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Stochastic Expansions Maintain the Clonal Stability of CD8"
T Cell Populations Undergoing Memory Inflation Driven by
Murine Cytomegalovirus

Corinne J. Smith,*' Vanessa Venturi,””! Maire F. Quigley,”' Holly Turula,*"

Emma Gostick,® Kristin Ladell,’ Brenna J. Hill," Danielle Himelfarb,* Kylie M. Quinn,"
Hui Yee Greenaway,” Thurston H. Y. Dang,” Robert A. Seder,” Daniel C. Douek,’

Ann B. Hill,"! Miles P. Davenport,”' David A. Price,”*! and Christopher M. Snyder*"'

CMYV is an obligate and persistent intracellular pathogen that continually drives the production of highly differentiated virus-
specific CD8" T cells in an Ag-dependent manner, a phenomenon known as memory inflation. Extensive proliferation is required
to generate and maintain inflationary CD8"* T cell populations, which are counterintuitively short-lived and typically exposed to
limited amounts of Ag during the chronic phase of infection. An apparent discrepancy therefore exists between the magnitude of
expansion and the requirement for ongoing immunogenic stimulation. To address this issue, we explored the clonal dynamics of
memory inflation. First, we tracked congenically marked OT-I cell populations in recipient mice infected with murine CMV
(MCMV) expressing the cognate Ag OVA. Irrespective of numerical dominance, stochastic expansions were observed in each
population, such that dominant and subdominant OT-I cells were maintained at stable frequencies over time. Second, we
characterized endogenous CD8" T cell populations specific for two classic inflationary epitopes, M38 and IE3. Multiple clonotypes
simultaneously underwent Ag-driven proliferation during latent infection with MCMYV. In addition, the corresponding CD8"
T cell repertoires were stable over time and dominated by persistent clonotypes, many of which also occurred in more than one
mouse. Collectively, these data suggest that stochastic encounters with Ag occur frequently enough to maintain oligoclonal
populations of inflationary CD8" T cells, despite intrinsic constraints on epitope display at individual sites of infection with

MCMV. The Journal of Immunology, 2020, 204: 112-121.

ytomegalovirus is a ubiquitous betaherpesvirus that
persists in a state of latency. Acute infection is usually
asymptomatic in immunocompetent hosts, but lifelong
immune surveillance is required to suppress viral reactivation and
prevent disease (1). In the latent phase of infection, viral reac-
tivation occurs in an infrequent and sporadic manner, such that a
vast majority of infected cells harbor transcriptionally silent virus

at any one time (2-4). However, the process of viral reactivation in
individual cells is highly coordinated and follows a predictable
course, with stepwise expression of immediate-early, early, and
late genes (3). Epitopes derived from immediate-early proteins
in particular form key targets for CD8" T cells, enabling immune-
mediated termination of the viral lifecycle before the release
of mature virions, at least in mice infected with murine CMV
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(MCMV) (5). As a consequence of viral reactivation events, the
immune system is periodically exposed to a largely constant set of
Ags. In turn, recurrent stimulation drives the amplification and
maintenance of various CMV-specific CD8* T cell populations, a
phenomenon known as memory inflation (6-10).

Memory inflation in mice depends on Ag presentation by in-
fected nonhematopoietic cells (11, 12). However, viral transcripts
are rare during the latent phase of infection (4, 13), leading to
competition among virus-specific CD8" T cells for the same (14)
or different epitopes (15). Similar phenomena occur in humans.
Accordingly, human CMV (HCMV)-specific CD8* T cell pop-
ulations are generally oligoclonal (16-22) and express TCRs that
display conserved patterns of amino acid use across the CDR3
loop (20, 23, 24), many of which are shared among individuals
and therefore classified as “public” (16-20, 23-25). These features
are so pervasive in fact that infection status (26) and even the
specificity of certain public sequences (27) can be determined
from bulk peripheral repertoire datasets, reflecting consistent
patterns of clonal selection governed at the level of Ag engage-
ment by cognate TCRs (16, 17, 21-23).

CD8" T cells that undergo memory inflation typically display a
highly differentiated phenotype (CD127 KLRG1%) (8, 28, 29). In
humans and mice, these cells are limited in terms of proliferative
capacity and survival, with a 71, of 45-60 d (29, 30). Earlier work
suggested that such effector and/or effector-memory cells are
continually replenished from a much smaller, less differentiated
pool of memory CD8" T cells (CD127*KLRG1 ") (11, 31), driven
through multiple rounds of division by recurrent Ag exposure
(13, 29). Accordingly, memory inflation seems to be founded on
a process of competition for access to limited amounts of cog-
nate Ag, in which success leads to preferential expansion of the
“fittest” clones.

In this study, we addressed two unresolved issues in the field of
memory inflation, namely whether numerical dominance per se
provides a selection advantage over time and to what extent clonal
dynamics impact the overall constitution of inflationary CD8*
T cell populations. Our findings indicate that stochastic encounters
with Ag drive the occasional emergence and expansion of rare
clonotypes within otherwise highly stable CD8" T cell populations
specific for inflationary epitopes derived from MCMV.

Materials and Methods
Mice

Parental mouse strains were purchased from the Jackson Laboratory.
C57BL/6 mice were used for direct infections. CD45.1 congenic mice
(B6.SJL-Ptprc” Pepcb/BOyJ) and OT-I mice [C57BL/6-Tg(TcraTcrb)
1100Mjb/J] were used for adoptive transfers. CD45.1% OT-I mice
and CD45.17/CD45.2" OT-I mice were bred in house. All experimental
procedures were approved by the Institutional Biosafety Committee and
the Institutional Animal Care and Use Committee at Oregon Health &
Science University.

Viruses

Mice were infected i.p. with 2 X 10° PFU of MCMYV. Endogenous CD8*
T cell responses were analyzed postinfection with strain K181. Adoptive
transfer experiments with OT-1 cells were performed postinfection with
strain SL8-015 (MCMV-OVA). Viruses were grown and titrated on
M2-10B4 cells (32).

Flow cytometry

Lymphocytes were isolated from organs as described previously (13).
Peripheral blood samples and splenocytes were analyzed immediately or
mixed with 10% DMSO and cryopreserved at —80°C. Fluorochrome-
labeled tetrameric complexes of SSPPMFRV/H-2K® (M38, residues
316-323) and RALEYKNL/H-2K" (IE3, residues 416-423) were gener-
ated in house (17). Directly conjugated mAbs were purchased from
commercial vendors (BD Biosciences or BioLegend). Staining procedures
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were described previously (29). OT-I cells were identified using anti-CD45.1
(clone A20), anti-CD45.2 (clone 104), and anti-TCR Va2 (clone B20.1).
Differentiation and proliferation were assessed using anti-CD8a (clone
53-6.7), anti-CD127 (clone A7R34), anti-KLRGI (clone 2F1), and anti-Ki67
(clone B56). Repertoires were characterized at the protein level using an
Anti-Mouse TCR V@3 Screening Panel (BD Biosciences). Data were acquired
using an LSR II flow cytometer (BD Biosciences) and analyzed with FlowJo
software versions 9.3 and 10.2 (Tree Star).

Clonotype identification

Frozen vials of peripheral blood or splenocytes were thawed at 37°C. RBCs
were lyzed using ACK Lysing Buffer (Thermo Fisher Scientific).
Lymphocytes were then washed twice in RPMI 1640 medium supple-
mented with 10% FCS (R10), stained with fluorochrome-labeled tetra-
meric complexes of SSPPMFRV/H-2K® and RALEYKNL/H-2K" for
10 min at 37°C, washed again twice in R10, and stained with anti-CD3
(clone 17-A2), anti-CD4 (clone RM4-5), and anti-CD8a (clone 53-6.7) for
20 min at 4°C. Dead cells were excluded using a LIVE/DEAD Fixable
Violet Dead Cell Stain Kit (Thermo Fisher Scientific). Viable Ag-specific
CD8" T cells (amine reactive dye”, CD3*, CD8", and either M38 or IE3
tetramer") were sorted at >98% purity using a modified FACSAria flow
cytometer (BD Biosciences). Aliquots of 1000 sorted cells were collected
directly into Screw Cap Micro Tubes (Sarstedt) containing 150 pl of
RNAlater (Thermo Fisher Scientific). Unbiased molecular determination
of all expressed TRB gene products was conducted using a template-switch
anchored RT-PCR as described previously (17, 33, 34).

Repertoire analysis

Each TCRP sequence was aligned sequentially with the best-matched
TRBV gene, followed by the best-matched TRBJ gene and the best-
matched TRBD gene, using the IMGT reference alleles for Mus musculus
(35). The CDR3f sequence was then identified inclusively between the
conserved cysteine in the V(3 region and the conserved phenylalanine in the
JB region. The minimum number of nucleotide additions required to produce
a CDR3pB sequence was determined by germline matching to the TRBV and
TRBJ genes, followed by the TRBD gene (minimum n = 2 nt). Palindromic
nucleotides were allowed at the 3" end of the TRBV gene, the 5" and 3’ ends
of the TRBD gene, and the 5" end of the TRBJ gene (maximum n = 6 nt).
Junctional nucleotides that could not be assigned to germline genes were
considered to be nucleotide additions.

Clonotype identity was defined at the nucleotide level (TRBV and TRBJ
gene use and CDR3f nucleotide sequence). Persistent clonotypes were
defined as those observed at more than one timepoint in peripheral blood
samples obtained from a given mouse (days 195, 230, 265, and 302
postinfection with MCMV). Public clonotypes were defined at the amino
acid level on the basis of exact sequence matches in more than one mouse,
irrespective of prevalence and recurrence across all samples obtained from
any one mouse (n = 6). Repertoire diversity was evaluated using the
Simpson diversity index (36), and repertoire similarity was evaluated using
the Morisita—Horn similarity index (37). These relative measures of di-
versity and similarity range in value from 0 (minimum diversity/similarity)
to 1 (maximum diversity/similarity). The corresponding diversity and
similarity indices were estimated as median values from 10,000 random
draws of 32 sequences per repertoire to account for differences in sampling
at the molecular level (36, 37). All diversity and similarity analyses were
performed using MATLAB (MathWorks).

Statistics

Statistical tests were performed using Prism version 8.1.0 (GraphPad
Software).

Results

Cell division is a feature of memory inflation

The production of highly differentiated effector and/or effector-
memory CD8" T cells is thought to require extensive prolifera-
tion (29). To confirm this earlier finding, we seeded naive mice
with OT-I cells, which recognize the H-2K"—restricted OVA-derived
epitope SIINFEKL (residues 257-264) via a transgenic TCR. Pri-
mary recipient mice were then infected with a recombinant MCMV
expressing OVA (MCMV-OVA). Splenocytes were harvested 4 mo
postinfection, labeled with CFSE, and transferred into secondary
recipient mice latently infected with either wild-type MCMYV or
MCMV-OVA. After 2 wk, CD127 KLRGI1" OT-I cells in the
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MCMV-WT MCMV-WT [ Total OT-Is:

MCMV-OVA MCMV-OVA
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(B) Frequency of OT-I cells among
CD8" T cells in the peripheral blood
over time. (C) Representative flow
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marked OT-I cells in the peripheral
blood on day 7 postinfection. Inset
numbers indicate percentages. Top,
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over time normalized to the domi-
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Initial ratio 90:10. Gray lines and
symbols indicate mice with substantial
fluctuations in the OT-I cell ratio dur-
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ing chronic infection (after day 35). L
CD45.2

spleens of secondary recipient mice infected with wild-type
MCMYV remained fully loaded with CFSE, indicating a lack
of division (Fig. 1A, left panel), whereas the corresponding
CDI127*KLRG1~ OT-I cells displayed intermediate levels of
CFSE, consistent with one or two rounds of homeostatic division
(Fig. 1A, right panel). In contrast, CD127 KLRG1" OT-1 cells
recovered at the same timepoint from the spleens of secondary
recipient mice infected with MCMV-OVA either remained fully
loaded with CFSE or contained no trace of CFSE, indicating more than
six rounds of division (Fig. 1A, left panel). Ongoing exposure to Ag
was therefore required for the emergence of CESE*CD127 KLRG1*
OT-1 cells, which likely originated from a less differentiated
memory compartment, given the limited proliferative capacity of
CD127 KLRG1" MCM V-specific CD8" T cells (31).

Stochastic expansions maintain clonal stability during
memory inflation

To assess how these proliferation events might shape the process of
memory inflation, we seeded naive mice with mixtures of two

Ratio dom./sub. OT-I
o (normalized to day 7)

0 25 50 75 100 125
Days postinfection

congenically marked OT-I cell populations at different ratios (60:40,
75:25, and 90:10) and infected the recipients with MCMV-OVA
(Fig. 1B-D). In a vast majority of mice, the circulating OT-I cell
population as a whole expanded progressively after transfer, em-
ulating a classic inflationary profile (Fig. 1B). The relative fre-
quencies of each congenically marked population fluctuated
during early infection, a period of transient decline for the initial
OT-I cell expansions, and then stabilized at various levels during
chronic infection, although further oscillations were apparent in
two mice (Fig. 1B, 1D). These equilibrium frequencies were
largely recapitulated in the spleen and other heavily vascularized
organs (Fig. 2A). However, the ratios of congenically marked OT-I
cells varied to a greater extent around similar mean values in the
lymph nodes and salivary glands compared with the spleen, liver,
and lungs during chronic infection, potentially reflecting ana-
tomical compartmentalization and the hematogenous nature of
memory inflation (13).

At each timepoint during chronic infection, the dominant and
subdominant populations of circulating OT-I cells were highly
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differentiated (CD127 KLRG1™), consistent with repeated expo-
sure to cognate Ag (Fig. 2B). A fraction of cells in each pop-
ulation also expressed Ki67, a marker of cell proliferation
(Fig. 2C). Similar results were obtained using OT-I cells isolated
from various organs (data not shown). However, Ki67" events
were not always uniformly distributed among the dominant and
subdominant populations, such that the “dividing” ratios were
often skewed relative to the “total” ratios of congenically marked
OT-I cells (Fig. 2D). In other words, the relative frequencies of
OT-I cells undergoing active proliferation in the dominant and
subdominant populations at a particular moment in time were not
consistently or simply associated with the overall frequencies of
OT-I cells in the dominant and subdominant populations, indi-
cating that numerical dominance per se was not sufficient to gain a
division advantage in vivo. Clonal expansions therefore occurred
in a stochastic manner, likely reflecting chance encounters with
cognate Ag, which by extension occurred frequently enough to
maintain the dominant and subdominant populations of OT-I cells
(Fig. 1D).

Repertoire bias is common during memory inflation

To assess the impact of these processes on endogenous MCMV-
specific CD8" T cell populations, which incorporate naturally

selected clonotypes expressing distinct TCRs, we used a panel of
VB-specific mAbs in conjunction with fluorochrome-labeled
tetrameric complexes representing the inflationary epitopes
SSPPMFRV/H-2K" (M38, residues 316-323) and RALEYKNL/
H-2K" (IE3, residues 416-423). Each of the corresponding in-
flationary CD8" T cell populations displayed markedly restricted
VB expression among splenocytes isolated on day 120 postin-
fection with MCMV (Fig. 3A, 3C). In particular, M38-specific
CD8" T cells typically expressed VB2 (TRBV1), whereas
IE3-specific CD8" T cells typically expressed V11 (TRBV16).
Akin to the OT-1 data (Fig. 2B-D), Ki67" events were present at
comparable frequencies among the dominant and subdominant V[3-
defined CD8"* T cell populations specific for M38 or IE3, which
also displayed largely similar phenotypes characterized by a general
lack of CD127 and widespread expression of KLRGI1 (Fig. 3B, 3D).

In further experiments, we used an unbiased molecular approach
to track individual clonotypes in flow-sorted populations of in-
flationary CD8" T cells isolated directly ex vivo from peripheral
blood samples obtained on days 195, 230, 265, 300, and 302
postinfection with MCMV (17, 33, 34). Splenocytes were ana-
lyzed in parallel at the final timepoint (Fig. 4A). Data metrics are
summarized in Supplemental Table IA. In line with our findings
at the protein level (Fig. 3A, 3C), M38-specific CD8* T cells
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typically expressed TRBV1 (Supplemental Table 1B), whereas
IE3-specific CD8* T cells typically expressed TRBV16 (Supplemental
Table IC).

Persistent clonotypes are ubiquitous during memory inflation

To examine repertoire stability over time, we assigned clonotype
identity at the nucleotide level, setting an exact sequence match
threshold across samples. Persistent clonotypes were defined as
those observed at more than one timepoint in a given mouse, and
nonpersistent clonotypes were defined as those observed at only
one timepoint in a given mouse. In each mouse, persistent clo-
notypes constituted the bulk of each inflationary CD8* T cell
population, irrespective of specificity (Fig. 4B, 4C). These per-
sistent clonotypes were often numerically dominant at one or
more timepoints and occurred at higher frequencies averaged per
timepoint per mouse than the corresponding nonpersistent clo-
notypes (M38: p < 0.01 for mouse 2 and p < 0.0001 for mouse 4;
IE3: p < 0.05 for mouse 2 and p < 0.01 for mouse 1, mouse 3,
and mouse 4; Mann—Whitney U test; Fig. 4D, 4E). However,
frequency variations were common over time, such that domi-
nance patterns often shifted throughout the period of observation.
It is also notable that no consistent increases or decreases in
repertoire diversity or similarity were observed across timepoints

(Fig. 5A, 5B, 5E, 5F). Further analyses revealed variable degrees of
clonotype overlap in each mouse between specificity-matched rep-
ertoires obtained from the peripheral blood on days 300 and 302
(Fig. 5C, 5G) and between specificity-matched repertoires obtained
from the peripheral blood and the spleen on day 302 (Fig. 5D, SH).
Accordingly, some of the observed fluctuations in clonotype rep-
resentation across timepoints were likely due to sampling effects,
and the corresponding inflationary repertoires were likely more
stable than our “lower-limit” estimates (Fig. 4B, 4C).

Adoptive transfer experiments have demonstrated that a single
clone primed early postinfection can be sustained during memory
inflation (11, 13, 14, 31). Our data align with these observations
(Fig. 1). However, it does not necessarily follow that recurrent
sequences indicate clonotype survival, because nucleotide-identical
precursors with the same specificity might feasibly be recruited de
novo into the Ag-experienced population of inflationary CD8*
T cells. The frequency of any given clonotype in the naive pool can
be predicted from the minimum number of nucleotide additions
required to generate the corresponding TCR, which in turn cor-
relates inversely with the likelihood of production via the V(D)J
recombination machinery (38—40). On this basis, we assessed the
extent to which persistent and nonpersistent clonotypes were
encoded by germline genes, using the minimum number of
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FIGURE 5. Inflationary CD8" T cell repertoires generally retain population-level characteristics during infection with MCMYV. (A and E) Heatmaps showing

the Simpson diversity index for each M38-specific (A) or IE3-specific CD8" T cell repertoire (E) obtained from the peripheral blood of each mouse on days 195,
230, 265, and 302 postinfection with MCMV. (B and F) Heatmaps showing the Morisita—Horn similarity index for each pair of M38-specific (B) or IE3-specific
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nucleotide additions required to produce each unique sequence. In
line with the possibility of ongoing recruitment from a munificent
reservoir of naive precursors during the process of memory in-
flation, the median number of nucleotide additions required to
generate persistent clonotypes was generally lower than the me-
dian number of nucleotide additions required to generate non-
persistent clonotypes (M38: p < 0.001 for mouse 1, p < 0.01 for
mouse 2, p < 0.05 for mouse 3, and p < 0.0001 for mouse 4; IE3:
p < 0.05 for mouse 1; Mann—Whitney U test; Fig. 4F, 4G).

Public clonotypes are often persistent during memory inflation

Clonotypes that require no or few nucleotide additions are more
likely to be present in multiple individuals than clonotypes that
require multiple nucleotide additions (25, 39—43). We therefore
investigated the relationship between clonotype persistence and
clonotype publicity, defined at the amino acid level as an exact
sequence match in more than one mouse. Large variations in the

extent of clonotype sharing as a proportion of each repertoire were
observed among mice and timepoints (Fig. 6A-D). Irrespective of
the overall contribution of public clonotypes to each repertoire,
however, persistent clonotypes were shared more commonly among
mice than nonpersistent clonotypes (Fig. 6A, 6B). Moreover, clo-
notypes that were persistent and public constituted a greater
proportion of each repertoire than clonotypes that were non-
persistent and public (Fig. 6A, 6B), and the relative predomi-
nance of clonotypes that were persistent and public (Fig. 6C, 6D)
was largely attributable to higher copy numbers per sequence
rather than higher numbers of unique sequences (Fig. 6A, 6B).

Discussion

The maintenance of lifelong protection and surveillance against
persistent pathogens constitutes a major challenge for the immune
system. In this study, we addressed two outstanding issues per-
taining to the remarkable phenomenon of memory inflation,

T cell clonotypes (E) across all timepoints. (F and G) Minimum number of nucleotide additions required to generate persistent and nonpersistent
M38-specific (F) or IE3-specific CD8" T cell clonotypes (G) across all timepoints. *p < 0.05, **p < 0.01, **¥p < 0.001, ***%p < 0.0001 (Mann—Whitney

U test).
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namely the role of Ag-driven proliferation as a determinant of
clonal turnover and the extent to which this process affects
the overall stability of inflationary CD8* T cell populations. Our
data suggest that clonal expansions occur in a sporadic manner,
reflecting chance encounters with cognate Ag, which in turn occur
sufficiently often to sustain dominant and subdominant clonotypes
within largely stable repertoires specific for inciting epitopes de-
rived from MCMV.

A paradoxical feature of memory inflation is the apparent dis-
crepancy between the relative paucity of viral transcripts and the
disproportionately high frequencies of Ag-specific CD8" T cells. It
has also been proposed that effective immune surveillance further
limits access to the relevant cognate epitopes, because rare viral
reactivation events are detected and extinguished very rapidly by
CMV-specific CD8* T cells (5, 44). Our findings are consistent
with this “silencing/desilencing and immune sensing” hypothesis
and suggest that early “sensing” of such reactivation events occurs
in a stochastic manner. However, the net effect of multiple en-
counters with cognate Ag ultimately seems to outweigh any
constraints on epitope display at individual sites of viral reac-
tivation, thereby providing adequate stimulation across the body
as a whole to drive the process of memory inflation.

If memory inflation is driven by clonal expansions, which in turn
depend on recurrent interactions with cognate Ag, then it follows
that viral load must dictate the magnitude of inflationary CD8*
T cell populations. In line with this prediction, recent studies
found that memory inflation was impaired after low-dose infection
(45, 46) and enhanced by reinfection with MCMYV (47). However,
further work is required to assess the dynamic range of such as-
sociations, which are inextricably bidirectional and therefore most
likely nonlinear over time.

In the context of memory inflation, clonal expansions are thought
to originate from a precursor-like pool of memory CD8* T cells,
which acquire a highly differentiated phenotype as a consequence
of extensive proliferation (31). The precise identity of these
precursor-like memory cells nonetheless remains obscure.

[ Persistent and not public

EZ3 Not persistent and public [ Neither persistent nor public

Potential sources of clonal replenishment include the classically
defined central-memory (CD62L*) and effector-memory subsets
(CD62L "), both of which are represented among inflationary
CD8" T cell populations (31). Each of these subsets could feasibly
contribute to the process of memory inflation, because viral
Ags may be encountered not only in the circulation but also in
lymphoid organs (11, 13). In parenchymal tissues, however, access
to viral Ags is almost certainly restricted to specialized subsets
that exist in disequilibrium with the circulation and lymphoid
organs, such as resident memory CD8" T cells (13). This ana-
tomical compartmentalization of the immune system likely ex-
plains an intriguing aspect of our data, namely that the ratios of
congenically marked OT-I cells were distributed more unevenly in
the lymph nodes and salivary glands compared with the peripheral
blood and heavily vascularized organs. Inflationary CD8* T cell
populations may therefore be maintained primarily via homeo-
static mechanisms rather than stochastic expansions in paren-
chymal tissues during the latent phase of infection with MCMV.
In line with this notion, the long-term survival of inflationary
CD8* T cells in the lungs of latently infected mice was recently
found to be critically dependent on IL-15 (48).

There are notable parallels between our findings and those
reported from studies of HCMV. For example, the half-lives of
HCM V-specific CD8* T cells and MCM V-specific CD8" T cells
are relatively short and remarkably similar, indicating a require-
ment for continual exposure to Ag (29, 30). Moreover, a com-
monly targeted HLA-A*0201-restricted pp65 epitope derived
from HCMV elicits oligoclonal CD8" T cell repertoires dominated
by one or two clonotypes expressing high-affinity TCRs, consis-
tent with the notion of interclonal competition for Ag (16, 17,
21-23). Ag-specific clonotypes mobilized during early infection
also persist within inflationary repertoires during chronic infec-
tion with HCMV (21, 49). However, these repertoires are not
entirely static, as confirmed by our analyses in the context of
MCMV (50). In addition, HCMV-specific CD8* T cell pop-
ulations frequently incorporate public clonotypes, some of which
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dominate the overall repertoire in certain individuals (16-20,
23-25).

Public clonotypes generally require fewer nucleotide additions
than private clonotypes (25, 39, 40, 42, 43). In line with this es-
sential tenet of convergent recombination, we found that persistent
clonotypes were more commonly germline-encoded and more
frequently public than nonpersistent clonotypes, often with a
substantial presence in the corresponding inflationary CD8* T cell
repertoires. These observations suggest that de novo recruitment
of Ag-specific precursors from the naive pool may contribute to
the process of memory inflation. However, some persistent clo-
notypes required large numbers of nucleotide additions (n = 9),
albeit fewer than the corresponding nonpersistent clonotypes, and
different near-germline-encoded clonotypes tended to persist in
different mice, which argues against a probabilistic mode of re-
plenishment. It therefore seems likely that clonotype survival is
the primary determinant of repertoire stability within inflationary
CD8" T cell populations.

Precursor frequencies in the naive pool are known to influence
the abundance and differentiation of individual clonotypes during
Ag-driven immune responses (51), and competition for Ag can
skew the process of memory inflation in favor of dominant CD8*
T cell populations (14, 15, 52). In the case of identical clonotypes,
however, numerical dominance does not confer a selection
advantage, as modeled in our adoptive transfer experiments with
OT-I cells. A clonotype that is rare in the naive pool is therefore
not automatically precluded from undergoing memory inflation.
Nonetheless, the relative frequencies of congenically marked
OT-I cells fluctuated substantially during the early stages of
infection (up to day 35), a period characterized by rapid pro-
liferation (11) and avidity-based competition among inflation-
ary CD8" T cell populations (14). Such dynamic interactions
may therefore determine the subsequent composition of infla-
tionary populations at equilibrium after primary infection with
MCMV. The relative stability of each congenically marked
population of OT-I cells during chronic infection also suggests
that the latent viral reservoir is largely constant, at least in
terms of Ag display. Accordingly, different viral strains with
different replication and virulence profiles may elicit infla-
tionary populations with different characteristics and greater
variability over time, potentially affecting overall immune
function and disease outcome.

Collectively, our data indicate that Ag encounter is infrequent at
any given moment but substantial enough in aggregate to maintain
an oligoclonal pool of inflationary CD8" T cells during chronic
infection with MCMV. These findings have potential implications
for the design of next-generation vaccines based on attenuated
derivatives of HCMV.
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