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Abstract  
 
This thesis aimed to understand the structural changes that occur during the 

development of the mammalian cornea. The imaging techniques used 

included novel three-dimensional serial block-face scanning electron 

microscopy, transmission electron microscopy, optical coherence 

tomography, X-ray diffraction and immunofluorescence. These techniques 

were utilised to investigate the human, mouse and the fibrillin-1 knockout 

mouse cornea.  

 

The mouse cornea had no collagenous primary stroma to direct mesenchymal 

cell migration. Stromal cell projections associated with adjacent corneal 

stromal cells and the corneal epithelium, and appeared to direct collagen 

alignment. The mouse stroma expressed types I, II and V collagen, and later 

type IX collagen in the epithelium. Proteoglycans were observed before 

collagen deposition in the mouse stroma, associated with stromal cells and 

collagen fibrils.  

 

A collagenous primary stroma was identified in the human embryonic cornea 

prior to mesenchymal cell migration. The corneal endothelium contained novel 

cell extensions that associated with the mesenchymal cells and the acellular 

collagenous matrix; these results suggested that the endothelium assists 

mesenchymal cell migration. 

 

The human adult cornea contained true elastic fibres in the peripheral posterior 

cornea with fibrillin-rich microfibrils in the central posterior cornea. The elastic 

fibres in the mouse contained only fibrillin-rich microfibrils. In the human, 

elastic fibres were detected from week 12 of development and had a 

distribution similar to the mature human cornea. This included elastic fibre 



 
 

I 
 

sheets directly anterior to the endothelium and individual elastic fibres in the 

posterior peripheral stroma. 

 

The fibrillin-1 knockout mouse cornea had reduced stromal thickness and a 

disorganised extracellular matrix. It is thought that elevated transforming 

growth factor-beta disrupted the corneal architecture.    

 

This thesis has contributed novel findings of the events that develop the 

mammalian cornea. The results identified fundamental differences and 

similarities between the mouse and human models and have suggested new 

mechanisms in the developmental process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

II 
 

Acknowledgements  

 

First and foremost, I would like to acknowledge my supervisors Professor Keith 

Meek and Dr Philip Lewis for their continued support and expert knowledge 

throughout my PhD journey.  

 

Following this, I would like to thank Dr Rob Young and Dr Jim Ralphs for their 

expertise in developmental biology and extracellular matrix and their helpful 

advice with laboratory work. I acknowledge Dr Sally Hayes and Dr James Bells 

for their assistance in the collection of the X-ray data at Diamond. I also 

acknowledge the technical support team on beamline I22 at Diamond, UK, 

which granted the collection of meaningful data for my PhD thesis.   

 

I especially acknowledge Professor Lygia Pereira and Dr Rodrigo Barbosa for 

the fibrillin-1 knockout mouse model developed and collected from their 

laboratory in Sao Paulo, Brazil. This collaboration allowed me to undertake 

novel research which I believe has generated exciting results for future study.  

 

I also thank the School of Optometry and Vision Sciences and give special 

thanks to the members of the Structural Biophysics group for their continued 

support and encouragement throughout my PhD. 

 

I am grateful to my family and friends for their continued support. I especially 

thank Gregor and family for their continued support throughout my PhD 

journey. Lastly, I would like to give a special thanks to my parents, sister and 

grandparents for their continued support throughout my academic career and 

for always encouraging me. 

 

 



 
 

III 
 

List of publications  
 
Feneck. E.M, Lewis. P.N, Ralphs. J., Meek. K.M. (2018). A comparative 
study of the elastic fibre system within the mouse and human cornea. 
Experimental Eye Research. Volume 11. Pages 35-44.  

 

Feneck. E.M, Lewis. P.N., Meek. K.M. (2019). Three-dimensional imaging of 
the extracellular matrix and cell interactions in the developing prenatal 
mouse cornea. Scientific Reports. Volume 9: 11277.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

IV 
 

List of Abbreviations 
 

ARVO                Association for Research in Vision and Ophthalmology  

 

BL                      Basal lamina  

 

BMP                  Bone morphogenetic protein 

 

CB                     Ciliary body  

 

CS                     Carnegie stage  

 

DM                    Descemet’s membrane  

 

E                        Embryonic day 

 

FBN1+/-               mgΔLoxPneo fibrillin-1 knockout mouse model 

 

GAGs              Glycosaminoglycans  

 

HA                     Hyaluronic acid 

 

HDBR                Human developmental Biology Resource  

 

H20                    water  

 

IOP                    Intraocular pressure  

 

IFS                    Interfibrillar spacing 

 

L                        Lens  

 



 
 

V 
 

LE                      Lens epithelium  

 

MCs                   Mesenchymal cells  

 

OCT                   Optical coherence tomography  

 

PBST                 Phosphate buffered saline-Tween-20  

 

POAG                Primary open angle glaucoma  

 

P                        Postnatal day 

 

PGs                   Proteoglycans  

 

ROI                    Region of interest 

 

SAXS                 Small angle X-ray scattering 

 

SBF-SEM           Serial block-face scanning electron microscopy  

 

SC                      Schlemm’s canal 

 

SE                      Surface ectoderm  

 

SLRPs               Small leucine rich proteoglycans  

 

TA                      Tannic acid 

 

TEM                   Transmission electron microscopy 

 

TGF-β              Transforming growth factor beta  

 



 
 

VI 
 

3-D                  Three-dimensional  

 

TM                   Trabecular meshwork  

 

UA                   Uranyl acetate 

 

WT                   Wild type  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

VII 
 

 

Table of Contents 

Chapter 1: Introduction .......................................................... 1 

1.1. Cornea ............................................................................................... 1 
1.1.1. Function and Transparency ......................................................... 2 
1.1.2. Bowman’s Layer .......................................................................... 5 
1.1.3. Corneal Stroma ........................................................................... 6 
1.1.4. Descemet’s Membrane ............................................................... 8 
1.1.5. Corneal Endothelium ................................................................... 9 

1.2. Corneal Extracellular matrix ............................................................. 10 
1.2.1. Collagen .................................................................................... 10 
1.2.2. Proteoglycans ............................................................................ 16 
1.2.3. Elastic fibres .............................................................................. 20 
1.2.4. Communication ......................................................................... 26 

1.3. Trabecular meshwork ...................................................................... 27 
1.3.1. Outflow Pathways ......................................................................... 27 
1.3.2. Trabecular Meshwork Related Pathologies .................................. 28 

1.4. Corneal Development ...................................................................... 30 
1.4.1. Avian Corneal Development ......................................................... 30 
1.4.2. Mammalian Corneal Development ............................................ 32 

1.5. Murine Model ................................................................................... 39 
1.6. Electron Microscopy ......................................................................... 41 

1.6.1. Transmission Electron Microscopy ............................................... 42 
1.6.2. Serial Block-Face Scanning Electron Microscopy ..................... 42 

1.7. X-ray Scattering Techniques ............................................................ 44 
1.8. Optical Coherence Tomography ...................................................... 45 
1.9. Aims ................................................................................................. 45 

Chapter 2: General Methods ................................................ 48 

2.1. Tissue Collection ................................................................................. 48 
2.1.1. Mouse tissue collection and embryo ageing ................................. 48 
2.1.2. Human Tissue Collection .............................................................. 52 

2.2. Electron Microscopy ............................................................................ 52 



 
 

VIII 
 

2.2.1. Serial block-face scanning electron microscopy .......................... 53 
2.2.2. Transmission electron microscopy (TEM) .................................... 57 

2.3. Optical Coherence Tomography (OCT) .............................................. 60 
2.3.1. Data Collection ............................................................................. 60 
2.3.2. Data Analysis ............................................................................... 62 

2.4. Small-Angle X-Ray Scattering (SAXS) ............................................... 64 
2.4.1. Sample Preparation ..................................................................... 64 
2.4.2. Analysis ..................................................................................... 65 

2.5. Immunofluorescence .......................................................................... 67 

Chapter 3: 3-D Structural Study of the Developing Mouse 
Corneal Stroma ......................................................................... 70 

3.1. Introduction ......................................................................................... 70 
3.2. Methods .............................................................................................. 74 

3.2.1. Electron Microscopy ..................................................................... 74 
3.2.2. Immunofluorescence .................................................................... 75 

3.3. Results ................................................................................................ 77 
3.3.1 Electron Microscopy ...................................................................... 77 

E10 ............................................................................................................ 77 
E12 ............................................................................................................ 82 
E13 ............................................................................................................ 85 
E14 ............................................................................................................ 89 
E15 ............................................................................................................ 93 
E16 ............................................................................................................ 96 
E18 ............................................................................................................ 99 

3.3.2. Immunofluorescence .................................................................. 102 
3.4. Discussion ..................................................................................... 106 
3.5. Summary ....................................................................................... 115 

Chapter 4: Collagen and Proteoglycan Distribution in the 
Developing Mouse Cornea ..................................................... 116 

4.1. Introduction .................................................................................... 116 
4.2. Methods ......................................................................................... 118 

4.2.1. Immunofluorescence ............................................................... 118 
4.2.2. Transmission Electron Microscopy ......................................... 120 



 
 

IX 
 

4.3. Results ........................................................................................... 121 
4.3.1. Immunofluorescence ............................................................... 121 
4.3.2. Proteoglycan Staining ............................................................. 139 

4.4. Discussion ...................................................................................... 145 
4.5. Summary ........................................................................................ 149 

Chapter 5: A Structural Study to Compare the Elastic Fibre 
System between the Adult Mouse and Human Cornea ....... 150 

5.1. Introduction ....................................................................................... 150 
5.2. Methods ............................................................................................ 151 

5.2.1. Tissue Collection ........................................................................ 151 
5.2.2. Electron Microscopy ................................................................... 152 
5.2.3. Immunofluorescence .................................................................. 152 

5.3. Results .............................................................................................. 154 
5.3.1. Electron Microscopy ................................................................... 154 
5.3.2. Immunofluorescence .................................................................. 159 

5.4. Discussion ......................................................................................... 163 
5.5. Summary ........................................................................................... 167 

Chapter 6: A 3-D structural study of the developing human 
corneal stroma ........................................................................ 168 

6.1. Introduction ....................................................................................... 168 
6.2. Methods ............................................................................................ 170 

6.2.1. Tissue collection ......................................................................... 170 
6.2.2. Electron Microscopy ................................................................... 170 

6.3. Results .............................................................................................. 170 
6.3.1. Week 7 ....................................................................................... 170 
6.3.1.1. CS20 ........................................................................................ 172 
6.3.2. Week 8 and 9 ............................................................................. 180 
6.3.3. Week 12 and 13 ......................................................................... 183 
6.3.4. Week 14 and 16 ......................................................................... 188 
6.3.5. Week 17 ..................................................................................... 194 

6.4. Discussion ......................................................................................... 197 
6.5. Summary ........................................................................................... 204 



 
 

X 
 

Chapter 7: A Structural Study of the Developing Fibrillin-1 
Knockout Mouse Cornea ........................................................ 206 

7.1. Introduction ....................................................................................... 206 
7.2. Methods ............................................................................................ 209 

7.2.1. Optical Coherence Tomography (OCT) ..................................... 209 
7.2.2. Small Angle X-Ray Scattering (SAXS) ....................................... 210 
7.2.3. Statistical Analysis ..................................................................... 211 
7.2.4. Electron Microscopy ................................................................... 211 
7.2.5. Immunogold electron microscopy .............................................. 211 

7.3. Results .............................................................................................. 214 
7.3.1. OCT ............................................................................................ 214 
7.3.2. SAXS Results ............................................................................. 224 
7.3.2.2. SAXS Results – Collagen Fibril Diameter ............................... 226 
7.3.3. Electron Microscopy ................................................................... 228 
7.3.4.  Immuno-electron microscopy results ................................... 236 

7.4. Discussion ........................................................................................ 240 
7.5. Summary .......................................................................................... 245 

Chapter 8: Concluding Discussion .................................... 246 

8.1. Future Research ............................................................................... 249 

 
Table of Figures  

 

Figure 1.1. A Schematic sagittal section of the human eye. .................... 1 

Figure 1.2. A schematic cross-section of the human cornea. .................. 4 

Figure 1.3. Collagen Structure. .................................................................. 11 

Figure 1.4. Collagen biosynthesis and fibrillogenesis. ........................... 13 

Figure 1.5. The elastic fibre system in the adult human cornea. ........... 24 

Figure 1.6 The outflow pathways of the trabecular meshwork .............. 28 

Figure 1.7. The initial stages of mammalian ocular development. ........ 32 

Figure 1.8. Corneal development. ............................................................. 33 

Figure 1.9. Mesenchymal cell migrations that develop the cornea. ...... 35 



 
 

XI 
 

Figure 1.10. Mouse corneal endothelium development. ......................... 36 

Figure 1.11. The Mouse Cornea. ................................................................ 40 

Figure 1.12. Serial block-face scanning electron microscopy. ............... 43 

Figure 2.1. Method to dissect mouse embryos from impregnated 

maternal mouse. ................................................................................... 50 

Figure 2.2. Embryonic tissue aged E10-E18. ............................................ 51 

Figure 2.3. Serial Block-Face Scanning Electron Microscopy (SBF-
SEM). ...................................................................................................... 57 

Figure 2.4. Transmission electron microscopy imaging. ........................ 58 

Figure 2.5. OCT imaging. ............................................................................ 61 

Figure 2.6. Small angle X-ray diffraction sample set up. ......................... 64 

Figure 2.7. Small angle X-ray diffraction analysis with SAXS4COLL. .... 67 

Figure 3.1. Serial block-face scanning electron microscopy datasets 

and three-dimensional reconstructions of the E10 mouse eye. ...... 78 

Figure 3.2. Three-dimensional reconstructions of the E10 mouse cornea 

(anterior cornea). .................................................................................. 80 

Figure 3.3. Transmission electron microscopy images of the E10 mouse 
cornea. ................................................................................................... 81 

Figure 3.4. Serial block-face scanning electron microscopy images and 

three-dimensional reconstructions of the E12 mouse eye. .............. 83 

Figure 3.5. Transmission electron microscopy images of the cornea at 

E12 ......................................................................................................... 84 

Figure 3.6. Serial block-face scanning electron microscopy images and 

three-dimensional models of the E13 developing mouse eye. ........ 86 

Figure 3.7. Serial block-face scanning electron microscopy 

three-dimensional models of the E13 mouse eye. ............................ 87 

Figure 3.8. Transmission electron microscopy of the developing E13 

mouse cornea, anterior (Figs 3.8A-C) and posterior corneal stroma 

(Fig. 3.8D). ............................................................................................. 88 

Figure 3.9. Serial block-face scanning electron microscopy datasets of 

E14 developing mouse eye. ................................................................. 90 

Figure 3.10. Serial block-face scanning electron microscopy 

three-dimensional reconstructions of the E14 developing mouse 

eye. ......................................................................................................... 91 

Figure 3.11. Transmission electron microscopy images of the E14 

mouse cornea, central corneal stroma ............................................... 92 



 
 

XII 
 

Figure 3.12. Serial block-face scanning electron microscopy 

three-dimensional reconstructions in the E15 developing mouse 

cornea. .................................................................................................. 94 

Figure 3.13. Transmission electron microscopy images of the 

developing E15 mouse corneal stroma ............................................. 95 

Figure 3.14. Serial block-face scanning electron microscopy 

three-dimensional models of the E16 mouse cornea. ...................... 97 

Figure 3.15. Transmission electron microscopy images of the 

developing E16 mouse cornea, anterior corneal stroma ................. 98 

Figure 3.16. Serial block-face scanning electron microscopy 

three-dimensional reconstructions of the E18 mouse cornea. ..... 100 

Figure 3.17. Transmission electron microscopy images of the E18 

mouse corneal stroma. ...................................................................... 101 

Figure 3.18. Fibronectin (red) in mouse corneal development. ........... 102 

Figure 3.19. Type VII collagen junction labelling in mouse corneal 

development. ...................................................................................... 103 

Figure 3.20. CNX43 (red) in mouse corneal development. ................... 104 

Figure 3.21. Hyaluronic acid (HA) labelling (red) in mouse corneal 

development. ...................................................................................... 105 

Figure 3.22. Events in the developing mouse cornea. .......................... 114 

Figure 4.1. Type I collagen in the developing mouse cornea x20 

magnification. ..................................................................................... 122 

Figure 4.2. Type I collagen in the developing mouse cornea x40 

magnification. ..................................................................................... 124 

Figure 4.3. Type II collagen in the developing mouse cornea x20 

magnification. ..................................................................................... 126 

Figure 4.4. Type II collagen in the developing mouse cornea x40 

magnification. ..................................................................................... 128 

Figure 4.5. Type V collagen in the developing mouse cornea x20 

magnification. ..................................................................................... 130 

Figure 4.6 Type V collagen in the developing mouse cornea x40 

magnification. ..................................................................................... 132 

Figure 4.7. Type IX collagen in the developing mouse cornea at x10 and 

x20 magnifications. ............................................................................ 134 

Figure 4.8. Type IX collagen in the developing mouse cornea x40 

magnification. ..................................................................................... 136 

Figure 4.9. Type I collagen pro-peptide in the prenatal mouse cornea 

x40 magnification. .............................................................................. 138 



 
 

XIII 
 

Figure 4.10. Semithin Sections of the Developing Mouse Cornea x20.

 .............................................................................................................. 139 

Figure 4.11. Transmission electron microscope images of the 
proteoglycans (PGs) in the E11 (Fig. 4.11A) and E12 (Fig. 4.11B) 
mouse cornea. .................................................................................... 141 

Figure 4.12. Transmission electron microscopy images of the 
proteoglycans (PGs) in the E13 (Fig. 4.12A) and E14 (Fig. 4.12B) 
mouse cornea (sub-epithelial). .......................................................... 142 

Figure 4.13. Transmission electron microscopy images of the 

proteoglycans (PGs) in the E13 central (Fig. 4.13A) mouse corneal 

stroma. ................................................................................................. 143 

Figure 4.14. Transmission electron microscopy images of the 

proteoglycans (PGs) in the E16 mouse corneal stroma. ................ 144 

Figure 5.1. Elastic fibre serial block-face scanning electron microscopy 

(SBF-SEM) reconstructions within the adult mouse posterior 

peripheral cornea. .............................................................................. 156 

Figure 5.2. A comparison of the elastic fibre network at Descemet’s 

membrane (DM) termination within the adult mouse (Fig 5.2A and 

Fig. 5.2B) and adult human cornea (Fig. 5.2C and Fig. 5.2D) with 

serial block-face scanning electron microscopy (SBF-SEM) 

imaging. ............................................................................................... 157 

Figure 5.3. Transmission electron microscopy images of tannic acid 

stained elastic fibres (yellow arrow) within the adult mouse cornea 

(Fig. 5.3A and Fig. 5.3B) and adult human cornea (Fig. 5.3C and Fig. 

5.3D). .................................................................................................... 158 

Figure 5.4. Adult mouse cornea immunofluorescence. ........................ 160 

Figure 5.5. Adult human cornea immunofluorescence ......................... 162 

Figure 5.6. Theorised elastic fibre system within the adult mouse 
cornea (Fig. 5.6A) and adult human cornea (Fig. 5.6B). ................. 164 

Figure 6.1. Serial block-face scanning electron microscopy (SBF-SEM) 

images of the embryonic cornea at Carnegie stage 20. ................. 172 

Figure 6.2. Three-dimensional reconstructions of the central embryonic 

cornea at Carnegie stage 20. ............................................................. 173 

Figure 6.3. Transmission electron microscopy imaging of the 

embryonic cornea at Carnegie stage 20. .......................................... 174 

Figure 6.4. Serial block-face scanning electron microscopy (SBF-SEM) 

imaging of the embryonic cornea at Carnegie stage 22. ................ 175 

Figure 6.5. Three-dimensional reconstructions of the peripheral 

embryonic cornea at Carnegie stage 22. .......................................... 176 



 
 

XIV 
 

Figure 6.6. Transmission electron microscopy imaging of the 

embryonic cornea at Carnegie stage 22. ......................................... 178 

Figure 6.7. Serial block-face scanning electron microscopy (SBF-SEM) 

imaging of the embryonic cornea at CS22. ..................................... 179 

Figure 6.8. Serial block-face scanning electron microscopy (SBF-SEM) 

and transmission electron microscopy (TEM) images of the foetal 

cornea at week 8. ............................................................................... 181 

Figure 6.9. Transmission electron microscopy images of the cornea at 

week 9 of foetal development. .......................................................... 182 

Figure 6.10. Serial block-face scanning electron microscopy (SBF-SEM) 

image of the week 12 foetal corneal elastic fibre system. ............. 184 

Figure 6.11. Transmission electron microscopy images of the cornea at 

week 12 of foetal development. ........................................................ 186 

Figure 6.12. Serial block-face scanning electron microscopy images of 

the developing cornea at week 13. ................................................... 187 

Figure 6.13. Transmission electron microscopy imaging of the foetal 

cornea at week 14. ............................................................................. 190 

Figure 6.14. Transmission electron microscopy imaging of the foetal 

cornea at week 16. ............................................................................. 192 

Figure 6.15. Serial block-face scanning electron microscopy images of 

the week 17 corneal elastic fibre system. ........................................ 194 

Figure 6.16. Transmission electron microscopy imaging of week 17 

foetal corneas. .................................................................................... 196 

Figure 6.17. The suggested events that develop the human cornea ... 198 

Figure 7.1. Leica AFS2 automatic freeze substitution system. ............ 211 

Figure 7.2. Adult wild type (WT) and fibrillin-1 knockout (FBN1+/-) mouse 

cornea optical coherence tomography imaging (OCT) and analysis.

 ............................................................................................................. 216 

Figure 7.3. E18.5 wild type (WT) and fibrillin-1 knockout (FBN1+/-) mouse 

cornea optical coherence tomography (OCT) imaging and analysis.

 ............................................................................................................. 219 

Figure 7.4. E16.5 wild type (WT) and fibrillin-1 knockout (FBN1+/-) mouse 

cornea optical coherence tomography (OCT) imaging and analysis.

 ............................................................................................................. 220 

Figure 7.5. E14.5 wild type (WT) and fibrillin-1 knockout (FBN1+/-) mouse 

cornea optical coherence tomography (OCT) imaging and analysis.

 ............................................................................................................. 222 

Figure 7.6. Optical coherence tomography (OCT) imaging of the wild 

type (WT) and fibrillin-1 knockout (FBN1+/-) mouse corneas at 

embryonic age E12.5. ........................................................................ 223 



 
 

XV 
 

Figure 7.7. Collagen interfibrillar spacing results in the wild type (WT) 

and fibrillin-1 knockout (FBN1+/-) adult mouse corneas. ................ 225 

Figure 7.8. Collagen fibril diameter results in wild type (WT) and 

fibrillin-1 knockout (FBN1+/-) adult mouse corneas. ........................ 227 

Figure 7.9. Transmission Electron Microscopy (TEM) imaging of the 

collagen fibrils in the central cornea of wild type (WT) and fibrillin-1 

knockout model (FBN1+/-). ................................................................. 229 

Figure 7.10. Serial block-face scanning electron microscopy (SBF-SEM) 

dataset of the adult wild type (WT) and fibrillin-1 knockout (FBN1+/-) 

mouse corneas. .................................................................................. 232 

Figure 7.11. Serial block-face scanning electron microscopy (SBF-SEM) 

dataset of the wild type (WT) and fibrillin-1 knockout (FBN1+/-) 

developing mouse cornea at embryonic age E18.5. ....................... 233 

Figure 7.12. Serial block-face scanning electron microscopy (SBF-SEM) 

dataset of the wild type (WT) and fibrillin-1 knockout (FBN1+/-) 

developing mouse cornea at embryonic age E16.5. ....................... 234 

Figure 7.13. Transmission electron microscopy (TEM) imaging of the 

elastic fibres in the cornea ................................................................ 235 

Figure 7.14. Transmission Electron Microscopy (TEM) imaging of the 

wild type (WT) and fibrillin-1 knockout (FBN1+/-) corneas with 

decorin immuno-gold particle labelling. .......................................... 238 

Figure 7.15. Boxplots comparing gold particle labelling of Decorin in 

Wild type (WT) and Fibrillin-1 knockout mouse corneas (FBN1+/-) 239 

 

 

 
Table of Tables 

 

Table 1. The main collagens found within the cornea. The roles of 
specific collagens and their association with other molecules and 
cells, which help maintain a functional cornea (Chen et al. 2015, 
Fitch et al. 1994, Gelse et al. 2003, Massoudi et al. 2016, Puk et al. 
2009). ..................................................................................................... 15 

Table 2. The main proteoglycans within the cornea and their specific 
roles in maintaining a functional cornea (Carlson et al. 2005, 
Massoudi et al. 2016). ........................................................................... 19 

Table 3. Primary Antibodies ....................................................................... 76 

Table 4. Primary Antibodies used to Analyse Collagens in Developing 
Cornea ................................................................................................. 119 



 
 

XVI 
 

Table 5. Information on adult human donor corneas. ........................... 152 

Table 6. Antibodies used during the immunohistochemistry staining 154 

Table 7. Number (n) of unpaired wild type (WT) and fibrillin-1 knockout 
mouse (FBN+/-) corneas analysed with optical coherence 
tomography. ....................................................................................... 210 



1 
 

 

Chapter 1: Introduction 
 

1.1. Cornea 

The cornea is a transparent connective tissue with a curved architecture 

located at the front of the anterior chamber of the eye, running into the sclera 

at the limbus (Moore et al. 2013). Together with the lens, the cornea focuses 

light onto the retina. Photoreceptors then transmit impulses along the optic 

nerve towards the brain to yield an image with minimal distortion (Figure 1.1) 

(Remington and Remington 2012). 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Anterior  Posterior  

Figure 1.1. A Schematic sagittal section of the human eye.  

For vision, light must pass through the anterior portion of the eye with minimal 
light scatter, and be reflected onto the retina. Photoreceptors then transmit 
signals along the optic nerve towards the brain to generate an image. The 
anterior segment of the eye is composed of the cornea, lens, iris and ciliary 
body and they must act as a unit with the surrounding muscles and nerves to 
successfully allow light to focus onto the retina. Image taken from (Niederkorn 
2009), with permission under the Taylor and Francis copyright policy.  
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1.1.1. Function and Transparency  

The cornea provides two-thirds of the eyes refractive power (~43 dioptres) to 

direct light onto the retina with minimal light scatter (Ganguli et al. 1975, Meek 

et al. 2003). This is achieved by the unique shape and ultrastructure of the 

cornea, which provides a transparent and biomechanically strong tissue. 

Corneal transparency is determined by the arrangement of individual collagen 

fibrils within lamellae, avascularity and the presence of specialised proteins 

(proteoglycans and crystallins) within the cornea (Meek and Knupp 2015). 

Early studies demonstrated that the number density of collagen fibrils and their 

arrangement are vital for permitting corneal transparency. Maurice 

hypothesised the lattice theory, where collagen fibrils cause destructive 

interference of scattered light (Maurice 1957). The lattice theory was further 

modified by studies which proposed the distance between the collagen fibrils 

minimised light scatter, with the absence of fluctuations in refractive index (on 

the scale of the wavelength of light) between the collagen fibrils (Goldman and 

Benedek 1967). The arrangement of collagen fibrils forms a short-range order, 

and the secondary radiation scattered by the narrow collagen fibrils cumulates. 

This causes destructive interference of scattered light and leaves the forward 

radiation to carry the energy of the incoming light through the cornea. The 

importance of the collagen fibrillar ultrastructure has been further 

demonstrated by alterations reducing visual acuity. A discontinuity in the 

spacing between collagen fibrils and any significant increase in collagen fibril 

diameters enhance light scatter and reduce transparency (Goldman and 

Benedek 1967).  

 

To maintain transparency the cornea must also remain avascular (Chang et 

al. 2001). This has the added advantage of isolating the cornea from the 

immune system, which delays the immune response and benefits treatment 

strategies for corneal transplantation (Streilein 2003). However, it also makes 

the cornea vulnerable to disease. To overcome this limitation, aqueous humor 

provides the cornea with its main protection and immune response when 

required (Cousins et al. 1991).   
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In addition to the low light scattering properties of the cornea, the tissue also 

acts as a shield to protect the contents located posteriorly from foreign material 

and damage (DelMonte and Kim 2011). The cornea must remain strong and 

resilient to withstand the biomechanical forces it experiences, maintaining its 

physiological shape and organised configuration. If the normal architecture or 

transparency of the cornea is disrupted, which is seen in corneal diseases, 

such as keratoconus, or after surgical complications, visible light is unable to 

focus onto the retina and clarity of the overall image is lost (Bao et al. 2016, 

Nishtala et al. 2016). 

 

1.1.1.1. Structure  

Traditionally, the human cornea is composed of five layers, each having 

different roles that contribute to tissue function (Figure 1.2). Different genes 

have been identified within the individual layers that indicate each layer has a 

different function to the next (Norman et al. 2004). An additional layer was 

recently suggested and termed ‘Dua’s layer’ (Dua et al. 2013). However, this 

proposed layer has been shown by further studies to be a part of the existing 

stroma with an enhanced elastic fibre network (Lewis et al. 2016). Even though 

these layers have been identified in the human cornea, the mouse cornea 

lacks Bowman’s layer and is therefore composed of four layers (Hendrich 

2012). 
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1.1.1.2. Epithelium  

The epithelium is the outmost layer of the cornea; it is continuous with the 

conjunctival epithelium at the limbus and is separated from the collagenous 

stroma by a basal lamina. The epithelium acts as a protective barrier against 

foreign material and pathogens (Simon et al. 1993). The epithelium is 

composed of approximately four to five layers of non-keratinised stratified 

squamous epithelial cells and a monolayer of columnar basal cells posteriorly 

(Remington and Remington 2012). The co-ordinated turnover and 

communication of these cells is vital to maintain the corneal structure. 

Epithelial cells readily replenish to maintain the epithelium, with the superficial 

cells being continually replaced by the deeper basal cells (Wiley et al. 1991). 

The basal cells are attached to the basement membrane and provide the wing 

A 
B 

C 

D 
E 

F 

Figure 1.2. A schematic cross-section of the human cornea.  

A - The epithelial layer, approximately 50-90 µm thick. 
B - The approximate location of Bowman’s layer that is 8-14 µm thick. 
C - Corneal stroma, approximately 500 µm thick. 
D - The approximate location of Descemet’s membrane, which 
increases in thickness throughout an adult’s life to approximately 12 µm. 
E - The endothelial layer, around 10 µm in thickness at birth and 
decreasing to around 3-5 µm with age. 
F – Cells (termed keratocytes) within the stroma 
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cells, which stratify anteriorly to form the flattened superficial cells with 

projecting surface microvilli, increasing the surface area to allow close 

associations with the tear film (DelMonte and Kim 2011, Zieske 2004). This 

strong attachment is responsible for the epithelium being firmly bound to the 

underlying Bowman’s layer (Torricelli et al. 2013). 

 

There are many junctions between epithelial cells, which provide the 

epithelium with communication and strength to enhance its function as a 

barrier (Mantelli et al. 2013, Remington and Remington 2012). The epithelium 

is covered by a tear film which protects the corneal surface and provides most 

of the eye’s refractive power at the air-tear interface (Patel et al. 1995). The 

tear film is composed of mucins-1, -4, and -16, which independently form a 

glycocalyx, a glycoprotein coating that helps bind transmembrane mucins to 

the corneal surface, this attracts water molecules and provides additional 

protection to the corneal surface (Gipson and Argueso 2003, Mantelli et al. 

2013). The superficial and wing cells also have a high glycogen content that 

contributes a protective function and provides an energy source to the 

epithelium; this content decreases during repair (Bron et al. 1997).  

 

For maintenance of the cornea, the epithelium is continually renewed by stem 

cells located within the limbus (Kruse 1994). Deficiency within the limbal stem 

cell (LSC) niche leads to complications during corneal wound repair, leading 

to a decreased visual acuity (Kocaba et al. 2016). Strategies to combat the 

use of LSCs in corneal tissue engineering are being explored to improve repair 

and regeneration in corneal diseases, especially where the epithelium is 

dysfunctional (Gonzalez et al. 2018).           

 

1.1.2. Bowman’s Layer  

Bowman’s layer is an acellular fibrous layer composed of collagen fibrils 

arranged randomly within the extracellular matrix (Bettman 1970). This layer 

was first identified by William Bowman in the late 19th century with its unique 

organisation of collagen fibrils, thought to assist the maintenance of corneal 
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curvature (Jacobsen et al. 1984, Patel et al. 1998). Type I collagen is the main 

collagen type present within Bowman’s layer, but small amounts of type XII 

collagen have also been identified during development (Marchant et al. 2002). 

The Bowman’s layer is described as a transition layer to the stroma as a result 

of the arrangement of collagen fibrils. The collagen fibrils within Bowman’s 

layer are thinner in diameter compared to the collagen fibrils found within the 

stroma, with a greater organisation and increased thickness at locations closer 

to the stroma (Lao and Tang 2014). Even though Bowman’s layer is thought 

to be important within the human cornea, it has been described to be much 

thinner or absent in electron microscopy analysis in less developed mammals, 

including the mouse, this suggests that it is not an essential structure within all 

mammalian corneas (Hayashi S. et al. 2002, Hendrich 2012). 

 

1.1.3. Corneal Stroma  

The stroma is a highly organised layer that constitutes approximately 90% of 

the corneal thickness (Reinstein et al. 2009). The stroma contains collagen 

fibrils organised in arrays of lamellae, proteoglycans, cells and ions. Collagen 

molecules assemble themselves into parallel collagen fibrils which in turn are 

arranged in lamellae that run predominantly, but not exclusively, in the superior 

to inferior and nasal to temporal directions in the human cornea (Meek and 

Boote 2004). There are around 200 to 300 lamellae lying parallel to the corneal 

surface through the central cornea, with packing density increasing in the 

anterior lamellae when compared to the posterior lamellae, and the number of 

lamellae increasing towards the corneal periphery (Bergmanson et al. 2005, 

Hamada et al. 1972). Studies have demonstrated the arrangement of lamellae 

within the cornea using electron microscopy and X-ray scattering techniques 

(Abass et al. 2015, Aghamohammadzadeh et al. 2004). These techniques 

have enhanced our knowledge of the organisation of proteins within the 

cornea, to further understand the corneal structure. The arrangement of 

lamellae provides the main strength to resist load-bearing forces that the 

cornea may experience, with lamellar interweaving enhancing corneal 

strength and tear resistance (Smolek and McCarey 1990). The corneal stroma 
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is mainly composed of heterodimeric fibrils of type I and V fibril-forming 

collagen molecules; these are responsible to regulate fibril assembly and fibril 

diameter (Birk et al. 1990, Birk et al. 1986, Wenstrup et al. 2004, Wenstrup et 

al. 2006). Type IX collagen is important during the early synthesis of the avian 

corneal stroma, for matrix stabilisation and cell migration, being absent when 

the tissue is mature (Fitch J. et al. 1998, Fitch J. M. et al. 1994). 

 

The anterior and posterior stoma have a different lamellar organisation, 

changing the properties within these compartments. Lamellae within the 

posterior stroma are more organised and hydrated, with wider collagen fibril 

diameters compared with the anterior stromal lamellae (Komai and Ushiki 

1991, Quantock A. J et al. 2007). Posterior stromal lamellae run from limbus 

to limbus, parallel to the corneal surface, with fibrils interweaving away from 

the central cornea. X-ray scattering techniques have shown that the inclination 

angle in the posterior peripheral cornea is increased, therefore interweaving is 

increased when compared to the central posterior cornea (Abass et al. 2015). 

As a result of the lamellar arrangement, the posterior stroma is more easily 

swollen and has a lower refractive index compared to the anterior stroma 

(Muller et al. 2001). Collagen fibrils within the anterior stroma are increasingly 

interwoven with frequent branching but are more randomly organised due to 

the interweaving of lamellae. Lamellae within the anterior stroma insert into 

Bowman’s layer; this creates an attachment for the stroma, and additionally 

adds rigidity and enhances the curvature of the human cornea (Morishige et 

al. 2011). The organisation of the interweaving lamellae within the stroma is 

vital to maintain a functional cornea. This arrangement is disrupted in corneal 

diseases, including keratoconus, where the shape, and consequently the 

function of the cornea is lost (Akhtar et al. 2013).  

 

Keratocytes occupy approximately 20% of the stroma and are responsible for 

extracellular matrix synthesis and deposition (Chen S. et al. 2015, Young et 

al. 2014). Keratocytes are mesenchymal fibroblasts, derived from cranial 

neural crest cells and lie between lamellae (Hay E.D. 1980). The high 

proliferation rate of keratocytes during embryogenesis for collagen synthesis 

decreases in mice between birth and the process of eyelid opening (Zieske 
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2004). Keratocytes remain in a cell arrest phase and do not undergo complete 

differentiation until required, e.g. during repair and regeneration (Zieske 2004). 

In repair, keratocytes become more active, transforming into myofibroblasts to 

remodel the extracellular matrix (Lakshman et al. 2010, West-Mays and 

Dwivedi 2006). Keratocytes possess long-range processes, which are thought 

to align the extracellular matrix in avian corneal development (Koudouna et al. 

2018a, Young et al. 2014); this has not been explored in the mammalian 

cornea. Extracellular matrix components, including fibronectin, have also been 

identified to arrange stromal collagen, which identifies components other than 

cells to assist collagen organisation (Gordon 2014). 

 

Keratocytes also contribute to maintaining transparency through their crystallin 

proteins (Jester et al. 1999). These corneal crystallins concentrate within the 

cell cytoplasm to minimise fluctuations in refractive index, thus reducing light 

scattering (Gardner et al. 2015). Throughout the corneal stroma, keratocytes 

display diverse morphologies at different locations and change shape during 

pathologies. Previous studies have identified stromal cells to be sensitive to 

glucose, with an altered phenotype, identifying the importance of nutrient 

homeostasis for keratocyte phenotype (Foster et al. 2015). 

 

1.1.4. Descemet’s Membrane  

Considered the basement membrane for the endothelial layer, Descemet’s 

membrane lies between the stroma and the endothelium (Remington and 

Remington 2012). Descemet’s membrane is continually synthesised and laid 

down by endothelial cells, increasing in thickness with age (Bourne 2003).  

 

Descemet’s membrane contains two zones, the anterior banded zone and the 

posterior non-banded zone (Levy S. G. et al. 1995). The anterior zone contains 

organised collagen throughout its extracellular matrix and the posterior zone 

contains an amorphous matrix with different components. There is a 

connection formed by collagen fibrils from the posterior stroma which project 

into Descemet’s membrane, where a pre-Descemet’s layer has been 
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hypothesised; however, no clear evidence of this layer has yet been found 

(Dua et al. 2013, Lewis et al. 2016, Meek and Knupp 2015). 

 

Type IV collagen is the main collagen of Descemet’s membrane (Fitch J. M. 

et al. 1990). Type IV collagen allows cellular processes including adhesion, 

migration and differentiation to occur smoothly (Ito et al. 2015). In addition, 

type VIII collagen is important for Descemet’s membrane formation during 

development, which assists corneal stability (Puk et al. 2009). Fibronectin has 

also been identified within Descemet’s membrane to adhere the corneal 

endothelium to Descemet’s membrane (Gordon 2014). Fibronectin also 

promotes successful cell migration in development and repair, indicating 

Descemet’s membrane to have a regulatory role in corneal assembly (Levy S. 

G. et al. 1995). The basement membrane has also been described to maintain 

corneal homeostasis by controlling the release of transforming growth factor 

beta (TGF-β) into the stroma, thus regulating the fibrotic response during 

repair (Stramer et al. 2003). The identification of TGF-β and fibronectin 

indicates that this layer is important during wound healing and may disrupt 

wound healing if damaged. 

 

1.1.5. Corneal Endothelium  

The endothelial layer is the innermost layer of the cornea, composed of a 

single layer of cuboidal cells which forms the posterior border of the cornea 

(DelMonte and Kim 2011). The endothelium maintains a transparent cornea, 

and damage to this layer can lead to severe vision loss (Zavala et al. 2013). 

Without the endothelium, the hydrophilic cornea would swell and disrupt the 

collagen fibrils, which could result in an opaque cornea (Bourne 2003). The 

critical hydrated state of the stroma is maintained by the endothelium, which 

contains pumps that regulate nutrients and metabolic wastes. This occurs by 

tight junctions that generate an ion gradient and continually pump water out of 

the cornea (He et al. 2016, Noske et al. 1994). The corneal endothelium 

additionally secretes matrix components that form Descemet’s membrane 

(Bourne 2003). Cellular components which include gap junctions (connexin 
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43), vimentin and N-cadherin also contribute to endothelial function and can 

protect cells against mechanical stress; these components may also regulate 

and protect the endothelial cells from intraocular pressure (IOP) fluctuations 

(He et al. 2016, Williams and Watsky 2002). 

 

1.2. Corneal Extracellular matrix 

The cornea is mainly composed of water (~80%), with the remainder 

comprising extracellular matrix proteins, salts and cellular components. 

Corneal stromal cells, known as keratocytes, are responsible for the synthesis 

of the mature stroma within the cornea and it is the extracellular matrix 

organisation throughout development that provides the cornea with its 

physiological shape and function (Young et al. 2014). Alterations to the matrix 

organisation may contribute to corneal diseases, where its overall shape, 

transparency and function is lost (Chakravarti et al. 2000, Liu C. Y. et al. 2003, 

White et al. 2017a).  

 

1.2.1. Collagen   

Collagen is the most abundant protein in the human body, essential in 

providing tissues with their biomechanical properties and tensile strength 

(Canty and Kadler 2005, Ricard-Blum 2011). Collagen fibrils within the cornea 

establish the cornea’s shape, transparent nature and function in focusing 

incoming visual light. These fibrils also give the cornea durability and strength 

to maintain its architecture when forces are applied (Meek and Boote 2004). 

Collagen fibrils lie parallel within superimposing lamellae, with a regular 

diameter between individual collagen fibrils, maintaining the cornea’s 

mechanical strength and transparency respectively (Maurice 1957). 

 

Collagen molecules are triple helical structures composed of three polypeptide 

chains, known as a chains (Pauling and Corey 1951). Each a chain contains 
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a glycine amino acid every third residue to form a repeating Gly-X-Y structure, 

usually X and Y represent proline and hydroxyl-proline respectively (Kadler et 

al. 1996). These residues form a left-handed helical structure which, when 

combined with the two additional helices, forms a right-handed triple helix 

(tropocollagen molecule) with enhanced stability (Ramachandran and Kartha 

1954, Rich and Crick 1961, Shoulders and Raines 2009). Within a 

cross-section of a corneal collagen fibril, approximately 300-400 triple-helical 

molecules exist (Meek and Leonard 1993). Within most connective tissues 

including tendons and the sclera, collagen molecules are staggered to 

produce a D-periodicity of ~67 nm. Within the cornea, the microfibrils within 

fibrils are tilted to ~15° to the fibrils long axis in a right-handed helix (Holmes 

et al. 2001). The subsequent tilt within the cornea reduces the axial periodicity 

to a smaller value of ~65 nm (Yamamoto et al. 2000) (Figure 1.3). 

 

Figure 1.3. Collagen Structure.  

Collagen molecules assemble into a left-handed triple helix, which further 
self-assemble into a staggered array to form microfibrils which coil together 
to form a collagen fibril. There are ~70 microfibrils within each collagen fibril, 
which are subsequently tilted by 15° to the fibril long axial. This tilt reduces 
the axial periodicity to 65 nm in the cornea. The alternating twists at each 
hierarchical level enhances strength within the corneal collagen fibrils. The 
collagen fibrils are then packaged into lamellae which maintain corneal 
shape, strength and corneal birefringence (Meek and Knupp 2015). 
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1.2.1.1. Collagen Biosynthesis  

Initially, procollagen genes are transcribed into mRNA and translated in the 

cytosol into pro-α polypeptide chains, protruding into the lumen of the rough 

endoplasmic reticulum with the help of a signal recognition domain by the 

corresponding receptors (Gelse 2003). Selected prolyl and lysyl residues are 

then hydroxylated, with the addition of a hydrogen and oxygen element. 

Hydroxylysine residues are further glycosylated with glucose and galactose. 

Three pro-α chains assemble in the endoplasmic reticulum, which forms a 

triple helix. Procollagens are translocated to the Golgi apparatus and 

packaged into secretory vesicles that fuse with the cell membrane, being 

released into the extracellular matrix after post-translational modifications 

(Gelse et al. 2003). Once secreted extracellularly, procollagens are then 

processed depending on the collagen type. Pro-collagen contains an N- and 

C-terminal pro-peptide which are cleaved by the N- and C- proteinases to 

produce a resultant tropocollagen molecule. Cleavage of the C-pro-peptide on 

the pro-collagen by a metalloproteinase initiates collagen fibrillogenesis, and 

further allows the molecules to aggregate into fibrils (Canty and Kadler 2005, 

Shoulders and Raines 2009). Oxidation of lysine side chains via lysyl oxidase 

(LOX) leads to the formation of hydroxylysyl pyridinoline and lysyl pyridinoline 

cross-links. Collagen molecule cross-linking occurs in the terminal step of 

collagen synthesis to increase the tensile strength of collagen fibrils (Hassell 

and Birk 2010). Once collagen fibrillogenesis is complete, mature collagen 

fibrils are packaged into lamellae and organised to provide the cornea with 

strength and transparency (Figure 1.4).  
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Figure 1.4. Collagen biosynthesis and fibrillogenesis.  

Procollagen genes are initially transcribed into mRNA before being translated 
in the cytosol to produce polypeptide chains. The chains are hydroxylated and 
glycosylated and assemble into three polypeptide chains to produce the triple 
helix. The triple helix is then secreted into the extracellular matrix, cleaved by 
pro-peptides at the C and N terminal regions to produce a tropocollagen 
molecule, in the direction from C to N. Fibrillogenesis is then initiated, 
proceeding with nucleation, fibre growth and crosslinking to assemble collagen 
fibrils. Within the cornea, the collagen fibrils are packaged into lamellae and 
organised to provide the cornea with tensile strength and transparency 
(Shoulders and Raines 2009). 
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1.2.1.2. Corneal Collagen  

Twenty-eight collagens have been identified, each with different roles within 

connective tissues. The specific collagen type within the helical structure 

confers a tissue with its specific properties (Ricard-Blum 2011). The cornea is 

mainly composed of type I collagen, but other collagen types are present within 

the cornea to contribute different properties (Table 1) (Birk et al. 1990, 

Newsome et al. 1982). Fibril-forming collagens are the most prevalent, some 

include types I, II, III, V and XI. FACIT collagens (fibril-associated collagen with 

interrupted triple helix) are found associated with collagen fibril surfaces and 

modify their interactive properties, these may include type IX, XII, XIV and XX 

collagen. Finally, other non-fibril-forming collagens can include type IV, VI and 

VII. These collagens localise in connective tissues and with cell surfaces, with 

some collagen types forming extracellular networks.  

 

Most fibrils within the cornea are heterotypic, therefore they have more than 

one fibrillar collagen type within their triple helix. Heterotypic fibrils within the 

stroma are composed of both types I and V collagen, which mainly enhances 

the biomechanical properties of the cornea (Birk et al. 1990, Fitch J. M. et al. 

1994). Type V collagen also limits fibril growth and is theorised to shorten 

corneal D-periods (Jastrzebska et al. 2017). These properties were 

demonstrated by studies that identified a reduction of collagen fibril diameter 

when type V collagen was increased (Birk et al. 1990). In addition, deletion of 

the type V collagen gene in a mouse model permitted an increase in fibril 

diameter, lack of fibril assembly and enhancement of corneal opacity (Sun et 

al. 2011).  
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Type of 
collagen 

 
 

Role 

 

Associations 

 
I 

 
Tensile strength & transparency 

 
Type V collagen (heterotypic fibrils) 

 
II 

 
Corneal stroma development, 

assembly of collagen fibrils 

 
Type IX collagen 

 
III 

 
Increased during corneal wound 

healing and inflammation, increased in 
corneal scarring 

 

 
Corneal stroma, enhanced in elastic 

tissues. 

 
IV 

 
Maintains the structure and function of 

basement membranes 
 

 
Corneal epithelial cells 

 
V 

 
Regulates fibril diameter, initiates fibril 
assembly & important for transparency 

 
Type 1 collagen 

 
VI 

 
Regulates stroma development; 

influences cell processes 

 
Collagen type I, II, IV and XIV. 

Elastin 
 

 
VII 

 
Component of anchoring fibrils, 

important for the stroma adhering to 
the epithelium, expressed during 

corneal wound healing and decreased 
during corneal diseases. 

 
Laminin 

 
VIII 

 
Present within Descemet’s membrane, 

assembles into a hexagonal lattice, 
altered in many corneal endothelial 

pathologies. 

 
Produced by endothelial cells 

 

 
IX 

 
Present in the corneal stroma during 

development 

 
Type II collagen 

 
XII 

 
Involved in the organisation & 

interactions of fibrils, corneal scarring 

 
Protrude the surface of collagen fibrils 

to interact with stromal proteins 
 

XIII 
 

Binds with other proteins e.g. 
fibronectin and type IV collagen  

 
Posterior two-thirds of the corneal 

stroma 
 

XVIII 
 

Anti-angiogenic role 
C-terminal non-triple helical domain 
endostatin – angiogenesis inhibitor. 

Only known collagen to carry heparin 
sulphate glycosaminoglycan side 

chains 

Table 1. The main collagens found within the cornea. The roles of 
specific collagens and their association with other molecules and 
cells, which help maintain a functional cornea (Chen S. et al. 2015, 
Fitch J. M. et al. 1994, Gelse et al. 2003, Massoudi et al. 2016, Puk et al. 
2009). 
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1.2.2. Proteoglycans  

Proteoglycans (PGs) are extracellular matrix molecules that maintain corneal 

homeostasis by regulating collagen fibrillogenesis, collagen fibril spacing, and 

allow collagen fibril maturation and organisation of the extracellular matrix 

(Lewis et al. 2010, Rada et al. 1993). PGs are composed of a protein core with 

covalently bound sulphated glycosaminoglycan (GAG) side chains. GAG’s are 

negatively charged repeating disaccharide units that are strongly hydrophilic 

and especially abundant in tissues that retain water. There are three families 

of GAG side chains that attach to the protein cores of PGs: 

chondroitin/dermatan sulphate, keratan sulphate and heparan sulphate 

(Massoudi et al. 2016). Different PGs have diverse roles within tissues, being 

identified by their distinct gene products (Iozzo and Schaefer 2015). Early 

studies that used cuprolinic blue contrasting and electron microscopy 

techniques originally identified PGs to associate with corneal stromal collagen 

fibrils (Scott and Haigh 1988a). Small leucine-rich proteoglycans (SLRPs) are 

a family of PGs that have been identified to be ubiquitously expressed within 

the cornea, especially throughout development. The SLRPs interact with 

fibrillar collagens to regulate collagen fibrillogenesis, signalling, matrix 

assembly and organisation (Chen S. and Birk 2013).  

 

1.2.2.1. Corneal Proteoglycans  

PGs have been well documented to regulate corneal transparency through 

their interactions with collagen fibrils. Changes to PGs reduce corneal 

transparency and exert detrimental effects on corneal structure and function. 

Keratan sulphate PGs make up approximately half of the PGs present within 

the cornea and provide the cornea with an organised stroma. Keratan sulphate 

PG synthesis is important to achieve corneal transparency, with the abnormal 

synthesis of these PGs leading to corneal opacity (Hassell et al. 1980, Midura 

et al. 1990, Pellegata et al. 2000). This GAG chain is N-linked to asparagine 

residues in PG core proteins. Different variants of PGs contain the sulphated 

keratan sulphate GAG side chains are identified in the cornea. These PG 

variants include lumican, keratocan, mimecan and fibromodulin (Carlson et al. 
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2005, Chakravarti et al. 2000, Funderburgh et al. 1997). Interestingly, even 

though all these PGs are found in various other tissues, they are only 

glycosylated with sulphated keratan sulphate side chains in the cornea, which 

suggests an important role for transparency (Table 2).  

 

Lumican limits collagen fibrillogenesis in the cornea, with thinner collagen 

fibrils in the presence of lumican (Rada et al. 1993). The GAG side chains of 

lumican become sulphated during embryonic development when transparency 

increases, which further supports the argument for its role in corneal 

transparency (Cornuet et al. 1994). Lumican-null mice exhibit altered collagen 

fibril organisation and loss of corneal transparency (Chakravarti et al. 1998). 

The role of lumican in corneal fibrillogenesis has been demonstrated in 

lumican-null mice, which exhibit larger collagen fibrils in the posterior corneal 

stroma in comparison with the anterior stroma (Saika et al. 2000). Lumican 

also regulates other corneal PGs at the transcription level. For example, 

overexpression of lumican results in an increase in keratocan mRNA, whilst a 

decrease in lumican expression results in a reduction of keratocan mRNA 

(Carlson et al. 2005). Lumican also contains a collagen-binding site that is 

homologous to the binding site on the keratan sulphate PG fibromodulin. This 

SLRP regulates corneal collagen fibrillogenesis in postnatal mouse 

development, localised within the peripheral cornea and limbal regions; this 

PG ceases to exist in the mature cornea (Chen S. et al. 2010). Other than its 

involvement in collagen fibrillogenesis, lumican is also thought to have an 

involvement in cell migration, epithelium-mesenchyme transition and wound 

healing (Kao and Liu 2002). 

 

Keratocan is expressed throughout the corneal stroma and is a subsequent 

marker for keratocytes (Musselmann et al. 2005). Keratocan helps maintain 

transparency by regulating collagen fibril spacing and thus extracellular matrix 

organisation (Liu C. Y. et al. 2003). Keratocan-null mice exhibit corneal stromal 

thinning, collagen fibril thinning and abnormal collagen fibril spacing, but its 

effects on transparency are not as severe as a loss of lumican demonstrated 

(Kao and Liu 2002). In addition, keratocan is overexpressed in keratoconus, 
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where the central cornea thins and bulges outwards (Wentz-Hunter et al. 

2001).  

 

Mimecan is also expressed throughout the cornea and can regulate type 1 

collagen fibrillogenesis (Ge et al. 2004). However, the collagen fibril network 

is not disrupted in mimecan-null mice, which suggests that mimecan has a 

less dominant role in the regulation of corneal collagen fibrils and corneal 

extracellular matrix in comparison to the other keratan sulphate PGs, lumican 

and keratocan (Beecher et al. 2005).  

 

The chondroitin sulphate PGs contain both chondroitin and dermatan sulphate 

GAG side chains. An important chondroitin sulphate PG within the cornea is 

decorin (Axelsson and Heinegard 1980). Decorin maintains corneal 

transparency by regulating interfibrillar spacing and collagen fibril diameter 

(Rada et al. 1993, Scott 1988). The important role these PGs play in corneal 

morphogenesis was clearly demonstrated by gene mutations in decorin that 

resulted in irregular collagen fibrillogenesis, which led to corneal opacity 

(Bredrup et al. 2005). Some chondroitin sulphate and dermatan sulphate GAG 

side chains also associate with fibrillin microfibrils, an important component of 

elastic fibres (Chan and Choi 1995, Kielty et al. 1996).  

 

It should also be noted that mouse corneas mainly contain dermatan sulphate 

GAG side chains, with low and under-sulphated levels of keratan sulphate 

compared to human corneas (Parfitt et al. 2010, Young et al. 2005). These 

studies identified large structures unique to the mouse cornea with chondroitin 

sulphate and dermatan sulphate side chains to predominate. Keratan sulphate 

is thought to replace dermatan sulphate GAGs in the cornea when oxygen 

levels are low. The mouse cornea is very thin, therefore oxygen deprivation is 

less likely to occur than within a thicker cornea, e.g. in the human eye (Scott 

and Haigh 1988b), which could explain why the mouse cornea has mainly 

under-sulphated GAGs.   
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Glycosaminoglycan Variant 
Proteoglycan 

Role Associations 

Chondroitin/ 
Dermatan sulphate 

Decorin Growth, 
assembly, 

inhibition and 
stability of 
collagen 

fibrils. 

Dermatopontin 
TGF-β 

Collagens 
Fibronectin 

EGF-R 

Keratan sulphate Lumican Growth, 
assembly, 

inhibition and 
stability of 
collagen 

fibrils. 

Collagen  
keratocan 

TGF-β 

Keratan sulphate Keratocan Regulation of 
collagen 

fibrils 
diameter and 

spacing. 

Lumican 

Keratan sulphate Mimecan Collagen fibril 
organisation 
and prevents 
thickening of 

collagen 
fibrils. 

 

Keratan sulphate Fibromodulin Collagen 
fibrillogenesis  

Lumican 

Table 2. The main proteoglycans within the cornea and their specific roles in 

maintaining a functional cornea (Carlson et al. 2005, Massoudi et al. 2016). 
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1.2.3. Elastic fibres 

Elastic fibres are important extracellular matrix components that provide 

elasticity and structural support to tissues, whilst regulating growth factors and 

signalling molecules to maintain extracellular matrix homeostasis (Baldwin et 

al. 2013, Kielty et al. 2002b, Neptune et al. 2003, Sengle et al. 2008). Elastic 

fibres provide elastic properties to tissues, which can return tissues to their 

original configuration when subjected to external forces (Kielty et al. 2002b). 

The properties elastic fibres provide are crucial in dynamic tissues which 

undergo repeated cycles of extension and recoil, including arteries, skin, 

ligaments and lung tissue (Dick 1947, Magrath 1898). Elastic fibres are also 

crucial in non-elastic tissues, which includes ciliary zonules and bone, where 

the fibrillin-rich microfibrils strengthen tissues (Hansson 1970, Sherratt et al. 

2003).   

 

Elastic fibres differ in their ratio of elastin and microfibril components to provide 

tissues with different properties. Oxytalan fibres, the most immature elastic 

fibre are composed of bundles of fibrillin-rich microfibrils (Fullmer and Lillie 

1958, Sawada et al. 2006). Fibrillin-rich microfibrils are predominantly 

composed of fibrillin-1 glycoproteins in the adult system. Each fibrillin-1 

molecule contains domains that permit fibrillin-1 to interact with the 

extracellular matrix. Elaunin fibres mature from oxytalan fibres as an 

intermediate elastic fibre type and contain small quantities of amorphous 

elastin (Carrington et al. 1984). True elastic fibres, the most mature elastic 

fibre type develop from oxytalan fibres and contain an elastin protein core 

surrounded by fibrillin-rich microfibrils (Baldwin et al. 2013).  

 

Fibrillin microfibrils form stable structures to maintain tissue architecture, whilst 

modulating TGF-β availability (Sengle and Sakai 2015). Fibrillin can also act 

as a scaffold in true elastic fibre formation, where tropoelastin uses fibrillin as 

a scaffold for deposition, forming a fibre with an elastin core surrounded by 

fibrillin-rich microfibrils (Baldwin et al. 2013, Kielty et al. 2002b). The 
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amorphous elastin component of elastic fibres permits elasticity, returning 

tissues to their original shape after deformation (Debelle and Tamburro 1999, 

Green et al. 2014).  

 

Many other components associate with the elastin-microfibril and elastic 

fibre-cell interfaces to support the function of elastic fibres. These components 

include microfibril-associated glycoproteins (MAGPs), fibulins, EMILIN-1, 

fibronectin and PGs (Baldwin et al. 2013, Kielty et al. 2002b). 

Microfibril-associated glycoproteins (MAGPs) contribute to elastic fibre 

formation, as well as mediating type VI collagen interactions with fibrillin 

microfibrils, where type VI collagen is thought to anchor elastic fibres into the 

extracellular matrix (Gibson et al. 1998, Kielty et al. 1991). In addition, the PGs 

decorin and biglycan interact with tropoelastin and MAGPs during elastic fibre 

assembly (Reinboth et al. 2002). The variety of components found associated 

with the fibrillin and elastin components of elastic fibres indicates the 

complexity of the elastic fibre network. 

 

1.2.3.1. Elastic Fibre Biosynthesis  

The assembly of mature elastic fibres is dependent on the deposition of 

tropoelastin on an aligned fibrillin-rich microfibrillar scaffold, which forms a 

parallel insoluble elastic fibre with an elastin core surrounded by microfibrils 

(Kielty et al. 2002b, Sherratt 2009).  

 

Fibrillin, a cysteine-rich glycoprotein initially constructs a scaffold of beaded 

transglutaminase-crosslinked microfibrils (Qian and Glanville 1997, Sakai et 

al. 1986). This beaded appearance results from the 148 nm long fibrillin 

monomer, which assembles close to the cell surface, with fibrillin-1 and 

microfibril-associated glycoprotein components that interact with integrin 

receptors via RGD sequences (Keene et al. 1991, Sakai et al. 1991, Sakamoto 

et al. 1996). The fibrillin monomers bundle into fibrils with a bead to bead 
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periodicity of 56 nm (Wess et al. 1997). There have been two main theories of 

how this packaging occurs. The first states that one fibrillin monomer is folded 

every inter-bead distance, this is known as the intramolecular pleating model 

(Baldock et al. 2001, Baldock et al. 2006, Kielty et al. 2002a, Lu et al. 2005). 

The second model states that the fibrillin monomers extend over two or more 

inter-bead distances, overlapping (Kuo et al. 2007). The fibrils subsequently 

form a one-third stagger arrangement with maturation from a parallel 

head-to-tail alignment, with a complex folded arrangement in un-tensioned 

state (Baldock et al. 2001). Throughout connective tissue, fibrillin-1 is the main 

fibrillin present within mature elastic fibres. Fibrillin-2 has an increased 

presence in embryonic development (Zhang H. et al. 1994, Zhang H. et al. 

1995). The development of elastic fibres in embryogenesis is crucial, due to 

the inability of organised elastic fibres to develop in the adult system.  

 

Tropoelastin molecules are the soluble precursors that bind together with 

crosslinks to form elastin (Mithieux and Weiss 2005). Initially, tropoelastin is 

secreted from fibroblasts into the extracellular matrix space. Tropoelastin 

contains an N-terminal which provides the elastic properties and a C-terminal 

that interacts with cells via integrins (Baldwin et al. 2013, Yeo et al. 2012). 

Tropoelastin then deposits onto the microfibril scaffold and undergoes self-

aggregation (coacervation) to form a fibrillar structure that represents the 

elastin core (Cox et al. 1973). The elastin core is further stabilised via 

cross-linking with lysyl oxidase (LOX), with contributions from fibulin-4 and 

fibulin-5 which is thought to aid the deposition of elastin onto fibrillin microfibrils 

(Choi et al. 2009, Siegel et al. 1970). 

 

Microfibril assembly also relies on fibronectin, integrins and heparan sulphate 

PGs (Cain et al. 2008, Kinsey et al. 2008, Tiedemann et al. 2001). Latent 

TGF-β binding protein 4 (LTBP-4) has been shown to interact with fibulin-4 

and fibulin-5 to form elastic fibres, a tropoelastin binding protein necessary for 

elastic fibre production (Bultmann-Mellin et al. 2015, Noda et al. 2013, Sinha 

et al. 1998). Fibulins also regulate the organisation of the elastic fibres by 
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communicating with cells of the extracellular matrix (Midwood and 

Schwarzbauer 2002). Fibrillin maintains tissue homeostasis and interacts with 

regulatory growth factors including TGF-β and BMPs (Jensen et al. 2012). 

ADAMTS10 has also been shown to have a high affinity to fibrillin-1, 

participating in the synthesis of microfibrils (Kutz et al. 2011). The sulphation 

of PGs is also important for elastic fibre assembly; inhibition of sulphation has 

prevented microfibrillar protein incorporation into the extracellular matrix of 

cultured cells (Schaefer et al. 2007). 

 

1.2.3.2. Corneal Elastic Fibres 

Elastic tissue initially identified to associate with Descemet’s membrane and 

Schlemm’s canal, is closely affiliated with the ciliary zonules of the eye 

(Kolliker 1860). Further studies carried out collagen digestion with acetic acid 

and further identified elastic fibres to predominate in the posterior peripheral 

cornea (M'Ilroy J 1906). The previously described elastic fibres resisted acid 

hydrolysis and were further identified as oxytalan fibres in studies carried out 

in periodontal membranes (Fullmer and Lillie 1958). This led to studies that 

identified oxytalan fibres in the cornea (Alexander and Garner 1983, 

Carrington et al. 1984). These oxytalan fibres were described in the skin to be 

composed of many microfibrils ~10-12 nm in diameter, which was further 

classified as the glycoprotein, fibrillin (Cotta-Pereira et al. 1976, Sakai et al. 

1986). Fibrillin microfibrils were further morphologically identified by their 

beaded morphology with a periodicity of ~56 nm, which structurally alter with 

extension of the microfibrillar component (Baldwin et al. 2013, Keene et al. 

1991). Studies have also provided evidence of ~8 fibrillin molecules contained 

within a microfibril cross-sectional diameter (Baldock et al. 2001). 

 

Studies in different species have identified elastic fibres to localise within the 

cornea. In the avian species, oxytalan fibres predominate in the corneal stroma 

and Descemet’s membrane, which increases in density towards the periphery 

(Bruns et al. 1987, Daga Gordini et al. 1990). In mammalian models, elastic 

fibres have been described in the rabbit cornea, which was sensitive to 
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elastase digestion and stained with tannic acid (Carlson and Waring 1988). In 

addition, microfibrils were also described in the mouse cornea (Hanlon et al. 

2015). Studies directed at the human cornea further localised elastic fibres 

within the posterior peripheral cornea (Kamma-Lorger et al. 2010). These 

studies led to investigations using electron microscopy methods, which 

demonstrated a complex elastic fibre network to be concentrated within the 

posterior corneal stroma, directly anterior to Descemet’s membrane (Figure 
1.5) (Lewis et al. 2016). This study demonstrated the presence of elastic fibres 

in week 13 of foetal corneal development, which suggested the elastic fibre 

system to support corneal development. The role of elastic fibres in the cornea 

was additionally shown to influence corneal shape and structure by an 

abnormal elastic fibre architecture and corneal structure in keratoconus and 

Marfan syndrome tissue (White et al. 2017a, White et al. 2017b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5. The elastic fibre system in the adult human cornea.  

Three-dimensional reconstructions of elastic fibres using a tannic acid-uranyl 
acetate based method with serial block-face scanning electron microscopy 
imaging show elastic fibres (yellow) concentrated above Descemet’s 
membrane (blue) and surrounding keratocytes (purple). Images were taken 
from (Lewis et al. 2016) with permission under the creative commons user 
license (https://creativecommons.org/licenses/by/4.0/).   
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1.2.3.3. Elastic fibres in Corneal Diseases 

Genetic conditions where elastic fibre proteins are mutated have 

demonstrated the importance of a functional elastic fibre system across 

biology. Mutations in the FBN1 gene, which encodes fibrillin-1 lead to 

fibrillinopathies, which have consequential clinical and phenotypic disruptions 

to skeletal and ocular tissues. To understand the pathogenesis of 

fibrillinopathies across tissues, researchers have developed a fibrillin-1 

knockout mouse model (Lima et al. 2010). The fibrillin-1 mutations represent 

Marfan syndrome (MFS), which allows us to analyse the elastic fibre system 

when the fibrillin-1 glycoprotein is impaired (Fernandes G. R. et al. 2016, Lima 

et al. 2010). Marfan syndrome patients present with a thinner and flattened 

cornea, with a disruption in the ciliary processes that hold the lens in 

suspension (Konradsen and Zetterstrom 2013, Maumenee 1981, Sultan et al. 

2002). The clinical corneal disruptions described in MFS patients led to studies 

that further identified structural alterations in the cornea of an MFS mouse 

model (White et al. 2017a). 

 

A loss of corneal structure with alterations in the elastic fibre network has also 

been described in patients with keratoconus (White et al. 2017b). Lysyl 

oxidase (LOX) cross-links collagen and elastin during their synthesis within the 

cornea (Siegel et al. 1970). LOX is also reduced by at least 63% in corneas 

affected by keratoconus, a corneal disease where the curvature of the cornea 

is enhanced. This suggests that an abnormal assembly and maintenance of 

elastic fibres and collagen is implicated in the pathology of keratoconus, with 

a consequent loss of function (Dudakova and Jirsova 2013).  

 

The remodelled corneal structure with alterations to the elastic fibre system in 

both keratoconus and MFS tissue suggests the elastic fibre system maintains 

corneal structure and function. 
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1.2.4. Communication  

1.2.4.1. Integrins  

To allow the successful synthesis and organisation of the extracellular matrix 

proteins there must be effective communication between cells and the 

surrounding extracellular matrix. This communication relies on cell adhesion 

molecules known as integrins, allowing cells to communicate with the acellular 

matrix to direct its synthesis and organisation (Kadler et al. 2008). Integrins 

are heterodimeric cell surface receptors composed of alpha (α) and beta (β) 

subunits. These components regulate cell migration and adhesion during the 

development, maintenance and healing of the cornea (Stepp 2006). The 

integrins on the cell surface communicate with the outside environment by 

binding to extracellular proteins including fibronectin, laminin, collagen and 

tenascin-C. This link then directs extracellular matrix synthesis and 

organisation within the cornea via detecting mechanical stimuli. If this 

communication system is dysfunctional an abnormal turnover of extracellular 

matrix may occur and result in a loss of corneal architecture, which may see 

the development of corneal diseases (Carter 2009). 

 

1.2.4.2. Gap Junctions  

Cells must also be able to communicate with surrounding cells and this is 

achieved via gap junctions, which notify and regulate cells to synthesise and 

organise the corneal extracellular matrix. Gap junctions form a large 

intercommunicating network via projections, which connect the cytoplasms of 

adjacent cells (McNeilly et al. 1996). The ability of cells to communicate is 

essential for protein synthesis and the successful organisation of the 

extracellular matrix in development, which provides and maintains a functional 

cornea (Spanakis et al. 1998). Gap junctions are composed of connexin 

proteins which are vital for cell processes to occur, maintaining corneal 

homeostasis (Yuan et al. 2009). In particular, connexin 43, enhances corneal 

repair and has been shown to be a critical component during corneal 

development (Grupcheva et al. 2012, Williams and Watsky 2002). 
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1.3. Trabecular meshwork 

Aqueous humor conserves normal vision by flowing against resistance to 

maintain a physiological intraocular pressure (IOP). As the cornea lacks 

vascularity, aqueous humor provides the eye with nutrients, removes 

unwanted wastes and permits the inflow of inflammatory cells when required 

(Goel et al. 2010, Llobet et al. 2003). Aqueous humor is produced by the ciliary 

processes on the ciliary body via active secretion, ultrafiltration and diffusion, 

with active secretion being the main process of production (Mark 2010). The 

aqueous humor accumulates within the posterior chamber before crossing the 

pupil to enter the anterior chamber, both located within the anterior portion of 

the eye. It is the homeostasis of the fluid volume within these chambers via a 

monitored outflow which maintains a physiological IOP, an important process 

to protect the eye from corneal disease. A disruption in the outflow of aqueous 

humor can lead to an increased IOP, a contributing risk factor for glaucoma, 

which can potentially result in blindness (Carreon et al. 2016). 

 

1.3.1. Outflow Pathways  

Studies have identified two main outflow pathways located in the iridocorneal 

angle of the eye that regulate IOP (Figure 1.6) (Goel et al. 2010). The 

conventional pathway filters the majority of aqueous humor outflow through 

the trabecular meshwork (TM) and Schlemm’s canal (SC). The TM is 

composed of extracellular matrix components and is positioned on the anterior 

portion of the eye, and is further divided into the uveal, corneoscleral and 

juxtacanalicular meshwork (Carreon et al. 2016). The outflow pathway through 

the TM is affected by the organisation and turnover of the extracellular matrix 

and can affect the biomechanical properties of the cornea (Vranka et al. 2015). 

When aqueous humor is filtered through the TM it continues through 

Schlemm’s canal, a channel created by the TM that passes over the scleral 

sulcus (Goel et al. 2010). After passing through this channel, the aqueous 

humor drains into the episcleral veins and is recycled back into the circulation. 
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The uveoscleral or unconventional pathway allows aqueous humor to exit the 

anterior chamber by diffusion through intercellular spaces within the ciliary 

muscle fibres, which avoids the TM and SC (Carreon et al. 2016). The 

unconventional pathway passes approximately 4-27% of aqueous humor 

outflow, independent of IOP. Even though the unconventional pathway is 

independent of IOP, many pharmaceutical interventions target this pathway to 

treat conditions that result from an increased IOP (Carreon et al. 2016).  

 

1.3.2. Trabecular Meshwork Related Pathologies  

The extracellular matrix of the TM is continually remodelled in response to 

pressure changes and forces applied. Studies have shown an abnormal 

organisation of matrix components within the cornea delays aqueous humor 

outflow and increases IOP (De Groef et al. 2016). This increase in IOP 

presents a major risk factor for developing glaucoma, a disease where 

damage to the optic nerve leads to irreversible blindness (Kwon et al. 2009).  

A B 

Figure 1.6 The outflow pathways of the trabecular meshwork  

Fig. 1.6A: Identifies the conventional route (Pathway 1 – purple arrows) which 
travel through the trabecular meshwork (TM) and Schlemm’s canal (SC). The 
unconventional pathway (pathway 2 - green arrows) allows aqueous humor to 
bypass the TM and SC (Adapted from Goel el al., 2010). Fig.1.6B: A toluidine 
blue stained image of the irido-corneal angle in the mouse eye showing the 
trabecular meshwork (TM) and Schlemm’s canal (SC) and their association 
with the iris (I), Ciliary body (CB) cornea (C) and Sclera (S). Permission to use 
image was granted from (Kang et al. 2011), ARVO is the copyright holder.  
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Pharmaceutical interventions have been undertaken to target the permeability 

of the TM in an attempt to decrease IOP and reduce the progression of 

glaucoma (Overby et al. 2014). Studies have identified genetic mutations that 

result in glaucoma by disrupting the organisation of the extracellular matrix. 

Some of the mutations that have been linked to glaucoma include variants 

within the CYP1B1, LTBP2 and MYOC genes (Lim et al. 2013). Genetic 

mutations to particular proteins disrupt TM organisation and pose a risk factor 

for corneal disease development. Mutations to the MYOC gene within TM-cells 

disrupts the protein myocilin, which initiates glaucoma progression via 

increased IOP, enhancing the expression of fibronectin, laminin, elastin, type 

I collagen and type IV collagen (Kasetti et al. 2016). ADAMTS10 and 

ADAMTS17 are also mutated in some incidences of glaucoma; these 

polymorphisms have also been related to fibrillinopathies. This has shown the 

involvement of the elastic fibre system in glaucoma progression (Morales et 

al. 2009). These studies have also indicated the importance of matrix 

homeostasis to allow the TM to function effectively, maintain a physiological 

IOP and prevent the development of glaucoma.  

 

To further reduce the risk factor associated with high IOP, other strategies to 

lower IOP have been undertaken; targeting ciliary muscle contraction, TM-cell 

regulation and extracellular matrix turnover. The TM-cells detect IOP changes 

and alterations within the TM environment, which can further regulate gene 

transcription alterations and signals to other cells and matrix components. 

TGF-β signalling in particular associates with protein expression patterns of 

TM-cells in glaucoma and could be targeted as a treatment intervention (Han 

et al. 2011). As mentioned previously, the TGF-β signalling could increase 

elastic fibres within the TM to increase IOP. Elastic fibres in the TM are further 

surrounded by type VI collagen in association with aqueous humor outflow 

resistance, which significantly increases in the advancement of glaucoma 

(Tektas and Lutjen-Drecoll 2009). Strategies to lower IOP have included 

targeting signalling pathways, oxidative stress and vascular damage (Maddala 

et al. 2016, Zhao et al. 2016). In addition, elastase administrations were found 

to digest elastin in the TM and could be a potential method to treat glaucoma, 
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this further indicates elastic fibres could have an involvement in glaucoma 

progression (Segawa 1995, Umihira et al. 1994).  

 

1.4.  Corneal Development  

Successful corneal development requires sequentially controlled events that 

induce structural changes and interactions between cells and the surrounding 

extracellular matrix. The precise secretion and alignment of extracellular 

components within mammalian corneal development remains poorly 

understood, even though its role is imperative for the development of a 

physiological cornea (Young et al. 2014). Many previous studies have directed 

corneal research to understand the developmental events that occur in the 

avian model system. This research has greatly enhanced our knowledge of 

corneal development, however, a gap remains in the events that develop the 

mammalian cornea, which many studies have shown differs in comparison to 

avian development.  

 

1.4.1. Avian Corneal Development  

Corneal development has been widely documented in the avian model 

organism. Initially, a cup-shaped structure forms in the optic vesicle inducing 

the development of the lens placode from the overlying ectoderm (Fuhrmann 

2010). On the 3rd day of chick development, the primitive lens detaches from 

the surface ectoderm, followed by the differentiation of the ectodermal layer to 

form the corneal epithelium. The epithelium proceeds to synthesise an 

acellular primary stroma composed of type I, II and IX collagen under the basal 

lamina, which increases the stromal thickness to 10 μm (Hendrix et al. 1982). 

Neural crest cells from the lip of the optic cup migrate centrally between the 

primary stroma and the lens capsule to form the endothelium (Bard et al. 1975, 

Beebe and Coats 2000). Towards the end of day 5, the primary corneal stroma 

swells to approximately 60 μm and the endothelium secretes large amounts of 

hyaluronic acid. Following this, presumptive corneal fibroblasts derived from 

the neural crest migrate into the centre and posterior primary stroma to 
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synthesise the extracellular matrix and develop the secondary corneal stroma 

(Hay E.D. 1980). This secondary stroma is mainly composed of type I collagen 

which forms heterotypic fibrils with type V collagen (Birk et al. 1986). Even 

though the exact mechanism of cell migration into the primary stroma is 

unknown, the primary stroma is thought to act as a template for the 

biosynthesis of the secondary stroma, which initially directs the second 

migration of mesenchymal cells that proceed to develop and organise the 

collagenous extracellular matrix (Bard and Hay 1975, Hay E. D. and Revel 

1969, Trelstad and Coulombre 1971). The endothelial cells proceed to develop 

Descemet’s membrane by day 9, as well as the development of corneal 

curvature. The enhancement of corneal curvature is thought to be initiated by 

an increase in intraocular pressure, the interaction between the cornea and 

sclera as well as the organisation of the stromal matrix. The corneal stroma 

reaches its optimum thickness at day 9 (190 – 220 μm). Bowman’s layer is 

seen to develop from the anterior 1 μm region of the acellular stroma between 

day 12 and 14. By day 14, the synthesis of the secondary stroma is complete 

with its thickness decreased by half, enhancing transparency from ~40% to 

95% by day 19 (Coulombre and Coulombre 1958, Quantock A. J. et al. 1998). 

The dehydration process is thought to remove water by the breakdown of 

hyaluronic acid and thyroxine acting on the endothelium to pump sodium from 

the secondary stroma to the anterior chamber of the eye, resulting in curvature 

changes (Hay E.D. 1980, Toole and Trelstad 1971). The cornea continues to 

package collagen fibrils, further increasing corneal organisation and thus 

transparency.  

 

The primary stroma is thought to be important for the initiation of cell migration 

to synthesise the secondary stroma. Evidence of a primary stroma is absent 

within mammalian development, which leaves questions concerning the 

control of the migration of cells that develop the corneal stroma and how the 

collagen is further laid down and organised.   
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1.4.2. Mammalian Corneal Development  

1.4.2.1. Stages of Mammalian Corneal Development 

One of the most well studied mammalian species in development is the 

mouse, which has a rapid developmental time frame and is easy to access 

and handle. For these reasons, plus the ability to analyse corneal development 

at the genesis of the eye, the mouse model will be the main mammalian model 

analysed throughout this thesis. 

 

Mice develop over three weeks, divided into twenty-six prenatal and two 

postnatal stages (Theiler 1989). The first sign of ocular development in 

mammals is when the optic vesicle presents as a lateral outgrowth of the 

prosencephalon (forebrain). The optic vesicle is present between days E8.5 to 

E9 in mouse embryos and day 22 in human embryos (Vecino and Acera 2015, 

Zavala et al. 2013). The neuro-ectoderm of the optic vesicle grows laterally to 

contact the overlying surface ectoderm, which forms a local thickening (Figure 
1.7) (Pei and Rhodin 1970). The thickening of the optic vesicle forms the retinal 

disc and the thickening of the surface ectoderm forms the lens placode (Cvekl 

and Tamm 2004). The proximal aspect of the optic vesicle constricts and 

elongates to form the optic stalk, this acts as the main communication network 

between the optic vesicle and the forebrain (Pei and Rhodin 1970). 

 

 

 

 
 

 

 

 

Figure 1.7. The initial stages of mammalian ocular development.  

The surface ectoderm (SE) overlies the optic vesicle (OV), the surface 
ectoderm thickens to become the lens placode (LP).  
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The distal part of the optic vesicle is invaginated into its more proximal part 

and forms a double-layered optic cup (Figure 1.8) (Barishak 2001). The inner 

layer of the optic cup forms the neural retina, whilst the outer layer will 

differentiate into the retinal pigment epithelium. In parallel to the development 

of the optic cup, the lens placode enlarges and sinks below the level of the 

surface ectoderm to form the lens pit. Subsequently, it forms the lens vesicle, 

which remains connected to the surface ectoderm and invaginates into the 

optic cup (Figure 1.8) (Pei and Rhodin 1970). The optic cup is incomplete 

inferiorly at the choroidal fissure, allowing the hyaloid artery to pass through 

this fissure, this provides an arterial supply to the optic cup and lens vesicle 

(Cvekl and Tamm 2004). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8. Corneal development. 

The lens placode (LP) invaginates to develop the optic cup (OC). The lens 
placode has enlarged and sunk below the ectoderm to form the lens pit, 
forming the lens vesicle (LV) invaginated into the optic cup. The lens vesicle 
then becomes detached from the surface ectoderm. The corneal epithelium 
(E) derived from the surface ectoderm is overlying the optic vesicle. The space 
between these two structures following detachment initiates the first 
mesenchymal cell migration.  
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The overlying surface ectoderm proceeds to form the corneal epithelium in the 

mouse at day E8.5 and in the human embryo at around week 5. The 

epithelium’s basement membrane is also established by week 9 of human 

development, even though the distinct Bowman’s membrane is not complete 

until month 4 of development (Sevel and Isaacs 1988). The basement 

membrane is thought to fulfil critical roles in the early stages of corneal 

development (Tisdale et al. 1988). The basement membrane in some tissues 

can act as a scaffold to allow cell migration processes to occur (Vracko 1974). 

As previously mentioned, the avian corneal epithelium secretes the primary 

stroma (Hay E. D. and Dodson 1973). Thus, the avian epithelium increases in 

height to compensate for the enhanced secretory organelles in the basal cell 

layer (Hay E. D. and Revel 1969). The epithelium within the mammalian 

cornea has not been currently identified to secrete a primary stroma, 

supported by an absence of secretory organelles within the corneal epithelium 

as well as no acellular collagenous layer (Haustein 1983, Pei and Rhodin 

1971). Within mouse development, the epithelium remains approximately 1-2 

cell layers thick until stratification following cell detachment and further post-

natal modifications. In human embryogenesis, the corneal epithelium further 

forms a layer three to four cells thick in the seventh week of development 

(Remington and Remington 2012, Zieske 2004). The epithelium continues to 

proliferate in the mouse to reach maturity after eyelid opening during the 2nd 

week of development, similar to what is seen in human corneal development. 

The age that corneal epithelium maturation is reached is species dependant. 

In the mouse cornea, full maturation is not seen until 3-7 months after birth, 

when the corneal epithelial stem cells localise into the limbus. Cell proliferation 

after eyelid opening decreases dramatically in the stroma and the 

endothelium, which then remains constant throughout the life of the cornea.  

 

The lens vesicle proceeds to detach from the surface ectoderm, which initiates 

mesenchymal cells to migrate into the space between the anterior epithelium 

of the lens vesicle and the surface ectoderm (Rones 1932). In mouse 

development, a single influx of multipotent mesenchymal cells will develop the 

corneal stroma, keratocytes and the endothelium (Dublin 1970, Pei and 

Rhodin 1971, Reneker et al. 2000). It has been observed that 4-7 
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mesenchymal cell layers are present at embryonic day E12, with a stellate, 

star-shaped phenotype and long cytoplasmic processes. Cell numbers 

continue to increase and condense to form several layers of separated 

flattened cells. This initial mesenchymal cell migration occurs at week 6 in the 

human embryo. However, in human embryogenesis, the initial mesenchymal 

cell migration only gives rise to the corneal endothelium (Zieske 2004). An 

additional second migration of neural crest-derived mesenchymal cells 

becomes the stromal keratocytes. This second migration which also occurs in 

chick development is not present in mouse or rabbit development (Cintron et 

al. 1983, Hay E. D. and Revel 1969, Kao 2010) (Figure 1.9).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

During days E14.5-15.5 of mouse prenatal development, the posterior 

mesenchymal cells condense to produce the corneal endothelium, which 

distinguishes a distinct anterior chamber between the lens and the cornea 

(Figure 1.10). Further differentiation of endothelial cells allows the cells to 

detach from the immature cornea and form a fluid-filled area for the iris and 

ciliary bodies to develop. In human embryogenesis, the endothelial layer of the 

Figure 1.9. Mesenchymal cell migrations that develop the cornea. 

The initial migration of mesenchymal cells in the human (left image) and 
mouse (right image) cornea. In the mouse model mesenchymal cells (MC) 
migrate into the presumptive corneal stroma, which have the differentiation 
potential to become the endothelium, stroma and keratocytes. The first wave 
of mesenchymal cells in the human embryo becomes the endothelium, a 
second wave of mesenchymal cells differentiates into the corneal stromal 
fibroblasts. The retina (R) and retinal pigment epithelium (RPE) surrounds the 
developing lens.  
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cornea is formed by the first wave of migrating mesenchyme as a double layer 

of cuboidal cells. Differentiation of the corneal endothelium is required for 

anterior chamber formation. Mutated mouse strains, where the endothelium 

fails to form, result in the lens not detaching from the cornea, and the anterior 

chamber fails to form (Kidson et al. 1999, Reneker et al. 2000).  

 

 

 

 

 

 

 

 

 

 

 

 

The remaining mesenchymal cells in the mouse stroma differentiate into 

corneal stromal fibroblasts. Initially, these stromal cells synthesis the 

extracellular matrix of the corneal stroma (Haustein 1983). The proliferative 

potential of these corneal fibroblasts diminishes during development from birth 

to eyelid opening, with cells which have arrested in the G0 phase of the cell 

cycle, but retain the potential to differentiate for corneal repair and wound 

healing (Zieske et al., 2001). Within human development, the second migration 

of mesenchymal cells into the space between the newly formed endothelial 

layer and the surface ectoderm differentiates into corneal fibroblasts, which 

are thought to develop the stroma. Even though the cell migrations have been 

well documented, the mechanisms that secrete and organise collagen fibrils 

within the cornea remains elusive. Previous studies have demonstrated that 

tendon fibroblasts have fibripositors that direct extracellular matrix secretion 

Figure 1.10. Mouse corneal endothelium development.  

Within the developing mouse cornea the posterior mesenchymal cells 
(asterisk) which originate from the first mesenchymal cell migration 
condense to form the corneal endothelium. The lens (L) is well defined.  
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and alignment (Canty et al. 2004). However, studies have failed to show 

conclusively that corneal fibroblasts also secrete collagen through 

fibripositors.  

 

The structure of the cornea continues to mature after birth to achieve 

transparency. In the mouse cornea, increased proliferation of the epithelium, 

increased corneal stroma thickness as well as a decrease in stromal cell 

density, all contribute to accomplishing corneal transparency (Song et al. 

2003). Once these changes are complete, the mouse eyelids begin to open at 

approximately postnatal day P12 (Beecher. N. 2003). After the eyelids open in 

the mouse model the annulus of the cornea forms, a structure that supports 

corneal curvature in humans (Newton and Meek 1998). It is thought that the 

development of the annulus may prevent corneal shape changes once eye 

growth is complete. Even though collagen fibrils have been shown to organise 

around this annulus to enhance stability, elastic fibres may also have a role to 

enhance stability (Kamma-Lorger et al. 2010, Sheppard et al. 2010).  

 

The final ocular structures to develop include the trabecular meshwork with 

aqueous humor outflow, which commences around days E17-E19 in the 

mouse and is complete by P21. In human embryogenesis, a third migration of 

cells has also been described to create the stroma of the iris and ciliary bodies 

(Cvekl and Tamm 2004). The ocular structures associated with aqueous 

humor drainage (trabecular meshwork and Schlemm’s canal) are the final 

structures to develop. These structures begin to develop between weeks 

15-20 of human development and are completed around the time of birth. The 

chamber angle is occupied by a dense mass of mesenchymal cells, which 

elongate, flatten and become separated from each other by open spaces that 

are partially filled with the extracellular matrix. To provide nutrition and a blood 

supply to maintain the anterior chamber and aqueous humor during 

development, an extensive capillary network is present, termed the tunica 

vasculosa lentis. 
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Evidence of a primary stroma is absent within the mammalian model, and it 

has been proposed that instead, blood vessels, mesenchymal cells and the 

lens all fulfil its role in to guide cells in corneal development (Cintron et al. 

1983). However, the exact mechanisms that direct cell migration into the 

presumptive cornea as well as the understanding of how the mature stroma is 

synthesised and organised remain unknown. An aim of this thesis will be to 

investigate these events in the mammalian cornea.  

 

1.4.2.2. Developmental Control Mechanisms  

The specific time points where cell migrations occur to develop the mouse 

cornea have been determined. However, the mechanisms that initiate cell 

migration and guide cells to their specific location remain elusive (Cvekl and 

Tamm 2004). However, a small understanding of the mechanisms that control 

some of the events in corneal development has been made clearer by the 

analysis of human heritable diseases, pathologies and mouse mutant genetic 

models (Cvekl and Tamm 2004).  

 

The lens exerts an important regulatory influence upon corneal development, 

with the cornea overlaying this structure (Coulombre 1965). Studies have 

identified signalling from the anterior epithelium of the lens to maintain a 

healthy cornea; its removal causes the cellular arrangement within the cornea 

to be disorganised (Beebe and Coats 2000). On account of this, many studies 

have analysed signalling molecules associated with the lens. Defects to the 

lens have led to a failure of corneal mesenchyme differentiation and 

endothelium formation that results in corneal opacity (Reneker et al. 2000). 

The chemoattractant TGF-α has been shown to alter the developmental fate 

of mesenchymal cells, which leads to ocular abnormalities (Reneker et al. 

1995). Mutations in transcription factors and genes expressed in the lens have 

led to corneal developmental and anterior segmentation abnormalities, often 

developing cataracts and opaque corneas (Cvekl and Tamm 2004, Doward et 

al. 1999, Kidson et al. 1999, Kume et al. 1998, Nishimura et al. 2001, Perveen 

et al. 2000, Reneker et al. 2000). TGF-β is thought to be involved in the 
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proliferation of the mesenchymal cells into corneal fibroblasts. TGF-β2 

deficient mice contain fewer keratocytes with a decreased accumulation of 

lumican and keratocan and an overall thinner corneal stroma. This evidence 

indicates SLRPs could regulate TGF-β in development, as well as being 

involved in wound healing and corneal scarring. In addition, lumican is critical 

for developing a physiological cornea with transparency, as deficiencies often 

lead to corneal opacity (Carlson et al. 2005, Song et al. 2003). Additional 

signalling pathways involved in development that prove crucial for achieving 

corneal maturation are: Paired box protein Pax-6 (Pax6), Epidermal growth 

factor (EGF) and Fibroblast growth factor (FGF), and have various roles that 

contribute to eyelid opening, cellular migration and proliferation (Collinson et 

al. 2003, Vecino and Acera 2015, Xie W. et al. 1999, Zhang J. et al. 2015). 

 

Other than signalling molecules, cell fate determination and morphogenesis 

are also thought to be regulated through adhesion proteins, specifically 

cadherin molecules. Cadherin molecules connect neighbouring cells, which 

form strong cell-cell adhesions and intercellular junctions for signalling 

(Gumbiner 1996; Kleminckx and Kemler 1999). It is thought that the possible 

expression of N-cadherin in mesenchymal cells establishes the corneal 

endothelium and maintains a permeability barrier.  

 

1.5. Murine Model  

The mouse proves a good animal model to study mammalian corneal 

development due to its similarities to the structure and function of the human 

cornea (Overby et al. 2014). The small size and easy to handle nature of the 

mouse, as well as its economic effectiveness, has made the mouse an 

attractive mammalian model to study (Henriksson et al. 2009). The mouse has 

~99% genetic similarity to humans, and with the ability to carry out genetic 

defect studies, models of ocular diseases can easily be analysed within mice 

models and compared to the human situation for the investigation of disease 

aetiologies, pathophysiologies and treatment strategies (Fernandes K. A. et 

al. 2015, Puk et al. 2006). The mouse reaches developmental adulthood at 
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around eight weeks old, therefore, experimentally the mouse model is time 

and cost-efficient for developmental studies (Hanlon et al. 2011). There have 

also been many antibodies that react with mouse tissue, making it a good 

model to carry out immunohistochemistry experiments to specifically identify 

components (Liu H. S. and Kao 2009). 

 

However, anatomical variations exist between the human and mouse cornea. 

The Bowman’s layer within the mouse cornea is thin in comparison to the 

human, measuring 0.7 um with scanning electron microscopy methods, but 

some studies dispute its presence (Hayashi S. et al. 2002, Smith et al. 2002). 

There is also a structural variation, with the human corneal centre being 

thinner compared to the periphery and in contrast, the mouse cornea being 

thicker in the centre compared to the periphery (Figure 1.11) (Henriksson et 

al. 2009). The organisation of collagen within the stroma is also different 

compared to the human, with an annulus of highly aligned collagen 

surrounding the cornea at the limbus, thought to increase corneal strength 

(Sheppard et al. 2010). Overall, however, the mouse model is a viable model 

to study mammalian corneal development and compare to the human 

scenario, but the differences that do exist between these species should be 

appreciated. 
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Figure 1.11. The Mouse Cornea.  

Fig. 1.11A: A histological image of the normal architecture of a mouse eye. 
The cornea (CO) is thicker in the centre and becomes progressively thinner 
towards the periphery. The cornea can be seen to run into the sclera (SC) in 
the region of the limbus. Fig. 1.11B: A histological image of the cornea at a 
higher magnification. Images are modified from (Cui et al. 2005, Shi et al. 
2013) with obtained permission.  
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This thesis will use the mouse as its main model for investigation. The adult 

and developing mouse will be analysed between gestation days 10-18. In 

addition to this, a developmental mouse model of Marfan syndrome between 

gestation days 12.5-18.5 will be analysed. The development of the human 

foetal cornea will also be investigated. Standard imaging has been used, 

supplemented by more recent developments in electron microscopy, X-ray 

scattering and ocular coherence tomography. 

 

 

 

 

 

1.6. Electron Microscopy  

The resolving power of a microscope is limited by the wavelength of its energy 

source. Therefore, light microscopes can only generate images within the 

wavelengths of visible light, which vary between ~400-700 nm. This limitation 

to light microscopes was overcome with the advancement of using electrons 

as an energy source in electron microscopy. The wavelength of electrons is 

much smaller than the wavelength of light and this allows the visualisation of 

samples that would be beyond the resolution capabilities of a light microscope. 

To allow the visualisation of structures, a contrast is established by staining 

samples with heavy metals (Watson 1958). This increases the density of the 

sample, which interacts with the electron beam, either scattering, transmitting 

or backscattering electrons to generate differences in contrast, to permit 

imaging of the desired structure, depending on which electron microscopy 

technique is being used.  
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1.6.1. Transmission Electron Microscopy  

The first electron microscope technique developed was transmission electron 

microscopy (TEM). The transmission electron microscope transmits a high 

energy beam of focused electrons through a thin sample (~90 nm) stained with 

heavy metals, usually uranyl acetate and lead. Because the samples are thin, 

electrons are transmitted through, being further magnified, focused and 

conveyed into an image.  

 

Experiments in this thesis use conventional TEM to analyse the ultrastructure 

of the developing mammalian cornea at high magnification in two-dimensions. 

In addition, labelling techniques to analyse the distribution of specific tissue 

components, including PGs by cuprolinic blue staining and immunogold 

electron microscopy were employed.  

 

1.6.2. Serial Block-Face Scanning Electron Microscopy  

Advances in electron microscopy techniques led to the development of serial 

block-face scanning electron microscopy (SBF-SEM) (Starborg and Kadler 

2015). SBF-SEM provides a tool to reconstruct three-dimensional models of 

structures at a high magnification (Starborg and Kadler 2015, Tafti et al. 2015). 

In SBF-SEM imaging, a beam of electrons is rastered across the surface of a 

sample en bloc, then the backscattered electrons are collected and portrayed 

as an image. To enhance the backscatter electron signal, the samples are 

stained with heavy metals during processing. In addition, the automated serial 

sectioning capability of an in-chamber ultramicrotome within the microscope 

allows sections repeated renewal of the sample face for multiple imaging, 

providing a large dataset for three-dimensional reconstruction (Figure 1.12).  

 

Throughout this thesis, SBF-SEM will be used for three-dimensional structural 

analysis. It will be used to analyse the interactions of the developing cells and 

surrounding deposited extracellular matrix. In addition, this technique will be 
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used to reconstruct developing and adult elastic fibres within the embryonic 

and adult mammalian cornea. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.12. Serial block-face scanning electron microscopy. 

Once the desired area of a sample is selected, electrons are fired at the block 
face surface with an electron beam and the backscattered electrons are 
detected and conveyed into an image. Once imaged, a diamond knife cuts the 
top of the sample to remove a section (50 nm), to expose a new surface and 
allow another image to be taken. This process is repeated until a dataset of 
images are collected. The dataset is then reconstructed into a 
three-dimensional model.  
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1.7. X-ray Scattering Techniques  

X-ray scattering experiments have proved imperative for gaining structural 

information of the cornea. The corneal stroma contains a highly ordered 

system of collagen molecules and fibrils, which allows an X-ray scatter pattern 

to be formed when X-rays pass through its thickness (Meek and Quantock 

2001). Depending on whether a small-angle X-ray scattering (SAXS) or a 

wide-angle X-ray scattering (WAXS) technique is selected will provide 

quantitative data from different hierarchical levels within the collagen structure. 

SAXS produces both meridional and equatorial X-ray reflections. It is the 

ordered collagen fibrils within the cornea that give a series of meridional X-ray 

reflections that arise from the D-periodicity of the axial ordering of the collagen 

fibrils (Bear 1942). The equatorial reflection allows measurements of collagen 

fibril diameter and interfibrillar spacing to be collected (Meek and Quantock, 

2001). When the scattering angle is increased to give a WAXS scattering 

pattern, the orientation and distribution of the collagen molecules within fibrils 

can be calculated (North et al. 1954).  

 

SAXS techniques allow the analysis of fresh samples; this means that tissue 

ultrastructure is not altered compared with the fixed tissue imaged with 

electron microscopy (Fullwood and Meek 1993). Therefore, the tissue is closer 

to its physiological structure in vivo. In addition, an average measurement of 

the scattering by every fibril in the X-ray beam path throughout the volume of 

tissue and across different samples is measured, this improves the reliability 

of the data. However, interfibrillar spacing results are dependent on tissue 

hydration and the values obtained are very sensitive to any alterations to the 

water content of tissues. 

 

Research presented in this thesis used X-ray diffraction techniques to analyse 

collagen fibril ultrastructure. Specifically, SAXS was used to measure collagen 

fibril spacing and collagen fibril diameters. To interpret the SAXS results, it 

was important to understand the corneas overall shape and structure. To do 
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this, optical coherence tomography was used to measure corneal thickness 

and curvature before the SAXS data was collected.  

 

1.8. Optical Coherence Tomography  

Optical coherence tomography (OCT) imaging provides a non-invasive 

technique to analyse tissue in cross-section without causing any damage or 

ultrastructural changes (Huang et al. 1991). OCT is analogous to ultrasound 

imaging techniques but replaces sound for near-infrared light to receive an 

image. The near-infrared light can penetrate through the scattering medium to 

obtain a series of two-dimensional images through different axis at a 

micron-scale resolution over the depth of several millimetres. Thus, the 

datasets can be combined to reconstruct three-dimensional images to 

accurately measure structures. An advantage of the relatively non-invasive 

method that the OCT provides is that the tissue can be further prepared for 

experiments to give information that the OCT cannot obtain.  

 

Mouse corneal curvature and thickness was measured using OCT before the 

ultrastructure of the tissue was further investigated with electron microscopy 

and X-ray scattering techniques. 

 

1.9. Aims 

The overall aim of this thesis was to structurally analyse the developing 

mammalian corneal stroma with imaging techniques. Novel three-dimensional 

imaging techniques were used to analyse cells and extracellular matrix 

components within the corneal stroma during mouse and human corneal 

development. The emphasis was placed on three-dimensional structural 

interactions between cell migrations and the surrounding extracellular matrix 

during early prenatal development that synthesise and secrete a physiological 

corneal stroma. The second aim of the thesis was to analyse human corneal 
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development, with a focus on the initial development of the corneal stroma and 

elastic fibres. In addition, the importance of elastic fibres in the embryonic 

cornea was explored by comparing the wild type cornea with a Marfan 

syndrome mouse model, where fibrillin-1 is disrupted.  

 

 
The specific chapter aims: 

 

Chapter 3: A 3-D structural study of the developing mouse corneal 
stroma. 

To use three-dimensional serial block-face scanning electron microscopy and 

transmission electron microscopy techniques to analyse cell and extracellular 

matrix interactions in the developing mouse cornea. The specific aim was to 

elucidate the poorly understood sequence of mouse corneal development 

compared to the chick model.  

 

Chapter 4: Collagen and proteoglycan distributions in the developing 
mouse cornea. 

To characterise the distribution of types I, II, V and IX collagen in the prenatal 

mouse cornea using immunofluorescence techniques. To analyse 

proteoglycan structures and their associations with cells and collagen during 

extracellular matrix deposition in the developing mouse cornea using 

transmission electron microscopy.  

 

Chapter 5: A structural study to compare the elastic fibre system 
between the adult mouse and human cornea. 

To localise and compare the adult human and mouse elastic fibre systems 

using immunofluorescence and electron microscopy techniques and test the 

hypothesis that elastic fibres are concentrated within the posterior peripheral 

cornea of the human and mouse.  
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Chapter 6: A 3-D structural study of the developing human corneal 
stroma.  

To analyse the developing human corneal stroma in three-dimensions, with a 

focus on the elastic fibre system using serial block-face scanning electron 

microscopy and transmission electron microscopy. To test the hypothesis that 

elastic fibres are present within the developing human cornea and that human 

corneal development follows a similar pattern to that in the mouse.  

 

Chapter 7: A Structural study of the developing fibrillin-1 knockout 
mouse cornea. 

To test the hypothesis that a disruption to the fibrillin-1 network perturbs 

corneal development in a Marfan syndrome mouse model using 3-D 

reconstructions from serial block-face scanning electron microscopy, 

transmission electron microscopy, optical coherence tomography and 

small-angle X-ray scattering techniques.   
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Chapter 2: General Methods 
 

2.1. Tissue Collection  

2.1.1. Mouse tissue collection and embryo ageing  

All mouse tissue was ordered from Charles Rivers, Margate, United Kingdom. 

For all experiments that analysed developing mice, time-mated maternal mice 

were ordered at the developmental embryonic age’s day (E) 10, 11, 12, 13, 

14, 15, 16, 17 and 18. The maternal parent was sacrificed when the embryos 

reached the required developmental stage via cervical dislocation at a 

Schedule 1-approved designated establishment in accordance with Animals 

(scientific procedure) Act 1986 (United Kingdom) and Home Office (United 

Kingdom) guidance rules. All research carried out on animal tissue followed 

the rules and regulations concerning animals in research under the 

Association for Research in Vision and Ophthalmology (ARVO) statement. 

The impregnated mice were aged where the appearance of a plug (Day 0) was 

first apparent after fertilisation. 

 

The embryos were dissected from the impregnated mouse and removed from 

the uterus (Figure 2.1). The embryos were dissected and staged using a 

combination of the Theiler stage definition as well as the use of a mouse 

timeline atlas (Figure 2.2) (Theiler 1989, Wong et al. 2015). The age of the 

embryo was determined by the analysis of their size as well as their surface 

and developmental morphological characteristics.  

 

At E10, the embryos had no sign of limb formation, characterised by the 

presence of a deepened lens pit and the initial appearance of the umbilical 

hernia. By E11 the lens vesicle closed, cervical somites diminished and the 

brain was clearly visible. The first early signs of hind-limb digits appear at E12 

and the hand-plate develop angles which represent the presumptive digits of 
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the limbs. The retina showed pigmentation at E12, as there were no coverings 

over the eyes. At E13 the footplates were indented and the location and 

thickness of the digits were visible. By E14, the digits had separated in the 

distal aspect of the forelimb as well as the presence of indentations, which 

indicated the hind-limb digits. At E14 the bones of the limbs were present and 

hair follicles were seen in the trunk, pectoral and pelvic areas. At E15 the toes 

separated and hair follicles were now identified in the cephalic regions. By E16 

the eyelids had formed and fused over the eyes, the umbilical hernia had 

disappeared and there was an increase in the overall size of the peritoneal 

sac. The skin had thickened with a wrinkled texture by E17. The digits in the 

forelimb and hind-limb had also become parallel within E17. By E18, one day 

before birth, the whiskers were present with an exponential increase in skin 

thickness.  

 

Once the age of the tissue was determined, the whole eyes were dissected 

out of the embryos, excluding the younger ages (E10-E11), where the eyes 

were left in situ due to their small size and fragile nature. To reduce tissue 

wastage, the adult mouse eyes used throughout this thesis, unless stated 

otherwise, were taken from the maternal adult mice. Tissue was then divided 

for different experiments; being placed in the necessary fixative, snap-frozen 

for cryosectioning or processed for its specific use. The specific preparation of 

tissue will be outlined in every experiment undertaken throughout this thesis.  
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The ages E10, E11, E12, E13, E14, E15, E16, E17 and E18 post-fertilisation 

were obtained. The embryo ages were determined by the analysis of the size, 

surface and developmental morphological characteristics of the embryos 

(Figure 2.2).  

 

A B

C D

Figure 2.1. Method to dissect mouse embryos from impregnated 

maternal mouse.  

Fig. 2.1A: An incision was made vertically along the lower abdomen (white 
dotted lines). Fig. 2.1B: The embryos were dissected out of the uterus using 
a dissecting microscope, removing all membranous tissue. Fig. 2.1C and 
Fig. 2.1D: The embryos were dissected one at a time. The embryos were 
carefully removed from the placenta and aged accordingly. 
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Figure 2.2. Embryonic tissue aged E10-E18. 

Embryos were aged based on morphological features and size using the Theiler 
stage definition and a mouse timeline atlas. Once the ages of the embryos were 
determined, the eyes of embryos E12-E18 were dissected and prepared for a 
specific experiment. The eyes of embryos E10 and E11 were too small to dissect, 
therefore the eyes were left in situ for experiments. The tissues for all embryonic 
ages were either placed in 0.5% paraformaldehyde, 4% paraformaldehyde, 
cuprolinic blue or frozen in optimal cutting temperature for cryo-sectioning. 
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2.1.2. Human Tissue Collection  

All adult human tissue used in this thesis was obtained from the NHS Blood 

and Transplant (NHSBT), UK and was used in accordance with the human 

tissue act 2004 legislation.  

 

All foetal human tissue used for experiments in this thesis was obtained from 

the Human Developmental Biology Resource (HDBR), Newcastle, UK and 

was used in accordance with the human tissue act 2004.  

 

Throughout this thesis where human tissue was used the specific methodology 

and preparation techniques have been outlined in each chapters’ 

methodology.  

 

All experiments carried out throughout this thesis followed the Declaration of 

Helsinki guidelines and ethical principles developed by the World Medical 

Association.  

 

2.2. Electron Microscopy 

Serial block-face scanning electron microscopy (SBF-SEM) was used to 

investigate the 3-D ultrastructural organisation of developing cells, 

extracellular matrix components and elastic fibres. Transmission electron 

microscopy (TEM) was used to determine the fine ultrastructure detail of 

samples at a higher magnification, beyond the capabilities of the SBF-SEM.  
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2.2.1. Serial block-face scanning electron microscopy 

2.2.1.1. Sample preparation: En bloc staining  

Two different en block processing methods were used. One specifically to 

enhance the contrast of elastic fibres and the other for general ultrastructural 

morphology of cells and tissues.  

 

Elastic fibres were stained using an SBF-SEM processing method that 

combined tannic acid-uranyl acetate and en block lead electron microscopy 

staining procedures. The combination of uranyl acetate and lead stains the 

microfibrillar component of elastic fibres whereas tannic acid specifically stains 

the amorphous core (Simmons and Avery 1980). These EM processing 

techniques were incorporated into a single SBF-SEM en-block processing 

method specifically developed to enhance elastic fibres by (Lewis et al. 2016). 

This method has subsequently been used in a number of publications on 

elastic fibre (White et al. 2017a, White et al. 2017b).  

 

2.2.1.1.1. The elastic fibre staining procedure  

 

Samples were fixed in Karnovsky’s fixative (2.5% glutaraldehyde, 2% 

paraformaldehyde, 0.1 M cacodylate buffer pH 7.2) for 3 hours at 4°C. 

Samples were then washed in cacodylate buffer 3 times over 10 mins and in 

distilled water (H₂0) for 5 mins. Samples were immersed in 1% osmium 

tetroxide for 1 hour. Samples were washed with distilled H₂0 3 times over 20 

mins before 0.5% of filtered tannic acid (TA) was added to distilled H₂0 for 2 

hours. Samples were washed with distilled H₂0 3 times over 30 mins and left 

overnight in 2% aqueous uranyl acetate (UA). 

 

The samples were dehydrated through an ethanol series of increasing 

concentrations every 20 mins (70%, 90%, 100% and 100%). They were then 

placed in 1% UA in 100% ethanol for 2 hours and washed with 100% ethanol 

twice over 20 mins and transferred to 1:1 ethanol-acetone for 10 mins. 
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Samples were then washed in 1:1 ethanol-acetone twice over 15 mins. Lead 

acetate was added in excess to 25 ml of 100% ethanol and shaken for 15 

mins. The mixture was shaken and 25 ml of 100% acetone was added and 

shaken for a further 15 mins. The mixture was filtered twice before the samples 

were added for 2 hours. The samples were washed with 1:1 ethanol acetone 

twice over 20 mins and then washed 3 times over 20 mins with 100% acetone.  

 

Araldite resin (50%) and acetone 50% (1:1) were added to the samples for 1 

hour. 100% Araldite resin was made up with 98 ml of Araldite monomer CY212 

and 112ml of DDSA hardener and left overnight. 2.4 ml of BDMA accelerator 

was added to 120 ml of pre-made Araldite resin. The resin mixture was added 

to the samples every 2 hours until 6 changes had been made and were left 

overnight with the caps off. The samples were embedded into a mould, which 

contained resin and was polymerised at 60°C for 48 hours. The resin blocks 

were then prepared for transmission electron microscopy (TEM) or serial 

block-face scanning electron microscopy (SBF-SEM). 

 

2.2.1.1.2. General morphology cell and tissue staining procedure  

 

A “modified Deerinck” method was employed to stain the general morphology 

of structures (Deerinck 2010). The samples were washed in cacodylate buffer 

3 times over 10 mins and added to 1.5% potassium ferricyanide/1% osmium 

tetroxide in 0.1M cacodylate for one hour. They were washed 5 times over 30 

mins with distilled H20 before being added to 1% thiocarbohydrazide for 30 

mins. They were then washed 5 times over 30 mins before adding a solution 

of 1% osmium tetroxide to the vials for 1 hour, after which they were washed 

with distilled H20 5 times over 30 mins before being added to 1% uranyl acetate 

for 1 hour. After uranyl acetate staining, they were washed with distilled H20 5 

times over 30 mins before being added to excess lead aspartate made up with 

25 ml acetone and 25 ml ethanol for 1 hour.  
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The samples were then washed with distilled water 5 times over 30 mins 

before going through a dehydration series of rising concentrations of ethanol 

every 25 mins (70%, 90%, 100% and 100%). They were immersed in 1:1 

acetone (50%) and ethanol (50%) before being introduced to 100% acetone 

for 25 mins twice, then added to 1:1 acetone and Araldite resin (98 ml Araldite 

and 112 ml DDSA hardener) and left overnight. The samples were then 

embedded in resin and processed into blocks as previously described in the 

elastic fibre staining method (section 2.2.1.1.1).  

 

2.2.1.2. Semi-thin sectioning  

 

A resin block was secured into the Leica UC6 ultra-microtome trimmed with a 

razor blade and cut using glass knives which were prepared on a Leica EM 

KMR2 glass knife maker (Leica Microsystems, Wetzlar, Germany). Once the 

correct orientation of the sample was determined, semi-thin sections (0.25 μm) 

were cut in order to identify the precise region of interest (ROI) for imaging. 

Sections were collected from a small water collecting reservoir “boat” which 

was attached to the glass knife. These cut sections were picked up with a loop 

and transferred onto a microscope slide (Thermo Fisher Scientific, Waltham, 

MA, USA) (Rieder 1981). The samples were dried on a heat plate before 

toluidine blue was added to the sections using a pipette. The toluidine blue 

dye was washed off with distilled H₂0 and analysed under a microscope to 

confirm the ROI of the sample. 

 

2.2.1.3. Pin preparation  

 

Once the samples ROI was established, the resin block was further trimmed 

with a razor blade to create a cube approximately 1-2 mm2. This was then 

mounted onto a Gatan specimen pin using super glue and left to dry for 2 

hours. Silver conductive epoxy (TAAB laboratories, Aldermaston, England) 

was used to cover the sides of the specimen cube in contact with the pin in 

order to negate charging in the SEM during image acquisition. The pin was 
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then left to dry for a further 24 hours. The surface of the specimen block was 

then polished using a Leica UC6 ultramicrotome. 

 

2.2.1.4. SBF-SEM imaging, data acquisition and 3-D analysis  

 

The pin was gold-sputtered coated with 8 nm gold using the Leica ACE 200 

(Leica Microsystems, Wetzlar, Germany) and placed within the chamber of a 

Zeiss Sigma VP FEG SEM equipped with a Gatan 3View system (Figure 2.3). 

The block face ROI of the specimen was then imaged on the SEM at 3.5 KV 

at a pixel resolution of 4 nm and a dwell time of 8 µs and approximately 1000 

images slices were acquired from the specimen block every 50 nm by 

automated serial sectioning. All SBF-SEM data sets were recorded at 4096 x 

4096 (4K) in Gatan format dm4 files then batch converted to TIFF format and 

were 3-D reconstructed using Amira 6.4 software (FEI, Mérignac, France). The 

large number of samples and the complexity of 3-D data generated required 

different image analysis strategies.  

 

Corneal ultrastructure at the tissue and cell level were reconstructed and 3-D 

rendered with Amira 6.4 using a combination of semi-automated 3-D volume 

generation (Volren) and surface generation (isosurface). Manual 

segmentation was used to segment out specific ultrastructural elements from 

3-D data sets with a variety of segmentation tools. 3-D reconstructions using 

Volren and isosurface functions were created by manually choosing a 

threshold to reconstruct all of the 3-D components within the data set in their 

entirety. 

 

For 3-D reconstructions of the elastic fibre network. A combination of both 

manual and semi-automated 3-D rendering techniques using Amira 6.4 

software was used to reconstruct the complex fibre network. The staining 

intensity of the SBF-SEM electron microscopy protocol allowed for most of the 

complex elastic fibre network to be rendered in 3-D using Amira 6.4 
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semi-automated isosurface rendering tools. The grey scale values of the 

elastic fibres allowed for most of the fibres to be identified from the surrounding 

matrix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2.2. Transmission electron microscopy (TEM) 

2.2.2.1. Sample Preparation: Elastic fibre and general cell and tissue 

staining 

Please refer to SBF-SEM sample preparation en bloc staining (section 2.2.1), 

which are the same staining methods used for TEM. 

Figure 2.3. Serial Block-Face Scanning Electron Microscopy (SBF-SEM). 

Fig. 2.3A: A SBF-SEM sample mounted onto an aluminium pin. Fig. 2.3B: 
The pin is placed into the serial block-face scanning electron microscope unit. 
Fig. 2.3C: The microscope is equipped with a 3-view system to allow serial 
sectioning of the sample. An electron beam is used to direct electrons to the 
sample, where an image is collected from the backscattered electrons. The 
stage containing a diamond knife then moves over the block face surface to 
remove a 50 nm slice of the sample before another image is taken. This occurs 
until up to 1000 images are collected, which are then reconstructed into a 
three-dimensional dataset.  
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2.2.2.2. Ultra-thin sectioning  

The orientation of the block was identified and trimmed using a razor blade to 

a (~1-2 mm x 1-2 mm) ROI. Gold ultrathin sections (90 nm) were then cut 

using a diamond knife (Diatome, Nidau, Switzerland) and sections collected 

into the water-filled reservoir within the knife. Chloroform was used to 

decompress and smooth out the sections which floated on the surface of the 

water reservoir. Ribbon sections were collected using a loop and placed on 

300 hexagonal copper TEM grids. 

 

2.2.2.3. Imaging and analysis  

A JEOL 1010 transmission electron microscope with a Gatan Orius 1000 TEM 

camera (Gatan, Abingdon, England) was used to image the samples on TEM 

grids at an accelerating voltage of 80 KV at set magnifications ranging from 

1k-50K (Figure 2.4). Transmission electron microscopy generates 

higher-magnification images approximately <4 nm, which allowed for resolving 

fine ultrastructural details of the cells and extracellular matrix components that 

could not be resolved using the SBF-SEM technique. The images collected on 

the TEM were saved as TIFF files and analysed in Image J.  

 

 

 

 

 

 

 

 

 

Grid containing 
sample 

Figure 2.4. Transmission electron microscopy imaging.  

Fig. 2.4A: Samples collected on hexagonal copper grids were placed into 
a sample holder. Fig. 2.4A: Samples were imaged using the JEOL 1010 
transmission electron microscope. 

Sample holder 
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2.2.2.4. Proteoglycan processing protocol for TEM imaging  

2.2.2.4.1. Cuprolinic blue staining method  

 

The Quinolinic phthalocyanate (cuprolinic blue) method was used to visualise 

glycosaminoglycan chains of proteoglycans with TEM imaging. The staining 

initiated a cationic metachromatic reaction, which reacted with the anionic 

glycosaminoglycan side chains that attach to the proteoglycan core protein 

(Juarranz et al. 1987). To increase the specificity of the dye, a critical 

electrolyte concentration method is used, which visualises proteoglycans as 

electron-dense elongated, filament-like components with electron microscopy 

imaging (Scott 1980, Scott and Haigh 1988a). This method included the 

addition of negatively charged magnesium chloride, which takes up the 

binding sites of poly-anions; this means that only the sulphate groups which 

are only prevalent on the proteoglycans in the cornea bind to the dye. To 

enhance the contrast of proteoglycans for electron microscopy imaging 

sodium tungstate is then added, with the tungstate binding to the 

poly-anionic-dye complex to enhance electron density (Scott 1980).  

 

Fresh mouse tissue was dissected as required and immersed in vials overnight 

in 2.5% glutaraldehyde in 25 mM sodium acetate buffer, pH 5.7, which 

contained 0.1M magnesium chloride and 0.05% cuprolinic blue (American 

Elements, Los Angeles, USA). The 25mM sodium acetate buffer was made 

from 0.205 g/100 ml sodium acetate, 2.03 g/100 ml of 0.1M magnesium 

chloride with the pH being adjusted to 5.7 with 0.1M hydrochloric acid. The 

samples were rinsed in sodium acetate buffer 3 times over 5 mins and washed 

3 times over 10 mins in aqueous 0.5% sodium tungstate.   

 

The samples were dehydrated in an ethanol series at increasing 

concentrations every 15 mins. Initially 50% ethanol with 0.5% sodium 

tungstate and thereafter 70%, 90%, 100% and 100% ethanol. The samples 

were then added to 1:1 acetone (50%) and ethanol (50%) for 15 mins, before 

being added to acetone twice over 30 mins. The samples were further added 
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to 50% acetone and 50% Araldite resin mixture (98 ml Araldite and 112 ml 

DDSA hardener) for one hour, three 100% resin changes were then made 

every 2 hours, with vials being left on a rotator with no lids, which allowed 

acetone to evaporate overnight. 2.4 ml of BDMA accelerator was added to 120 

ml 100% Araldite resin with continuous resin changes made every 2 hours 

throughout the day. Samples were orientated and embedded into moulds and 

then placed into an oven at 60°C to allow polymerisation of the resin blocks. 

 

2.2.2.4.2. Ultrathin sectioning and imaging  

 

Samples were cut, sectioned and imaged as previously described in the 

SBF-SEM ultrathin sectioning and imaging section of this chapter.  

 

2.3. Optical Coherence Tomography (OCT) 

2.3.1. Data Collection 

OCT was used to analyse corneal thickness and corneal curvature. All OCT 

results were collected with a near-infrared (NIR) bespoke OCT microscope. 

The light source had a central wavelength of 1040 nm with a bandwidth of 70 

nm (1-M-ASE-HPE-S; NP Photonics, Tucson, AZ, USA) connected through a 

2 x 2 optical fiber coupler (FC; FOBC-2-64+/−100-20-L-H64f-2; AFW 

Technologies, Hallam, Victoria, Australia) which connected with an imaging 

head and reference arm. The imaging head contained an achromatic off-axis 

parabolic reflector to collimate the fiber output beam to 2 mm diameter 

(RC02APC-P01; Thorlabs, Ely, UK) with 2-D (XY) optical scanners 

(6210HBM60/6102103R; Cambridge Technology Division, GSI Group GmbH, 

Muenchner, Germany) and a broad-band near-infrared telecentric scan lens 

(LSM02BB; Thorlabs). The reference arm contained a polarization controller 

(PC; FPC560, Thorlabs), a reflecting collimator (RC08APC-01; Thorlabs), an 

adjustable aperture, a precision near-infrared retroreflector (RR; 1 Arcsec 

Gold, Edmund Optics, York, UK) and a glass compensation block (CB; 
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LSM02DC; Thorlabs) to correct for dispersion in the scan lens. Reflected light 

from the specimen and reference arm was combined in a spectrometer. The 

camera within the OCT microscope was a 47 kHz Goodrich SU-LDH-1.7 (UTC 

Aerospace Systems, Arlington, VA, USA). 

 

Each eye globe analysed was placed onto a glass slide secured by Blu Tack® 

with the corneal surface facing upwards for scanning (Figure 2.5). Datasets 

of 1000 images were collected at a 1024 x 1024 pixel resolution at different 

scanning angles. The collected data of reflected infrared light from every 2-D 

(XY) scan were processed into a 3-D volume imaged by spectral resampling 

and Fourier transformation. The OCT was controlled by LabView (National 

Instruments, Newbury, UK) software and spectra. Datasets were then 

processed using MATLAB (Mathworks, Cambridge, UK) and ImageJ/Fiji 

software (Wayne Rasband, U.S. National Institutes of Health, Maryland, USA). 

The collected datasets recorded as FDN files were converted into TIFF files 

using a MATLAB OCT FD1 data processing script. The datasets were then in 

the correct file type to be read into ImageJ/Fiji and analysed.  

 

 

 

 

 

 

 

 

 

 

Figure 2.5. OCT imaging.  

A sample, in this case a whole mouse eye (blue arrow), is placed on Blue-Tac®, 
which is placed onto a glass slide. When the cornea is imaged, it is vital that the 
cornea is facing directly upwards towards the infrared light source. The sample 
was moved into the correct position by moving the slide through the x and y 
positions. In addition, the slide can be tilted for the cornea to be positioned 
correctly.   
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2.3.2. Data Analysis  

The datasets were imported into ImageJ, being re-spliced to give an en face 

view and sectioned into five images at different degrees (0°, 10°, 75°, 90°, 

135°). The 90° image was selected for analysis throughout each calculation 

for different samples. Initially, the datasets were scaled due to various scans 

being taken at a different scan angle. To scale an image the μm per pixel was 

calculated as following for a 1024 image:  

 

"#	%&'	%()&* =
Angle	of	Scan

1024
× 	283.207 

 

 

Lateral scaling is required to scale an obtained image and was calculated by 

dividing the pixels per micron value by the pixel height of the tissue. The pixel 

height in the adult mouse cornea was calculated by dividing the pixel height 

(2.66) by the refractive index of the cornea (1.376) (Hughes 1972, Massof and 

Chang 1972), leading to a pixel height in the adult mouse cornea of 1.933. The 

pixel height and width were input into ImageJ properties, followed by scaling 

by adding lateral scaling in the x plot, whilst keeping the y plot as 1 (voxel 

depth). The pixel height for the developmental tissue was assumed to be the 

same. Unfortunately, due to the small size of the corneal tissue, the refractive 

index could not be accurately calculated. With the images scaled, corneal 

thickness and curvature calculations were carried out using a measuring tool 

in ImageJ.  

 

To calculate corneal thickness the following method was used:  

 

?@ABC*	Dℎ(@FG&HH	(µ#) =
Number	of	pixels	x − axial	scaling
Refractive	index	of	the	cornea	
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The “Straight” tool was used to measure the thickness of the curvature by 

drawing a line from the anterior to the posterior cornea at the most central 

point, due to the image being scaled the value measured was directly 

comparable to μm.  

 

The radius of curvature was measured from the arc formed at the anterior 

surface of the cornea using the following equation: 

 

 

 

' =
[
2
+
]^

8[
 

 

 

 

 

 

 

 

In ImageJ, a box was drawn with a constant height when calculating corneal 

curvature within comparable tissue samples. The width of the box varied 

depending on the curvature of the cornea, the edges of the box always ended 

on the surface of the cornea. The height and width values were taken from the 

box drawn and were input into the above equation to calculate the radius of 

curvature at the centre of the cornea.  

 

W 

H 

Where, 

H = Height  

W = Width 

r = radius  
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2.4. Small-Angle X-Ray Scattering (SAXS) 

2.4.1. Sample Preparation  

Small-angle X-ray scattering patterns were obtained at the I22 beamline 

(Diamond Light Source, Oxfordshire, UK). Each sample was stored in 4% PFA 

and just before being placed into the sample holder the sample was wrapped 

tightly in one sheet of cling film to prevent sample dehydration. The samples 

were placed into a Perspex sample holder that contained two transparent 

Mylar sheet windows. The sample holder was positioned on the beamline with 

the anterior surface central cornea perpendicular to the incident X-ray beam 

(Figure 2.6). The resultant X-ray scatter pattern was recorded as grid scans 

0.3 x 0.3 μm with a 0.1 second exposure time on a multi-wire gas detector, 

using an X-ray beam measuring 200 x 200 µm with a wavelength of 0.1 nm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6. Small angle X-ray diffraction sample set up.   

One whole cornea was placed into a Perspex sample holder that contained 
two transparent Mylar sheet windows (black arrow). The sample holder was 
positioned on the beamline with the anterior surface central cornea 
perpendicular to the incident X-ray beam red arrow). A grid scan was taken 
across the whole cornea.  
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2.4.2. Analysis  

The SAXS datasets initially collected in NSX files were converted into TIFF 

files using DAWN (Diamond Light Source, Oxfordshire, UK). The converted 

TIFF files were then uploaded into SAXS4COLL for analysis (Abass et al. 

2017). To use this software, initially, the images needed to be centred using a 

powdered silver behenate diffraction pattern. Using a MATLAB script which 

improves the accuracy of pixel resolution, five points were manually selected 

around the circumference of the X-ray scatter image to precisely determine 

the x and y co-ordinates of the centre of the pattern. Calibration of the X-ray 

set-up is necessary as it is very difficult to measure the distance from the 

specimen to the detector accurately, and hence determine the scatter angle 

2q. Calibration of the patterns is carried out using the known periodicity of the 

powdered silver behenate. This is done by manually selecting the first order 

peak of the silver behenate reflection corresponding to its 58.380 Å crystal 

spacing. These values are then input into SAXS4COLL which uses the known 

values of the wavelength of the X-rays, and the Bragg spacing, to determine 

the scatter angle from Bragg’s law: 

 

 

2_ sin ` = Gλ 

 

 

 

 

 

 

 

 

Where, 

d = Bragg spacing 

θ = half the angle between incident X-ray beam and reflection  

n = order of reflection 

λ = radiation wavelength  
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The specimen-film distance is then given by:  

 

b&A&@Ac'	_(HACG@& =
'C_(BH	cd	@C*(e'CA&_	'&d*&@A(cG	(')

ACG2`
 

 

The X-ray scatter patterns from the cornea included scatter from all tissue 

components, therefore the residual background scatter needed to be deducted 

from this to retrieve the diffraction scatter from the collagen. Once calibration 

had been carried out, a SAXS dataset, which included a whole grid scan was 

loaded into SAXS4COLL, automatically radially integrated and then presented 

as a double logarithmic plot. A power function background was accurately 

fitted to the dataset by manually selecting three points (Figure 2.7A), which 

equates to general power function in linear space:  

 

f = Cgh 

 

 

 

 

 

 

 

 

From the SAXS pattern with the now subtracted background signals, the 

collagen equatorial interference function peak is selected by clicking the top of 

the peak (Figure 2.7B). By selecting the peak, the interfibrillar Bragg spacing 

(d) is determined, and the centre-to-centre collagen interfibrillar spacing is 

calculated on the assumption that fibrils are packed in a liquid-like manner 

Where,  

I = Integrated SAX intensity 

R = Radial pixel 

a = Constant 

b = Constant  
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(Inouye 1983). To calculate the average collagen fibril diameter, a Bessel 

function representing the equatorial fibril transform is fitted over the first 

subsidiary maximum in the equatorial scatter pattern (Figure 2.7C) (Meek and 

Quantock 2001). The meridional D-period is calculated by selecting the peak 

of the third order meridional reflection (Figure 2.7C).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.5. Immunofluorescence  

All the samples that were examined with immunofluorescence were snap 

frozen in optimal cutting temperature compound over isopentane which was 

placed over liquid nitrogen, cryo-sectioned (Leica CM3050 S cryostat) and 

collected on Superfrost Plus Slides (Thermo Scientific, UK). The plane of the 

sample when cryo-sectioned is stated in each chapter. 

 

B A C 

Figure 2.7. Small angle X-ray diffraction analysis with SAXS4COLL.  

Fig. 2.7A: With the SAX4COLL software, a power function background 
was fitted by selecting three points along an input dataset. Once a power 
function was fitted, the software subtracted the background from the 
dataset. Fig. 2.7B: The background subtracted data allowed the 
selection of the interfibrillar peak (green circle) to calculate interfibrillar 
spacing. Fig. 2.7C: A Bessel function (red curve) is then fitted over the 
first subsidiary maximum (blue peak) in the equatorial pattern to 
calculate average collagen fibril diameter. The peak is then selected 
(black circle) to calculate the D-period. R = radial distance from the 
centre of the pattern. 
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All cryo-sections were circumscribed with a water-repellent delimiting pen 

(ImmEdge Hydrophobic Barrier PAP pen, Vector labs) before being 

rehydrated with phosphate buffered saline-Tween-20 (PBST) made up of 

0.1% Tween-20 and 0.05M phosphate buffer saline solution. 5% horse serum 

in PBST was applied to cryo-sections for 20 mins to prevent non-specific 

antibody binding (Levy E. M. 1980). Primary antibodies were added to the 

cryo-sections and incubated for 24 hours at 4°C (the antibodies used are listed 

in the specific chapters). The antibodies were tested at different concentrations 

(1:10, 1:100, 1:200 and 1:1000), the specific concentrations that the antibodies 

were used at are stated in each chapter. PBST was used to wash off the 

primary antibodies 3 times over 10 mins before the secondary antibodies 

(specific to the primary antibody used) were added. Cryo-sections were 

incubated for 5 hours at room temperature before the secondary antibodies 

were washed off with PBST. Coverslips (VWR International) were then added 

to the cryo-sections using VECTASHIELD HardSet Antifade Mounting Medium 

with 4’,6-diamidino-2-2-phenylindole (DAPI) (Vector Laboratories), emitting a 

blue fluorescence when bound to deoxyribonucleic acid (DNA) for cell nuclei 

detection. Cryo-sections were imaged with the Olympus BX61 epifluorescence 

microscope, equipped with an F-view Digital camera at x10, x20 and x40 

objectives.  

 

For all experiments, controls were carried out. To test the efficacy of the 

primary antibodies, a specific immunoglobulin control was used which 

matched the immunoglobulins in the specific primary antibody. Any label that 

was present in the immunoglobulin applied controls was known to be 

unspecific staining. To test the secondary antibody, no primary antibody was 

applied and the section only contained the secondary antibody. Any labelling 

that was detected in these controls were identified as background stain. 

Finally, to test if there was any autofluorescence, a slide which contained a 

cryosection was imaged that had no primary or secondary stain. In addition to 

negative controls, positive controls were carried out where the antibody was 

tested on a tissue that was known to contain the protein of interest.  
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Chapter 3: 3-D Structural Study of the 
Developing Mouse Corneal Stroma 

3.1. Introduction   

The successful development of a functional tissue relies on the finely tuned 

alignment of cells and the deposition of an organised extracellular matrix. 

Within the mammalian cornea, the precise mechanisms that align cells and 

organise collagen are poorly understood, even though the development of an 

organised extracellular matrix within the corneal stroma is imperative to 

establish corneal strength and transparency (Young et al. 2014). It is well 

known that, in the avian cornea, the primary stroma secreted from the 

epithelium initiates neural crest cell migration into the presumptive corneal 

stroma, whose cells subsequently secrete the mature secondary stroma (Hay 

E. D. and Dodson 1973). It is further hypothesised that the stromal cells are 

responsible for aligning collagen within the extracellular matrix of the avian 

cornea (Koudouna et al. 2018a, Young et al. 2014). However, a primary 

stroma has not been identified in the embryonic mammalian cornea, therefore 

different mechanisms are thought to drive the migration of cells compared with 

the avian developmental model (Haustein 1983). In addition to this, 

intercellular relationships and the deposition and alignment of extracellular 

matrix has not previously been described in the mammalian cornea.  

 

The mechanisms of cell movement have been well known since the late 

1600s, following Van Leeuwenhoek’s observation of cells moving across a 

microscope slide (Hoole 1798). Peripheral cell protrusions commonly referred 

to as lamellipodia initiate cell locomotion along a substrate by a front-to-back 

polarity (Svitkina 2016). A polarised cell can then move in a specified direction 

by directing their protruding lamellipodia driven by rearrangements of the actin 

cytoskeleton. The cells initially adhere to a substrate, de-adhesion of the cell 

body and rear follows, the cell body then contracts to cause the rear of the cell 

to retract, which initiates the forward movement of the cell (Pollard and Borisy 
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2003, Ridley et al. 2003). The lamellipodia protrusions can change direction, 

causing the cell to change its position in relation to the substrate. Cells 

protrude multiple lamellipodia and exhibit a random direction of migration via 

actin polymerisation through active Rac levels (Pankov et al. 2005). To direct 

cell migration in a specified direction, single axial lamellipodia protrusions 

form; this appears to be implemented by lowering the activity of Rac (Pankov 

et al. 2005). Even though our understanding of the mechanisms by which cells 

move physically is established, the mechanisms that underlie the orientation 

and guidance of the cells to the correct position within mammalian cornea 

remains elusive and are likely to involve a combination of interacting factors. 

Some of those described in the literature involve chemoattractants and 

signalling molecules, as well as extracellular matrix components, such as 

hyaluronic acid and fibronectin, which have been shown to guide cells and 

initiate cell dispersal for matrix deposition across different tissues (Doane et 

al. 1996, Pratt et al. 1975, Zhu et al. 2006). 

 

As described previously, the extracellular matrix can act as a mechanical 

scaffold to assist cell migration and alignment, providing chemical and 

mechanical cues (Friedrichs et al. 2007, Kadler et al. 1996). Cells exert forces 

onto an extracellular matrix substrate to alter their migrating direction and 

morphology. Further studies have revealed that cells co-align with ordered 

arrays of collagen fibrils, which suggests that fibrils provide a signalling cue for 

cell alignment (Friedrichs et al. 2007). Structural and mechanical anisotropy of 

collagen matrix initiates cells to bundle collagen fibrils, developing 

unidirectional cell traction along the fibrils, leading to cell polarisation, and thus 

movement. The theory of extracellular matrix alignment of cells is further 

supported by the observation that, when the mechanical strength of collagen 

fibrils is reduced, cells cannot align correctly within the matrix (Friedrichs et al. 

2007). The migration of cells along collagen fibrils is clearly evident in the 

developing teleost fin and in the developing blastocoel roof of the amphibian 

gastrula, illustrating the impact collagen fibrils can exert on cells during cell 

migration in development (Nakatsuji and Johnson 1983, Wood and Thorogood 

1984). In vitro studies of corneal cells, keratocytes, have also been shown to 
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align with extracellular matrix, demonstrating that collagen alignment with 

keratocytes could have an important relationship within corneal development 

(Kivanany et al. 2018). The collagen matrix also supports cell migration by 

altering its tensile strength and stiffness, with a greater stiffness supporting 

cell migration (Zaman et al. 2006). When the load placed on a matrix is 

reduced, collagen is cleaved and degrades, reducing in concentration, this 

study demonstrates the collagen matrix to be dynamic, which can also impact 

and alter cell migration (Ruberti and Hallab 2005). When collagen is cleaved 

by enzymes, reducing the amount of collagen within a matrix, This relationship 

between the cells and extracellular matrix means alterations in the expression 

of cell-cell and cell-extracellular matrix communication molecules can impact 

cell migration and alignment (Doane and Birk 1994).  

 

It also remains unknown where the collagen fibrils are being secreted from 

and how the collagen fibrils are aligning within the mammalian corneal stroma 

to form an organised network, crucial for functional transparency. Early studies 

that have analysed the developing mouse cornea initially showed the 

appearance of collagen fibrils around E14, associating with the differentiation 

of mesenchymal cells to fibroblasts, with secretory organelles. Collagen fibrils 

then increased in diameter by E16 (Haustein 1983). Observations showed the 

secretion of collagen fibrils parallel to the cell membranes, which led to the 

hypothesis that stromal fibroblasts synthesise the mouse corneal collagen 

matrix (Haustein 1983). Even though collagen secretion has been seen in the 

developing mouse cornea, the organisation and alignment within the matrix 

remain to be investigated.  

 

Within tendon and skin, fibripositors extrude collagen in a given direction and 

align collagen fibres in the matrix (Birk and Trelstad 1985, Birk and Zycband 

1993, Canty et al. 2004). Collagen fibrils are initially synthesised in the Golgi 

apparatus, being transported to fibripositors for deposition within the 

extracellular matrix (Canty et al. 2004). Canty et al., were the first group to 

describe fibripositors, initially in chick tendon, demonstrating invaginations of 
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plasma membrane containing bundles of collagen fibrils that projected and co-

aligned to the tendon’s long axis. Further studies demonstrated the 

fibripositors require actin, which prolonged into intercellular channels 

stabilised by junctions expressing cadherin-11 to support cell condensation 

and morphology (Canty et al. 2006, Richardson et al. 2007). Previous studies 

have shown keratocytes to be involved with collagen alignment in chick 

corneal development, with the assistance of the extended filopodia, termed 

keratopodia, directing corneal stroma development (Birk and Trelstad 1984, 

Young et al. 2014). Currently, no studies have shown fibripositors to direct 

collagen fibril organisation in the developing mammalian cornea.  

 

Further experiments identified that avian corneal stromal cells exhibit rotation 

of orientation with the alignment of collagen fibrils, consistent with the theory 

that the stromal cells organise the corneal stromal collagen in the avian cornea 

(Koudouna et al. 2018a). Collagen fibrils in avian corneas lie at 90° to those 

within adjacent lamellae and provide the cornea with an orthogonal 

arrangement (Trelstad and Coulombre 1971). This arrangement of collagen 

differs in the mammalian cornea, with lamellae being randomly orientated in a 

single plane together with lamellar branching (Aghamohammadzadeh et al. 

2004, Morishige et al. 2011, Newton and Meek 1998). The difference in the 

organisation of lamellae in the mammalian cornea is thought to be responsible 

for variations to the biomechanical stiffness of the cornea, with consequent 

implications for corneal shape. The differences highlighted in the organisation 

of collagen lamellae in avian and mammalian corneas could result from 

different mechanisms that control collagen alignment.  

 

To further understand mammalian corneal morphogenesis, the prenatal 

mouse cornea was investigated using novel serial block-face scanning 

techniques to analyse the developing stroma in 3-D. Initially, the focus was 

directed to analyse the migration of cells that construct the cornea and 

determine if a primary stroma was present to direct cell migration. Secondly, 

cell distribution and subsequent collagen deposition were analysed, to 
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determine if fibripositors were present, and if not, what alternative mechanism 

might direct the assembly and organisation of the extracellular matrix. The 

nature of the specific collagen types that are present in fibrils during mouse 

corneal development will be covered in the next chapter. However, type VII 

collagen was explored to identify the collagen fibrils that presented as 

anchoring fibrils posterior to the corneal epithelium, these have been 

previously seen to be type VII collagen rich with immunofluorescence and 

appear as “banded strands” posterior to the rabbis corneal epithelium (Gipson 

et al. 1987). To further understand the communication mechanisms between 

the corneal cells and their differentiation potential, the distribution of gap 

junction connexin 43 was investigated (Beyer et al. 1989, Matic et al. 1997). 

In addition, fibronectin and hyaluronic acid guide cells in developing tissues, 

acting as a substrate (Gomes J. A. et al. 2004, Pankov and Yamada 2002). 

The distribution of fibronectin and hyaluronic acid was investigated to provide 

information into the potential role of these components in mouse corneal 

development. 

 

3.2. Methods  

3.2.1. Electron Microscopy  

The modified Deerinck protocol described previously in the general methods 

of this thesis (section 2.2.1, specifically 2.2.1.1.2) was the processing 

technique used throughout all electron microscopy experiments used in this 

chapter (Deerinck 2010). For all electron microscopy techniques conducted, 

six un-paired eyes were analysed at each embryonic age between E10-E18. 

 

3.2.1.1. Analysis  

Datasets of approximately 1000 images were collected on the SBF-SEM at 

different low magnifications and a high magnification of x4.33K. The datasets 

were reconstructed into 3-D models using Amira 6.4 software. The 
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reconstructions were made using manual segmentation as well as automated 

segmentation with the use of the volren and isosurface functions. The larger 

structures were mainly reconstructed using manual techniques, whilst the 

finite and more detailed structures were reconstructed using automated 

techniques.  

 

3.2.2. Immunofluorescence   

Refer back to chapter 2 general methods (section 2.5) for the general 

immunofluorescence method used in this section.  

 

Six unpaired embryonic eyes of ages E12-E18 and 3-month adults were snap 

frozen in optimal cutting temperature compound and cryo-sectioned 

transversely to obtain sections of 5 μm thickness. The primary antibodies 

applied to the embryonic tissue in this chapter can be found in Table 3. For 

hyaluronic acid labelling a hyaluronic acid-binding protein, bovine nasal 

cartilage, biotinylated (Merck, Darmstadt, Germany) was applied in the same 

step as the primary antibodies. The secondary antibody Dylight 594 Horse 

Anti-Rabbit was applied at a concentration of 1:200 to stain the protein of 

interest red to the slides that contained the primary antibodies. A NeutrAvidin, 

Protein, Dylight 594, Invitrogen (Fisher Scientific, Waltham, Massachusetts, 

USA) was added to the slides containing the hyaluronic acid-binding protein in 

the same step as the secondary antibodies were added. 
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Table 3. Primary Antibodies 

 

 

 

 

 

 

 

 

Antibody  Mono/ 

Poly-

clonal 

Target Concentration Source Reference  

 

Anti-

Fibronectin 

 

Rabbit 

Polyclonal 

 

Fibronectin 

 

1:100 

 

Abcam 

(Solanas 

et al. 

2008) 

 

CNX43 

 

Rabbit 

Polyclonal 

 

Connexin 

43 

 

1:100 

 

Abcam 

(Pradeepa 

et al. 

2014) 

 

Type VII 

Collagen 

 

Rabbit 

Polyclonal 

 

Type VII 

Collagen 

 

1:100 

 

Abcam 

NA 
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3.3. Results  

3.3.1 Electron Microscopy  

The modified Deerinck method employed in this study provided good 

preservation and contrast of cells and extracellular matrix components (Figure 
3.1-3.17). The data-sets were reconstructed into 3-D models, revealing 

large-volume structural information of the associations and organisations of 

the cells and extracellular matrix within the developing cornea. Ultrathin 

sections from the same sample blocks were then cut for high-magnification 

imaging with transmission electron microscopy (TEM) reveal intricate details 

of cell and matrix ultrastructure. 

E10 

All samples imaged at E10 revealed the surface ectoderm overlying the lens 

with mesenchymal cells situated between both structures (Figure 3.1A). The 

3-D reconstructions were used to classify the mesenchymal cells by their small 

cell bodies with few processes and round prominent nuclei (Figure 3.1B-D 
and supplementary video 1). Extracellular matrix strands penetrated through 

the basal lamina of the surface ectoderm, connecting cells in the surface 

ectoderm with the mesenchymal cells (Figure 3.2 and supplementary video 
1). 

 

High-magnification imaging revealed the mesenchymal cells to have close 

associations, with their cell membranes and cell extensions in close contact 

(Figure 3.3). The mesenchymal cells also contained secretory organelles and 

small vesicles (Figure 3.3). Thin strands extended from the surface ectoderm 

into the extracellular matrix. No orthogonally organised acellular collagenous 

matrix was present posterior to the surface ectoderm or through the thickness 

of the presumptive corneal stroma (Figure 3.3). 

 

Supplementary video 1 link: https://figshare.com/s/3324e911142af83a5aa0 
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Figure 3.1. Serial block-face scanning electron microscopy datasets and 

three-dimensional reconstructions of the E10 mouse eye. 

Fig. 3.1A: SBF-SEM image of the eye at E10 with mesenchymal cells (black 
asterisks) situated between the surface ectoderm (SE) and the lens epithelium 
(LE). The anterior (red box) and peripheral posterior (blue box) areas of the 
presumptive cornea were further analysed at a high magnification. Fig. 3.1B 
and Fig. 3.1C: The anterior (red box) reconstruction of the surface ectoderm 
(SE) and migrating neural crest cells (black asterisks) showed extracellular 
extensions. The extensions travelled through the basal lamina and hung from 
the surface ectoderm (black arrows). Fig. 3.1D and Fig. 3.1E: In the posterior 
area, between the lens (L), surface ectoderm (SE) and inner optic cup (IOC), 
many round cells resided with no evidence of cell projections or extracellular 
matrix strands.  
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Figure 3.2. Three-dimensional reconstructions of the E10 mouse cornea 

(anterior cornea). 

High magnification SBF-SEM dataset from the anterior cornea at E10 was 
reconstructed into a 3-D volren model. The 3-D reconstruction showed 
extracellular matrix strands (black arrows) extended from the surface 
ectoderm (SE), which penetrated through the basal lamina and communicated 
with the cells of the surface ectoderm and with the migrating mesenchymal 
cells (black asterisks). The mesenchymal cells were characterised by a small 
cell body, a small amount of lengthened cell extensions and the presence of 
a round and prominent nucleus. (scalebar 20 um).    
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Figure 3.3. Transmission electron microscopy images of the E10 mouse 

cornea. 

Fig. 3.3A: Imaging of the surface ectoderm (SE) showed extracellular strands 
(blue arrows) that had extended from the SE and projected through the 
extracellular space to mesenchymal cells (green asterisk) posterior to the surface 
ectoderm. Fig. 3.3B: Mesenchymal cells were found in close proximity to 
neighbouring mesenchymal cells (green asterisks). Fig. 3.3B: Organelles, 
including mitochondria, were inside the mesenchymal cells (red arrows). Figs. 
3.3A-C: No organised collagen fibrils were present throughout the corneal stroma 
at E10. 
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E12 

At E12 many mesenchymal cells populated the area between the lens and the 

surface ectoderm, with a condensation of cells compared to E10 (Figure 
3.4A). Some of the mesenchymal cells were situated posteriorly between the 

optic cup and lens vesicle (Figure 3.4A). The 3-D models of the central and 

peripheral aspects of the cornea revealed the cells to be in close proximity to 

neighbouring cells (Figure 3.4B-E and supplementary video 2). 

 

Analysing the E12 cornea at a higher magnification confirmed the close 

associations between the neighbouring mesenchymal cells, with cell plasma 

membranes and extensions in contact (Figure 3.5C). Within these cells, a 

large number of mitochondria was present, indicating a high level of metabolic 

activity. In addition, secretory organelles including Golgi apparatus and rough 

endoplasmic reticulum were identified, establishing their potential role in the 

synthesis of extracellular matrix molecules (Figure 3.5). Small bleb-like 

structures were also present inside and outside of the mesenchymal cells, 

these structures could be involved in the transport of material outside of the 

cells (Figure 3.5B). The surface ectoderm was also shown to contain small 

vesicles, but no synthesising organelles were identified (Figure 3.5A).  

 

Supplementary video 2 link: https://figshare.com/s/ce6f8b3bf626b1f51a8e 

 

 

 

 



 
 

83 
 

 

Figure 3.4. Serial block-face scanning electron microscopy images and 

three-dimensional reconstructions of the E12 mouse eye. 

Fig. 3.4A: Low magnification SBF-SEM image of the eye at E12. The inner 
layer of the optic cup (IOC) surrounded the lens vesicle. Within the lens 
vesicle, the lens epithelium (LE) and lens fibres (LF) were clearly visible. The 
overlying surface ectoderm presented next to the lens. Mesenchymal cells 
(MCs) were located between the lens epithelium and the surface ectoderm 
(SE); some of the mesenchymal cells were in the cavity between the optic 
cup and the lens vesicle (black arrows). Figs. 3.4B-E: 3-D reconstructions 
within the central (red box) and peripheral (blue box) presumptive cornea 
showed mesenchymal cells to be in close proximity.  
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Figure 3.5. Transmission electron microscopy images of the cornea at 

E12 

Figs. 3.5A, C and D: The mesenchymal cells are in very close proximity to 
neighbouring mesenchymal cells (yellow asterisks) and contain many 
mitochondria and synthesising organelles, which include endoplasmic 
reticulum and Golgi apparatus (blue arrows). Figs. 3.5A-D: Small intra- and 
extra-cellular bleb-like structures (red arrows) were also present, sometimes 
located close to the cell membrane. Figs. 3.5A: These structures (red arrows) 
were also seen within the surface ectoderm (SE), but no synthesising 
organelles were present.  
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E13 

The eye at E13 was analysed with SBF-SEM at the central anterior and 

posterior cornea (Figure 3.6). Electron microscopy showed a definitive 

anterior chamber (Figure 3.6A). Cells were flat and elongated within the 

posterior and peripheral aspects of the cornea, associating close to the 

surrounding cells (Figure 3.6D-E). Cells within the anterior aspect of the 

cornea had a stellate morphology compared to the cells in the posterior cornea 

(Figure 3.6B-C). The cells located within the anterior cornea were surrounded 

by extracellular space, most probably containing pro-collagen and other 

extracellular matrix molecules, which are transparent with electron-optical 

imaging (Figure 3.6). However, there was only very little extracellular matrix 

deposition. The 3-D reconstructions identified corneal stromal cells to extend 

projections to neighbouring corneal stromal cells as well as projecting 

anteriorly towards the basal lamina (Figure 3.7 and supplementary video 3).   

 

Higher magnification observations revealed collagen fibrils deposited 

throughout the corneal stroma. Below the basal lamina, the fibrils accumulated 

in a disordered array (Figure 3.8A). Some of the fibrils posterior to the corneal 

epithelium were arranged perpendicularly from the basal lamina (Figure 
3.8B). Cells were present throughout the corneal stroma, with those in the 

anterior cornea having a round morphology with a greater amount of space 

around the cells (Figure 3.8). By comparison, cells within the posterior cornea 

were compacted, with a flatter morphology (Figure 3.8D). Cells throughout the 

stroma had cellular projections that communicated with adjacent cells, with the 

cell processes touching (Figure 3.8). The collagen fibrils appeared to be 

deposited from the stromal cells and contained to remain in close proximity to 

the cell membranes (Figure 3.8).  

 

Supplementary video 3 link: https://figshare.com/s/9773959e1d99835bcd3b 
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Figure 3.6. Serial block-face scanning electron microscopy images and 

three-dimensional models of the E13 developing mouse eye. 

Fig. 3.6A: SBF-SEM imaging of the cornea and lens (L) at E13. Mesenchymal 
cells were situated throughout the corneal stroma, with the anterior chamber 
bounded by the corneal epithelium (E) and lens (L). Fig. 3.6B and Fig. 3.6C: 
High magnification SBF-SEM data-sets generated 3-D models of the anterior 
(red box) corneal cells sparsely organised with a stellate morphology, 
surrounded by extracellular matrix. Fig. 3.6D and Fig. 3.6E: The posterior 
(blue box) corneal cells were densely packed and condensed within the 
posterior cornea (PS), with cells having a flatter morphology within the 
peripheral and posterior corneal stroma compared to the anterior cornea. Fig. 
3.6C: The corneal stromal cells had projections that interacted with adjacent 
corneal stromal cells and projected anteriorly to interact with the basal lamina. 
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Figure 3.7. Serial block-face scanning electron microscopy 

three-dimensional models of the E13 mouse eye. 

Fig. 3.7A: 3-D reconstructions of cells in the anterior cornea reveal a 
stellate morphology with cell extensions branching to adjacent cells 
(white arrows). The anterior corneal cells also projected towards the 
corneal epithelium and further interacted with the basal lamina (E) (red 
arrows). Fig. 3.7B: In the posterior cornea, cell extensions branched to 
neighbouring corneal stromal cells (white arrows). Refer to 
supplementary video 3 for greater detail of the 3-D cell extensions in the 
anterior cornea.  

20 um 
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Figure 3.8. Transmission electron microscopy of the developing 

E13 mouse cornea, anterior (Figs 3.8A-C) and posterior corneal 

stroma (Fig. 3.8D). 

Fig. 3.8A and Fig. 3.8B: Collagen fibrils accumulated directly posterior 
to the corneal epithelium (E), with some single fibrils (purple circle) 
extending from the basal lamina; these fibrils may represented 
anchoring filaments. Figs. 3.8A-D: Collagen fibrils within anterior and 
posterior stroma associated close to cell membranes (green arrows). 
Fig. 3.8A and Fig. 3.8B: Cells of the anterior cornea had a stellate 
morphology with membranous extensions, directed towards 
neighbouring cells, anteriorly towards the corneal epithelium, and 
within areas of collagen deposition (black arrow). Fig. 3.8D: Cells in 
posterior locations had a lengthened and flatter morphology compared 
to cells in the anterior corneal stroma.  
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E14 

The developing cornea at E14 was analysed with SBF-SEM within the central 

anterior and central posterior aspects of the cornea (Figure 3.9). The corneal 

stroma was populated with cells with increased cell density in the peripheral 

and posterior areas. In these heavily populated areas, cells possessed a 

slender and lengthened morphology. Within the central and anterior cornea, 

cells had a stellate morphology (Figure 3.9B-C). Several layers of flattened 

mesenchymal cells occupied the posterior aspect of the cornea (closest to the 

lens) (Figure 3.9D-E). Again, cell extensions were identified to communicate 

with adjacent cells (Figure 3.10). In addition, more space and extracellular 

matrix deposition was evident within the central anterior cornea (Figure 3.11). 

Extracellular matrix was increased within the corneal stroma compared with 

earlier stages (Figure 3.9-Figure 3.11 and supplementary video 4).  

 

Within the spaces between the cells of the developing stroma, collagen was 

orthogonally organised, lying in close proximity to cell membranes (Figure 
3.11). In the central stroma, collagen fibrils were increased in abundance 

compared to the posterior cornea and were arranged into bundles organised 

orthogonally with respect to each other. 

 

Supplementary video 4 link: https://figshare.com/s/88f95a8b80cb5cc72191 
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Figure 3.9. Serial block-face scanning electron microscopy datasets of 

E14 developing mouse eye. 

Fig. 3.9A: Low magnification SBF-SEM imaging of the cornea (C), lens (L) 
and retina (R) at E14. Mesenchymal cells (black asterisks) are distributed 
throughout the corneal stroma. Fig. 3.9B-C: The anterior cornea (red box) 
in 3-D showed collagen fibrils deposited directly posterior to the corneal 
epithelium and around corneal stromal cells. The cells in the anterior corneal 
stroma had a stellate and large morphology, surrounded by extracellular 
space. Fig. 3.9D and Fig. 3.9E: The posterior cornea (blue box) was 
reconstructed in 3-D and showed cells were more densely packed within the 
posterior corneal stroma (red asterisk), with a flatter and lengthened 
morphology. The condensed cells in the posterior cornea will form the 
corneal endothelium (red asterisks). Anterior stroma (AS), Posterior stroma 
(PS) and epithelium (E).  
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Figure 3.10. Serial block-face scanning electron microscopy 

three-dimensional reconstructions of the E14 developing mouse eye. 

Fig. 3.10A: The anterior cornea 3-D reconstructions identified mesenchymal cell 
extensions branching between neighbouring mesenchymal cells (black arrows) 
and projecting anteriorly towards the corneal epithelium (E). Fig 3.10B: The 
posterior cornea 3-D reconstructions also showed mesenchymal cell extensions 
to branch towards neighbouring cells (black arrows). Cells within the posterior 
cornea were more densely packed compared to the anterior cornea. Further 
condensation of cells occurred within the most posterior cornea and contained 
the presumptive corneal endothelium. Anterior stroma (AS), posterior stroma 
(PS).  

20 um 

20 um 
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Figure 3.11. Transmission electron microscopy images of the E14 

mouse cornea, central corneal stroma 

Fig. 3.11A: Within the central cornea, stromal cells (yellow asterisk) appear 
stellate with cytoplasmic extensions, associated with the extracellular matrix. 
Collagen fibrils in bundles organised in an orthogonal array are identified 
within the extracellular space, closely associated with cells. Fig. 3.11B: 
Analysis of the collagen bundles at high magnification demonstrates the 
oblique and transverse organisation of the collagen fibrils. Blue and red 
arrows indicate the 2 different orientations of the collagen fibrils and represent 
an orthogonal orientation.   
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E15 

The cornea at embryonic day E15 was analysed in the anterior central and 

posterior central cornea (Figure 3.12). The corneal stromal cells in the 

posterior cornea had further condensed to form the corneal endothelium 

(Figure 3.12D-E). Collagen deposition filled in the extracellular matrix spaces, 

with collagen fibril bundles organised into lamellae between the cells of the 

corneal stroma (Figure 3.12). The cells within the corneal stroma were 

elongated and appeared to organise within rows of aligned keratocytes 

(Figure 3.12 and supplementary video 5).  

 

High-magnification analysis of the cornea at E15 identified collagen fibrils 

randomly deposited posterior to the basal lamina. These collagen fibrils had a 

smaller collagen fibril diameter compared to the collagen fibrils in the deeper 

stroma. The collagen fibrils within the corneal stroma also aligned with the 

direction of a cell projection. Fibril bundles appeared to organise into lamellae, 

arranged orthogonally (Figure 3.13). A high abundance of fibrils was evident 

associated with cell membranes, with the alignment along the direction of the 

cell processes (Figure 3.13).  

 

Supplementary video 5 link: https://figshare.com/s/75b3de09e4dccb3bf926 
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Figure 3.12. Serial block-face scanning electron microscopy 

three-dimensional reconstructions in the E15 developing mouse cornea. 

Fig. 3.12A: SBF-SEM imaging of the eye at E15 of the cornea (C), corneal 
epithelium (E), lens (L) and retina (R). The anterior (red box) and posterior (blue 
box) areas of the cornea were further analysed. Fig. 3.12B and Fig. 3.12C: 3-D 
reconstructions of the anterior cornea identified collagen fibrils within fibril 
bundles to constitute the extracellular matrix between the stromal cells. Cells 
become flat and elongated, orientated in the same plane, with extended 
projections that communicated with adjacent cells. Fig. 3.12D and Fig. 3.12E: 
The posterior cornea displayed a similar morphology to the anterior cornea, with 
elongated cells in parallel rows that lay between collagen fibril bundles. Anterior 
stroma (AS), posterior stroma (PS). 
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Figure 3.13. Transmission electron microscopy images of the 

developing E15 mouse corneal stroma 

Fig. 3.13A: Collagen fibril bundles form lamellae organised orthogonally to 
adjacent collagen bundles and between the corneal stromal cells (black 
asterisk). Corneal stroma cells possess cell extensions, with some that 
appeared to run in the same direction as adjacent collagen fibril bundles (red 
arrows). However, as the TEM images are 2D it is difficult to confirm where 
these cell extensions are arising from, but the cell extensions were consistent 
with the 3D SBF-SEM data.  
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E16 

The cornea was examined in the anterior central and posterior aspects of the 

cornea at E16 (Figure 3.14). The images displayed a defined epithelium, 

endothelium and stroma. Reconstructions of high magnification datasets 

revealed corneal stromal cells to be aligned in parallel rows, with cells in close 

proximity to neighbouring cells (Figure 3.14). The reconstructions identified 

organised collagen lamellae between corneal stromal cells (Figure 3.14). 

 

High-magnification images of the corneal stroma at E16 showed collagen 

fibrils packed within lamellae, with fibrils arranged in different orientations in 

adjacent lamellae, some oblique and others longitudinal (Figure 3.15). 

Extensions of stromal cells aligned with the arrangement of collagen fibrils 

(Figure 3.15C). The cells contained a high quantity of synthesising organelles 

and mitochondria, which implies that the cells continue to be very active at 

E16. The density of cells within the corneal stroma is relatively high, with a 

larger quantity of cells compared to collagen lamellae in the corneal stroma 

(Figure 3.15A). 
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Figure 3.14. Serial block-face scanning electron microscopy 

three-dimensional models of the E16 mouse cornea. 

Fig. 3.14A: Low magnification images of the cornea showed a well-developed 
structure with an epithelium (E), anterior stroma (AS), posterior stroma (PS) 
and endothelium (Endo). Fig. 3.14B and Fig. 3.14C: The anterior (red box) 
cornea 3-D reconstructions showed cells aligned in parallel rows with collagen 
fibrils in-between the rows of cells. Fig.3.14D and Fig.3.14E: The posterior 
(blue box) cornea 3-D reconstructions showed the corneal endothelial 
monolayer, which represents the posterior boundary of the cornea. Corneal 
stromal cells now have a similar arrangement and morphology to the anterior 
corneal stromal cells.  
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Figure 3.15. Transmission electron microscopy images of the developing 

E16 mouse cornea, anterior corneal stroma 

Fig. 3.15A: Cells within the corneal stroma were long, slender and arranged 
within longitudinal rows. Fig. 3.15B: Collagen lamellae lie between the corneal 
cells in an orthogonal arrangement. Fig. 3.15B and Fig. 3.15C: Cells exhibited 
cytoplasmic projections, longitudinally and as dots (red arrows), that were 
consistent with the features seen with SBF-SEM. Some of the collagen fibrils 
aligned with the cell extension.   
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E18 

3-D reconstructions of the cornea at E18 showed an organised corneal stroma 

composed of well-developed collagen lamellae (Figure 3.16). The keratocytes 

within the corneal stroma were organised between consecutive lamellae. 

These cells appeared to be lengthened and communicated with each other via 

cell processes (Figure 3.16).  

 

High-magnification analysis of the E18 mouse cornea showed a densely 

populated cornea with many flat and elongated cells organised in longitudinal 

rows (Figure 3.17A). Collagen fibrils were organised into orthogonal lamellae 

between the cells of the corneal stroma. The cells throughout the corneal 

stroma contained high amounts of mitochondria, Golgi apparatus and rough 

endoplasmic reticulum, which implied a high level of activity and synthesis 

(Figure 3.17B). Some cell processes appeared to align in the same direction 

to the most adjacent collagen fibrils (Figure 3.17C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure? 3-D reconstruction of the mouse cornea at E14. Fig 1A represents the low magnification 
(x1.15) data-set collected from the SBF-SEM, representing the whole depth of the cornea. Corneal 
cells appeared flatter and more concentrated within the posterior aspect of the cornea. The anterior 
aspect of the cornea being concentrated to the posterior corneal stroma (A). Cells were also found 
flatter towards the posterior and rounded towards the anterior. An isosurface function is applied (B). 
Reconstructions using the segmentation tool is applied (C) to map the distribution of cells and 
extracellular matrix. Reconstructions identify a highly concentrated area of cells throughout the 
corneal stroma. Little matrix is present, however, most is concentrated to the anterior corneal stroma. 
Cells are more concentrated in the posterior. 
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Figure 3.16. Serial block-face scanning electron microscopy 

three-dimensional reconstructions of the E18 mouse cornea. 

Fig. 3.16A: SBF-SEM images of the cornea at E18. Anterior (AS) and posterior 
corneal stroma (PS), epithelium (E) and endothelium (Endo) are all 
well-developed. Fig. 3.16B and Fig. 3.16C: 3-D reconstructions of the anterior 
cornea showed cells aligned within longitudinal rows of cells with cell 
projections communicating to neighbouring cells. Cells are longitudinal, 
densely packed and appear to run in between collagen lamellae. Fig. 3.16D 
and Fig. 3.16E: The posterior cornea 3-D reconstructions displayed a similar 
morphology to the anterior cornea.  
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Figure 3.17. Transmission electron microscopy images of the E18 mouse 

corneal stroma. 

Fig. 3.17A: Corneal stromal cells were flattened and elongated in parallel rows, 
closely associated with neighbouring corneal stromal cells. Fig. 3.7A and Fig. 
3.17B: Collagen fibrils were laid down within orthogonally arranged lamellae 
between the cells. Cells contained many mitochondria and synthesising 
organelles, which indicates a high level of activity (yellow arrows). Fig. 3.17C: 
Cell processes extended from the keratocytes aligned in the same direction as 
collagen fibril orientation (red arrow).  
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3.3.2. Immunofluorescence  

3.3.2.1. Fibronectin 

Fibronectin was associated with the migrating mesenchymal cells, developing 

lens and surface ectoderm from E12. (Figure 3.18). Labelling becomes 

localised under the corneal epithelium from E14 to E16, with a small level 

within the corneal stroma from E14 to E18. By E18 fibronectin was enhanced 

as a band anteriorly to the corneal endothelium (Figure 3.18).  

Figure 3.18. Fibronectin (red) in mouse corneal development.  

Fibronectin associated with the migrating mesenchymal cells at E12 (yellow 
arrows). In addition, staining was present around the lens (L), surface ectoderm 
(SE) and presumptive corneal stromal cells. Fibronectin localised posterior to 
the corneal epithelium (E) from E14 to E16 (blue arrows). Fibronectin became 
localised directly anterior to the corneal endothelium (endo) (green arrows) at 
E18. Controls included IgG rabbit and no primary antibody, showing no positive 
labelling. Blue (DAPI – cell nuclei), red (fibronectin). For orientation, the corneal 
epithelium is faced upwards in all images.  
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3.3.2.2. Type VII Collagen  

Type VII collagen first presented within the corneal epithelium at E14 (Figure 
3.19). Type VII collagen increased from E16 and was localised to the epithelial 

basement membrane from E16 to E18 of corneal development (Figure 3.19). 

 

 

 

Figure 3.19. Type VII collagen junction labelling in mouse corneal 

development.  

Type VII collagen initially appeared as a faint signal in the corneal epithelium 
(E) at E14 (blue arrows). By E16 type VII collagen was localised along the 
epithelium basement membrane (blue arrows) and continued throughout 
development to E18. No positive labelling was localised with the corneal 
endothelium (endo), surface ectoderm (SE) or the lens (L). No labelling 
appeared in the no primary antibody control and the rabbit IgG control images. 
Blue (DAPI – cell nucleus), red (type VII collagen). For orientation, the corneal 
epithelium is facing anteriorly or to the right of the image. 

 



 
 

104 
 

3.3.2.3. Connexin 43 

CNX43 denotes gap junctions in corneal development. Connexin 43 was 

present as punctate dots during all ages analysed (Figure 3.20). The majority 

of labelling was localised to the lens and presumptive retina throughout all of 

the ages analysed as well as the surface ectoderm from E12. CNX43 

presented within the corneal epithelium from E14 to E18. Small punctate dots 

also presented throughout the corneal stroma, which associated with cells 

from E14 to E18 (Figure 3.20).  

Figure 3.20. CNX43 (red) in mouse corneal development. 

CNX43 denotes connexin 43 gap junctions in corneal development. Connexin 
43 expressed within the surface ectoderm (SE) (blue arrows), lens (L) (white 
arrows) and optic cup (OC) at E12. With increased development the corneal 
epithelium (E) (blue arrows) and lens (L) (white arrows) had a strong staining 
profile of CNX43 from E14 to E18. CNX43 was also found between corneal 
stromal cells (yellow arrows) from E14 to E18. There was no protein labelling 
in controls of no primary antibody application and with a rabbit IgG control. 
Blue (DAPI – cell nuclei), red (connexin 43 gap junction protein). For 
orientation, corneal epithelia are facing upwards or to the right of the image.  
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3.3.2.4. Hyaluronic Acid   

Hyaluronic acid (HA) was present from the earliest age analysed, which 

enhanced to E14 (Figure 3.21). The protein labelling at E11 appeared to 

associate with cell migration. From E11, cells around the lens are migrating as 

well as cells entering the presumptive corneal stroma anteriorly, the protein 

was seen in both of these locations. At E14 HA is amplified throughout the 

corneal stroma. HA decreased after E14, being completely absent at E15 and 

in all ages analysed older than E15. At E15 the HA is most probably replaced 

by collagen fibrils and other extracellular matrix proteins (Figure 3.21). 

Figure 3.21. Hyaluronic acid (HA) labelling (red) in mouse corneal 

development. 

HA was found from E11 and associated with the migrating cells around the 
lens (L) (white arrows) and the surface ectoderm (SE) (blue arrows). 
Staining increased at E14 within the corneal stroma (yellow arrows) and 
appeared directly posterior to the corneal epithelium (E) (blue arrows) and 
around the lens. HA disappeared by E15 and was not seen in any other ages 
analysed between E15 and E18. No labelling was seen in controls of no 
primary antibody application and with a rabbit IgG control. Blue (DAPI – cell 
nuclei), red (HA binding protein). For orientation, the corneal epithelium is 
faced upwards or to the right of the image. 
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3.4. Discussion 

This study investigated the interaction between the developing corneal cells 

and collagen fibrils using electron microscopy and histochemical techniques. 

The youngest age analysed within this study (E10) showed the lens vesicle to 

be invaginated into the optic cup, with the overlying surface ectoderm. At E10 

small vesicles were seen in the migrating mesenchymal cells, which indicated 

the transport of extracellular matrix content into the surrounding environment. 

Thin strands of extracellular matrix projected from the cells of the surface 

ectoderm and extended down to connect with the underlying mesenchymal 

cells. With increased development, the surface ectoderm becomes the corneal 

epithelium shortly after E12 (Pei and Rhodin 1970). If the separation of the 

lens vesicle from the surface ectoderm is delayed or fails, the subsequent 

migration of mesenchymal cells is abnormal (Cook et al. 1987). TEM analysis 

showed close cell-cell contacts between the condensed mesenchymal cells at 

E12, which had been previously been described in the mouse model (Kidson 

et al. 1999). These intercellular connections could represent a communication 

system for the initial development of the cornea and potentially be involved in 

the guidance of cells in migration. Cells of the presumptive corneal stroma 

contained synthesising organelles, including Golgi apparatus and 

endoplasmic reticulum, where collagen is known to be synthesised before 

deposition into the extracellular space (Last and Reiser 1984, Lodish 1988). 

Intra- and extra-cellular vacuoles were also identified, associating with the cell 

membranes. These vacuoles could transport collagen from the Golgi 

apparatus to cell membranes before the collagen is deposited extracellularly 

through exocytosis. Vacuoles were also identified in the surface ectoderm, 

however, no secretory organelles were seen and the vacuoles did not 

associate with the cell membrane, therefore it did not appear that the surface 

ectodermal cells were responsible for matrix deposition as they are within the 

avian corneal model (Hay E. D. and Dodson 1973). The presence of the 

connexin 43 gap junction protein early on in corneal development indicated 

the importance of communication within the epithelium, stroma, lens and 

retina. Disruption to this communication system could impact the success of 

corneal development (Nicholson and Bruzzone 1997).  
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Corneal stroma cells had fully populated the presumptive stroma by E13. 

Within the anterior aspect of the cornea, cells exhibited a stellate morphology 

with a large amount of space around each cell. Reduced cell density together 

with a greater extracellular matrix space after E12 has previously been 

described in the mouse cornea (Kidson et al. 1999). Within the posterior 

cornea, cells were in close proximity to neighbouring cells and possessed a 

longer and thinner morphology. The large quantities of extracellular space in 

the anterior corneal stroma combined with the phenotypes of the cells suggest 

extracellular matrix is initially deposited from the stromal cells in the anterior 

aspect of the embryonic cornea. Pro-collagen is secreted into the extracellular 

space but remains undetectable by conventional electron microscopy analysis 

until cleavage of procollagen and its subsequent self-assembly into collagen 

fibrils (Kadler et al. 1996). It is thought that the extracellular space is rich in 

pro-collagens as well as proteins crucial for development; these may include 

hyaluronic acid and proteoglycans, both of which remain unstained by the 

preparation method of Deerinck used here. However, with 

immunofluorescence techniques hyaluronic acid, a glycosaminoglycan known 

to regulate cell migration in development was associated with the migrating 

cells that develop the cornea (Pratt et al. 1975, Zhu et al. 2006). The labelling 

pattern observed for hyaluronic acid confirms the suggestion that hyaluronic 

acid is present within the extracellular spaces between E10-E14. By E15 there 

was no hyaluronic acid, which implied that cell migration into the corneal 

stroma had ceased. Hyaluronic acid is most probably replaced by collagen 

fibrils and matrix components for the development of a transparent cornea, 

similar to what is described in avian development (Hassell and Birk 2010). 

 

3-D reconstructions of the E13 dataset showed cell processes to branch from 

the cell bodies in different directions and connect with adjacent cells. The cell 

projections within the anterior cornea directed anteriorly towards the 

epithelium and basal lamina, suggest a potential communication mechanism 

between the stromal cells and the epithelium. Mesenchymal cells migrating 
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into the rabbit corneal stroma from the peripheral cornea have also been 

shown by previous studies to interact with the corneal epithelium through cell 

extensions, proposed to help maintain a stem cell niche (Yamada et al. 2015). 

In addition, the literature states that mesenchymal cells communicate with the 

surface ectoderm through transcription factors; if this interaction fails, the 

anterior eye does not segment or form correctly (Cvekl and Tamm 2004). The 

results in this study identify another mechanism by which these cells could 

interact, which may also result in anterior eye abnormalities if faulty.   

 

Collagen fibrils first presented at E13, with enhanced deposition of collagen 

fibrils posterior to the basal lamina, showing the initial synthesis of Bowman’s 

layer. Because of the fine filamentous structure and the position of some of 

the fibrils arranged perpendicular to one another, it was postulated that these 

represented anchoring filaments. Immunofluorescence labelling identified type 

VII collagen posterior to the epithelium as a localised band, an important 

component of anchoring filaments (Lunstrum et al. 1986). Similarly, previous 

studies have shown the rabbit and human cornea to express type VII collagen 

localised to the basal lamina, with the presence of anchoring filaments 

suggested to be precursor filaments for the development of Bowman’s layer 

(Tisdale et al. 1988). These anchoring structures have been previously 

identified to be type VII collagen rich with immunofluorescence and appear as 

“banded strands” posterior to the rabbis corneal epithelium, the results shown 

in this chapter did not show any punctate stain, to reveal this pattern a higher 

magnification microscope could be used (Gipson et al. 1987). In addition, the 

mouse structure would be thinner than the rabbit and could make the punctate 

staining more difficult to detect compared to the larger rabbit. The anchoring 

filaments could provide a substratum along which cells migrate, or to facilitate 

adhesion of the epithelium to the stroma (Gipson 1992, Leivo et al. 1996). The 

migration of cells along collagen fibrils via contact-guidance is a common 

mechanism to migrate and align cells in development (Dunn and Heath 1976, 

Ebendal 1976, Nakatsuji and Johnson 1983, Provenzano et al. 2008, Wood 

and Thorogood 1984). Fibronectin was found to be expressed in a similar 

pattern to that in developing rabbit and human corneas, localised to the 
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epithelial basement membrane and Descemet’s membrane; this showed a 

similarity between the mouse with other mammalian developmental models 

(Cintron et al. 1984, Tervo et al. 1986). Fibronectin regulates cell-extracellular 

matrix interactions and is thought to govern tissue morphogenesis (Pankov 

and Yamada 2002).  

 

By E14 the posterior mesenchymal cells condense to form apicolateral 

contacts with adjacent cells, which develop the corneal endothelium. Collagen 

fibrils were found to associate with cells and plasma membranes, similar to 

previous results, which supports evidence that the corneal stromal cells play 

a role to synthesise and deposit collagen fibrils (Haustein 1983). The 

distribution of collagen fibrils within corneal development could disrupt cell 

traction less, helping cells migrate. However, the cells could also generate 

mechanical forces to displace collagen fibrils and organise the extracellular 

matrix (Provenzano et al. 2008). The fact that cells within the corneal stroma 

appeared before collagen fibrils further implies that collagen fibrils do not 

regulate the initial migration of cells, which is considered to occur by the 

deposition of a primary stroma in the avian cornea (Hay E. D. and Revel 1969). 

However, as development proceeds, collagen fibrils may have a role in 

organising the cells within the corneal stroma. 

 

The flattened posterior mesenchymal cells formed a monolayered 

endothelium by E15 to create the posterior boundary of the cornea. This event 

is different within other species. In the avian and human cornea, the first wave 

of neural crest cells migrate over the lens and develop into the endothelium 

before the 2nd wave of mesenchymal cells migrate and differentiate to form the 

corneal stromal keratocytes (Bard et al. 1975, Coulombre and Coulombre 

1958, Dublin 1970, Hay E.D. 1980, Hay E. D. and Revel 1969, Johnston et al. 

1979). The differences highlighted in this chapter between different species 

could result from evolutionary aspects, the chick and mouse eye have been 

previously described to be evolutionary divergent, which could be a reason as 

to why the chick and mouse develop differently (Koudouna et al. 2018b). The 
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maturation of the endothelium will be crucial to pump water from the stroma to 

allow stromal thinning and generate transparency (Zieske 2004). The 

morphology of the corneal stromal cells changes from stellate to long and 

slender at E15, characteristic of stromal fibroblasts. The cells gradually 

elongate into parallel rows between collagen lamellae, this observation has 

been previously described (Reneker et al. 2000). In addition, collagen fibril 

maturation increased as the developmental age-progressed with an increase 

in collagen fibril organisation. The increase in collagen fibril packaging would 

start to generate the structure and biomechanical properties of the cornea 

(Boote et al. 2003). However, even at E18, a significant amount of secretory 

organelles persist, which suggests that matrix biosynthetic activity is still high. 

Within the mouse model, many post-natal alterations occur simultaneously 

with eye-opening and maturation. One of these events will be the reduction of 

secretory organelles, with an increase in collagen fibril packing to enhance the 

light scattering properties of the cornea (Quantock A. J. et al. 1998, Song et 

al. 2003).  

 

Extracellular matrix studies in tendon and skin have identified fibripositors to 

deposit and align collagen fibrils in a given direction, regulating collagen fibril 

organisation in tissues (Canty et al. 2004). Fibripositors were not visualised to 

deposit collagen fibrils in the mouse corneal stroma, which suggests collagen 

alignment proceeds with a different mechanism. As development progressed, 

the collagen fibrils become gradually more organised within lamellae, 

orthogonally orientated within the corneal stroma. The corneal stromal cell 

projections associated with the direction of aligned collagen fibrils indicate that 

the cell projections could orientate the collagen bundles within the corneal 

stroma. Previous studies have demonstrated cell protrusions to align with 

collagen fibrils, which provides an anchorage to propel a cell forward, with the 

membrane protrusions assisting cell movement and alignment within the 

matrix (Friedrichs et al. 2007). The mechanical forces generated from the cell 

migrations could directly align the collagen fibrils. Studies have also shown an 

association between the rotation of cell orientation and the organisation of 

collagen fibrils within the avian cornea (Koudouna et al. 2018a). As the rotation 
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of cells occurs before collagen fibril orientation, it was suggested that the cells 

of the corneal stroma organise the orthogonal collagen lamellae (Koudouna et 

al. 2018a). However, understanding how collagen fibrils organise needs more 

investigating. Koudouna et al., 2018 further outlined the need to understand 

the underlying mechanisms that are responsible for collagen fibril alignment in 

the avian cornea. A schematic summarising the main events in the prenatal 

mouse cornea is presented in Figure 3.22



 
 

112 
 

 



 
 

113 
 

 

 

 

 



 
 

114 
 

 

 

Figure 3.22. Events in the developing mouse cornea.  

From E10 of corneal development the surface ectoderm (SE) overlays the lens vesicle (LV) which sits on top of the optic cup (OC). 
Some neural crest cells (NCCs) migrate between the SE and LV (blue cells). Strands appeared to emerge from the surface ectoderm 
and contact the underlying cells (black lines). The matrix contained hyaluronic acid (HA), which appeared to increase in concentration 
to E14 before disappearing by E18 (orange circles). By E12 the mesenchymal cells (MCCs) infiltrated the area between the surface 
ectoderm (SE), the lens (L), retina (R) and retinal pigment epithelium (RPE) in large numbers. The space surrounding these cells 
increased at E13, with small amounts of collagen fibril deposition between the cells. From the basement membrane directly posterior 
to the epithelium (E) anchoring filaments (orange lines) were seen to branch. The posterior mesenchymal cells have started to 
condense at E13, and continue to condense before forming the endothelium (endo) at E15 (yellow cells). By E14 the basement 
membrane had fully developed with type VII collagen clearly displayed as a bright band posterior to the corneal epithelium and for 
every age above E14. The amount of collagen (red) deposition increased with the number of cells decreasing. Collagen fibrils are 
identified as dots (red) and longitudinal fibrils (red) to show the orthogonal arrangement of the fibrils through development. By E15 
the cells aligned into parallel rows, with collagen starting to bundle into lamellae. This organisation of cells and collagen fibrils 
appeared to further increase until E18, where corneal stromal cells were found in longitudinal rows which lay between collagen 
lamellae and contained collagen fibrils orthogonally arranged. 
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3.5. Summary  

This study has mapped using 3-D imaging techniques the cell arrangements 

and associations from E10-E18 of mouse corneal development. The results 

showed extensive cell projections of the corneal stromal cells to associate with 

neighbouring cells and deposited collagen fibrils, which were unidentified in 

mammalian corneal development prior to this study. Collagen fibrils appeared 

to be initially synthesised and secreted through the cells of the corneal stroma 

in early development, which were found to align in the same direction as the 

cell projections. There was no organised acellular collagen layer identified 

posteriorly to the surface ectoderm, which confirmed that a primary stroma is 

not required to assist cell migration in the development of the mouse cornea. 

This study was the first to identify anchoring filaments within the mouse 

cornea, showing similarity to other mammalian developmental models, 

including the rabbit and human. In addition, a clear divergence of events was 

evident within the prenatal mouse cornea in comparison to the avian species. 

The similarities between the mouse model compared to other mammalian 

developmental models supports the mouse as an appropriate model to direct 

corneal developmental research. However, the divergence of some events, 

particularly in the cell migration steps in both the avian and human cornea, 

suggests more models require investigation to grant a better understanding of 

the corneal developmental events that occur across mammalian species. 
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Chapter 4: Collagen and Proteoglycan 

Distribution in the Developing Mouse 

Cornea 
 

4.1. Introduction 

The physiological cornea relies on collagen fibrils to assemble into organised 

lamellae, influenced by proteoglycans (PGs) that control collagen fibril 

diameter and organisation (Meek and Knupp 2015, Rada et al. 1993). The 

distribution of collagen types and extracellular matrix molecules changes in 

development for successful morphogenesis. Current research to understand 

the distribution of matrix components within the developing cornea has mainly 

focused on studying the avian species, with a paucity of information about the 

composition of the embryonic mouse cornea.  

 

The avian cornea initially develops by the corneal epithelium laying down the 

primary stroma (Hay E. D. and Revel 1969). The main collagen types that 

reside in this primary stroma include types I, II, V and IX collagen (Hay E. D. 

and Revel 1969, Hayashi M. et al. 1988). The main collagen type found within 

the adult mammalian corneal stroma is type I, responsible for the maintenance 

of a transparent and biomechanically strong cornea (Birk et al. 1990, 

Newsome et al. 1982). The amount of collagen has been shown to increase in 

the later stages of development in the avian cornea in X-ray diffraction studies, 

increasing with maturity and transparency (Quantock A. J. et al. 2003). This 

study showed the initial collagen deposition was orthogonally arranged 

between days 13-18 but was less well-orientated later from day 16 of 

development. X-ray studies in mice have also shown the importance of 

collagen fibril deposition and development in corneal development by 

demonstrating the collagen fibril orientation and distribution is highly dynamic 

through development (Sheppard et al. 2010). In addition, type V collagen 
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forms heterotypic fibrils with type I collagen, where type V regulates collagen 

fibril diameters (Birk 2001, Birk et al. 1990, Birk et al. 1986). Type IX collagen 

preserves the primary stroma, and when type IX collagen breakdown is 

activated, the migration of mesenchymal cells into the presumptive corneal 

stroma to synthesise the secondary stroma is initiated (Cai et al. 1994, Fitch 

J. et al. 1998, Fitch J. M. et al. 2005). Type IX collagen forms heterotypic fibrils 

with type II collagen, and both are often found to associate together in tissues 

(Fitch J. M. et al. 1994). After the invasion of mesenchymal cells, prior to 

stromal swelling, type IX collagen depletes until being undetectable. As 

development continues, the secondary stroma is mainly composed of 

heterotypic fibrils composed of type I and V collagens (Birk et al. 1986). Minor 

collagen types III, IV, VI, VIII and XIII have also been identified to distribute 

within the secondary stoma, which regulates the development of the avian 

cornea (Fitch J. M. et al. 1990, 1991, Grant and Leblond 1988, Linsenmayer 

et al. 1986). As a result of their abundance in chick development, it was 

considered that types I, II, V and IX collagens may also be present in mouse 

prenatal corneal development (Hendrix et al. 1982).  

 

PGs are key components of the corneal extracellular matrix that control 

collagen fibril diameter, spacing and synthesis, and confer the tissue with 

transparency (Rada et al. 1993). Keratan sulphate PGs are the main PGs 

initially synthesised in the avian cornea, which are sulphated around day 14 

(Funderburgh et al. 1986). The keratan sulphate PG keratocan expresses 

within the cells that migrate into the primary stroma. Keratocan levels decrease 

from E9 when lumican proceeds to increase in concentration (Conrad and 

Conrad 2003). Keratan sulphate has also been shown in mammalian corneal 

development, which is elevated in the early development of rabbit corneas 

(Cintron and Covington 1990). When keratocan is removed from mammalian 

corneas, the corneal stroma thins and collagen fibrils increase in diameter; 

these results demonstrated the importance of keratocan in the development 

of a functional mammalian cornea (Liu C. Y. et al. 2003, Meek et al. 2003). 

Sulphated keratan sulphate increases in chick development, alongside 

collagen interfibrillar distance decreasing to further demonstrate its importance 
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in the generation of transparency in corneal development (Liles et al. 2010). 

Lumican associates with new collagen fibrils near the cell surface and within 

embryonic corneas. Mice deficient in lumican lose collagen fibrillar structure 

and overall thickness of the corneal stroma, which results in opacity 

(Chakravarti et al. 2000, Kao and Liu 2002, Song et al. 2003). These knockout 

models have demonstrated the importance of PGs to maintain corneal 

structure in mammalian development. However, their organisation and 

distribution in the prenatal mammalian cornea remain to be investigated. 

Importantly, it should be noted that, compared to other mammalian species, 

the adult mouse cornea possesses predominantly under-sulphated keratan 

sulphate, with large chondroitin sulphate/dermatan sulphate extensions; this 

is unique to the mouse cornea (Young et al. 2005).  

 

The different types of PGs and collagens within developing tissues each 

provide a specific role for successful development. Identifying the components 

that are present at different developmental stages will elucidate which 

extracellular matrix components are crucial for mouse corneal morphogenesis. 

The main aim of this chapter was to investigate for the first time the distribution 

of types I, II, V and IX collagens and type I pro-collagen within the developing 

mouse cornea. The second aim was to examine the distribution and structural 

interactions of PGs at different ages in the prenatal mouse cornea.  

 

4.2. Methods  

4.2.1. Immunofluorescence  

Immunofluorescence labelling was carried out on 6 un-paired mouse eyes at 

ages E10-E18. The complete protocol of tissue collection and 

immunofluorescence is described in chapter 2 general methods (sections 2.1 

and 2.5). 
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For this chapter, mouse eyes were cryo-sectioned transversely to the 

anatomical position of the eyes in vivo, before being collected on Superfrost 

Plus Slides (Thermo Scientific, Waltham, MA, USA). The primary antibodies 

added in this experiment were rabbit polyclonal or mouse monoclonal 

antibodies. Information on the antibodies used can be found in Table 4. The 

secondary antibody Dylight 594 Horse Anti-Rabbit secondary (Abcam, 

Cambridge, England) was added to the slides which contained the rabbit 

polyclonal primary antibodies, and Dylight 594 Horse Anti-Mouse antibody 

(Abcam, Cambridge, England) was applied to the slides that contained the 

mouse monoclonal primary antibodies. Both secondary antibodies were used 

at a concentration of 1:200.  

Table 4. Primary Antibodies used to Analyse Collagens in Developing 
Cornea 

Primary 

Antibody 

Descripti

on 

Target Concentration Source Reference 

 

Anti-Type I 

Collagen 

 

Rabbit 

Polyclonal 

 

Type I 

collagen 

 

1:100 

Abcam 

(Cambridg

e, 

England) 

 

(Kalash et al. 

2014) 

 

Anti-Type II 

Collagen 

 

Rabbit 

Polyclonal 

 

Type II 

collagen 

 

1:100 

Abcam 

(Cambridg

e, 

England) 

 

(Mo et al. 

2009) 

 

Anti-Type V 

Collagen 

 

Rabbit 

Polyclonal 

 

Type V 

collagen 

 

1:100 

Abcam 

(Cambridg

e, 

England) 

 

(Guillen-

Ahlers et al. 

2008) 

 

Anti-Type IX 

Collagen 

 

Rabbit 

Polyclonal 

 

Type IX 

collagen 

 

1:100 

Abcam 

(Cambridg

e, 

England) 

 

(Liu W. et al. 

2015) 
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Pro-Collagen I 

 

Monoclon

al Mouse 

 

Type 1 

pro-

peptide 

(N-

terminal 

residues) 

 

1:100 

Developm

ental 

Studies 

Hybridom

a Bank 

(Iowa 

City, Iowa, 

USA) 

 

(Foellmer et 

al. 1983) 

 

 

4.2.2. Transmission Electron Microscopy 

4.2.2.1. Proteoglycan Staining Protocol  

The complete methodology is described in section 2.2.2.4 of the general 

methods chapter. 6 unpaired eyes from each age (E10-E18) were immersed 

in vials overnight in 2.5% glutaraldehyde in 25mM sodium acetate buffer, pH 

5.7 containing 0.1M magnesium chloride and 0.05% cuprolinic blue (American 

Elements, Los Angeles, USA). For the embryonic stages E10-E11, the eyes 

were left in situ with the whole head being immersed. The whole eyes of the 

embryonic samples from E12-E15 were processed and the corneas were 

dissected from the whole eye for embryonic tissue E16-E18.  

 

Each copper grid was analysed on the JEOL 1010 transmission electron 

microscope at different magnifications (x1000, x2000, x5000, x6000, x7500, 

x10000, x20000).  
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4.3. Results  

4.3.1. Immunofluorescence  

The staining patterns of type I, II, V, IX collagen and type I-procollagen were 

imaged in embryonic mouse corneas from E10-E18 at x20 and x40 

magnifications (Figure 4.1-4.9). Low magnification images of the cornea 

showed the cornea in relation to other aspects of the embryonic eye. Higher 

magnification images of the cornea captured increased details of the 

extracellular matrix components. All negative controls included no primary 

antibodies, IgG controls (rabbit) and IgM controls (mouse) and unless stated 

otherwise showed no positive labelling, which indicated that the positive 

fluorescence was true staining.  

 

4.3.1.1. Type I Collagen 

Type I collagen was seen throughout the lens capsule from the earliest ages 

analysed (E10-E12) (Figure 4.1 and Figure 4.2). A very distinct line was 

present which associated with the surface ectoderm (E10-E12). Labelling was 

found posterior to the corneal epithelium from E13 to E16. Type I collagen was 

evident in the anterior corneal stroma by E14, and was enhanced throughout 

the corneal stroma by E16 to E18. Type I collagen was increased directly 

anterior to the corneal endothelium from E17-E18.
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Figure 4.1. Type I collagen in the developing mouse cornea x20 magnification.  

Type I collagen associated with the surface ectoderm (SE) and lens (L) (E10-E12). Throughout all ages analysed, the lens capsule 
Type I collagen expanded within the anterior corneal stroma (yellow arrow) by E14, and was posterior to the corneal epithelium (blue 
arrow). Type I collagen was present throughout the corneal stroma with maturation, which appeared anteriorly to the corneal 
endothelium (endo) by E18 (green arrows). No positive labelling was observed within all of the negative controls: without primary 
antibodies (shown) and with rabbit immunoglobulin controls (not shown). Blue (DAPI -cell nucleus), red (type I collagen). To orientate 
the eye, the corneal epithelium is facing to the top or to the right of the image. Images are representative of n=6 for timepoints.  
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Figure 4.2. Type I collagen in the developing mouse cornea x40 magnification.  

Imaging showed a localised line of type I collagen along the surface ectoderm (SE) in addition to being enhanced within the developing 
lens (L) (E10-E12). From E13-E14 labelling presented beneath the corneal epithelium (E) (blue arrow), with faint labelling within the 
anterior corneal stroma (yellow arrows). From E15 type I collagen was throughout the corneal stroma and increased along the corneal 
epithelial basement membrane at E16 (blue arrows). From E17-E18 the label expressed anterior to the endothelium (endo) (green 
arrows) and throughout the corneal stroma (yellow arrows). Blue (DAPI – cell nucleus), red (type I collagen). Negative controls showed 
no positive staining without primary antibody (not shown) and rabbit immunoglobulin (shown). Images are representative of n=6 for 
timepoints.  
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4.3.1.2. Type II Collagen 

Weak labelling of type II collagen was evident around the lens and posterior 

to the surface ectoderm between E11 and E12 (Figure 4.3 and Figure 4.4). 
Type II collagen was found within the corneal stroma at E13, increased at E14 

within the anterior corneal stroma (yellow arrow). Between E13 and E14, 

labelling was enhanced directly posterior to the corneal epithelium and was 

observed throughout the whole thickness of the corneal stroma from E15 to 

E18 (Figure 4.3 and Figure 4.4).  
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Figure 4.3. Type II collagen in the developing mouse cornea x20 magnification.  

Type II collagen was present from E11 to E12 within the surface ectoderm (SE) (blue arrows) and posterior to the corneal epithelium 
from E13 to E16 (blue arrows). Type II collagen started to show in the corneal stroma from E13, localised within the anterior corneal 
stroma from E14 (yellow arrows). Type II collagen was identified throughout the whole thickness of the corneal stroma between 
E15-E18 (yellow arrows). No positive labelling was evident in the no primary control (shown) and immunoglobulin control (not 
shown). Blue (DAPI – cell nucleus), red (type II collagen). Endothelium (Endo). Images are representative of n=6 for timepoints.  
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Figure 4.4. Type II collagen in the developing mouse cornea x40 magnification.  

Type II collagen expressed from E11 to E12 within the surface ectoderm (SE) (blue arrows) and around the lens (L). Type II collagen 
first was observed in the corneal stroma from E13, and was clearly localised within the anterior corneal stroma from E14 (yellow 
arrows). Type II collagen was distributed throughout the whole thickness of the corneal stroma between E15-E18 (yellow arrows). 
No labelling was present in the no primary control (not shown) and the immuno-globulin control (shown). Blue (DAPI – cell nucleus), 
red (type II collagen). Images are representative of n=6 for timepoints.  
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4.3.1.3. Type V Collagen 

Type V collagen associated with the surface ectoderm between E10-E12. 

Type V collagen appeared within the anterior corneal stroma at E13, which 

spread throughout the corneal stroma by E16. Labelling was positive within 

the corneal stroma and within the basement membrane of the corneal 

epithelium. Type V collagen appeared within the anterior corneal stroma at 

E14. At E15, the protein appeared throughout the whole corneal stroma, being 

enhanced directly posterior to the corneal epithelium and anterior to the 

corneal endothelium (Figure 4.5 and Figure 4.6). 
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Figure 4.5. Type V collagen in the developing mouse cornea x20 magnification.  

Type V collagen was present along the cells of the surface ectoderm from E10-E12 (blue arrows). Positive labelling was initially seen 
in the anterior corneal stroma at E14, which dispersed through the thickness of the corneal stroma between E15 and E18. Labelling 
was also enhanced anterior to the corneal endothelium between E17 and E18 (green arrows). There was no positive label in the no 
primary (shown) and immunoglobulin (not shown) controls. Blue (DAPI – cell nucleus), red (type V collagen). Images are 
representative of n=6 for timepoints.  
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Figure 4.6 Type V collagen in the developing mouse cornea x40 magnification.  

Type V collagen was present along the cells of the surface ectoderm from E10-E12 (blue arrows). Staining also occurred posterior 
to the corneal epithelium from E13 to E18 (blue arrows). Type V collagen was initially seen in the anterior corneal stroma at E14, and 
had increased by E18 through the full thickness of the corneal stroma. Increased labelling was also identified anterior to the corneal 
endothelium between E17 and E18. No primary (not shown) and immunoglobulin (shown) controls presented with no positive 
labelling. Blue (DAPI – cell nucleus), red (type V collagen). Images are representative of n=6 for timepoints.  



 
 
 

133 
 

 

4.3.1.4. Type IX Collagen 

Type IX collagen was not present in the initial stages of corneal development 

(E10-E13) (Figure 4.7 and Figure 4.8). Type IX collagen became localised 

within the corneal epithelium later in corneal development (E14-E18), with 

some staining within the corneal stroma from E17.  
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Figure 4.7. Type IX collagen in the developing mouse cornea at x10 and x20 magnifications.  

Type IX collagen first appeared associated with the corneal epithelium (E) at E14 and continued to be expressed within the corneal 
epithelium up to E18 (blue arrows). Type IX collagen was found at low levels within the corneal stroma between E17 and E18. Type 
IX collagen was not expressed within both negative controls (no primary control, shown, and immuno-globulin control, not shown). 
Blue (DAPI – cell nucleus), red (type IX collagen). Surface ectoderm (SE), lens (L), endothelium (Endo). Images are representative 
of n=6 for timepoints.  
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Figure 4.8. Type IX collagen in the developing mouse cornea x40 magnification.  

Type IX collagen first appeared in the corneal epithelium (E) at E14 and continued to be expressed up to E18 (blue arrows). 
High magnification images revealed little labelling within the corneal stroma from E17-E18 (yellow arrows). Blue (DAPI – cell 
nucleus), red (type IX collagen). To orientate the eye, the corneal epithelium (E) is facing at the top or to the right of the image, 
apart from E15 where the epithelium is facing towards the bottom-right of the image. The negative controls of no primary control 
(not shown) and immunoglobulin control (shown) contained no positive stain. Surface ectoderm (SE), lens (L), endothelium 
(Endo). Images are representative of n=6 for timepoints.  
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4.3.1.5. Type 1 pro-peptide 

Type I pro-collagen was imaged as punctate dots throughout the corneal 

stroma, increased in the anterior stroma (Figure 4.9). It was seen between the 

presumptive corneal stromal cells from E12, which associated posteriorly to 

the corneal epithelium within the anterior corneal stroma from E14. Labelling 

increased within the anterior corneal stroma and then appeared throughout 

the corneal stroma from E16-E18. Between these ages, labelling was stronger 

in the anterior corneal stroma than in the posterior corneal stroma.  
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Figure 4.9. Type I collagen pro-peptide in the prenatal mouse cornea 
x40 magnification.  

Type I collagen pro-peptide was present in the corneas of all ages analysed. 
The protein was initially found between the presumptive corneal stroma cells 
from E12 (blue arrow). Labelling was then identified within the corneal 
epithelium and anterior corneal stroma from E14. Labelling continued across 
the whole thickness of the corneal stroma between E16 and E18, but was 
stronger within the anterior corneal stroma than the posterior corneal stroma. 
Blue (DAPI – cell nucleus), red (type I collagen pro-peptide). No positive type 
I collagen was seen in no primary control, with a small label in the 
immunoglobulin control. To orientate the eye, surface ectoderm (SE) and 
corneal epithelium (E) is always facing anteriorly or to the right of the image. 
Endothelium (Endo). Images are representative of n=6 for timepoints.  
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4.3.2. Proteoglycan Staining  

Prior to TEM, low magnification images of semi-thin sections of the tissues 

demonstrate the prenatal mouse corneal morphology for the different 

developmental stages (Figure 4.10).  

 

 

 

 

 

 

 

 

 

 

The glycosaminoglycan (GAG) chains of proteoglycan (PG) proteins 

associated with the surface ectoderm and cell membranes from the earliest 

age analysed, prior to collagen fibril deposition (Figure 4.11). By E13, the 

GAGs accumulated posteriorly to the corneal epithelium with a regular 

arrangement along the basement membrane, which accumulated with 

increased age throughout development (Figure 4.12). At E13 many GAGs 

surrounded the mesenchymal cells in the central and peripheral corneal 

stroma. GAGs displayed as longitudinal filaments and punctate dots, arranged 

in different directions. This organisation could suggest some relationship with 

the orthogonally arranged collagen fibrils within the stroma (Figure 4.13 and 

Figure 4.10. Semithin Sections of the Developing Mouse Cornea x20.  

Semi-thin sections of the mouse cornea stained with Toluidine Blue dye. 
The sections represent the block-face surface before being cut smaller for 
transmission electron microscopy sectioning. Surface ectoderm (SE), 
corneal epithelium (E), endothelium (Endo), and lens (L). 
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Figure 4.14). As development continued, there was a further increase in PGs 

within the stroma. The GAG filaments were also connected with adjacent 

collagen fibrils and between collagen fibrils and the corneal stromal cells. This 

arrangement identified an intermediate between the corneal stromal cells and 

collagen fibrils (Figure 4.14). 
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Figure 4.11. Transmission electron microscope images of the 
proteoglycans (PGs) in the E11 (Fig. 4.11A) and E12 (Fig. 4.11B) mouse 
cornea.  

Fig. 4.11A: GAG’s on PGs (blue arrows) associated with the surface 
ectoderm (SE) at E11. The GAGs were imaged in a dense area below the 
surface ectoderm (yellow arrows). Fig. 4.11B: At E12 PGs (blue arrows) 
accumulated around the mesenchymal cell (black asterisk) membranes of the 
presumptive corneal stromal cells. PGs were also observed in the corneal 
stromal extracellular matrix (green arrows).  
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Figure 4.12. Transmission electron microscopy images of the 
proteoglycans (PGs) in the E13 (Fig. 4.12A) and E14 (Fig. 4.12B) mouse 
cornea (sub-epithelial).  

Fig. 4.12A: GAGs (blue arrows) were found continuously along the basal 
lamina, posterior to the corneal epithelium (E) from E13. Fig. 4.12B: At E14 
GAGs accumulated in association with the basement membrane. Fig. 4.12A 
and Fig. 4.12B: GAGs (green arrows) were present within the extracellular 
matrix space of the developing corneal stroma.  
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Figure 4.13. Transmission electron microscopy images of the 
proteoglycans (PGs) in the E13 central (Fig. 4.13A) mouse corneal 
stroma.  

Fig. 4.13A: GAGs (blue arrows) associated around the corneal stromal cell 
membranes in the central and peripheral cornea. The GAGs ran in a 
longitudinal direction around the cells as well as being present as punctate dots. 
This identified the GAGs to run in different directions. Fig. 4.13A: GAGs (green 
arrows) were also found in the extracellular matrix of the central corneal stroma.  
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Figure 4.14. Transmission electron microscopy images of the 
proteoglycans (PGs) in the E16 mouse corneal stroma.  

Fig. 4.14A and Fig. 4.14B: GAGs bridged between longitudinal collagen 
fibrils (blue arrows). Fig. 4.14B: GAGs appeared to be linked to the corneal 
stromal cells and the longitudinal collagen fibrils (red arrows). Some GAGs 
appeared as punctate dots representing a different orientation to the 
longitudinal filaments (yellow arrows).   
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4.4. Discussion 

Types I, II and V collagen was visualised as a localised line associated with 

the surface ectoderm from E10-E12. A similar staining pattern was found in 

the avian cornea where types I and II collagen were initially laid down by the 

corneal epithelium (Hayashi M. et al. 1988). However, no evidence in the 

mouse cornea showed the synthesis of a primary stroma from the corneal 

epithelium. The results represented in Chapter 3 of this thesis showed the 

corneal stromal cells to be responsible for the initial synthesis and deposition 

of collagen fibrils, with no organised acellular primary stroma. This 

identification of collagen between the cells of the surface ectoderm shows 

potential evidence of the surface ectoderm synthesising small quantities of 

collagen in the early stages of development. Future studies should be 

conducted to understand the distribution of types I, II and V collagen within the 

surface ectoderm at this early stage. Using a monoclonal antibody with 

immunogold electron microscopy techniques to localise the specific collagen 

types at a high magnification would be more suitable to increase the accuracy 

to locate the collagen fibril types and determine if types I, II and V collagen are 

secreted by the surface ectoderm between E10-E12 of mouse development.  

 

Type I collagen appeared directly posterior to the corneal epithelium between 

E15-E16, before being present throughout the corneal stroma with increased 

age. The assembly of type I collagen is crucial to provide the cornea with 

structural support and transparency. Type I collagen knockout studies in the 

mouse have shown that collagen fibrils from E16 are thinner in comparison to 

the wild type cornea, and that the structure of the corneal stroma is disrupted 

(Bard et al. 1988). These results suggest that, from an early stage in mouse 

corneal development, the structure of the corneal stroma is already being 

established and relies on the assembly of type I collagen.  

 

Type V collagen showed a similar pattern of labelling to type I collagen, with a 

localised band along the surface ectoderm between E10 and E13. Type V 
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collagen associated with migrating cells in early development. From E14 to 

E16, type V collagen was enhanced posterior to the corneal epithelium and 

was then expressed anterior to the endothelium from E17. The similarities in 

the localisation of type I and V collagen suggests that they may have formed 

heterotypic fibrils, as seen in the chick species (Birk et al. 1986). However, 

dual labelling studies were not undertaken to confirm this. A similar staining 

profile of type V collagen is also found in the human foetal cornea, which 

associates with the corneal stroma and basement membranes (Herwig et al. 

2013). Knockout mouse studies have also demonstrated type V collagen to be 

important in early collagen fibrillogenesis (Sun et al. 2011).  

 

Type II collagen increased within the corneal stroma between E14-E18, from 

being localised to the surface ectoderm between E11-12. Type II collagen was 

first apparent in the stroma at E13, which localised to the anterior corneal 

stroma at E14 before appearing throughout the corneal stroma between E15-

E18. Type II collagen correlated with the early development of the avian 

cornea, as well as within cartilaginous growth plates (Chen Q. et al. 1993). 

Type II collagen is thought to direct corneal growth within the avian cornea and 

a similar developmental regulation could explain the early labelling of type II 

collagen in the mouse cornea (Linsenmayer et al. 1990). The presence of type 

II collagen in early ages implies an important role in the initial development of 

tissues and extracellular matrix.  

 

Type IX collagen did not show a similar distribution in the mouse compared to 

the avian cornea (Fitch J. et al. 1998). Type IX collagen was not present in the 

initial stages of development between E10-E13, with its presence first 

associated with the corneal epithelium at E14 and continued to express 

localised to the epithelium at E18. Even though the staining profiles appeared 

different between type IX and II collagen, as type II collagen appeared earlier 

than type IX collagen, the enhanced label associated with the corneal 

epithelium at E14 could indicate an interaction of type IX collagen with the 

fibrils of type II collagen, where collagen II was seen to also increase in the 
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corneal stroma at E14. Type IX collagen labelling is usually found in tissues 

rich in type II collagen, with both fibril types associating together. Type IX 

collagen is thought to stabilise the fibrils through interactions of the triple 

helical domain (Muller-Glauser et al. 1986). Type IX collagen has also been 

previously identified within the corneal epithelium of the human foetal cornea 

(Herwig et al. 2013), similar to the mouse development results shown in this 

study. These results indicate that type IX collagen plays a role within the 

corneal epithelium in mammalian development and is different from the avian 

cornea. Type IX collagen is expressed within the corneal epithelium in early 

avian development when the primary stroma is being synthesised, but levels 

drop by E11 (Svoboda et al. 1988). Within the avian cornea, type IX collagen 

coincides with corneal swelling and the secondary influx of mesenchymal cells 

(Fitch J. et al. 1998, Fitch J. M. et al. 2005). As the subsequent swelling and 

second mesenchymal cell migration does not occur in the mouse cornea, type 

IX collagen may not be required within the mouse corneal stroma. Its role in 

the mouse most likely stabilises collagen fibrils and associates with the type II 

collagen fibrils. Results in the previous chapter demonstrated hyaluronic acid 

to be present at E11, which increased in labelling at E14 and was not found 

present after this age. Hyaluronic acid is associated with corneal swelling and 

could assist mesenchymal cell migration, this protein could provide this role to 

the mouse cornea as type IX collagen is not expressed between E11-E14.  

 

Type I procollagen labelling recognised the N-terminus of type I procollagen 

fibrils, and was found mainly within the anterior corneal stroma (Gealy et al. 

2009). This coincides with the location where the majority of extracellular 

matrix space and the initial deposition of fibres was identified by electron 

microscopy in Chapter 3. In addition, collagen fibril deposition was increased 

within the anterior corneal stroma, especially in the initial stages. These results 

indicate that collagen is initially laid down within the anterior corneal stroma as 

smaller fibrils that increase in diameter with development, and then distribute 

throughout the corneal stroma. Type I procollagen is intracellular prior to 

collagen N-terminal pro-peptide cleavage, before extracellular matrix 

deposition, however, studies have shown this antibody to persist as an 
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extracellular matrix component after extracellular matrix deposition (Gealy et 

al. 2009).  

 

TEM imaging of cuprolinic blue stained samples displayed PGs between the 

collagen fibrils and the stromal cells as well as among the collagen fibrils. PGs 

were initially found below the corneal epithelium before collagen deposition 

commenced. Within lung tissue, PGs accumulate below the epithelium and 

were suggested to regulate epithelial cell function (Frevert 2005). The PGs 

posterior to the mouse corneal epithelium suggests their potential role in 

regulating the function and development of the epithelial cells. Previous 

studies have suggested PGs regulate mesenchymal cell migration and their 

differentiation into keratocytes (Doane et al. 1996). These studies, combined 

with the results of PGs present from an early age, indicate that PGs provide 

an important role in the initial development of the mouse cornea and impact 

the development of an organised corneal collagen matrix. Specific labelling of 

PGs was not undertaken. However, PGs in the adult mouse are predominantly 

under-sulphated, which contain larger chondroitin sulphate and dermatan 

sulphate rich structures that are unique to rodent corneas. So it is likely the 

PGs imaged in the prenatal cornea are precursors of PGs found in mature 

mouse corneas.  

 

Previous studies have demonstrated the importance of PGs in the regulation 

of a transparent cornea. Lumican knockout mice have increased interfibrillar 

spacing and thinner fibrils within mouse cornea development, which 

demonstrates that PGs have a role of controlling physiological collagen fibril 

development (Beecher et al. 2006). Lumican has also been shown to affiliate 

with newly formed fibril intermediates near the keratocyte surface to prevent 

lateral fibril growth within the mouse (Chakravarti et al. 2000). The subsequent 

swelling prior to eye-lid opening followed by thinning of the stroma is absent in 

the lumican deficient mouse model, which further suggested that lumican 

sulphation is crucial in mouse corneal development (Song et al. 2003). The 

results in this study show PG filaments before collagen fibril deposition, with 
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PGs organised orthogonally that connected corneal stromal cells to collagen 

fibrils. These results coincide with the previous structural distribution of 

collagen fibrils and cell alignment in the prenatal mouse cornea. PGs could 

have a regulatory role between the stromal cells and collagen fibrils, which 

suggests that PGs could play a role in the alignment of the collagen fibrils 

directed by corneal stromal cells.  

 

4.5. Summary 

This chapter has demonstrated the distribution of types I, II, V and IX collagen 

through the stages of prenatal mouse corneal development from E10-E18 

post-fertilisation. Types I, II and V collagen were the main collagens within the 

presumptive corneal stroma, with type IX collagen localised to the corneal 

epithelium at a later stage of prenatal development. The staining of collagen 

in this chapter was similar to previous studies that analysed collagen in human 

foetal corneas. In addition, PGs were present before collagen was laid down 

and were deposited around cells as well as associating with newly formed 

collagen fibrils. This suggests that PGs may play an important role in the 

regulation of developmental events.  
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Chapter 5: A Structural Study to Compare 
the Elastic Fibre System between the 

Adult Mouse and Human Cornea 

5.1. Introduction  

As previously described, elastic fibres were first detected in the cornea in the 

late 1800s (Kolliker 1860). Since then, advancements in equipment and 

technology have enhanced our understanding of elastic fibres in different 

tissues. These techniques were also applied to investigate elastic tissue in the 

cornea, across a number of different species. This included the localisation of 

fibrillin-rich microfibrils in the chicken, rabbit and mouse cornea (Alexander 

and Garner 1983, Bruns et al. 1987, Carlson and Waring 1988, Hanlon et al. 

2015). Since elastic tissue was identified in the mammalian cornea, recent 

studies have examined the localisation of elastic tissue in the human cornea 

(Kamma-Lorger et al. 2010, Lewis et al. 2016). These investigations found 

fibrillin-rich microfibrils and an extensive elastic fibre system concentrated 

within the human posterior peripheral cornea. Initially, mature elastic fibres 

were identified in the posterior human cornea using two-photon excitation 

fluorescence (TPEF) microscopy (Kamma-Lorger et al. 2010). A second study 

then incorporated tannic acid-and orcein- based processing methods with 

electron microscopy imaging to investigate the distribution of elastic fibres in 

three dimensions. Lewis et al., identified elastic fibres in the posterior 200 µm 

of the human cornea that were highly concentrated within the posterior 8 µm, 

immediately above Descemet’s membrane (Lewis et al. 2016). However, even 

though these studies showed where elastic fibres were located, there are 

different types of elastic fibres, and the localisation of the different types of 

elastic fibres within the cornea remains to be investigated.  

 

Elastic fibres have a range of functions in tissues and provide important roles 

to elastic and non-elastic tissues (Baldwin et al. 2013). Elastic fibres differ in 
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their ratio of elastin and fibrillin microfibril components, conveying tissues with 

different properties. The fibrillin component of the fibres provide structural 

support and interact with growth factors and signalling molecules to regulate 

tissue homeostasis (Sengle and Sakai 2015). Fibrillin also supports true elastic 

fibre formation; to act as a template for tropoelastin deposition, which forms 

fibres with an amorphous core surrounded by fibrillin-microfibrils (Baldwin et 

al. 2013). These true elastic fibres then provide elastic properties to tissues, 

with the capability to return tissues to their original shape after deformation 

with minimal energy loss (Debelle and Tamburro 1999, Green et al. 2014, 

Kielty et al. 2002b). 

 

This chapter aims to compare and localise the distribution of fibrillin-rich 

microfibrils and true elastic fibres in the adult mouse and human cornea. This 

will then provide a foundation of knowledge to further study the foetal elastic 

fibre system in chapter 6 of this thesis. 3-D reconstructions of the elastic fibre 

system were made with serial block-face scanning electron microscopy. 

Elastic fibres were further analysed at high rmagnification with conventional 

transmission electron microscopy. Immunofluorescence was used to localise 

elastin and fibrillin-1.  

 

5.2. Methods  

5.2.1. Tissue Collection 

10 adult mice aged 9 weeks old (Charles Rivers, C57BL/6) were collected as 

described in section 2.1 of this thesis. 12 of the mouse eyes were carefully 

removed with forceps. The corneas were further dissected into quadrants and 

immersed in Karnovsky’s fixative for 3 hours at 4°C. The remaining 8 eyes 

were snap frozen, cryo-sectioned (Leica CM3050 S cryostat) transversely (10 

µm) and collected on Superfrost Plus Slides (Thermo Scientific, UK).  
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Eight human corneas which contained the scleral ring were obtained from the 

NHS Blood and Transplant (NHSBT), UK (see Table 5 for human cornea 

information). All corneal tissue was dissected into quadrants, snap frozen, 

cryo-sectioned (Leica CM3050 S cryostat) transversely (10 µm) and collected 

on Superfrost Plus Slides (Thermo Scientific, UK). Cornea 1 was dissected 

into quadrants and immersed in Karnovsky’s fixative for 3 hours at 4°C. 

 Table 5. Information on adult human donor corneas. 

  

5.2.2. Electron Microscopy  

The elastic fibre processing technique was undertaken as described 

previously in chapter 2 (section 2.2.1, specifically 2.2.1.1.1).  

5.2.3. Immunofluorescence  

The immunofluorescence experiment was undertaken as described in section 

2.5 of the general methods chapter.  

5.2.3.1. Single protein labelling 

Cryo-sections were circumscribed with a water-repellent delimiting pen 

(ImmEdge Hydrophobic Barrier PAP pen, Vector labs) before being 

Cornea Number Age (years) Gender  Left/Right 

1 50  Male N/K 

2 66  Male Left 

3 66  Male Right 

4 31  Male N/K 

5 69  Male N/K 

6 69  Male N/K 

7 77  Female N/K 

8 75  Male N/K 
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rehydrated with phosphate buffered saline-Tween-20 (PBST) made up of 

0.1% Tween-20 and 0.005M phosphate buffer saline solution. 5% horse serum 

in PBST was applied to cryo-sections for 20 min to prevent non-specific 

antibody binding (Levy E. M. 1980). Primary antibodies were added to the 

cryo-sections and incubated for 24 hours at 4°C (see Table 6 for antibody list). 

PBST was used to wash off the primary antibodies 3 times over 10 mins before 

adding secondary antibodies. Dylight 594 Horse Anti-Mouse IgG antibody 

(Vector Labs) was applied to the monoclonal mouse primary antibodies and 

Dylight 594 Horse Anti-Rabbit for the polyclonal rabbit primary antibodies. 

Cryo-sections were incubated for 5 hours at room temperature before 

secondary antibodies were washed off with PBST. Coverslips (VWR 

International) was added to the cryo-sections using VECTASHIELD HardSet 

Antifade Mounting Medium with 4’,6-diamidino-2-2-phenylindole (DAPI) 

(Vector Laboratories), emitting a blue fluorescence when bound to 

deoxyribonucleic acid (DNA) for cell nuclei detection. Cryo-sections were 

imaged using the Olympus BX61 epifluorescence microscope, equipped with 

an F-view Digital camera at x10, x20 and x40 magnifications.  

 

5.2.3.2. Dual protein labelling 

The dual labelling methodology mirrored the method undertaken for single 

labelling described in section 5.2, except two primary antibodies with different 

host species were applied to the cryo-section. Both Dylight 594 Horse 

Anti-Mouse and Dylight 488 Horse Anti-Rabbit were applied as secondary 

antibodies. The secondary antibodies contained different fluorescent tags, 

fluorescing red for Dylight 594 and green for Dylight 488. 
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Table 6. Antibodies used during the immunohistochemistry staining 

Antibody  Monoclonal 

(M)/ 

Polyclonal 

(P) 

Target Concentration Source Reference  

Anti-Elastin 

(ab11370)  

Rabbit P Elastin 1:100 Abcam (Raghavan 

et al. 2009) 

Anti-Fibrillin-

1  

(ab124334) 

Mouse M  Fibrillin-1 1:100 Abcam (Pan et al. 

2015) 

Anti-

Tropoelastin  

(ab21600) 

Rabbit P Tropoelasti

n 

1:50 Abcam (Mondrinos 

et al. 2007) 

Anti-type VI 

Collagen  

(ab6588) 

Rabbit P Type VI 

Collagen 

1:100 Abcam (Guillen-

Ahlers et al. 

2008) 

 

5.3. Results  

5.3.1. Electron Microscopy  

5.3.1.1. Mouse Cornea  

The tannic acid-uranyl acetate method revealed an extensive elastic fibre 

system within the mouse peripheral corneal stroma and trabecular meshwork 

(Figure 5.1). 3-D reconstructions showed a concentrated elastic fibre sheet 

anterior to Descemet’s membrane, with individual elastic fibres throughout the 

corneal stroma in longitudinal and transverse directions between collagen 

lamellae (Figure 5.1B and Figure 5.1C). The elastic fibres anterior to 

Descemet’s membrane were integrated with those within the trabecular 

meshwork, which indicated a continuous fibre system across the transition 



 
 
 

155 
 

from the trabecular meshwork to the cornea (Figure 5.2A and Figure 5.2B). 

Descemet’s membrane terminated anterior to the trabecular meshwork, with 

the trabecular meshwork elastic fibre system merging into Descemet’s 

membrane (Figure 5.2A and Figure 5.2B). High-magnification analysis of the 

elastic fibre system found microfibrils bundles together to form larger fibres, 

with no amorphous core in the centre of the elastic fibres, a morphology 

characteristic of fibrillin-rich microfibrils (Figure 5.3A and Figure 5.3B).  

 

5.3.1.2. Human Cornea  

The human corneal elastic fibre system was concentrated in the posterior 

peripheral region of the cornea in the 3-D reconstructions (Figure 5.2C and 
Figure 5.2D). The elastic fibres from the trabecular meshwork had an insertion 

anterior to Descemet’s membrane, which connected with the elastic fibre 

system in the posterior peripheral cornea (Figure 5.2C and Figure 5.2CD). 

High-magnification analysis of the elastic fibres showed an elastin-amorphous 

core in the centre of the fibres, identified with a reduced contrast compared to 

the surrounding fibrillin-rich microfibrils; this is characteristic of true elastic fibre 

morphology (Figure 5.3C and Figure 5.3D). 

 

The videos for all 3-D videos can be accessed at an online publication (Feneck 

et al. 2018).  
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Figure 5.1. Elastic fibre serial block-face scanning electron microscopy 
(SBF-SEM) reconstructions within the adult mouse posterior peripheral 
cornea.  
Fig. 5.1A: SBF-SEM image of the mouse trabecular meshwork (TM) and 
posterior peripheral cornea stroma (PS). Higher magnification SBF-SEM 
datasets within the area of Descemet’s membrane (DM) termination (black 
square) were collected. Fig. 5.1B: An elastic fibre system (gold) was detected 
throughout the posterior peripheral corneal stroma, with a highly stained sheet 
(red arrow) of elastic fibres anterior to Descemet’s membrane (blue) and 
individual fibres appearing throughout the corneal stroma (yellow arrows). The 
white arrow indicates the direction towards the central cornea Fig. 5.1C: The 
3-D dataset was rotated 90° to Fig. 5.1B. Elastic fibres (gold) occasionally 
bifurcated and continued within the same plane (yellow arrows). The white 
arrow indicates the direction towards the central cornea. 
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Figure 5.2. A comparison of the elastic fibre network at Descemet’s 
membrane (DM) termination within the adult mouse (Fig 5.2A and Fig. 
5.2B) and adult human cornea (Fig. 5.2C and Fig. 5.2D) with serial 
block-face scanning electron microscopy (SBF-SEM) imaging. 
 
Fig. 5.2A: The termination of DM within the mouse cornea appeared to run 
anterior to the trabecular meshwork (TM) (blue circle). Elastic fibres are 
present within the TM and within the stroma (S) (yellow arrows). Fig. 5.2B: 
SBF-SEM 3-D reconstruction of the mouse cornea shows the elastic fibre 
system (gold) anterior to the trabecular meshwork and DM (blue), with no clear 
insertion point of the trabecular meshwork into the posterior peripheral cornea. 
Fig. 5.2C: The TM within the human cornea showed a clear insertion of the 
trabecular meshwork, which ran anterior to DM. Fig. 5.2D: The 3-D 
reconstruction of the human elastic fibre system shows the TM to run anterior 
to DM, which further connected with the elastic fibre system within the 
posterior peripheral aspect of the cornea. 
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Figure 5.3. Transmission electron microscopy images of tannic acid 
stained elastic fibres (yellow arrow) within the adult mouse cornea 
(Fig. 5.3A and Fig. 5.3B) and adult human cornea (Fig. 5.3C and Fig. 
5.3D).  
 
Fig. 5.3A: Fibres within the posterior peripheral cornea in oblique and 
longitudinal section show the different directions the fibres which run within 
the plane of the cornea. Fig. 5.3B: High magnification cross-section of a 
mouse elastic fibre had no clear amorphous core with only bundles of 
microfibrils (yellow arrow) displayed. Fig. 5.3C: Fibres within the human 
posterior peripheral cornea in oblique and longitudinal section (yellow 
arrow). Within the centre of the elastic fibres an elastin-amorphous core is 
seen (red arrows) with a reduced contrast to the surrounding fibrillin-rich 
microfibrils Fig. 5.3D: High magnification image of a human elastic fibre 
cross-section within the peripheral cornea shows an amorphous core (red 
arrow) surrounded by microfibrils (yellow arrow).  
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5.3.2. Immunofluorescence  

To localise proteins associated with true elastic fibres and fibrillin-rich 

microfibrils, antibodies to label type VI collagen, elastin, tropoelastin and 

fibrillin-1 were employed. All controls for the immunofluorescent results 

showed no background label, which indicated that all positively stained images 

localised the primary antibody applied (Figure 5.4 and 5.5). 

 

5.3.2.1. Mouse Cornea 

Type VI collagen displayed throughout the corneal stroma, but was enhanced 

within the posterior peripheral corneal stroma and anterior sclera (Figure. 
5.4A and Figure 5.4B). Fibrillin-1 was also present throughout the mouse 

corneal stroma, but enhanced within the anterior stroma and along 

Descemet’s membrane (Figure 5.4E and Figure 5.4F). Elastin did not 

positively express within the mouse cornea, however, tropoelastin was found 

within the posterior peripheral and anterior central corneal stroma (Figures 
5.4 I-J & Figures 5.4M-N). 

 

5.3.2.2. Human Cornea 

Type VI collagen was found throughout the corneal stroma, enhanced within 

the trabecular meshwork, Descemet’s membrane, posterior to the epithelium 

and the posterior peripheral cornea (Figures 5.5A-C). Fibrillin-1 was seen 

within the trabecular meshwork and peripheral cornea (Figure 5.5F and 
Figure 5.5G). It was present anterior to Descemet’s membrane, but decreased 

towards the central cornea, with only small staining within the posterior stroma 

of the central cornea (Figure 5.5H). Elastin labelling was high within the 

trabecular meshwork and peripheral posterior cornea of all corneas analysed 

(Figure 5.5K-L). Elastin continued from the trabecular meshwork, anterior to 

Descemet’s membrane, but gradually decreased until no elastin was detected 

within the central corneal stroma (Figures 5.5K-M). Tropoelastin did not label 

within the human corneal tissue analysed, which indicated that all tropoelastin 
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had been cross-linked to become elastin (results not shown). Dual labels of 

fibrillin-1 and elastin showed a co-localisation of the proteins in the trabecular 

meshwork and peripheral posterior cornea (Figures 5.5P-R). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Peripheral cornea Central cornea No Primary control IgG/IgM control 

Type VI 
collagen 

Fibrillin-1 

Tropoelastin 

Elastin 

Endo Endo 

Endo 

C 

C 

Figure 5.4. Adult mouse cornea immunofluorescence.  

DAPI in blue represents cell nuclei; Epi: epithelium; s: stroma; DM: Descemet’s 
membrane; Endo: Endothelium. White broken arrows indicate the direction 
towards the central cornea. Fig. 5.4A and Fig. 5.4B: Type VI collagen 
expressed throughout the corneal stroma, and was enhanced within the 
anterior sclera (blue arrow) and posterior peripheral cornea (yellow arrow). Fig. 
5.4C and 5.4D: No positive type VI collagen was present in the no primary 
control and the IgG controls. Fig. 5.4E and Fig. 5.4F: Fibrillin-1 was seen 
throughout the corneal stroma, enhanced within the anterior stroma and 
Descemet’s membrane (yellow arrows). Fig 5.4G and Fig. 5.4H: No positive 
staining of fibrillin-1 was seen in the no primary control and the IgM control. 
Fig. 5.4I: Tropoelastin was in the posterior peripheral corneal stroma (yellow 
arrows). Fig. 5.4J: Tropoelastin was labelled within the anterior central corneal 
stroma (yellow arrow), however, staining in both the posterior cornea 
terminated before reaching the central cornea (c) (yellow arrow). Fig 5.4K and 
Fig. 5.4L: No positively labelled tropoelastin was seen in the no primary control 
and with an IgG control. Fig. 5.4M and 5.4N: Elastin was not detected 
throughout the mouse corneal stroma. Fig. 5.4O and Fig. 5.4P: No positive 
labelling was seen in elastin no primary control and with an IgG control. 
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Figure 5.5. Adult human cornea immunofluorescence 

S: stroma; TM: trabecular meshwork; SC: Schlemm’s canal; DM: Descemet’s 
membrane. Results shown from cornea 2 (Fig. 5.5A & Fig. 5.5F), cornea 4 
(K), cornea 6 (Figs. 5.5B-E), cornea 7 (Figs. 5.5G-J, Figs. 5.5 L-T). Figs. 
5.5A-C: Type VI collagen expressed within the trabecular meshwork and 
corneal stroma of all corneal tissue analysed. Fig. 5.5 D and Fig. 5.5E: There 
was no type VI collagen within the no primary and the IgG controls. Figs. 5.5 
F-H: Fibrillin-1 appeared to be increased within the TM and posterior 
peripheral cornea. Fibrillin-1 decreased towards the central cornea. Fibrillin-
1 showed similar results across all corneal tissue, however, in addition, it 
presented in the anterior corneal stroma directly inferior to Bowman’s 
membrane in two corneas taken from the same donor (cornea 3 and 4), this 
was not seen in any other corneal tissue analysed. Fig. 5.5 I and Fig. 5.5J: 
No fibrillin-1 was detected in the no primary control and IgG controls.  Figs. 
5.5 K-M: Elastin within all three corneal tissues was present within the 
trabecular meshwork and posterior peripheral cornea, where labelling was 
enhanced anterior to Descemet’s membrane (DM). Elastin was absent within 
the central or anterior corneal stroma. Fig. 5.5N and Fig. 5.5O: No positive 
labels of elastin were seen in the no primary control and with the IgG control. 
Figs. 5.5. P-R: Dual labels shows elastin (green) and fibrillin-1 (red) co-
localised (orange) within the TM and peripheral cornea. Fibrillin-1 was found 
with no elastin in the central cornea. Fig. 5.5 S and Fig. 5.5T: No primary 
control and the IgG controls contained no staining for the dual label results.  
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5.4. Discussion  

This chapter compared the elastic fibre system as well as the trabecular 

meshwork insertion points between the adult mouse and human cornea, whilst 

classifying the type of elastic fibres within the corneal stroma. This was 

investigated to further understand the adult human and mouse elastic fibre 

system before analysis of the developing elastic fibre system was undertaken. 

The tannic acid-uranyl acetate method stained the amorphous elastin core and 

the fibrillin-rich microfibrillar components of elastic fibres (Lewis et al. 2016, 

Simmons and Avery 1980). Mouse cornea SBF-SEM reconstructions of the 

elastic fibre system revealed a concentrated network of elastic tissue anterior 

to Descemet’s membrane, with individual elastic fibres across the corneal 

stroma. Elastic fibres within the mouse cornea were present throughout the 

stroma, whereas within the human cornea, elastic fibres were abundant only 

in the posterior stroma and concentrated within the region immediately above 

Descemet’s membrane (Lewis et al. 2016). TEM results suggested the mouse 

elastic fibre system mainly composed of oxytalan fibres, with no visualisation 

of the elastin amorphous core. These results have been previously described 

in the literature, with the identification of microfibrils in the mouse corneal 

stroma (Hanlon et al. 2015). Interestingly, the presence of microfibrils 

dispersed throughout the corneal stroma has also been described in the rabbit 

cornea, which demonstrates a similarity between the rabbit and mouse elastic 

fibre models (Carlson and Waring 1988). Another difference between the 

peripheral mouse and human was the presence of an elastin-rich amorphous 

core that was absent in the mouse elastic fibres, indicating that, in human 

cornea, they are true elastic fibres. The amorphous core was also identified in 

previous electron microscopy studies on human corneal elastic fibres (Lewis 

et al. 2016). 

 

To further classify the type of elastic fibres seen, localised 

immunofluorescence was used and identified true elastic fibres within the 

posterior peripheral human cornea. Elastin and fibrillin-1 was expressed within 

the posterior peripheral corneal stroma and directly anterior to Descemet’s 
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membrane, which extended from the sclera and trabecular meshwork. Elastin 

was not found within the central cornea, whilst fibrillin-1 was, which further 

identified the presence of elastin-free microfibrils (oxytalan fibres) in the central 

cornea. The results generated from this chapter have led to a suggested model 

of elastic fibre distribution within the human and mouse cornea, similar to the 

model suggested in a previous study (Figure 5.6) (White et al. 2017b).  

 

 

 

Figure 5.6. Theorised elastic fibre system within the adult mouse 
cornea (Fig. 5.6A) and adult human cornea (Fig. 5.6B).  

The results obtained from this chapter suggest that the mouse cornea 
consists solely of oxytalan fibres, whilst the human cornea contains true 
elastic fibres, elaunin and oxytalan fibres. Within the central and peripheral 
mouse cornea, fibrillin-1 expressed without elastin, which indicates oxytalan 
fibres. However, tropoelastin within the peripheral mouse cornea suggests 
a potential for elastin formation when required, possibly during repair. The 
human cornea had elastin-containing elastic fibres in the posterior 
peripheral cornea, which could provide elastic properties. A decreased 
presence of elastin with fibrillin-1 indicated elaunin fibres present towards 
the central cornea, this transition in the human cornea is probably gradual. 
When travelling more centrally only fibrillin-1 was seen, which indicates 
oxytalan fibres. Fibrillin-rich microfibrils likely stiffen the central cornea to 
preserve corneal shape when small intraocular pressure fluctuations occur.  
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The confirmation of elastin in the human cornea with an increased quantity in 

the posterior peripheral cornea, directly anterior to Descemet’s membrane, 

was confirmed by a separate study which identified a clinical significance of 

corneal elastic fibres in scrolling within endothelial keratoplasty (Mohammed 

et al. 2018). The mouse cornea had fibrillin-1 throughout the corneal stroma 

with no presence of elastin. Despite this, tropoelastin within the posterior 

peripheral cornea indicated the possibility of elastic fibre assembly. Further 

analysis of older mouse tissue could determine if the tropoelastin becomes 

cross-linked to form true elastic fibres. However, mice may not live long 

enough for true elastic fibres to be necessary within the cornea. The negative 

labelling of tropoelastin within the human cornea illustrates that the 

tropoelastin has been cross-linked into true elastic fibres by the age of 31 

years within the human cornea, to determine when the maturation of 

tropoelastin is complete, younger corneal tissue would be required.  

 

Fibrillin-rich microfibrils exist throughout the corneal stroma of the mouse 

cornea and are enhanced within the anterior corneal stroma. In connective 

tissues, fibrillin microfibrils provide structural support and likely to play a similar 

role in the cornea, with calcium providing microfibril rigidity through its 

interactions with cEGF domains (Eriksen et al. 2001, Hansson 1970). In bovine 

and human corneas, deformations in response to the intraocular pulse occur 

only within the periphery, allowing the central cornea to retain its shape (Boyce 

et al. 2008, White et al. 2017b). The elastin component of true elastic fibres 

would permit slight deformations within the human peripheral cornea. Their 

presence within the peripheral cornea may also oppose small fluctuations to 

IOP. True elastic fibres are thought to have developed to reinforce the high 

pressured circulatory system in vertebrates; true elastic fibres could, therefore, 

carry out a similar role in containing IOP and thus corneal shape in the human 

eye (Faury 2001).  

 

Studies which test elastic modulus of the central and peripheral cornea have 

calculated the peripheral cornea to have a smaller elastic modulus, thus the 
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peripheral cornea has less resistance to deformation when stress is applied 

(Mikula et al. 2016). The true elastic fibres could reduce elastic modulus in the 

peripheral cornea compared with the central cornea. However, the posterior 

peripheral cornea had a greater elastic modulus than the anterior peripheral 

cornea, which further implies that other components in the periphery also 

influence elastic modulus; such as the organisation of the collagen lamellae 

(Mikula et al. 2016). In addition, Mikula et al., used tissue ages between 

85-101 years, and elastic fibres are known to lose their structure and function 

with increased age, leading to an increase in elastic modulus (Agache et al. 

1980, Sherratt 2009). Therefore, the analysis of younger corneas is required 

to fully understand the impact of elastic fibres on the elastic modulus of the 

cornea. 

 

Matrix elasticity regulates TGF-β signalling within the trabecular meshwork, 

which is increased in patients with primary open angle glaucoma (POAG) (Han 

et al. 2011). Furthermore, elastic fibre proteins are increased within the 

trabecular meshwork in patients with glaucoma (Umihira et al. 1994), 

suggesting the elastic fibre system could play a role in maintaining a 

physiological cornea and aqueous humor outflow or contribute to the 

pathogenesis of POAG. 3-D SBF-SEM reconstructions within the mouse 

cornea demonstrated a connection of the elastic fibre system between the 

trabecular meshwork and peripheral cornea, with no clear insertion point into 

the corneal stroma. This contrasts with human reconstructions, where the 

trabecular meshwork inserts between the posterior peripheral corneal stroma 

and Descemet’s membrane 250 µm after Descemet’s membrane termination 

(Lewis et al. 2016). The anatomical differences between the mouse and 

human could indicate an evolutionary advancement of the human cornea to 

regulate IOP outflow and corneal physiology. However, the continuation of the 

elastic fibre system in both models further demonstrated the elastic fibre 

system could have an important role between the cornea and the trabecular 

meshwork. The elastic fibre system attachment may anchor the trabecular 

meshwork into the cornea, holding it taut. If so, this system may be necessary 

to maintain normal IOP and corneal structure. The elastic fibre system could 



 
 
 

167 
 

provide a potential target for treatment strategies in the future for glaucoma, 

but more research is needed to determine the role of the corneal elastic fibres. 

 

5.5. Summary  

This chapter has shown anatomical variations of the elastic fibre system in the 

human and mouse adult cornea. True elastic fibres are distributed within the 

posterior peripheral human cornea and are thought to allow for slight 

deformations within the peripheral cornea. A fibrillin-rich microfibril system was 

also identified within the posterior central human cornea, which may add 

biomechanical strength to reinforce tissue stiffness. The mouse model 

possessed anatomical differences to the human cornea. Fibrillin microfibrils 

were dispersed throughout the entire thickness of the mouse corneal stroma. 

The mouse model also showed no clear insertion of the trabecular meshwork 

between the corneal stroma and Descemet’s membrane. This is the first study 

to identify true elastic fibres within the human posterior peripheral cornea with 

immunofluorescence techniques, which localised elastin and fibrillin-1. The 

differences identified between the elastic fibre system and the trabecular 

meshwork should be considered when the mouse model is incorporated for 

trabecular meshwork outflow, glaucoma and elastic fibre studies.  
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Chapter 6: A 3-D structural study of the 
developing human corneal stroma 

 

6.1. Introduction  

The availability of human embryonic tissue has restricted studies directed to 

understand the initial events and mechanisms that develop the human cornea. 

The human cornea begins its development with the surface ectoderm attached 

to the lens, which separates from the lens to become the corneal epithelium 

(Barishak 2001, Sevel and Isaacs 1988). The first wave of neural crest-derived 

mesenchymal cells become the corneal endothelium, followed by a second 

wave of cells which forms the keratocytes and corneal stroma (Zieske 2004). 

One crucial difference between the avian model and the current mammalian 

developmental models analysed is the presence of a primary stroma that 

drives mesenchymal cell migration into the avian cornea (Haustein 1983, Hay 

E. D. and Revel 1969). Chapter 3 confirmed previous research that the mouse 

cornea does not have a collagenous primary stroma (Cintron et al. 1983, 

Haustein 1983, Pei and Rhodin 1970). Because of the absence of a primary 

stroma, the mechanisms that control cells to migrate, lay down and organise 

the mature collagen fibril network remains to be determined. Even though the 

general consensus in the literature states that the human cornea does not 

have a primary stroma, one study was found that described the presence of 

an acellular matrix between the lens vesicle and the surface ectoderm in the 

human cornea prior to mesenchymal cell migration, which could act as a 

primary stroma in the human cornea (Wulle and Richter 1978). However, most 

studies state that a primary stroma is not observed in mammalian and primate 

corneal development (Cintron et al. 1983, Zieske 2004).  

 

An organised extracellular matrix is imperative to develop a cornea with 

transparency and biomechanical strength. Previous work has been directed to 

establish the distribution of collagens and proteoglycans within corneal 
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development across species. In addition to these extracellular matrix 

molecules, elastic fibres are also a component of the human adult cornea, 

concentrated in the posterior peripheral corneal stroma (Lewis et al. 2016). 

Further experiments, which include the results presented in Chapter 5 of this 

thesis, have shown elastin-containing elastic fibres distribute through the adult 

posterior peripheral cornea, associated with Descemet’s membrane 

(Mohammed et al. 2018). Most elastic fibre research in the cornea so far has 

focused on the adult system, with only one study that identified elastic fibres 

at week 13 of human corneal development (Lewis et al. 2016). Previous 

analyses of pathological adult corneas with disrupted shape have also 

identified a disruption to the elastic fibre system, which led to suggestions that 

elastic fibres help maintain corneal shape and structure (White et al. 2017a, 

White et al. 2017b). These results further suggest that elastic fibres may have 

an important role in corneal development, and further investigations should 

reveal their functional importance.  

 

This chapter aims to analyse human corneal stromal development using novel 

3-D structural imaging techniques to determine if a primary stroma is present 

within the initial stages of corneal development. Thus, to determine whether 

or not developmental events in the human cornea follow a similar pattern to 

other mammalian or avian developmental models described in earlier chapters 

of this thesis. The second aim of this chapter was to visualise elastic fibres 

through human corneal development from week 7 to week 17 with the 

well-established tannic-acid uranyl-acetate electron microscopy method.  
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6.2. Methods 

To note, stages up until week 8 were further referred to with the Carnegie 

stage system, to identify the specific embryonic ages being analysed (Hill 

2012). After week 8, the tissue is no longer embryonic and is referred to as 

foetal.  

 

6.2.1. Tissue collection  

All tissue was obtained from the Human Developmental Biology Resource 

(HDBR), Newcastle, UK and was used in accordance with the human tissue 

act 2004. Corneas were obtained from week 7 to week 17 of development, 

being further dissected into halves and prepared for electron microscopy 

processing by being placed in Karnovsky’s fixative for 3 hours. 2 unpaired 

samples for each specific age were analysed.  

 

6.2.2. Electron Microscopy 

To enhance the elastic fibre system, the tannic acid – uranyl acetate 

processing method was employed as described in section 2.2.1 of this thesis 

for serial block-face scanning electron microscopy (SBF-SEM) and 

transmission electron microscopy (TEM) imaging.  

 

6.3. Results  

6.3.1. Week 7  

At the start of week 7 (stage CS20), the corneal endothelium and epithelium 

were present (Figure 6.1). Collagen fibrils were deposited directly posterior to 

the corneal epithelium, which represented the immature Bowman’s layer. 

Collagen fibrils were also deposited within the central corneal stroma, central 

to the corneal epithelium and endothelium. Corneal stromal cells were absent 
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from this area in the presumptive central corneal stroma, with mesenchymal 

cells solely in the periphery (Figure 6.1). 3-D reconstructions of the cornea at 

CS20 showed tortuous cell projections arising from the corneal endothelium 

to branch anteriorly towards the corneal epithelium (Figure 6.2). The 3-D 

models further demonstrated collagen fibrils to be dispersed in the central 

cornea, where no mesenchymal cells had migrated between the corneal 

epithelium and the corneal endothelium (Figure 6.2 and supplementary 
video 6). TEM images of the cornea at CS20 demonstrated collagen fibrils 

posterior to the corneal epithelium and within the central corneal stroma, with 

no evidence of mesenchymal cells between the epithelium and endothelium, 

which further supports the SBF-SEM results (Figure 6.3 and supplementary 
video 6).  

 

With increased maturation during week 7 (stage CS22), collagen fibrils further 

condensed to the central cornea (Figure 6.4). Similar to the previous age 

analysed, mesenchymal cells were confined to the peripheral cornea (Figure 
6.4). 3-D reconstructions of the developing cornea at CS22 showed cell 

projections from the corneal endothelium branching anteriorly towards the 

condensed collagen matrix situated in the central cornea and with the 

mesenchymal cells (Figure 6.5 and supplementary video 6). The 

mesenchymal cells in the peripheral region of the 3-D reconstruction also 

associated with the condensed acellular collagenous matrix (Figure 6.5 and 
supplementary video 7). TEM images displayed a concentrated collagenous 

matrix between the corneal epithelium and endothelium (Figure 6.6). At a later 

stage of CS22, the mesenchymal cells in the periphery appeared as a single 

celled layer, with cells located more centrally, compared to younger ages 

where the cells were only seen in the periphery (Figure 6.7). A single cell 

analysed at an increased magnification with SFB-SEM in the peripheral cornea 

appeared to associate with the collagenous matrix (Figure 6.7). As seen in the 

other reconstructions, endothelial cell projections extended anteriorly towards 

the mesenchymal cells. The collagenous matrix further condensed in the 

central cornea compared to the peripheral cornea.  
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No heavily stained filaments characteristic of elastic fibres were found within 

the SBF-SEM and TEM datasets during week 7 of corneal development. 

Supplementary video 6 link: https://figshare.com/s/6adca9177fed6e846f4a 

Supplementary video 7 link: https://figshare.com/s/64317700de2c0935e384 

6.3.1.1. CS20  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1. Serial block-face scanning electron microscopy (SBF-SEM) 
images of the embryonic cornea at Carnegie stage 20.  

Fig. 6.1A: An SBF-SEM image of the cornea showed the developed corneal 
epithelium (Epi) and endothelium (Endo), with collagen fibrils dispersed 
between both layers. Corneal stromal cells were absent from the central 
cornea (CC), present only in the peripheral corneal regions (PC). A high 
magnification dataset from the region of interest (blue box) was collected in 
the central cornea. Fig. 6.1B: 3-D reconstructions identified cell extensions 
from the corneal endothelium to extend anteriorly towards the corneal 
epithelium (black arrows). No mesenchymal cells were present in the 3-D 
reconstruction of the central cornea. 
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Figure 6.2. Three-dimensional reconstructions of the central embryonic 
cornea at Carnegie stage 20.  

Fig. 6.2A and Fig. 6.2B: The epithelium (Epi) and endothelium (Endo) were 
developed, with no mesenchymal cells situated between both layers. Cell 
projections from the endothelium appeared to extend anteriorly towards the 
corneal epithelium (black arrows), which suggests a communication network 
between these cell types. For greater detail of these models, refer to 
supplementary video 6.  
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Figure 6.3. Transmission electron microscopy imaging of the embryonic 
cornea at Carnegie stage 20.  

Fig. 6.3A and Fig. 6.3B: A concentration of acellular collagenous matrix was 
identified between the corneal epithelium (Epi) and endothelium (Endo) in the 
central cornea (red arrows). A concentrated extracellular matrix also displayed 
below the epithelium (blue arrows). It is suggested that cell processes were 
apparent between the corneal epithelium and endothelium (green arrows). 
Scale bar in Fig. 6.3A measured 5µm. Scale bar in Fig, 6.3B measured 2µm.   
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6.3.1.2. CS22 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4. Serial block-face scanning electron microscopy (SBF-SEM) 
imaging of the embryonic cornea at Carnegie stage 22.  

Fig. 6.4A: Corneal stromal cells were imaged in the peripheral cornea (PC), 
with a condensed collagenous matrix between the epithelium (Epi) and 
endothelium (Endo) of the central cornea (CC). A region of interest (blue box) 
was further imaged at a high magnification in the peripheral cornea. Fig. 6.4B: 
3-D reconstructions what appears to be a primary stroma concentrated to the 
central region. Mesenchymal cells (black asterisks) were distributed in the 
peripheral region of the cornea and associated with the condensed 
collagenous matrix.  
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Figure 6.5. Three-dimensional reconstructions of the peripheral 
embryonic cornea at Carnegie stage 22.  

Fig. 6.5A and 6.5B: 3-D reconstructions of the peripheral cornea. A 
condensed acellular collagenous matrix presented in the central region of the 
cornea (red arrows), posterior to the corneal epithelium (Epi). Cell projections 
from the endothelium (Endo) directed anteriorly towards the collagen layer 
and mesenchymal cells, with a tortuous path (black arrows). Mesenchymal 
cells were only situated in the peripheral corneal regions (PC), with no 
mesenchymal cells in the central cornea (CC) (black asterisks). For additional 
material of the 3-D reconstructions refer to supplementary video 7. 
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Figure 6.6. Transmission electron microscopy imaging of the embryonic cornea at Carnegie stage 22.  

Fig. 6.6A and Fig. 6.6B: Mesenchymal cells (white asterisks) in the peripheral region of the cornea were surrounded by extracellular 
matrix. Fig. 6.6C and Fig. 6.6D: The central cornea contained no mesenchymal cells, with a collagenous matrix concentrated in the 
anterior central cornea (red arrows) and posterior to the corneal epithelium (Epi) (blue arrows). Figs. 6.6C-E: The collagenous matrix 
contained no mesenchymal cells. However, it is suggested that cell projections (green arrows) were observed.  
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Figure 6.7. Serial block-face scanning electron microscopy (SBF-SEM) 
imaging of the embryonic cornea at CS22.  

Fig. 6.7A: Mesenchymal cells were situated between the corneal epithelium 
(Epi) and endothelium (Endo) in the peripheral region of the cornea (PC) as 
a single cell layer. Fig. 6.7B and Fig. 6.7C: Analysis of an individual cell (blue 
box) identified its (black asterisk) association with the collagenous matrix. 3-D 
reconstructions demonstrated the endothelial cell projections to branch 
anteriorly towards the corneal cell (black arrows), which was apposed to a 
collagenous matrix anterior to the cell (red arrows). 
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6.3.2. Week 8 and 9 

The corneal stroma in week 8 dramatically increased in size compared with 

week 7, with cells dispersed throughout the corneal stroma (Figure 6.8). The 

stromal cells have presumably developed from the mesenchymal cells that 

migrate into the corneal stroma, previously imaged in younger corneas to be 

concentrated within the peripheral cornea. Small deposits of collagen fibrils 

surrounded corneal stromal cells (Figure 6.8). High-magnification images 

further demonstrated collagen fibrils to surround corneal stromal cells. These 

collagen fibrils ran longitudinally and transversely, to some extent, 

orthogonally arranged within the corneal stroma (Figure 6.8E). 

 

At week 9, collagen deposition was seen throughout the corneal stroma, 

organised to run longitudinally and transversely with respect to adjacent 

collagen fibrils between corneal stromal cells (Figure 6.9). Collagen fibrils had 

begun to form lamellae, but extracellular matrix space between the developing 

cells and collagen fibrils still remained. Cell projections from the endothelium 

were identified to branch into the corneal stroma, supplementing SBF-SEM 

and TEM endothelial cell projection data in younger tissues previously 

described (Figure 6.9).  

 

No heavily stained filaments characteristic of elastic fibres were identified 

within any of SBF-SEM and TEM datasets during week 8 and 9 of corneal 

development. 
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Figure 6.8. Serial block-face scanning electron microscopy (SBF-SEM) 
and transmission electron microscopy (TEM) images of the foetal 
cornea at week 8. 

Fig. 6.8A: SBF-SEM images revealed cells to have infiltrated into the 
presumptive stroma. The area of the posterior cornea, directly anterior to the 
corneal endothelium (Endo) was further analysed in 3-D (blue box) Fig. 6.8B: 
Cells presented throughout the corneal stroma, surrounded by small collagen 
fibril deposits (red arrows). The corneal stromal cells also branched to 
adjacent cells (black arrows). Fig. 6.8C and Fig. 6.8D: 3-D reconstructions 
identified stromal cells (black asterisks) surrounded by collagen fibrils (red 
arrows). Fig. 6.8E: TEM images further displayed corneal stromal cells (white 
asterisks) throughout the corneal stroma, surrounded by collagen fibrils 
running mainly in transverse and longitudinal directions.  
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Figure 6.9. Transmission electron microscopy images of the cornea at week 9 of foetal development.  

Fig. 6.9A-D: In all images of the posterior peripheral cornea, collagen fibrils were orientated longitudinally or transversely relative to 
adjacent collagen fibrils (red arrows). Cell projections were seen from the endothelium (Endo) (green arrows) to branch anteriorly 
into the stroma. Scale bar in Fig. 6.9A-B and D measured 2 µm. Scale bar in fig. 6.9C measured 1 µm.  
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6.3.3. Week 12 and 13 

As development progressed to week 12 collagen organisation and the 

maturation of the cornea increased (Figure 6.10 and Figure 6.11). SBF-SEM 

images showed a concentration of fibres ~2 µm thick anterior to the 

endothelium, with collagen around the stromal cells (Figure 6.10). 3-D 

segmentation identified individual fibres in the posterior peripheral cornea, with 

an enhanced concentration of segmented material anterior to the corneal 

endothelium (Figure 6.10). Collagen fibrils had formed lamellae within the 

corneal stroma, with a moderate orthogonal organisation (Figure 6.10). 

Extracellular space within the corneal stroma still remained, which 

demonstrated that the entire extracellular matrix had not completely deposited. 

The cornea at an increased magnification with TEM identified fibres with an 

enhanced contrast directly anterior to the corneal endothelium (Figure 6.11). 

Images of the anterior cornea at week 12 showed no appearance of these 

structures with enhanced contrast. The collagen fibrils had regular spacing of 

transverse fibrils (Figure 6.11D). 

 

With increased development to week 13, the corneal stroma had further 

matured, with an enhanced organisation of collagen fibril bundles into 

lamellae. SBF-SEM images revealed a concentrated network of fibres directly 

anterior to the corneal endothelium, contained within sheets. In addition, 

individual fibres ran longitudinally within the posterior peripheral corneal 

stroma and branched in different directions that remained in the same 

horizontal plane of the collagen lamellae (Figure 6.12).  
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Figure 6.10. Serial block-face scanning electron microscopy (SBF-SEM) 
image of the week 12 foetal corneal elastic fibre system.  

Fig. 6.10A and Fig. 6.10B: A concentration of fibres was identified with 
SBF-SEM in the posterior stroma, localised to ~2 µm (bidirectional arrow) 
above the corneal endothelium (Endo). Fig. 6.10C: Individual lengthened 
fibres (yellow arrows) were reconstructed in the posterior corneal stroma, as 
well as a concentration of fibres (red arrows) directly anterior to the corneal 
endothelium (blue) in 3-D. 
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Figure 6.11. Transmission electron microscopy images of the cornea at week 12 of foetal development. 

Figs. 6.11A-C: The posterior peripheral cornea contained fibres with an enhanced contrast and a round morphology (yellow 
arrows). The fibres appeared composed of smaller microfibrils which formed loose bundles of larger fibres Fig. 6.11D: There was 
no presence of these fibres in the anterior or central aspect of the cornea. The collagen fibrils were regularly spaced in the transverse 
sections. Endothelium (Endo). 
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Figure 6.12. Serial block-face scanning electron microscopy images of 
the developing cornea at week 13. 

Figs. 6.12A-C: The posterior peripheral cornea contained an enhanced 

concentration of fibres within sheets directly anterior to the corneal endothelium 

(bidirectional arrow) (red arrows). Fig. 6.12A and Fig. 6.12B: An area of 

interest in the posterior peripheral cornea (blue box) was chosen to reconstruct 

the elastic fibre network. Fig. 6.12C and Fig. 6.12D: Elastic fibres (rendered in 

gold) displayed within sheets (red arrows) anterior to the corneal endothelium 

and as individual fibres (yellow arrows) running through the posterior corneal 

stroma. Fig. 6.12C shows the fibres in same orientation as Fig. 6.12A-B. Fig. D 

is the top down view of Fig. 6.12C, which demonstrates the individual fibres to 

run in different directions through the plane of the lamellae. 
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6.3.4. Week 14 and 16 

Collagen was packaged within lamellae, and to some extent, orthogonally 

arranged to adjacent lamellae throughout the corneal stroma (Figure 6.13 and 
Figure 6.14). The fibre network appeared to be enhanced in density and size 

when compared to younger ages (Figure 6.13 and Figure 6.14). TEM images 

revealed fibre sheets to be contained within a ~2 µm thick layer anterior to the 

corneal endothelium, as was identified in previous ages (Figure 6.13 and 
Figure 6.14). Individual fibres with enhanced contrast were found within and 

above the fibre sheets, confined to the posterior corneal stroma. In all ages, 

the fibres were composed of smaller microfibrils bundled together. 

Measurements of the individual microfibrils transversely orientated within the 

fibres measured between approximately 10-12 nm, characteristic of fibrillin 

microfibrils. These fibres were not seen in the anterior or central aspects of the 

corneal stroma at this stage of development. At week 16, some fibres 

contained a dense core surrounded by microfibrils, which displayed different 

contrasts, characteristic of an elastin amorphous core (Figure 6.14E). 

Furthermore, these fibres were absent from the central cornea of all ages 

analysed (Figure 6.13E, Figure 6.13F and Figure 6.14F).  
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Figure 6.13. Transmission electron microscopy imaging of the foetal cornea at week 14. 

Fig. 6.13A: Sheets of fibres were concentrated directly anterior to the corneal endothelium in the posterior cornea (Endo) (red 
arrows). Figs. 6.13A-D: Individual fibres were also present within the posterior peripheral corneal stroma (yellow arrow). Figs. 
6.13B-D: Larger fibres comprised of bundles of microfibrils. Fig. 6.13E and Fig. 6.13F: No fibres were identified in the anterior stroma 
of the cornea at week 14, with only collagen fibrils arranged into orthogonal lamellae seen. 
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Figure 6.14. Transmission electron microscopy imaging of the foetal cornea at week 16. 

Figs. 6.14A-C: The posterior peripheral cornea displayed a concentration of fibres within sheets directly anterior to the corneal 
endothelium, contained within a ~2 µm region (red arrows). Figs. 6.14A-E: Individual fibres also distributed within the posterior 
peripheral cornea (yellow arrows). Figs. 6.14E: Some of the individual fibres within the posterior corneal stroma had a dense core 
(blue arrow), surrounded by microfibrils (yellow arrow). Fig. 6.14F: No fibres were present in the anterior corneal stroma. 
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6.3.5. Week 17 

Collagen fibrils formed lamellae which demonstrated orthogonality at week 17 

in the posterior stroma (Figure 6.15 and Figure 6.16). SBF-SEM 3-D models 

showed an enhanced concentration of fibres anterior to the corneal 

endothelium, and individual fibres displayed within the posterior peripheral 

corneal stroma (Figure 6.15). High-magnification TEM illustrated the high 

contrast fibres to be situated between and within collagen lamellae (Figure 
6.16). The anterior corneal stroma did not contain the fibre structures with 

enhanced contrast, similar to younger ages analysed (Figure 6.16E and 
Figure 6.16F). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.15. Serial block-face scanning electron microscopy images 
of the week 17 corneal elastic fibre system. 

Fig. 6.15A and Fig. 6.15B: A network of fibre sheets (red arrows) 
concentrated anterior to the corneal endothelium (Endo) (blue). Figs. 
6.15A-C: Individual fibres with an enhanced contrast (gold) displayed within 
the posterior peripheral cornea (yellow arrow). A corneal stromal cell was 
also present (pink) (white asterisks). 
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Figure 6.16. Transmission electron microscopy imaging of week 17 foetal corneas.  

Figs. 6.16A-D: The posterior peripheral human corneal stroma displayed fibre sheets anterior to the corneal endothelium (Endo) 
(red arrows). Individual fibres were imaged within the posterior peripheral cornea (yellow arrow). Collagen fibrils formed within 
lamellae throughout the corneal stroma, orthogonally arranged to adjacent collagen lamellae. Fig. 6.16E and Fig. 6.16F: No 
structures represented elastic fibres in the anterior cornea. Scale bar in Fig. 6.16C, 1000 nm; Fig. 6.16D and Fig. 6.16E, 2 µm, Fig. 
6.16F 200 nm. 
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6.4. Discussion  

The youngest cornea analysed was at the start of week 7, Carnegie stage (CS) 

20. The embryonic cornea at CS20 had a well-developed corneal epithelium 

and endothelium. Between these cellular layers, an acellular collagen matrix 

was concentrated in the central anterior corneal stroma and directly posterior 

to the corneal epithelium. The collagen directly posterior to the corneal 

epithelium represented developing Bowman’s layer. At this age, mesenchymal 

cells were only seen in the peripheral cornea, absent in the central regions. 

These results demonstrated the central corneal stroma to be acellular during 

week 7. These results suggest before mesenchymal cell migration, the human 

cornea has an acellular condensed collagenous matrix, with collagen fibrils 

with a transverse and longitudinal arrangement, showing orthogonality. These 

results provide novel evidence of a collagenous primary stroma in the human 

cornea. Evidence of a primary stroma has been previously proposed in 1978, 

but no other studies to my knowledge has reported these findings (Wulle and 

Richter 1978). The three-dimensional models revealed the endothelium 

extended cytoplasmic processes anteriorly towards the epithelium, which 

provides evidence of a communication system between both cell types. 

Analysis of a further developed cornea at week 7.5 (stage CS22) showed 

similar results to those at CS20. This included an acellular collagenous matrix 

between the epithelium and endothelium with mesenchymal cells in the 

peripheral cornea. However, the collagen matrix had further condensed 

towards the central corneal stroma at CS22, with increased density of collagen 

fibrils compared with CS20. Endothelial cell projections were identified again 

at CS22, directed towards the condensed acellular collagen matrix and 

mesenchymal cells. This suggests that the endothelium could support or 

communicate with the acellular collagen matrix. The mesenchymal cells at the 

periphery are thought to be the cells which will infiltrate the central cornea at 

a later stage of corneal development. An individual cell analysed in the 

peripheral cornea laid within the collagenous matrix, which also interacted with 

the endothelial cell projections. These results suggest that the collagen fibrils 

support cell migration by acting as a substrate, which occurs in the avian 
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cornea (Bard and Hay 1975, Hay E. D. and Revel 1969). A schematic 

summary of the suggested events that develop the human cornea can be 

found in Figure 6.17. This chapter has not classified what extracellular matrix 

components are present within the substrate, further experiments should 

investigate the distributions of fibronectin and collagen types to further 

understand the composition of the acellular collagenous matrix.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.17. The suggested events that develop the human cornea 

The surface ectoderm detaches away from the lens vesicle and the surface 
ectoderm becomes the corneal epithelium prior to week 7 of corneal 
development (1). A space lies between these structures. The endothelium 
migrates into the cornea anteriorly to the lens. Mesenchymal cells are in the 
peripheral aspect of the cornea but are not in the presumptive central corneal 
stroma at the beginning of week 7 of embryonic development, CS20 (2). 
Collagen fibrils deposit posterior to the corneal epithelium and within the 
central cornea at CS20 (3). The collagen fibrils in the central cornea 
condense and align with the mesenchymal cells in the peripheral cornea at 
CS21 (3). The cells use the acellular collagen matrix as a substrate for cell 
migration at CS22 before developing the corneal stroma as development 
continues (4). 
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Embryonic cells use other cells and extracellular matrix molecules as a 

substrate for cell migration in developing tissues (Reig et al. 2014). Cells can 

utilise extracellular matrix-mediated contact guidance to direct cell migration 

along a substrate (Reig et al. 2014). Experimental studies have suggested that 

extracellular matrix fibrils can organise by an exerted mechanical stress, which 

can further govern cells to migrate by contact guidance mechanisms 

(Nakatsuji and Johnson 1984). Cell movement has been described in these 

studies to be aligned along the tension axis, even when the tension axis is 

perpendicular to the natural axis of alignment (Nakatsuji and Johnson 1984). 

The results shown in this study suggest that the mesenchymal cells could 

incorporate contact guidance mechanism with the acellular extracellular matrix 

to migrate into the central corneal stroma.  

 

Endothelial cell extensions affiliate with the acellular collagenous matrix and 

mesenchymal cells. In other tissues, endothelial cells have an essential role in 

cell migration. For example, in leukocyte migration, endothelial cells promote 

the migration of leukocytes through “outside-in” signals from adhesion 

molecules (Cook-Mills and Deem 2005). Studies demonstrated that contractile 

forces in endothelial cells contribute to leukocyte migration by inhibiting 

endothelial cell control (Garcia et al. 1998, Kielbassa et al. 1998). The cell 

projections from the corneal endothelium could control mesenchymal cell 

migration through the interaction of adhesion molecules, contractile forces and 

signalling pathways. The theory of how mesenchymal cells migrate into the 

cornea will help understand how the cornea develops. One theory this 

research has proposed is that the mesenchymal cells use the extracellular 

matrix as a substrate to migrate into the central corneal stroma. The acellular 

collagenous network sits in the central aspect of the cornea, adjacent to the 

mesenchymal cells in the peripheral cornea prior to cell migration from the 

peripheral cornea. The endothelial cell projections that project anteriorly into 

the extracellular matrix could adjust to cause the acellular collagenous matrix 

to move or adjust. This could initiate or stimulate the cells in the peripheral 

cornea to migrate inwards. Thus, any alterations to the endothelial cell 

projections e.g. movements, could alter collagenous matrix location and then 
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assist in directing the cells to migrate inwards along the matrix. The endothelial 

(Ridley et al. 2003)cell projections could continue to move and influence the 

collagenous matrix, thus mesenchymal cells, until all cells have infiltrated the 

cornea. The endothelial cells could also utilise adhesion molecules, contractile 

forces or signalling molecules to regulate mesenchymal cell migration. Future 

studies should focus on understanding the mechanisms that generate 

mesenchymal cell migration and thus develop a functional cornea.  

 

Mediating cell migration is crucial for the development, repair and regeneration 

of tissues. This chapter has suggested theories that the extracellular matrix 

and cell extensions could contribute in cell migration. The neighbouring cells 

and the extracellular matrix environment can alter cell passage and there are 

many important components of this network that ensures cell migration. For 

cells to move, signal transduction pathways that encompass lipid second 

messengers, GTPases, cytoskeleton modifying proteins, motor proteins and 

kinases must be restricted to areas of a cell (Ridley et al. 2003). The 

mechanism of cell migration is highly dependent on cell and cell surface 

receptors, which can assist and alter cell migration. G protein coupled protein 

receptors activate signalling cascades that can alter cell morphology and 

regulate actin to assist cell migration (Cotton and Claing 2009). Integrins are 

adhesive mediated receptors that allow the cell to communicate with the 

extracellular matrix. Integrins can activate signalling pathways through 

mechanosensation, by sensing mechanical forces and viscoelastic properties, 

which can alter the direction in which the cells are migrating (Bershadsky et 

al. 2006).  Focal adhesion detachment of cells from a substratum to assist 

movement is also altered with epidermal growth factor receptor kinase, which 

could also act in cell migrations into the corneal stroma (Xie H. et al. 1998). 

Further studies should analyse the receptors involved in mesenchymal cell 

migration into the human cornea to understand the processes that might 

mediate cell migration and thus corneal development.  
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The results provide novel evidence of a collagenous primary stroma in the 

human cornea, which shows a similar mechanism of initial development to the 

avian cornea (Hay E. D. and Revel 1969). In the avian cornea, the epithelium 

and endothelium secrete the primary stroma (Hay E. D. and Dodson 1973, 

Hayashi M. et al. 1988). It cannot be confirmed whether or not the epithelium 

and endothelium secrete the extracellular matrix in the human cornea, 

however, because no other cells are within the corneal stroma at this stage, it 

is suggested that the endothelium and epithelium have a role in collagen 

secretion, similar to the avian cornea (Trelstad and Coulombre 1971). More 

research needs to be undertaken to determine if this is indeed the case and to 

identify which collagen types are present, to further determine if there is a 

similar composition of collagen types to that in the avian developmental model 

(Birk et al. 1986, Hendrix et al. 1982). Types I, II, V and IX collagen are the 

main collagen types synthesised in the avian primary stroma, the distribution 

of these collagens should be explored in the human cornea (Hay E. D. and 

Revel 1969, Hayashi M. et al. 1988, Hendrix et al. 1982). Furthermore, in avian 

development, the primary stroma is thought to act as a template to direct cell 

migration. It is proposed, due to the association of cells with the acellular 

matrix, that a primary stroma is also required in human corneal development 

to direct mesenchymal cell migration, whose cells will proceed to become the 

keratocytes and corneal stroma (Bard and Hay 1975, Hay E. D. and Revel 

1969, Trelstad and Coulombre 1971). Further research should help 

understand the signalling molecules and adhesion components involved to 

further determine the role that the endothelium has in mesenchymal cell 

migration. Other developmental models should also be studied to determine if 

endothelial cells associate with the acellular primary stroma and mesenchymal 

cells.  

 

Overall, the human results oppose the events demonstrated in the mouse 

cornea, shown in Chapter 3 of this thesis, where no primary stroma has been 

found, similar to what is described in the literature (Haustein 1983). These 

results show differences between mammalian models. No tissue younger than 

CS20 was obtained, therefore it was not possible to understand how the 
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endothelium and epithelium were formed. Despite this, the human 

endothelium was formed before mesenchymal cell migration, which followed 

a similar pattern of development to the avian species (Hay E. D. and Revel 

1969). The surface ectoderm most probably detached away from the lens to 

form the corneal epithelium and an initial migration of neural crest derived 

mesenchymal cells formed the corneal endothelium, followed by the second 

migration of mesenchymal cells which further develops the corneal stroma 

(Zieske 2004). These results differ from the mouse cornea, where a single 

migration of cells forms both the corneal endothelium and corneal stroma. It is 

the condensation of corneal stromal cells in the posterior peripheral mouse 

cornea that develops the corneal endothelium (Haustein 1983).  

 

At week 8, cells had already infiltrated the human corneal stroma. The stroma 

had also increased in thickness and collagen deposition compared with 

younger ages. Collagen fibrils were found to be associated with the corneal 

stromal cells. These cells in the chick are well known to synthesise and deposit 

collagen fibrils that will develop the mature stroma (Birk and Trelstad 1984). 

Collagen deposition, as described in previous chapters occurs through 

fibripositors in tendon development and their presence in corneal development 

has been disputed. In this chapter, evidence of fibripositors which direct 

collagen fibril deposition was not identified. Therefore, further studies would 

be needed to analyse collagen fibril organisation. The ages between CS22 

and week 8, where collagen fibril synthesis is first seen could not be obtained 

or analysed.  

 

The tannic acid-uranyl acetate based stain used in this chapter enhances the 

contrast of elastic fibres and has been undertaken by previous studies to 

analyse elastic fibre distributions (Lewis et al. 2016, Simmons and Avery 

1980). This chapter identified structures with an enhanced contrast to hold a 

similar morphology to elastic fibres. This was determined by measuring the 

individual microfibrils within the elastic fibres which measured ~10-12 nm, 

characteristic of fibrillin-microfibrils (Sakai et al. 1986). The majority of fibres 
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imaged did not contain an amorphous core, which indicates they are 

fibrillin-rich microfibril bundles. However, some fibres imaged did contain an 

amorphous core in the posterior peripheral cornea, which represents similar 

morphologies to true elastic fibres.  

 

Within this study, elastic fibres representative of microfibrils initially appeared 

with high-rmagnification TEM analysis as small individual fibres during week 

12 of foetal development. Before week 12, elastic fibres were not identified in 

any of the corneas analysed. These elastic fibres were predominantly present 

in the posterior cornea, with an absence of the structures in the anterior 

cornea. These results correlated with previous findings of the elastic fibre 

network in the adult human posterior cornea (Lewis et al. 2016). The elastic 

fibre sheets and individual elastic fibres in this study continued to develop with 

increased age to week 17. Many additional changes to corneal ultrastructure 

occur after eyelid opening, with corneal maturity being reached approximately 

6 months after birth (Lesueur et al. 1994). It would be expected that the elastic 

fibre system also changes, which most probably enhances with development 

until maturity. Because of ethical regulations of obtaining tissue in the later 

stages of development, these later stages could not be analysed.   

 

A concentrated network of sheets imaged in this study has been previously 

imaged and interpreted as an immature Descemet’s membrane (Wulle 1972). 

These fibres could contribute to Descemet’s membrane, however, their 

structure resembled the elastic fibre system that presents anterior to 

Descemet’s membrane in the adult cornea, which suggests that Descemet’s 

membrane has not yet formed (Lewis et al. 2016). Furthermore, the elastic 

fibres could support the development of Descemet’s membrane in 

embryogenesis.  

 

The structural distribution of elastic fibres has now been well studied in the 

cornea, but the functional role of this system still remains unclear. It has 
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previously been hypothesised that the elastic fibres may help maintain corneal 

curvature and could allow the peripheral posterior cornea to deform and return 

to its physiological shape subject to external forces. This chapter has proposed 

the presence of elastic fibres, which show structures to resemble their 

morphology with a well-known elastic fibre stain used in electron microscopy 

(Simmons and Avery 1980). The identification of elastic fibres in corneal 

development further supports that elastogenesis is important to the 

development of a functional cornea. In both Marfan syndrome and 

keratoconus, a loss of corneal structure has been associated with a disruption 

of the elastic fibre network (White et al. 2017a, White et al. 2017b). Further 

studies should aim to reveal the biomechanical and functional importance of 

elastic fibres in both the embryonic and adult cornea.  

 

6.5. Summary  

This chapter presented novel evidence to support the existence of a primary 

stroma within the embryonic cornea. These results led to the proposition that 

a primary stroma is involved in the mechanism to control mesenchymal cell 

migration into the human corneal stroma, which develops the mature corneal 

stroma. This mechanism further follows a similar pattern of development to the 

events within the avian species. The results also suggest that the endothelium 

regulates the migration of mesenchymal cells. Further studies should explore 

the mechanisms that control cell migration and further regulate collagen fibril 

deposition and arrangement within the corneal stroma.  

 

This chapter also demonstrated a similar distribution and organisation of 

elastic fibres in the foetal cornea to the mature human cornea. Small deposits 

of elastic fibres were initially identified in week 12, which matured as fibre 

sheets and individual fibres in the posterior peripheral cornea with increased 

age. The presence of elastic fibres at an early stage of development highlights 

their potential importance which could establish corneal structure in human 
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development. Further research should understand the function of the elastic 

fibre network in early corneal development.  
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Chapter 7: A Structural Study of the 
Developing Fibrillin-1 Knockout Mouse 

Cornea 
 

7.1. Introduction  

Marfan syndrome (MFS) is a systemic autosomal dominant connective tissue 

disease caused by mutations in the FBN1 gene located on chromosome 

15q15-21, which encodes the glycoprotein fibrillin-1 (Chikumi et al. 2000, 

Robinson and Godfrey 2000). This mutation impairs the secretion of fibrillin-1 

and leads to an increase in the intracellular retention of the mutant fibrillin-1 

protein, which disrupts the physiological assembly of true elastic fibres (Zeyer 

and Reinhardt 2015). Patients with MFS show heterogeneity with their 

phenotypes, arising from genetic variations (Seo et al. 2018). MFS affects 

tissues abundant in elastic fibres. The main clinical manifestations involve 

cardiovascular, ocular and skeletal tissue, and the condition often leads to a 

shortened life expectancy (Attias et al. 2009).  

 

The most frequent ocular manifestations found in patients with MFS include 

ectopia lentis and myopia (Gehle et al. 2017). Studies have also identified the 

corneal structure to be disrupted in MFS, with subjects presenting with a flatter, 

thinner and opaque cornea compared to control groups (Konradsen and 

Zetterstrom 2013, Maumenee 1981, Salchow and Gehle 2018, Sultan et al. 

2002).  

 

To further understand MFS many mouse models have been developed that 

alter fibrillin-1 genetically. A mouse model (mgΔLoxPneo) was developed in the 

Department of Genetics and Evolutionary Biology, University of São Paulo, 

Brazil (Lima et al. 2010). The mgΔ mouse model was initially created to 

analyse the fibrillin-1 mutation displayed in patients with MFS. Exons 19-24 on 

the FBN1 gene were replaced by a neomycin-resistance expression cassette 
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(neoR), which deletes 272 residues from the protein monomer (Pereira et al. 

1997). This initial heterozygous model failed to show significant alterations 

when compared with the wild type model. The homozygous mouse model did 

show severe phenotypes, but unfortunately these were lethal and did not 

survive for analysis. To overcome this limitation, in the heterozygous mice, the 

mutant FBN1 allele was further modified by being neoR flanked by lox-P 

sequences, initiating the Cre-recombinase-mediated deletion of the resistance 

cassette (Sunaga et al. 1997). These alterations developed the heterozygous 

mgΔLoxPneo mouse model which presented with some MFS phenotypes (Lima 

et al. 2010). Corneal structural disruptions were identified within the mgΔLoxPneo 

adult mouse model compared to the wild type cornea (White et al. 2017a). The 

main limitation of this mouse model was that the whole spectrum of 

phenotypes seen between different sufferers was not represented because of 

the complexity of MFS. To overcome this limitation, Lima and her colleagues 

developed a phenotypically severe mouse model by crossing two mgΔLoxPneo 

mouse strains that presented with different phenotypes. This led to the 

production of the F2 mgΔLoxPneo generation mouse model, by crossing both the 

B6 and 129 mouse strains (Fernandes K. A. et al. 2015). The mutant FBN1 

mgΔLoxPneo gene allele generated a truncated fibrillin-1 monomer that 

accumulates inside cells. The resultant fibrillin-1 mutation is unable to regulate 

transforming growth factor signalling (TGF-β); this then leads to an 

enhancement of TGF-β levels within the surrounding extracellular matrix. The 

elevated TGF-β levels results in the phenotypic characteristics that display in 

patients with MFS (Habashi et al. 2006, Neptune et al. 2003, Ramirez and 

Rifkin 2009). The F2 mgΔLoxPneo generation mouse model presents with 

enhanced pathological severity and contains a wider representation of the 

different phenotypes within the population of MFS sufferers.  

 

The TGF-β signalling pathway is involved in many cellular processes and 

regulatory pathways to maintain homoeostasis to tissues and extracellular 

matrix. Within Marfan syndrome some studies have proposed TGF-β to be 

involved in its pathology (Habashi et al. 2006, Neptune et al. 2003). However, 

more recent studies appear to contradict these previous studies and 

replicating the results previously uncovered in Habashi et al has been difficult. 
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It has recently been shown that TGF-β might be a repair strategy to try and 

control or restore the condition ineffectively, with mouse models demonstrating 

a loss of TGF- β exacerbates MFS symptoms (Wei et al. 2017). If TGF-β 

signalling is upregulated in MFS, this can subsequently upregulate 

metalloproteases and elastase, which degrade the extracellular matrix (Booms 

et al. 2005, Quarto et al. 2012). Components that maintain extracellular matrix 

organisation, such as the PG decorin, also decrease when TGF-β levels are 

elevated (Westergren-Thorsson et al. 1993). Decorin is an important 

component within the corneal stroma; it maintains collagen fibril organisation 

and if disrupted could contribute to altering collagen organisation, with reduced 

decorin levels also resulting in corneal scarring (Kahari et al. 1991, Mohan et 

al. 2011, Reed and Iozzo 2002).  

 

Collagen is known to be the main extracellular component that provides the 

cornea with its strength, shape and transparency. Whilst the corneal structure 

has been well studied, the mechanisms that regulate the curved morphology, 

and hence the refractive power, remain unknown. White et al., previously 

showed using the first generation mgΔLoxPneo mouse model that the adult 

mouse cornea was thinner in diameter when compared with the wild type 

model (White et al. 2017a). From this study, it was suggested that the elastic 

fibre system contributes to the physiological development and maintenance of 

corneal shape. Chapter 6 of this thesis presented evidence of elastic fibres in 

the foetal human cornea, which suggested that they may have an important 

role in the development of a normally functioning mature cornea.  

 

The aim of this chapter was to analyse the structure of the adult and 

developing cornea within the F2 mgΔLoxPneo generation mouse model 

compared with wild type equivalents. The focus was placed on analysing the 

overall corneal structure as well as the elastic fibre and collagen fibril 

ultrastructure. Corneal curvature and thickness were analysed with optical 

coherence tomography (OCT). Serial block-face scanning electron 

microscopy (SBF-SEM), transmission electron microscopy (TEM) and small 

angle X-ray scattering experiments (SAXS) were undertaken to analyse the 

corneal ultrastructure.  
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Throughout this chapter the F2 mgΔLoxPneo generation mouse model will be 

referred to as “FBN1+/-” and the wild type “WT”. 

 

 

7.2. Methods 

All of the tissue analysed in this chapter was obtained from the Department of 

Genetics and Evolutionary Biology, University of São Paulo, Brazil. Whole 

mouse eyes of the FBN1+/- mouse model and equivalent WT were obtained 

and stored in 0.5% paraformaldehyde before being prepared for the necessary 

experiments. The F2 mgΔLoxPneo generation mouse model was analysed at the 

developmental ages E12.5, E14.5, E16.5, E18.5 and 6-month adults. 

 

7.2.1. Optical Coherence Tomography (OCT) 

Table 7 shows the number of samples used for each age and mouse model 

analysed.   
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Table 7. Number (n) of unpaired wild type (WT) and fibrillin-1 knockout 
mouse (FBN+/-) corneas analysed with optical coherence tomography. 

Sample number 

Adult WT 6 

Adult FBN1+/- 6 

E18.5 WT 3 

E18.5 FBN1+/- 6 

E16.5 WT 8 

E16.5 FBN1+/- 11 

E14.5 WT 11 

E12 WT 6 

E12 FBN1+/- 6 

 

The OCT methodology was discussed in detail in section 2.3 of the general 

methods chapter. Please refer back to this method for details on OCT imaging 

and analysis. For all samples, whole mouse eyes were analysed.  

 

7.2.2. Small Angle X-Ray Scattering (SAXS) 

Chapter 2 (section 2.4) details the SAXS methodology used. Adult WT (6 

unpaired) and adult FBN1+/- eyes (6 unpaired) were analysed by SAXS to 

measure collagen interfibrillar spacing and collagen fibril diameter. FBN1+/- (6 

unpaired) and WT (3 unpaired) eyes were also analysed at embryonic stage 

E18.5.  
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7.2.3. Statistical Analysis  

All statistical analyses for OCT and SAXS were calculated in MATLAB 

R2018a. A Kolmogorov-Smirnov test was performed to test normality. If the 

data had a normal distribution a two-sample t-test was carried out. If data was 

skewed a Mann-Whitney U test was carried out to determine statistical 

significance. Any p-value that was less than 0.05 was determined to be 

statically significant. 

 

7.2.4. Electron Microscopy 

The elastic fibre processing protocol previously described in chapter 2 (section 

2.2.1, specifically 2.2.1.1.1) was used with serial block-face scanning electron 

microscopy (SBF-SEM) and transmission electron microscopy (TEM, section 

2.2.2). 3 unpaired corneas for each age of both WT and FBN1+/- tissue were 

imaged with electron microscopy techniques.  

 

7.2.5. Immunogold electron microscopy  

7.2.5.1. Tissue processing  

3-unpaired samples for adult WT and FBN1+/- tissue stored in 0.5% 

paraformaldehyde were low temperature embedded for immunogold labelling 

experiments. Samples after fixation were stored in 0.2M Sörensen phosphate 

buffer (pH 7.4). Samples were transferred into 30% ethanol overnight before 

being placed into the Leica AFS2 automatic freeze substitution system (AFS2) 

(Leica Microsystems, Wetzlar, Germany) to gradually lower the temperature 

of the samples using liquid nitrogen (Figure 7.1). The initial temperature was 

selected at -15°C and samples were placed into 55% ethanol for 1 hour within 

the AFS2. The temperature was gradually reduced to -30°C and samples were 

placed in 75% ethanol for 1 hour. The temperature was further reduced 

to -35°C with samples being in 100% ethanol for 1 hour with an additional hour 

in fresh 100% ethanol. Samples were placed in 30% HM20 for 1 hour, 
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gradually increasing the concentration of HM20 every hour (60% and 100%). 

Samples were left in 100% HM20 overnight, placed in a fresh 100% HM20 

solution 3 times, and then exposed to ultraviolet light to polymerise the resin 

blocks for 60 hours. The temperature of the samples was then gradually 

increased to room temperature.  

 

7.2.5.2. Ultrathin sectioning  

Samples were sectioned and collected onto grids as described in the TEM 

section of chapter 2. However, gold grids were used in replacement of copper 

grids to prevent the antibodies reacting with the copper grids.  

 

7.2.5.3. Immunogold labelling  

The gold grids were rehydrated with an incubation solution that contained 

Tris-acetate buffer (pH 7.2) in 1% bovine serum album (BSA) plus 1% 

protease inhibitor plus Chondroitinase ABC for 1 hour. The grids were washed 

in Tris-acetate buffer for 10 mins, which included 10 changes of solution. The 

grids were further incubated with phosphate buffered saline (PBS) for 10 mins. 

The grids were then placed on 50 mM ammonium chloride in PBS (pH 7.4) for 

5 mins. Samples were washed 10 times for 10 mins with PBS and then placed 

in blocking buffer made up of 1% BSA in PBS twice over 10 mins. Grids were 

incubated with a monoclonal mouse primary antibody to decorin (a gift from 

Professor Claire Hughes, School of Biosciences, Cardiff University) used at a 

1:10 concentration in blocking buffer for 2 hours at room temperature. Grids 

were washed 6 times for 2 mins with blocking buffer and further incubated with 

the goat anti-mouse 10 nm gold conjugate secondary antibody (Abcam, 

Cambridge. England), and was used at a 1:20 concentration diluted in blocking 

buffer for 1 hour at room temperature. Samples were further washed twice for 

2 mins in blocking buffer, 4x in PBS and 10x with double distilled water.  
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The sections were then counterstained with uranyl acetate (UA) and lead and 

imaged on the TEM as discussed in section 2.2.2.  

 

7.2.5.4. Immuno-electron microscopy gold analysis  

To measure any differences in gold labelling between the WT and FBN1+/- 

tissue, each gold particle was counted on an image. For both the WT and 

FBN+/- tissues, gold labelling results were analysed with images taken at x20 

magnifications. Statistical analysis between the WT and FBN1+/- tissue was 

carried out using MATLAB R2018a.  
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7.3. Results  

7.3.1. OCT 

7.3.1.1. Adult  

Corneal thickness was reduced in the adult FBN1+/- corneas when compared 

to the WT corneas (Figure 7.2A and Figure 7.2B). WT central corneal 

thickness measurements ranged between 182.27 and 208.78 μm with a mean 

value of 197.17 ± 9.46 μm. FBN1+/- central corneal thickness ranged between 

139.20 and 162.39 μm, with a mean of 148.29 ± 7.33 μm. The corneal 

thickness across the whole cornea was increased in the WT compared to the 

FBN1+/- mouse model (Figure 7.2C). Statistical analysis revealed central 

corneal thickness in the WT model to be significantly increased compared with 

the FBN1+/- corneas (Mann-Whitney U test, p = 0.002200) (Figure 7.2D). The 

mean corneal thickness in the peripheral cornea was 126.41 ± 15.68 in the WT 

cornea and 109.80 ± 17.34 μm in the FBN+/- mouse model. This difference was 

not significant (Mann-Whitney U test; p = 0.05670) (Figure 7.2E). Corneal 

radius measurements showed no significant difference between the WT and 

the FBN1+/- corneas (two-sample t-test; p=0.4551) (Figure 7.2G). When 

central corneal thickness and corneal radius measurements were plotted, the 

WT cornea had a negative correlation coefficient (-0.54) and the FBN1+/-  

corneas had a positive correlation (0.29) (Figure 7.2F). 
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Figure 7.2. Adult wild type (WT) and fibrillin-1 knockout (FBN1+/-) mouse 
cornea optical coherence tomography imaging (OCT) and analysis. 

Fig 7.2A: WT cornea OCT analysis (Scale bar = 100 μm). Fig. 7.2B: FBN1+/- 
cornea OCT analysis (Scale bar = 100 μm). Fig. 7.2C: Scatter graph plotting 
WT and FBN1+/- corneal thickness measurements from periphery to periphery. 
The WT cornea was thicker in all areas measured across the cornea compared 
to the FBN1+/- cornea. Fig. 7.2D and Fig. 7.2E: Central and peripheral corneal 
thickness boxplots comparing WT and FBN1+/- corneal thickness 
measurements. Fig. 7.2F: Central corneal thickness plotted against radius of 
curvature measurements. Fig. 7.2G: Boxplots for WT and FBN1+/- corneal 
radius measurements.  
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7.3.1.2. E18.5  

Central corneal thickness within the WT E18.5 cornea ranged between 119.42 

and 126.06 μm, with a mean of 124.05 ± 3.28 μm (Figure 7.3A). Central 

corneal thickness within the FBN1+/- mouse model ranged between 61.91 and 

96.20 μm, with a mean of 83.28 ± 11.10 μm (Figure 7.3B). Corneal thickness 

within the WT central cornea was significantly increased in comparison to the 

FBN1+/- (Mann-Whitney U test; p = 0.02380) (Figure 7.3D). The thickness of 

the cornea in the peripheral stroma was shown to be significantly increased in 

the WT cornea compared to the FBN1+/- cornea (Mann-Whitney U test; 

p<0.05) (Figure 7.3E). The mean corneal peripheral thickness in the WT 

cornea was 80.60 ± 3.78 μm. The mean corneal peripheral thickness in the 

FBN1+/- cornea was 45.59 ± 8.64 μm. The radius of curvature was not 

significantly different between the WT and FBN1+/- tissues (two-sample t-test; 

p>0.05) (Figure 7.3G). When central corneal thickness was plotted against 

radius measurements, the WT had a weak negative correlation coefficient (-

0.01) and the FBN1+/- cornea had a positive correlation coefficient (0.36) 

(Figure 7.3F). 
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7.3.1.2. E16.5 

Corneal thickness was measured across the diameter of the cornea for the 

E16.5 WT and FBN1+/- mouse corneas (Figure 7.4A and Figure 7.4B). 

Corneal radius measurements were not undertaken as it was difficult to 

determine the edges of the cornea, a necessary step for accurately measuring 

the radius. For this reason, radius measurements were not made on corneas 

younger than E18.5. Central corneal thickness within the E16.5 WT cornea 

ranged between 30.34 and 52.00 μm, with a mean of 42.68 ± 8.31 μm (Figure 
7.4A). The central corneal thickness within FBN1+/- corneal tissue ranged 

between 21.23 and 34.11 μm, with a mean of 26.80 ± 3.58 μm (Figure 7.4B). 

The corneal thickness within the WT central cornea was significantly increased 

in comparison to the FBN1+/- mouse model (Mann-Whitney U test; 

p=0.0003175) (Figure 7.4C). The peripheral corneal thickness was shown to 

be significantly increased in the WT cornea compared to the FBN1+/- model 

when a Mann-Whitney U test was used (p = 0.00008009) (Figure 7.4E). The 

mean peripheral corneal thickness was 37.99 ± 6.07 μm in the WT corneas 

and 26.67 ± 3.49 μm in the FBN1+/- corneas.  

 

Figure 7.3. E18.5 wild type (WT) and fibrillin-1 knockout (FBN1+/-) mouse 
cornea optical coherence tomography (OCT) imaging and analysis. 

Fig 7.3A: WT cornea OCT analysis (Scale bar = 100 μm). Fig. 7.3B: FBN1+/- 
cornea OCT analysis (Scale bar = 100 μm). Fig. 7.3C: Scatter graph plotting 
WT and FBN1+/- corneal thickness measurements across the diameter of the 
cornea. The WT cornea was thicker in all areas measured across the cornea 
compared to the FBN1+/-. Fig. 7.3D and Fig. 7.3E: Central and peripheral 
corneal thickness boxplots comparing the WT and FBN1+/- corneal thickness 
measurements. Fig. 7.3F: Central corneal thickness plotted against radius of 
curvature measurements. Fig. 7.3G: Boxplots for WT and FBN1+/- corneal 
radius measurements.  
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Figure 7.4. E16.5 wild type (WT) and fibrillin-1 knockout (FBN1+/-) 
mouse cornea optical coherence tomography (OCT) imaging and 
analysis. 

Fig 7.4A: WT cornea OCT analysis (Scale bar = 50 μm). Fig. 7.4B: FBN1+/- 
cornea OCT analysis (Scale bar = 50 μm). Fig. 7.4C: Scatter graph plotting 
WT and FBN1+/- corneal thickness measurements across the diameter of 
the cornea. The WT cornea was thicker in all areas measured across the 
cornea compared to the FBN1+/- cornea. Fig. 7.4D and Fig. 7.4E: Central 
and peripheral corneal thickness boxplots comparing WT and FBN1+/- 
corneal thickness measurements. 
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7.3.1.3. E14.5 

Corneal thickness was measured across the diameter of the E14.5 WT and 

FBN1+/- mice. Central corneal thickness within the WT cornea ranged between 

18.67 and 31.78 μm, with a mean of 25.28 ± 4.62 μm (Figure 7.5A). Central 

corneal thickness within FBN1+/- corneas ranged between 21.02 and 25.47 

μm, with a mean of 23.13 ± 1.56 μm (Figure 7.5B). The central corneal 

thickness within the WT was not statistically significantly different in 

comparison to the FBN1+/- mouse model (Mann-Whitney U test; p=0.1564) 

(Figure 7.5D). The mean peripheral corneal thickness in the WT cornea was 

21.66 ± 3.42 μm. The mean peripheral corneal thickness in the FBN1+/- mouse 

cornea was 21.76 ± 1.88 μm. The peripheral corneal thickness was not 

statistically significantly different between the WT and FBN1+/- corneas (Mann 

Whitney U test; p = 0.9631) (Figure 7.5E).  
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Figure 7.5. E14.5 wild type (WT) and fibrillin-1 knockout (FBN1+/-) 
mouse cornea optical coherence tomography (OCT) imaging and 
analysis. 

Fig 7.5A: WT cornea OCT analysis (Scale bar = 50 μm). Fig. 7.5B: FBN1+/-  
cornea OCT analysis (Scale bar = 50 μm). Fig. 7.5C: Scatter graph plotting 
WT and FBN1+/- corneal thickness measurements across the diameter of 
the cornea. Fig. 7.5D and Fig. 7.5E: Central and peripheral corneal 
thickness boxplots comparing WT and FBN1+/- corneal thickness 
measurements. 
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7.3.1.4. E12.5 

OCT was carried out on the WT and FBN1+/- eyes at E12.5 of embryonic 

development. It was unclear as to where the cornea and the corneoscleral 

junction was, therefore, no corneal radius or corneal thickness measurements 

were recorded (Figure 7.6).  
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Figure 7.6. Optical coherence tomography (OCT) imaging of the 
wild type (WT) and fibrillin-1 knockout (FBN1+/-) mouse corneas at 
embryonic age E12.5.  

Fig 7.6A: WT eye OCT analysis (Scale bar = 50 μm). Fig. 7.6B: 
FBN1+/- eye OCT analysis (Scale bar = 50 μm). The cornea could not 
be identified in any of the images.  
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7.3.2. SAXS Results  

7.3.2.1. Interfibrillar spacing   

In both the WT and FBN1+/- mouse corneas the interfibrillar spacing (IFS) 

increased from the central cornea to the periphery, producing a U-shaped 

distribution on the radial plots (Figure 7.7A). IFS ranged between 40.73 and 

55.63 nm within the WT central cornea with a mean IFS value of 48.27 ± 5.00 

nm (Figure 7.7B). IFS ranged between 45.28 and 62.60 nm within the FBN1+/-

mouse central corneas with a mean measurement of 55.71 ± 6.03 nm (Figure 
7.7C). Mean centre-centre spacing was plotted to compare the WT and 

FBN1+/- corneas. Central cornea IFS was increased within the FBN1+/- 

corneas, a two-sample t-test showed a statistically significant increase in IFS 

with the FBN1+/- compared to the WT corneas (p=0.04190) (Figure 7.7B). The 

WT and FBN1+/- corneas had an increased IFS from the central cornea to the 

peripheral cornea. Peripheral IFS in the WT cornea ranged between 51.28 and 

79.60 nm with a mean IFS value of 59.73 ± 7.62 nm. Peripheral IFS in the 

FBN1+/- corneas showed a large range between 51.52 and 100.13 nm, with a 

mean of 73.21 ± 14.84 nm (Figure 7.7C). Statistical analysis with a 

two-sample t-test did not show a significant increase in IFS in the peripheral 

cornea in the FBN1+/- mouse model compared to the WT corneas (p = 0.08070) 

(Figure 7.7C).  

 

SAXS of all tissues at E18.5 did not produce a scatter pattern, therefore only 

the adult corneas were analysed. 
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Figure 7.7. Collagen interfibrillar spacing results in the wild type (WT) 
and fibrillin-1 knockout (FBN1+/-) adult mouse corneas. 

Fig. 7.7A: Scatter graph of average collagen interfibrillar spacing across the 
diameter of the cornea in the WT and FBN1+/- cornea; FBN1+/- had 
increased average interfibrillar spacing measurements compared to the WT 
cornea. Fig. 7.7B and Fig. 7.7C: Boxplots of collagen interfibrillar spacing 
measurements in WT and FBN1+/- central and peripheral corneas.  
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7.3.2.2. SAXS Results – Collagen Fibril Diameter   

Average collagen fibril diameter measurements increased from the central 

cornea to the peripheral cornea in both the WT and FBN1+/- mouse corneas 

(Figure 7.8A). The average fibril diameters at different positions across the 

corneal diameter increased in the FBN1+/-  corneal tissue compared to the WT. 

The central corneal collagen fibril diameter was increased in the FBN1+/-  

corneas compared to the WT, however, this was statistically insignificant 

(two-tailed t-test; p > 0.05) (Figure 7.8B). The central collagen fibril diameter 

in the WT cornea ranged between 32.93 and 36.01 nm, with an average of 

34.35 ± 1.12 nm. The central collagen fibril diameter in the FBN1+/- corneas 

ranged between 34.71 and 37.21 nm, with an average of 35.88 ± 0.89 nm. The 

fibril diameter was also increased at the periphery of the FBN1+/- corneas 

compared to the WT corneal tissue. Peripheral collagen fibril diameters in the 

FBN1+/- corneas ranged between 35.28 and 41.93 nm, with a mean 

measurement of 38.07 ± 2.19 nm. Peripheral collagen fibril diameters in the 

WT cornea ranged between 34.10 and 41.64, with an average measurement 

of 36.95 ± 2.17 nm. The peripheral collagen fibril diameter measurements were 

not significantly different between the FBN1+/- and WT corneas (Mann-Whitney 

U test; p > 0.05) (Figure 7.8C). 
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Figure 7.8. Collagen fibril diameter results in wild type (WT) and 
fibrillin-1 knockout (FBN1+/-) adult mouse corneas. 

Fig. 7.8A: Scatter graph of average collagen fibril diameters from periphery 
to periphery of the WT and FBN1+/- cornea; FBN1+/- had increased average 
collagen fibril diameter measurements compared to the WT cornea. Fig. 7.8B 
and Fig. 7.8C: Boxplots of collagen fibril diameter measurements in WT and 
FBN1+/- central and peripheral corneas. There was no statistical significance 
in collagen fibril diameter measurements between WT and FBN1+/- corneas. 
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7.3.3. Electron Microscopy   

7.3.3.1. Collagen ultrastructure analysis by transmission electron 
microscopy (TEM) 

The corneal collagen ultrastructure was imaged and qualitatively assessed 

with TEM (Figure 7.9). The adult and E18.5 FBN1+/- mouse central corneal 

IFS appeared to be increased compared to the WT tissue. Differences 

between IFS were not clearly seen in the E14.5 and E16.5 corneas. The 

diameter of the collagen fibrils in the in FBN1+/- corneas aged E16.5 were 

larger than the WT cornea, however, this observation was not obvious in other 

ages analysed. The thicker collagen fibrils in decorin and biglycan knockout 

mouse models have a cauliflower appearance that is similar to some of the 

collagen fibrils seen in the results (Zhang G. et al. 2009).  
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Figure 7.9. Transmission Electron Microscopy (TEM) imaging of the 
collagen fibrils in the central cornea of wild type (WT) and fibrillin-1 
knockout model (FBN1+/-).  

High magnification imaging with TEM showed greater spacing collagen 
interfibrillar spacing in the central cornea of the FBN1+/- corneas compared to 
the WT corneas in the adult and E18.5 embryonic corneas. Some collagen fibril 
diameters appeared to be increased in the FBN1+/- corneas compared to the 
WT from E16.5 of corneal development (red arrows). Scale bars = 200 nm.  
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7.3.3.2. Elastic fibre analysis by serial block-face scanning electron 
microscopy (SBF-SEM) and transmission electron microscopy (TEM) 

SBF-SEM imaging revealed an extensive 3-D network of fibres with increased 

contrast in both the WT and FBN1+/- adult mouse models (Figures 7.10). The 

area directly anterior to Descemet’s membrane, in the posterior periphery of 

the cornea, was chosen for analysis in both models due to the known 

abundance of elastic fibres there. As expected, within the adult 3-D WT 

models, a concentration of fibres was seen anteriorly to Descemet’s 

membrane. Individual fibres were present in the posterior corneal stroma, 

running in parallel rows and branching within the same plane. Analysis of the 

FBN1+/- adult mouse cornea also revealed fibres with increased contrast in the 

posterior peripheral cornea. There was an enhancement of fibres anterior to 

Descemet’s membrane, but this concentration was not as vast as the WT 

model. The fibres appeared to have some disorganisation compared to the 

WT cornea, with some individual fibres branching in different directions 

(Figure 7.10 and supplementary video 8 and supplementary video 9). 

TEM revealed elastic fibres with an increased contrast composed of 

microfibrils ~10-12 nm in diameter, which bundled together to form larger 

fibres (Figure 7.13). For greater detail of the three-dimensional 

reconstructions, please refer to supplementary video 8 and supplementary 

video 9. 

 

SBF-SEM revealed individual fibres with enhanced contrast in the posterior of 

the developing mouse cornea in both the WT and FBN1+/- mouse models at 

the embryonic age E18.5 (Figure 7.11). 3-D reconstructions did not show a 

clear difference between the elastic fibre ultrastructure, with fibres appearing 

to run longitudinally and branch off in the same plane as the lamellae in both 

the WT and FBN1+/- corneas analysed (Figure 7.11). The TEM analysis of the 

fibres at E18.5 showed bundles of microfibrils ~10-12 nm in diameter within 

the larger fibre component, typical of fibrillin-rich microfibrillar structures 

(Figure 7.13).  
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Serial block-face scanning electron microscopy revealed individual elastic 

fibres in the posterior of the developing mouse cornea in both the WT and the 

FBN1+/- mouse models at the embryonic age E16.5 (Figure 7.12). 3-D elastic 

fibre reconstructions did not show any obvious differences between the WT 

and the FBN1+/- mouse models. The fibres could only be reconstructed using 

manual techniques, this made it difficult to detect all of the fibres. Some of the 

fibres that were found ran longitudinally in the corneal stroma and branched 

off, continuing in the same plane as the collagen lamellae (Figure 7.12). 

Transmission electron microscopy imaging of the fibres showed microfibrils 

~10-12 nm in diameter bundling to form larger fibres (Figure 7.13). At E16.5, 

the microfibrils formed a loose bundle of fibrils, increasing in density with 

increased age.  

 

No dense amorphous core was seen in any of the fibres analysed within the 

cornea in any of the ages analysed, indicating that true elastic fibres were not 

present (Figure 7.13). In addition, no elastic fibres were identified with 

SBF-SEM and TEM imaging in both the WT and FBN1+/-  mouse models at the 

embryonic age E14.5.  

 

Supplementary video 8 link: https://figshare.com/s/ede3a79f87dff874bc9f 

Supplementary video 9 link: https://figshare.com/s/e435cbfd4e10309d81e7 
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Figure 7.10. Serial block-face scanning electron microscopy (SBF-SEM) 
dataset of the adult wild type (WT) and fibrillin-1 knockout (FBN1+/-) mouse 
corneas. 

SBF-SEM imaging of the adult mouse corneas generated 3-D models of the 
elastic fibre system. Panel 1 shows the peripheral aspect of the WT and FBN1+/- 
mouse corneas in the posterior corneal stroma. A concentrated network of 
elastic fibres was seen anterior to Descemet’s membrane (red arrows) more 
enhanced in the WT cornea, with individual fibres within the posterior corneal 
stroma (yellow arrows). The 3-D elastic fibre models are seen in panels 2 and 
3. The WT and FBN1+/- elastic fibres ran in a parallel orientation throughout the 
corneal stroma, with some fibres branching and continuing in the same plane 
as the collagen lamellae. Some of the FBN1+/- elastic fibres appeared to run in 
different directions, with some disorganisation compared with the WT. Refer to 
supplementary videos 9 and 10 for greater detail of the WT and FBN1+/- elastic 
fibre system within the posterior corneal stroma.  
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Figure 7.11. Serial block-face scanning electron microscopy 
(SBF-SEM) dataset of the wild type (WT) and fibrillin-1 knockout 
(FBN1+/-) developing mouse cornea at embryonic age E18.5. 

SBF-SEM imaging of the developing E18.5 mouse corneas showed the 3-D 
elastic fibre system. Panel 1 shows the posterior peripheral region of the 
developing WT and FBN1+/- mouse corneas. In these images individual 
elastic fibres were found in the posterior corneal stroma (yellow arrows). 
3-D elastic fibre reconstructions are shown in panels 2 and 3. No significant 
differences between the elastic fibre organisations between the WT and 
FBN1+/- mouse cornea was identified. 
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Figure 7.12. Serial block-face scanning electron microscopy (SBF-SEM) 
dataset of the wild type (WT) and fibrillin-1 knockout (FBN1+/-) developing 
mouse cornea at embryonic age E16.5. 

SBF-SEM imaging of the developing E16.5 mouse corneas generated 3-D 
models of the elastic fibre system. Panel 1 shows the posterior peripheral 
aspect of the developing WT and FBN1+/- mouse cornea. Individual elastic 
fibres were present in the posterior corneal stroma (yellow arrows). Elastic 
fibre reconstructions showed the organisation of the elastic fibre system in 
panels 2 and 3. The organisation between the WT and FBN1+/- mouse cornea 
did not show any differences.  
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Figure 7.13. Transmission electron microscopy (TEM) imaging of the 
elastic fibres in the cornea 

Elastic fibres were initially seen at E16.5 of mouse corneal development as 
loose microfibrils ~10-12 nm in diameter, characteristic of fibrillin microfibrils. 
With increased development the microfibrils appeared to mature, forming 
bundles of microfibrils with increased density. These fibres were found 
throughout the corneal stroma in WT and FBN1+/- tissue at E16.5, E18.5 and 
adult. Scale bars measure 200 nm for all images except the E16.5 and E18.5 
WT and the E16.5 FBN1+/- which measure 100 nm.  
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7.3.4.  Immuno-electron microscopy results 

Decorin is a small-leucine rich proteoglycan that is known to regulate collagen 

fibril ultrastructure. In addition, decorin levels are reduced when transforming 

growth factor beta levels are elevated, as is described in Marfan syndrome. 

Because of both of these reasons, the localisation of decorin was analysed 

using immunogold labelling to understand whether reduced decorin levels 

could be responsible for disrupting the collagen fibril ultrastructure that has 

been identified in the fibrillin-1 knockout mouse model. The hypothesis is that 

decorin levels reduce in the fibrillin-1 knockout mouse model compared to the 

wild type.  

7.3.4.1. Decorin 

Positive gold-labelling was present in the WT and FBN1+/- adult corneas, with 

no gold-labelling found on the control sections (Figure 7.14). Gold-labelling 

was identified between the collagen fibrils in the corneal stroma. Quantitative 

analysis was carried out to determine any significant difference between the 

staining profiles in the WT and FBN1+/- corneas. The amount of gold labelling 

was quantified in each image taken at an x20 magnification for both WT and 

FBN1+/- corneas. A Mann-Whitney U test showed a statistically significant 

difference between gold particle labelling in the WT and FBN1+/- adult cornea 

(p = 0.00007964) (Figure 7.15). This indicates a reduction of the decorin core 

proteoglycan within the corneal stromal extracellular matrix in the FBN1+/- adult 

cornea compared to the WT cornea.  
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Figure 7.14. Transmission Electron Microscopy (TEM) imaging of the wild type (WT) and fibrillin-1 knockout (FBN1+/-) 
corneas with decorin immuno-gold particle labelling.  

Decorin positively labelled in both WT and FBN1+/-, with no positive staining being detected in the control sections containing no 
primary antibody. Decorin mainly labelled between and on top of collagen fibrils in both models. Quantitative analysis of the gold 
particles was undertaken to determine any differences in staining between the WT and FBN1+/- adult corneas. Scale bars measure 
200 nm for x20K and x30K. Scale bars measure 100 nm for x50K.  
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Figure 7.15. Boxplots comparing gold particle labelling of Decorin in 
Wild type (WT) and Fibrillin-1 knockout mouse corneas (FBN1+/-) 

There was a statistical significance of the amount of gold labelling particles 
between the WT and FBN1+/- corneal images at all magnifications analysed 
(p < 0.05). At x20 magnification the average number of particles was 41.18 
and 13.73 within WT and FBN1+/- images respectively.  
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7.4. Discussion  

This chapter aimed to analyse the mature and embryonic cornea when the 

elastic fibre system is disrupted. The development of the wild type cornea was 

compared to the development of the cornea in a fibrillin-1 knockout mouse 

model which displayed phenotypic similarities to MFS. The developmental 

stages E12.5, E14.5, E16.5, E18.5 and 6-month adults were chosen for 

analysis. This study is the first to have used this specific mouse model to 

analyse corneal development. For simplicity, the knockout model was referred 

to as “FBN1+/-” and the wild type “WT”. 

 

The optical coherence tomography (OCT) data collected in this study showed 

a significant reduction in corneal thickness in the adult, E18.5 and E16.5 

FBN1+/- corneas. Tissue younger than E16.5 had no significant thickness 

differences compared with the WT data, which suggests that fibrillin-rich 

microfibrils have a role in tissue architecture from E16.5 of mouse corneal 

development. The corneal radius of curvature measurements for adult and 

E18.5 showed no significantly different results; this indicated that corneal 

curvature was not altered in the FBN1+/- mouse model. This was an interesting 

observation as corneal curvature reductions have been described in some 

patients with MFS (Maumenee 1981, Sultan et al. 2002).  

 

The next phase of experiments was carried out to understand, the changes, if 

any, to corneal stromal ultrastructure that could potentially cause the reduction 

of stromal thickness. To determine any collagen fibril ultrastructural disruptions 

within the FBN1+/- model, small X-ray scattering (SAXS) studies were 

conducted. This experiment was undertaken to measure collagen fibril 

diameter and collagen interfibrillar spacing. In both the WT and FBN1+/- adult 

corneas, average collagen interfibrillar spacing and collagen fibril diameter 

increased between the central and the peripheral cornea. Similar results have 

previously been reported for the human and mouse cornea that show a U-

shaped distribution (Boote et al. 2003, Boote et al. 2012, Young et al. 2009). 

The mouse cornea is also thinner in the peripheral cornea in comparison to 

the central cornea, therefore fewer collagen fibrils must be present to 
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accommodate for the increase in fibril diameter and spacing (Henriksson et al. 

2012). Results also revealed that the central collagen interfibrillar spacing was 

significantly increased in the FBN1+/- model compared to the WT corneas. As 

corneal thickness is significantly less in the FBN1+/- model, the results suggest 

that there is overall fewer collagen fibrils present within the FBN1+/- cornea 

than in the WT cornea. No significant difference was found in fibril diameter 

measurements, a greater sample number should be analysed in the future to 

determine significance. Unfortunately, the amount of tissue available to 

analyse was limited from the source in Brazil and the sample numbers could 

not be increased.   

 

The embryonic ages analysed with SAXS did not give a strong enough signal 

to retrieve a SAXS pattern. To generate a SAXS pattern, a significant amount 

of organised collagen fibrils must be present. The number of organised 

collagen fibrils within the prenatal mouse cornea was not sufficient to generate 

a dataset. The mouse corneas continue to develop after birth and these stages 

could be further analysed by SAXS to identify any changes to the collagen 

fibril network at a younger age than the adult. To overcome the challenge of 

analysing collagen fibril ultrastructure with SAXS in the prenatal corneas, 

electron microscopy techniques were employed to image the embryonic 

corneal stromal ultrastructure.  

 

TEM imaging showed that the central cornea in the FBN1+/- mouse model has 

some larger collagen fibril diameters in corneas older than E16.5 compared to 

the WT mouse corneas. In addition, collagen interfibrillar spacing was greater 

in the FBN1+/- adult and E18.5 corneas. Interfibrillar spacing decreased as the 

age of the embryos increased, which eventually appeared to show no 

difference between the FBN1+/- and WT collagen in the E14.5 and E16.5 

corneas. At these very early stages, collagen fibrils were being laid down and 

there was much extracellular matrix space between them, suggesting that 

collagen deposition and organisation was not complete. These results 

correlate with the adult SAXS data, where collagen fibril spacing, and fibril 

diameter were shown to be greater in the adult FBN1+/-  knockout mouse model 

compared with the WT corneas. SAXS allow the analysis of hydrated tissue 
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and therefore gives a more accurate measurement of collagen fibril size and 

arrangement, both of which depend on tissue hydration. Loss of tissue 

hydration, which occurs during electron microscope preparation, would reduce 

collagen interfibrillar spacing and collagen fibril diameter measurements. In 

addition, unlike electron microscopy, X-rays pass through the entire thickness 

of the cornea, therefore the measurements are averages through the whole 

corneal stroma (Rawe et al. 1994).  

 

SBF-SEM and TEM techniques were then used to analyse the elastic fibre 

system with a tannic acid – uranyl acetate based processing method. This 

method enhances the contrast of elastic fibres for electron microscopy 

imaging. 3-D visualisation showed the elastic fibres to be concentrated directly 

anterior to Descemet’s membrane in the adult cornea, whilst individual fibres 

were present throughout the corneal stroma. The elastic fibres had increased 

disorganisation within the adult FBN1+/- corneas compared to the adult WT 

corneas. Fibres were also identified within the E16.5 and E18.5 corneas, but 

they were not easy to detect using the isosurface rendering function. 

Therefore, it was unclear whether there were any significant changes in the 

organisation between the embryonic WT and FBN1+/- mouse corneas. TEM 

was further used to identify the morphology of the fibres. E16.5, E18.5 and 

adult corneas did not show an amorphous-core within the elastic fibres, which 

suggests that no elastin was present. Instead, the fibres were composed of 

many microfibrils which were ~10-12 nm in diameter, characteristic of fibrillin-

microfibrils (Wang et al. 2009). Analysis of the corneas aged E14.5 did not 

identify any fibres, which indicated that the elastic fibre network has not begun 

to develop or was too sparse to be detected by the method used in this 

chapter.  

 

The results suggest that the FBN1+/- mouse cornea was not altered until E16.5 

of embryonic development. Alterations were also more evident in the adult 

model, which suggests that the adult tissue has greater corneal disruptions 

than the developing tissue. Therefore, these results suggest that fibrillin-1 

does not have a role in the initial development of the cornea and does not 

affect the structure of the cornea until E16.5. These results also suggest that 
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fibrillin-1 has a greater role in the mechanisms that maintain structure in the 

adult cornea when compared with the embryonic stages. This could be 

explained by fibrillin-1 having a prominent role in adult tissues for structural 

support, compared with fibrillin-2, which has a more significant role in 

embryonic tissues for regulating elastic fibre development (Zhang H. et al. 

1995). The localisation of fibrillin-1 in the WT developing mouse cornea has 

also been shown to increase in E16.5 corneas compared with E12.5 corneas, 

which further supports that fibrillin-1 has a more prominent role in corneal 

development from E16.5 (Shi et al. 2013). To further understand whether or 

not the cornea is affected by the development of elastic fibres, a knockout 

mouse model of fibrillin-2 could be explored to understand if the initial events 

of corneal development are disrupted in early elastic fibre assembly (Zhang H. 

et al. 1995).  

 

The FBN1+/- mouse model analysed in this study has a dysfunctional fibrillin-1 

gene, which generates a truncated fibrillin-1 glycoprotein that cannot exit cells 

to carry out its normal function of extracellular matrix homeostasis. One of 

these important functions is binding to large latent TGF-β to prevent TGF-β 

surges which cause pathological alterations to the extracellular matrix 

structure and function. As the fibrillin-1 glycoprotein cannot exit the cells to 

carry out this function there is subsequently a surge of latent TGF-β. Previous 

studies have also shown that an increase in TGF-β in MFS can suppress type 

I collagen production via the induction of transcription factor CUX1 (Fragiadaki 

et al. 2011). This pathway could be a potential explanation for the reduction of 

collagen in the FBN1+/- mouse cornea. A disruption to the collagen fibril 

network in periodontal ligaments has also been identified in a fibrillin-1 

knockout mouse model, which provides evidence of a disrupted collagen fibril 

network in tissues with MFS (Ganburged 2010). The reduction of collagen can 

also be explained by a TGF-β surge leading to an enhancement of 

metalloproteinases 2 and 9, both known to degrade elastic fibres and collagen 

fibrils (Gomes L. R. et al. 2012). A second study additionally showed 

metalloproteinases 1 and 3 to be upregulated in cultures when recombinant 

fibrillin-1 fragments that contained the arginine-glycine-aspartic acid integrin-

binding motif is added to understand the pathogenesis of MFS (Booms et al. 
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2005). The results presented in this chapter also provide evidence that a 

functional fibrillin-1 system is required to maintain collagen fibril organisation, 

therefore, an understanding of how and why this organisation is lost is needed.  

 

A pathological increase in latent TGF-β is thought to cause the extracellular 

matrix changes identified in this chapter. Previous studies have demonstrated 

this by preventing MFS phenotype progression in a FBN1 mutated mouse 

model by inhibiting TGF-β signalling (Habashi et al. 2006). However, more 

recent studies have demonstrated that removal of TGF-β in mouse models 

exacerbates MFS symptoms, therefore TGF-β could provide a protective 

function in the pathology (Wei et al. 2017). Furthermore, TGF-β is well known 

to regulate wound healing and extracellular matrix components, including 

PGs. Cells that have been incubated with TGF-β for a prolonged time cause 

decorin levels to decrease; decorin is a PG that plays a crucial role in 

regulating collagen fibril organisation and fibrillogenesis in the cornea (Kahari 

et al. 1991, Li et al. 2006, Reed and Iozzo 2002). Animal models have also 

demonstrated a decrease in decorin levels when TGF-β is upregulated 

(Westergren-Thorsson et al. 1993). Even though decorin is known to inhibit 

TGF-β, there is not enough decorin to neutralise the cytokine infiltration in 

MFS, which leads to a reduction of decorin levels and a potential disruption in 

an extracellular matrix structure. Immunoelectron microscopy gold particle 

labelling of the PG decorin demonstrated that there was a significant reduction 

of decorin labelling in the FBN1+/- when compared to the WT. This reduction 

of decorin would subsequently disrupt the collagen fibrils within the 

extracellular matrix.  

 

Future studies should aim to focus on understanding any underlying 

mechanistic, biomechanical and functional changes that occur in the FBN1+/- 

mouse model. Understanding changes other than the structural alterations 

that were identified in this study may further elucidate the role of true elastic 

fibres and fibrillin-rich microfibrils within the cornea. The study has used some 

novel techniques to investigate how the cornea is implicated in MFS using a 

developing mouse model that has not been previously investigated, but future 
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research could be directed at using these techniques to study the elastic fibres 

in the corneas of patients with MFS, particularly as MFS patients show a 

reduction in corneal curvature which was not seen in the mouse model. 

7.5. Summary 

This study has shown disruptions to the structure of the corneal stroma from 

stage E16.5 in the F2 mgΔLoxPneo mouse model, which presents with 

phenotypic similarities to patients with severe MFS. Corneal thickness was 

significantly reduced in this mouse model in E16.5, E18.5 and adult corneas. 

Furthermore, central corneal collagen fibril diameter and collagen interfibrillar 

spacing were altered in the developing and adult F2 mgΔLoxPneo corneas; this 

further suggests that the F2 mgΔLoxPneo mouse model had alterations to the 

collagen fibril network. This study has identified a clear disruption to the 

extracellular matrix of the corneal stroma from E16.5 of embryonic 

development in the F2 mgΔLoxPneo mouse model. It was suggested that a 

disruption to the fibrillin-1 network alters corneal architecture from early in 

corneal development and the disorganisation to the stromal network is more 

severe in adult tissue than the younger embryonic corneas.  
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Chapter 8: Concluding Discussion 
 

The first mammalian model studied in this thesis was the mouse, because of 

its easy access and rapid development. This allowed the initial synthesis and 

organisation of the corneal extracellular matrix to be followed. The aim was to 

identify whether a primary stroma was present and to elucidate the 

mechanisms that directed extracellular matrix deposition and alignment. 

Following this, human corneal embryogenesis was studied, and its 

developmental events compared to the mouse and avian models.  

 

The prenatal mouse cornea had no collagenous primary stroma to direct 

mesenchymal cell migration. This has previously been described and was 

thought to be common across all mammalian species (Haustein 1983, Pei and 

Rhodin 1970). Contrary to this assumption, this thesis has provided novel 

evidence of a collagenous acellular matrix in the human cornea. These results 

implied that the acellular collagenous matrix could act as a primary stroma to 

initiate mesenchymal cell migration, which occurs in the chick model (Hay E. 

D. and Revel 1969). The results in this study demonstrated that developmental 

events in the human cornea were more similar to the avian cornea than the 

mouse cornea (Haustein 1983, Pei and Rhodin 1970). Another novel finding 

in the human embryonic cornea was the 3-D visualisation of endothelial cell 

projections that branched towards the corneal epithelium, collagenous matrix 

and mesenchymal cells. These results implied that the endothelium has an 

important communicatory role in human corneal development. Interestingly, 

endothelial cell projections were not seen in later stages of foetal development, 

which implied that once mesenchymal cells had differentiated into keratocytes 

and had established their connections to neighbouring corneal stromal cells, 

the endothelial cell projections were no longer required. Endothelial cells play 

a crucial role in the migration of leukocytes (Cook-Mills and Deem 2005) and 

they may undertake a similar role in the migration of mesenchymal cells into 

the presumptive corneal stroma. It should also be noted that where a primary 

stroma was present in the human and avian cornea, the endothelium formed 
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before mesenchymal cell migration. In mouse development, the endothelium 

developed after mesenchymal cell infiltration by the subsequent flattening of 

the posterior mesenchymal cells. Even though endothelial cell extensions 

were not identified in early mouse development, the 3-D reconstructions did 

identify extensive corneal stromal cell projections which interacted with 

adjacent corneal stromal cells and the corneal epithelium. These results 

demonstrated extensive cell connections in both the human and mouse 

cornea.  

 

Initial collagen fibril deposition and alignment could not be studied in the 

human cornea, as the ages that were accessible after CS22 and had already 

laid down collagen fibrils. Instead, initial extracellular matrix deposition was 

analysed in the mouse cornea. Deposition commenced in the prenatal anterior 

stroma, where cells of an active phenotype resided. Immunofluorescence 

experiments also labelled collagen initially in the anterior corneal stroma 

before it spread across the whole thickness of the cornea in later development. 

These results suggest that collagen deposition initially occurs in the anterior 

cornea of the mouse before it becomes widespread across the whole corneal 

stroma. The foetal tissue used in this study could not be prepared for 

conventional immunofluorescence techniques because of the medium in 

which they had been stored. To overcome this limitation, the tissue was 

processed with low-temperature embedding to carry out immunogold electron 

microscopy studies. However, the foetal tissue did not maintain its structure 

during this processing and could not be analysed with immunofluorescence 

techniques to determine the extracellular matrix proteins present.  

 

With increased maturation, cell projections aligned with collagen fibrils in the 

mouse cornea, suggesting that corneal stromal cells have a role in the 

alignment of collagen fibrils, which was previously described in the avian 

model (Koudouna et al. 2018a, Young et al. 2014). However, it is still unclear 

whether or not the cells use the collagen fibrils to migrate, thus exerting forces 

which in turn regulate the alignment of the collagen fibrils, or if the collagen 
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fibrils direct cell alignment. Answering these questions could elucidate how 

corneal stromal architecture is generated.  

PGs were observed in the prenatal mouse cornea prior to collagen fibril 

deposition and were found around corneal stromal cells, linking corneal 

stromal cells to collagen fibrils and in-between collagen fibrils. PGs were also 

occasionally organised as longitudinal filaments or transverse punctate dots, 

with a similar organisation to the collagen fibrils. In the mature cornea, PGs 

maintain the pseudo-hexagonal arrangement of collagen fibrils within the 

stroma (Borcherding et al. 1975). Furthermore, PGs have been established in 

the mouse corneal stroma to regulate collagen fibril diameter (Parfitt et al. 

2010). The PGs could also regulate collagen fibril organisation in early corneal 

development, as they do in the mature cornea. These findings combined with 

the result that cell projections align with collagen fibrils suggests a possible 

mechanism in which cells align collagen fibrils through their interactions with 

PGs. 

 

A recently described extracellular component of the mature human corneal 

stroma has been the complex organisation of elastic fibres. It was suggested 

that the elastic fibres may support corneal shape and function, particularly in 

development (Lewis et al. 2016). Elastic fibres were initially found in the foetal 

cornea at week 12. These fibres comprised microfibrils ~10-12 nm in diameter, 

with a morphology characteristic of fibrillin-rich microfibrils (Sakai et al. 1986). 

As development progressed, the elastic fibres were predominantly found in the 

posterior peripheral cornea, as in the mature cornea. Some of the elastic fibres 

imaged contained an amorphous core surrounded by microfibrils, which is 

characteristic of the elastin component found in true elastic fibres (Baldwin et 

al. 2013). This result correlated with elastin localised in the posterior human 

adult cornea, which was further confirmed by a second study (Mohammed et 

al. 2018). On the other hand, in all elastic fibre studies throughout this thesis, 

the mouse did not contain elastin. Instead, fibrillin-rich microfibrils were 

identified across the whole thickness of the stroma, which further 

demonstrated anatomical variations between the two mammalian species.  
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The presence of elastic fibres in corneal development, combined with the 

observations of corneal abnormalities in fibrillinopathies led to the suggestion 

that elastic fibres could develop corneal stromal shape or provide 

biomechanical properties to the cornea (Gehle et al. 2017, White et al. 2017a). 

To explore the functional role of elastic fibres during development, a fibrillin-1 

knockout mouse model was studied between E12.5 and E18.5 of embryonic 

development, along with the knockout adult tissue. The FBN1+/- cornea was 

thinner compared to the WT and had a disrupted collagen and elastic fibre 

ultrastructure, which suggested that fibrillin-1 is required to develop a 

physiological cornea. Dysfunctional fibrillin-1 cannot bind TGF-β in the 

extracellular matrix which causes large latent TGF-β molecules to elevate and 

exert a destructive effect on extracellular matrix molecules. Increased levels 

of TGF-β activates metalloproteinases which break down collagen and elastic 

fibres and can reduce extracellular matrix components that maintain tissue 

ultrastructure (Gomes L. R. et al. 2012). Elevated TGF-β is thought to be the 

main pathway to the breakdown and disrupt the extracellular matrix, which 

would consequently reduce the corneal thickness and disturb stromal 

organisation.  

 

8.1. Future Research  
From this study, further work is needed to demonstrate whether there is a 

conventional sequence of events that develops the mammalian cornea across 

species or if other species also demonstrate developmental differences as 

established between the mouse and human cornea. It would be interesting to 

know if other species require a primary stroma for corneal development as in 

human and avian corneas, or do not, as in mouse corneas. The role of the 

endothelium in corneal development should be examined, along with the 

identification of the types of extracellular matrix proteins in the foetal acellular 

collagenous matrix, and a comparison made with the avian model and other 

mammalian models.  
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To further investigate how corneal stromal organisation is achieved, the 

mechanistic events of collagen and cell alignment should be explored. A 

common mechanism of collagen deposition and alignment in tendon has been 

described to occur via fibripositors, which deposit collagen fibrils in a given 

direction (Canty et al. 2004). The present results did not show any fibripositors 

during mammalian corneal development, which implies that the collagen fibrils 

are deposited and aligned differently. The alternative mechanisms that could 

organise the corneal stroma should be explored. This could involve the 

analysis of PGs in early prenatal development. To accomplish this, it would be 

necessary to produce mouse models with genetically mutated PGs, and then 

analyse the association of PGs with collagen fibrils to determine if there are 

any alterations in collagen fibril organisation in prenatal mouse development.  

 

Since the structure and localisation of the elastic fibre network in the cornea 

has now been well documented, future studies should focus on the role of 

elastic fibres in the cornea. Functional or biomechanical alterations in the F2 

mgΔLoxPneo mouse cornea compared to the wild type could be investigated. If 

there are changes to the functional, mechanistic or biomechanical role of the 

cornea in the F2 mgΔLoxPneo mouse model, it may enhance our knowledge of 

the role elastic fibres have within the cornea. However, it should be noted that 

this study analysed a very severe phenotypic mouse model of MFS and does 

not truly replicate the phenotypes seen in the majority of MFS patients. In 

addition, knockout models can compensate for their loss of a protein by 

overcompensating others, not giving a true representation of the proteins’ 

function. 

 

To conclude, this thesis has enhanced the knowledge of mammalian corneal 

stromal development by using novel 3-D and conventional structural imaging 

techniques to study the embryonic mammalian cornea. This thesis has 

demonstrated novel findings and observations of the developing mouse and 
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human cornea. It has also highlighted differences and similarities between the 

human, avian and mouse cornea, which should be taken into consideration.  
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