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Purpose: It has been shown, theoretically and in vivo, that using the Stejskal-Tanner 
pulsed-gradient, or linear tensor encoding (LTE), and in tissue exhibiting a “stick-like” 
diffusion geometry, the direction-averaged diffusion-weighted MRI signal at high  
b-values (7000 < b < 10000 s∕mm

2) follows a power-law, decaying as 1∕
√

b. It has 
also been shown, theoretically, that for planar tensor encoding (PTE), the direction-
averaged  diffusion-weighted MRI signal decays as 1/b. We aimed to confirm this 
theoretical prediction in vivo. We then considered the direction-averaged signal for 
arbitrary b-tensor shapes and different tissue substrates to look for other conditions 
under which a power-law exists.
Methods: We considered the signal decay for high b-values for encoding geometries 
ranging from 2-dimensional PTE, through isotropic or spherical tensor encoding to 
LTE. When a power-law behavior was suggested, this was tested using in silico 
simulations and, when appropriate, in vivo using ultra-strong (300 mT/m) gradients.
Results: Our in vivo results confirmed the predicted 1/b power law for PTE. 
Moreover, our analysis showed that using an axisymmetric b-tensor a power-law 
only exists under very specific conditions: (a) “stick-like” tissue geometry and purely 
LTE or purely PTE waveforms; and (b) "pancake-like" tissue geometry and a purely 
LTE waveform.
Conclusions: A complete analysis of the power-law dependencies of the diffusion-
weighted signal at high b-values has been performed. Only three specific forms of encod-
ing result in a power-law dependency, pure linear and pure PTE when the tissue geometry 
is “stick-like” and pure LTE when the tissue geometry is "pancake-like". The different 
exponents of these encodings could be used to provide independent validation of the pres-
ence of different tissue geometries in vivo.
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1 |  INTRODUCTION

Diffusion MRI (dMRI) provides a tool to study brain tis-
sue based on the Brownian motion of water molecules1 and 
is sensitive to differences in the microstructure of the tis-
sue.2-4 Different mathematical representations  have been 
proposed to describe the relationship between the diffusion 
signal, the strength of diffusion-weighting (b-value), and 
the microstructural properties of the tissue under investi-
gation.5-7 The most prominent are the biexponential,8-12 the 
stretched exponential,13 and the power-law.14-17 The math-
ematical forms of these approaches are quite different. In 
the biexponential approach, the large b-value behavior is 
assumed to be dominated by the intracellular compartment. 
For stretched exponentials, the signal relationship with the 
b-value is exp [− (kb)a], where k is a constant and a < 1 is 
the stretching parameter. In the statistical model developed 
by Yablonskiy et al,14 the signal decays as 1/b for large b, 
while the other studies15-17 have reported that the signal at 
high b-values decays as 1∕

√

b.
The aforementioned studies all used the conventional 

(Stejskal-Tanner)  pulsed-gradient diffusion encoding,18 
where diffusion sensitization occurs along a single axis. 
Since the development of the pulsed gradient spin echo se-
quence,18 there have been many works aimed at maximizing 
the information that can be obtained from a dMRI experi-
ment by exploring different acquisition protocols.19,20 One 
such modification is the addition of multiple gradient pairs. 
We can use two pairs of pulsed-field gradients to obtain 
a double diffusion encoding.21,22 It has been shown that 
double diffusion encoding, as well as other multiple en-
coding schemes such as triple diffusion encoding,23 pro-
vide information that is not accessible with single diffusion 
encoding.24

This approach has been utilized by several groups for extract-
ing microstructural information.25-29 A framework was recently 
proposed30 to probe tissue using different q-space trajectory 
encodings which can be described by a second-order b-tensor. 
Single, double and triple diffusion encoding can be character-
ized by b-tensors, with one, two, and three non-zero eigenval-
ues, respectively. In this framework, single diffusion encoding 
is also called linear tensor encoding (LTE), double diffusion 
encoding with perpendicular directions is called planar tensor 
encoding (PTE) and triple diffusion encoding with three equal 
eigenvalues is called spherical tensor encoding (STE).

In this study, we investigate the effect of different b- 
tensor encodings on the diffusion signal at high b-values. 
To remove the effect of fiber orientation distribution,31 the 
acquired signal is averaged over all diffusion directions 
for each shell. This so-called powder-averaged signal32,33 
has less complexity than the direction-dependent sig-
nal. Powder averaging yields a signal whose orientation- 
invariant aspects of diffusion are preserved but with an 

orientation distribution that mimics complete dispersion of 
anisotropic structures.

In this work, we confirm in vivo the theoretical predic-
tion34 for PTE that the direction-averaged signal decays as 1/b. 
We then consider, more generally, the direction-averaged sig-
nal for arbitrary b-tensor shapes and different tissue substrates 
to determine the conditions under which the power-law exists. 
We establish the range of b-values over which we observe any 
power-law scaling, including considerations of signal ampli-
tude compared to the noise, and the impact of the number 
of encoding directions on any power-law decay. Finally, we 
consider how observation of a power-law signal dependence 
with more than one gradient wave-form could help to provide 
a “cross-validation” for specific tissue geometries.

2 |  THEORY

In multi-dimensional diffusion MRI, the b-matrix 
is defined as an axisymmetric second-order tensor, 
B = b∕3(1−bΔ)I3 + bbΔgg

T, where g is the diffusion gradi-
ent direction and the b-value, b, is defined as the trace of 
the b-matrix. The eigenvalues of the b-matrix are b

‖

, b(1)

⟂
 and 

b
(2)

⟂
 where b(1)

⟂
= b

(2)

⟂
= b

⟂
 and b

‖

 is the largest. bΔ is defined 
as bΔ = (b

||

−b
⟂

)∕(b
||

+ 2b
⟂

). Changing bΔ, we can gener-
ate different types of b-tensor encoding. For LTE, PTE, and 
STE, bΔ = 1, −1∕2, and 0, respectively.23

For the powder-averaged signal, the diffusion attenuation 
is a function of the orientation-invariant aspects of the diffu-
sion and the encoding. The compartment diffusion attenua-
tion is (Equation (34) in35): 

where S is the normalized diffusion signal and D‖ and D⟂ 
are the parallel and perpendicular diffusivities, respec-
tively. We use the subscript “e” and “a” to denote param-
eters of the extra-axonal and the axonal compartments, 
respectively.

Here, we study the effect of axisymmetric b-tensor shape 
on the diffusion-weighted signal at high b-values.

2.1 | Linear, planar and STE

In LTE, bΔ = 1 and assuming stick-like geometry, D⟂ = 0 
in Equation (1), therefore Sic ∝ b−1∕2. The sensitivity of MR 
to axon radius would alter the b−1∕2 scaling36 because there  
will be a perpendicular diffusivity and  the exponent in 
Equation (1) would not equal zero, and thus the exponential 
term outside of the error function would not equal unity.

(1)S(b) =

√

�e
−

b

3
(D‖+2D⟂−bΔ(D‖−D⟂))

erf
�

√

bbΔ(D‖−D⟂)
�

2
√

bbΔ(D‖−D⟂)
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In PTE, bΔ = −1∕2 and Sic has the following form: 

For large b-values, bDa
|| ≫ 1; therefore, the diffusion signal can 

be approximated by the following equation (see Appendix A): 

where !! denotes the double factorial and N depends on the 
bDa

|| value (Figure 1 and Table 1).

For large b-values, the extra-axonal signal decays ex-
ponentially faster than the intra-axonal compartment, 
exp (−bDe

⟂)≪1, and can be neglected.
The asymptotic expansion of erfi(x) in Equation A2 (see 

Appendix A) is valid when x → ∞, but large values of bDa
‖ 

would suppress the signal to immeasurable levels, and there-
fore there are practical bounds on the value of bDa

‖ that can 
be achieved. Therefore, we compared the original signal in 
Equation 2 and the approximated signal using Equation 3 for 
different values of N and bDa

‖ (Figure 1 and Table 1). We use 
a normalized error to compare the original (Equation 2) and 
the approximated signal (Equation 3): 

(2)SPTE
ic

(b) =

√

�e
−bDa

��

2 erfi

�
�

bDa
��∕2

�

2

�

bDa
��∕2

(3)SPTE
ic

(b)≈
1

bDa
||

N
∑

k= 0

(2k−1)!!

(bDa
||)k

(4)Normalized error =
|S− Ŝ|

S
=
|

|

|

|

|

1−
Ŝ

S

|

|

|

|

|

F I G U R E  1  The approximated signal over the original PTE signal (Ŝ∕S), for different N values

T A B L E  1  The minimum number of terms for reconstructing the PTE signal for different error threshold values

  bD
a

‖

    3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Error threshold 0.06 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0.05 – 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1

0.04 – 1 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1

0.03 – 1 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1

0.02 – 1 – 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1

0.01 – – – 2 3 3 3 3 3 3 2 2 2 2 2 1 1 1
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 where S is the original signal obtained from Equation 2 and  
Ŝ is the approximated signal from Equation 3.

In STE, bΔ = 0 and Sic = exp (−
b

3
Da

||). For large b-values,  
both intra- and extra-axonal signals decay exponentially 
fast, exp (−

bDa
‖

3
)≪1, exp (−

b(De
‖+2De

⟂)

3
)≪1 and both of 

them are negligible. Therefore, the STE does not provide a 
considerable signal for large b-values in a two-compartment  
model.

2.2 | General case of axisymmetric B-tensor

Here, we consider the general case of  an axisymmetric  
b-tensor bΔ ≠ 0 to cover all b-tensor shapes between 
bΔ = −0.5 (PTE) to bΔ = 1 (LTE).

2.2.1 | 0 < b
�
≤ 1

As noted above, in this range, the error function in Equation (1) 
goes to 1 for high b when D‖ ≠ 0. In this case, to have a power-
law relationship between the signal and the b-value, the expo-
nential term exp [−b(D‖+2D⟂−bΔ(D‖−D⟂))∕3] should go 
to one and therefore D‖+2D⟂−bΔ(D‖−D⟂) = 0. For D‖ ≠ 0,  
D⟂∕D‖ = (bΔ−1)∕(bΔ+2) which is only physically plau-
sible (i.e., the ratio of diffusion coefficients has to be ≥0) for 
bΔ−1 ≥ 0, but the maximum value that bΔ can take is one, and 
therefore D⟂ has to be zero, that is, the tissue geometry has to be 
that of a stick, and the b-tensor has to be a pure LTE to have a 
power-law relationship. If D‖ = 0 then we have the imaginary 
error function and therefore there is a power-law relationship 
for the pancake-like tissue geometry.

2.2.2 | −0.5 ≤ b
𝚫
< 0

Conversely, in the range −0.5 ≤ bΔ < 0, as in Equation (2),  
the error function becomes imaginary. Similar to the first 
scenario, to have a power-law relationship the exponen-
tial term has to be one. By replacing the first term of the  
approximation in Equation (A2) into Equation (1), we 
have: 

To have the exponential equal to one: 

 where the right side of the equation is negative for −0.5 < bΔ < 0 
which is not physically plausible for the left side of the equation 

(i.e., ratio of diffusivities). Therefore, the only possible case is 
to have D⟂ = 0 which again means stick-like tissue geometry 
and bΔ = −0.5 which is pure PTE. Clearly the exponential 
term will become zero if and only if bΔ = −0.5, and thus, the 
1/b signal form will occur if and only if the b-tensor shape has 
just 2 non-zero eigenvalues, that is, pure PTE. Thus, for stick-
like geometries, there are only two b-tensor shapes for which 
a power-law exists: pure linear and pure planar. Moreover, for 
pancake-shape tissue geometries, a power-law exists if and only 
if the encoding geometry is pure LTE.

Herberthson et al34 have also considered the signal for 
arbitrary waveforms, and provided a theoretical prediction 
of a 1/b power law. The S ∝ b−1 dependence is valid for an 
intermediate range of diffusion weightings while the asymp-
totic behavior of the signal decay is determined by a steeper 
decay.37

3 |  METHOD

3.1 | Simulations

Synthetic data were generated with 60 diffusion encod-
ing gradient orientations uniformly distributed on the 
unit sphere38,39 and 21 b-values spaced in the interval  
[0, 10 000 s∕mm2] with a step-size of 500 s∕mm2. The noise 
is considered Rician with SNR = 150 for the b0 image, 
which is practically feasible using the Connectom scanner 
with an echo time of 88 ms.40 A three-compartment model 
with a Watson orientation distribution function is used: 

where f1, f2, and f3 are the intra-axonal, extra-axonal, and the 
sphere signal fraction respectively, W(n) is the Watson ODF, 
Sec is the extra-axonal signal, Scyl is the signal attenuation of 
the impermeable cylinders41 and Ssph is the restricted diffusion 
inside the spherical compartment in the presence of b-tensor 
encoding42 (Appendix B). The ground truth parameter values 
defined by a set of parameters [ f1 = 0.65, Da

‖ = 2 μm2∕ms, 
D

‖

e = 2 μm2∕ms, D⟂

e
= 0.25, 0.5, 0.75 μm2∕ms and κ = 11] 

and axon radius ri, come from the bins of the histograms in.43 
We average the signal over all ris weighted by r2

i
. In histology, 

there is a possibility of tissue shrinkage. To account for this 
change, the axon radius values are multiplied with three shrink-
age factors η = 0, 1, 1.5.43,44 The η = 0 case simulates the effect 
of zero-radius axons.

The third compartment is simulated as a sphere with zero 
radius (dot) and a sphere with radius Rs = 8 μm to consider the 
effect of combining the environments on the power-law scaling.

The noisy diffusion-weighted signal is modeled according 
to the following: 

(5)S(k = 0) ≈
e

−b

3
[(D‖+2D⟂)−bΔ(D‖−D⟂)]−bbΔ(D‖−D⟂)

−2bbΔ(D‖−D⟂)

(6)D⟂

D‖

≈
2bΔ+1

2bΔ−2

(7)

S∕S0 = f1 ∫
�2

W(n)Scyl(n)dn + f2 ∫
�2

W(n)Sec(n)dn + f3Ssph(Rs)
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where Sn and S are the noisy and noise-free signal, respec-
tively, and Nr and Ni are the normal distributed noise in the 
real and imaginary images respectively with a standard devi-
ation of σ.45,46 The Matlab code for the simulation is available 
on GitHub (https ://github.com/marya mafza li/PTE_Cylin der-).

3.2 | In vivo data

Two healthy participants who showed no evidence of a clini-
cal neurologic condition were scanned in this study that was 
conducted with approval of the Cardiff University School 
of Psychology ethics committee. Diffusion-weighted im-
ages were acquired with 60 gradient directions for PTE on a 
3T Connectom MR imaging system (Siemens Healthineers, 
Erlangen, Germany). Twenty axial slices with a voxel size of 
4 mm isotropic (given the strong signal attenuations inves-
tigated here, a low resolution of 4 mm isotropic was used) 
and a 64 × 64 matrix size, TE = 88 ms, TR = 3000 ms, were 
obtained for each individual.

To take full advantage of q-space trajectory imaging, it 
is imperative to respect the constraints imposed by the hard-
ware, while at the same time maximizing the diffusion encod-
ing strength. Sjolund et al47 provided a tool for achieving this 
by solving a constrained optimization problem that accom-
modates constraints on maximum gradient amplitude, slew 
rate, coil heating, and positioning of radio frequency pulses. 
The gradient waveform is obtained based on a framework that 
maximizes the b-value for a given measurement tensor and 
echo time (Figure 2). Substantial gains in terms of reduced 
echo times and better signal-to-noise ratio can be achieved, in 
particular as compared with naive PTE.

Diffusion data were acquired for 10 b-value shells from 
1000 to 10 000 s∕mm2 with a step size of 1000 s∕mm2 and 
each shell had the same 60 diffusion encoding gradient 
orientations uniformly distributed on the unit sphere. One 

b0 image was acquired between each b-value shell as a 
reference.

The data were denoised48 and corrected for Gibbs ring-
ing,49 eddy current distortions, subject motion,50 and gra-
dient nonlinearity.51 We normalized the direction-averaged 
signal based on the b0 signal in each voxel.

In order to find the minimum number of directions nec-
essary to have a rotationally invariant signal powder av-
erage, we used the method proposed by Szczepankiewicz 
et al.52 The diffusion was assumed Gaussian, and was 
described by an axially symmetric diffusion tensor, de-
fined by D = rrT (D‖−D⟂)+D⟂I, where D|| and D⟂ are 
the parallel and perpendicular diffusivity, r is the tensor 
principal direction and I is the identity matrix. We used 
S =  exp (−trace(BD)) to simulate diffusion-weighted sig-
nal for linear and PTE. The b-matrix for LTE and PTE is 
defined as BLTE = bggT, and BPTE = b∕2(I−ggT ), respec-
tively, where g is the gradient direction and the b-value, 
b, is the trace of b-matrix. The orientation, r, was rotated 
in 512 different directions to consider the effect of rota-
tion. We used b = 7000−10 000 s∕mm2 with a step size of 
1000 s∕mm2. We change D|| and D⟂, while keeping the mean 
diffusivity of MD = 1.0 μm2∕ms and set FA = 0.95 because 
the impact of rotational variance is most pronounced at 
high anisotropy. The direction averaged signal was calcu-
lated and the coefficient of variation (CV) across all 512 
orientations was estimated using CV = SD/E where SD and 
E are the standard deviation and mean value, respectively. 
The threshold was set to CV < 0.01 and the minimum num-
ber of directions to meet this condition was calculated.

4 |  RESULTS

Figure 1 shows Ŝ∕S for 3 < bDa
‖ < 20 and 4 < N < 21. The 

selected range of bDa
‖ is compatible with the range of b-values 

that we can obtain from the Connectom scanner and also the 
range of Da

‖ that exists in the brain.53 Based on Figure 1 the 
number of terms in Equation 7 should be smaller than or equal 
to the bDa

‖ (N ≤⌊bDa
‖

⌋ where ⌊...⌋ denotes the floor function) 
to have the minimum error (Ŝ∕S is close to one). As the num-
ber of terms goes beyond the bDa

‖, the error increases. Table 1  
shows the minimum number of terms, N, for different error 
threshold values (0.01-0.06). When the error threshold is 0.02, 
we can approximate Equation 2 with the first term in Equation 3  
if bDa

‖≥14. For the error threshold of 0.06, the maximum 
bDa

‖ to approximate the signal with the first term is 3.
Diffusion MRI is an inherently low SNR measurement 

technique, particularly when strong diffusion weightings are 
utilized. To reach the level that enables us to approximate the 
planar diffusion signal in Equation 2 with the first term of 
Equation 3, we need to use relatively high b-values (bDa

‖≥14).  
One of the challenges with the high b-values is the noise, as 

(8)Sn =

√

(S+Nr(0, �))2+Ni(0, �)2

F I G U R E  2  The gradient waveform of the planar tensor encoding

https://github.com/maryamafzali/PTE_Cylinder-
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the signal amplitude can be close to the noise floor. Therefore, 
here we find the maximum value of bDa

‖ that we can use before 
hitting this rectified noise floor (see Appendix C).

The noise in complex MR data is normally distributed, 
whereas the noise in magnitude images is Rician distrib-
uted.45,46 Here, we select a minimum SNR value equal to 2 
(see Appendix C). By setting the diffusion-weighted inten-
sity to the mean background signal, we obtain the b-value 
that makes the signal equal to the noise floor.

Figure 3 shows the maximum bDa
‖ as a function of SNR 

for different encoding schemes and different noise floors. The 
maximum value of bDa

‖ that can be used while staying above 
the noise floor increases when SNR increases, but the rate of 
this change is different for different encoding schemes. The 
maximum bDa

‖ value (bDa
‖

max) is proportional to the square 
of SNR, (bDa

‖

max
∼SNR2) for LTE, where this relationship 

is linear for PTE (bDa
‖∼SNR) and it is logarithmic for STE 

(bDa
‖∼ ln (SNR)). Based on this plot, if SNR = 50 the values of 

bDa
‖

max for linear, planar and STE schemes are around 312, 21 
and 9 respectively. The SNR in our data is around 150 therefore 
the measured signal values in our experiment are higher than 
the noise level. For this SNR, the bDa

‖

max for linear, planar and 
STE schemes are around 15 625, 100 and 16 respectively.

Figure 4 shows the simulated direction-averaged PTE 
signal ( f3 = 0) as a function of 1/b for three different 
perpendicular diffusivities and three different shrinkage 
factors. The result of the power-law fit (S = �b−�) is rep-
resented by the red dashed line and the α and β values are 
reported in each plot. The trust-region-reflective algorithm 
is used for optimization with a fixed initial value (α = 1 
and β  =  0.2). The goodness of fit is evaluated using the 
Bayesian information criterion (BIC).54 In our simulation, 
f = 0.65, Da

‖ = 2 μm2∕ms, therefore if the approximation 
in Equation 3 is valid, β ≈ 0.325 and α ≈ 1 indicate that the 
fit approximately matches the theory.

Szczepankiewicz et al52 showed that PTE needs  a lower 
number of directions (15-20 directions for b < = 4000 s∕mm2)  

F I G U R E  3  Maximum bD
a

‖ vs SNR. The Maximum bD
a

‖ value 
is proportional to the square of SNR, (bD

a

‖∼SNR
2) for LTE, where 

this relationship is linear for PTE (bD
a

‖∼SNR) and it is logarithmic for 
STE (bD

a

‖∼ ln (SNR))

F I G U R E  4  Simulated direction-averaged PTE signal for 7000 < b < 10 000 s∕mm
2 and the results of the power-law fit



   | 7AFZALI et AL.

compared to LTE (20-32 directions b < = 4000 s∕mm2), to 
provide a rotationally invariant signal powder average, making 
it more efficient for achieving rotational invariance. Figure 5A 
shows the minimal number of encoding directions required to 
obtain rotational invariance over a broader range of b-values 
(1000 < b < 10 000 s∕mm2). This was obtained using the 
method proposed by Szczepankiewicz et al.52 The plots for LTE 
and PTE are divergent, meaning that the relative efficiency of PTE 
over LTE increases with the b-value used. Indeed, for the range 
of b-values used in this work, (7000 < b < 10 000 s∕mm2),  
the minimum number of encoding directions for rotational in-
variance is 45 for PTE and almost 80 for LTE.

Figure 5B illustrates the changes of exponent α using LTE 
compared to PTE. An insufficient number of diffusion direc-
tions in powder averaging may cause the break of power-law 
scaling. Therefore, we have to consider this when comput-
ing a powder average at very high b-values. In Figure 5B, 
even with a large number of directions the α-values deviate 
considerably from the theoretical value (especially for LTE). 
The deviation is most likely attributable to the non-zero per-
pendicular diffusivity, and also the shrinkage factor, η, cho-
sen for the simulations. In Figure 5, we used η  =  1.5 and 
D⟂

e
= 0.75 μm2∕ms matching the results of simulations in.17 

The still water, or “dot” compartment has a diffusivity close 
to zero, which can affect the power-law scaling. Figure 5C 
shows the changes of the power-law scaling, α, versus “still 
water” (a.k.a. “dot”) signal fraction for PTE and LTE on the 
simulated data with D⟂ = 0.75 (μm2∕ms). Note that over the 
f3 range of 0 < f3 < 0.02, the α for LTE doesn’t change by 
more than two percent, and thus is relatively insensitive to 
the presence of the still water fraction. In contrast, the PTE 
profile shows a much stronger dependence on the dot water 
fraction, with a rapid deviation from the “pure stick”, α-value 
of 1, as the dot fraction increases.

Figure 5D shows the changes in the exponent α in the 
presence of a spherical compartment (i.e., diffusion re-
stricted inside a spherical space) with a radius of Rs = 8 μm.  
The estimated values of alpha from these simulations are in 
the range of 1.2-1.5, increasing monotonically with f3. This 
range is remarkably close to the values found in vivo in 
gray matter, which were in the range 1.2-1.7 (see Figure 6),  
confirming that signal decay in the gray matter can be 
represented by a combination of stick-like and spherical 
compartments.55

A rough estimation of the SNR was performed, using 
pixels from the signal area and from the background, 
SNR = (⟨MS(x)⟩)∕(

√

2∕�⟨MB(x)⟩) where 〈.〉 denotes the av-
erage operator. The estimation of the signal was performed 
using the average of several ROIs (with 4 voxels) with a 
high direction-averaged signal, MS(x), for the same b-value. 
(Note that, although the average is a biased estimator of the 
signal for Rician data, for the case of higher SNR areas, 
this bias must be small). The parameter of noise σ is esti-
mated from only noise pixels in the background, where the 
signal is known to follow a Rayleigh distribution. Using 
the mean of a Rayleigh, E{M(x)} =

√

�∕2�, we can esti-
mate �̂� =

√

2∕𝜋⟨MB(x)⟩. SNR in WM ranged from 7.5 to 
10.3 for b = 10 000 s∕mm2 and between 130 and 150 for the 
non-diffusion weighted image (b = 0).

Figure 6 illustrates the normalized direction-averaged 
diffusion signal of the in vivo data for different b-values 
(7000  ≤  b  ≤  10  000), the FA and α map, the power-law 
fit over white matter voxels, and the histogram of the  
α values in white matter, gray matter, CSF. For high  
b-values (7000 < b < 10 000 s∕mm2), the amount of the 
signal is considerable compared to the noise and the white 
matter structure is completely clear in the images because 
of high SNR.

F I G U R E  5  A, The minimum number 
of directions for a rotationally invariant 
powder average signal at different b-values, 
B, the changes of power-law scaling versus 
number of gradient directions, C, the 
changes of the power-law scaling (α) versus 
“still water” signal fraction, and D, the 
changes of the power-law scaling (α) versus 
sphere signal fraction for PTE compared to 
LTE

(A) (B)

(C) (D)
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The results show that the data are well described by power- 
law behavior, with α ≈ 1 which confirms the validity of the 
signal approximation using the first term in Equation 3.

The constant term β is estimated from the fitting of 
equation S∕S0 = �b−� and based on Equation (3) �≈ f∕D

||

a.  
In Figure 6, we have β = 0.31. If we assume the intracel-
lular signal fraction, f, is around 0.6 then the intra-neurite 
diffusivity D||

a will be around 2 μm2∕ms, which is feasible. 
To segment the brain image into different tissues, we used 
FAST (FMRIB’s Automated Segmentation Tool) in FSL.56 
In the WM, the α value is close to one, supporting the theory. 
In gray matter and CSF, the exponent is larger (1.5 and 2,  
respectively). According to the theory outlined above, this 
would be consistent with a lack of pure “stick-like” ge-
ometry in these tissue components. The spatial resolution 
of the data must be recognized, that is,  with 4  mm iso-
tropic voxels, obtaining a “pure” GM signal and “pure” 
CSF signal is challenging. It is likely that the intermediate 
exponent in the GM between that of the WM and CSF is 
partly attributable to a partial volume effect, and partly at-
tributable to the inadequacy of the model for gray matter 
architecture. The α-value in the gray matter seems surpris-
ing because a substantial portion of gray matter is com-
posed of neurites where the stick model seems plausible. 
The deviation away from an α-value of 1 could, however, 

potentially be explained by differences in water exchange 
times between white and gray matter. For example, if the 
exchange time in gray matter is comparable to the diffusion 
time of our experiment, perhaps as a result of high perme-
ability (compared to in white matter), then the “stick-like” 
behavior would not be observed, leading to a deviation of 
the α-value away from unity. The exponent in gray mat-
ter is similar to the one obtained using the combination of  
“stick + sphere”.55 Further investigation of this phenome-
non in gray matter is beyond the scope of this work.

Table 2 shows the mean and the standard deviation of ex-
ponent α in white matter, gray matter and CSF for two dif-
ferent subjects. The mean value in WM is around one, in the 
gray matter it is around 1.5 and for CSF around 2.

5 |  DISCUSSION

The main findings of this paper are twofold: (1) confirmation 
in silico and in vivo, of a power-law relationship between the 
direction-averaged DWI signal and the b-value using PTE, 
as given by Equation 3, for b-values ranging from 7000 to 
10 000 s∕mm2. In white matter, the average value of the es-
timated exponent is around one; and (2) proof that there are 
only 3 specific conditions under which a power-law exists 

F I G U R E  6  A, Direction-averaged 
diffusion signal for different b-values  
(b = 7000 to 10 000 s∕mm

2) in PTE, B, FA, 
C, parametric map of the exponent α. D, 
The plot of the diffusion signal vs 1/b for in 
vivo white matter voxels using planar tensor 
encoding. The blue curve with the error bar 
shows the mean and the std of the average 
signal and the red line shows the power-law 
fit. The parameters, α and β are reported 
in the figure. α = 1 shows the power-law 
relationship between the diffusion signal and 
the b-value. E, The histogram of α values

  WM GM CSF BIC

Subject 1 1.1054 ± 0.085 1.5716 ± 0.1009 1.9004 ± 0.2968 −29.9676

Subject 2 1.1100 ± 0.1447 1.6617 ± 0.1836 2.0469 ± 0.2250 −30.293

T A B L E  2  The mean and the standard deviation of the exponent α in white matter, gray matter and CSF
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(for axisymmetric b-tensor): pure LTE or PTE for pure stick-
like geometry and pure LTE for pure pancake-like geometry. 
To the best of our knowledge, no pure pancake-like geom-
etries exist in the human brain and so in vivo validation of 
this latter result is impossible.

Returning to the case of a power-law with PTE, for smaller 
b-values, this behavior must break down as the DWI signal 
of PTE cannot be approximated by Equation 3 (Figure 1)  
and also we cannot neglect the contribution of the extracel-
lular compartment. It could also fail for very large b-values, 
if there were immobile protons that contributed a constant 
offset to the overall signal or if there is any sensitivity to the 
axon diameter.36 Besides, if we do not have a sufficient num-
ber of diffusion directions for powder averaging, this pow-
er-law scaling can break.

The exponent of approximately one for white matter using 
PTE is consistent with the large b-value limit (in the range of 
b-values, used here) predicted for a model of water confined to 
sticks (Equation 3), which is used to describe the diffusion dy-
namics of intra-axonal water. Our results confirm this relation-
ship between the diffusion signal and the b-value (Figure 6 and 
Table 2).

The b−1∕2-scaling for LTE has previously been suggested 
by16,17. We should emphasize that the power-law behavior 
with the exponent of 1/2 was only found in white matter in 
LTE. Two other proposed models predict power law signal 
decay, for large b-values using a LTE. One of these is the 
statistical model,14 where the signal decays as 1/b for large b. 
Some other models,57-59 assume a gamma distribution for the 
diffusion coefficients and a family of Wishart distributions.60 
However, in this case, the exponent does not have a universal 
value, it depends on the distribution.

This work interprets the diffusion-weighted MRI sig-
nal decay at high b-values in the form of S∼b−1 for PTE, 
this power-law relationship is also reported by Herberthson 
et al.34 An important application of this finding is using 
the combination of linear and PTEs to characterize the in-
tra-axonal diffusivity and the signal fraction as it is proposed 
by61 using triple diffusion encoding. As discussed earlier, 
the results in Figure 5C show that the α value for PTE is 
much more sensitive to the inclusion of a still-water com-
partment than LTE. If using LTE alone, one might errone-
ously conclude from an alpha value very close to 0.5, that 
only stick-like geometries exist—even in the presence of a 
non-negligible dot fraction. In contrast, as seen in Figure 5C 
α is only close to 1 when the still-water component is zero, 
which confers an advantage of PTE over LTE for identifying 
pure stick-like geometry. This likely arises because at a given 
high b-value the proportional contribution to the total signal 
from the dot-compartment is larger for the PTE signal (de-
cays as 1/b) than it is for the LTE signal (decays as 1∕

√

b).  
One might therefore consider using PTE alone for identify-
ing pure stick-like geometry. However, given that the SNR 

per unit b is, by definition, much lower with PTE than with 
LTE, we recommend that PTE and LTE are used in combina-
tion as a way of “cross-validating” pure stick-like geometry. 
Finally, we observed a larger alpha value in the gray mat-
ter than in white matter. This difference in exponents was 
previously reported for LTE by McKinnon et al,16 who also 
reported higher exponent in gray matter than in white mat-
ter. In our work, using PTE, the higher alpha value could be 
explained by modeling the signal as arising from both stick-
like and spherical compartments. It is possible that other 
models might explain this signal decay more accurately, but 
this is beyond the scope of the current work.

6 |  CONCLUSION

This work explores the diffusion-weighted MRI signal decay 
at high b-values for PTE and STE complementing and ex-
tending previous works on LTE. By exploring diffusion 
averaged signals, we conclude that the signal from STE de-
cays exponentially for all the range of b-values. The intra-
axonal signal does not decay exponentially as a function of 
b for linear and planar tensor encoding in high b-values. The 
direction-averaged DWI signal of PTE and LTE decreases 
with increasing b-values as a power law, for b-values rang-
ing from 7000 to 10 000 s∕mm2. In white matter, the in vivo 
exponent characterizing this decrease is close to one-half, 
for LTE and one for PTE. These experimental results are 
consistent with theoretical predictions for the signal decay 
at large b-values for tissue in which axonal water diffusion 
is confined to sticks when there is no sensitivity to the ax-
onal diameter, undulation, curvature and so on. Any sensi-
tivity to the diameter or curvature of axon, will change this 
power law. Obtaining an exponent of −1 for PTE and −1/2 
for LTE could provide useful cross-validation of the pres-
ence of stick-like geometries in tissue. A complete analysis 
of the power-law dependencies of the diffusion-weighted sig-
nal at high b-values has been performed. Only two forms of 
encoding result in a power-law dependency, pure linear and 
pure PTE. The different exponents of these encodings could 
be used to provide independent validation of the presence of 
stick-like geometries in vivo where, due to the slower decay, 
LTE is the most SNR efficient method. Deviation from the 
1/√b power-law in “stick-like” geometries has been used 
recently to demonstrate sensitivity to the perpendicular dif-
fusivity inside axons,36 which can ultimately be deployed 
to estimate the “effective MR radius” of the axons. In the 
same way, deviation from the power-law for “pancake-like” 
geometries would demonstrate a deviation from “thin-film” 
geometry32  to “parallel plate” geometry, perhaps allow-
ing the separation of the plates to be estimated (outside the 
scope of this work). We provided the first in vivo evidence 
for the power-law relationship, 1/b, that has previously only 
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been reported theoretically for PTE. The power-law relation-
ship in PTE was observed over the b-value range of 7000 to 
10 000 s∕mm2. We also showed that a power-law relationship 
only exists in an extremely limited set of conditions: 1. The 
substrate under investigation has “stick-like” geometry and 
the b-tensor shape is purely linear (one non-zero eigenvalue) 
or purely planar (two non-zero eigenvalues) or 2. The sub-
strate under investigation has "pancake-like" geometry and 
the b-tensor shape is purely linear. A power law will not exist 
for any other axysymmetric b-tensor. The effect of dot and 
spherical compartments on the signal decay was also inves-
tigated. The results show that LTE is not sensitive to small 
contributions of dot and spherical compartment. In contrast, 
the exponent in PTE shows sensitivity to the presence of 
other such compartments.
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APPENDIX A

PLANAR TENSOR ENCODING

In PTE, bΔ = −1∕2 and Sic has the following form: 

Asymptotic expansion of erfi(x) is as follows: 

where x → ∞ and (−1)!! = 1.
bDa

|| ≫ 1 for large b, therefore we have: 

where N depends on the bDa
|| value (Figure 1 and Table 1). 

APPENDIX B

SIGNAL ATTENUATION IN A CYLINDRICAL AND 
SPHERICAL PORE USING PTE

The signal attenuation of the impermeable cylinders41 using 
PTE is generated using the following equation42: 

 

 

where �n is the root of the derivatives of the first order Bessel 
function J�

1
(�n) = 0 and 

and 

 SSph is the restricted diffusion in spherical pore using PTE42: 

where �n is the root of the derivatives of the first order spheri-
cal Bessel function j�

1
(�n) = 0. For the diffusivity of the water 

molecules inside the spherical pore (D), we use a constant value 
of 1700 μm2∕s.

APPENDIX C

SNR AND ERROR

Let us assume that a real signal S follows a Rician distribu-
tion with parameters A and σ 

with PDF45 

where A is the (absolute value) of the original signal (without 
noise) and �2 is the variance of the complex Gaussian noise. It 
can be seen as 

The question in MRI of how low can we go with the signal (i.e., 
when do we reach the noise floor) will always depend on the 
application and on the estimator we are using. However, we can 
always consider a lower bound to the SNR related to the error 
of the measured signal.

To calculate an SNR threshold independent of the particu-
lar application, we can use two different definitions of error: 
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n
−1)

(B4)

An =
2�2

n
Da

‖�

R2
−2+2Ln(�)−Ln(Δ−�)+2Ln(Δ)−Ln(Δ+�)

(B5)Ln(t) = e
−

�2
n Da

‖ t

R2

(B6)ln SPTE
sph

= −
2�2G2R6

s

D2

∞
∑

n= 1

2An

�6
n
(�2

n
−2)

(C1)S∼R(A, �)

(C2)p(x|A, �) =
x

�2
e
−

x2+A2

2�2 I0

(

Ax

�2

)

u(x),

(C3)S =

√

(A+Nr(0, �))2+Ni(0, �))2.
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(1) the Mean Square Error (MSE) or (2) the mean error (ME). 
We define the MSE as 

where S is the measured signal and A is the original signal. 
We use the mean value to assure that this error is a statistical 
property and not an isolated measure. The ME is alternatively 
defined as: 

For the SNR calculation, we will consider that the error com-
mitted is a percentage of the original signal (to make it signal 
dependent), that is, 

Alternatively, for the ME: 

Assuming a Rician distribution of parameters A and σ, the er-
rors become:

The MSE: 

 The ME: 

For the sake of simplicity, in this paper, we will consider 
ME as an error measure, since MSE is more restrictive. The 
relation between ME and SNR for different errors can be seen 
in Table C1.

(C4)
MSE = E

{

(S−A)2
}

(C5)ME = E {S−A} .

(C6)
E
{

(S−A)2
}

< 𝜖 ⋅A2

E

{

(

S

A
−1

)2
}

< 𝜖.

(C7)
E {S−A} < 𝜖 ⋅A

E
{

S

A
−1

}

< 𝜖.

(C8)

E

�

�

S

A
−1

�2
�

= 2+
2

SNR2
−
√

2�
1

SNR
L1∕2

�

−
SNR2

2

�

(C9)E
{

S

A
−1

}

=

√

�

2

1

SNR
L1∕2

(

−
SNR2

2

)

−1.

Error <0.005A <0.05A 0.1A 0.2A <0.5A

ME SNR > 10 SNR > 3.21 SNR > 2.30 SNR > 1.67 SNR > 1.05

T A B L E  C 1  SNR values for different 
errors for the Rician model


