are not suitable for 26 
engineering and construction. The main drivers are that AR and VR enable improvements 27 
in project delivery and provision of new and better services. This study provides valuable 28 
insights to stakeholders to devise actions that mitigate the limiting factors, and that boosts 29 
the driving factors. This is one of the first systematic studies that presents a detailed analysis 30 
of the factors that limit and drive adoption of AR and VR in the construction industry. The 31 
main contribution to knowledge of this study is that it grouped and characterized a myriad 32 
of limiting and driving factors into easily understandable categories; so that, the limiting 33 
factors can be effectively mitigated, and the driving factors potentiated. Also, a roadmap 34 
with specific short term and medium-term actions for improving adoption has been outlined.  35 
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1 Introduction 39 

Augmented Reality (AR) and Virtual Reality (VR) are visualization technologies that are dramatically 40 

changing the way humans interact with visual information. AR and VR technologies are becoming 41 

widespread, and every industry will be affected by the rapid adoption of these technologies. AR and 42 

VR technologies have been identified as one of the top 10 Gartner strategic technology trends for 2019 43 

(Panneta, 2018). So far, the main applications are in the gaming and entertainment sectors, but tourism, 44 

marketing, sports, education, and training have experimented substantial growth as well (Research and 45 

Markets, 2018). A study by Goldman Sachs (Heather Bellini, 2016) estimates that the size of the AR 46 

and VR markets will grow to $80 billion by 2025, similar to the size of the personal computer market 47 

in 2016. More recent reports estimate the size of the AR and VR market to grow to $94 billion by 2023 48 

(Research and Markets, 2018). Fifty-two out of the Fortune 500 companies are testing and deploying 49 

AR or VR solutions, and venture capital investment increased 230% from 2016 to 2017 (Kaiser and 50 

Scatsky, 2017). Many companies from various sectors (e.g. aerospace, logistics, retail) are using AR 51 

and VR for education, training and productivity improvements. For example, Boeing (2018) reported 52 

up to 40% productivity improvements in electrical wiring installation tasks when using AR head-53 

mounted displays (HDMs) to support workers. 54 

Despite the huge potential of AR and VR technologies, as with other digital technologies, their adoption 55 

in the Architecture, Engineering, and Construction (AEC) sectors is still very low. For example, the 56 

McKinsey Global Institute (Manyika et al., 2015) reported that the level of digitalization index for the 57 

construction industry was the lowest out of 22 industries. Results from a survey conducted by the 58 

authors for this study estimate a VR adoption factor in the UK construction sector of 2.5 out of 5; and 59 

of 1.5 out of 5 for AR (Davila Delgado et al., 2019a). In the factor scale, 5 represents full adoption, and 60 

1 represents not used at all. These low levels of adoption are caused by a myriad of complex and 61 

interrelated factors that are very difficult to understand, and consequently, appropriate mitigating 62 

actions cannot be devised. This paper presents a systematic study of the factors that limit and drive the 63 

adoption of AR and VR technologies in the construction industry. The objectives of this study are: 64 

(1) To identify, categorize, and rank the most relevant factors that limit and drive the adoption of 65 

AR and VR in the construction industry. 66 

(2) To provide a clear and understandable explanation of the main factors that limit and drive 67 

adoption, which could be used as the basis to develop mitigating actions. 68 

A mixed method approach, consisting of qualitative and quantitative data collection and analyses (see 69 

Figure 3), was employed to achieve the objectives above. Exploratory workshops —with experts from 70 

industry and academia— and quantitative data collection tools were used to identify and rank the 71 

factors. Statistical analyses were used to organize a large number of possibly correlated factors into a 72 
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smaller number of uncorrelated factors. The uncorrelated factors are then explained in the context and 73 

the dynamics of the construction sector. The next section provides an overview of AR and VR 74 

technologies in the AEC context; next, the methodology used in this study is explained. Sections 4 and 75 

5 present the qualitative and quantitative analyses, respectively. Sections 6 and 7 explain the limitations 76 

and drivers that have been identified. Section 8 discusses the findings presented, provides and 77 

comparison with other similar studies, and presents a roadmap to improve adoption. Lastly, conclusions 78 

are provided.  79 

2 Background 80 

2.1  Virtual Reality, Augmented Reality, and Mixed Reality 81 

VR is the technology that enables the creation of entirely computer-generated environments that give 82 

the user the sensation of being completely immersed within a virtual environment. It provides a way to 83 

replace the perception of the surrounding world with a computer-generated artificial 3D environment. 84 

The virtual experience is provided usually through a head-mounted display (HMD), a device that 85 

provides a virtual experience to a single individual, but they are other room-sized systems that enable 86 

VR experiences for many individuals (e.g. DeFanti et al., 2009). VR can be used, for example, to train 87 

and test healthcare professionals by immersing them in virtual surgery rooms (Yiannakopoulou et al., 88 

2015), in which they need to perform specific tasks without the need for expensive real-life facilities 89 

and human subjects. On the other hand, AR is the technology that enables to overlay digital information 90 

onto the real environment –in real-time and in the correct spatial position– to augment or enhance the 91 

real environment. In other words, AR enables digital objects and information to be overlaid either 92 

through an HMD or via a handheld device with a camera such as a smartphone or a tablet. For example, 93 

AR systems, reported in literature, enable users to view three dimensional virtual furniture on real 94 

environments (Young and Smith, 2016). These capabilities have migrated to commercial solutions such 95 

as AR mobile shopping apps, which allow to visualize 3D models of furniture and see how they would 96 

look and fit in various places around a house. 97 

The term “Mixed Reality” was originally coined by Milgram (1994). It refers to the spectrum or “virtual 98 

continuum” in which different technologies exist based on how much of the real environment is 99 

displayed (see Figure 1). At one end of the spectrum is the real environment that everybody experiences 100 

daily. On the other end, resides the virtual environment, in which the real environment is completely 101 

replaced by virtual objects. Various technologies can be mapped within the Mixed Reality Spectrum. 102 

For example, VR is closer to the virtual environment end of the spectrum, in which the real environment 103 

is not displayed at all. While AR is closer to the other end, in which a combination of real environment 104 

objects and virtual environment objects are displayed. Other technologies can be mapped within this 105 

spectrum, for instance Augmented Virtuality (AV) refers to a virtual environment augmented with 106 
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object from the real environment (e.g. Albert et al., 2014); or Tangible User Interfaces (TUI), which are 107 

physical objects from the real environment that enable a new way to interact with virtual objects (e.g. 108 

Skulmowski et al., 2016). Benford et al. (1998) presented a similar taxonomy to Milgram’s one to 109 

explain the differences between AR and VR. In this case, the technologies are mapped in a four-110 

quadrant space, in which two spectrums range from the physical world to the virtual world and from 111 

computer-generated data to physical data. 112 

Milgram’s definition of Mixed Reality is the most widely accepted in academia. However, recently the 113 

term Mixed Reality has been used by technology development companies to refer to a new distinct 114 

technology instead of a spectrum in which many technologies lie. This new definition has not been 115 

universally agreed upon, and many different definitions abound. In summary, it refers to a technology 116 

that, like AR, places virtual objects on a real environment, but that it also anchors them on the real 117 

world, and it enables interaction among physical and virtual objects. This new definition is very vague, 118 

lacks scientific rigor, and there are no reliable sources to support it. The new definition was primarily 119 

used as a marketing strategy to differentiate similar products. However, it seems that this new definition 120 

is losing traction, as now even the same technology development companies that introduced the new 121 

definition are using Milgram’s definition as well (Bray and Zeller, 2018). 122 

Table 1 and Figure 2 presents the main types of AR and VR technologies. Both technologies have a 123 

mobile variant with fewer capabilities. AR and VR require HMDs and specialized controllers. The 124 

mobile version of AR does not require an HMD. Both mobile versions are less expensive and do not 125 

have high-processing requirements. Note that there are other types of AR and VR devices such as AR 126 

glasses, but they were not included here because they are not as developed, and there have not been 127 

applications related to the construction industry reported in literature.  128 

2.2  AR and VR in Architecture, Engineering and Construction 129 

AR and VR technologies are of utmost importance for the AEC industry as a whole as the built 130 

environment is intrinsically linked to 3D space, and AEC professionals rely heavily on imagery for 131 

communication. In the UK, the Data for the Public Good report (National Infrastructure Commission, 132 

2017) considered AR and VR as key new technologies to increase the productivity on infrastructure 133 

delivery, maintenance, and support decision-making. Similarly, in the USA, the government’s 134 

information technology initiatives include an AR and VR initiative. In 2017, the emerging Citizen 135 

Technology Office launched the Federal Virtual/Augmented Reality program to coordinate the 136 

collaboration for the research and refinement of AR and VR business cases and pilot programs (GSA, 137 

2017). The US federal agencies expect that AR and VR technologies can potentially expand and 138 

improve their services in a wide range of applications from post-traumatic social disorder treatment, to 139 
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educating farmers on the installation of solar panels, and disaster management preparedness and 140 

response (GSA, 2017).  141 

AR is considered as an essential technology to improve construction projects (Woyke, 2016). Research 142 

on both AR and VR has been carried out for many decades, but recently the field has resurged driven 143 

by the development of new, more capable HMDs. Nevertheless, adoption in the AEC sectors of these 144 

technologies remains very low and circumscribed to very specific use cases. For example, client 145 

engagement using VR. The Manufacturing Technology Centre (MTC), in collaboration with i3P, a 146 

consortium of large construction companies and infrastructure providers, carried out an exploratory 147 

study into the maturity and applicability of AR and VR in construction companies in 2017 (MTC, 2017). 148 

The report reveals that only 37% of construction companies have some experience with AR and VR. 149 

This result is aligned with the authors’ own research, which estimates that only 32.4% of construction 150 

companies in the UK have used AR or VR at some capacity (Davila Delgado et al., 2019a).  151 

There are many varied use cases of AR for architecture, engineering and construction. However the 152 

main use case reported in literature is to assist with construction tasks, assembly operations and 153 

construction of pre-fabricated construction elements (e.g. Webster et al., 1996). Ahn et al. (2019) 154 

presented a projection-based AR approach for visualizing vital information within a user’s field of view 155 

during panel manufacturing for construction. The authors state that their approach will improve the 156 

quality of the final manufactured products by reducing the offset distances and ensuring that are within 157 

the tolerance levels. Fazel and Izadi (2018) presented an AR system that supports construction workers 158 

to construct complex double-curved brick walls. The presented system uses a marker-based approach, 159 

in which a camera tracks two markers, one located on the floor and another one on the worker’s HMD. 160 

The AR system computes the correct location of the wall to be constructed using the relative position 161 

and orientation of both markers. Then, visual guides are displayed on the worker’s HMD indicating the 162 

correct position and orientation of the bricks required for constructing the wall. Chalhoub and Ayer 163 

(2018) presented an AR system that supports workers to install electrical installations at the correct 164 

positions. Using AR, a 3D model of electrical conduits is overlaid at the correct position in the room, 165 

obviating the need for 2D drawings. Deshpande and Kim (2018) investigated the effects of AR to 166 

support assembly tasks. The authors developed an AR system that provided visual guides to assemble 167 

furniture pieces and found indications that AR guidelines can improve the understanding of spatial 168 

relationships among components. 169 

Other AR use cases include: (1) see-through opaque surfaces (e.g. walls, floor, road surfaces, etc.) to 170 

visualize construction elements and infrastructure assets (e.g. gas, water, or electricity underground 171 

cables) (Schall et al., 2009). (2) Support finding assets (e.g. power distribution boxes, pipe mains, etc.) 172 

in complex sites (Neges and Koch, 2016), (3) Support design reviews (Dong et al., 2013; Schubert et 173 

al., 2015). For example, Lin et al. (2019) presented an AR system that visualizes the results of computer 174 
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fluid dynamics simulations of indoor thermal environments on mobile devices. (4) Support 175 

collaborative design and the development of layouts (Nee et al., 2012). (5) Improve the information 176 

retrieval process during construction (Behzadi, 2016). Chu et al. (2018) investigated how AR can be 177 

used to improve information retrieval from BIM models using markers. (6) Enhance collaboration and 178 

facilitate remote support (Billinghurst and Kato, 2002). (7) Query physical objects by querying aligned 179 

but hidden model elements (Seo and Lee, 2013) (8) Verify whether new equipment will fit and for clash 180 

detection (Friedrich, Jahn and Schmidt, 2002). (9) Improve building site monitoring and inspections 181 

(Golparvar-Fard, Peña-Mora and Savarese, 2009). For example, Zhou et al. (2017) presented an AR 182 

approach to support the inspection of segment displacement during tunneling construction. The 183 

approach enables to overlay a quality control baseline model onto the real segment and measure the 184 

differences. (10) Support asset and facility management (Schall, Mendez and Schmalstieg, 2008; 185 

Palmarini et al., 2018). For instance, Baek et al. (2019) presented an AR approach for facility 186 

management that presents location-specific data in AR using image-based indoor localization. The 187 

marker-less approach estimates the user's indoor position and orientation by comparing the user's 188 

perspective with a predefined BIM model. Neges et al. (2017) presented an AR framework that digitally 189 

supports facility maintenance operators when navigating indoors. The framework combines a step 190 

counter device and visual live video feed to provide accurate indoor navigation support. (11) Support 191 

education and training (e.g. Eiris Pereira et al., 2019). Turkan et al. (2017) presented an AR system to 192 

teach structural analysis and to help students understanding the behavior of structural elements in a 193 

three-dimensional context. The AR system enables students to define simple structural systems and 194 

interactively change the loads and observe the reaction with the instant feedback provided by the AR 195 

interface. 196 

The application of VR in the AEC sector is arguably more mature than that of AR. The textbook by 197 

Whyte and Nikolic (2018), reviews the practical applications of VR in the design, construction, and 198 

management of the built environment. The main use cases include: (i) support with design reviews 199 

(Dunston et al., 2011; Aromaa and Väänänen, 2016; Berg and Vance, 2016). For example, Boton (2018) 200 

proposed a method to support constructability analysis meetings using VR environments. The method 201 

enables to export BIM-based construction simulations into a VR application for immersive 202 

visualization. Wolfartsberger (2019) presented a VR system for engineering design review, in which 203 

faults in designs were easier to identify, and the review process was carried out faster compared with 204 

traditional review processes. (ii) Support with immersive design and drafting (Whyte et al., 2000; Roach 205 

and Demirkiran, 2017). For instance, Lin et al. (2018) developed a VR approach to support the design 206 

of healthcare facilities by improving the communication between the design teams and healthcare 207 

stakeholders. Du et al. (2018b) presented an approach that enables real-time synchronization of BIM 208 

data with VR applications. The approach enables to update a BIM model based on the changes made in 209 

VR application automatically and simultaneously, e.g. changing object dimensions, changing object 210 
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locations and changing object types. (iii) Facilitate the creation of more useful simulations and testing 211 

of design solutions. (Mujber, Szecsi and Hashmi, 2004; Rekapalli and Martinez, 2011). Motamedi et 212 

al. (2017) presented an approach to test the effectiveness of signages of Japanese subway stations on 213 

VR environments. Most notably, Ergan et al. (2019) used a set of biometric sensors, and physiological 214 

metrics such as skin conductance, brain activity, and heart rate to provide an indication of the levels of 215 

stress and anxiety users experienced in VR environments. The authors claim that their approach 216 

provides a systematic way for architectural design firms to get accurate user feedback before the design 217 

is finalized. (iv) Improve education and training (Boud et al., 1999; Zhao and Lucas, 2015). Fogarty et 218 

al. (2018) investigated how VR can be used to improve the student’s spatial understanding of complex 219 

spaces. (v) Improve health and safety. For example, Albert et al. (2014) presented a VR method for 220 

hazard identification in construction sites. Lovreglio et al. (2018) developed a VR solution to assess the 221 

level of preparedness for building evacuations during earthquakes. Shi et al. (2019) used VR to assess 222 

distinct types reinforced learning methods on the behavior of construction workers associated with fall 223 

risks. Dris et al. (2019) proposed a VR approach that supports risk identification and improves the data 224 

exchange between BIM models and VR applications. Lastly, (vi) improving stakeholders’ engagement 225 

and communication (Annetta et al., 2009; Du, Shi, et al., 2018; Hassan, Taib and Rahman, 2018). 226 

Pratama and Dossick (2019) conducted a study with AEC companies and identified that majority of 227 

companies use VR for generating immersive building walkthroughs. 228 

Note that there are no studies reported in literature that analyze the limiting and driving factors 229 

influencing the adoption of AR and VR in construction. Most of the studies addressing adoption 230 

limitations focus only on technical aspects e.g. the work by Behzadan et al. (2015) and Palmarini et al. 231 

(2018); or on specific use-cases e.g. the work of Li et al. (2018) on construction safety. Nevertheless, 232 

section 8.1 presents a detailed comparison of the findings of this study with the studies above and with 233 

other AR and VR adoption studies carried out in other fields (Tourism, Healthcare, and Education). 234 

3 Research Methodology 235 

A mixed research method, as presented by Creswell (2017), was used for this study. It combines 236 

qualitative data collection and analysis and quantitative data collection and analysis. This type of mixed 237 

research method has been proved to be a powerful tool to investigate complex processes and systems 238 

in other areas, such as the healthcare sector (Fetters, Curry and Creswell, 2013). For this reason, they 239 

were selected to be used in this study. These types of mixed methods are very useful in identifying 240 

underlying factors in complex systems by supporting and guiding the quantitative data collection and 241 

analysis with qualitative research activities. The combination of both qualitative and quantitative 242 

analyses helps to explain, categorize and generalize findings (Fetters, Curry and Creswell, 2013). Figure 243 

3 presents a diagram of the research methodology used. The first step, qualitative analysis, was to 244 

conduct four exploratory workshops with experts in the field, from industry and academia, in which a 245 
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series of focus group discussions (FGDs) were conducted (Table 2). Findings from the FGDs were 246 

compiled into two lists of factors that limit and drive adoption. In the second step, quantitative analysis, 247 

the results from the previous step were used to develop a quantitative data collection instrument, i.e. 248 

questionnaire. The questionnaire was administered to specialists and academics with expertise in AR 249 

and VR based in the UK; the sampling method used, and the distribution of the participants are detailed 250 

in section 5.1. Using the results of the questionnaire, the identified factors were ranked and categorized 251 

using principal component analysis (PCA). A reliability analysis was carried out on the questionnaire 252 

results to validate the internal consistency of the results, and multivariate analysis of covariance was 253 

carried out to test whether there were significant statistical differences in the responses that could be 254 

attributed to the varied profiles of the respondents. Lastly, using the results of the qualitative and the 255 

quantitative analysis, relevant insights into the factors limiting and driving the adoption of AR and VR 256 

in the construction industry were drawn and explained.  257 

4 Qualitative sampling and analysis 258 

The main activities conducted in the qualitative part of the study were four exploratory workshops, in 259 

which two FGDs were carried out at each workshop. In total, 8 FGDs were held with durations between 260 

30 and 45 minutes. Fifty-four experts from 36 organizations, companies, and academic institutions 261 

based in the UK participated in workshops. The intention was to assemble multidisciplinary expert 262 

groups with varied expertise; therefore, experts from academia, construction companies, design offices, 263 

engineering consultancies, and technology development companies were invited to participate. The 264 

invited experts had to be working on AR and VR, have more than 3-year experience, and working on a 265 

company from the categories mentioned above. The size of the groups was capped at ~15 experts so 266 

that the discussions could be managed more easily, and all the participants could have the opportunity 267 

to participate. All the participants were different for each workshop. An overview of the participants 268 

and the FGDs are presented in Table 2.  269 

The FGDs were used to collect the opinion of experts on the field regarding factors that limit and drive 270 

the adoption of AR and VR in the construction industry. FGDs are very effective tools for qualitative 271 

and exploratory analysis as they allow the participants to build on arguments from the other participants 272 

(Kvale, 1994). This is not the case with individual interviews, in which important factors could be 273 

missed in the study. A thematic analysis based on an example from literature was used for the qualitative 274 

part of the study, which includes: (1) data familiarization, (2) data coding and segmentation, (3) 275 

development of themes, and (4) grouping of related themes. Each FGD consisted of two activities: a 276 

factor identification activity, in which small groups of participants identified factors; and a group 277 

discussion session, in which all the identified factors were discussed among all the participants. In all 278 

the activities, a member of the research team was present to guide the activities. The FGDs were audio-279 

recorded and notes were taken by hand. All the data generated in the FGDs were compiled and 280 
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categorized into tables. Tables 3 and 4 present samples of the type of data compiled from the FGDs. 281 

This data was used to develop a quantitative data collection instrument, which is explained in the next 282 

section. 283 

5 Quantitative sampling and analysis 284 

Based on the findings of the FGDs and the qualitative analysis, 21 limiting factors and 21 driving factors 285 

for the adoption of AR and VR in the construction industry were defined, as shown in Tables 6 and 7, 286 

respectively. A questionnaire was developed to validate and quantify the importance of both sets of 287 

factors. A 1 to 5 Likert scale was used in the questionnaire to codify the responses, in which 1 288 

corresponds to the lowest importance and 5 to the highest importance. The respondents were asked to 289 

assign an importance value to each of the limiting and driving factors. The questionnaire was pilot-290 

tested by 6 experts (4 from industry and 2 from academia) to ensure the clarity of the questions and the 291 

structure and logic of the questionnaire. 292 

5.1  Respondents composition  293 

Experts from academia, construction companies, engineering consultancies, design firms, and 294 

technology development companies, focused on AR and VR and based in the UK, were approached to 295 

participate. A combination of convenience and stratified sampling methods was used to target potential 296 

participants. Stratification was carried out by dividing the potential participants into categories based 297 

on the type and size of their organizations. Between 3 to 5 experts from the following eight categories 298 

were targeted to participate: (i) top construction companies by revenue, (ii) small and medium 299 

construction companies, (iii) top engineering consultancy companies by number of employees, (iv) 300 

small and medium engineering consultancy companies, (v) top design firms by number of employees, 301 

(vi) small and medium design firms, (vii) technology development companies, and (viii) academia. 302 

Within the defined categories, the experts that were readily available to participate were selected 303 

(convenience sampling), instead of selecting experts randomly. 304 

In total, 45 experts were contacted, and 34 completed questionnaires were received, which represents a 305 

75.5% response rate. The distribution of the respondents is as follows (see Table 5): 11.8% are 306 

researchers from academic institutions, 20.6% work in construction companies, 32.4% work in 307 

engineering consultancies, and 17.6% work in design or architecture offices and in technology 308 

development companies. Based on the participants' responses, an expertise level factor was developed 309 

to provide an indication of the relevant experience of the respondents. This factor is the average of the 310 

following self-declared attributes of the participants: (1) years of professional experience, (2) years of 311 

experience using AR&VR, (3) level of implementation complexity in VR, and (4) level of 312 

implementation complexity in AR. The distribution of the expertise level factor of the participants is 313 
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presented in Table 5, in which more than 75% of the respondents identify themselves as advanced or 314 

experts in the field. 315 

5.2  Reliability analysis and multivariate analysis of covariance 316 

A reliability analysis was conducted to test the internal consistency of the factors included in the 317 

questionnaire. Two metrics were used for the reliability analysis, i.e., Cronbach's Alpha, which is a 318 

correlation estimate for randomly equivalent measures; and Gutman’s lambda-2, which estimates 319 

correlation for parallel measures. The Cronbach's Alpha and Gutman’s lambda-2 for the limiting factors 320 

are 0.749 and 0.791 (Table 6), and for the driving factors are 0.669 and 0.729 (Table 7). The obtained 321 

metrics, for both limiting and driving factors, indicate an acceptable internal consistency of the collected 322 

data (Nunnally and Bernstein, 1994). A multivariate analysis of covariance was conducted as well to 323 

identify whether the different roles of the participants had a significant statistical influence in their 324 

responses while controlling for their difference in expertise level. The Pillai’s Trace test statistic was 325 

used for the multivariate analysis of covariance, which resulted higher than 0.05 for both the limiting 326 

factors (0.478) and the driving factors (0.514) (Table 6 and 7 respectively). This indicates that the 327 

different roles do not have a significant effect when controlling for the difference in expertise level 328 

(Morrison, 2005). 329 

5.3  Results 330 

Table 6 and Table 7 present the limiting and driving factors ranked according to the mean value of all 331 

the responses, respectively. The median, standard deviation (SD), and skewness are presented as well. 332 

The median is presented because it is not affected by outliers, so that very disparate answers do not 333 

affect the overall results. The SD provides an indication of how dissimilar the answers are. In this case, 334 

it indicates how dissimilar the answers are among respondents. Low SD indicates that respondents agree 335 

on the importance of the factors, and high SD indicates disagreement. The highest SD for this study is 336 

1.4, which can be considered a low value and may indicate a good agreement among respondents.  337 

Skewness measures the degree and direction of asymmetry. A negative skewness indicates that the 338 

mean is less than the median and that the distribution of responses is concentrated in high values. A 339 

large positive skewness indicates that the distribution of the responses is concentrated in low values; 340 

and a skewness equal to zero indicates a normal distribution. Figures 2 and 3 present the distribution of 341 

the importance of the limiting and driving factors using Letter-Value plots (Hofmann, Wickham and 342 

Kafadar, 2017). Letter-Value plots are a variation of box plots that show more quantiles and provide 343 

more information about tail behavior. Letter-Value plots provide a non-parametric representation of a 344 

distribution in which all features correspond to actual observations. Using Letter-Value plots is possible 345 

to visualize smaller differences among distributions that box plots cannot present. The vertical scales 346 

in Figures 2 and 3 indicate the importance of each factor. Different shades of color have been used to 347 
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indicate the varying medians of each factor. Darker shades indicate higher medians, while lighter shades 348 

indicate lower medians.  349 

The highest-ranked limiting factor is (L11) Expensive hardware and training. It has the lowest SD and 350 

a negative skewness, which indicates that for most of the respondents this factor is the most important. 351 

The lowest-ranked factor is (L18) It is seen as a cause for job insecurity, which has one of the highest 352 

SD and a positive skewness. This indicates variation of opinions between respondents and an overall 353 

low importance. The overall standard deviation for limiting factors is 1.18, which indicates that the 354 

responses between respondents varied on average less than 1.2 points in the Likert scale. Looking at 355 

Figure 4 is possible to identify that six limiting factors (L2, L8, L9, L11, L16, and L21) are regarded as 356 

the most important with a median of 4. Limiting factor L4 has the second level of importance (median 357 

of 3.5), and the rest have medium importance (median of 3), with the exception of limiting factor L18, 358 

which is the less important (median of 2.5). 359 

The highest-ranked driving factor is (D11) A way to provide new and better services. It has an average 360 

SD and a large negative skewness, which indicates that for most of the respondents this factor is the 361 

most important. The lowest-ranked factor is (D4) to be part of the trend, which has one of the highest 362 

SD and a large positive skewness. This indicates a variation of opinions between respondents and 363 

overall low importance. Similarly, to the limiting factors, the overall standard deviation for driving 364 

factors is 1.183. Figure 5 presents D8 and D11 as the most important driving factors with a median of 365 

4.5. Thirteen driving factors are considered as very important with a median of 4 and seven as somewhat 366 

important with medians of 3.5 and 3. 367 

5.4  Principal component analysis 368 

Principal Component Analysis (PCA) is a data reduction tool that enables to represent a complex 369 

scenario with a large number of correlated variables with fewer uncorrelated variables. In this case, 370 

PCA was carried out to identify a smaller set of underlying factors from the previously identified 371 

limiting and driving factors. The intention of this analysis is to identify underlying correlations among 372 

the identified factors and group them into a smaller set of components. In other words, the intention is 373 

to create groups of similar and related factors. Reducing the 42 identified factors into a more 374 

manageable number of grouped factors facilitates understanding and contributes to devising actions to 375 

drive up adoption. PCA was used to capture as much information in the original factors based on the 376 

correlations among them. Tables 8 and 9 present the results of the PCA conducted on the limiting and 377 

driving factors, respectively. Four components, or groups of factors, were extracted from the limiting 378 

factors and four from the driving factors. Tables 8 and 9 present (1) the percentage of variance, an 379 

indication of how much certain component and its grouped factors contribute to representing the 380 

complex scenario that the factors described. A higher percentage indicates that the component 381 



 12 

represents better the correlation between factors. (2) The defining factor loading, an indication of how 382 

much a factor belongs to a certain component, and (3) the factors communalities, which are estimates 383 

of the variance accounted by the factors. Communalities are a metric between 0 and 1, with high values 384 

indicating that the extracted components represent the variables well. Note that the factors within each 385 

component are ordered based on their defining factor loading and not their importance. 386 

Table 8 shows that the four components account for more than 75% of the variance in the responses for 387 

the limiting factors. In other words, these four categories represent the underlying key points of 75% of 388 

the most important limiting factors. Table 9 shows that the four components account for more than 77% 389 

of the variance for the driving factors. The factor loadings and communalities from the limiting and the 390 

driving factors indicate that the extracted components represent well all the underlying factors. The 391 

components were interpreted into categories and named based on the assigned factors. For the limiting 392 

factors, the four categories defined are: (1) “Immature technologies”, (2) “Non-technical issues”, (3) 393 

“Special requirements for implementation”, and (4) “Sector structure and client-contractor dynamics”. 394 

For the driving factors the four categories defined are: (i) “Improving performance in projects”, (ii) 395 

“Improving the companies’ image”, (iii) “Improving companies’ overall performance”, and (iv) 396 

“Bolstering research and development”. Note that the categories are ordered based on the percentage 397 

of variance that they represent.  These eight categories represent the main factors limiting and driving 398 

the adoption of AR and VR in the construction industry and are discussed in the next sections. 399 

6 Limitations for the adoption of AR and VR in the construction industry 400 

This section provides an explanation of the four extracted categories and the corresponding limiting 401 

factors presented in Table 8. Note that PCA only defines groups of correlated factors, but it does not 402 

specify the correlations. This section seeks to specify and explain these correlations, considering the 403 

construction industry context and dynamics. Note as well that the categories are ordered based on their 404 

percentage of variance and not on the importance of their individual factors. 405 

6.1  Immature technologies 406 

The main limitation for the adoption of AR and VR in construction is the perception that they are 407 

immature technologies that cannot be fully used in practice yet. Battery limitations (The battery of AR 408 

headset usually lasts only 30 minutes), narrow fields of view, low tracking accuracy, low resolutions, 409 

uncomfortable HMDs are commonly cited factors that disincentivize the use of AR and VR 410 

technologies in real-life projects. Construction and engineering applications demand higher levels of 411 

accuracy, consistency, and efficacy. For example, the very complex 3D information models commonly 412 

used in construction and engineering cannot be handled by current AR devices. In this respect, most of 413 

the AR and VR devices have been developed for the entertainment sector; thus, their lack of capabilities 414 

for the engineering and construction sectors. Devices that address the specific high-level requirements 415 
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of professional sectors need to be developed. However, using existing devices for construction and 416 

engineering applications is an effective exercise to identify which capabilities need to be improved for 417 

the “engineering-level devices” and identify additional ones such as water resistance, ruggedness, etc.   418 

Regarding labor dynamics, the construction industry is not yet a mature field, unlike the entertainment 419 

industry. It is very difficult for construction firms to attract AR and VR experts who usually prefer the 420 

entertainment and gaming industries. There are not enough graduates with the required skills, and only 421 

large firms manage to have teams dedicated to AR and VR development. In addition, the workforce in 422 

the construction industry needs to be upskilled, which might represent a huge challenge as, in general 423 

the construction industry does not have a trained workforce, and upskilling has not been widely 424 

employed (Hampson, Kraatz and Sanchez, 2014). 425 

6.2  Non-technical issues 426 

The second category in importance includes factors related to non-technical issues that limit adoption. 427 

For example, it is difficult for firms to get access to expert knowledge and advice. Construction firms 428 

do not have knowledge of the AR and VR hardware and software market and its dynamics, and it is 429 

difficult to get advice on plans for procurement and to compare devices. It is difficult for firms to get 430 

access to finance and justify the investments required because the cost implications and potential 431 

benefits are not clear. The immaturity of the AR and VR market and the lack of expert advice are largely 432 

responsible for these issues. Also, AR and VR technologies do not have a good reputation in the 433 

construction and engineering field. AR and VR technologies are perceived as technologies for 434 

entertainment and with limited potential for complex engineering activities. This notion is rightly based 435 

on the factors explained in the previous sub-section. However, this notion does not consider the huge 436 

potential benefits that “engineering-grade” AR and VR technologies can bring to the AEC sectors. The 437 

idea that AR and VR technologies are only for entertainment limits adoption efforts as not enough time 438 

is allowed for experimentation. One approach to counter this notion is to highlight the use of other 439 

entertainment tools for engineering applications. For example, game engines have been used to develop 440 

simulation environments to train driverless cars (Fayjie et al., 2018) and for structural monitoring 441 

(Davila Delgado et al., 2018). Lastly, as with every other digital technology, issues with the aversion 442 

to change, job insecurity, data security, and data ownership exist. Such issues are particularly pertinent 443 

as the construction industry is known for its poor data management practices (Jonassen, 2010), low 444 

digitization (Manyika et al., 2015), and untrained workforce (Castro-Lacouture, 2009). 445 

6.3  Special requirements for implementation 446 

The third category includes limiting factors that concern the special requirements needed to adopt AR 447 

and VR technologies. VR requires head-mounted displays (HMDs), special controllers, movement 448 

tracking sensors and a powerful personal computer with a high-end graphics processing unit. Only 449 
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specific personal computers and laptops can run VR applications. Mobile VR requires high-end mobile 450 

phones and head-mounted adapter. AR requires very expensive HDMs. Mobile AR requires newer 451 

versions of mobile phones and tablets. All this equipment can represent a very significant investment, 452 

particularly if a wide adoption is planned for which many sets of equipment will be required. More 453 

importantly, AR and VR require large spaces or dedicated rooms to set up the equipment. Allocating 454 

large empty spaces for AR and VR can represent large costs for small and medium firms. 455 

This category also includes the lack of capabilities to ensure a seamless and robust information 456 

exchange. This lack of capabilities is amplified by the poor data management and data exchange 457 

practices typical in the construction industry (Vähä et al., 2013; Davila Delgado et al., 2016, 2017),  458 

and the impossibility of playing content developed for a specific AR or VR device on another one. This 459 

lack of interoperability among AR and VR devices limits adoption greatly as construction firms are 460 

forced to choose between different platforms. 461 

Lastly, AR and VR content is experienced by a single individual. This is perceived as a major limitation 462 

for adoption even though multiuser capabilities for AR and VR are now in development. For example, 463 

up to 3 people can wear an AR HMD and experience the same content in the same physical location. 464 

In the case of VR, up to approximately 25 people can be in the same virtual room while in different 465 

physical locations. Nevertheless, these capabilities have not been fully developed. AR multiuser is 466 

limited by the bandwidth of the wireless connection, and more importantly, multiuser experiences in 467 

which some people use VR HMDs and others use AR HMDs have not been fully developed yet. The 468 

lack of effective multiuser capabilities is the reason why AR and VR are perceived as technologies that 469 

can improve communication, but that also increase isolation and inhibit collaboration. 470 

6.4  Sector structure and client-contractor dynamics 471 

The last category in importance includes factors related to the structure of the construction industry and 472 

the dynamics between clients and contractors. The AEC sectors are highly fragmented, which limits the 473 

adoption of emerging digital technologies (Jonassen, 2010; Vähä et al., 2013). Construction projects 474 

are delivered by a large and varied group of small companies (Hampson, Kraatz and Sanchez, 2014), 475 

and the supply chain is highly fragmented. The successful adoption of digital technologies like AR and 476 

VR will require a lower level of fragmentation and alignment of interests within the supply chain. For 477 

example, other sectors such as aerospace and automotive also have very complex and varied supply 478 

chains; however, the level of fragmentation is considerably lower, and the digitization is considerably 479 

higher as well. The other main factor limiting adoption in this category is the lack of client requirements 480 

to use AR and VR technologies in projects. Lack of client requirement has been identified as a 481 

significant limitation for the uptake of other digital technologies in the AEC sectors as well (Eadie et 482 

al., 2015). The client plays a very important role for adoption, given the high-risk low-profit 483 
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characteristic of the construction sector (Castro-Lacouture, 2009), in which the adoption of new 484 

technologies, productivity, and quality improvements are not a priority. 485 

7 Drivers for the adoption of AR and VR in the construction industry 486 

Similar to the previous section, in here an explanation of the four extracted categories and their 487 

corresponding limiting factors (Table 9) is presented.  488 

7.1  Improving performance in projects 489 

The main driver for the adoption of AR and VR technologies in the AEC sectors is that it can improve 490 

the delivery of construction projects. Construction companies recognize that AR and VR can contribute 491 

to improve communication and collaboration, improve project understanding, improve productivity, 492 

and reduce spending in projects.  There is no hard evidence of these benefits in the construction industry, 493 

but experiences from other industries are an indication that they can be achieved. For example, Boeing 494 

(2018)  reported up to a 40% increase in productivity for assembly tasks using AR and other 495 

improvements in productivity for industrial applications have been also reported in literature (e.g. 496 

Ramírez et al., 2015). Other factors in this category relate to issues that affect project delivery, e.g. the 497 

decreasing budgets for construction, the notion of doing more with less, the difficulties in accessing 498 

labor, and the lack of government incentives.  499 

7.2  Improving the companies’ image 500 

The second category includes driving factors related to the potential of AR and VR adoption to improve 501 

the image of companies. Nowadays, there is the idea that every successful company is a technology 502 

development company. Construction companies are rebranding themselves as smart engineering 503 

solutions providers. Construction companies identify the need to adopt digital technologies to improve 504 

the reputation of the company. Strong motivators to adopt AR&VR are the desire to not be left out and 505 

to have a differentiating advantage in the market. These motivations are accentuated as large technology 506 

companies, e.g. IBM (Murchu, Platt and Webb, 2016) and Oracle (Ali, 2018), are venturing into 507 

construction. Their expertise in digital technologies such as Big Data and Artificial Intelligence pose 508 

huge potentials to revolutionize the global AEC sectors (Bilal et al., 2016; Davila Delgado et al., 2019); 509 

which its global market is expected to reach $10 trillion by 2020 (Farnham, 2018). The importance of 510 

the construction sector is further emphasized by its share of national GDP, which can represent up to 511 

15% of GDP in most countries (Oesterreich and Teuteberg, 2016); and the growing venture capital 512 

investment on construction technology start-ups, which reached more than $1 billion in the first half of 513 

2018 (Jones, Lang and Lasalle, 2018). In this regard, AR and VR adoption can be driven by a strategic 514 

decision from top management or by client requirements, as identified by factors D1 and D2 in Table 515 

9. There are indications that suggest that top management decisions on adoption of digital technologies 516 
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are very effective on driving adoption; as highly-digitized companies closely tie their digital and 517 

corporate strategies and adapt significantly their corporate strategies to the adoption of new digital 518 

technologies (Bughin, LaBerge and Mellbye, 2017). 519 

7.3  Improving companies’ overall performance 520 

This category includes the factors representing the desire of companies to strive for the success of the 521 

company as a whole. The adoption of AR and VR technologies is regarded as a way to provide new 522 

and better services and to expand to other the markets. For example, companies from sectors ranging 523 

from commerce consultancies to retail and beauty products, are investing significantly in AR and VR 524 

technologies. It is also seen as a way to improve the organization’s work culture and to increase overall 525 

productivity. The adoption of any emerging digital technology can contribute to improving work culture 526 

in organizations (Buchanan, Kelley and Hatch, 2016). The adoption of AR and VR is also considered 527 

as a way to reduce risks, which is very important for the construction industry, as is regarded as a high-528 

risk sector (Castro-Lacouture, 2009). 529 

7.4  Bolstering research and development 530 

Bolstering Research and Development (R&D) is the last category of factors that drive adoption, which 531 

includes factors D6 (Fostering research curiosity of the employees) and D12 (Increasing R&D 532 

investment in the construction sector). The construction industry has not invested sufficiently in R&D 533 

(Hampson and Newton, 2009; Bock, 2015), and the scope of the research carried out is too narrow to 534 

foster step-change innovations (Forbes and Ahmed, 2011). The lack of sufficient investment in R&D 535 

and its narrow scope contribute to a weak innovation culture in the construction industry (Manley et 536 

al., 2008). This is exemplified by the remarkably low adoption of digital technologies in the 537 

construction industry, as its digitization index is one of the lowest out of 22 different industries surveyed 538 

(Manyika et al., 2015). There are strong indications from examples in other sectors, such as automotive 539 

and aerospace (Gandhi, Khanna and Ramaswamy, 2016), that increasing the R&D investment in the 540 

AEC sectors will drive adoption of digital technologies including AR and VR. Globally, the investment 541 

in R&D in construction has doubled in the last decade (Blanco et al., 2018). The UK construction 542 

industry has increased its R&D investments 18-fold in last 11 years up to 2017 (Prescott, 2018); moving 543 

construction from the bottom of the R&D sector list to an intermediate position. Still, the UK aerospace 544 

industry R&D investment is ~4 times larger and the automotive is ~10 times bigger (Prescott, 2018). 545 

The levels of R&D investment in the construction industry must continue and accelerate to catch up 546 

with the other leading sectors. Notably, the results of this study also indicate that resources —time in 547 

particular— must be allocated to foster and enable workers to experiment with emerging technologies. 548 

During the FGDs, anecdotical evidence was provided, which indicated that the adoption of AR and VR 549 
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yielded better results when it was driven by a group of enthusiastic workers with enough freedom and 550 

time than by a top management decision. 551 

Note that factor D17 is not grouped in any of the categories above because is not strongly correlated to 552 

them. This factor is the fifth in importance representing a 7.63% percentage of the variance. Factor D17 553 

identifies that adequate branding and marketing strategies to present AR and VR solutions as capable 554 

of supporting construction and engineering tasks would benefit uptake. 555 

8 Discussion 556 

The main limitation for adoption is that AR and VR technologies are regarded as expensive and 557 

immature technologies. To tackle these issues, R&D efforts should be focused on developing 558 

technologies for the specific requirements of the AEC sectors. Given the large investments required to 559 

implement AR and VR in terms of equipment, space, time, and upskilling; only by developing AR and 560 

VR hardware and software specific for the AEC sectors the investments can be justified. In this respect, 561 

further studies are needed to identify what capabilities are required for the AEC sectors and are missing 562 

in current AR and VR hardware and software. R&D should address non-technical issues as well. Better 563 

AR and VR devices will not be enough. Evidence of accrued value from real-life projects is required as 564 

well. Detailed cost-benefit studies and real-life demonstrators have the potential to provide evidence 565 

and improve the reputation of the technologies. Future research should consider a more granular study 566 

regarding the limitations of AR and VR technologies for specific construction tasks and identify in 567 

which phases of the built asset life cycle the implementation is easier and in which phases represent the 568 

largest benefits for adoption. 569 

Improvements in project delivery and providing new and better services are the main drivers for 570 

adoption. R&D efforts should focus on boosting and showcasing these factors. For example, (i) 571 

developing workflows that integrate AR and VR into current standard practices, (ii) developing new 572 

business models that leverage AR and VR capabilities, and, most importantly, (iii) defining actions to 573 

develop a digitally empowered workforce. A study by Gandhi et al., (2016), identified providing digital 574 

tools in the hands of their employees is the a key factor to ramp up productivity. In this respect, 575 

promoting the use of AR and VR can kick-start a virtuous cycle, in which adoption of AR and VR can 576 

improve productivity and the adoption of other emerging digital technologies as well. A more digitized 577 

construction industry will potentially help addressing the massive labor shortage in the construction 578 

industry as well. For example, in the US there were ~430,000 vacant construction jobs as of April 2019 579 

(US-Labor-Bureau, 2019). Nowadays, workers avoid construction jobs, perceiving them as dangerous, 580 

difficult, and dirty, as they prefer take on jobs in retail or transportation (Cilia, 2019). A more digitized 581 

construction industry will make the industry more appealing and help attract young talent. 582 
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Lastly, stakeholders should explore alternative and innovative use-cases of AR and VR, which will help 583 

to justify the investments required to adopt AR and VR. A detailed agenda on future research, new 584 

capabilities and innovative use-cases has been presented in a recent report by the authors (Davila 585 

Delgado et al., 2019a). Some of the most notable are: (i) AR and VR teleoperation and plant control 586 

(Lipton et al., 2018), (ii) diminished reality (Mori, Ikeda and Saito, 2017), and (iii) AR and VR archival 587 

(Hahn et al., 2019).  588 

Regarding implications for practice, this study provides stakeholders with a manageable number of 589 

categories of limiting and driving factors. These categories are explained, and insights are provided 590 

considering the specific context and dynamics of the construction industry. Stakeholders can use these 591 

insights to devise actions to mitigate the limiting factors and to boost the driving factors. For example, 592 

stakeholders can use the information provided in this study to define specific strategies to facilitate the 593 

adoption of AR and VR within organizations and to educate clients as well. In this regard, Section 8.1 594 

presents a set of short-term and medium-term actions that can help stakeholders to device an action plan 595 

to facilitate AR and VR adoption. 596 

8.1  Roadmap for improving adoption 597 

Based on the limiting factors and informed by the driving factors presented in Tables 8 and 9, a roadmap 598 

to improve adoption of AR and VR technologies has been developed. This roadmap sets out a series of 599 

short-term and medium-term actions that AEC companies can carry out to increase the adoption of AR 600 

and VR technologies within the built environment. The timescales in this table are derived by factoring 601 

in the importance of the limitation and the feasibility of its resolution. Short-term refers to actions that 602 

can be carried out within a year, and medium-term refers to actions to be carried out within 3 years.  603 

The short-term actions are: (i) Increased training opportunities for AEC professionals in AR and VR. 604 

Many AEC professionals lack skills in these technologies, and increased training opportunities are 605 

required to fill this gap. This can be achieved through increased continuing professional development 606 

opportunities and integration of AR and VR skills within university education. Note that digitally 607 

engaged workforces are a crucial factor for success of leading companies, which can have employees 608 

that are more than 10 times more engaged with digital technologies (Gandhi, Khanna and Ramaswamy, 609 

2016). (ii) Increased access to expert knowledge. Many AEC organizations lack expert knowledge to 610 

properly leverage AR and VR technologies. To overcome this, a directory of consultants and other 611 

organizations able to support organizations through the adoption of these technologies should be 612 

established. Additionally, development of in-house expertise should be fostered by attracting talent 613 

from other sectors and upskilling of the current workforce. (iii) Correction of industry perceptions and 614 

better branding of AR and VR technologies. Industry perceptions of AR and VR technologies are often 615 

that they are primarily for “gaming” purposes. To widen the adoption of these technologies this 616 



 19 

perception should be dispelled through an awareness driving initiative and an improved branding of 617 

products to signify their professional usage. (iv) Increasing client awareness and decreasing aversion 618 

to the possibilities of AR and VR. Construction clients are generally unaware of the benefits of AR and 619 

VR technologies and thus reluctant to include this within project costs.  Awareness driving activities 620 

are required to overcome this. 621 

The medium-term actions are: (i) Implementation of systematic and semi-automated workflows to 622 

create AR and VR content. AEC companies that have already tested AR and VR should invest in 623 

developing automated workflows that facilitate the use of BIM models and project data to generate AR 624 

and VR content. Developing systematic and semi-automated workflows facilitates greatly content 625 

creation and will increase adoption. For example, the work of Du et al. (2018b) can potentially be very 626 

useful to enable real-time synchronization of BIM data with VR applications. (ii) Implementation of 627 

data exchange standards and open-source conversion tools. Current AR and VR technologies are not 628 

compatible with AEC standard data exchange formats (e.g. Industry Foundation Classes), making the 629 

integration of standard AEC software packages and AR and VR software tools difficult. Thus, AEC 630 

companies should engage and aid standardization bodies to include support for AR and VR formats. 631 

AEC companies should also collaborate on developing open-source conversion tools between AEC file 632 

formats and AR and VR formats. In this case, the work of Dris et al. (2019) is very relevant as ontologies 633 

that enable bi-directional links between the BIM models and VR applications are essential to ensure 634 

robust data exchanges. (iii) Increased support for data security and ownership matters. AR and VR 635 

toolchains do not generally address information security and privacy issues out of the box. These are 636 

key concerns for many use cases, and AR and VR software tools need to be expanded to provide support 637 

for security and privacy out of the box. AEC companies must ask software providers to better support 638 

these cases. 639 

8.2  Comparison with similar studies 640 

Recently there has been a big increase in research reported in literature regarding AR and VR. However, 641 

there are no relevant studies that investigate the factors limiting and driving the adoption of both AR 642 

and VR in the construction industry. Behzadan et al. (2015) presented a literature review that focuses 643 

only on AR for civil infrastructure. The study focuses only on the technical aspects of AR 644 

implementation. The authors identify the two main technical problems that AR solutions face for 645 

implementation, i.e.: (1) the registration problem, which relates to the difficulties to solve the spatial 646 

alignment of real and virtual entities. (2) The occlusion problem, which relates to the visual illusions 647 

required so that the virtual and real-world coexist in a credible manner. The main use cases identified 648 

by the authors are: support with damage identification, localization of buried elements and support for 649 

collaborative design. Li et al. (2018) considered AR and VR together, however, the literature review 650 

focuses only on construction safety, for which articles published between 2000 and 2017 were analyzed.  651 
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The authors conclude that the top applications reported in the literature include hazards identification, 652 

safety education and training, and safety inspection and instruction. Guo et al. (2017) also presented a 653 

review on visualization methods for construction safety management, which addressed AR and VR only 654 

in a limited manner. Palmarini et al. (2018) presented a technical review of AR research reported in 655 

literature for industrial maintenance tasks in various fields such as aviation, nuclear, consumer 656 

technology and plant and mechanical maintenance. The authors conclude that AR is still not sufficiently 657 

mature and reliable to comply with industrial requirements. These studies are the most closely related 658 

to the investigation presented here. However, the studies above are focused only on a limited set of 659 

applications and do not focus on the factors that limit or drive adoption. More importantly, all the studies 660 

above arrive at conclusions only based on literature analyses, which limits the amount of information 661 

that can be collected and analyzed. The study presented here uses a more robust research method that 662 

enables to capture more information with practical relevance about the actual factors limiting and 663 

driving adoption. The information was captured directly from practitioners across various types and 664 

sizes of AEC companies, which reflects the actual structure of the construction sector in practice. 665 

Therefore, the findings presented in this study can capture the whole complex dynamic of AR and VR 666 

adoption more effectively. For example, this study describes the non-technical issues that limit 667 

adoption, it addresses how the structure and dynamics of the construction sector may affect adoption, 668 

and, it defines the factors that AEC companies can leverage to drive adoption; which none of the other 669 

studies addressed. 670 

Reviews and studies on AR and VR in other fields have been carried out recently as well. Here, 671 

examples from Tourism, Healthcare, and Education are presented, which arrived at similar conclusions 672 

as this study. This is an indication of the relevance and the potential generalization of the findings 673 

presented in this study. Yung and Khoo-Lattimore (2017) presented a literature review on AR and VR 674 

research in Tourism. The authors identified the following use cases (i) marketing, (ii) tourism education, 675 

(iii) experience enhancement, (iv) improved communication among individuals, and (v) food safety 676 

training. The authors note that there are prevalent issues such as a lack of awareness of the technology, 677 

poor usability, large time commitment for implementation, and the unwillingness to accept a virtual 678 

substitute. Glegg and Levac (2018) presented a scoping review to identify barriers and facilitators to 679 

support the implementation of VR in medical rehabilitation. The identified barriers and facilitators were 680 

grouped in three categories (1) technology development, which is the level that the technology can meet 681 

the user’s objectives or needs; (2) competency development, which is the level of technical skills 682 

required to use the technology clinically effectively and safely; and (3) clinical implementation, which 683 

is the set of technical, time, training, and spatial requirements necessary to implement the technology. 684 

The authors note that there is the need to study the actual effectiveness of the technology; and for 685 

targeted development of implementation research, which should help with the development testing and 686 

implementation processes. Akçayır and Akçayır (2017) presented a literature review that studied, 687 
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among other topics, the challenges for AR adoption in education. The authors note that the most 688 

common problems are (i) the usability difficulties for students to use AR applications, (ii) the additional 689 

time requirements, (iii), and the lack of robustness and sensitivity to trigger AR interactions.  Ibáñez 690 

and Delgado-Kloos (2018) also presented a review, but in this case, it focused on the effects of AR on 691 

students. The authors note that there are indications that AR could promote distraction and that it 692 

increases cognitive loads. Similar studies should be carried out in the construction sector as well to 693 

identify potential negative effects that AR and VR can have on the workers’ performance. 694 

8.3  Limitations of this study 695 

The main limitation is that the UK was the focus of the study and only academics and professionals 696 

based in the UK were engaged. Therefore, the results presented here are not entirely generalizable to 697 

other regions (e.g. North America, South America, Europe, Australia, and Asia, etc.) due to the different 698 

structures, dynamics, markets, stakeholders, companies, clients, labor, etc. of construction industries in 699 

different regions. In this sense, that main limiting and driving factors and the categories presented here 700 

might be different in different parts of the world. Hence, other studies that investigate the limiting and 701 

driving factors in other parts of the world are required. These studies will help to (i) identify regional 702 

differences in the limiting and driving factors, (ii) identify differences in their importance and 703 

categorization, and (iii) validate the results presented here. 704 

However, the findings and insights presented in this paper could be relevant for AEC practitioners and 705 

academics across the developed world, because (i) studies have found existing similarities among the 706 

construction industries of developed economies. For example, Barbosa et al. (2017) found that the 707 

construction industry’s labor productivity and labor productivity growth are very similar in most 708 

European countries, the US, Australia, and Israel. (ii) Many of the experts that participated in this study 709 

work for transnational companies and they are either based-on or have experience working in developed 710 

economies, including the US, Canada, and the EU. Therefore, the experience of the international 711 

participants enriched and broaden the findings of the study presented here.   712 

More importantly, as detailed in section 8.1, other studies on AR and VR adoption carried out in other 713 

fields (Tourism, Healthcare, and Education) arrived at similar conclusions as this study. This is an 714 

indication of the relevance and the potential generalization of the findings here. For example, Yung and 715 

Khoo-Lattimore (2017), found that the main limiting factors for adoption are lack of awareness of the 716 

technology, poor usability, large time commitment for implementation, and the unwillingness to accept 717 

a virtual substitute; which all have been identified in this study as well. 718 

Overall, this study can be useful for practitioners and academics outside the UK by providing (i) a good 719 

indication of what type of factors could be important for adoption, (ii) an example of AR and VR 720 
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adoption in the construction industry of a developed economy, (iii) and an example of a methodology 721 

that can be used in other regions to identify which limiting and driving factors are at play locally.  722 

9 Conclusions 723 

This paper presented a mixed research study into the factors that limit and drive the adoption of AR and 724 

VR in the construction industry. The two main objectives of this paper were (i) to identify, categorize, 725 

and rank the relevant factors that limit and drive adoption of AR and VR and (ii) to provide a clear and 726 

understandable explanation of these factors to use as the basis to develop mitigating actions. 727 

Exploratory workshops and focus group discussions were carried out, in which 54 experts participated 728 

from 36 UK organizations from industry and academia. Twenty-one limiting factors and twenty-one 729 

driving factors were identified. The importance of the factors was ranked using a quantitative tool and 730 

statistical methods. The most important limiting factor is the high cost for equipment and training, and 731 

the most important driving factor is that this technology enables new and better services to be provided. 732 

PCA was carried out to identify the correlations between the two sets of factors and define a smaller 733 

number of manageable factors. Four categories of limiting factors were defined, i.e.: (1) Immature 734 

technologies, (2) Non-technical issues, (3) Specific requirements for implementation, and (4) Sector 735 

structure and client-contractor dynamics. Four categories of driving factors were also defined, i.e.: (i) 736 

Improving performance in projects, (ii) Improving the companies’ image, (iii) Improving companies’ 737 

overall performance (iv) Bolstering research and development. The main limitation of adoption is that 738 

AR and VR technologies are regarded as expensive and immature technologies. Improvements in 739 

project delivery and providing new and better services are the main drivers for adoption. The complex 740 

context and dynamics of the construction sector limit the adoption of AR and VR. This study presented 741 

a systematic study that contributes to identifying the essential and underlying factors and provides the 742 

insights required to devise effective actions to drive adoption. Finally, a roadmap is proposed to 743 

implement key short-term and medium-term actions to help overcome these factors. The main 744 

contribution to knowledge of this study is that it grouped and characterized a myriad of limiting and 745 

driving factors into easily understandable categories; so that, the limiting factors can be effectively 746 

mitigated, and the driving factors potentiated. 747 
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Table 1. Types of AR and VR technologies  1037 
 VR Mobile VR AR Mobile AR 
Processing High Low Mid (built on HMD) Low 
Tracking 6 DOF 3 DOF 3 DOF 3 DOF 
HMDs Yes, entirely 

immersive (blacked-
out) HMD 

HMD adapter for 
mobile phone 

Yes, See-through HMD No 

Sensors Infrared sensors on 
HMD, 
Stationary infrared 
scanners 

Gyroscope, 
Accelerometer, 
Compass 

Depth camera, 
Color and grayscale 
cameras, 
Infrared sensors 

Gyroscope, 
Accelerometer, 
Compass 

Controllers Infrared-tracked 
controllers, 
Infrared body trackers 

Non-tracked 
controller 

Tracks hand gestures NA 

Devices 
(examples) 

Oculus Rift, 
HTC Vive, 
Sony PS VR, 

Any recent mobile 
phone 

Microsoft HoloLens, 
Magic Leap, 
Meta 2 AR, 
DAQRI 

Any recent 
mobile phone or 
tablet 

Data in this table is based on: 
� https://en.wikipedia.org/wiki/Comparison_of_virtual_reality_headsets 
� https://en.wikipedia.org/wiki/Optical_head-mounted_display 
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Table 2. Overview of the workshops and focus group discussions 1040 

Workshops Participants No of 
experts FGD Topics Duration 

W1 ¾ 4 University researchers 
¾ 1 Standards organization  
¾ 4 Contractors 
¾ 1 Architect 
¾ 2 Engineering consultants 
¾ 2 Technology developers 

14 1.1 i Identify limitations 45 min 

1.2 i Identify drivers 40 min 

W2 ¾ 4 University researchers 
¾ 4 Contractors 
¾ 3 Engineering consultants 
¾ 2 Technology developers 

13 2.1 i Identify limitations 45 min 

2.2 i Identify drivers 40 min 

W3 ¾ 5 University researchers 
¾ 4 Contractors 
¾ 1 Architect 
¾ 3 Engineering consultants 
¾ 3 Technology developers 

16 3.1 i Rank and qualify 
limitations 

45 min 

3.2 i Rank and qualify drivers 45 min 

W4 ¾ 3 University researchers 
¾ 1 Infrastructure manager 
¾ 3 Contractors 
¾ 1 Architect 
¾ 3 Engineering consultants 

11 4.1 i Rank and qualify 
limitations 

40 min 

4.2 i Rank and qualify drivers 30 min 

Table 3. A sample of the findings to identify factors that limit the adoption of AR and VR in 1041 
construction. 1042 

Social Limitations Technical Limitations Economic Limitations 
Aversion to change Battery limitations Expensive hardware  
Lack of trained workforce High processing requirements Expensive training 
Fragmented industry Awkward VR sensors Lack of client’s interest 

Clunky user interface Lack of information exchange Predominance of SME’s in the 
sector 

Job security issues Low Field of View (FOV) High-risk industry 
Branding issues Accuracy issues Low profits 
Issues with data privacy and 
ownership Not user-friendly Hard to define return on 

investment 
Health and safety issues Large space requirement Low R&D investment 
Isolation caused by HMDs Network latency issues Lack of cost analysis 
Mobility issues Limitations on size of models Lack of business cases 
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Table 4. A sample of the findings to identify factors that drive the adoption of AR and VR in 1045 
construction. 1046 

Designers Contractors Managers Owners End-users 
Timely feedback. 

Engagement 
feedback 

Better 
understanding of 
cross-discipline 
interaction 

Efficient design 
making 

Visual quick 
understanding of a 
complete program 

 

Better site 
planning. 

Contextual 
understanding.  

Reduce overall 
cost. 

Better cost and 
time performance.  

Risk reduction.  

Re-skilling 

 

Impact assessment 

Cost reduction  

More efficient 
space planning 

Informed decision-
making support 

Reduce risk and 
less cost 

Improve quality 

Simulations give 
better 
understanding of 
the design and built 
environment. 

Reduce cost on 
project delivery  

 

 

Understanding 
social impact of 
governmental new 
construction 
developments. 

Inclusivity.  

Improve buyer 
experience 
(clarity). 

Issues resolved 
more easily 

Social engagement 
and clarity for 
government 
planning.  

Enhance user 
experience.  

Table 5. Overview of the respondents. 1047 
Variables Groups Frequency Percentage 
Role Academia 4 11.8% 
 Construction 8 23.5% 
 Engineering consultancy 11 32.4% 
 Design 6 17.6% 
 Technology development 5 14.7% 
    
Expertise level Novice (0-0.9) 0  
 Beginner (1-1.9) 1 2.9% 
 Intermediate (2-2.9) 7 20.6% 
 Advanced (3-3.9) 17 50.0% 
 Expert (4-5) 9 26.5% 
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Table 6. Ranked list of identified limitations. 1050 
Rank Label Limitations Mean Median Std. Skewness 

1 L11 Expensive hardware and training 3.85 4.0 0.958 -0.350 

2 L2 Specialized high processing equipment requirements 3.74 4.0 0.931 -0.145 

3 L16 Aversion to adopt new technologies 3.74 4.0 1.163 -1.043 

4 L21 Skill shortage and difficulty to access skilled graduates 3.68 4.0 1.224 -0.489 

5 L9 Lack of standards for data exchange 3.62 4.0 1.206 -0.624 

6 L8 Limited size of 3D models to be displayed 3.59 4.0 1.184 -0.515 

7 L4 Lack of multi-user capabilities 3.44 3.5 1.050 -0.503 

8 L15 Lack of time to explore immersive technologies 3.35 3.0 1.252 -0.136 

9 L20 Difficulties to access expert knowledge 3.29 3.0 1.169 -0.376 

10 L19 Fragmented industry 3.26 3.0 1.163 -0.308 

11 L13 Limited access to finance 3.24 3.0 1.350 -0.221 

12 L5 Uncomfortable and heavy HMDs 3.18 3.0 1.167 0.000 

13 L1 Power and battery limitations 3.12 3.0 1.320 -0.313 

14 L7 Low resolution displays 3.12 3.0 1.122 0.166 

15 L12 Lack of client’s interest 3.03 3.0 1.291 0.032 

16 L17 Branding problems and inaccurate public perception 3.03 3.0 1.243 -0.159 

17 L3 Large space requirements 3.00 3.0 0.921 0.000 

18 L14 Lack of market knowledge 2.94 3.0 1.301 0.115 

19 L6 Narrow field of view 2.91 3.0 1.240 -0.026 

20 L10 Issues with data security and ownership 2.82 3.0 1.403 0.123 

21 L18 It is seen as a cause for job insecurity 2.50 2.5 1.187 0.173 

Overall Std Dev = 1.18. 

Overall Cronbach's Alpha = 0.749; Overall Gutman’s lambda-2 = 0.791. 

Pillai's Trace Significance = 0.478. 
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Table 7. Ranked list of identified factors driving adoption. 1053 
Rank Label Factors driving adoption Mean Median Std. Skewness 

1 D11 A way to provide new and better services. 4.18 4.5 1.167 -1.823 

2 D19 AR and VR improves project understanding. 4.15 4.0 0.702 -0.213 

3 D12 Increasing R&D investment in the construction sector. 4.12 4.0 1.038 -1.804 

4 D8 AR and VR reduces overall risks. 4.06 4.5 1.205 -1.224 

5 D15 The need to increase labor productivity in the sector. 4.03 4.0 1.029 -1.124 

6 D20 AR and VR improves collaboration between parties. 3.91 4.0 0.866 -0.418 

7 D5 Organization’s need to be more efficient and productive. 3.88 4.0 1.066 -1.027 

8 D17 Adequate marketing of AR and VR technologies. 3.74 4.0 1.333 -0.705 

9 D16 Government incentives. 3.71 4.0 1.338 -0.874 

10 D10 Enables market expansion. 3.68 4.0 1.387 -0.752 

11 D7 Improves the reputation of the organization. 3.65 4.0 1.300 -0.608 

12 D21 AR and VR contributes to better project delivery. 3.53 3.0 1.237 -0.123 

13 D9 Improves the organization’s work culture. 3.47 4.0 1.376 -0.491 

14 D6 Fostering research curiosity of the employees. 3.41 3.5 1.328 -0.416 

15 D13 Decrease in construction budgets will drive adoption. 3.41 4.0 1.158 -0.395 

16 D14 Difficulties to access labor will drive adoption. 3.41 4.0 1.158 -0.395 

17 D1 Client requires the use of AR&VR. 3.38 3.5 1.577 -0.238 

18 D3 Obtaining a differentiating advantage in the market. 3.26 3.0 1.263 -0.055 

19 D18 AR and VR will reduce overall spending in projects. 3.09 3.0 1.190 0.050 

20 D2 Strategic decision from top management. 3.03 3.0 1.381 -0.056 

21 D4 To be part of the trend. 2.62 3.0 1.326 0.352 

Overall Std Dev = 1.183. 

Overall Cronbach's Alpha = 0.669; Overall Gutman’s lambda-2 = 0.729. 

Pillai's Trace Significance = 0.514. 
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Table 8. Four components extracted that group the factors limiting adoption  1056 
Label Categories and factors % of variance  

(% σ2) 
Factor loading 

(f) 
Communalities 

(extraction) 
CL1 Immature technologies 24.96%   
L8 Limited size of 3D models to be displayed  0.729 0.720 
L5 Uncomfortable and heavy HMDs  0.688 0.739 
L6 Narrow field of view  0.668 0.741 
L7 Low resolution displays  0.644 0.808 
L1 Power and battery limitations  0.628 0.780 

L21 Skill shortage and difficulty to access skilled graduates  0.599 0.652 
     

CL2 Non-technical issues 22.78%   
L14 Lack of market knowledge  0.756 0.746 
L10 Issues with data security and ownership  0.737 0.825 
L17 Branding problems and inaccurate public perception  0.729 0.855 
L15 Lack of time to explore immersive technologies  0.677 0.685 
L20 Difficulties to access expert knowledge  0.674 0.719 
L18 It is seen as a cause for job insecurity  0.651 0.711 
L13 Limited access to finance  0.645 0.817 
L16 Aversion to adopt new technologies  0.511 0.605 

     
CL3 Special requirements for implementation 19.76%   
L9 Lack of standards for data exchange  0.688 0.773 

L11 Expensive hardware and training  0.625 0.764 
L2 Specialized high processing equipment requirements  0.609 0.861 
L3 Large space requirements  0.605 0.759 
L4 Lack of multi-user capabilities  0.512 0.771 

     
CL4 Sector structure and client-contractor dynamics 8.16%   
L19 Fragmented industry  0.587 0.695 
L12 Lack of client’s interest  0.516 0.866 

     
Cumulative % of variance 75.67%   
Extraction Method: Principal Component Analysis. 
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Table 9. Four components extracted that group the factors driving adoption  1059 
Label Categories and factors % of variance  

(% σ2) 
Factor loading 

(f) 
Communalities 

(extraction) 
CD1 Improving performance in projects 22.12%   
D18 AR and VR will reduce overall spending in projects.  0.760 0.862 
D15 The need to increase labor productivity in the sector.  0.730 0.831 
D21 AR and VR contributes to better project delivery.  0.657 0.841 
D14 Difficulties to access labor will drive adoption.  0.718 0.685 
D20 AR and VR improves collaboration between parties.  0.660 0.641 
D19 AR and VR improves project understanding.  0.611 0.834 
D16 Government incentives.  0.644 0.693 
D13 Decrease in construction budgets will drive adoption.  0.545 0.752 

     
CD2 Improving the companies’ image 19.09%   
D4 To be part of the trend.  0.689 0.643 
D3 Obtaining a differentiating advantage in the market.  0.672 0.827 
D2 Strategic decision from top management.  0.544 0.828 
D7 Improves the reputation of the organization.  0.533 0.845 
D1 Client requires the use of AR&VR.  0.527 0.716 

     
CD3 Improving companies’ overall performance 16.16%   
D11 A way to provide new and better services.  0.775 0.852 
D9 Improves the organization’s work culture.  0.694 0.698 

D10 Enables market expansion.  0.664 0.818 
D5 Organization’s need to be more efficient and productive.  0.530 0.668 
D8 AR and VR reduces overall risks.  0.516 0.798 

     
CD4 Bolstering research and development 12.11%   
D6 Fostering research curiosity of the employees.  0.639 0.837 

D12 Increasing R&D investment in the construction sector.  0.440 0.781 
     

D17* Adequate marketing of AR and VR technologies 7.63% 0.581 0.747 
     

Cumulative % of variance 77.11%   
* Factor D17 was not grouped in any category. This factor in its own has a significant percentage of variance. 
Extraction Method: Principal Component Analysis. 
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