
ARTICLE

Low-frequency variation in TP53 has large effects
on head circumference and intracranial volume
Simon Haworth et al.#

Cranial growth and development is a complex process which affects the closely related traits

of head circumference (HC) and intracranial volume (ICV). The underlying genetic influences

shaping these traits during the transition from childhood to adulthood are little understood,

but might include both age-specific genetic factors and low-frequency genetic variation. Here,

we model the developmental genetic architecture of HC, showing this is genetically stable

and correlated with genetic determinants of ICV. Investigating up to 46,000 children and

adults of European descent, we identify association with final HC and/or final ICV+HC at 9

novel common and low-frequency loci, illustrating that genetic variation from a wide allele

frequency spectrum contributes to cranial growth. The largest effects are reported for low-

frequency variants within TP53, with 0.5 cm wider heads in increaser-allele carriers versus

non-carriers during mid-childhood, suggesting a previously unrecognized role of TP53 tran-

scripts in human cranial development.

https://doi.org/10.1038/s41467-018-07863-x OPEN

Correspondence and requests for materials should be addressed to B.P. (email: beate.stpourcain@mpi.nl). #A full list of authors and their affiliations appears
at the end of the paper.

NATURE COMMUNICATIONS |          (2019) 10:357 | https://doi.org/10.1038/s41467-018-07863-x | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-7793-7326
http://orcid.org/0000-0001-7793-7326
http://orcid.org/0000-0001-7793-7326
http://orcid.org/0000-0001-7793-7326
http://orcid.org/0000-0001-7793-7326
mailto:beate.stpourcain@mpi.nl
www.nature.com/naturecommunications
www.nature.com/naturecommunications


The size and shape of the vertebrate brain is governed by the
internal dimensions of the skull. Across vertebrate evolu-
tionary history, major changes to brain size and proportion

have been accompanied by modifications to skull morphology1,2.
This is also true within the lifespan of an individual, where
developmental changes in brain size and shape must be reflected
in changing cranial phenotypes.

Serial measures of maximal head circumference (HC) or
occipito-frontal circumference are routinely obtained to monitor
children’s cranial growth and brain development during the first
years of life and abnormal trajectories may indicate a range of
neurological conditions3. In infants and children, HC is highly
correlated with brain volume as measured by MRI studies4,5,
especially in 1.7- to 6-year-old children, although its predictive
accuracy decreases with progressing age5. Healthy children from
around the world, who are raised in healthy environments and
follow recommended feeding practices, have strikingly similar
patterns of growth6. The observation that final HC is largely
determined by the age of 6 years in a large study from the UK7 is
therefore likely to be valid in multiple populations. In addition,
nutritional status, body size, and HC are closely correlated for
healthy children during early life, and become less related after
24 months of age8. While HC properties in early childhood have
immediate medical relevance, there are also compelling reasons to
study HC in adulthood. In the adult population skeletal measures
continue to act as a permanent measure of peak brain size that
is unaffected by subsequent atrophic brain changes9. In
early childhood, HC is likely to proxy overall body size and
timing of growth, tracking changes in brain size. In older indi-
viduals, HC is valuable precisely because HC is robust to
soft tissue atrophy, solely reflecting an absolute measure of final
HC dimension.

HC is highly heritable and the notion of a developmentally
changing, but etiologically interrelated, phenotypic expression of
HC during the life course is supported by twin studies10.
Reported twin-h2 estimates are 90% in infants, 85–88% in early
childhood, 83–87% in adolescence and 75% in young and mid
adulthood10, with evidence for strong genetic stability between
mid-childhood and early adulthood10. There are arguments to
support the hypothesis that some of the underlying genetic fac-
tors act by a coordinated integration of signaling pathways reg-
ulating both brain and skull morphogenesis during
development11. Especially, cells of early brain and skull are sen-
sitive to similar signaling families11. Genetic underpinning of
potentially shared mechanisms is supported by the fact that
genome-wide signals for both infant HC and intracranial volume
(ICV) are strengthened when combined12, irrespective of their
dissimilar developmental stages. However, genetic investigations
studying (near) final HC and adult ICV are likely to be more
informative on mechanisms underlying developmentally shared
growth patterning which affect final cranial dimension. Addi-
tionally, low-frequency genetic variants, ranging between 0.5 to
5% minor allele frequency, have been poorly characterized by
previous genome-wide association study (GWAS) efforts13, both
due to the small size of previous studies, and the limited coverage
of lower-frequency markers by the first imputation panels.

Exploiting whole-genome sequence data together with high-
density imputation panels such as the joint UK10K and 1000
genomes (UK10K/1KGP)14 and the haplotype reference con-
sortium (HRC)15, that have previously facilitated the discovery of
low-frequency genetic variants for a range of traits16,17, we carry
out GWAS for final HC. Specifically, we aim to

(a) study low-frequency and common variants for final HC,
allowing for age-specific effects through meta-analyses of
mid-childhood and/or adulthood datasets,

(b) investigate genetic variants influencing a combined pheno-
type of (near) final HC and ICV, termed final cranial
dimension, and

(c) explore developmental changes in the genetic architecture of
HC through longitudinal modeling of genetic variances in
unrelated individuals as well as growth curve modeling of
HC trajectories for carriers and noncarriers of high risk
variants.

Through these analyses we show that the developmental
genetic architecture of HC is genetically stable during the course
of childhood and adolescence and correlates with genetic deter-
minants of ICV. Integrating information from both (near) final
HC and ICV in a combined analysis including up to 46,000
children and adults of European descent, we identify nine novel
common and low-frequency loci for either HC or HC+ ICV,
including low-frequency variation within TP53. Collectively, these
findings provide insight into the genetic effects influencing cranial
growth during childhood and adolescence, while yielding addi-
tional genetic associations which enhance our understanding of
the biological mechanisms underlying these complex develop-
mental processes.

Results
Genome-wide analysis of HC scores. We carried out genome-
wide analysis of HC scores using a two-stage developmentally
sensitive design (Fig. 1a) including (i) pediatric (6–9 years of age),
(ii) adult (16–98 years) and (iii) combined pediatric and adult
samples comprising up to 18,881 individuals of European origin
from 11 population-based cohorts and 10 million imputed or
sequenced genotypes (Supplementary Table 1). Inverse-variance
weighted meta-analysis (Supplementary Data 1–4, Fig. 2a–c,
Supplementary Figures 1–3) identified three novel regions at
chromosome 4q28.1 (HC (Pediatric): lead variant rs183336048,
effect allele frequency (EAF)= 0.02, p= 3.0 × 10−8, Supplemen-
tary Figures 5a, 6a), 6p21.32 (HC (Pediatric)/ HC (Pediatric+
adult): lead variant rs9268812, EAF= 0.35, p= 2.2 × 10−9, Sup-
plementary Figures 5b, 6b) and 17p13.1 (Pediatric+ adult: lead
variant rs35850753, EAF= 0.02, p= 2.0 × 10−8, Supplementary
Figures 5c, 6c, Fig. 3a, b) as associated with HC at an adjusted
genome-wide significant level (p < 3.3 × 10−8) (Table 1). We fol-
lowed up the two signals in HC (Pediatric+ adult) in a further
973 adults of European descent (mean age 50 years) (Supple-
mentary Table 2, Supplementary Figure 6b, c) and replicated
directionally consistent evidence for association with rs35850753
at the 17p13.1 locus (p= 4.5 × 10−5, Table 1). In the combined
pediatric, adult and follow-up sample, we observed here an
increase of 0.24 sex-adjusted SD units in HC per increase in
minor T risk allele (p= 2.1 × 10−10, Table 1, Fig. 3a, b).

Growth curve modeling of HC scores between birth and the age
of 15 years in participants of the ALSPAC sample, using a stratified
Super Imposition by Translation And Rotation (SITAR) model18,
suggested that carriers of the T risk allele at rs35850753 developed
larger heads from mid-childhood onwards (Fig. 4), with risk alleles
being positively related to individual differences in mean HC
(Linear regression, two-sided p= 6.9 × 10−12) and HC growth
velocity (Linear regression, two-sided p= 7.1 × 10−11, Supplemen-
tary Table 3). For example, at the age of 10 years male carriers had
an HC score of 54.16 cm and noncarriers a score of 53.63 cm. In
comparison, female carriers and noncarriers had a score of
53.21 cm and 52.74 cm respectively. rs3585075 resides within the
tumor suppressor encoding TP53 gene and is not related to any
known GWAS locus for HC, ICV or brain volume (Supplementary
Table 4, Supplementary Figure 4) when conducting a conditional
analysis, nor any locus affecting height19 (Supplementary Note 2).
In addition to these novel associations, our analysis replicated
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known signals for infant HC on chromosome 12q24.3113 and a
previously reported joint signal of infant HC and adult ICV on
chromosome 2q32.112 (Fig. 2c).

Applying a gene-based test approach20, multiple HC-associated
genes were identified (Supplementary Data 5–7). The strongest
signal in HC (Pediatric), and to a lesser extent in HC (Pediatric+
adult), resides at 12q24.31 (lead gene-wide signal MPHOSPH9,
p= 2.3 × 10−10) and contains single variants in linkage disequili-
brium (LD) with known GWAS signals for infant HC13 (e.g.
SBNO1, p= 2.0 × 10−7). The strongest gene-wide signals that did
not harbor variants in LD with known or novel single GWAS
variants were identified at 5q31.3 (Lead gene-wide signal SLC4A9,
p= 6.6 × 10−9), and at 16p13.3 (Lead gene-wide signal E4F1,
p= 1.6 × 10−8), using summary statistics from the HC (Pediatric
+ adult) meta-analysis. Gene-based analyses were complemented
with studies predicting gene expression levels in multiple tissues
(Supplementary Table 5). Notably, for the HC (Pediatric) gene-
wide signal at 6p21.32, including the PRRC2A locus (Gene-wide
signal p= 7.2 × 10−7, Supplementary Data 5), predicted gene
expression levels in whole blood were found to be inversely
associated with HC scores, using S-PrediXcan21 software (p=
5.7 × 10−7; Supplementary Table 5, Supplementary Data 8).

Genetic architecture of HC scores during development.
Linkage-disequilibrium score regression (LDSC)22 analyses
(Fig. 5a, Supplementary Table 6) using genome-wide summary

statistics suggested that heritability estimates during childhood
(6−9 years) are higher (SNP-h2= 0.31(SE= 0.05)) than in adult
samples (16−98 years; SNP-h2= 0.097(SE= 0.06)), although
95% confidence intervals marginally overlap. The estimated
genetic correlation23 between both developmental windows was
high (LDSC-rg= 1.04(SE= 0.39), p= 0.0075). The LD-score
regression intercepts were consistent with one for all HC meta-
analyses, suggesting little inflationary bias in GWAS (Supple-
mentary Table 6).

To investigate developmental changes in the genetic architec-
ture of HC scores, we carried out a multivariate analysis of genetic
variances using genetic-relationship-matrix structural equation
modeling (GSEM)24. Fitting a saturated Cholesky decomposition
model (Fig. 5b) to HC scores assessed in ALSPAC participants
(N= 7924) at the ages of 1.5, 7, and 15 years (Supplementary
Table 7), we observed total SNP-h2 estimates of 0.35 (SE= 0.07),
0.43 (SE= 0.05), and 0.39 (SE= 0.07) respectively (Fig. 5c). More
importantly, this analysis suggested that a large proportion of
genetic factors contributing to phenotypic variation in HC scores
remains unchanged during the course of development, with
genetic factors operating at the age of 1.5 years explaining 63.1%
(SE= 9%) and those at age 7 years 76.5% (SE= 5%) of the
genetic variance at age 15 years, respectively. Consistently, strong
genetic correlations were identified among all scores during
development (1.5−7 years, rg= 0.89 (SE= 0.07); 1.5−15 years,
rg= 0.79 (SE= 0.09); 7−15 years, rg= 0.87 (SE= 0.04), in
support of LD-score correlation analyses.

Pediatric HC cohorts Adult HC cohorts Follow-up HC cohort

6 cohorts
Age: 6 to 9 years

European descent
individuals

Direct and imputed genotypes
(WGS, UK10K/1KG, HRC r1) 

5 cohorts
Age: 16 to 98 years

European descent
individuals

Direct and imputed genotypes
(WGS, UK10K/1KG, HRC r1) 

HC(Pediatric+adult)

N ≤ 18,881
10,832,869 variants

ICV

Z-weighted meta-analysis
Adams et al. (2016)

(CHARGE + ENIGMA 2)
N ≤ 26,577

European descent
individuals

direct and imputed genotypes
(1 KG ph1v3)

9,702,044 variants

HC(Pediatric+adult+follow-up)

N ≤ 19,854
2 variants

1 cohort
Age: 50 years

N = 973

 European descent
individuals

Direct and imputed genotypes
(1 KG ph1v3) 

ICV+HC(Pediatric+adult+follow-up)

Z-weighted meta-analysis
N < 46,431*
2 variants

ICV+HC(Pediatric+adult)

Z-weighted meta-analysis
N ≤ 45,458

12,124,458 variants

a

b

HC(Pediatric) HC(Adult)

N ≤ 10,600
10,087,845 variants

Fixed-effects meta-analysis

Fixed-effects meta-analysis Fixed-effects meta-analysis

Fixed-effects meta-analysis
N ≤ 8281

8,492,682 variants

Fig. 1 Study design. a Head circumference meta-analysis design using a fixed-effect meta-analysis including different developmental stages. b Combined
head circumference and intracranial volume meta-analysis design using a Z-weighted meta-analysis. ICV intracranial volume. WGS whole-genome
sequencing; UK10K/1KG Joint UK10K/1000 Genomes imputation template, 1KG 1000 Genomes imputation template, HRC The Haplotype Reference
Consortium r1. *Due to sample dropout only N≤ 43,529 were available
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Fig. 2 Genome-wide association with final head circumference (HC). a HC(Pediatric): N= 8281, b HC(Adult): N= 10,600 and c HC(Pediatric+ adult):
N= 18,881 inverse-variance weighted meta-analyses. The dashed line represents the threshold for nominal genome-wide (p < 5.0 × 10−8) significance.
Accounting for multiple testing, the adjusted level of genome-wide significance is p < 3.3 × 10−8. Known variants for intracranial volume, brain volume, and
head circumference are shown in blue. Novel signals passing a nominal genome-wide association threshold (p < 5.0 × 10−8) are shown with their lead SNP
in red. Replicated signals are labeled with a red cross. The genomic position is shown according to NCBI Build 37
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Fig. 3 Regional association plot at 17p13.1 associated with final head circumference (HC) and final cranial dimension. a Depicts a 800Mb window and b a
zoomed view of genetic association signals and functional annotations near TP53. Within each plot, in the first panel SNPs are plotted with their −log10 p
value as a function of the genomic position (b37). This panel shows the statistical evidence for association based on HC (Pediatric+ adult) and combined
ICV+HC (Pediatric+ adult) meta-analyses, including HC follow-up studies. SNPs are colored according to their correlation with the HC lead signal
(rs35850753, pairwise LD-r2-values). The second panel represents the gene region (ENSEMBL GRCh37). The third panel in (b) presents the Genomic
Evolutionary Rate Profiling (GERP++) score of mammalian alignments. The last four panels in (b) show 4 of 15 core chromatin states, present in the
zoomed view, from the Roadmap Epigenomics Consortium including Embryonic Stem Cells (ESC), hESC Derived CD56+ Ectoderm Cultured Cells, Fetal
Brain (Male) and Brain Dorsolateral Prefrontal Cortex respectively (see legend for color coding)
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Genetic correlation of complex phenotypes with HC. A sys-
tematic screen for genetic correlations between HC scores and
235 complex phenotypes using LD score correlation23 identified
moderate to strong positive genetic correlations (rg ≥ 0.3) with
many anthropometric and cognitive/cognitive proxy traits. This
includes HC scores during infancy, birth weight, birth length,
height, extreme height, hip circumference, childhood obesity,
waist circumference, intelligence scores, and ICV (Supplementary
Table 8, Fig. 5d, Supplementary Data 9). Weaker positive genetic
correlations (0 < rg < 0.3) were also present for years of schooling,
obesity, body mass index, overweight, and extreme height.

The strongest cross-trait genetic correlation was identified
between HC (Pediatric+ adult) and ICV (rg= 0.91(SE= 0.16),
p= 1.6 × 10−8). However, there was little evidence that SNP-h2

estimates for HC are enriched for genes that are highly expressed
in brain tissues or chromatin marks in neural and bone tissue/cell
types, beyond chance (Supplementary Data 10) in the conducted
HC meta-analyses.

Combined genome-wide analysis of HC scores and ICV. Given
the prior expectation of similar genetic architectures between HC
and ICV, supported through genetic correlation analyses, we
meta-analyzed both phenotypes by combining HC summary
statistics from pediatric and adult cohorts (N= 18,881) with ICV
summary statistics from the CHARGE and ENIGMA2 con-
sortia12 (N= 26,577, Fig. 1b) using a Z-score weighted meta-
analysis (Fig. 6, Table 2, Supplementary Data 11, 12, 13). The
strongest evidence for novel genetic association in this combined
cranial dimension analysis was observed for the low-frequency
marker rs78378222 (MAF= 0.02; p= 7.9 × 10−11) at the 17p13.1
locus, a functional variant that is in LD with rs35850753, the
strongest GWAS signal for HC (r2= 0.56, p= 3.6 × 10−9, Fig. 3a,
b, Supplementary Data 11). To study the independence of the two
signals, we carried out conditional analyses. Adjusting rs35850753
for variation at rs78378222, the association with HC (Pediatric+
adult) was strongly attenuated, but remains present at the nom-
inal level (conditional β= 0.06 (SE= 0.025), p= 0.013). Reci-
procally, the signal at rs78378222, conditional on rs35850753, was
still detectable at the nominal level in the combined cranial
dimension analysis (conditional β= 0.051 (SE= 0.017), p=
0.0024), based on standardized regression estimates.

In addition, we identified eight independent genetic loci within
the combined ICV and HC meta-analysis that have not
previously been reported for either HC or ICV (Supplementary
Data 11). This includes evidence for association at rs9271147
(MAF= 0.17; p= 4.4 × 10−10) at 6p21.32 within the MHC
region, which is in LD with rs9268812 (r2= 0.41), a further
signal from our HC (Pediatric+ adult) meta-analysis. We also
observed increased statistical evidence for association at nine
known markers compared to the original studies for either HC,
brain volume or ICV (Supplementary Data 12).

Adding further genotype information from the HC follow-up
cohort (N= 973, Fig. 1b), strengthened the evidence for
association at both rs78378222 and rs35850753 (p= 8.8 × 10−13

and p= 4.9 × 10−11 respectively, total N ≤ 43,529, Fig. 3a, b,
Supplementary Data 11), corresponding to a change in 0.19
(SE= 0.03) and 0.16 (SE= 0.02) standard deviation (SD) units
respectively. However, within neuroimaging samples only,
support for association at rs78378222 was low in the combined
CHARGE and ENIGMA2 samples12 (Table 2).

Note that genetic effects with respect to a combined final
cranial dimension cannot be translated into absolute units as HC
scores and ICV relate to diametric versus volumetric properties
respectively.

Biological and phenotypic characterization of signals. A
detailed variant annotation of all novel signals for the combined

Table 1 Novel loci for final head circumference

Variant Chr:Pos (b37) EA: EAF Discovery Follow-up Discovery+ follow-up NTotal

β (SE) p phet β (SE) p β (SE) p

HC (Pediatric)
rs183336048 4: 12830274 T: 0.02 0.31 (0.06) 3.0×10−8 0.62 — — — — 10,303

HC (Pediatric+ adult)
rs9268812a 6: 32424568 A: 0.35 0.07 (0.01) 1.3×10−9 0.85 0.01 (0.05) 0.87 0.07 (0.01) 2.1×10−9 19,557
rs35850753 17: 7578671 T: 0.02 0.22 (0.04) 2.0×10−8 0.21 0.64 (0.16) 4.5×10−5 0.24 (0.04) 2.1×10−10 19,557

Genome-wide meta-analysis of head circumference scores in pediatric and adult samples as described in Fig. 1a; Evidence for association was assessed using standard error-weighted fixed effects meta-
analysis. Only independent variants (Linkage disequilibrium (LD)-r2 < 0.2 within ±500 kb) reaching nominal evidence for genome-wide significance (p < 5.0×10−8) are shown. The adjusted threshold for
genome-wide significance is 3.3×10−8, accounting for multiple testing. Detailed information can be found in Supplementary Data 1 and 3
Position base pair position, HC head circumference, EA effect allele, EAF effect allele frequency, β effect estimate, SE standard error, p p-value, N sample size, phet p-value for heterogeneity statistic (based
on Cochran’s Q-test for heterogeneity)
ars9268812 is in linkage disequilibrium with rs9268668 (r2= 0.60) that passes the adjusted genome-wide significance threshold within the HC(Pediatric) meta-analysis (Supplementary Data 1)
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spanning birth to 15 years observed in 6225 ALSPAC participants with up to
13 repeat measures (17,269 observations) using a mixed effect
SuperImposition by Translation And Rotation (SITAR) model
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ICV and HC meta-analysis, including overlapping signals from
the HC meta-analysis alone, was carried out using the FUMA
webtool25 (Supplementary Data 14−18) including variant anno-
tation (Supplementary Data 16), mapped genes (Supplementary
Data 17), and previously published studies (Supplementary
Data 18).

The strongest cranio-dimensional signal, rs78378222, resides
within the 3′ untranslated region (UTR) of TP53 and the low-
frequency allele leads to a change in the TP53 polyadenylation
signal that results in impaired 3′-end processing for many TP53
mRNA. The strongest HC signal, rs35850753, resides within the
5′-UTR of the Δ133 TP53 isoforms and otherwise intronically
(Fig. 3b, Supplementary Data 16). Species comparison showed
that variation at rs78378222 is highly conserved (GERP-score=
5.28)26 and also predicted to be deleterious (CADD= 17.97)27,
while variation at rs35850753 is not (GERP-score=−2.8;
CADD= 1.04) (Fig. 3b, Supplementary Data 16). According to
a core 15-state chromatin model, variation at rs78378222, but not

at rs35850753, is furthermore in LD (r2= 0.8) with an enhancer
in fetal brain (Fig. 3b). Using the FUMA webtool25 and Brain
xQTL28, we found no support for blood or brain cis eQTLs or
meQTL in LD (r2 > 0.6) with either rs35850753 or rs78378222,
when adjusted for the number of loci tested (Supplementary
Data 19). The strongest evidence for cis eQTL at TP53 was found
for eQTL in modest LD with rs35850753 (r2= 0.22), explaining
variation in gene level TP53 transcript in blood, with the rare T
risk allele being associated with lower full-length transcript levels
(False Discovery Rate q= 6 × 10−6, Supplementary Data 17). We
also characterized the TP53 association signals for final HC and
combined final ICV+HC phenotypically using a phenome-wide
scan in the UK Biobank, as implemented in PHESANT29

(rs35850753: Supplementary Data 20). For rs35850753, standing
height is increased by 0.012 cm (SE= 0.002) and sitting height by
0.015 cm (SE= 0.003) for each increase in minor effect allele. The
log odds of having an inpatient primary diagnosis code for
“Fracture of tooth” increase by 0.42 (SE= 0.078) and the log odds
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Fig. 5 Genetic architecture of head circumference (HC). a Linkage-disequilibrium score SNP-heritability (LDSC-h2) for HC (Pediatric), HC (Adult) and HC
(Pediatric+ adult) meta-analyses. b Genetic-relationship matrix structural equation modeling (GSEM) of head circumference during development: Path
diagram of the full Cholesky decomposition model using longitudinal head circumference measures from ALSPAC (1.5 years (N= 3945), 7 years (N=
5819), and 15 years (N= 3406)). Phenotypic variance (P1, P2, P3) was dissected into genetic (A1, A2 and A3) and residual (E1, E2 and E3) factors.
Observed measures are represented by squares and latent factors by circles. Single-headed arrows define relationships between variables. The variance of
latent variables is constrained to unit variance. c Standardized genetic and residual variance components for head circumference during development.
Variance components were estimated using the GSEM model as shown in (b). d Linkage-disequilibrium score correlation (LDSC-rg) for HC (Pediatric), HC
(Adult) and HC (Pediatric+ adult) and 235 phenotypes: 17 genetic correlation estimates passing a Bonferroni threshold (p < 0.00014) are shown with
their standard errors. ***p < 10−8; **p < 10−5; *p < 0.00014
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of a participant answering “yes” to “ever had hysterectomy” by
0.06 (SE= 0.011) per effect allele. For each increase in minor
effect allele at rs78378222, standing height is increased by 0.015
cm (SE= 0.002) and sitting height by 0.019 cm (SE= 0.003). The
log odds of a participant answering “yes” to “ever had
hysterectomy” was 0.065 (SE= 0.011) per effect allele. Sensitivity
analysis adjusting, in addition, for ten principal components
did not change the nature of these findings (Supplementary
Data 20).

Furthermore, we identified variants in LD with the two
cranial dimension signals at 1q44 and at 2p25.1 respectively
that are predicted to be deleterious. rs12408455 (r2 with
rs2168812= 0.99) is an intronic SNP within AKT3 (CADD=
17.87) and rs112040334 (r2 with rs4513262= 0.91) an intronic
11-bp insertion/deletion within KLF11 (CADD= 17.22, Sup-
plementary Data 16). Both variants are in LD (r2 > 0.6) with
eQTL in blood (Supplementary Data 17), with the effect allele at
both variants being associated with increasing transcript levels

of AKT3 and KLF11 respectively. The variant with the highest
CADD score identified in the combined ICV and HC meta-
analysis is rs41288837. This low-frequency missense variant at
2p11.2 within TCF7L1 is predicted to belong to the 0.5% most
deleterious substitutions in the human genome (MAF= 0.03,
CADD= 24.30, Table 2, Supplementary Data 16). We observed
no evidence for associated eQTL in blood or brain for this
variant (Supplementary Data 17).

Notably, many genes containing SNPs in LD (r2 > 0.6) with
lead variants from the combined ICV and HC meta-analysis show
mapped chromatin interactions within mesenchymal and human
embryonic stem cells and mesoendoderm (Supplementary
Data 17), including TP53.

Discussion
Investigating up to 46,000 individuals of European descent, this
study identifies and replicates evidence for genetic association
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Fig. 6 Genome-wide association analysis of final cranial dimension. A genome-wide weighted Z-score meta-analysis of combined head circumference (HC) and
intracranial volume (ICV) was carried out (ICV+HC (Pediatric+ adult): N= 45,458). The dashed line represents the threshold for nominal genome-wide (p <
5.0 × 10−8) significance. Accounting for multiple testing, the adjusted level of genome-wide significance is p < 3.3×10−8. Known variants for ICV, brain volume,
and HC are shown in blue. Novel signals passing a nominal genome-wide association threshold (p < 5.0 × 10−8) are shown with their lead SNP in green
(Table 2, Table S15). HC (Pediatric+ adult) signals identified in this study are shown in red. The genomic position is shown according to NCBI Build 37

Table 2 Novel independent loci for combined intracranial volume and head circumference

Variant Chr:Pos (b37) EA: EAF ICV HC (Pediatric+ adult) ICV+HC (Pediatric+ adult) NTotal

β* (SE) p β* (SE) p β* (SE) p N

rs2168812 1: 243777066 A: 0.18 0.05 (0.01) 9.0×10−6 0.06 (0.01) 1.5×10−5 0.05 (0.01) 2.3×10−9 45,458
rs4513262 2: 10181457 T: 0.21 0.05 (0.01) 7.7×10−7 0.04 (0.01) 2.3×10−3 0.05 (0.01) 2.9×10−8 45,336
rs41288837 2: 85531116 T: 0.03 −0.10 (0.03) 1.0×10−4 −0.15 (0.03) 1.6×10−6 −0.11 (0.02) 7.2×10−9 43,916
rs429150a 6: 32075563 T: 0.52 0.04 (0.01) 3.1×10−5 0.04 (0.01) 1.0×10−4 0.04 (0.01) 3.9×10−8 43,122
rs9271147b 6: 32577385 T: 0.17 0.06 (0.02) 4.3×10−4 0.07 (0.01) 6.5×10−8 0.07 (0.01) 4.4×10−10 30,057
rs11154343 6: 126412953 T: 0.31 −0.05 (0.01) 1.7×10−8 −0.03 (0.01) 1.2×10−2 −0.04 (0.01) 1.0×10−8 45,458
rs7808664a 7: 32917550 A: 0.37 −0.04 (0.01) 1.2×10−6 −0.03 (0.01) 2.0×10−3 −0.04 (0.01) 3.6×10−8 45,458
rs148974918 10: 112033051 T: 0.05 −0.08 (0.02) 9.4×10−5 −0.1 (0.02) 1.6×10−5 −0.08 (0.02) 2.4×10−8 45,458
rs3217870 12: 4400111 T: 0.62 −0.03 (0.01) 1.0×10−4 −0.05 (0.01) 7.0×10−7 −0.04 (0.01) 3.1×10−9 45,458
rs2066827 12: 12871099 T: 0.77 0.05 (0.01) 3.9×10−6 0.05 (0.01) 9.3×10−5 0.05 (0.01) 5.4×10−9 38,871
rs78378222c 17: 7571752 G: 0.02 0.15 (0.04) 1.4×10−5 0.21 (0.04) 1.5×10−7 0.17 (0.03) 7.9×10−11 41,371

Genome-wide combined meta-analysis of intracranial volume and head circumference scores as described in Fig. 1b; Evidence for association was assessed using Z-weighted meta-analysis. Standardized
estimates were derived as described in the Methods. Only independent variants (Linkage disequilibrium (LD)-r2 < 0.2 within ±500 kb) reaching nominal evidence for genome-wide significance (p < 5.0 ×
10−8) are shown. The adjusted threshold for genome-wide significance is 3.3×10−8, accounting for multiple testing. Detailed meta-analysis information can be found in Supplementary Data 11. Detailed
SNP and gene information is given in Supplementary Data 16 and 17
ICV—intracranial volume (ICV) meta-analysis of ENIGMA2 and CHARGE samples, N≤ 26,577
HC (Pediatric+ adult)—combined pediatric and adult head circumference meta-analysis, N≤ 18,881
Position base pair position, EA effect allele, EAF effect allele frequency, β* standardized effect estimate, SE standard error, p p-value, N sample size
aPasses a nominal threshold for genome-wide significance only (p < 5.0 × 10−8)
brs9271147 is in linkage disequilibrium with rs9268812 (r2= 0.41), a novel GWAS signal from HC (Pediatric+ adult) (Table 1, Supplementary Data 3)
crs78378222 is in linkage disequilibrium with rs35850753 (r2= 0.56), a novel GWAS signal from HC (Pediatric+ adult) (Table 1, Supplementary Data 3)
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between a novel region on chromosome 17p13.1 and both final
HC and ICV+HC, implicating low-frequency variants of large
effect within TP53. We furthermore demonstrate that the genetic
architecture of HC is developmentally stable and genetically
correlated with ICV. This is supported by the identification of
eight further common and rare independent loci that are asso-
ciated with cranial dimension as a combined HC and ICV phe-
notype, illustrating the allele frequency spectrum of the
underlying genetic architecture.

For the final HC, the strongest evidence for association at
17p13.1 is observed with rs35850753, while final cranial dimen-
sion is most strongly associated with rs78378222. Both
rs35850753 and rs78378222 are low-frequency variants, in partial
linkage disequilibrium, and their effect sizes are substantially
larger than any previously reported GWAS signals for either HC
or ICV alone, reaching nearly a fifth and quarter of a SD unit
change in final cranial dimension and final HC per rare effect
allele respectively. For HC, this translates into an increase of
approximately 0.5 cm in HC between carriers and noncarriers of
rare alleles at the age of 10 years. Based on longitudinal analyses,
it is most likely that genetic effects of rs35850753 on final HC
start to emerge during mid-childhood, while we have no com-
parable longitudinal data source available to evaluate trajectory
effects on cranial dimension.

TP53 encodes the p53 protein, a transcription factor that binds
directly and specifically as a tetramer to DNA in a tissue- and
cell-specific manner and has a range of antiproliferative functions,
lending it the nickname guardian of the genome. The activation
of p53 in response to cellular stress promotes cell cycle arrest,
DNA repair, and apoptosis30. TP53 mutations are present in
approximately 30% of tumor samples making it one of the most
studied genomic loci with over 27,000 somatic and 550 germline
mutations described to date (Source—IARC TP53 database31).
The low-frequency allele at rs78378222 leads to a change in the
TP53 polyadenylation signal that results in impaired 3′-end
processing and termination of many TP53 mRNA isoforms32,
including full-length TP53 isoforms, although rs78378222 is also
in LD with an enhancer region in fetal brain. In contrast,
rs35850753 resides in the 5′ UTR of TP53 Δ133 isoforms that are
transcribed by an alternative promoter. This leads to the
expression of an N-terminally truncated p53 protein, initiated at
codon 133, lacking the trans activation domain33. TP53 Δ133
isoforms are known to directly and indirectly modulate p53
activity and differentially regulate cell proliferation, replicative
cellular senescence, cell cycle arrest and apoptosis in response to
stress such as DNA damage, including the inhibition of tumor
suppressive functions of full-length p53. This mechanism is
consistent with the observed link between the rs35850753 low-
frequency T allele and lower full-length TP53 transcript level.
Thus, rare effect alleles at both rs78378222 and rs35850753 could
potentially, via different biological mechanisms, be linked to
impaired p53 activity and thus heightened proliferative potential
and less apoptosis of normal human cells, consistent with larger
HC scores and a larger cranial dimension.

It is noteworthy that rs78378222 has been previously associated
to risk of cancers including tumors of the nervous system such as
glioma34, a malignant tumor of glial tissue, possibly including
neural stem cells, glial progenitors and astrocytes as cells of ori-
gin35, but also prostate cancer and colorectal adenoma32. Both
rs35850753 and rs78378222 have also been robustly associated
with neuroblastoma36, a sympaticoadrenal lineage neural crest-
derived tumor. Evidence for neurological phenotypic con-
sequences of TP53 variation has recently been strengthened by
the discovery of TP53 as a risk locus for general cognitive func-
tion using a gene-based approach37. TP53 knockout mouse
embryos show furthermore broad cranial defects involving

skeletal, neural, and muscle tissues38. Similarly, mouse models for
Treacher Collins syndrome (a disorder of cranial morphology
which arises during early embryological development as a result
of defects in the formation and proliferation of neural crest cells)
could be rescued by inhibition of p53 during embryological
patterning39. In particular, there is support from animal and
tissue models for a role of p53 in neural crest cell (NCC) devel-
opment38 with NCCs supplementing head mesenchyme during
fetal development11,40. NCCs also contribute to the development
of a thick three-membrane layer called the meninges, that cover
the telencephalon11,40 and directly locate underneath the skull. In
particular, Pia mater, the innermost layer of the meninges,
adheres closely to sulci and fissures of the cortex. During post-
natal brain growth, including extensive increases in myelinated
white matter41, the calvarial bones are drawn outward, partially
due to the expanding meninges, triggering the production of
membranous skull bone40. Moreover, meninges have been
thought to play a key role in the coordinated integration of sig-
naling pathways regulating both neural and skeletal cranial
growth11. It is possible to speculate that p53 is part of these joint
regulatory mechanisms, for example, via Wnt signaling regula-
tion42. However, beneficial effects of rs35850753 and rs78378222
on growth patterning leading to an increased HC and cranial
dimension might be counterbalanced by adverse outcomes such
as glioblastoma, keeping both variants at a lower frequency.

Combined analysis of HC and ICV, as related measures of final
cranial dimension, also identified association at eight further loci,
in addition to variation at 17p13.1 and loci previously reported
for either infant HC and/or adult ICV. This includes the low-
frequency variant rs41288837, predicted to belong to the 0.5%
most deleterious substitutions in the human genome. The variant
exerts moderately large effects that correspond to an approxi-
mately 10% decrease in SD units of final cranial dimension per
rare T allele. rs41288837 is a missense variant in TCF7L1 at
2p11.2, a locus encoding a transcription factor mediating Wnt
signaling pathways that are known to play an important role in
vertebrate neural development43. The effects of this variant were
consistent for both HC and ICV, although each of the individual
trait analyses was too underpowered to detect association at this
variant at a genome-wide level. An additional low-frequency
variant in this study, rs183336048 at 4q28.1, was identified as
associated with pediatric HC only, but could not be replicated due
to a lack of comparable age-matched follow-up cohorts.
rs183336048 lies 5′ to INTU which encodes inturned planar cell
polarity protein, a polarity effector affecting neural tube pat-
terning and cilliation44. Common variants identified in the ICV
+HC combined meta-analysis also include intronic variation in
AKT3 (rs2168812) and CCND2 (rs3217870), which are related
through the phosphatidylinositol 3-kinase (PI3K-AKT) path-
way45. Disruption of PI3K-AKT pathway components causes
megalencephaly-polymicrogyria-polydactyly-hydrocephalus syn-
drome and a spectrum of related megalencephaly syndromes45,46.
This supports previous in silico pathway analysis, which nomi-
nated PI3K-AKT, an intracellular signaling pathway controlling
the cell cycle, as candidate pathway for intracranial volume12.
Both, rs2168812 and rs3217870, have also been associated with
cancer risk, similarly to the two TP53 variants, with the AKT3
variant rs12076373 (LDr2 with rs2168812 = 0.70) being related to
risk for non-glioblastoma brain tumors34 and the CCND2 variant
rs3217901 (LDr2 with rs3217870 = 0.63) being related to color-
ectal cancer (Supplementary Data 18). Notably, AKT3 signaling is
an essential intracellular pathway controlling neural crest devel-
opment47, while tissue-specific chromatin interactions in
mesenchymal stem cells have been reported for several novel loci
(Supplementary Data 17), supporting a role of neural crest-
related processes in shaping final cranial dimension.
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Genetic correlation analyses provided strong evidence for
shared genetic determinants between HC and both anthropo-
metric (birth weight, height, waist and hip circumference) and
cognitive traits, as well as ICV. Genetic correlations with waist
circumference and hip circumference recapitulate observed cor-
relations between the size of the maternal pelvis and the size of
the neonatal cranium48, possibly induced because bipedal loco-
motion limits pelvic size. This is important as a mismatch
between the maternal pelvis and the fetal head49, i.e. a cephalo-
pelvic disproportion (CPD, also known as fetopelvic dispropor-
tion), can put the lives of both mother and fetus at risk, if left
untreated. Mathematical models show that evolutionary forces
such as a weak directional selection for a large neonate and/or a
weak selection for a narrow pelvis can account for the con-
siderable incidence of CPD in humans50, and predict a further
rise in CPD incidence due to the frequent use of Caesarian sec-
tions during recent years.

We also confirmed previously reported genetic links between
educational attainment and infant HC51, and identified additional
evidence for genetic correlation between HC and intelligence,
especially pediatric HC. With strongly shared genetic liability (i.e.
a genetic correlation coefficient near one), we considered HC and
ICV to be related proxy measures of an underlying phenotype,
which we termed final cranial dimension. This also suggests that
estimated skeletal volume, a combination of HC, cranial height
and cranial length52, might represent a more accurate, easily
accessible and inexpensive measure to enhance power for future
genetic analysis using a multi-trait approach53 in combination
with ICV, exploiting similar volumetric properties.

Multivariate analyses of genetic variance showed that genetic
factors contributing to variation in HC during infancy explain the
majority of genetic variance during later life, although novel genetic
influences arise both during mid-childhood and adolescence. This is
further reflected in strong GSEM-based genetic correlations across
childhood and adolescence, and strong LDSC-based genetic corre-
lations between infant and adult HC. The estimated LDSC-h2 of
HC in adult samples was lower than in pediatric samples, with only
marginally overlapping 95% confidence intervals, implying that
phenotypic variation in final HC is less well accounted for by
genetic influences than variation in childhood HC, probably as
skeletal growth processes have ceased.

The discovery that low-frequency variation, especially near
TP53, is associated with HC demonstrates the scientific value of
testing for variation in the lower allele frequency spectrum and
the utility of comprehensive imputation templates. Low-
frequency variants identified in this study had larger effects
than common variants (Supplementary Figures 7 and 8), in
keeping with findings from a range of complex phenotypes
including anthropometric traits17,54,55. Nevertheless, despite
having sufficient power to detect low-frequency variation
explaining as little as 0.11% of the variance in HC, this study was
underpowered for rare variant analysis (Supplementary Note 4),
underlining the need for even larger research efforts. Collectively,
our findings provide insight into the genetic architecture of
cranial development and contribute to an improved under-
standing of its dynamic nature throughout human growth and
development.

Methods
Study population. For the discovery analysis, we adopted a two-stage develop-
mental design including cohorts with HC scores during childhood (Pediatric HC,
mean age 6−9 years of age, N= 10,600), during adulthood (Adult HC, mean age
44−61 years of age, N= 8281) and a combination thereof (N= 18,881) including
individuals of European descent from 11 population-based cohorts (Supplementary
Tables 1 and 2, Fig. 1). Cohorts include The Avon Longitudinal Study of Parents
and Children (ALSPAC), the Generation R Study (GenR), the Western Australia
Pregnancy Cohort Study (RAINE), the Copenhagen Prospective Study on Asthma

in Children (COPSAC2000 and COPSAC2010), the Infancia y Medio Ambiente
cohort (INMA), the Hellenic Isolated Cohorts HELIC-Pomak and HELIC-MAN-
OLIS, the Orkney Complex Disease Study (ORCADES), the Croatian Biobank
Korčula (CROATIA-KORCULA), and the Viking Health Study-Shetland (VIK-
ING). Within ALSPAC analysis was performed separately in individuals with
whole-genome sequence data (ALSPAC WGS) and chip-based genotyping
(ALSPAC GWA). For follow-up, we studied 973 individuals from the Croatian
Biobank, Split (CROATIA-SPLIT) (Supplementary Table 2). Institutional and/or
local ethics committee approval was obtained for each study. Written informed
consent was received from every participant within each cohort, and this study has
complied with all ethical regulations. An overview of each cohort can be found in
Supplementary Tables 1 and 2 with more detailed information in Supplementary
Note 1.

Genotyping. Within ALSPAC, we obtained low read depth (average × 7) whole-
genome sequencing data (ALSPAC WGS)55. Chip-based genotyping was per-
formed on various commercial genotyping platforms, depending on the cohort
(Supplementary Table 1). Prior to the imputation, all cohorts had similar quality
control; variants were excluded because of high levels of missingness (SNP call rate
< 98%), strong departures from Hardy−Weinberg equilibrium (p < 1.0 × 10−6), or
low MAF (<1%). Individuals were removed if there were sex discordance, high
heterozygosity, low call rate (<97.5%) or duplicates. For imputation, the reference
panel was either joint UK10K/1000 Genomes55 or the Haplotype Reference Con-
sortium15. Additional details can be found in Supplementary Table 1 and Sup-
plementary Note 1.

In addition to study-specific quality control measures, central quality control
was performed using the EasyQC R package56. First, variants were filtered for
imputation quality score (imputed studies only, INFO > 0.6), minor allele count
(MAC; ALSPAC WGS MAC > 4, all imputed studies MAC > 10) and a minimum
MAF of 0.0025. SNPs with MAF discrepancies (>0.30) compared to the HRC panel
were also excluded. Marker names were harmonized and reported effect and
noneffect alleles were compared against reference data (Build 37). Variants with
missing or mismatched alleles were dropped, in addition all insertion/deletions
(INDELs), duplicate SNPs and multiallelic SNPs were excluded. The reported EAF
for each study was plotted against the frequency in the HRC reference data to
identify possible strand alignment issues (Supplementary Figures 1, 3). The final
number of variants passing all quality control tests and the per-study genomic
inflation factor (λ) are reported in Supplementary Tables 1 and 2.

Phenotype preparation. Pertinent to this study, HC measures in all individual
cohorts were transformed into Z-scores using a unified protocol. After the removal
of outliers (±4 SD within each sample), HC was adjusted for age within males and
females separately. Residuals for each sex were subsequently transformed into Z-
scores and eventually combined (thus removing inherent sex-specific effects). Note
that the phenotype transformation within ALSPAC was jointly carried out for both
sequenced and genome-wide imputed samples.

Genetic-relationship structural equation modeling. Developmental changes in
the genetic architecture of HC scores between the ages of 1.5 and 15 years were
modeled using genetic-relationship structural equation modeling (GSEM, R gsem
library, v0.1.2)24. This multivariate analysis of genetic variance combines whole-
genome genotyping information with structural equation modeling techniques
using a full information maximum likelihood approach24. Changes in genetic
variance composition were assessed with longitudinal HC scores in ALSPAC
participants (7924 individuals with up to three measures; 1.5 years, N= 3945; 7
years N= 5819; 15 years, N= 3406). HC scores were Z-standardized at each age, as
described above. Genetic-relationship matrices were constructed based on directly
genotyped variants in unrelated individuals, using GCTA software57, and the
phenotypic variance dissected into genetic and residual influences using a full
Cholesky decomposition model24.

Multiple testing correction. Using Matrix Spectral Decomposition (matSpD)58,
we estimated that we analyzed 1.52 effective independent phenotypes within this
study (Pediatric, Adult and Pediatric+ adult HC scores and ICV12 scores)
according to the LDSC-based genetic correlations22.

Single variant association analysis. Single variant genome-wide association
analysis, assuming an additive genetic model, was carried out independently within
each cohort using standard software (Supplementary Table 1, Supplementary
Note 1). Residualized HC scores (Z-scores) were regressed on genotype dosage
using a linear regression framework. For cohorts with unrelated subjects (Sup-
plementary Table 1) association analysis was carried out using SNPTEST v2.5.0
(-method expected, -frequentist)59. Note that HC scores in GenR were, in addition,
adjusted for four principal components. Cohorts with related participants (HELIC
cohorts) utilized a linear mixed model to control for family and cryptic relatedness,
implemented in GEMMA60.

Individual cohort level summary statistics for HC were combined genome-wide
with standard error-weighted fixed effects meta-analysis, allowing for the existence
of age-specific effects through an age-stratified design (Fig. 1a). We restricted each
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HC meta-analysis (Pediatric, Adult, Pediatric+ adult) to variants with a minimum
sample size of N > 5000. Genomic control correction was applied at the individual
cohort level and heterogeneity between effects estimates was quantified using the I-
squared statistic as implemented in METAL61. Accounting for the effective number
of independent phenotypes studied, the threshold for genome-wide significance
was fixed at 3.3 × 10−8 and the threshold for suggestive evidence at 6.6 × 10−6.

We contacted all studies (known to us) with (a) HC information available in
later childhood or adult samples, (b) participants of European ancestry and (c)
genotype data. Studies with whole-genome sequencing or densely imputed
genotype data (HRC or UK10K/1KG combined templates) were included in the
HC meta-analysis, while studies with imputation to other templates were reserved
for follow-up. Following this strategy, the majority of studies were included in
the meta-analysis, with follow-up in a single study.

Identification of known variants and conditional analysis. Known GWAS sig-
nals (p≤ 5.0 × 10−8) were identified from previous studies on HC in infancy13,
ICV12,62–64 and brain volume65 using either published or publicly available data
(Supplementary Table 4). Conditional analysis was performed with GCTA software
using summary statistics from HC (Pediatric) and HC (Pediatric+ adult) meta-
analyses (Supplementary Figure 4). In addition, we carried out an LD clustering of
independent signals from the HC (Pediatric+ adult) meta-analysis with respect to
all known loci. Briefly, LD clustering is an iterative process that starts with the most
significant SNP, which is clumped with variants that have pairwise LD of r2 ≥ 0.2
within 500 kb using PLINK v1.90b3w, and all variants in LD are removed. Then,
the same clumping procedure is repeated for the next top SNP and the iteration
continues until there are no more top variants with p < 1.0 × 10−4. For details, see
Supplementary Note 2. For sensitivity analysis, we repeated the LD clustering with
known loci for height as identified through the GIANT consortium (697 known
independent height GWAS signals19, r2= 0.2, ±500 kb).

Combined meta-analysis of HC and ICV. We carried out a weighted Z-score
meta-analysis of the combined HC (Pediatric+ adult) meta-analysis and the lar-
gest publicly available genome-wide summary statistics on intracranial volume
(ICV; N= 26,577) based on data from Cohorts for Heart and Aging Research in
Genomic Epidemiology (CHARGE) and the Enhancing NeuroImaging Genetics
through Meta-Analysis (ENIGMA) consortium12. A weighted Z-score meta-
analysis was carried out using METAL61 using standardized regression coefficients
and 12,124,458 imputed or genotyped variants, assuming a genome-wide threshold
of significance at p≤ 3.3 × 10−8.

We used the Z-scores (Z) from the METAL output to calculate the standardized
regression coefficient (β) for each SNP and trait66

bβj � Zj

bσy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nj ´ 2ð1� EAFjÞEAFj
q ; ð1Þ

where SNPj has an effect allele frequency (EAFj) and bσy is standard deviation of
the phenotype, which is assumed to equal one for standardized traits. The standard
error (SE) is calculated as

Zj ¼
bβj

SEðbβjÞ
: ð2Þ

To disentangle lead signals observed in both the HC (Pediatric+ adult) and the
combined ICV+HC (Pediatric+ adult) meta-analysis, variants were conditioned
on each other using GCTA software and summary statistics.

Gene-based analysis. Gene-based tests for association were performed using
MAGMA20, which calculates gene-based test statistics from SNP-based test sta-
tistics, position-based gene annotations and a linkage disequilibrium reference
panel of UK10K haplotypes using an adaptive permutation procedure. SNP-based
test statistics were annotated using mapping files with a 50 kb symmetrical window
around genes. For gene definition, we used all 19,151 protein-coding gene anno-
tations from NCBI 37.3 and corrected for the number of genes and effective
phenotypes tested, using an adjusted Bonferroni threshold of 1.7 × 10−6.

S-PrediXcan. We used the S-PrediXcan method21 as a summary-statistic-based
implementation of PrediXcan to test for association between tissue-specific
imputed gene expression levels and HC, implemented in the MetaXcan standalone
software (v0.3.5). This approach first predicts the transcriptome level using publicly
available transcriptome datasets. Then, it infers the association between gene and
phenotype of interest, by using the SNP-based prediction of gene expression as
weights (predicted from the previous step) and combines it with evidence for SNP
association based on phenotype-specific GWAS summary statistics. We predicted
gene expression levels for cerebellum (4778 genes; GTEx v6p; Supplementary
Note 3), cortex (3177 genes; GTEx v6p; Supplementary Note 3), and whole blood

(6669 genes; DGN; Supplementary Note 3) using an adjusted Bonferroni threshold
of p < 2.3 × 10−6 across all tissues tested.

Estimation of heritability and genetic correlation. Linkage-disequilibrium score
regression (LDSC)22 was carried out to estimate the joint contribution of genetic
variants as tagged by common variants (SNP-h2) to phenotypic variation in HC.
The method is based on GWAS summary statistics and exploits LD patterns in the
genome and can distinguish confounding from polygenic influences22. To estimate
LDSC-h2, genome-wide χ2-statistics are regressed on the extent of genetic variation
tagged by each SNP (LD-score). The intercept of this regression minus one esti-
mates the contribution of confounding bias to inflation in the mean χ2-statistic. LD
score regression was performed with LDSC software (v1.0.0) and based on the set
of well-imputed HapMap3 SNPs (~1,145,000 SNPs with MAF > 5% and high
imputation quality such as an INFO score of 0.9 or higher) and a European
reference panel of LD-scores. LD-score correlation analysis can be used to estimate
the genetic correlation (rg) between distinct samples by regressing the product of
test statistics against the same LD-score23. Bivariate LD score correlation was
performed with the LDHub platform67 v1.9.0 (Supplementary Note 5). We
assessed the genetic correlation between HC scores and a series of 235 phenotypes
(excluding UK Biobank) comprising anthropometric, cognitive, structural neu-
roimaging and other traits as described in Zheng et al.67, with an adjusted Bon-
ferroni threshold of p < 1.4 × 10−4.

Stratified LD score regression. Stratified LD score regression68 is a method for
partitioning heritability from GWAS summary statistics with respect to genes that
are expressed in specific tissue/cell types. We applied this method to HC summary
statistics to evaluate whether the heritability of HC is enriched for genes that are
highly expressed in brain tissues. GTEx v6p (Supplementary Note 3) provided gene
expression data from 13 brain tissue/cell types. Each of these tissue annotations was
added to the baseline model and enrichment was calculated with respect to 53
functional categories. This is for each functional category the proportion of SNP-h2

divided by the proportion of SNPs in that category. We performed stratified LD
score regression with independent data from the Roadmap Epigenomics con-
sortium and ENCODE project (Supplementary Note 3), where we restricted the
analysis to 55 chromatin marks identified in neural and bone tissue/cell types.
Similar to the deriving enrichment in gene expression, each annotation was added
to the baseline model. Chromatin analysis includes the union and the average of
cell-type-specific annotations within each mark. In the joint gene expression and
chromatin enrichment analysis, we applied a multiple testing of p < 4.8 × 10−4

accounting for 68 neural and bone tissues/cell types tested (data from GTEx v6p,
ENCODE and Roadmap; Supplementary Note 3).

Functional annotation of novel signals. Functional consequences of novel var-
iants were explored using two web-based tools: Brain xQTL28 and FUMA (v1.3.1)
25. The threshold for multiple testing for eQTL was adjusted according to the
number of genes near the studied novel signals and their proxy SNPs (r2= 0.2 and
±500 kb). For Brain xQTL, we corrected for multiple testing based on a threshold
of p < 7.4 × 10−4 to account for 68 genes tested. For FUMA eQTL analysis, a
multiple testing threshold of p < 7.6 × 10−4 was applied to adjust for 42 genes and,
24 blood and brain tissues/cell types (Supplementary Note 3).

UK Biobank phenome scan. To characterize the phenotypic spectrum of identified
HC signals, we conducted a phenome scan on 2143 phenotypes in the UK Biobank
cohort69, using PHESANT29 software (v0.13). Analyses were restricted to partici-
pants of UK ancestry (UK Biobank specified variable). One from each pair of
related individuals, individuals with high missingness, heterozygosity, gender
mismatch and putative aneuploidies were excluded. Genotype dosage at lead single
variants identified with GWAS was converted into best-guess genotypes using
PLINK v1.90b3w. Linear, ordinal logistic, multinomial logistic and logistic
regressions were fitted to test the association between genotype and continuous,
ordered categorical, unordered categorical and binary outcomes respectively.
Analyses were adjusted for age, sex and genotyping chip, and, for sensitivity
analysis, 10 principal components. A conservative Bonferroni threshold was
applied accounting for a total of 11,056 tests performed and two genotypes tested
(p < 2.26 × 10−6).

HC growth curve modeling. Trajectories of untransformed HC (cm) spanning
birth to 15 years were modeled in 6225 ALSPAC participants with up to 13 repeat
measures (17,269 observations) using a mixed effect SITAR model18 (R sitar library
v1.0.11). SITAR comprises a shape invariant mixed model with a single fitted
curve, where individual curves are matched to the mean curve by modeling dif-
ferences in mean HC, differences in timing of the pubertal growth spurt and
differences in growth velocity18. Individuals with large measurement errors, i.e.
with HC scores at younger ages exceeding scores at later ages (by more than 0.5 SD
of the grand mean) as well as outliers (with residuals outside the 99.9% confidence
interval) were excluded. The best fitting model was identified using likelihood ratio
tests and the Bayesian Information Criterion and included four fixed effects for
splines, a fixed effect for differences in mean HC and a fixed effect for sex, in
addition to two random effects for differences in mean HC and growth velocity.
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Stratified models were fitted for carriers and noncarriers of increaser-alleles at
candidate loci. To examine the relationship between genotype dosage and differ-
ences in HC and growth velocity, these random effects were regressed on genotype
dosage using a linear model.

Data availability
Genome-wide summary statistics and further analyses in this work that support the
findings of this study have been deposited at “The Language Archive”, a public data
archive hosted by the Max Planck Institute for Psycholinguistics. Data are
accessible with a persistent identifier (https://hdl.handle.net/1839/ff12326d-9688-
4a46-bc2a-b50cbbd2b20c). The content can also be found through the Data
Archiving and Networked Services database, the Dutch national organization for
sustained access to digital research data. All Supplementary Data files can be found
under the following links:
Supplementary Data 1
Supplementary Data 2
Supplementary Data 3
Supplementary Data 4
Supplementary Data 5
Supplementary Data 6
Supplementary Data 7
Supplementary Data 8
Supplementary Data 9
Supplementary Data 10
Supplementary Data 11
Supplementary Data 12
Supplementary Data 13
Supplementary Data 14
Supplementary Data 15
Supplementary Data 16
Supplementary Data 17
Supplementary Data 18
Supplementary Data 19
Supplementary Data 20
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