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Summary of thesis

The source parameters of the first direct detection (GW150914 [3]) of gravitational waves

(GW) from a binary black hole (BBH) system were determined by using approximate mod-

els of the BBH coalescence, the errors on which could be driven by the noise (statistical

errors) or the approximate nature of the model (systematic errors). To determine the sys-

tematic errors, a set of numerical relativity (NR) waveforms with similar parameters as of

GW150914 were injected over a range of inclination and polarisation values and recovered

with IMRPhenomPv2. The main result of this study was that the systematic errors induced

due to waveform model inaccuracies were much smaller than corresponding statistical er-

rors, and hence, the statistical errors dominate the systematic for the inferred parameters of

GW150914.

For current precessing waveform models, the six dimensional spin space is mapped to a

two dimensional space of effective spin parameters. We investigate the effects of changing

the in-plane spin direction on the GW signal and determine whether these effects are strong

enough to be measured by current ground based GW detectors. We also study the effect

of disregarding the mode-asymmetry content present in the signals and attempt to answer

whether mode-asymmetries need to be included in future waveform models.

GW signals, when decomposed in the spin weighted spherical harmonic basis, are made

of its different modes (hlms), with the quadrupole mode being dominant. The waveform

model IMRPhenomHM models a few of the sub-dominant modes with the quadrupole mode for

aligned-spin binaries. We wanted to investigate the effects of using a multimode (IMRPhenomHM)

and quadrupole only (IMRPhenomD) waveform model to recover source parameters from

multimode signals (IMRPhenomHM signals) and real physical signals (NR waveform signals)

across a range of physical parameters and inclination values.
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Chapter 1

Gravitational wave basics : Theory

and Detection

1.1 Introduction

Albert Einstein’s special theory of relativity (STR) in 1905 revolutionized the prevailing un-

derstanding of classical mechanics. The axiom of a constant speed of light (c) in all frames

of reference and the conclusion that nothing can travel faster than c led to new physics like

length contraction, time-dilation and the mass-energy equivalence. In Newtonian theory, the

gravitational force is instantaneous, which violates the basic axiom of STR. Efforts to make

gravity consistent with STR eventually led to the birth of General Theory of Relativity (GR)

where gravity was understood as the effect of spacetime curvature due to the presence of

massive objects. One of the early predictions from GR was the existence of gravitational

waves, which are ripples in the fabric of spacetime.

The first indirect evidence of the existence of gravitational waves was observed from the or-

bital period decay of the Hulse-Taylor pulsar binary (PSR 1913+16) [see Fig: 1.1]. The binary

loses its orbital energy by emission of GWs, which causes its orbital period to decrease. The

observed data of the shift in periastron time matches with the general relativistic prediction

of energy loss due to GW [5].

From the 1960s, efforts were underway towards direct detection of GW signals. After

decades of effort that led to technological breakthroughs in multiple areas, the aLIGO [6]

and aVIRGO [7] detectors reached the required sensitivity for GW detection. The first ever

detection of gravitational waves, from a binary black-hole (BBH) system, was achieved by

the LVC (LIGO-VIRGO Collaboration) on September 14, 2015 [3]. Since then, until the writ-

ing of this thesis (March 2019), a total of 11 confirmed GW events have been observed [8],

1
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FIGURE 1.1: Cumulative shift in the periastron time of binary pulsar PSR 1913+16 with
time. The dots are observed data points and the solid line is the general relativistic predic-

tion. Image for representation purpose only from [4]

out of which 10 were BBH events and one was a binary neutron star coalescence (called

GW170817) that was seen by both LIGO and VIRGO detectors. GW170817 was also

followed up in the electromagnetic (EM) band and its associated γ-ray burst [9] was ob-

served [10], [11]. This was the first observation of co-incident EM-GW signals from a binary

neutron star. The event termed GW170814 [12] was the first three detector detection of a

BBH GW signal.

From April of 2019, aLIGO and aVIRGO started their third observation run (O3) with im-

proved detector sensitivity. aLIGO is expected to reach its design sensitivity by 2020, 2021

for aVIRGO. The Japanese cryogenic interferometer, KAGRA [13], [14], is expected to join

the detector network by late 2019 or 2020, with the addition of LIGO-India [15], [16] in the

detector network expected by 2024 [17]. The era of GW astronomy is just starting up and

it would be very exciting to see what mysteries GW observations are going to throw at us

and also hopefully provide information towards solving some currently known issues. The

author would like to recommend any interested reader to [18] for more information on GW

astronomy/astrophysics/cosmology.
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This chapter will aim to provide a theoretical basis of gravitational waves in the linearized

theory, a basic description of interferometer working, an introduction to aLIGO and end with

a description of GW data analysis (searches and parameter estimation (PE)). The author

will assume a basic understanding from the reader of General Relativity and will not spend

much time on discussing GR. See [19], [20], [21] for a rigorous treatment of GR.

1.2 Gravitational waves

From GR, gravitational force is understood as a consequence of the curvature of spacetime

due to mass-energy. LetM be the space-time manifold with a metric (gµν) defined overM.

The metric gµν encapsulates the global properties ofM (geodesics, singularities etc.). The

proper distance (ds) between two points on the manifold is given as,

ds2 = gµνdxµdxν , (1.1)

where (xµ = (x0, x1, x2, x3) = (t, x, y, z)). All other important geometric quantities required

to characterise the spacetime can then be computed from the metric and its first and second

derivatives. General theory of relativity provides the relationship between the background

spacetime metric gµν and energy-momentum tensor Tµν ;

Gµν =
8πG

c4
Tµν , (1.2)

where Gµν = Rµν − 1
2gµνR with Rµν and R being the Ricci tensor and Ricci scalar respec-

tively1. See Chapter 1 - 4 of [21] for a definition of the above quantities and their derivation

from first principles.

Gravitational waves are ripples on the fabric of spacetime, or understood another way, a

perturbation to some static background metric 2:

gfullµν = gbackgroundµν + hµν . (1.3)

1.2.1 Gravitational waves in Linearized theory

In the linearized theory of gravity, effects of dynamical perturbations to the static (gener-

ally flat) background metric (gµν) are studied where the perturbations are much weaker in

1The cosmological constant is not considered in this discussion.
2For the next section (Linearized gravity) the background metric is assumed to be Minkowskian but in general,

the background metric can be generic. In the limit of the length scale of metric variation >> length scale of
perturbation variation, the concepts of linearized theory can be applied locally.
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strength than gµν
3. As is standard, we will consider perturbations to the flat spacetime

(Minkowskian) metric (ηµν) to demonstrate the important features of GW in this formalism.

Consider a small perturbation (hµν) to the flat spacetime,

gµν = ηµν + hµν , |hµν | << 1. (1.4)

Using the form of metric from Eq: 1.4 in Eq: 1.2 and discarding any non-linear terms of hµν
gives the Einsteins equations linear in hµν(∂iηµν being 0),

�h̃µν + ηµν∂
ρ∂σh̃ρσ − ∂ρ∂ν h̃µρ − ∂ρ∂µh̃νρ =

−16πG

c4
Tµν , (1.5)

where h̃µν = hµν − 1
2ηµνh with � = ηµν∂

µ∂ν being the 4D d’Alembertian in flat 4D space-

time.

Linearized theory of gravity is gauge invariant under slowly varying diffeomorphisms, i.e.

under a co-ordinate transformation of x
′µ → xµ + ξµ(x) where ∂µξν(x) ∼ |h|. It can be

proven that there always exists a function ξµ(x) (also called the Lorentz gauge) such that,

∂ν h̃µν = 0, (1.6)

so that the last three terms of Eq: 1.5 vanish and it becomes a wave equation in 4D,

�h̃µν =
−16πG

c4
Tµν . (1.7)

Eq: 1.7 gives the equation for gravitational wave generation from some source. For detection

of gravitational waves and to study their effect on test-masses, it is instructive to study their

vacuum behaviour, i.e., when Tµν ∼ 0.

When �h̃µν = 0, making another co-ordinate transformation of x
′µ → xµ +κµ(x) such that

�κµ(x) = 0 will conserve the Lorentz gauge and the wave equation. With this freedom, we

can choose κ0 such that trace of h vanishes (h̄ = 0) and κi so that h0i = 0. The Lorentz

gauge condition along with the choice of κi gives ∂0h00 = 0. This gauge choice is known

as the transverse-traceless gauge. As h00 is constant, it will not affect the motion of masses

and we need only consider the spatial components of the wave tensor. So, out of the ten

free components of the wave tensor, four were restricted by the choice of Lorentz gauge

and four more by the choice of transverse-traceless gauge, leaving two free components.

These are called the plus and cross polarizations of a gravitational wave (h+, h×). Within

3The author would like to refer any interested reader to section 1.1 and 1.2 of [22] for a more detailed
explanation of what follows here.
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the transverse - traceless gauge, the wave solution for a gravitational wave travelling along

ẑ would be,

hij(t, z) =


h+ h× 0

h× −h+ 0

0 0 0

 cos [ωgw(t− z/c)] , (1.8)

with ωgw being the characteristic GW frequency. See Fig: 1.2 for an illustration of the effect

of h+ and h× on a ring of test particles at z = 0.

FIGURE 1.2: Effect of h+ (top row) and h× (bottom row) on a ring of freely falling test
particles which lie in the x-y plane while the gravitational wave is propagating along ẑ at

different times.

1.2.2 Quadrupole generation of gravitational waves

Eq: 1.7 shows the connection between a mass distribution and the gravitational waves it

would generate. This equation is a 4D wave equation and can be solved using the retarded

Greens functions; which gives us,

h̃µν(t, ~x) =
4G

c4

∫
d3x′

1

|~x− ~x′|
Tµν

(
t− |~x−

~x′|
c

, ~x′

)
. (1.9)
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FIGURE 1.3: A representative situation of a matter source of size d generating gravitational
waves at a point r >> d.

In the limit of r >> d (See Fig: 1.3), the term |~x − ~x′| = r − ~x′.n̂ + O(d2/r). In this limit,

the Fourier transform of Tµν would be,

Tµν(t− r

c
+
~x′.n̂

c
, ~x′) =

∫
d4k

(2π)4
Tµν(ω,~k)e−iω(t−r/c+~x′.n̂/c)+i~k.~x′ . (1.10)

Let ωs be the characteristic GW frequency from which we can think of ωsd ∼ vs as some

characteristic velocity of the system generating the GWs. For all points ~x′ within the source,

ω~x′.n̂/c ∼ ωsd/c. In limit of vs << c =⇒ ωsd
c << 1, we have ω~x′.n̂/c << 1 and this term

can then be used as a parameter around which we can Taylor expand the exponential term

in Eq: 1.10, doing which gives us,

e−iω(t−r/c+~x′.n̂/c) = e−iω(t−r/c)
[
1− iω

c
x′ini − 1

2

ω2

c2
x′ix′jninj + . . .

]
. (1.11)

Substituting Eq: 1.11 in Eq: 1.10 gives the low-velocity expansion of the stress-energy ten-

sor,

Tµν(t− r/c.+
~x′.n̂

c
, ~x′) ' Tµν(t− r/c, ~x′) +

x′ini

c
∂tTµν +

1

2c2
x′ix′jninj∂2

t Tµν . . . . (1.12)

Defining the stress-energy tensor momenta as : Sij(t) =
∫

d3xT ij(t, ~x), Sij,k(t) =
∫

d3xxkT ij(t, ~x)

etc. Eq: 1.9 becomes,

h̃TTij (t, ~x) =
1

r

4G

c4
ΛTTij,kl(n̂)

[
Skl +

1

c
nmṠ

kl,m + . . .

]
, (1.13)

where ΛTTij,kl(n̂) is the transverse-traceless projection tensor along n̂. Let the mass density

moment be M ij = 1
c2

∫
d3xT 00(t, ~x)xixj . The momenta density (T 0i) moments can be

defined in the same way. Applying the conservation of energy-momentum (∂µT
µ0 = 0)
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principle and conservation of angular-momentum of the source (symmetric behaviour of

Sij) to these moments gives a relation between the first stress-energy tensor moment with

the quadrupole mass moment as,

Sij =
1

2
M̈ ij . (1.14)

The mass moment tensor, being symmetric, can be decomposed into its traceless part

(which would contribute towards GW generation) and a scalar scaled by its trace. The

traceless part is the Quadrupole moment (Qij),

Qij = M ij − 1

3
δijMll =

∫
d3xρ(t, ~x)(xixj − 1

3
r2δij). (1.15)

Using the forms of Eq: 1.15 and Eq: 1.14 in Eq: 1.13 up to leading order, gives us the

equation of generation of gravitational waves by a time varying quadrupole moment,

h̃TTij (t, ~x) =
1

r

2G

c4
Q̈TTij (t− r/c). (1.16)

In terms of these quadrupole mass moments, we can write the plus and cross polarisations

of a gravitational wave travelling along ẑ as,

h+ =
1

r

G

c4

(
M̈11 − M̈22

)
, (1.17)

h× =
1

r

2G

c4
M̈12. (1.18)

In the linearized theory, all non-linear effects like gravitational wave radiation-reaction force,

GW tails etc. are not considered. In Chapter 2, we will discuss the solving of Einsteins

equations with the non-linearities included and the generation of resulting waveforms.

1.3 Detecting Gravitational waves

Efforts to detect gravitational wave signals have been ongoing since the late 1960s, starting

with the Weber bar detector [23]. A gravitational wave with frequency close to the resonant

frequency of the bar detector can cause length changes in the bar which can then be mea-

sured by piezoelectric sensors. Since then, there have been multiple other resonant bar

detectors but none of them have yet been successful at detecting GWs from astrophysical

systems [24].

Gravitational wave interferometric detectors have had tremendous success in GW obser-

vations over the past four years (from Sept. 2015). The first generation of interferometric

detectors (iLIGO [25], eLIGO [26], VIRGO [27], GEO600 [25], TAMA300 [28]) which started



Gravitational wave basics : Theory and Detection 8

since 1990s, had a larger noise-floor than the current second generation detectors and did

not observe any events. The basic idea behind interferometric gravitational wave detectors

is to measure the differential length change (∆L) between two test masses along both arms

as a gravitational wave passes through. For most sources of astrophysical origin, like GWs

from a distant coalescing BBH system, ∆L is very small.

In this section, we will start with how GWs change the length between two points, the be-

haviour of an interferometer in the presence of GWs, a description of aLIGO and end with a

discussion of future GW detector networks.

1.3.1 Effect of GWs on test masses

Using the form of the metric perturbation given in the transverse-traceless gauge (see

Eq: 1.8), the interval between two points (ds) becomes,

ds2 = −c2dt2 +[1 + h+cos(ωgwt)] dx2 +[1− h+cos(ωgwt)] dy2 +2h×cos(ωgwt)dxdy+dz2,

(1.19)

where ωgw is the gravitational wave frequency. Consider two masses along the x-axis at a

proper distance of L from each other. A gravitational wave moving along ẑ would modify the

proper distance between the two masses (at a given time t),

L→ L
√

(1 + h+) ∼ L(1 +
1

2
h+). (1.20)

Here, the square root term is Taylor expanded and terms of O(h2) are discarded. Thus, a

passing gravitational wave would cause a total length change ∆L between two test masses,

∆L ∝ hL. (1.21)

For a binary black hole source of 100M� at 100Mpc, h ∼ 10−21 and for an interferometer

with arm length of O(103m) (without Fabry-Perot cavities), ∆L ' O(10−18m). This length

change is very small, almost 1000 times smaller than the radius of a protonO(10−15m) and

due to the tiny change in length, one can expect that the noise would dominate interfero-

metric measurements.
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1.3.2 Operation of interferometer in presence of GWs

FIGURE 1.4: This figure shows the components of a basic interferometer. A beam of light
emitted by the laser is split along the two perpendicular arms along x̂ and ŷ by the beam

splitter. The final recombined electric field strength is measured by the photodetector.

A Michelson interferometer is able to accurately measure the differential length changes be-

tween its two arms. It does so by measuring the phase differences between the two beams

of light that travel along the two arms caused by arm length changes from a GW. Fig: 1.4

illustrates the components of a generic interferometer. Let E0e
−iωdt+i~k.~x be the electric

component of a light beam going along x̂ (and a similar wave along ŷ), ti be the time when

the laser light leaves the beam-splitter and tf be the time when the wave arrives back. If

no gravitational waves are present, then it is straightforward to see that tf − ti =
2Lx/y
c

(ds2 = 0→ cdt = dx) 4.

In presence of a gravitational wave (in the TT gauge) with only the plus polarization, cdt =

±(1 + 1
2h+cos(ωgwt)). After consistently choosing the sign for travel from (to) the beam

splitter, we get,

tf − t0 =
2Lx
c

+
1

2

∫ tf

t0

h(t′)dt′ ∼ 2Lx
c

+
1

2

∫ t0+ 2Lx
c

t0

h+cos(ωgwt)dt
′. (1.22)

4This discussion closely follows the one in Sec: 9.1 of [22].
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Solving the above integral gives us,

tf − t0 =
2Lx
c

+
Lx
c
h

(
t0 +

Lx
c

)
sin(ωgwLx/c)

(ωgwLx/c)
. (1.23)

The time difference for travelling along ŷ will be the same as above, but with a change in

sign for the h(t) term and with Lx replaced by Ly.

Let us consider the total electric field (Etot(t)) at the beam-splitter at a given time t which

would be a combination of the photons leaving the beam-splitter at time tx/y0
5. First, we

need to invert t using Eq: 1.23 ,

tx0 = t− 2Lx
c
− Lx

c
h

(
t− Lx

c

)
sin(ωgwLx/c)

(ωgwLx/c)
, (1.24)

with the opposite sign for the third term for ty0 and with Lx replaced by Ly. Keeping the

co-ordinate system fixed at the beam-splitter, gives us Etot(t) ,

Etot(t) = Ex(t) + Ey(t) =
1

2
E0

(
eiωdt

y
0 − eiωdtx0

)
, (1.25)

solving Eq: 1.25 using the relations given in Eq: 1.24 gives us,

Etot(t) = −iE0e
(−iωd(t−L/c))sin(φ0 + ∆φ), (1.26)

where L =
Lx+Ly

2 and ∆φ = ωd
c h+Lxcos(ωgw(t− Lx/c)) sin(ωgwLx/c)

(ωgwL/c)
.

This change in the total electric field will be reflected at the total power output, which is

measured. To sum up, the presence of a gravitational wave modifies the proper distance

between the mirrors along the two arms of an interferometer which then affects the overall

phase of the output electric field and is measured.

The analysis given above of the effect of GWs on interferometers is applicable when L <<

λ, where λ would be the characteristic wavelength of the GW. For cases where L ∼ λ, the

geodesic deviation equation between two points needs to be solved with a full GR consid-

eration (for example: in the case of space based detectors where the arms are planned to

be ∼ 1 million km long).

The plus and cross polarisations of a gravitational wave are defined in the source-frame. In

general, the frame defined for the detector arms will not align with the source frame. So,

the detector response to the gravitational wave polarisations would depend on the source

sky-location (θ, φ) and an overall rotation between the polarisation and arm axes (ψ). The

5This calculation closely follows the one presented in Section:9.1.1 of [22]
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response towards the plus (F+) and cross polarisations (F×) are,

F+(α, δ, ψ) =
1

2
(1 + cos2α)cos(2δ)cos(2ψ)− cos(α)sin(2δ)sin(2ψ), (1.27)

F×(α, δ, ψ) =
1

2
(1 + cos2α)cos(2δ)sin(2ψ) + cos(α)sin(2δ)cos(2ψ), (1.28)

with the total gravitational strain at the detector,

hresp(t, α, δ, ψ) = F+(α, δ, ψ)h+(t) + F×(α, δ, ψ)h×(t). (1.29)

See Sec:4.2.1 of [18] for a derivation of the response functions.

1.3.3 LIGO Detectors

FIGURE 1.5: The above figure shows the design configuration of Advanced-LIGO [6]. A
1064nm Nd:YAG laser beam is cleaned through the mode cleaner and sent to the beam-
splitter via a power recycling mirror (PRM) array to increase the input laser power. A res-
onant Fabry-Perot cavity is present between the two test masses (input-test mass (ITM)
and end-test mass (ETM)) to increase the effective path length of the laser light and in-
crease the overall detector output power. The output signal is sent via a signal recycling

mirror(SRM) array to be cleaned before being read-out by the photodetector.

The LIGO detectors, commissioned in the 1990s [29], went through the Initial-LIGO [30], [31]

and Enhanced-LIGO [32] phases and were searching for GW signals from 2002 to 2010,

but none were found [33]–[36]. From then till 2015, the sensitivity of these detectors was
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improved upon, with almost twice the distance reach for aLIGO as compared to iLIGO [17]

and the first signal from a binary black hole was detected on the 14th of September 2015.

See Fig: 1.5 for the aLIGO design.

FIGURE 1.6: Power spectral density of the LIGO detectors at Hanford (H1) and Livingston
(L1) during 14th of September, 2015 when the first GW signal was observed [3].

The major challenge for LIGO was to reduce the noise contributions from various sources.

At low frequencies, the seismic vibrations dominate while the quantum effects (photon shot

noise) dominate at higher frequencies. The other sources of noise for LIGO include noise

contributions from residual gas in the vacuum tubes, thermal brownian motion on the sur-

face of test-mass mirrors, thermal motion of suspension strings etc. Various approaches

have been used to reduce the noise from the different sources and the sensitivity of the

aLIGO detectors has been improving. We will not go into much detail of noise contributions

and techniques used to tackle them, but, the weak GW signal is buried within the noise

at the output and various data analysis techniques are required to detect the presence of

signals in the data and to measure the source parameters. See Fig: 1.6 for the sensitivity

of the advanced LIGO detectors during the start of their observation run. Also, to improve

detection range and to reduce statistical errors on measured parameters, constant work is

ongoing to reduce noise (seismic suspensions, better mirror coatings, quantum squeezing

of light etc.)

1.3.4 GW detector network

From 2015, aLIGO has gone through two science runs and gathered data and from the sec-

ond half of 2017, Advanced Virgo joined the detector network which facilitated the first ever
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three-detector detection of gravitational waves from a neutron star binary (GW170817) [9]

and a binary black hole system (GW170814) [12]. As of early 2019, there are three detec-

tors in the GW network, the two aLIGO detectors and the VIRGO detector. Another one in

Japan, KAGRA [13], [14], should be ready soon and join observations by 2020. A LIGO de-

tector has been planned to be built in India which should be online by 2025 [15], [16]. These

ground based detectors have similar sensitivities and are called the second-generation de-

tectors (initial/enhanced LIGO, inital-VIRGO, GEO600 being the first). The presence of a

network of gravitational wave detectors will greatly improve the localization of sources and

help to quickly search for electromagnetic counterparts (see Fig: 1.7 for locations of 2nd

generation detector network).

LIGO Hanford : 4 km 

LIGO Livingston : 
 4km 

LIG
O In

dia : 

 4km 

KAGRA : 3km

VIRGO : 
3km

FIGURE 1.7: Locations of the current and planned gravitational wave detectors across the
world. With increasing number of detectors, the source localization improves. The source
can be constrained within a 9-12deg2 with a five detector network as compared to the

current 120-180deg2 [17].

There are plans for "third-generation" detectors like the Cosmic explorer [37] and Einstein

Telescope [38] which would greatly improve upon the current second-generation sensitiv-

ity thus allowing us to see farther out into the universe (see Fig: 1.8). These detectors

are planned to have arms of ∼ O(10km) and with further improvements to reduce noise

contributions, these third-generation detectors are expected to observe binary black hole
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coalescence as far as z∼10 at SNRs ∼ 20. A space based antenna to detect GWs in the

low frequency band (10−5Hz to 1Hz), the Laser Interferometric Space Antenna (LISA) has

also been planned [39] and is currently projected to be launched in the 2030s.

FIGURE 1.8: Expected sensitivity of Cosmic Explorer (CE) [37] with different arm lengths
compared to aLIGO and Einstein Telescope (ET-D) sensitivity. This figure demonstrates
the seismic noise wall at low frequencies and the quantum noise at high frequencies. The
other noise sources contribute to the total noise in the intermediate frequencies. CE is
planned to be about more than 10 times more sensitive aLIGO, thus greatly increasing the

number of sources we could observe.

1.4 Analysing detector data

Any physical system with a time varying quadrupole moment can generate gravitational

waves. Potential sources of GWs that could be observable by ground based detectors

include, among others, i) Compact Binary Coalescence (CBCs) leading to short transient

GW signals; ii) Deformed rotating neutron stars which act as a source of continuous GWs;

iii) Core collapse supernovae leading to short burst signals; iv) GWs from cosmic strings that

form one of the sources of the stochastic background. See Sec:3 of [18] and references

within for description of the different sources.

In Section 1.3 we saw that the signal would be buried in the noise at the detector output.

So various data analysis techniques are employed to search for gravitational wave events

in the detector data and to measure the source parameters of a signal. There are different
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methods of searching for GWs from CBCs in the detector data and LIGO data is analysed

by the pyCBC search pipeline [40], gstLAL search pipeline ([41],[42]) and cWB (coherent

wave-burst) search pipelines ([43], [44]). The author would like to refer the interested reader

to [45]–[48] (and references therein) for the results of searching for non-CBC events during

the second observation run of LIGO. As this thesis is concerned only about binary black

hole signals, we will end the discussion for non BBH signals here.

Once the presence of a signal in detector data is confirmed, this data is cleaned and pa-

rameter estimation techniques based on Bayesian statistics are employed to measure the

source parameters. The accuracy of these measurements depend largely on the detector

noise, but systematic errors from model waveform inaccuracies can also affect measure-

ments. This section will give a brief introduction to the techniques employed to search for

signals, but the main focus will be on parameter estimation techniques. For further reading

of the different search algorithms, the author would like to refer the interested reader to the

references given above.

1.4.1 Searching for the signal

Let the output of the detector data (d(t)) be composed of a GW signal (h(t)) and the noise

(n(t)),

d(t) = h(t) + n(t). (1.30)

To check for the presence of a gravitational wave, one approach is to cross-correlate the

detector data with a set of theoretical template waveforms and calculate the signal to noise

ratio (SNR ρ) for each template. This set of template waveforms is called a template-bank.

The SNR of the data with a template h′(t) is given by,

ρ2 =

〈
d̃(f) | h̃′(f)

〉
〈
h̃′(f) | h̃′(f)

〉 , (1.31)

where d̃(f), h̃′(f) are the Fourier transforms of d(t) and h′(t) respectively, i.e.,

d̃(f) =

∫
d(t)e−2πiftdt, (1.32)

and 〈a(f)|b(f)〉 is the noise-weighted inner product between two functions,

〈a(f)|b(f)〉 = Re

[∫ ∞
−∞

a(f)b∗(f) + a∗(f)b(f)

Sn(f)

]
. (1.33)
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Sn(f) is the one-sided noise power spectral density (PSD) given by,

〈
n(f)n(f ′)

〉
=

1

2
Sn(f)δ(f − f ′) (1.34)

where the angular brackets denote an average over multiple noise realizations and δ(f−f ′)
is the Dirac delta function. This process is also known as match-filtering.

During match-filtering, if the SNR for a template with a given set of intrinsic parameters and

arrival time is higher than a pre-determined threshold then it might indicate the presence of

a signal during that time and it is counted as a trigger. But, it is possible that the trigger could

be due to the presence of non-stationary noise in the detector data, also called glitches. To

determine the statistical significance of a trigger to be from a real signal and not a glitch,

multiple other tests are done like co-incidence checks and signal consistency (χ2) tests.

The sensitivity of these searches largely depend on the template bank and the waveform

model used to build the same. As parts of this thesis concentrate on parameter inference

rather than signal detection, we will stop the discussion on signal searches here. For further

details on search pipelines, the author would refer the interested reader to [40], [41],[42],

[43], and [44] and references therein.

1.4.2 Measures of waveform accuracy

As mentioned in the previous section, the sensitivity of template banks towards detecting

gravitational wave signals depends in-part on the accuracy of the waveform model at recre-

ating the physical signals. The accuracy of a waveform model can be determined by its

match value, its faithfulness and effectualness( [49], [50]).

The normalized match between two waveforms, ha(f) and hb(f), is defined as the inner-

product (see Eq: 1.33) between the normalized waveforms. If the two waveforms are exactly

the same, then the match value would be 1.

M(ha(f), hb(f)) =
4

|ha(f)||hb(f)|Re
[∫ ∞

0

ha(f)h∗b(f)

Sn(f)

]
(1.35)

The faithfulness of a template waveform is defined as the normalized match maximised over

the extrinsic (time-phase of arrival) parameters keeping the intrinsic parameters the same.

Hence, we can write the faithfulness as,

F(ha(f), hb(f)) = Maxtc,φc [M(ha(f), hb(f))] (1.36)
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The effectualness of a template waveform is defined as the normalized match maximised

over the extrinsic and relevant intrinsic parameters. The extrinsic parameters are the dis-

tance (dL), sky-position (α, δ), polarisation (ψ) and time (tc) and phase of arrival (φc) with

the binary masses (m1,m2) and their spin vectors ( ~S1, ~S2) being the set of intrinsic param-

eters. If the vector of intrinsic parameters is given by ~λ, the effectualness is,

E(ha(f), hb(f)) = Max
tc,φc,~λ

[M(ha(f), hb(f))] (1.37)

The definition of the match as given in Eq: 1.35 is valid for non-spinning or aligned-spin

systems. For precessing systems, the match computation is slightly more involved and will

be discussed in more detail in Section 4.3.1.

1.4.3 Parameter Estimation basics

Let the detector output be given by ddd(t) and the noise of the detector be nnn(t). If a GW signal,

hhh(t), is present, then the output ddd(t) = hhh(t) + nnn(t). Once we have a GW signal detection, the

next step would be to infer the physical parameters of the source given a fixed waveform

model (parameter estimation) or comparing the different waveform models to decide the

most probable model given the detector data (model selection). Model selection is not used

in this study and so details regarding the same will not be discussed here. I closely follow

the PE treatment as given in [51] and would refer interested readers to the same (and

references therein) for further reading.

Let H be a gravitational waveform model family described by the parameters θθθ where θθθ

gives a N dimensional vector θθθ=( θ1, θ2, . . . , θN ) in the physical parameter space. Given

the detector data and a model, we can calculate the likelihood [p(ddd|θθθ,H)] of observing the

data ddd given a model H with parameters θθθ. The posterior probability over the physical

parameters θθθ [p(θθθ|ddd,H)] would then be proportional to the product of the likelihood with the

priors defined over the said parameters [p(θθθ|H)]. The posterior probability is then given by,

p(θθθ|ddd,H) =
p(ddd|θθθ,H)p(θθθ|H)

p(ddd|H)
, (1.38)

where the evidence (E), p(ddd|H), is the product of the prior and likelihood function integrated

over the physical parameter space θθθ,

p(ddd|H) =

∫
θθθ

dθ1dθ2 . . . dθNp(θθθ|H)p(ddd|θθθ,H). (1.39)
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Once we have the posterior probability density over θθθ, the posterior for one parameter eg:

θ1 can then be obtained by marginalizing over all other parameters,

p(θ1|ddd,H) =

∫
dθ2dθ3..dθNp(θθθ|ddd,H) (1.40)

The posterior probability density is the likelihood weighted by the prior and the posteriors

could be affected by the choice of prior used. The prior choice can be motivated by physical

considerations (for eg: placing the upper limit on distance prior based on distance reach

of the detector) or by the region of validity of a waveform model. Thus, the conclusions

drawn about the source parameters depend on the information about the system prior to

observations and data generated from the experiment. For example: For the case of black-

hole binary coalescence with total mass M, if the frequency of innermost stable circular

orbit, fisco ∼ 1
M , is lower than the seismic cut-off frequency of LIGO fcut, the signal will

be completely buried in the noise. Let Mu be the mass at which fisco(Mu) = fcut. This

information can then be used to place an upper limit bound on the total mass prior (Mu) for

our analysis as LIGO will be insensitive to systems with masses higher than Mu. Priors on

other parameters can be placed based on similar considerations. 6

The Likelihood function provides a measure of how well the hypothesis H with parameters

θθθ match the data ddd. Assuming gaussian distributed detector noise, given the data ddd, the

hypothesis H and parameter values θθθ, the likelihood is,

p(ddd|θθθ,H) ∝ e−
〈ddd−h(θθθ)|ddd−h(θθθ)〉

2 , (1.41)

where 〈ddd− h(θθθ)|ddd− h(θθθ)〉 is the noise weighted inner product given in Eq: 1.33 and Sn(f)

is the power spectral density (PSD) of the detector which is the Fourier transform of the

noise auto-correlation function (see Eq: 1.34).

Estimation of source parameters of the signal require computing the posterior density from

the likelihood and prior, Eq: 1.38. The space of the waveform parameters is a continuous

manifold with the prior and likelihood being smooth functions over the manifold. Generally,

the parameter space has high dimensionality (∼ 15 dimensional for precessing configura-

tions)(see Section 2.5) and, except for some simple special cases, the posteriors cannot be

computed analytically. So we need numerical methods to get an estimate of the posterior

distribution. One intuitive way would be to place a lattice over the parameter space and

find the maximum likelihood areas, but given the high dimensionality of the manifold and

computational constraints, such an approach is not feasible. So, we need other methods to

either estimate the posterior distribution or the total evidence.

6The example given here is an illustrative example of how various considerations can be used to specify
prior ranges, whereas for the actual PE codes, different priors are used.
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The LALInference package [52], a part of the open LSC Algorithm Libary (LALSuite) [53],

provides the necessary libraries to perform parameter estimation studies of the data given

a waveform model. The parameter estimation codes employ two different methods to obtain

the posterior.

1. Nested Sampling: The Nested Sampling algorithm, developed by Skilling [54], is a

Monte Carlo method where the total evidence for the problem is obtained first and

then the posterior distribution is calculated from the evidence. See Section 1.4.5 for

further details.

2. MCMC: The Markov Chain Monte Carlo (MCMC) algorithm estimates the posterior by

stochastically wandering through the parameter space, distributing samples propor-

tional to the posterior density. See Section 1.4.4 for further details.

Once we have the posterior distribution, the statistical quantities like the mean, median etc

can be calculated from it, but it is not always a certainty that the mean value reflects the true

parameters of the system. A more interesting quantity is the credible interval (CI), which

can be understood as the boundary of that region in the physical parameter space (R(θθθ))

that encompasses a given probability ’p’ of the total posterior,

p =

∫
R(θθθ)

p(ddd|θθθ,H) (1.42)

During parameter estimation of gravitational wave data, we generally compute the 90%

credible intervals.

1.4.4 Markov Chain Monte Carlo Algorithm

The basic idea behind MCMC algorithm is to estimate the parameter posterior distribution

by randomly sampling the parameter space and zeroing in on the target posterior. The

MCMC algorithm for GW data analysis employs the Metropolis-Hastings algorithm [55] to

generate new samples from existing ones via a proposal density function Q(θ′θ′θ′|θθθ). The new

sample proposal θ′θ′θ′ is accepted over the old one θθθ with probability rs = min(1, α) where,

α =
Q(θθθ|θ′θ′θ′)p(θ′θ′θ′|dddH)

Q(θ′θ′θ′|θθθ)p(θθθ|dddH)
. (1.43)

If accepted, θ′θ′θ′ is added to the chain or the process is repeated.

Typically, chains are started at random positions in the parameter space and they require

some initial number of jumps before dependence of initial positions of the chain is lost. This
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is called the burn in period and samples during the burn-in are discarded. Also, adjacent

samples are generally correlated. For statistical analysis, uncorrelated samples are required

and so, each chain is thinned by its auto-correlation time (ACT) τ which is given by,

τ = 1 + 2
∑
t

ĉ(t), (1.44)

where t labels the iteration of the chain and ĉ(t) is the Pearson correlation coefficient be-

tween the chain of samples and itself shifted by t samples. The chain is thinned by accepting

every τ th sample and the samples left after the burn-in and ACT thinning are called effective

samples. The efficiency of this algorithm (acceptance rates & ACT) is largely governed by

the jump proposal density function Q. In LALInference, the MCMC algorithm uses various

jump proposals tailored for the GW parameter estimation problem.

1.4.5 Nested Sampling

Nested Sampling is a computational algorithm developed by Skilling [54] in which the ev-

idence E is computed first, from which the posterior distributions of the parameters are

obtained. In this method, the multi-dimensional evidence integral, Eq: 1.39, is transformed

into a one-dimensional integral over the prior volume. The prior mass, given by X(λ) such

that dX = dθθθp(θθθ,H), is the fraction of total prior volume where the likelihood is greater than

λ. Thus,

X(λ) =

∫
p(ddd|θθθ,H)>λ

dθθθp(θθθ,H). (1.45)

Thus the evidence integral,

p(ddd|H) =

∫
dθθθp(θθθ|H)p(ddd|θθθ,H) =

∫ 1

0
L(X)dX, (1.46)

where L(X) is the inverse of Eq: 1.45 and is a decreasing function of X. The region in prior

space with the highest likelihood value will be mostly concentrated near the real parameters

whereas the full prior region will have an overall much lower likelihood.

As the prior is normalised, X(λ = 0) is the surface with the highest possible likelihood,

Lmax, whereas X(λ = 1) is the surface enclosed by the minimum likelihood contour Lmin.

In the presence of a signal, the evidence integral will be dominated by a small region of prior

space where the likelihood is highest.

The basic idea behind nested sampling is to estimate the evidence integral by a selecting

a set of random points and evolving those towards regions of higher likelihood (smaller

prior mass) in the prior volume until a stopping criterion is reached. Consider a set of
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monotonically decreasing prior masses (X1,X2,X3, ...,Xn) that are obtained at the end

of sampling with corresponding likelihood values (L1,L2,L3, .....,Ln). Then the evidence

integral is approximated by the trapezium rule as:

E =
∑
i

1

2
(Xi−1 −Xi+1)Li (1.47)

The nested sampling algorithm works as follows. Initially, a set of N "live points" are ran-

domly sampled from the prior distribution, each with its likelihood. Then, the sample with

the lowest likelihood is removed to be replaced by a sample with a higher likelihood. The

evidence integral is computed at each iteration. The process is stopped until a stopping

criterion is reached. Defining the weight assigned to each sample as wi = Xi − Xi−1, the

stopping criterion is reached when Lmaxwi/Ei > e−5, where Lmax is the highest likelihood

found by the sampler yet and Ei is the current evidence estimate.

To summarise, the nested sampling algorithm goes through these 4 phases [56]:

1. Draw a sample of N live points from the prior p(θθθ). Thus the set of live points ∈
(θθθ1, θθθ2, θθθ3, ....., θθθN ) and compute the associated likelihood values.

2. Set E0 = 0, i = 0, log(w0) = 0. Thus, the initial likelihood surface contains all the

possible values of likelihood.

3. While Lmaxwi/Ei > e−5:

• i = i + 1

• Lmin = min ({Lα})
• log(wi) = log(wi−1)−N−1

• Ei = Ei−1 + Lminwi
• Replace θθθmin with a θθθ drawn from remaining prior volume, i.e, θθθ ∼ p(θθθ,H) :

L(θθθ) > Lmin

4. Compute the evidence integral.

As the nested sampling algorithm proceeds, the list of points used in approximating the

evidence, their likelihood values and parameter vectors are stored. The samples for prior

mass Xi are drawn from the prior volume enclosed by the corresponding likelihood contour.

This means that the prior density of the samples within the volume is boosted by a fraction

proportional to the prior mass at that iteration. If the nested sampling prior probability is

given by p(θθθ|NS), then,

p(θθθ|NS) =
p(θθθ,H)

Xi
. (1.48)
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The posterior is ∝ Likelihood × Prior, Eq: 1.38. We can replace the prior in there with

Eq: 1.48 to give,

p(θθθi|ddd,H) ∝ p(θθθi|NS)p(ddd|θθθi,H)Xi. (1.49)

Thus, post-processing the output of nested sampling gives the joint posterior probability dis-

tribution from which the posteriors of individual parameters could be computed by marginal-

izing over the other parameters.



Chapter 2

Coalescing Black Hole Binary

Waveforms

Any source of matter with a time varying quadrupole moment can generate gravitational

waves (see Eq: 1.16). Binary (or trinary etc.) systems, supernovae, deformed neutron stars

(or black holes) and early universe phase transitions are just some of the possible astrophys-

ical sources [18]. In the sensitive frequency band of LIGO though, the strongest signals are

expected to come from coalescing black-hole (BH) binary systems, binary neutron star (NS)

systems and binary BH-NS systems. During the second observation run of LIGO (O2), the

detectors were sensitive to a binary NS merger at a distance of up to 80 Mpc (LHO) and

100 Mpc (LLO) [8].

To infer the physical parameters of the GW source, waveform models are required that pre-

dict the GW strain for all possible configurations of all classes of sources. Solving Einsteins

equations for sources that can generate GWs is analytically impossible due to the non-

linear structure of those differential equations. There exist a gamut of numerical techniques

to solve these equations, but all are computationally expensive and not feasible for param-

eter estimation techniques. So, various approximate models have been developed, which

employ different methods of construction for different types of systems.

For a binary BH system, the waveform would depend on the mass-ratio (q) of the system,

the individual spins of the black hole (~S1, ~S2) 1 and the eccentricity of the orbit. For most

cases, it can be shown that the eccentricity of the orbit would be radiated off as the system

nears merger and the orbit would be quasi-circular [57], [58]. Although work on eccentric

waveforms is ongoing and interesting (as presence or absence of eccentricity could help in

inferring formation mechanisms), we will concentrate on quasi-circular binaries.

1No charge will be considered on the black hole. As it is, most black holes are expected to loose any charge
in vacuum before the merger actually occurs

23
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FIGURE 2.1: All three configurations of a coalescing binary system.

If a NS is present as one (or both) of the binary objects, it would start undergoing tidal

deformations as it nears merger and these deformations would leave their imprint on the

final waveform. The actual deformations and their imprint depend largely on the equation of

state (EOS) of the NS [59]–[61](and references therein).

Binary black hole systems can be classified into three categories, depending on the direction

(or presence) of spins.

• Non-spinning systems: As the name implies, these systems are where both of the

BHs are non-spinning. The direction of the angular momentum vector(L̂) is unchang-

ing in time and the orbital plane of such a system remains fixed. These systems have

only two intrinsic parameters, i.e., the individual masses m1 and m2.

• Aligned-spin systems: In these configurations, both spins of the BHs are aligned

(anti-aligned) to L̂. Along with the mass parameters, the two spins add two extra

dimensions to the intrinsic parameter space. The presence of spins (anti-)parallel to

L̂ (decreases) increases the total time to merger as compared to a corresponding

non-spinning system. This is also called the orbital hangup effect [62].

• Precessing systems: These systems fall under all other possible spin configurations.

When the spins are randomly oriented, the spins couple with orbital angular momen-

tum and each other causing ~L to precess around the total angular momentum ~J . This

causes a wobbling of the orbital plane of the binary, which results in an overall mod-

ulation of the gravitational waveform. The intrinsic parameter space is 8 dimensional

(2 mass and 6 spin) for precessing systems.

See Fig: 2.1 for the three configurations and Fig: 2.2 for how the waveforms differ for different

configurations. Given a physical BBH system, the total mass (M(M�)) acts as an overall
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FIGURE 2.2: Representative time-domain waveforms from a non-spinning (red), aligned-
spin (blue) and precessing (black) q=8, 90M� system at 100MPc inclined at θ = 60o.
The aligned spin waveform has ~S1 = ~S2 = (0, 0, 0.9) and the precessing waveform has
~S1 = (0.8, 0.2, 0.5) and ~S2 = (0.8, 0.2, 0.). Notice the increased length of the aligned-spin
waveform as compared to the non-spinning system (consequence of the orbital hang-up ef-
fect) and the extra modulations to the amplitude of the precessing system (consequence of
the wobbling of the orbital place). These waveforms were created using the IMRPhenomPv2

model [63].

scale and so, for waveform modelling, the intrinsic parameter space dimension reduces by

one. For eg: for precessing systems, the intrinsic parameters would be defined by the mass

ratio (q) and the six components of the spins.

GWs from a coalescing binary system can be split into three regions: the inspiral phase,

merger phase and ringdown phase. During the inspiral phase, the masses are far away

from each other and the characteristic velocity (vc) of the system is small, i.e., vc << c. For

the inspiral phase, the black holes are considered as two point particles and the equations of

motion are expanded beyond the leading Newtonian order in terms of the Post-Newtonian

(PN) parameter v/c << 1. Equations of motion obtained in this way are called the PN

equations and the corresponding waveforms the PN waveforms (see [64] for a review on

PN theory and its applications in GW waveform modelling). The PN equations become less

accurate when the system nears merger as v/c ∼ 1.

Post merger, the final BH will be deformed and the deformities are radiated off until the BH

settles down to a stationary Kerr solution. This signal can be modelled as a set of damped

functions with frequencies as predicted from Teukolsky’s equations [65]. These frequencies

are called the Quasi-Normal mode (QNM) frequencies and the final signal is colloquially

termed as the ringdown signal [66]. Using information from NR simulations, the binary

parameters can be mapped to QNM frequencies and amplitudes leading to a model for the

ringdown signal [67] [68] [69].
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For the merger phase, different strategies have been developed. One is to rewrite the

Hamiltonian of the two-body system as the Hamiltonian of an effective one-body system in

deformed Kerr space-time [70] [71] and add corrections to the solution during the plunge-

merger phase [72], [73]. These corrections are tuned to Numerical Relativity (NR) wave-

forms. Waveform models built using the effective one body (EOB) approach, and tuned

to NR simulations are generally called EOBNR waveforms [74], [75]. Another strategy is to

phenomenologically model the merger part (amplitude & phase), tune the model to NR

waveforms and attach the merger waveform to the inspiral and ringdown [76]. We will dis-

cuss the phenomenological family of waveform models in more detail in Section 2.6 since

these are the models used predominantly in this thesis. Both strategies have had success

in modelling inspiral-merger-ringdown (IMR) waveforms for non-spinning, aligned-spin and

precessing BH systems.

In general, a coalescing binary system is fully specified by a total of 15 parameters.

1. Two masses of the individual black holes, m1 & m2. Generally, the individual masses

are re-parametrised in terms of chirp mass and symmetric mass-ratio (M, η) where

Mc = Mη3/5 and η = m1m2
(m1+m2)2

.

2. Six spin parameters, ~χi defined as ~χi =
~Si
m2
i

where ~Si and mi are the angular momen-

tum and mass of the ith black-hole and 0 ≤ |~χ| ≤ 1

3. Luminosity distance to the source dL.

4. Right ascension α and declination δ of the source.

5. The inclination angle θJN between the total orbital angular momentum vector and line

of sight.

6. The polarisation angle ψ that describes the relative orientation between the GW po-

larisation axes and detector axes.

7. The reference phase φc at the reference time tc.

In this chapter, I will first describe the expected gravitational waveform from a BH binary in

the quadrupole limit, Post-Newtonian (PN) waveforms, Numerical Relativity (NR), construc-

tion of PN-NR multimode Hybrid waveforms, and end with a description of the IMRPhenom

family of waveforms.
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2.1 Quadrupole radiation from quasi-circular binary

Consider a binary system of two objects of mass m1 and m2 going around each other in

a circular orbit with frequency ω and separation R. For the solution below, we will not be

considering higher-order effects like radiation reaction, etc. Choosing the reference frame

as the centre of mass (COM) frame and the z-axis along L̂ (so that the orbital plane is in the

x-y plane), the co-ordinates 2 can be written as,

x(t) = Rcos(ωt), (2.1)

y(t) = Rsin(ωt), (2.2)

z(t) = 0. (2.3)

In the COM frame, the mass moment (see Eq: 1.15) is,

M ij =
m1m2

m1 +m2
xixj . (2.4)

Defining m1m2
m1+m2

= µ, the above equation gives the moment derivatives,

M̈11 = −2µR2ω2cos(2ωt), (2.5)

M̈12 = −2µR2ω2sin(2ωt), (2.6)

with M11 = −M22. Plugging the above quantities in Eq: 1.17 and Eq: 1.18 gives the GW to

be,

h+ =
4G

c4r
µR2ω2cos(2ωt), (2.7)

h× =
4G

c4r
µR2ω2sin(2ωt). (2.8)

Now, from Keplers third law, ω =
√
M/R3, the velocity v2 = M/R and defining the sym-

metric mass ratio η = m1m2/(m1 +m2)2 gives us the signal amplitude as h+,× ∝Mηv2/r.

2.2 PN waveforms

The calculation in Section 2.1 does not take into account the energy radiated from the binary

system by gravitational waves. The energy flux reduces the orbital separation and increases

the orbital frequency in time. This characteristic increase in frequency is why coalescing

binary signals are also colloquially known as chirp signals. Previous studies have shown

that for accurate parameter measurements, the template and signal waveform should not

2Disregarding any reference phase/time
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de-phase by more than one cycle over the detection band [77]. Hence, it is important to

accurately model the total accumulated phase of the coalescing binary.

In Post-Newtonian (PN) theory, the idea is to expand the equations of motion for two point

particles in terms of the parameter v/c << 1 beyond the leading Newtonian order and

include terms consistent in PN order to solve them.

The instantaneous frequency at time t (ω(t)) is,

ω(t) =
dφ(t)

dt
. (2.9)

Integrating this gives the phase to be,

φ(t) =

∫ t

t0

ω(t′)dt′ =

∫ ωf

ωi

ω

ω̇
dω. (2.10)

Let the energy of the system be E(t) and the outgoing flux be F(t). These two quantities

are related by the energy-balance equation,

F(t) = −dE(t)

dt
. (2.11)

Defining the parameter x =
(
GMω
c3

)2/3
as our PN parameter, we can rewrite Eq: 2.11 as [78],

ω̇

ω
= − 3

2x

(
dE(x)

dx

)−1

F(x). (2.12)

So, if we have the functional forms of F(x) and E(x), the term
(

dE(x)
dx

)−1
can be Taylor

expanded in x, and Eq: 2.12 can be solved by keeping terms up to consistent PN order

beyond the leading PN order.

As a demonstrative example, the energy and flux to 1PN for non-spinning binaries is 3,

E(x) = −µc
2x

2

(
1 + x

(
−7

4
+
η

4

))
, (2.13)

F(x) = −32c5

5G
η2x5

(
1 + x

(
−1247

336
− 35η

12

))
, (2.14)

using which we get,
ω̇

ω2
=

96

5
ηx5/2

(
1 + x

(−743

336
− 11

4
η

))
, (2.15)

giving,

φ(x) = φ0 −
1

32η

(
x−5/2 + x−3/2

(
3715

1008
+

55

12
η

))
. (2.16)

3See Eq: (6.4), (6.5), (8.3) and (8.4) of [78]
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There are various strategies in which the above equations are expressed in terms of time (t)

or velocity (v) and then the solutions are computed accordingly. Depending on how the solu-

tion is obtained, the PN waveform models are called TaylorT1, TaylorT2, TaylorT4 [64], [79]

etc. and are available in the LALSimulation package [53]. Studies of non-spinning bina-

ries have shown that these different models agree with each other at 3.5PN and are good

enough for detection purposes at low total masses (M< 12M�) [80]. Comparisons between

the PN models and numerical relativity waveforms show a very low amount of dephasing

(within numerical uncertainty) and amplitude differences (. 1% within the regime of PN

validity) [81] [82].

Eq: 1.12 gives the expansion of the stress-energy tensor in the weak-field limit with the first

term being identified as the dominant quadrupole moment. For accurate inspiral waveforms,

the higher order terms need to be considered as well. Depending on the symmetry of

those tensorial terms, they are classified as radiative mass-type (UL) or current-type (VL)

moments (see [64] [83] [84] for more details). In this formalism, the GW strain as observed

from direction n̂ and distance R from the source, can be written as (up to any multipolar

order l),

hTTij =
4G

c2R
ΛTTij,kl(n̂)

∞∑
l=2

1

cll!

{
NL−2UklL−2(tr)−

2l

c(l + 1)
NaL−2εab(kVl)bL−2(tr)

}
, (2.17)

with tr being the retarded time. In this notation, L = i1, i2, . . . , il is a multi-index of l

multipolar spatial indices (not to be confused with gravitational wave mode l) (1 ≤ ii ≤ 3)

with L− 1→ i1 . . . il−1; NL = Ni1 , . . . , Nil gives the product of l spatial vectors Ni and εijk
is the usual Levi-Civita antisymmetric symbol.

Gravitational waves, being a tensor field, can be decomposed into spin-weight -2 spherical

harmonic basis (Y −2
lm (θ, φ)). This allows us to write a gravitational waveform in terms of its

spherical harmonic modes (or simply GW modes hlm). Any gravitational wave strain h(t)

composed of plus (h+) and cross (h×) polarisations can be written as,

h(t, θ, φ) ≡ h+(t, θ, φ)− ih×(t, θ, φ) =
∑

l,−l≤m≤l
Y −2
lm (θ, φ)hlm(t). (2.18)

In [85], the author relates the multipole moments of GW strain to mass and current radiative

moments as,

hlm =
2G√

2Rcl+2

(
Ulm(tr)−

i

c
Vlm(tr)

)
, (2.19)

where Ulm(tr) and Vlm(tr) are related to their symmetric trace-free components as given in

Eq.(13) and Eq.(14) of [85]. This allows us a PN based method to obtain the higher-order

multipole moments for GW strain in the inspiral regime.
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For accurate PN waveforms, multiple different effects need to be considered, for example:

radiation reaction, spin-orbit couplings, spin-spin couplings, tidal effects, eccentricity [86],

[87], gravitational wave tails [88], [89], memory effects [90], [91] (and references therein)

etc. Whereas effects of tidal deformation are applicable only when one of the binary object

is a neutron star, all other effects arise naturally from either expanding the above PN ex-

pressions to higher orders (for eg: spin-spin coupling) or from inclusion of non-linearities in

the PN equations (for eg: gravitational wave tails). Work is ongoing to obtain expressions to

consistent higher PN orders, but the author will leave it for the reader for further reading on

PN waveform formalism and current status (see [64]).

2.3 Numerical Relativity

The Post-Newtonian approximation is an accurate description of the orbital dynamics and

waveform during the inspiral regime for a binary coalescence. As the system nears merger,

v/c ∼ 1, the PN approximation no longer remains valid. Where for the inspiral region (when

Mω < 0.1) the amplitude differences between NR and PN waveform (with amplitude cor-

rections up to 3PN) are . 1%, the errors & 4% as the system nears merger (see Fig:21

of [81]). For high mass BBH systems observable by LIGO, most of the signal power will be

contained in the merger part and so it is important to have accurate merger signals. The ba-

sic approach used to obtain NR waveforms is to decompose the full space-time manifoldM
into slices of 3 dimensional space-like hypersurfaces each defined at a particular time. Such

a splitting of the full manifold into slices of hypersurfaces is called the 3+1 decomposition.

See [92] for a complete treatment of NR.

In this formalism, Einstein’s equations are split into constraint equations at each slice along

with time evolution of the induced metric (γij) and extrinsic curvature (Kij). Solving the

constraint equations on the zeroth hypersurface allows us to determine the initial data, and

then the metric on all other hypersurfaces can be found by solving the evolution equations.

The standard method of writing 3+1 decomposition evolution equations is in the Arnowitt-

Deser-Misner (ADM) [93], [94] co-ordinate basis (see Eq: A.19), but these equations (see

Eq: A.22 and Eq: A.23) are ill-posed and weakly hyperbolic leading to unstable solutions

while solving numerically. I would like to refer the interested reader to Appendix:A or Chapter

2 of [92] for a more extensive treatment of the 3+1 decomposition.

The 3+1 constraint and evolution equations can be reformulated in terms of conformally

rescaled variables (ψ, γ̃ij , Ãij ,K) where ψ is the conformal factor and (γ̃ij , Ãij ,K) are the

rescaled intrinsic metric, trace-free part of Kij and trace of the extrinsic curvature respec-

tively. In this formulation, three extra connection functions, Γ̃i = −∂j γ̃ij , are introduced and

with this, the evolution equations reduce to wave equations for the conformal metric coupled
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to evolution of the Γ̃i’s. The evolution equations reformulated in this way are strongly hyper-

bolic, which allows the numerical evolution to be robust. This way of writing the equations

is called the Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formulation ( [95], [96] or Sect.

11.5 of [92]). The conformally related factors are,

γij = ψ4γ̃ij Aij = ψ−4Ãij K = K̃ and Kij = Aij +
1

3
γijK. (2.20)

The quadrature, (ψ, γ̃ij , Ãij ,K) will provide us with all the required data on one time-slice.

Another major issue is dealing with the black-hole singularities. The Schwarzschild metric

(in Schwarzschild co-ordinates) for a BH has a co-ordinate singularity at R = 2M and a

physical singularity at R = 0. There are two ways of dealing with the BH singularity; i) to

remove the region of BH from the computational domain (BH excision method [97] [98] [99])

or ii) to conformally map the singularity to a wormhole or trumpet topology (BH moving

puncture method) [100] [101] [102] [103].

2.3.1 Initial data for BBH systems

Appendix:A shows how Einstein’s equations can be reformulated in the 3+1 decomposition

formalism. To evolve the system, we need a set of initial conditions on the initial hypersurface

Σ0 and then we need to solve the Hamiltonian (Eq: A.16) and momentum (Eq: A.17) con-

straint equations to provide (γab,Kab). Multiple strategies for solving constraint equations

to obtain the initial data and to find solutions of evolution equations have been developed,

see [104] for a review on various methods of solving initial data.

In the transverse-traceless frame, under the assumption of conformal flatness (γ̃ij = ηij)

and maximal slicing (K = 0), the momentum and Hamiltonian constraint equations get

decoupled from each other in vacuum. Under this assumption, the momentum constraints

can be solved analytically for black holes with linear momentum and spins, with numerical

solutions for the Hamiltonian constraint. The data obtained via this approach is called the

Bowen-York [105] data. (See Sec:3.2.1 of [104] and Sec:12.2.1 of [92] and references

therein)

Geometry of space in the exterior of a non-spinning black-hole is given by the Schwarzschild

metric. The line element is,

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2 where, f(r) = 1− 2M

r
. (2.21)

As mentioned before, this metric has a co-ordinate singularity at r = 2M and a physical sin-

gularity at r = 0. A co-ordinate transformation is then needed to remove the singularity from
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FIGURE 2.3: 2D embedding dia-
gram of BH on the initial slice in
wormhole puncture where the sin-
gularity is mapped to an asymptoti-

cally flat end [103].

FIGURE 2.4: 2D embedding dia-
gram of BH on the initial slice in the
"trumpet" solution where the singu-
larity at r=0 maps to a infinitely long

cylinder of radius 3M/2 [103].

the evolution code. We can go to the isotropic co-ordinates where the physical singularity

at r = 0 is mapped to another conformally flat sheet, which leads to a two sheet topology

connected by a wormhole at r = 2M (see Fig: 2.3). When this initial data is evolved using

the "1+log" slicing for the lapse and Gamma-driver condition for shift function (see Fig: A.3

and Eq: A.18 for a explanation of the lapse and shift functions), the second conformally flat

sheet settles to a infinitely long cylinder (or a "trumpet") of R ∼ 1.3M [106](see Fig: 2.4).

In these co-ordinates, the lapse function is negative on the second sheet which can lead to

instabilities during numerical evolution of the data. It has been found that using "trumpet"

co-ordinates data leads to stable evolutions [103]. In these co-ordinates, the region around

the physical singularity is converted into an infinitely long cylinder. For maximally sliced data

(K = 0), this cylinder has a radius of ∼ 1.5 M [107].

In the evolution equations, the choice of shift (βi) and lapse (α) functions are arbitrary, due

to the gauge freedom of the problem. As given in [103], for trumpet solutions, the initial

lapse and shift are,

α =

√
1− 2M

R
+
C2

R4
, (2.22)

βR =
αC

R2
, (2.23)

where C = 3
√

3M2/4 and R ∈ [1.5M,∞]. The lapse function is then evolved with

the "1+log" slicing condition and the shift function is evolved by the Gamma-driver condi-

tion [108],

(∂t − βi∂i)α = −2αK, (2.24)

∂tβ
i =

3

4
Bi, ∂tB

i = ∂tΓ̃i − ηBi, (2.25)
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where η is a positive function of space and time [109].

2.3.2 BAM Code

Currently, there exist multiple codes that simulate the late stages of a BBH merger: i) the Bi-

functional Adaptive Mesh (BAM) code [110], [108], ii) Spectral Einstein code (SpEC) [111], [112],

iii) The Einstein Toolkit [113] to name a few. See [114] for a review of the current state of

numerical relativity codes. Different groups use different codes for numerical simulations

and public catalogues of the waveforms are available: SXS waveforms [115], RIT wave-

forms [116] and a database of NR waveforms from the LIGO-Virgo Collaboration (LVC) are

available at [117]. In this thesis, I used the BAM code to generate NR waveforms, and so

will briefly summarise its working. We also use the publicly available SXS waveform for

constructing hybrid waveforms in Chapter- 5.

For the BAM code, wormhole puncture initial data are computed using the conformal transverse-

traceless decomposition method. Initially, the background metric is assumed to be confor-

mally flat with maximal slicing, i.e., γij ∝ ηij and K = 0. Under these conditions, the

constraint equations are solved using a pseudo-spectral elliptic solver [118].

The initial data are then evolved using the BSSN formulation of the 3+1 decomposition equa-

tions with the χ-variant of the moving puncture method [100], [101]. The spatial derivatives

are computed using sixth-order finite differencing [119] and the time integrals with a fourth

order Runge-Kutta time integrator with Berger-Oliger type adaptive mesh refinement [120].

The lapse function is evolved with the "1+log" slicing condition and the shift vector with

Γ-driver shift conditions [108].

In BAM, the computational domain consists of a set of moving and non-moving nested

Cartesian grid boxes with different grid resolutions (to be specified by the user). So, there

are Lmax + 1 (L=0,1,2,3...,Lmax) boxes with Nl (user determined) grid points along each

axis, the 0th box being the level with coarsest resolution and the boxes at level Lmax having

the finest resolution.

For BAM, the Newman-Penrose formalism [121] is used for gravitational wave extraction

where the Weyl scalar (Ψ4) is computed at pre-specified extraction radii [108]. The scalar

Ψ4 is constructed from the 4D Riemann tensor by contracting under a complex null-tetrad

basis. The code provides the Ψ4 information and the gravitational wave strain h(t) and Ψ4

are related as,

Ψ4(t) = ∂2
t (h+(t)− ih×(t)) . (2.26)
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Generally, Ψ4(t) is decomposed in the spin weight -2 spherical harmonic basis to give its

modes (Ψlm
4 (t)),

Ψ4(t) =
∑
l,m

Y −2
lm (θ, φ)Ψlm

4 (t). (2.27)

2.4 Hybrid waveforms

Post-Newtonian (PN) waveforms are fast to compute and provide a very accurate model for

the inspiral waveform, although the PN approximation becomes less accurate as the binary

nears merger. Numerical Relativity (NR) waveforms are computationally very expensive,

but give the most accurate waveforms for late-inspiral, merger and ringdown phases of a

BBH coalescence. For detection and parameter-estimation purposes, we require waveform

models that are fast and accurate and describe the full inspiral-merger-ringdown(IMR) of a

BBH coalescence. In building such waveform models, we require a target set of accurate

IMR waveforms and the best way to do that is to build Hybrid waveforms 4.

Assume we have PN and NR waveforms for the same system. If the NR waveform is long

enough, there would be a common region where both the waveforms are accurate and agree

with each other. The basic idea behind constructing hybrid waveforms is to stitch together

the PN and NR waveforms within the valid region to get a full IMR waveform.

Suppose we have infinitely accurate PN and NR waveforms (hPN (t),hNR(t)) for a given

system. Let t0 be a time in the region where the waveforms overlap. Then, the two wave-

forms should be the same up to an overall time and phase shift, i.e.,

hPN (t0) = hNR(t0 + τ)eiφ0 . (2.28)

The frequency of the waveform, ωi(t) = dφi(t)/dt (i = PN,NR). Instead of choosing a

reference time, we can choose a reference frequency ω0 and given t(ω) for both, we can

see τ would be,

τ = tNR(ω0)− tPN (ω0), (2.29)

with ,

φ0 =
hPN (tPN (ω0))

hNR(tNR(ω0))
. (2.30)

2.4.1 Quadrupole hybridisation

Eq: 2.28 will not be perfectly valid for actual PN/NR waveforms as there will be both numer-

ical inaccuracies during waveform computation and inaccuracies in the PN approximation.
4The description given in Section 2.4.1 and Section 2.4.2 closely follows the one in [122]
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So, we need a way to find the optimal time and phase shift so that the two waveforms would

match accurately over some interval. Suppose we wish to hybridise over the time inter-

val [t0, t0 + dt] where t0 can be chosen arbitrarily or it could be the time at the reference

frequency tPN (ω0) = t0. Define the quantity ∆(t0, dt, τ) as,

∆(t0, dt, τ) =

∫ t0+dt

t0

(ωPN (t)− ωNR(t− τ))2 dt. (2.31)

For a given set of (t0, dt), the hybrdisation time shift (τ0) would be the one that minimizes

∆(t0, dt, τ), i.e., τ0 = min
τ

∆(t0, dt, τ). Once we have τ0, the phase shift (φ0) could be

defined as either φ0 = φNR(t0 − τ0)− φPN (t0) or one that minimizes,

Φ(φ) =

∫ t0+dt

t0

(φNR(t− τ0)− φPN (t) + φ)2dt. (2.32)

With these quantities, we can define the hybrid waveform as,

hhyb(t) =


eiφ0hPN (t+ τ0) if t < t0 − τ0

w−(t)eiφ0hPN (t+ τ0) + w+(t)hNR(t) if t0 − τ0 < t < t0 − τ0 + dt

hNR(t) if t0 − τ0 + dt < t

(2.33)

where w−,+(t) are blending functions. The choice of the blending function is arbitrary.

In [123] a cosine blending function is used, whereas in [122] a linear function was used.

For this thesis, we use a Planck taper windowing function for blending the PN and NR

waveforms. This procedure could be used to hybridise the (2,2) modes of PN/EOB and NR

waveforms for any system. See Fig: 2.5 for a plot of the hybridized (2,2) mode waveform for

a q=8 non-spinning system.

2.4.2 Multi-mode hybridisation

Eq: 2.18 gives the expansion of gravitational wave strain (h(t, θ, φ)) data into its spherical

harmonic modes (hlm(t)). Any PN or NR waveform is computed in a specific coordinate

system, which are not the same in general. Two waveforms for the same system ha(t, θ, φ)

and hb(t, θ, φ), computed in different co-ordinate systems, should be the same up to a

overall time, phase and polarisation shift. For the (2,2) mode construction, the polarisation

shift is not considered as it could be absorbed in the phase-shift, but the same idea does

not carry forward to multi-mode hybrids. The phase of any hlm mode would be∼ m∗φorb(t)
where φorb(t) is the orbital phase. Thus, a phase shift of φ0 that would hybridize the (2,2)

mode, would be ∼ m
2 φ0 for the (l,m) mode. The polarisation shift is required to align the
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FIGURE 2.5: The plot shows the h+ polarisation for a q=8 non-spinning system. The NR
(SXS_BBH_0063 [116]) waveform is shown in grey and the inspiral waveform obtained
from a Effective One Body (EOB) solver is shown with a black-dashed line. The region of
hybridisation is shown by the two vertical black-lines. In the zoomed-in box, observe the
de-phasing between the NR/EOB waveform and different post-merger signal morphology.

(h+, h×) axes of the two waveforms. Thus,

ha(t, θ, φ) = eiψ0hb(t+ τ, θ, φ+ φ0), (2.34)

giving the individual modes,

halm(t) = ei(ψ0+mφ0)hblm(t+ τ). (2.35)

So, to construct multi-mode hybrids, we require three quantities; (τ, φ0, ψ0). Any mode hlm
is related to hl−m by hlm(t) = (−1)lh∗l,−m(t), which implies ψ0 ∈ {0, π}.

For the time shift, we can use the same procedure as for the (2,2) mode and find the τ that

minimizes Eq: 2.31. Once τ0 is determined, we need to find φ0 and ψ0. Define ∆φlm as,

∆φlm = φNRlm (t0 − τ0)− φPNlm (t0). (2.36)

Under the condition of Eq: 2.35, for the (2,2) mode, the quantities (ψ0, φ0,∆φ22) follow,

ψ0 + 2φ0 + ∆φ22 = 0 mod 2π, (2.37)

giving,

φ0 = −(∆φ22 + ψ0)

2
mod π. (2.38)
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Now, we have already argued for ψ0 ∈ (0, π); and with that condition for polarisation, we get

4 possible solutions,

(ψ0, φ0) =

(
κπ,−∆φ22

2
+
(
κ′ − κ/2

)
π mod 2π

)
, (2.39)

with κ ∈ (0, 1) and κ′ ∈ (0, 1). So, we need to break the degeneracy of the possible

solutions for a given set of modes. This can be done by using the modes other than the

dominant quadrupole. If we have a non-zero mode hl∗,m∗ with (l∗,m∗) 6= (2, 2), we can

re-write Eq: 2.37 for this mode as,

ψ0 +m∗φ0 + ∆φl∗m∗ = 0 mod 2π. (2.40)

Using this information, we can obtain the phase and polarisation shifts for multi-mode hy-

brids.

2.5 Precessing systems

In the introductory section of this chapter I have mentioned the differences between non-

spinning, aligned-spin and precessing BBH systems and Fig: 2.2 highlights the morphology

of precessing waveforms compared to the other two. This section will discuss precessing

BBH systems in more detail.

For BBH systems with no spins or with spins aligned along the direction of the orbital an-

gular momentum (~L), ˙̂
L = 0, so the orbital plane of the binary is unchanging. When the

spins have some component perpendicular to ~L, ˙̂
L 6= 0 and ~L starts precessing around

the total angular momentum ( ~J ) and the orbital plane precesses. This precessional mo-

tion adds extra modulation to the phase and amplitude of the gravitational waveform (see

Fig: 2.2). Throughout the coalescence, the spins and angular momentum vector precess

around the total angular momentum ~J , which changes slowly over the whole coalescence

timescale. This type of precession is called simple precession. For simple precession, ~J is

a approximate constant of motion.

For some systems though, it is possible that |~L| ∼ |~S| and L̂ ∼ −Ŝ. During inspiral, the

spins change slowly, but ˙|L| < 0 due to radiation of the angular momentum. As ~L ∼ −~S,

| ~J | is small and small changes in |~L| during the inspiral strongly affect the evolution of ~J .

For such cases, ~J can cross the x-y plane (see Fig: 2.6). This type of precession is called

transitional precession [125], [126]. Systems that could undergo transitional precession

must have finely tuned parameters, so that ~J can flip across the orbital plane, and it would

be a rare occurrence for an astrophysical system within the detectors sensitivity band to
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FIGURE 2.6: The left plot shows the evolution of ~L and ~χ and the right plot shows the
evolution of ~J for a system undergoing transitional precession. Image used for reference

purpose only from [124].

have such parameters [126]. In this thesis we will not be dealing with transitional precession

and so will end the discussion here.

During inspiral, precessing BBH dynamics have two intrinsic (but largely different) time

scales, the time scale of one precession cycle (tprec) and the time scale of one orbit (torb)

with tprec � torb
5. This allows us to define a frequency associated with precessional

motion (ωprec) along with the orbital frequency (ωorb) for the system. From Eq: 2.10, we un-

derstand the phase of the waveform to be the integrated frequency over some time period.

For precessing systems, the phase gets a contribution from ωprec along with ωorb, i.e.,

φprec(t) =

∫ t

t0

(ωorb(t
′) + ωprec(t

′))dt′. (2.41)

From dynamical considerations, in [127] the precessing phase is shown to be,

φprec(t) =

∫ t

t0

(ωorb(t
′)− cos(ι(t′))α̇(t′))dt′, (2.42)

where the angles α and ι define the instantaneous position of ~L w.r.t ~J (see Fig: 2.7).

5Note that there is also the radiation reaction time-scale, but it is not needed for the discussion here.
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FIGURE 2.7: Generic configuration of a precessing binary black hole system with the total
angular momentum ~J aligned along ẑ. The angle ι and α define the instantaneous position

of ~L with respect to ~J .

The evolution equation of spins averaged over one orbit (up to 3PN) is shown to be in [128](and

references therein),

~̇S1 =

{
η

(
2 +

3

2
q

)
− 3v

2

[
(q ~S1 + ~S2) · L̂

]}
v5
(
L̂× ~S1

)
+
v6

2
~S2 × ~S1 +O(v7), (2.43)

~̇S2 =

{
η

(
2 +

3

2
q

)
− 3v

2

[
( ~S1 +

1

q
~S2) · L̂

]}
v5
(
L̂× ~S2

)
+
v6

2
~S1 × ~S2 +O(v7), (2.44)

and
˙̂
L = −v

η

(
~̇S1 + ~̇S2

)
+O(v7), (2.45)

where q = m2/m1 < 1, η = m1m2/M
2, v ≡ (Mω)1/3 is the PN expansion parameter and

ω is the orbital angular frequency of the system in a frame that is fixed to the orbital plane.

Here, note that Eq: 2.45 gives the evolution of the direction of ~L. The evolution of the

angular momentum magnitude is governed by the radiation reaction effects up to the known

PN order [129](and references therein). From Eq: 2.43 and Eq: 2.44, we can see that

the evolution of spins is driven by the spin-orbit couplings at 2.5PN order and by spin-spin

couplings at 3PN. From the fact that tprec � torb and the arguments above, for inspiral

dynamics it is possible to decouple the radiation reaction effects and precession effects

from spin-orbit and spin-spin couplings.
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FIGURE 2.8: Recoil velocities of equal mass systems with the spins given by ~S1(θ) =

0.8[sin(θ), cos(θ), 0] and ~S2(θ) = −0.8[sin(θ), cos(θ), 0]. The x-axis shows the angle θ
with the resulting recoil velocity Vrecoil plotted on the y-axis. The simulations used here are

given in Tab: 4.1.

In [127] the gravitational wave polarisations have been computed up to 1.5PN for radiation

reaction effects and 1.5PN for spin-orbit interactions with the strain given as,

h+,× =
2Mηv2

DL

[
H

(0)
+,× +H

(1/2)
+,× +H

(1)
+,× +H

(3/2)
+,× +H

(1/2,SO)
+,× +H

(1,SO)
+,× +H

(3/2,SO)
+,×

]
.

(2.46)

See Eq:(3.16a)-(3.17g) and Eq:(4.17a)-(4.17r) of [127] for functional forms of H i
+,× and

resulting gravitational mode (hlm). In [128], the authors presented closed-form analytic ex-

pressions for the inspiral phase of precessing BBH coalescence for generic masses, spin

magnitudes and spin orientations. The authors provided analytic solutions of the precession

equations including the radiation reaction effects to precessional motion using a multiple

scale analysis technique where the leading order contribution from precession is averaged

over the precessional time scale and then integrated over the radiation time scale with the

higher-order terms acting as corrections to the leading order effects. This two spin model

for the precession inspiral was then used towards building an improved precession phe-

nomenological model, IMRPhenomPv3 in [130].

The orbital plane of non-spinning and aligned-spin binaries remains steady during coales-

cence. If we define that plane as the x-y plane and decompose the waveform in the spin -2

weighted spherical harmonic basis for that co-ordinate system, the waveform modes hl,m
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and hl,−m are related as,

hlm = (−1)lh∗l,−m, (2.47)

with the phase of hlm ∝ e−imφ during inspiral. Eq: 2.47 implies that the gravitational radi-

ation is equal along +ẑ and −ẑ axes. The above relationships do not hold for precessing

binaries due to the wobbling of the orbital plane. This introduces an inherent asymmetry

in the precessional waveform modes. As shown in [131], to leading PN order, the relative

amplitude difference between the (2,2) and (2,-2) modes of a precessing binary is,

|h2,2| − |h2,−2|
|h2,2|+ |h2,−2| ≈ −v

2
~Σ · λ̂
2M2

, (2.48)

where ~Σ = M(M2~χ2 −M1~χ1) is a mass-weighted spin vector and λ̂ is a unit vector in the

orbital plane that is perpendicular to the separation vector. So, the gravitational radiation is

different along the +ẑ and −ẑ axes and the radiated energy will be beamed along a partic-

ular direction. Due to the anisotropic gravitational wave emission, the final remanent black

hole receives a kick away from the original centre of mass of the system [132], [133], [134].

Does this mean that systems for which Eq: 2.47 is valid receive no recoil? Eq: 2.47 indicates

a symmetry of the system about the x-y plane when L̂ ‖ ẑ. This symmetry between the

modes will not hold for arbitrary choice of ẑ other than for equal mass non-spinning systems.

In Chapter: 4 we will discuss a frame-independent way of characterising the mode asym-

metry. Any system with unequal masses or non-zero spins will have some recoil velocity.

Non spinning black holes with unequal masses can have recoil velocities up to ∼ 175 km

s−1 [135] and for generic aligned spins, the recoil velocities are found to go up to ∼ 450 km

s−1 [136], [137].

For special cases, the recoil velocity can be ∼ O(103) km s−1 [138], [139], [140]. These

superkick configurations are systems with equal masses and equal but opposite in-plane

spins so that the total spin vanishes, ~S = ~S1 + ~S2 = 0. For the study in Chapter: 4, we

performed a series of NR runs for the superkick configurations (see Tab: 4.1), the recoil

velocities of which are shown in Fig: 2.8. In [138] [141], the authors found that the recoil

velocities can go up to ∼ 4000 km s−1 for maximally spinning superkick configurations.

The centre of mass velocity vCM computed from NR simulations will be independent of the

total mass of the system. The velocity along direction xi will be,

viCM =
dxi

dt
= − 1

M

∫
dt

dP iGW
dt

, (2.49)

where dP iGW /dt gives the momentum radiated along xi.
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In [142], the authors found an active galactic nucleus (AGN) offset by ∼ 11kpc from the cen-

tre of the host galaxy moving at a velocity of ∼ 2100 km/s and spectroscopic data indicates

that this galaxy is the result of a galaxy merger. So, this supermassive black-hole (with

mass of 3 × 109M�) is possibly a remnant of the merger of the two galactic centres which

received a large recoil due from GW emission. Chapter: 4 of this work will be devoted to

exploring the effects of in-plane spin directions on precessional GWs, mode-asymmetries,

super-kick simulations and their effects on detectability.

2.6 IMRPhenom waveforms

Waveform models describing the inspiral-merger and ringdown (IMR) phases of a BBH

coalescence are important for GW searches and for parameter estimation routines with the

effectualness of the searches and faithfulness of PE depending on the accuracy of the wave-

form models. Currently, two of the most common strategies employed to build IMR waveform

models are, i) The Effective One Body (EOB) formalism, which leads to the waveform mod-

els termed SEOBNRv4 [75], SEOBNRv4HM [143], SEOBNRv3 [144] etc.; ii) The phenomenological

approach that results in the aligned-spin waveform models IMRPhenomD [145], IMRPhenomHM [146]

and precessing waveform models IMRPhenomPv2 [147], IMRPhenomPv3 [130]. As we will be

using the waveforms from IMRPhenom family in this thesis, we will describe the relevant

models in some detail in this section.

The basic idea behind the phenomenological approach of waveform model building is to use

the information regarding the late-inspiral, merger and ringdown waveforms for a range of

systems obtained from NR simulations and then polynomial functions are fitted to that data,

with the coefficients of the polynomial fit tuned to the NR simulations across the relevant

parameter space. This idea was used to build the first phenomenological waveform model

for non-spinning systems IMRPhenomA [76], which is calibrated to q ∈ (1, 4) for NR simula-

tions. A waveform model for aligned-spin BBH systems called IMRPhenomB was constructed

in [148] and was made more accurate for the model IMRPhenomC in [149].

In this section, we will describe i) the most recent aligned-spin waveform model IMRPhenomD

[145] (Section 2.6.1), ii) Waveform model for precessing systems IMRPhenomPv2 [147] (Sec-

tion 2.6.2) and iii) a multi-mode waveform model for aligned-spin systems IMRPhenomHM

[146] (Section 2.6.3).



Coalescing Black Hole Binary Waveforms 43

2.6.1 IMRPhenomD Waveform

IMRPhenomD [145] is a phenomenological waveform model for aligned-spin systems that has

been calibrated to SXS and BAM NR waveforms for 1 ≤ q ≤ 18 and for spins |a/m| ∼ 0.85

(0.98 for q = 1). Within the calibration region, the model shows mismatches of less than

1%.

As mentioned earlier, a BBH system can be described completely by its individual masses

(m1, m2) and the individual spins (~S1, ~S2). For gravitational waves, the mass parameters

are reparametrised to the symmetric mass ratio η = m1m2/M
2 and the chirp massMc =

Mη3/5, where M = m1 +m2 is the total mass of the binary. In the frequency domain, at the

leading order, the inspiral amplitude is∝M5/6
c and the phase is∝ 1/(ηM5/3) ≡ 1/(M5/3

c ).

Due to the leading order dependency of phase onMc, it is the best measured parameter

for GWs of low-mass systems [150], [151].

The spins are parallel to ~L for aligned spin systems and these systems can be completely

described by Mc, η, χ1 and χ2, where χi are the dimensionless spin parameters defined

as,

χi =
~Si · L̂i
m2
i

. (2.50)

By construction, χi ∈ [−1, 1]. In aligned-spin phenomenological models, the spin de-

pendence is characterized by one effective spin parameter χeff . For IMRPhenomB and

IMRPhenomC, the effective spin parameter is defined as χeff = (m1χ1 +m2χ2)/(m1 +m2).

On the other hand, the spin parameter for IMRPhenomD is defined as,

χ̂ =
χPN

1− 76η/113
, (2.51)

where χPN is the leading order spin dependence in the PN waveform phase( [152], [77], [153]),

χPN = χeff −
38η

113
(χ1 + χ2). (2.52)

In Eq: 2.51, χPN is scaled by the denominator so that χ̂ ∈ [−1, 1] for all mass-ratios. For

the final BH, the spins are parameterized by the combination S1 + S2 [69].

During the construction of this model, as set of hybrid EOB-NR waveforms are produced,

which are then used for calibrating the amplitude and phase model ansatz. For the model

construction, the waveform from BBH coalescence is split into three regions, the amplitude

and phase for each region is modelled independently (with continuity restrictions) and the

parameters of the model are then fit to NR data (see Fig: 2.9). The target waveform is split

as:
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FIGURE 2.9: This plot shows the three regions defined for modelling of IMRPhenomD wave-
form. The top row shows the phase derivative (φ′(f)) with the amplitude (|h(f)|) in the
bottom row. The dashed black lines show the starting frequency of the intermediate region,
Mf = 0.018. Region II is split separately for the phase and amplitude to model the different
morphologies seen in those regions. For eg: the dip in the phase derivative at Mf ∼ 0.07
vs the Lorentzian behaviour of amplitude fromMf ∼ 0.065. See text for further information

of how the regions are defined. Figure from [145] for illustration purposes only.

• Region I : This region consists of the inspiral part of the waveform and lasts up to

Mf = 0.018. Region I ends at Mf = 0.018 as this is the lowest common starting

frequency of the NR waveforms used.

• Region IIa : This is the intermediate region between the inspiral and merger-ringdown

phases. For modelling, Region IIa is defined separately for amplitude and phase

construction. Defining fRD as the ringdown frequency of the system, for phase this

region is where Mf ∈ [0.017, 0.75fRD] and for the amplitude, it is defined as the

region where Mf ∈ [0.018, 1/1.15fRD].

• Region IIb: As with Region IIa, the regions used to fit the amplitude and phase ansatz

are defined separately, and model the merger-ringdown part of binary coalescence.
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For the phase, Region IIb is where Mf ∈ [0.45fRD, 1.15fRD] and for the amplitude,

it is defined as the region where Mf ∈ [1/1.15fRD, 1.2fRD].

Region II is defined separately for amplitude and phase modelling due to the different fre-

quencies at which the amplitude or phase morphologies show changes. See Sec: VB and

VC of [145] for more details of the model construction.

Defining a step function as,

θ(f − f0) =

 −1, f < f0

1, f ≥ f0,
(2.53)

and,

θ±f0 =
1

2
[1± θ(f − f0)], (2.54)

the full IMR phase is given as,

ΦIMR(f) = φInsθ
−
f1

+ θ+
f1
φInterθ

−
f2

+ θ+
f2
φMR(f), (2.55)

where f1 = 0.018 and f2 = 0.5fRD are the transition frequency for the phase. See Eq: (28),

Eq: (16) and Eq: (14) of [145] for the functional forms of φIns, φInter and φMR respectively.

The full IMR amplitude is given as,

AIMR(f) = AInsθ
−
f1

+ θ+
f1
AInterθ

−
f2

+ θ+
f2
AMR(f), (2.56)

for which f1 = 0.014 and f2 = fpeak are the transition frequency for the amplitude. The

quantity fpeak is defined as,

fpeak =

∣∣∣∣fRD +
fdampγ3

(√
1− γ2

2 − 1
)

γ2

∣∣∣∣. (2.57)

where fdamp, γ2 and γ3 are defined in the ansatz for the amplitude merger-ringdown phase

(see Eq:19 of [145]). See Eq: (30), Eq: (21) and Eq: (19) of [145] for the functional

forms of AIns, AInter and AMR respectively. See [69] and [145] for further information on

the construction and validation of the IMRPhenomD waveform model. Although the spins in

IMRPhenomD are parameterized by one effective spin value, the inspiral parts of the model

(AIns, φIns) gets contribution from two-spin effects and IMRPhenomD has been found to

accurately model two spin systems [154].
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2.6.2 IMRPhenomPv2 Waveform

As previously described, the orbital plane of a binary black hole system with generic spins

precesses about the total angular momentum vector. This precessional motion leaves its

imprint as modulations to the amplitude and phase of the GW signal with the time scale of

precession (which is larger than the orbital time scale). The sub-dominant modes (l = 2,

m = ± 1, 0) for precessing systems are typically strong. A frame in which the quadrupole

mode (l = |m| = 2) is maximised (the |m| = 1 modes are ∼ 0) is the one that closely

tracks the motion of orbital angular momentum ~L [125], [155], [156]. In this frame, the

precessing quadrupole (2,± 2) mode can be approximated by the quadrupole mode of the

corresponding aligned spin system, i.e., the same system with the in-plane spins set to

zero. This frame is called either the "co-precessing" frame or Quadrupole-Aligned (QA)

frame. In the QA frame, the seven-dimensional intrinsic parameter space of precessing

binaries (q, ~S1, ~S2) can be mapped to aligned-spin waveforms described by q and χeff .

The motion of the QA frame with respect to the source frame is described by the three Euler

angles (γ(t), β(t), ε(t)), which in turn depend on the dynamics of the system. Two of the

Euler angles describing the co-precessing frame, (γ(t), β(t)) can be approximated to be

the polar angles (α, ι) of ~L, see Fig: 2.7 for details. The third Euler angle gives an over-all

rotation around the z-axis after the rotations with (γ(t), β(t)) are done, without which, there

could remain unphysical modulations in the modes in the co-precessing frame. The angular

momentum ~L will be along the z-axis in this frame. The angle ε(t) is [157],

ε(t) = −
∫
γ̇(t′)cos(β(t′))dt′. (2.58)

Although the choice of ε(t) can be arbitrary, a physical motivation behind defining the angle

this way can be seen from Eq: 2.42 (Note that : β ↔ ι and γ ↔ α).

Once we have the dominant (2,2) modes of the aligned-spin waveform in the QA frame,

the time domain precessing waveform can be obtained by "twisting-up" the former. If the

l=2 modes of the non-precessing waveform are given by h2m′(t), then the l=2 modes of the

precessing system are,

hP2m(t) = e−imα(t)
∑
m′

eim
′ε(t)d2

mm′(−ι(t))h2m′(t), (2.59)

where dlmn are the Wigner d-matrices [158], [159].

For a given mass-ratio, the inspiral-rate of the binary is largely dictated by the components

of spin parallel to L̂ (~Si‖) with the precession of the system driven by the in-plane spin

components, i.e., components of spin perpendicular to L̂; ~S1⊥, ~S2⊥. In Schmidt et al. [63],
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the authors combined the in-plane spin components to define an effective spin precession

parameter χp that can capture the precession dynamics. I would refer the interested reader

to [63] for further discussions on motivation behind the choice of χp and its validity as a

parameter capturing precession effects. χp is defined as,

χp =
Sp
m2

2

≡ max (A1S1⊥, A2S2⊥) , (2.60)

where A1 = 2+ 3m2
2m1

and A2 = 2+ 3m1
2m2

. Here, it is assumed that m2 > m1. The precession

spin-parameter χp is assigned to the larger black-hole. The effective spin-parameters χeff
and χp map to a large number of physical spin configurations. The resulting degeneracies

indicate the difficulty of measuring all spin components in a GW observation. Thus, the 6

dimensional spin vector space is mapped to the two dimensional space of effective spin

parameters, via,

~χ1 −→ (0, 0, 0), (2.61)

~χ2 −→ (χp, 0,
M

m2
χeff ) (2.62)

IMRPhenomPv2 is an analytic phenomenological frequency domain waveform model cap-

turing the basic phenomenology of precessing binaries with three parameters, mass ratio

(η), a effective spin parameter (χeff ) and effective precessional spin parameter (χp). The

total mass of the system and distance to the binary act as overall scales for the wave-

form. IMRPhenomPv2 uses a modified version of the aligned-spin model IMRPhenomD as

the model for quadrupole modes in the QA frame. The Euler angles for the QA frame

(γ(f), β(f), ε(f)) are computed from PN theory and that prescription for the angles is used

through merger and ringdown phases. This approximation works well enough for lower

mass-ratio and spins [147], but can lead to unphysical effects at higher mass-ratios. For a

detailed discussion, see Sec. II.D of [130].

Using the quadrupole (2,2) mode of a corresponding aligned-spin binary from IMRPhenomD

and a model for the Euler angles, the IMRPhenomPv2 model generates all other l=2 modes

for a precessing system using Eq: 2.59. Any gravitational wave waveform can be written as,

h(f) = h+(f)− ih×(f) =

−l≤m≤l∑
l

Y −2
lm (θ, φ)hlm(f) (2.63)

where Y −2
lm (θ, φ) are the spin-weighted (with spin -2) spherical harmonic functions. Thus,

once we have all the l = 2 modes, the plus and cross polarisations can be obtained using

Eq: 2.63.



Coalescing Black Hole Binary Waveforms 48

Once we have the plus and cross GW polarizations, hP+,×(Mf, η, χeff , χp, θ, φ) the final

strain as seen at a detector is given by:

h(f) = F+(α, δ, ψ)h+(f) + F×(α, δ, ψ)h×(f) (2.64)

where F+,× are the detector response functions which depend on sky-position and polari-

sation.

2.6.3 IMRPhenomHM waveform model

IMRPhenomHM [2] is a phenomenological waveform model for aligned spin binary black hole

systems that models all the l = 2, 3, 4 and m = |l|, |l − 1| modes. For this model, the

dominant quadrupole (2,2) mode is mapped to the sub-dominant modes using appropri-

ately tuned scaling relations. Technically, these scaling relations can be applied to any

quadrupole only waveform model to obtain the sub-dominant modes, but for IMRPhenomHM

the aligned-spin IMRPhenomD is used as the base model. This mapping is approximate and

does not include mode-mixing effects. See Fig: 2.10 for a comparison between the modes

as obtained from an NR simulation and the IMRPhenomHM model.

For the construction of IMRPhenomHM , the idea is to map the dominant mode (2,2) phase,

amplitude and frequency (φ22,A22,f22) to the phase, amplitude and frequency (φlm,Alm,

flm) of any sub-dominant mode (l,m). Thus, the frequency domain strain (h̃`m(f)) of a

sub-dominant mode is given by,

h̃`m(f) = A`m(f)× exp {i ϕ`m(f)} (2.65)

≈ |β`m(f)|A22(fA
`m)× exp

{
i
[
κ(f)ϕ22(fϕ`m) + ∆`m(f)

]}
, (2.66)

where fϕ`m(f) and fA
`m(f) denote the frequency mapping functions for the phase and ampli-

tude frequencies. The function βlm(f) (see Eq: 2.68) is to scale the quadrupole amplitude

to amplitude of mode (l,m), κ(f) (see Eq: 2.70) relates the phase of quadrupole mode

to mode (l,m) and the quantities ∆`m(f) (see Eq: 2.71) capture the multipole dependent

phase-offsets.

Mapping the quadrupole mode to the sub-dominant modes can be done for the following

reasons:

• During inspiral phase, frequency of any multipole (l,m) is approximately mω, with ω

being the orbital frequency of motion. Thus, the we can map frequency f of a multipole

m to the (2,2) frequency by 2f/m. This provides a mapping between the frequencies

for the inspiral phase.
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FIGURE 2.10: The figure shows the multipole moments of an aligned spin BBH system with
q=8 and spin on larger BH of χz = −0.5. The NR moments are shown as the thick gray
lines. The modes computed from IMRPhenomHM are shown in thick (dashed) black lines for
m = l (m = l − 1) modes [2]. The modes computed from IMRPhenomHM have amplitude
errors of a few O(1%) to a few O(10%) for the sub-dominant modes, but the phase errors

are always < 10% for the non-spinning systems considered in Chapter:5.

• From QNM theory we get that the frequencies of mode (l,m) is related to the differ-

ence between the fundamental ringdown frequencies of (l,m) fRD
`m and (2, 2) fRD

22 .

• From the PN theory, there exist analytical expressions for time-domain amplitudes

of different modes (up to different PN orders) which can then be transformed to the

frequency domain (Ĥ`m(f)) via the stationary phase approximation (SPA) [160], [161].

These expressions can be used to find scaling relations between the A22 and other

A`ms.

The above observations lead us to a physically motivated ansatz the for rescaling function,

β`m(f) =
Ĥ`m(fA

22)

Ĥ22(fA
22)

. (2.67)

To recover the correct behaviour of Ĥlm(f) at low frequencies, an extra factor of
(

Ĥ`m(f)

Ĥ`m(2f/m)

)
is required. So, the final amplitude scaling relation used is,

β`m(f) =
Ĥ`m(fA

22)

Ĥ22(fA
22)

(
Ĥ`m(f)

Ĥ`m(2f/m)

)
. (2.68)

For IMRPhenomHM PN amplitudes are computed up to leading order in f for l = |m| modes

and upto 1.5 PN (to include the spin effects) for l = |m− 1| modes.



Coalescing Black Hole Binary Waveforms 50

0 π/4 π/2 3π/4 π

ι

0.80

0.85

0.90

0.95

1.00

(h
22
|h

N
R
)

0 π/4 π/2 3π/4 π

ι

0.80

0.85

0.90

0.95

1.00

(h
H

M
|h

N
R
)

M1/M2 = 1

M1/M2 = 4

M1/M2 = 8

M1/M2 = 18

FIGURE 2.11: Matches of NR waveforms with varying mass ratio (q) with IMRPhenomD
(Left Panel) and IMRPhenomHM (Right Panel) for varying inclination values. Its apparent that
IMRPhenomHM provides much better matches than IMRPhenomD for almost all the cases [2].

The scaling relations from PN and QNM theory are used for frequency scalings for the

inspiral and ringdown phases of the BBH coalescence. The frequency range between the

PN and QNM frequency is mapped via a linear interpolation. The overall frequency mapping

is as below,

f22(f) =


2
mf, f ≤ f0

fRD
22 −2f0/m

fRD
`m −f0

(f − f0) + 2f0
m , f0 < f ≤ fRD

`m

f − (fRD
`m − fRD

22 ), f > fRD
`m .

(2.69)

For the frequency mappings, f0 used is different for amplitude and phase frequency scaling.

f0 is fixed by optimizing the agreement with NR data for the amplitude and phase which

leads to fA0 = 0.018fRDlm /fRD22 and fφ0 = 0.014fRDlm /fRD22 .

Using the frequency scaling relations, we can get the phase of multipole (l,m) by equating

the derivatives of the multipole phase with scaled (2, 2) phase, i.e., φ
′
lm(f) ≈ φ

′
22(fA

22).

Integrating once gives the phase relation that contains the inverse of the derivative of f22,

giving κ = 1/f
′
22(t). The other phase offsets are obtained via imposing continuity and from

PN relations. This gives us the functional form for κ and ∆`m,

κ(f) =
1

f ′22(f)
, (piecewise constant), (2.70)

∆`m =


π
2 [ 3`+ mod(`+m, 2) ]− π, f ≤ fϕ0

ϕ`m(fϕ0 )− κϕ22[fϕ22(fϕ0 )], fϕ0 < f ≤ fRD
`m

ϕ`m(fRD
`m )− ϕ22[fϕ22(fRD

`m )], f > fRD
`m .

(2.71)
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These equations and relations provide a straightforward way of scaling the quadrupole am-

plitude and phase to their subdominant counterparts to obtain an aligned-spin waveform

model with higher mode effects. Before this, the only multipole mode model was an EOB

model for non-spinning systems EOBNRv2HM [162]. Recently, an EOB multimode model for

aligned-spin systems (SEOBNRv4HM) was published in [143]. Studies have shown that al-

though use of multi-mode templates for searches will give similar or slight improvements

over a quadrupole only search, non-inclusion of sub-dominant modes can lead to large bi-

ases over the inferred parameters for high-mass/ high mass-ratio systems during analysis

of detector data [163]–[169]. Thus having a fast, analytic multipole waveform model will

be very useful. Fig: 2.11 shows the match between NR waveforms and IMRPhenomD and

IMRPhenomHM . There are some more fine adjustments made to construct IMRPhenomHM from

IMRPhenomD but the I would like to refer the reader to the [2] for more details. We will be

studying the parameter estimation capabilities of IMRPhenomHM in Chapter: 5.



Chapter 3

IMRPhenomPv2 model and its

systematic errors for GW150914

Advanced LIGO started its first observational science run in September of 2015, and the

first direct detection of gravitational waves from coalescing binary black hole (BBH) sys-

tem was achieved on the 14th of September of the same year. This transient gravitational

wave signal (GW150914) was observed at 09:50:45 UTC at both LIGO detector sites with a

matched-filter signal to noise ratio (SNR) of 24 and a false alarm rate of less than 1 event per

203000 years [3]. The initial source masses were estimated to be 36+5
−4M� and 29+4

−4M�

with the final black-hole mass being 62+4
−4M�. The effective aligned-spin parameter was

estimated to be χeff = −0.07+0.16
−0.17 whereas the posterior of the effective precession spin

parameter χp was approximately the same as the prior [3], [170]. All intervals are 90%

credible intervals. The above parameters were estimated using phenomenological aligned-

spin model IMRPhenomD [145], phenomenological precessing model IMRPhenomPv2 [147]

and aligned-spin EOBNR model SEOBNRv2 [74] in the parameter estimation studies. Due to

the high computational cost of the precessing EOBNR model, SEOBNRv3, that model was not

used in [170], but the PE results using this model were published separately in [171]. An

updated analysis of the parameters of GW150914 was given in [8], where, along with the

aforementioned waveform models, analysis with the double-spin precessing EOBNR model

(SEOBNRv3 [144], [74]) was included.

It is not assured that the parameters we infer from parameter estimation techniques will be

the true parameters of the GW source. The total errors on recovered parameters can be

split into statistical and systematic errors.

52
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• Statistical Errors: The posterior distributions on any physical parameter from PE

techniques will have a characteristic distribution around the mean value. The width

of this distribution, due to the presence of detector noise, can be thought of as the

source of statistical errors on the measured parameters.

• Systematic Errors: As described in Ch: 2, full IMR waveform models are built under

certain approximations. These approximations could lead to a shift between the true

parameter value and measured value, i.e., inaccuracies in the waveform model can

lead to biased parameter measurements. Such errors are called systematic errors.

GW150914 was the first ever detection of a gravitational wave from a BBH source and there

are several inherent approximations in the way the waveform models are built. So, to better

understand the physical system, it was imperative to understand the systematic behaviour of

the waveform models used for PE of GW150914. This study was undertaken by members of

the LIGO-Virgo waveform group and was published as a full LVC collaboration paper in [1].

In the paper, systematics of precessing models IMRPhenomPv2 along with aligned-spin phe-

nomenological (IMRPhenomD) and EOBNR (SEOBNRv2) models were studied with the effects

of varying inclination value, polarisation value, mode-content in NR waveforms and different

detector noise on the same. My contribution to this study, was to study the systematics of

the IMRPhenomPv2 model using BAM-NR waveforms and this chapter presents the results

of that work (see Section 2.3.2 for a description of the BAM code).

In Section 2.6.2, I have described the IMRPhenomPv2 waveform model. In this chapter, I

will first detail the motivations behind performing this study (Section 3.1), details of the NR

waveforms and injections used for the PE studies (Section 3.2), the results are presented in

Section 3.3 and will end with the conclusions in Section 3.4.

3.1 Motivation for the systematics study of IMRPhenomPv2

There is a possibility that the physical parameters inferred from PE are biased due to in-

accuracies and/or missing physics in the waveform model. Before looking at the setup for

and results of the systematics study, it would be instructive to note why the inaccuracies

exist and where they might come from. As already noted in Ch: 2, it is impossible to ob-

tain analytic solutions of the non-linear Einstein’s equations for the full IMR phases of a

BBH coalescence, which leads to approximations in waveform model building and the high

computational cost of NR waveforms deters their use in PE studies. Although, efforts are

underway to speed up parameter inference, as first presented in [172] and improved upon

in [173]. In [174] and [175], it was shown that the above technique can be used to infer

source parameters by comparing the signals with NR waveforms. For this study though,
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ID q ~χ1 ~χ2 χeff χp M Ω Norbits e

CFUIB0020 1.2 (-0.2594, -0.5393, -0.0458) (-0.0276, -0.2194, 0.3622) 0.220 0.595 0.0276 6.6 3.6 ×10−3

CFUIB0012 1.2 (-0.1057, 0.2362, 0.1519) (0.1269, -0.5130, 0.4139) 0.274 0.417 0.0268 7.4 7.7 ×10−3

CFUIB0029 1.2 (-0.2800, -0.2896, -0.1334) (0.3437, 0.2283, 0.0989) -0.026 0.406 0.0268 6.5 3.7 ×10−3

TABLE 3.1: The parameters of the three BAM waveforms used for injections. q, ~χ1 and ~χ2

give the mass-ratio of the system and spin vectors at the start of the waveform with χeff
and χp giving the corresponding effective spin parameters as defined for IMRPhenomPv2.
The reference frequency at the start of the waveform is given by MΩ with the estimated
eccentricity given by ’e’. The eccentricity of the BAM waveforms was estimated by following
the procedure as outlined in [177]. Values of ’e’ ∼ 10−3 ensures that the binary system is

quasi-circular.

all the parameter estimation (PE) runs were performed using the samplers available in the

LALInference package of LALSuite, specifically, the lalinference_nest sampler (nested-

sampling) with ’lalinference_o2’ version of LALSuite [53].

See Section 2.6.2 for a description of the IMRPhenomPv2 waveform. A few approximations

made during the construction of IMRPhenomPv2 are:

• The Euler angles used to rotate the aligned-spin waveform from the QA frame to the

source frame use PN expressions for inspiral, merger and ringdown phases of a BBH

system whereas the PN expressions are expected to be applicable only until the late-

inspiral phase of a coalescing binary. Although the PN angles do not behave patho-

logically at high frequencies, as compared to some PN expressions (for eg: leading

order GW frequency tending to∞ as t → tc, see Eq:3.2(c) of [176]), they consist of

not more than an analytic continuation of the inspiral results.

• The effects of the six components of the two spin vectors on waveform morphology

are captured by an effective alinged-spin parameter (χeff ) and effective precession

spin parameter (χp). The former characterizes effects of spin components parallel to

orbital angular momentum, the latter of spin components perpendicular to the same.

• As an aligned-spin waveform is used to model the (2,2) mode in the co-precessing

frame, the mode-asymmetry effects that are present for precessing systems are not

included. See Section 4.1 for further discussions on mode-asymmetry.

• The model does not include the effects of higher order modes, i.e., modes with ` ≥ 3,

or modes with |m| < |`− 1| 1.

1The last two points mentioned here are also applicable to the precessing EOBNR model SEOBNRv3 [144], [74].
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3.2 Setup for the systematics study of IMRPhenomPv2

To assess the systematic errors induced due to inaccuracies in the waveform model, we

perform parameter estimation studies with IMRPhenomPv2 as the model hypothesis using

numerical relativity (NR) waveforms as signals. NR waveforms are chosen for injections as

they are obtained by numerically solving Einstein’s equations and they capture all the GR

effects. In the BAM code, these equations are solved on a discrete grid and the waveforms

are extracted at various extraction radii. There is a possibility that there could be inherent

errors due to the discretization effects, but as was shown in [178], the mismatch ( [1 −M]

where M is the match, see Section 1.4.2) between waveforms at different extraction radii

are ∼ O(10−4). For a gravitational wave detector to distinguish these effects, the SNR (ρ)

of the detected gravitational wave would have to be (ρ ≥
√
D/2(1−M) [179]–[181] using

D = 8) larger than 200. As was shown in [182], [183], gravitational waves obtained from

different commonly used NR codes have amplitudes accurate within 5% and the phase has

an accumulated uncertainty of no more than 0.5 rad over the full course of inspiral, merger

and ringdown. Hence, if systematic errors are present, at SNR of 25, it is unlikely that they

would be due to the numerical errors from NR waveforms.

The NR waveforms used for injections have parameters close to those of GW150914 (see

Table 3.1 for the list of NR waveforms used for injections). The NR waveforms are injected

in zero-noise (detector noise is set to zero) and the Power Spectral Density (PSD) used

for likelihood computations is obtained using the aLIGO detector data around the time of

GW150914. Injecting the signal in zero-noise ensures that there are no errors due to ran-

dom detector noise and the results can then be interpreted as an average over many Gaus-

sian noise realizations. In [1], along with the BAM waveforms, a set of SXS [111], [112]

waveforms were used as well; but I will focus only on the results of injecting the waveforms

in Table 3.1 recovered with IMRPhenomPv2.

For the initial data, a PN evolution code (the code used for obtaining the inspiral parameters

is the same one as used in [125], [178], [69]) is used to generate the Bowen-York quasi-

circular parameters and the initial data is obtained via single-domain spectral elliptic solver

described in [184] for the NR simulations. The system is then evolved with the BAM code

(see Section 2.3.2 for a description of the BAM code). The nested boxes were grid with

80 points for the coarsest grid and 320 points for the finest grid, with the other grid values

ranging from 96 to 240. The ψ4 data is extracted over a range of radii from 80 M to 180M.

The simulated systems have low mass-ratios (q ∼ 1.2) and spins, so we can expect high

accuracy based on the results in [178].

Numerical Relativity waveforms are commonly decomposed on a sphere using the spin

weighted spherical harmonics basis, Y s
lm with spin weight s = −2. These waveforms could
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FIGURE 3.1: Response h(t) as given in Eq: 2.64 for the NR waveform CFUIB0020 as
computed by the frame-injection code for face-on (ι = 0; top row plot) and edge-on (ι = 90,
bottom row plot) systems. The solid blue line (solid yellow line) is the response at H1 (L1)
with injected SNR of 25. The morphology of the signal is markedly different for the two
inclinations. This is expected as precession effects are more pronounced for edge-on

inclinations than for face-on.

include all higher modes of the GW (hlm), depending on the accuracy of the simulation. NR

waveforms are described by the mass ratio (q) and spin vectors (~S1, ~S2) with total mass

(M ) acting as an overall scale factor. Given the spherical harmonic modes (h′lms), we

can calculate the plus and the cross polarisations of the waveform using Eq: 2.63. Using

(h+, h×) with the extrinsic parameters like sky-position and polarisation, we can calculate

the strain at each detector using Eq: 2.64. The total mass of the binary, the SNR value

required for the injections (ρinj) and the PSD determines the distance at which the source

is to be placed. This ensures that if a physical system with those parameters were to emit

a signal, it will be observed at the LIGO detectors with a SNR = ρinj . For further details
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regarding the framework for NR injections see [185]. We use the three NR waveforms given

in Table 3.1, which are obtained using the BAM code. The response at each detector of

the CFUIB0020 waveform for face-on and edge-on inclinations (ι = 0◦, 90◦) using the NR

injection code is shown in Fig: 3.1. Note that the inclination is the angle between ~L and ~N

at a reference epoch (time or frequency), where ~L and ~N are the angular momentum vector

of the system and the line-of-sight to the observer from the system.

For the injections, we used the estimated parameters from GW150914 (see Tab:1 of [1]).

All waveforms were injected with a SNR of 25 with the sky-position at 07h26m50s and -

72.28◦ (right-ascension, declination). At the start of this study, the source frame mass for

GW150914 was estimated at ∼ 74M� (the numbers were then improved upon by further

analysis in [170]) and so the NR waveforms were injected with similar source-mass values.

The fiducial inclination (ι) and polarisation (ψ) are chosen to be 162◦ and 82◦ respectively.

The polarisation angle for GW150914 is not well constrained, but we will study the effects of

different polarisation values of the signal. For the inclination (polarisation) series of runs, the

waveforms are injected with a total mass of 70M� (80M�). The lower cut-off frequency for

the PE runs was fixed at 30Hz for both detectors. All the PE runs were done on the Cardiff

cluster "ARCCA" [186].

3.3 Results and Discussion

As explained in Chapter: 2, for precessing systems, effects of precession become stronger

from face-on to edge-on configurations. Fig: 3.1 showcases the different detector response

of the CFUIB0020 NR waveform at face-on and edge-on inclination values. Hence, if sys-

tematic biases should exist in the model waveform, we can expect them to manifest in re-

gions of strong precession. Thus, we performed a set of NR injections across the inclination

space to study the effects of inclination on parameter recovery.

First, we perform a series of injections with the three NR waveforms at various inclination

values. The total source frame mass of the system was set to 70M�. All three NR wave-

forms were injected with inclinations = (0◦, 30◦, 45◦, 60◦, 90◦, 120◦, 135◦, 162◦, 180◦).

Inclination of 162◦ was included as that was the estimated inclination of GW150914. For

this inclination series, the polarisation for all the injections was fixed at ψ = 82◦.

We observe appreciable biases on a few of the parameters (masses and sky-position) at

edge-on inclinations, but for other inclinations, the recovered parameters are consistent with

injected values. Following [187] (see Eq:4 of [187]), we define the bias amount (δβθ) as the

ratio between the systematic error and standard deviation, where the systematic error is the
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difference between the recovered mean of the posterior 2 and the injected value (θ0). So,

defining systematic error as βθ = |θmean − θ0| and standard deviation as σθ, δβθ = βθ/σθ.

The value of δβθ indicates the amount of bias.

3.3.1 Effect of Inclination on estimation of mass parameters

Fig: 3.2 gives the results for total mass and chirp-mass recovery for the runs in the inclination

series. Mtotal and Mc measurements are accurate for all non edge-on inclinations, with

these parameters showing a slight bias for CFUIB0020 and CFUIB0012, and a strong bias

for CFUIB0029.

Fig: 3.3 shows the recovered values of η (along with their 90% credible interval values)

for the NR waveform inclination series. The recovered η is close to the true value for all

inclinations; other than at ι = 90◦ (edge-on) where η is biased for all three NR waveforms.

In order to investigate the bias of recovered η for near edge-on configurations, CFUIB0020

was injected at extra inclination values of (70◦, 80◦, 85◦, 90◦, 95◦, 100◦, 110◦). The results of

these runs show that the bias on η starts at ∼ 80◦ and persists until ∼ 100◦ (see Fig: 3.4).

The results of the inclination series indicate that for near edge-on configurations, recovered

mass parameters can be biased. Precession effects become more pronounced for edge-on

configurations, and to recover the true parameters, IMRPhenomPv2 should model the same.

Also, as the priors placed on the inclination strongly disfavour edge-on systems, the PE

codes tend to overestimate the distance of a binary which might then lead to a higher value

to total mass to account for the decrease in signal strength. So, the bias over the mass-

parameters could be from; i) inaccuracies between IMRPhenomPv2 and NR waveforms and

ii) effect of observational priors. We now wish to know how these inaccuracies manifest

across the polarisation space.

To answer that, we inject CFUIB0020 at two different polarisation values ψ = 82◦, 135◦

across the inclination values and the results for recovered η are given in Fig: 3.5. We see

that the strong bias present for ψ = 82◦ (δβη ∼ 3) reduces drastically at ψ = 135◦ (δβη ∼ 1).

Where for ψ = 82◦ the true value was outside the 90% CIs, the same is not the case for

ψ = 135◦. This suggests that; i) bias amount due to observational priors could be small and

ii) although the inaccuracies in IMRPhenomPv2 may manifest at some choices of ψ, the effect

may be localized. We investigate this behaviour further in the next section, where we inject

the above three NR waveforms at edge-on inclination over a range of polarization values. At

ψ = 82◦, the detector response gets more contribution from h× than h+, and the opposite

at ψ = 135◦.

2Note that in [187], the authors use the maximum a-posteriori (MAP) value
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FIGURE 3.2: Recovered posterior over a range of inclination values with fixed polarization,
of Mtotal (top panel) and Mc (bottom panel) for NR waveforms CFUIB0020 (black-dot),
CFUIB0012 (red-lower triangle) and CFUIB0029 (blue-star) where the dot-dashed black
line gives the value of injected (true) parameter. The solid lines show the mean value of the
posterior with the dashed-lines showing the range of the 90% credible intervals. At edge-on
inclination, δβMtotal

is 1.3 [2.5] (1) and δβMc is 1.5 [2.3] (1.3) for CFUIB0020 [CFUIB0029]
(CFUIB0012) respectively, with the same values smaller than 1 for all other inclinations.
Given that GW150914 had an inclination of ∼ 162◦, these systematics errors are not likely

to dominate the inferred parameters.
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FIGURE 3.3: Recovered posterior of η for NR waveforms CFUIB0020 (black-dot),
CFUIB0012 (red-lower triangle) and CFUIB0029 (blue-star) over a range of inclination val-
ues with fixed polarization. The dot-dashed black line gives the (true) value of injected
η. The solid lines show the mean value of the posterior with the dashed-lines showing
the range of the 90% credible intervals. At edge-on inclination, δβη is 3 [4.3] (2.5) for
CFUIB0020 [CFUIB0029] (CFUIB0012) respectively, with the same values smaller than 1

for all other inclinations.

FIGURE 3.4: Recovered posterior of η CFUIB0020 (black-dot) with extra inclination points
around ι = 90◦ where the dot-dashed black line gives the value of injected η. The solid
black-line shows the mean values of the recovered posteriors with the 90% credible region

shown by the blue-dotted region.

3.3.2 Effect of Polarisation on estimation of mass parameters

The detector polarisation parameter controls the overall orientation between the detector

arms and GW polarisation axes, affecting the detector response (see Eq: 2.64). It is an
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FIGURE 3.5: Recovered posterior of η for NR injection CFUIB0020 : ψ = 82◦ (black-
dot), and CFUIB0020 : ψ = 135◦ (blue-star) where the dashed red line gives the value of
injected η. The solid lines show the mean values of the recovered posteriors with the 90%
credible region shown by the dashed-lines. Where for ψ = 82◦, δβη = 3, at ψ = 135◦ it is

1.

extrinsic parameter, i.e., it depends on the relative position of Earth and source and is in-

dependent of the source dynamics. But, in the previous section (see Fig: 3.5) we saw

that the polarisation value can have a (sometimes major) effect on the recovered param-

eters. So, the question then becomes, across how much of the polarisation space can

we expect to see a bias? To check for this, we performed a series of PE runs where

all three NR waveforms were injected at an inclination of 90◦ and polarisation values of

(ψinj = 0◦, 45◦, 82◦, 90◦, 100◦, 135◦, 180◦). The total mass of the system is fixed at 80 M�.

Fig: 3.6 gives the Mtotal and Mc recovery for edge-on injections with varying polarisation

values for the three NR waveforms. Other than a slight bias for ψ = 82◦ on total mass

recovered for CFUIB0029 system, all other configurations show a slight or no bias (based

on δβλ values), but contain the injected values on within the 90% CIs for recovered total

mass and chirp mass.

From Fig: 3.7 we see that ηrec has a strong bias at ψinj = 82◦ (δβη ∼ 3), which is consistent

with the results in Fig: 3.3 - Fig: 3.5. There exists a slight bias at ψinj = 0◦, 90◦, 180◦(δβη ∼
1.3), but it is smaller than that observed at ψinj = 82◦.

As mentioned earlier, at ψinj = 82◦, the detector response is dominated by h×. Based

on the specific combinations of (ι, ψ), the detector response can be composed by par-

tially constructive or destructive interference between the two polarisations, which is why

we see the strange signal morphology for H1 in Fig: 3.1. To recover accurate parameters,



IMRPhenomPv2 model and its systematic errors 62

FIGURE 3.6: Recovered posterior of Mtotal and Mc for NR waveforms CFUIB0020
(black-dot), CFUIB0012 (red-lower triangle) and CFUIB0029 (blue-star) where the dot-
dashed black line gives the value of injected Mtotal and Mc. The solid lines show
the mean values of the recovered posteriors with the 90% credible region shown by the
dashed-lines. For CFUIB0020 and CFUIB0012 systems, δβMc < 1, but for CFUIB0012
1 ≤ δβMc ≤ 1.7. Other than ψinj = 82◦ recovery (for which δβMtotal

is 2.3 (1.8) for
CFUIB0012 (CFUIB0029)), δβMtotal

shows slight bias for all three across the polarisation
space. Hence, for these parameters, the maximum bias is at ψinj = 82◦.

the model should then accurately model h+ and h×. Now, the NR waveform polarisations

are constructed from all ` = 2 sub-dominant modes, whereas the sub-dominant modes of

IMRPhenomPv2 (` = 2, |m| = 1, 0) are a consequence of the twisting up of the aligned-spin
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FIGURE 3.7: Recovered posterior of η for NR waveforms CFUIB0020 (black-dot),
CFUIB0012 (red-lower triangle) and CFUIB0029 (blue-star) where the dot-dashed black

line gives the value of injected η.

(`,m) = (2, 2) modes. As we will see in Section 3.3.5, accurate parameters are recovered

by IMRPhenomPv2 for IMRPhenomPv2 injections (even at edge-on configurations). These re-

sults, with the results from the inclination series, suggest that the amount of bias incurred

from inaccuracies in IMRPhenomPv2 waveform at recreating NR signal dominate over biases

due to observational priors.

To have a better idea of the behaviour of errors on η in the (ι, ψ) space, extra runs were

done where CFUIB0020 was injected over a range of inclination-polarisation values. Fig: 3.8

gives the combined results of these runs. Here, we compute the relative percent error (∆η

%) between mean of recovered posterior of symmetric mass ratio ηrec with its injected value

ηinj and plot them across the (ι, ψ) parameter space. We see that we can expect high bias

on recovered η (8% ≤ ∆η < 15%) in a small region of the (ι, ψ) parameter space centred

around (ι, ψ) = (90◦,82◦). All edge-on inclination systems, irrespective of polarisation value,

show mild biases whereas the posteriors recovered in the sampling of all other regions are

consistent with the injected value.

GW150914 was estimated to have a nearly face-off inclination with ψ ∼ 82◦. From the

above results, we see that for a small region in the ι − ψ parameter space (∼ 30◦ × 30◦

region centred around (ι − ψ = 90◦,82◦) ), parameters recovered by IMRPhenomPv2 can

have a strong bias, but the estimated inclination of GW150914 does not lie in that region.

Also, from the publicly available posteriors samples [188], GW150914 has ∼ 10 times more

support for 120◦ < θJN < 180◦ compared to 60◦ < θJN < 120◦. A simple calculation
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FIGURE 3.8: The above plot gives relative percent error between recovered posterior mean
ηmean and ηinj over the inclination-polarisation parameter space (∆η = 100(ηmean −
ηinj)/ηinj). The coloured circular dots show the sampling in the parameter space. The

colour legend on the right shows ∆η% value.

shows that about only ∼ 0.3% of all possible detectable signals fall into the region of high

bias (See Appendix:B of [1] for the calculation). So, it is highly unlikely for GW150914 be at

edge-on and for the mass parameters, we do not expect the systematic errors to dominate

over errors from random noise 3.

3.3.3 Recovery of spin parameters

If the GW source is precessing, we would like to know how well IMRPhenomPv2 can measure

the precession and effective spin parameters (χp, χeff ). The NR injections CFUIB0020,

CFUIB0029, CFUIB0012 have the parameters (χeff , χp) = (0.220, 0.598), (-0.026, 0.406)

& (0.274, 0.417) respectively.

3All these computations are performed for signals with parameters close to those estimated for GW150914.
Changing the mass-ratio and spins (where precession effects become stronger) will change the behaviour.
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FIGURE 3.9: Recovered posterior of χeff for NR injection CFUIB0020 (black-dot),
CFUIB0012 (red-lower triangle) and CFUIB0029 (blue-star) where the dot-dashed black,
blue and red lines give the value of true χeff for CFUIB0020, CFUIB0029 and CFUIB0012
respectively. The solid lines show the mean of the recovered posterior with the bands
between the dashed-lines show the 90% CIs. (Note: The difference between the two re-

coveries can be attributed to different total mass used for injection.)

Fig: 3.9 shows the results for χeff recovery across the inclination space (with fixed ψ = 82◦)

and polarisation space (with fixed ι = 90◦) for the three NR waveforms. Note that the incli-

nation series waveforms were injected at 70M� and the polarisation series at 80M�. Other

than∼ edge-on inclination of CFUIB0020 (δβχeff ∼ 2 for [ι, ψ] = [90◦, 82◦]), recovered χeff
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FIGURE 3.10: Recovered posterior of χp for NR injection CFUIB0020 (black-dot),
CFUIB0012 (red-lower triangle) and CFUIB0029 (blue-star) where the dot-dashed black,
blue and red lines give the value of true χp for CFUIB0020, CFUIB0029 and CFUIB0012
respectively. The solid lines show the mean of the recovered posterior with the bands

between the dashed-lines show the 90% CIs.

is well-bounded and unbiased. The results of recovered χeff are consistent with what we

see for the mass-parameters recovery, i.e., biased recovery at the same (ι, ψ) combinations.

Given the partial degeneracy between η and χeff (that enters via the binary phase [181]),

we expect a bias on η to translate to a bias on χeff . Specifically, the biased recovery of

η (Fig: 3.3 and Fig: 3.4) and χeff for the CFUIB0020 (Fig: 3.9). However, the bias on η is

stronger than the bias on χeff and although we observe a biased η recovery for CFUIB0029

and CFUIB0012, the recovered χeff for these configurations contains the true value within

its 90% CIs with δβχeff < 1.

Fig: 3.10 shows the results of χp recovery over the inclination space. For all NR configu-

rations, the posteriors recovered for non edge-on injections are pretty broad and basically

recover the prior over χp. χp has better bounds for edge-on configurations and is biased for

CFUIB0020 and CFUIB0029 waveforms. Bounds on posteriors for χp for edge-on are better

than for face-on as precession effects are the strongest at edge-on inclinations, but this is

also where we see the largest bias. Biases on recovered mass parameters with the results

for χp, suggest that for accurate edge-on precession measurement, accuracy of the models

should be improved. For non edge-on inclinations, the 90% credible regions of χp span over

almost 70% of the parameter space whereas those for χeff are bounded within 10% . This
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FIGURE 3.11: The figure shows the recovered mass posteriors in the m1 −m2 parameter
space for injections with different mode content, with the contours showing the 90% credible
interval. Results for face-on and edge-on inclination are shown in solid and dashed lines
with the results for injections with i) All Higher Modes (` ≤ 5) are shown in red, ii) All ` = 2
and −2 ≤ m ≤ 2 modes are shown in blue and iii) only ` = |m| = 2 modes are shown in
black. The red star shows the injected values of m1−m2. Consistent with previous results,

we observe a biased mass parameter recovery for edge-on configuration.

shows that, unless the system is near edge-on, at q ∼ 1.2, the effective precession spin

parameter cannot be measured.

3.3.4 Effect of Higher Modes

IMRPhenomPv2 waveform models all ` = 2 modes of a precessing binary system. A real

GW signal will be composed of all ` = 3, 4, 5 . . . modes and non-inclusion of higher-mode

content could result in another source of systematic errors. To check for that, we inject

the CFUIB0020 waveform (70 M� total mass, ψ = 82o) with different mode content; i) All

Higher Modes (HM) (all modes up to ` = 5), ii) All l = 2 modes, i.e., -2 ≤ m ≤ 2 and iii) only

l = |m| = 2 modes (l2m2); at face-on and edge-on inclinations and compare the posteriors

recovered by IMRPhenomPv2 .

Fig: 3.11 shows the contours of recovered mass posteriors (clipped between the 90% cred-

ible intervals) in (m1,m2) space for the above injections. We do not observe a large dif-

ference between the posteriors recovered for higher-mode injections and ` = 2 injections

for any of the parameters. The behaviour of the bias of (m1,m2) (i.e., overestimated m1

and underestimated m2) can be attributed to the overestimation of Mtotal combined with
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recovered η < 0.247 and the fact that for the waveform models, m1 > m2. So, for face-

on and edge-on inclinations, at q=1.2, exclusion of higher-mode content does not result in

appreciable biases.

3.3.5 Results of IMRPhenomPv2 injections

In the previous sections we saw a recovery bias towards high mass ratios for edge-on or

nearly edge-on NR injections at a particular polarisation value. So, we wanted to check if we

see such biases for zero-noise IMRPhenomPv2 injections recovered with the IMRPhenomPv2.

This would give an idea of the amount of bias over the inferred parameters due to observa-

tional priors (for eg: for edge-on inclinations). So, we started a set of PE runs sampling the

inclination space with fixed ψ = 82◦, and polarisation space with a fixed ι = 90◦. The gps

trigger time and sky-position were kept the same as for the NR injections. For the inclina-

tion (polarisation) series, we use the physical parameters of CFUIB0020 (CFUIB0029) for

IMRPhenomPv2 waveform injections with the value of polarisation (inclination) being that of

the largest bias seen for NR injections.

From Fig: 3.12, we can see that all the recovered parameters are unbiased over the inclina-

tion and polarisation space for IMRPhenomPv2 injections. Recovered η for (ι, ψ) = (60◦, 82◦)

are further from the mean than others, but not so much as to constitute a true bias and this

effect is considerably less than that for the corresponding NR injections.

The aligned-spin parameter is unbiased and well constrained in all situations. Recovered

χp (inclination series) is slightly better measured at ι ∼ 90◦ than at small inclinations, where

precession effects are not that strong. In the polarisation series, IMRPhenomPv2 was injected

at χp ∼ 0.4 (0.6 for inclination), and although these runs are at edge-on, the recovered χp
is not well measured. Thus, for these parameter space values (q, ~S1, ~S2), IMRPhenomPv2

cannot measure precession to a great accuracy. The highly consistent results between

IMRPhenomPv2 injections indicate that the biases seen by IMRPhenomPv2 waveform for NR

injections are due to the various approximations that went into building the model.

3.4 Conclusions

The physical parameters of GW150914 were measured using various waveform models,

with one of them being IMRPhenomPv2 . The mass parameters (M,η) of the BBH were

measured to be ∼ (65M�, 0.247) [170] with small anti-aligned spin (∼ 0) and no evidence

of precession. To investigate possible contributions of errors on the recovered parameters

due to IMRPhenomPv2 waveform model inaccuracies (see Section 3.1), a set of precessing
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FIGURE 3.12: The above figure gives the recovered posteriors of the intrinsic mass
and spin parameters (η,Mc, χeff , χp) of IMRPhenomPv2 injections recovered with
IMRPhenomPv2 . The red-dashed line denotes the true value of each parameter, the black
dots show the mean value of recovered posterior with the blue area denoting the 90% con-
fidence regions of the same. The left column shows the results for the inclination series
runs with a fixed injected ψ = 82◦ and the right column shows the results of the polarisation

runs with a fixed injected ι = 90◦.
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NR waveforms with similar mass-ratio and aligned-spin parameters to that of GW150914

were injected over a range of inclination and polarisation values to check the behaviour

of posteriors recovered by IMRPhenomPv2. NR waveforms are obtained via numerically

solving Einstein’s equations and replicate true GR waveforms from binary black-holes. The

waveforms used for injections contained all l = 2, 3, 4, 5 and −l ≤ m ≤ l modes. We find

that errors on GW150914 parameters due to waveform inaccuracies are much smaller than

those due to random noise. Overall, parameters estimated by IMRPhenomPv2 are close to

the true value with the outliers at edge-on inclinations.

Effects of precession (wobbling of binary plane) are weak for face-on or face-off signals and

increase with inclination up to edge-on configurations. The inclination series runs (fixed

ψ = 82◦) show that recovered mass parameters by IMRPhenomPv2 are close to the true

parameters for most inclinations, with the largest bias observed for edge-on configurations.

Bias on recovered η for CFUIB0020 waveform at ι = 90◦ vanishes on changing the in-

jected polarisation value from ψ = 82◦ to ψ = 135◦ (see Fig: 3.5). The polarisation series

runs (fixed ι = 90◦) show that for edge-on inclinations, the amount of bias observed for all

three injections change with the polarisation value, the maximum bias being at ψ = 82◦

(see Fig: 3.7). For a two detector network, the sky-position and polarisation values are

degenerate. So exploration in the polarisation space can also be mapped to exploring the

sky-positions for fixed polarisation values. The series of runs with CFUIB0020 over the

inclination-polarisation space shows that (for q ∼ 1.2, 0. ≤ |χeff | ≤ 0.5 & χp ∼ 0.5) there is

∼ 30◦×30◦ region of the parameter space centered around (90◦, 82◦) where we can expect

the largest biased values to occur (see Fig: 3.8). As a very small number of signals from

that region could actually be detected and as the inferred parameters of GW150914 are

not in this region [170], these systematics will not dominate the errors on mass-parameters

recovered for GW150914 and are unlikely to induce biases in most GW observations.

Effects of spin on the gravitational waveform are captured by two spin parameters (χeff & χp)

in IMRPhenomPv2 . The recovered effective spin parameter χeff is unbiased over most of

inclination-polarisation space, the outlier being recovered χeff for CFUIB0020 waveform at

(ι, ψ) = (90◦, 82◦). GW150914 was found to have χeff ∼ 0 and the unbiased spin recovery

for CFUIB0029 (χeff = −0.02) waveform over the (ι- ψ) space show that IMRPhenomPv2

recovered spins would be consistent with the true value.

The effective precession spin parameter χp (see Fig: 3.10), for most inclinations recover

the prior and is badly constrained. For near edge-on configurations of CFUIB0020 though,

IMRPhenomPv2 can better constrain the measured χp, although the parameter is still weakly

constrained for the examples considered here. Constrained χp posteriors at near edge-

on configurations can be explained by the increasing precession effects on final observed

waveform when binary is highly inclined. To better understand the systematic errors from



Effects of in-plane spin direction on final waveform 71

IMRPhenomPv2 due to precession effects would require a study of injections at much higher

SNRs and higher mass-ratio and spin combinations, as the precession effects would then

be more pronounced and clearly measurable.

To confirm that the source of bias is from the IMRPhenomPv2 waveform inaccuracies, we

injected IMRPhenomPv2 at various inclination (fixed ψ) and polarisation (fixed ι) values and

recover with IMRPhenomPv2, with the intrinsic parameters set to those of CFUIB0020 (for

inclination series) and CFUIB0029 (for polarisation series). Parameter recovery is good for

all the runs done in this series. This indicates that the source of bias that we see is due to

inaccuracies between the waveform model and real GR waveforms.

A gravitational wave signal observed from a real black hole coalescence will have all the

modes present other than only the dominant quadrupole (` = 2) modes. At high mass-ratio,

high-spins and near edge-on configurations, these subdominant modes are strong and their

non-inclusion in the waveform model could lead to biased parameter recovery. For these

reasons, the CFUIB0020 NR waveform was injected with differing mode content at face-on

and edge-on inclinations but the posteriors recovered by IMRPhenomPv2 remain consistent

with each other (see Fig: 3.11). So, for this mass-ratio, we conclude that the effect of higher-

order modes will not be particularly important in parameter recovery and the contribution to

total bias from higher-order modes can be neglected.

In this study, NR waveforms with parameters close to those of GW150914 were injected

in zero-noise over a range of inclinations, polarisations and with varying mode content to

check for systematic errors from using IMRPhenomPv2 waveform for parameter inference.

For GW150914, we conclude that the statistical errors dominate over the systematic, and

hence model waveform inaccuracies are not a major source of error. Note that these results

hold only for systems with q ∼ 1.2 as for larger mass-ratio values the effects of precession

and sub-dominant modes would become stronger.



Chapter 4

Effects of in-plane spin direction on

final waveform

In Chapter 2, we discussed precessing systems (see Section 2.5) along with a description

of the IMRPhenomPv2 waveform model (see Section 2.6.2). To recap, when the spins of the

individual black holes are not (anti-)aligned to the orbital angular momentum direction L̂, L̂

(i.e, the orbital plane) precesses around the total angular momentum ( ~J ), leading to modu-

lations on the final amplitude and phase of the gravitational waveform. There exists a non-

inertial frame wherein these precession modulations are minimized, called the Quadrupole

Aligned (QA) frame. The QA frame is one for which L̂ is approximately parallel to ẑ ∀t, i.e., it

approximately tracks the precession during the BBH coalescence [125], [155], [156], [189].

In this frame, almost all of the signal power is in the (2,2) and (2,-2) modes (see Fig: 4.1).

In the QA frame, the fractional power in each mode corresponds to a non-precessing binary

and the precessing waveform in the QA frame can be approximated by a corresponding

aligned-spin waveform [125], [190], [63], at least during inspiral (see Fig: (1) of [190]).

The IMRPhenomPv2 waveform model generates a precessing waveform by twisting up the

aligned-spin waveform in the QA frame back to the inertial frame using a model for the

Euler angles. For IMRPhenomPv2, the precession modulation effects are captured by a sin-

gle effective spin parameter (χp), which is a weighted average of the in-plane spin param-

eters (spin parameters perpendicular to L̂) (see Section 2.6.2 for an introduction to the

IMRPhenomPv2 waveform and definitions of the spin parameters). For the IMRPhenomPv2

waveform, the opening angle (angle between L̂ and Ĵ ) β ∝ S⊥/(L+S‖), where S⊥ and S‖
are the magnitude of component of spin in the plane of the orbit and parallel to L̂ respec-

tively. The angle α depends on the in-plane spin components averaged over one orbit, with

the initial orientation of the in-plane spin acting as an overall constant, i.e., the orientation of
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the in-plane spin determines the initial direction of L̂ about Ĵ (given a β) (see [191] for de-

tails on the implementation of the IMRPhenomPv2 waveform model). The third angle is given

as defined in Eq: 2.58. So, for this waveform model, the four dimensions of the in-plane spin

are mapped to one effective precession spin parameter. This approximation works very well

towards approximating precessing waveforms and the posteriors recovered with this model

are consistent with other precessing models for all BBH events detected to date, although it

should be noted that so far precession effects have not been strong enough to be measured.

Another phenomenological waveform model for precessing systems that models effects of

both spins during inspiral, IMPhenomPv3, has recently been developed in [130]. Work is

currently ongoing to tune the merger-ringdown precession angles to NR data.

FIGURE 4.1: (2,2) and (2,1) ψ4 modes of a precessing system in the QA frame and ~J -
aligned frame. The strength of the (2,1) mode, in the QA frame, reduces drastically due to
which most of the signal power lies in the quadrupole mode. The waveforms are aligned

so that t = 0 is the time of maximum amplitude.

One approximation in the current precession models (IMRPhenomPv2, SEOBNRv3) is the treat-

ment of effect of the direction of the in-plane projection of the spin. We denote the angle

between the in-plane projection of the spin ~S (for a single spin system) and the position

vector r̂ by φSR. In current models the only effect of changing φSR, is an overall phase shift

at a given reference time. The other effect that is not modelled, is the radiation of linear

momentum perpendicular to the orbital plane. Other than in equal mass non-spinning sys-

tems, gravitational waveforms from all systems have a inherent asymmetry in the modes,

the behaviour of which is quite different for precessing systems (for details see Section 4.1).

In this study, we wish to determine the effects of modifying the direction of the in-plane spin

on the final gravitational waveform and attempt to place bounds on when it could be possible

to observe and distinguish these variations. We also check for effects of including and re-

moving the mode-asymmetry content from the waveforms on distinguishability of the signals

from two systems and check how disregarding mode-asymmetry content from precessing

waveforms affects the results.
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To do that, I performed a set of NR simulations of unequal mass single-spin BBH systems

with the spin lying in the orbital plane and at varying orientations with respect to ~r at the

reference frequency. For a given mass-ratio, one of these NR waveforms is chosen as the

proxy template waveform, with the others being the signal waveforms. We then compute the

match (Section 4.3.1) between the two waveforms over the (θ, φ) space where the match

is maximised over the time and phase of arrival, signal and template polarisation values

and over the template (θ, φ) space (Section 4.3.2). From the maximised match values, we

determine the critical (minimum) SNR of the signal at which the template waveform will be

able to distinguish the signal source as a different one from itself (Section 4.3.4). For these

cases with different spin directions, we wished to investigate if we could decouple the effect

of mode asymmetry and orbital precession effects and attempt to estimate the dominant

contributions towards the overall match (and hence, the measurability of a signal). Such a

study is not conclusive, because without a full waveform model, we are unable to maximise

over the intrinsic parameters (Mtotal, η, χeff , χp) and so cannot comment on the full bias

that might be incurred by using a model that ignores these physical effects.

To generate the NR waveforms for this study, we wished to generate the initial data of the

BBH systems so that all start at a given reference frequency with the required spin orienta-

tions. To obtain the initial data, I modified a code in Mathematica of the simulations that use

the PN equations of motion to obtain the initial data for the required configurations (the mod-

ified code is the same one as used in [125], [178], [69] to generate the initial parameters).

In Section 4.1, I will explain the mode-asymmetry for precessing systems and provide some

examples of the same. Section 4.2 provides an explanation of the implementation of the

initial data generation code and details of the NR waveforms used in this study. Section 4.3

explains the match computation procedure for precessing waveforms, the connection be-

tween the match values and distinguishability condition and the maximisation procedure

employed to get the final match. The results of the study are given in Section 4.4 with the

conclusions of the study in Section 4.5.

4.1 Mode asymmetry

Gravitational wave signals can be decomposed in the spin weight -2 spherical harmonic

basis (−2Ylm(θ, φ)) to obtain the gravitational wave modes (hlm). For non-spinning and

aligned-spin waveforms the orbital plane remains steady. In a frame where the orbital plane

lies in the x-y plane (L̂ ‖ ẑ), there exists a reflection symmetry about the x-y plane. Due to

this symmetry, for models constructed in this frame, the waveform modes are related as,

hlm(t) = (−1)lh∗l−m(t), (4.1)
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FIGURE 4.2: The figure plots the quantity |ψ4
lm − (−1)lψ4∗

l−m| for the ψ4 modes of
the publicly available SXS waveforms (SXS:BBH:0001, SXS:BBH:0184, SXS:BBH:0182,
SXS:BBH:0257 and SXS:BBH:0242) [116] for different non-spinning and aligned-spin con-
figurations (shown in grey). The Blue, Black and Red lines plot the same quantity for a
set of BAM precessing waveforms. The solid [dashed] lines give the difference in the (2,2)
[(2,1)] modes. The waveforms are aligned so that t = 0 is the time of maximum amplitude.

with φlm ∝ mφorb =⇒ φ22 + φ2−2 = 0. For precessing systems, due to the wobbling of

the orbital plane, these relationships do not hold.

Let me demonstrate this in slightly more detail. The relation in Eq: 4.1 will hold for the ψ4

modes of the NR waveform and the quantity |ψ4
lm − (−1)lψ4∗

l−m| would give an idea of the

validity of the relationship.

As we can see from Fig: 4.2, the quantity |ψ4
lm − (−1)lψ4∗

l−m| is non-zero for precessing

systems, whereas for aligned-spin and non-spinning systems, we just see numerical noise.

Also, the value for the (2,1) mode differences of the precessing system are almost 100 times

larger than their corresponding (2,2) mode differences. Fig: 4.3 plots the quantity φ22 +φ2−2

for an aligned spin and a precessing system. Whereas φ22 + φ2−2 = 0 throughout the

coalescence for aligned-spin waveforms, the same is not true for the precessing waveform.

This equality holds precisely for the aligned-spin case, and this symmetry is exploited in the

BAM numerical simulations by evolving only the z > 0 half of the simulation domain.

For Fig: 4.2, Fig: 4.3 and Fig: 4.4, the NR modes of non-spinning and aligned-spin binaries

are defined in the L̂ aligned frame while the precessing modes are defined in the Ĵ aligned

frame. It is pretty straightforward to see that if the wave frame is rotated to an arbitrary

direction, the behaviour between the modes for all systems would change. Also, we see

that in a special frame, there exists a symmetry between the modes of a non-spinning and
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FIGURE 4.3: The quantity, φ22 + φ2−2 for an aligned-spin (SXS:BBH:0257 [116]) shown
in dashed-blue and the q2a07p0 precessing system shown in black(see Tab:4.1). The

waveforms are aligned so that t = 0 is the time of maximum amplitude.

aligned-spin system which does not exist for precessing systems. So, we need a frame-

independent way to characterize these asymmetries in the modes.

As mentioned earlier, the relation Eq: 4.1 holds for non-spinning and aligned-spin systems

due to the choice of initial axes during the model construction (L̂ ‖ ẑ). Other than for

equal mass non-spinning systems, there exists a inherent asymmetry in the emission of

gravitational radiation from the system which leads to the final black hole obtaining a non-

zero momentum along some direction. For non-precessing systems, this asymmetry is

captured by the higher-harmonics and the recoil velocity can be computed via the overlap

of different harmonics (see Fig:6 of [136]).

In Sec. IIB of [131], the authors provide a way of defining a rotationally invariant measure

for mode-asymmetries, which I will briefly explain here. Let f(r̂) be a function defined on a

unit sphere. Define an operator A such that,

A[f(r̂)] = f(−r̂). (4.2)

For spin weighted fields, A reverses the sign of the spin weight. Taking a complex conjugate

of the spin weighted field reverses the sign of the spin weight. Thus, to keep the spin weight

constant, define another operator Ā such that,

Ā[f(r̂)] = f∗(−r̂). (4.3)
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FIGURE 4.4: |ψ4
lm − (−1)l+mψ4∗

l−m| for the precessing systems plotted in Fig: 4.2. Note
that the (2,1) and (2,2) mode differences are now of the same order. The waveforms are

aligned so that t = 0 is the time of maximum amplitude.

So, for any gravitational wave mode hlm(t), operation of Ā gives 1,

Ā[hlm(t)] = (−1)l+mh∗l−m(t). (4.4)

As shown in Appendix C of [131], the operator Ā is the parity operator P− and the relation

Eq: 4.4 is a consequence of,

P−hlm(t) = (−1)l+mh∗l−m(t). (4.5)

So, the quantity |ψ4
lm − (−1)lψ4∗

l−m| plotted in Fig: 4.2 gives the difference in modes as

reflected about the x-y plane and |ψ4
lm − (−1)l+mψ4∗

l−m| will give the difference along r̂ and

−r̂. In Fig: 4.4, I plot the quantity |ψ4
lm− (−1)l+mψ4∗

l−m| for a precessing NR simulation; and

now we see that the mode differences for (2,2) and (2,1) modes are of the same order.

Consider the operator, Π = 1
2(1−Ā). Now, Π[f(r̂)] ∝ f(r̂)−f∗(−r̂). So, we can understand

Π as the operator that gives the difference in the gravitational wave emission along opposite

directions of a sphere. With this, the authors in [131] define the normalized asymmetry as,

a =

√∫
|Π[h]|2dΩ∫
|h|2dΩ

=

√∑
l,m |hlm − (−1)l+mh∗l,−m|2

4
∑

l,m |hlm|2
. (4.6)

1See Appendix C of [131] for a thorough derivation.
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FIGURE 4.5: Normalized mode asymmetry (see Eq: 4.6) for the SXS systems
(SXS:BBH:0184, SXS:BBH:0182 and SXS:BBH:0242 [116]) and q2a07p0 simulation (see

Tab:4.1). The waveforms are aligned so that t = 0 is the time of maximum amplitude.

Fig: 4.5 shows the plots of the normalized mode asymmetry for two non-spinning, one

aligned-spin and one precessing system, where ′a′ is computed with only the l=2 modes. For

equal mass non-spinning systems, a = 0, but as we can see from the figure, for non-equal

mass systems such mode-asymmetries are an inherent part of the waveform behaviour and

cannot be removed by any frame transformation. For precessing systems, the behaviour

of a across time is not smooth (unlike the others) and as the system nears merger, a in-

creases drastically. The mode-asymmetry is ∼ O(10) larger for the precessing waveform at

merger than the corresponding non-spinning waveform and about ∼ 3 to 4 times than the

corresponding aligned-spin system.

Current waveform models twist-up an aligned-spin waveform from the QA frame to an inertial

frame, and as Fig: 4.5 shows, this procedure will not capture the mode-asymmetric content

of the true waveform.

4.2 NR Waveforms Generation

For this work, we produce single-spin NR waveforms such that all systems start at the same

reference frequency and with pre-specified spin directions. For a single spin precessing

system, we can completely specify the spin direction by two angles, i) the angle between

the spin-vector (Ŝ) and angular momentum vector (L̂) which we call θSL, and ii) the angle
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between the position vector and the projection of spin on the orbital plane, which we call

φSR.

In previous works ( [125], [178], [69]), the code used to generate the initial parameters for

precessing systems would evolve the PN expressions from a given initial condition with the

parameters read off at the reference frequency. By construction, we could specify the spin

orientation only at the start of the PN waveform and there was no control over the direction

of spin at the starting point of the NR evolution. For this work, we need to obtain the data

such that the spin vectors have the specified (θSL, φSR) angles at the reference frequency.

4.2.1 Initial Data Code

Over the course of early inspiral, the angle between Ŝ and L̂ (or value of S‖) is almost

constant (it changes by ∼ 1o) for most systems, the exception being the systems with tran-

sitional precession. As we will not be considering systems showing transitional precession,

once we specify θSL, we expect it to stay approximately constant [125]. To obtain the exact

final parameters, we technically also should iterate over the S‖ component, but this then

makes the problem 2-dimensional which would increase the overall computational time and

cost of the root finding procedure. Hence, we fix θSL at the start of the evolution and do not

iterate over this parameter.

We employ a brute-force strategy to get the initial parameters. This is required for these

systems because the frequency with which S⊥ rotates around ~r increases over the course

of the inspiral. Thus it is hard to pinpoint the exact direction of the initial spin ( ~Sini) to obtain

the required φSR at fstart.

Step 1:

This step consists of two iterations.

Iteration 1: At the start of this iteration, the spin vector is only along the x-axis (Sini), i.e,

Sy = Sz = 0, and as the two black holes are initially placed along the x-axis; φSR = 0

at t = 0. The spin is placed on the heavier black-hole. Then, this spin vector is rotated

counterclockwise by angle (θSL − π
2 ) about the y-axis (to get the correct angle between ~L

and ~S, as ~L ‖ ẑ at the start of the simulation) and the PN solver is run until we reach fstart.

The separation between the black holes at the start of the PN evolution is user specified and

we place the black holes ∼ 40M apart. The PN solver, along with other quantities, returns

the time (t0) at which the orbital frequency reaches fstart, the time (t1) around t0 at which

φSR(t1) = φtargetSR , φSR(t0) and the relative error (ωerr) between the orbital frequencies at

t0 and t1. At each iteration, φt0,iSR is stored. If φSR at t0 is not φtargetSR and if ωerr is larger

than a pre-specified threshold (ωFerr), then we record the value of φt1SR, let’s call it φ1
SR. The
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threshold error is set by the user, and for the initial data generated for this study, we set

ωFerr = 1%.

Iteration 2: For the second iteration, the spin vector Sini is rotated by (θSL − π
2 ) about the

y-axis and then by (−φ1
SR) about z-axis and the PN solver is run again. If the above two

conditions are satisfied (ωerr < ωFerr & φt1SR = φtargetSR ) then the parameters are read off at

the time t1; if not, we head to the second step. Also, if we need to head to step two, we call

the value of φt1SR stored during this second iteration as φ2
SR.

Step 2:

This step can consist of one iteration or multiple iterations depending on the parameters

obtained. Note that in all the future iterations, the spin (Sini) is first rotated by (θSL − π
2 )

about the y-axis and then by angle (−φiSR) for each future iteration.

Iteration 3: If the correct parameters are not obtained in iteration 2 of the first step, we define

a angle correction parameter, let’s call it φcorr. The term ωerr−ωFerr gives a indication of how

close the parameters are to the required value and the value of φcorr is determined by the

same. Noting that, if the condition (ωerr − ωFerr > 1
2ω

F
err) is satisfied, then φcorr = 10o, else

φcorr = 5o. Once φcorr is defined, we define φ3
SR = φ2

SR+φcorr. Because this system is not

convergent, the choice of either adding or subtracting the correction is arbitrary. Using this

angle φ3
SR to rotate (Sini), the PN solver is run again and the output parameters recorded.

Iteration n> 3 : Before we start these iterations, we check if φt0,3SR > φt0,2SR . If that is

the case then it is an indication that the initial spin is being rotated in the wrong direction,

and for each subsequent iteration we define φiSR = φ2
SR − (n − 3) × φcorr, if not, φiSR =

φ2
SR + (n − 2) × φcorr. Based on these angles, we keep on rotating (Sini) until the right

parameters are obtained.

Once the parameters are within the specified tolerances at fstart, the system is rotated so

that the black holes lie along the y-axis. This has to be done as the solver that produces

the initial data (Section 2.3.1) on a grid to be used by BAM (Section 2.3.2) and the BAM

code require the black holes to be along the y-axis. But, this rotation does not ensure that

the total angular momentum, ~J , will be along the z-axis. The parameters generated in this

manner can then be passed to the BAM code to obtain the numerical relativity waveform

through late-inspiral, merger and ringdown stages.

The BAM code returns, along with other physical quantities, the ψ4 modes of the gravi-

tational wave, which can be used to compute the strain. As mentioned before, the data

returned by the initial data code does not have ~J along z-axis. Due to that, during the

coalescence, along with the precession of L̂ about Ĵ , Ĵ also precesses about the fixed ẑ

axis leading to extra (unphysical) modulations on the precessing waveform. It is cleaner to
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FIGURE 4.6: The eccentricity (eD(t)) estimated from the the co-ordinate separation for
the cases q1a08p0 (q1a08p90), q2a07p0 (q2a07p90) and q4a08p0 (q4a08p90) which are

shown in Red (dashed-red), Black (dashed-black) and Blue (dashed-blue) respectively.

perform the analysis of the strain data in a frame where the total angular momentum ( ~J ) is

along the z-axis as the extra modulations in the waveform due to precession of ~J are muted.

We can do this rotation without loss of generality as this is a inertial rotation, i.e., the Euler

angles are computed only once at from the data at the start of the simulation and the same

rotation is applied throughout the coalescence. Hence, in this frame, modulations due to

precession of ~J are muted, but modulations due to precession of L̂ remain. So, I wrote a

Mathematica code that would parse through the folder containing the ψ4 mode data, calcu-

late the rotation angles to align ~J along the z-axis with the third angle fixed so that ~L lies in

the x-z plane at the start of the simulation and rotate all the modes and the other physical

quantities to this frame. These rotated data are exported to another folder and these are the

data used for analysis.

4.2.2 Details of the simulations

For this study, a set of 12 new NR simulations were performed with the BAM code, which are

split into three sets based on mass-ratio of the system; q=2, q=4 and q=1 series. The q2 se-

ries is a set of four q=2 NR waveforms with a total in-plane spin of |χ| = 0.7 with (θSL)=90◦

and (φSR) = (0◦, 90◦, 180◦, 270◦). The q4 series is a set of four q=4 NR waveforms with

|χ| = 0.8 and the same (θSL, φSR) configurations as q2. The series q1 is a set of four equal

mass systems where both black holes are spinning and with equal and opposite in-plane

spins of |χi| = 0.8, also known as the super-kick configurations [138], [139], [140](see

Fig: 2.8 for the final recoil velocities from this series of runs). The super-kick configurations
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are non-precessing and due to the symmetry of the system, the final recoil is along ±ẑ. In

the configurations below,m2 > m1 and ~S1 = (0,0,0) for the q2 and q4 series. For the names,

we use the following convention : q(mass-ratio of system)a(total spin of system)p(angle be-

tween in-plane spin and position vector φSR), so the first simulation in q2 series would be

q2a07p0. The angle, θLS , between L̂ and Ŝ is always 90◦ for these systems. For the q1

series waveforms, remember that total spin (~S1 + ~S2)=0, but we follow the above convention

naming for simplicity. We also use three extra NR simulations with different total in-plane

spin values (with same θSL and φSR = 0), which are used as comparison cases.

The initial data for the q=2 series of runs was generated by running the initial data code

from Section 4.2.1 for φSR = 0 and the spins were then rotated by hand around L̂ to get the

data for φSR = 90, 180, 270. For all the q=1 and q=4 systems though, the initial data was

generated from the code separately for each simulation.

It is possible that there exists some residual eccentricity once the NR simulation is started

with the quasi-circular parameters obtained from Section 4.2.1. So, we need to i) estimate

the eccentricity (e) and ii) if the eccentricity is above a given threshold (e > O(10−3)), modify

the momenta until the estimated e is within the threshold. We estimate the eccentricity from

the co-ordinate separation (as given in Eq: (3) of [177]). There have been various studies

where the authors have looked at reducing the eccentricity for NR simulation by modifying

the tangential/radial component of the momenta (see [177], [192] and more recently [193]).

For these simulations though, we choose to change the overall momenta by some percent

of itself (for eg: either add or reduce the ~p by 1% of |~p|). For the q=2 system, we did not

require to change the momenta (as the first set of parameters gave low eccentricity), but

for q4a08p0 (q4a08p90) system we changed the momenta by -1% (+2.5%)|~p| and for the

q1a08p0 (q1a08p90) we changed the momenta by -1% (0%)|~p| to get the low-eccentricity

parameters. See Fig: 4.6 for the eccentricities of the simulations generated for this study.

Note that the eccentricities for systems with an angle difference of φSR ± π have the same

values, for e.g., the parameters required for q4a08p0 and q4a08p180 are the same.
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Config q ~S1 ~r = D/M ~p = ~p1 − ~p2 ωstart(fM) φSR θSL

q1a08p0 1 (0, -0.799, -0.001) ( 0, 11.552, 0) (-0.174, -0.001, 0) 0.0225 0 90

q1a08p90 1 (0.7999, 0, -0.0012) ( 0, 11.623, 0) (-0.174, -0.001, 0) 0.0225 90 90

q1a08p180 1 (0, 0.7999, -0.0012) ( 0, 11.623, 0) (-0.174, -0.001, 0) 0.0225 180 90

q1a08p270 1 (-0.7999, 0, -0.0012) ( 0, 11.623, 0) (-0.174, -0.001, 0) 0.0225 270 90

q2a07p0 2 (-0.001, 0.699, 0.006) ( 0., 10.810, 0. ) (-0.105, -0.001, 0.123) 0.025 0 90

q2a07p90 2 (-0.451, -0.005, 0.535) ( 0., 10.810, 0. ) (-0.105, -0.001, 0.123) 0.025 90 90

q2a07p180 2 (0.006, -0.699, -0.002) ( 0., 10.810, 0. ) (-0.105, -0.001, 0.123) 0.025 180 90

q2a07p270 2 (0.448, -0.005, -0.537) ( 0., 10.810, 0. ) (-0.105, -0.001, 0.123) 0.025 270 90

q4a08p0 4 (0.0007, 0.799, -0.005) ( 0. , 11.486, 0. ) (-0.111, -0.0004, 0.014) 0.0225 0 90

q4a08p90 4 (-0.793, 0, 0.099) ( 0. , 11.486, 0. ) (-0.111, -0.0005, 0.014) 0.0225 90 90

q4a08p180 4 (-0.0007, -0.799, -0.005) ( 0. , 11.486, 0. ) (-0.111, -0.0004, 0.014) 0.0225 180 90

q4a08p270 4 (0.792, 0, -0.110) ( 0. , 11.486, 0. ) (-0.111, -0.0005, 0.0147) 0.0225 270 90

q4a04p0 4 (-0.001, 0.399, -0.00007) ( 0. , 11.486, 0. ) (-0.111, -0.0004, 0.014) 0.0299 0 90

q2a04p0 2 (-0.00008, 0.3999, -0.0008) ( 0. , 11.6299, 0. ) (-0.153, -0.0009, 0.015) 0.0224 0 90

q2a08p0 2 (0.0005, 0.799, -0.003) ( 0. , 11.5709, 0. ) (-0.153, -0.0009, -0.0243) 0.023 0 90

TABLE 4.1: Table of NR simulations used for this study. From left to right, the columns
show the name of the simulation, the mass-ratio of the system, value of the spin on the
larger black hole at the reference frequency, the separation between the black-holes at
the reference frequency, the total momenta of the system at the reference frequency, the
reference frequency at which the simulation starts and the values of the φSR and θSL

angles respectively. For the q1 series, note that ~S2 = −~S1.

4.3 Analysis of the data

We have performed the above three sets of simulations (the simulations for the comparison

set were done at Caridff [194] in an attempt to investigate the effects of varying the spin-

angle parameter (φSR) on the final gravitational waveform. Such a study would enable us

to determine whether the effect of this parameter would be large enough to be detectable in

GW observations, how strong the signal should be for detectability and thus whether such

a parameter would be essential to model. To do that, we require to quantify the level of

agreement/disagreement between different waveforms and this is done by computing the

match between two waveforms.

Given two NR waveforms, we can calculate the matchM(h1, h2), where the match between

two waveforms, h1(f) and h2(f) is given as,

M(h1, h2) = 4Maxt0,φ0

[
Re

∫ ∞
0

h1(f)h∗2(f)

Sn(f)

]
, (4.7)

where the integral is maximised over time (t0) and phase shifts (φ0). The normalized match

between two waveforms is 1 if both are exactly the same, and less than unity otherwise.

This allows us to quantify the effect of a given parameter on the waveform by comparing
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waveforms within a set with each other. For precessing systems, the match computations

are a bit more involved, but we defer further discussion to Section 4.3.1.

Once we have the match maximised over the relevant parameters, we wish to check if the in-

plane spin effects can be measured and estimate how strong the signal should be so that it is

distinguishable from the template. To do that, we use a relation between the match value of a

signal and template waveform and the corresponding critical SNR required for the template

waveform to distinguish the signal as a different system. For example: for the q2 series

analysis, suppose we use the q2a07p0 (q2a07p90) waveform as the template (signal). The

only difference between q2a07p0 and q2a07p90 is the initial in-plane spin direction with all

other parameters being the same. For a particular signal coming from (θs, φs), we can get

the maximum matchMmax with the template that gives us a corresponding SNR value (ρc)

for the signal. The SNR (ρc) then is an estimate of how strong the signal (q2a07p90) should

be for the template (q2a07p0) to distinguish the system as a different one from itself.

In the following sections we will discuss how we compute the matches for the precessing

systems, the maximisation procedure of obtaining the maximised match and the connection

between match values and critical distinguishability SNR.

4.3.1 Match calculation

Given a signal and model waveform, the agreement between the two can be gauged from

the match value 2. This number is given by the noise-weighted inner product of the signal

(hS(f)) and model (hM (f)) detector response (see Eq: 4.7 with h1(f) ≡ hS(f) and h2(f) ≡
hM (f)).

The detector response of a gravitational wave arriving from directly overhead a detector (so

that the sky position (α, δ) = (0, 0) in Eq: 1.27 and Eq: 1.28) is given by (see Eq: 1.29),

hresp(t) = h+(t)cos(2ψ) + h×(t)sin(2ψ), (4.8)

where ψ is the polarisation value of the waveform. Defining the complex waveform as,

hcomp(t) = h+(t)− ih×(t), (4.9)

gives us a way to write the total response in terms of the complex waveform and polarisation

as,

hresp(t) = Re
[
hcomp(t)e

2iψ
]
. (4.10)

2This way of computing matches noted below between precessing waveforms is described in Appendix B
of [63] and we closely follow that prescription here.
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Using the above form of response in the match function 3,

M(hS(f), hM (f)) = Re

[∫ ∞
−∞

hS(f)hM∗(f)

Sn(|f |) e2i(ψS−ψM )df

]
+

Re

[∫ ∞
−∞

hS(f)hM (−f)

Sn(|f |) e2i(ψS+ψM )df

]
,

(4.11)

where ψS and ψM are the polarisation values of the signal and model waveform respectively

and Sn(|f |) is the noise power spectral density.

Once we have the form of the inner product (i.e., match) between two waveforms, it provides

us a straightforward way to define the norm of a waveform as,

〈h(f)|h(f)〉 = ||h(f)||2 = Re

[∫ ∞
−∞

h(f)h∗(f)

Sn(|f |) df

]
+ Re

[∫ ∞
−∞

h(f)h(−f)

Sn(|f |) e4iψdf

]
.

(4.12)

Now, we need the normalized match maximised over ψM , i.e.,

MaxψM

〈
hS(f)

||hS(f)|| |
hM (f)

||hM (f)||

〉
=

Re

[
1

||hS(f)|| × ||hM (f)||

∫ ∞
−∞

hM∗(f)e−2iψM

Sn(|f |)
[
hS(f)e2iψS + hS∗(−f)e−2iψS

]
df

]
.

(4.13)

Let us define the quantities (N1, N2, O, σN , σo)

N1 =

∫ ∞
−∞

|hM (f)|2
Sn(|f |) df, (4.14)

N2e
iσN =

∫ ∞
−∞

hM (f) ∗ hM (−f)

Sn(|f |) df, (4.15)

Oeiσo =

∫ ∞
−∞

hM∗(f)

Sn(|f |)
[
hS(f)e2iψS + hS∗(−f)e−2iψS

]
df. (4.16)

Now,

||hM (f)||2 = Re

[∫ ∞
−∞

hM (f)hM∗(f)

Sn(|f |) df

]
+ Re

[∫ ∞
−∞

hM (f)hM (−f)

Sn(|f |) e4iψMdf

]
, (4.17)

= N1 +N2e
i(σN+4ψM ), (4.18)

and we can rewrite the integral in Eq: 4.13 as Oe−i(2ψM−σo).

3Note that we can get Eq: 4.11 from Eq: 4.7 by noting 4Re
[∫∞

0
a(f)b∗(f)

]
≡[∫∞

−∞ a(f)b∗(f) +
∫∞
−∞ a∗(f)b(f)

]
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Using the above relations, we can analytically compute the match maximised over model po-

larisation ψM by first rewriting the match function in terms of the quantities (N1, N2, O, σN , σo).

We can optimize the match value for different values of signal polarisation, and the maxi-

mum match we get is,

MaxψM

〈
hS(f)

||hS(f)|| |
hM (f)

||hM (f)||

〉
= MaxψM

[
O

||hS(f)||
cos(2ψM − σo)√

N1 +N2cos(σN + 4ψM )

]
,

(4.19)

=
O

||hS(f)||

√
N1 −N2cos(σN + 2σo)

N2
1 −N2

2

, (4.20)

for optimal ψM being,

ψoptM =
1

2
tan−1 N1sin(σo) +N2sin(σN + σo)

N1cos(σo)−N2cos(σN + σo)
. (4.21)

Now, we want that match value which is maximised over the time and phase shift of the

model waveform compared to the signal. Calculating the match optimized over template

polarization is equivalent to the maximising the match over an overall phase-shift. To obtain

the time-shift optimized match, notice that the Fourier transform of a time-shifted function

behaves as,

F [x(t− t0)] (f) =

∫ ∞
−∞

x(t− t0)e2πiftdt = F [x(t)] (f)e2πift0 = x(f)e2πift0 . (4.22)

Time shifting the model waveform hM (f) by t0 adds an additional factor of e−2πift0 to

Eq: 4.11. Optimization over the time shift can then be done by taking the inverse Fourier

transforms of the integrals and then finding the maximum value of the same.

Computing matches between two precessing waveforms then follows the algorithm below:

Algorithm to compute precessing match:

1. Input→ Frequency series of model waveform (hM (f)), signal waveform (hS(f)) and

PSD (Sn(f)) with the signal polarisation ψ.

2.
∑

df ∗ |hS(f)|2
Sn(f) → N1

3.
∑

df ∗ hS(f)hS(−f)
Sn(f) → N c

2

4. |N c
2 | → N2 :: arg(N c

2)→ σN
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FIGURE 4.7: Variation of match as a function of the signal polarisation at different padding
values for signal q2a07t0 (θ, φ) = (175o, 0o) and template q2a07t0 (θ, φ) = (0o, 0o).

5.
∑

df ∗ |hM (f)|2
Sn(f) → S1

6.
∑

df ∗ hM (f)hM (−f)
Sn(f) → Sc2

7. iFFT(h
∗S(f)hM (f)
Sn(f) )→M c

1

8. iFFT(h
∗S(f)h∗M (−f)

Sn(f) )→M c
2

9. |M c
1e

2iψ +M c
2e
−2iψ| →M

10. arg(M c
1e

2iψ +M c
2e
−2iψ)→ σM

11.
√
S1 + Re(Sc2e

4iψ)→ ρ

12. Match = max
[
M
ρ

√
N1−N2cos(σN+2σM )

N2
1−N2

2

]

For the algorithm above, the model, signal and PSD have to be sampled at the same fre-

quencies. These series are masked between the low and high frequency cut-off and before

computing the inverse FFTs the data are padded with extra zeroes to improve the sampling.

Increasing the padding amount increases the computational cost of the match computation.

For my code, the extra padding amount is in powers of 2, so pval=1 would mean the padding

would increase by a overall factor of 2, pval=2 means 4 and so on. See Fig: 4.7 for variation

of the match with different paddings. We see that beyond pval=3, the match values do not

change, and hence, for the result computations, we choose a padding value of 3. Typically,

the signals are constructed so that there are ∼ 8192 − 16384 samples in the frequency

domain.
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4.3.2 Maximisation procedure

Given a set of intrinsic parameters (total mass, mass-ratio, spins etc.) the match value

depends on the signal and template inclination, coalescence phase and polarisation values.

Let the signal and template extrinsic parameters be given by (θ1, φ1, ψ1) and (θ2, φ2, ψ2)

respectively, where the (θi, φi) are the inclination and coalescence phase of the binary that

go into the spin weighted spherical harmonic functions while composing h+(t) and h×(t)

from the hlm modes (see Eq: 4.23). For a given value of ψ1, the match procedure described

in the previous section gives the match maximised over ψ2
4 and initial time.

Given a signal (θ1, φ1), we compute the match maximised over all the extrinsic template

parameters (θ2, φ2, ψ2) as well as the signal polarisation. Although the signal polarisation

is not a parameter one can control for real GW observations, we present results where the

match is maximised over the signal polarisation as this would give us a estimate of the

best-case match between the waveforms, with the match for all other points in the extrinsic

parameter space being lower than the maximised match. The maximisation procedure to

get the match between the signal and template waveforms for a given (θ1, φ1) goes through

these steps:

• Grid the template (θ2, φ2) ∈ ([0, π], [0, 2π]) with 41 uniform points in θ2 space and 81

uniform points in φ2 space.

• For each value of template θ2i, we compute the match across template φ2j . For each

(θ2i, φ2j) combination, the code gives the match as a function of the signal polarisation

value. We compute the match across signal ψ1 ∈ (0, π/2) and record the maximum

match over ψ1 for each of the template φ2j .

• We then interpolate the match maximised over template and signal polarisations

across each φ2j value (fixed θ2i) and, for a given θ2i, that is the maximised match.

• Thus, we get a set of match values across the template θ2i values, which are then

interpolated to obtain the maximum match over template (θ2, φ2, ψ2) and signal ψ1.

For the results, the match maximised over the extrinsic parameters as described above

is computed over a 25x25 grid in the signal (θ, φ ∈ ([0, π], [0, π])) space. As I did not

isotropically grid the (θi, φi) parameters during this procedure, I will re-weight the results

accordingly.

4Note that maximising over the polarisation effectively maximises the match over an overall phase
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FIGURE 4.8: Detector response from recomposed NR waveform with varying lmax modes
for system q4a08p0 with total mass 90M�, distance of 550 MPc and (θ, φ) = (0,0). The

transition of inspiral to merger occurs at ∼ 170Hz for this system.

4.3.3 Choice of Modes

As mentioned earlier, the time (frequency)-domain gravitational waveform can be expanded

in a spherical harmonic basis as,

h(t, ~λ) = h+ − ih× =
∑
l,m

−2Y l,m(θ, φ)hlm(t, ~λ), (4.23)

where hlm are the gravitational wave modes andm ≤ |l|. For non-spinning equal mass BBH

systems, the dominant mode is the l = 2 quadrupole mode with the sub-dominant modes

(l = 3, 4, 5 . . . ) having almost zero signal power. But, the sub-dominant mode contribution

becomes stronger for precessing high-mass ratios and high-spin systems and for non face-

on inclinations.

To examine the impact of including sub-dominant modes on the frequency domain wave-

form, I construct the NR waveform from simulation q4a08p0 while including l=2, 3, 4 and 5

modes respectively. From Fig: 4.8, we can see that the higher-order modes do add extra

structure to the waveform in the merger/post-merger phase (the waveform is defined in the

Ĵ ‖ ẑ frame).

As most of the current waveform models only model the quadrupole mode, we present the

results with only lmax = 2 modes for both template and signal and defer the study with
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higher-order mode contribution for the future.

4.3.4 Connecting match value with distinguishability SNR

Let the detector data (d(t)) with noise (n(t)) have a signal (h(t, ~λ0)) present; giving us 5,

d(t) = h(t, ~λ0) + n(t), (4.24)

where ~λ0 is the vector of source parameters.

Any GW signal h(t, ~λ) with ~λ ∼ ~λ0 can be Taylor expanded to first order in terms of param-

eters,

h(t, ~λ) = h(t, ~λ0) + ∆λi∂ih(t), (4.25)

with ∂ih(t) being the partial derivative of h(t) w.r.t parameter λi.

Given the detector data and a waveform template, we can write the likelihood for a given set

of ~λ as,

p(d|~λ) ∝ exp

−
〈
d(t)− h(t, ~λ)

∣∣∣ d(t)− h(t, ~λ)
〉

2

 . (4.26)

Substituting the expressions for d(t)[Eq:4.24] and h(t, ~λ)[Eq:4.25] in Eq: 4.26 and keeping

terms up to first order in λi,

p(d|~λ) ∝ exp

{
−〈n(t)|n(t)〉

2
+ λi 〈n|∂ih(t)〉 − λiλj 〈∂ih(t)|∂jh(t)〉

2

}
. (4.27)

Given a likelihood, within Bayesian analysis, the posterior probability is,

p(~λ|d(t)) ∝ p(d|~λ)p(~λ), (4.28)

where p(~λ) is the prior over the parameters, which can be assumed to be flat for detectable

signals. The flat prior assumption, although not physically motivated, is a reasonable ap-

proximation as the likelihood function would be highly peaked in a very small region of the

full parameter space.

Once we have a posterior distribution, we can define a region in parameter space (Θ) that

contains a given probability p of the posterior distribution,

p =

∫
Θ

dλp(~λ|d). (4.29)

5This discussion closely follows the one given in Section V.A of [181]
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Such confidence intervals can be computed by obtaining the posteriors from a full parameter

estimation computation, but here we will derive the confidence intervals within the Fisher

matrix approximation.

Before computing the confidence intervals, we would like to point out the expressions for

mean (< λi >) and variance (< λiλj >) of given parameters [181],

< λi > =

∫
dλλip(~λ|d(t)) = 〈∂ih|∂jh〉−1 〈n|∂jh〉 ,

< λiλj > = 〈∂ih|∂jh〉−1 .

(4.30)

Using the above expressions along with Eq:4.27 and the assumption of a flat prior, we can

re-express the posterior distribution (Eq:4.28) as,

p(~λ|d(t)) ∝ exp

{
−1

2
〈λi− < λi >〉 〈∂ih|∂jh〉 〈λj− < λj >〉

}
,

∼ exp

{
−1

2

〈
|h(~λ)− h(< ~λ >)|2

〉}
.

(4.31)

The region that contains a given probability p of posterior distribution is the one where,

|h(~λ)− h(< ~λ >)|2 < χ2
k(1− p), (4.32)

where χ2
k(1 − p) is the chi-square value wherein there is a probability (1 − p) of obtaining

the given value or larger with k being the number of dimensions for the problem which are

dependent on the number of physical parameters.

For two waveforms close to each other in the parameter space; i.e.; for h1( ~λ1) and h2( ~λ2)

with ~λ1 ∼ ~λ2; |h1|2 ∼ |h2|2 ∼ ρ2 with ρ being the SNR of the signal,

|h1( ~λ1)− h2( ~λ2)|2 = 2|h1|2
[
1− 〈h1|h2〉
|h1||h2|

]
∼ 2ρ2[1−M]. (4.33)

This gives a condition on confidence intervals in terms of match values as ,

M[h1, h2] ≥ 1− χ2
k(1− p)

2ρ2
. (4.34)

Two waveforms would be distinguishable from each other if the posteriors recovered for the

two are peaked at different values with non-overlapping confidence intervals. So, given a

match value, Eq: 4.34 gives us a condition for the SNR at which the waveforms would be
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FIGURE 4.9: Variation of the critical SNR (ρc) over the signal (θ, φ) space for the q2a07p90
signal as seen by q2a07p0 template. For these plots, we compute the match maximised
over template (θ, φ, ψ) for a range of signal polarisations between [0, π/2). The top (bot-
tom) panel shows the maximum (minimum) of the detected SNR variation over the signal
polarisations. For the plot, the x-axis gives the inclination variation with the y-axis showing
the coalescence phase variation for each signal (θ, φ) value. For a given inclination, varia-
tion of ρc across φ is small for small θ which increases slightly for near edge-on systems.
For a given φ, SNR variation is large over θ, which is expected. Due to precessing effects

dominating at edge-on, ρc is lower near π/2 as compared to other inclinations.
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distinguishable,

ρ ≥
√
χ2
k(1− p)

2(1−M)
. (4.35)

For the systems under consideration, the dimensionality of the problem is seven, one mass-

ratio dimension (q) and 6 spin parameters (~S1, ~S2). For 7 dimensions, the value χ2
k(1−p)

2 =

6.01 for 90% credible interval estimates.

4.4 Results

Fig: 4.9 shows the variation of the critical SNR (ρc) over the signal (q2a07p90) (θs, φs) ∈
([0, π], [0, π]) space with the template being q2a07p0 waveform. For Fig: 4.9, the match is

maximised over template (θ, φ, ψ) for a fixed signal polarisation, the signal polarisation is

varied over [0, π/2) and the distinguishability SNR is computed using Eq: 4.35. Using that,

I compute the maximum match over the signal polarisations (top panel of Fig: 4.9) and the

minimum value of match over all polarisations (bottom panel of Fig: 4.9). The variation of ρc
for both the plots show similar qualitative behaviour; i) for a given θs, variation of ρc along φs
is small; ii) it is harder to distinguish near face-on/face-off signals (larger ρc) as compared

to signals near edge-on inclinations and iii) distinguishability SNR is strongly affected by the

signal polarisation as we see a maximum SNR difference of ∼ 30 over signal polarisations

for a given signal (θ, φ). Distinguishability SNR being lower for edge-on systems is expected

as the precession effects become more pronounced as the inclination varies from face-on

to edge-on.

Now, although the contour plots as shown in Fig: 4.9 are interesting and provide a good

idea of ρc variation over the (θ, φ) space, we find it more instructive to plot the relative

percentage of total signals distinguishable at a given SNR for a given template (id2) - signal

(id1) combination. So, we compute the quantity,

Γ(ρ) = 100
len(Sid2:id1[ρ < ρc], N(θ))

len(Sid2:id1)
, (4.36)

where Sid2:id1 is the list of the SNR values and N(θ) is a function that re-weights the number

of samples from each θ value. It is defined as,

N(θ) =

 1 if θ = 0 or π

Nl ∗ Sin(θ) 0 < θ < π
(4.37)

with Nl being 25. This means that, if θ = 0, then we will randomly choose one sample from

the available samples at θ = 0, and at θ = π/2, we choose all 25 samples available at

θ = π/2. For all the results from now, we will be plotting Γ(ρ).
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FIGURE 4.10: Relative percent of signals detected at a given SNR as a function of ρc for
signal q2a07p90 and template q2a07p0, where the ρc is computed from the SNR averaged
match (see Eq:4.38) for a range of signal polarisation (maximised over template (θ, φ, ψ))
and the match maximised over template (θ, φ, ψ) and signal ψ. The dashed line gives the
SNR averaged match and the solid line gives the match maximised over signal polarisation.
For fixed signal polarisations, the ρc is always smaller than when the match is maximised
over signal polarisations. Hence, the signal polarisation maximised ρc profiles should give
us an estimate of the worst case scenarios of distinguishability of the in-plane spins for
these systems with the understanding that for most physical cases (i.e., fixed signal ψ’s) it

would in-fact be easier to distinguish the effects of in-plane spins.

Now, given a set of matches, we can also compute the orientation averaged match [130],

[165], [195] and its corresponding SNR. This way of re-weighting the match accounts for the

likelihood of the signal being detected. The orientation averaged match (or SNR averaged

match) is defined as,

M =

(∑
i ρ

3
iM3

i∑
i ρ

3
i

)1/3

. (4.38)

In Fig: 4.10, we plot the Γ(ρ) profiles of the SNR averaged match and the match maximised

over signal polarisation for signal q2a07p90 and template q2a07p0. Comparing Fig: 4.9 and

Fig: 4.10 shows that the lower ρc points in Fig: 4.10 are from near edge-on signals, with the

high ρc signals from near face-on/face-off inclinatons. For the SNR averaged match over

signal polarisation, 50% (100%) of the signals can be distinguishable up to ρc ∼ 20(40)

whereas when maximised over signal polarisation the same value goes up to ρc ∼ 55(100).

This plot again points how strong the signal polarisation can affect the matches. For all the

plots from Fig: 4.11 onwards, for each signal (θ, φ) ∈ ([0, π], [0, π]), the distinguishability

SNR is computed from the match that is maximised over template (θ, φ, ψ) and signal ψ; as
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FIGURE 4.11: Relative percent of distinguishable signals as a function of ρc for the signals
q2a07p90 (Red), q2a07p180 (Blue), q2a07p270 (Black) with q2a07p0 as template. The
Γ(ρ) profiles are very similar for q2a07p90 and q2a07p270 due to the symmetry in the
system, which is also what causes the extremely high ρc for q2a07p180 signals as seen by

q2a07p0.

that will give an idea of the worst-case scenario for the detectability SNR. Also, computing

the match maximised over signal ψ is computationally less expensive (by ∼ 4 times) than

varying the signal ψ over a range of values and maximising only over template (θ, φ, ψ).

For each of the results from now, we use one waveform from the q2 (q2a07p0), q4 (q4a08p0)

or q1 (q1a08p0) series as the proxy template waveform and compute the match maximised

over template inclination, coalescence phase and polarisation and signal polarisation. The

results are computed over a 25x25 equidistance grid over the signal (θ, φ) ∈ ([0, π], [0, π])

and the SNR distribution is computed from Eq: 4.36; where the SNRs are re-weighted to

count for isotropic distribution of (θ, φ).

4.4.1 Full waveform analysis

Previous studies have shown the agreement between precessing waveforms in the QA

frame and corresponding aligned-spin waveform [125], [190]. For each of the q1, q2 and q4

systems under consideration, the only variation within each choice of mass-ratio and spin-

magnitude is the spin direction (φSR) or (for the comparison cases) only the spin magnitude

with the same (φSR) as the proxy template. For cases with different φSR, the QA waveforms

should be similar as they correspond to the same aligned-spin waveform. Hence, in the
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FIGURE 4.12: Relative percent of distinguishable signals as a function of ρc for the signals
q2a07p180 (q4a08p180) [q1a08p180] and template q2a07p0 (q4a08p0) [q1a08p0]. For
q=1, q=2 and q=4 systems, we see a symmetry between the φSR = 0, 180 systems but to

different degrees.

inertial frame, the differences will primarily arise from the precession dynamics and the

waveform mode-asymmetries.

Considering both the aforementioned effects in signal and template waveforms would give

an estimation of the measurability of φSR at a given mass-ratio, if the parameters are esti-

mated by a template waveform that models all the precession physics. In the next sections,

we will discuss the effects of removing one or both of these effects.

The q1 series systems have equal but opposite spins, so the total in-plane spin ~S = ~S1 + ~S2

is zero, and show no precession. Although the orbital plane shows no precessional motion,

the presence of spins causes the orbital plane to starting bobbing along ẑ (i.e., the COM

oscillates vertically along the ẑ axis) due to the asymmetric gravitational radiation. This

asymmetry in the radiated gravitational wave modes is what makes it possible to distinguish

two different systems in the q1 series.

Fig: 4.11 gives the results for the q2 series waveforms where the system q2a07p0 is used

as the template. The SNR variation profile for the q2a07p90 and q2a07p270 systems

closely match each other. q2a07p180 system has a quasi-symmetry of rotation by π with

q2a07p0 system and is almost impossible to distinguish. This symmetry also shows up

during the match computation, where the maximum match for a q2a07p180 signal from (θs)
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FIGURE 4.13: Relative percent of distinguishable signals as a function of ρc for the signals
q1a08p90 (q1a08p270), q2a07p90 (q2a07p270), q4a08p90 (q4a08p270) matched with the
corresponding proxy template is shown in Black (dashed-black), Red (dashed-red) and
Blue (dashed-blue) respectively. For each system, the solid and dashed curves show the
results for φSR = 90, 270 signals, and as seen from Fig:4.12, there exists a symmetry
between waveforms with φSR difference of ±π. This is the reason for the similar profiles

seen for φSR = 90, 270 signals.

is at q2a07p0 template (θs + π). About 45% of q2a07p180 signals are distinguishable for

100<SNRs<300 and the remaining for SNRs>300.

From Fig: 4.11, an interesting question would be whether the quasi-symmetry between the

φSR = 180 and φSR = 0 case exists for all systems. From Fig: 4.12, we can see that the

symmetry exists (to varying degrees) for q1, q2 and q4 series at the SNRs we have to deal

with for the ground based detectors. For the q4 system though, the distinguishability SNRs

are lower, which suggest that the symmetry is not as strong as for the corresponding q2/q1

cases. Although a symmetry between the φSR = 180 and φSR = 0 case does exist, it is not

exact and for that reason I refer to it as quasi-symmetry. In Section 4.4.2, we will compare

the QA frame angles and mode-asymmetry between the different systems and will explain

in more detail the quasi-symmetry between φSR=(0◦, 180◦) systems.

Fig: 4.13 gives the results of the required ρc so the φSR = 0 template from each mass-

ratio can distinguish a waveform (with the same mass-ratio) whose spins are rotated by

±π
2 (φSR = 90, 270). Of all signals considered here, we can tell 50% of the signals apart

at SNRs of ∼ 20 (55) [55] for the q4 (q2) [q1] system with 100% ∼ 50 (100) [100]. Note
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FIGURE 4.14: Relative percent of distinguishable signals as a function of ρc for the signals
q2a04p0 (q4a04p0) and q2a08p0 with template q2a07p0 (q4a08p0).

that for these distinguishability SNRs are computed from the match maximised over signal

polarisations and on average, we can expect to measure φSR at lower SNRs.

Fig: 4.13 shows the effect of changing the in-plane spin directions on distinguishability. We

also want to understand how changing the total spin magnitude compares to changing spin

direction. Fig: 4.14 gives the distinguishability between cases where φSR or the spin mag-

nitude is varied. Let us first consider the q2 systems: we are using the waveform q2a07p0

as template and the only difference between q2a04p0 and q2a08p0 and the template is

the amount of spin on the larger black-hole. For a small number of signals, q2a04p0 is

harder to distinguish than q2a08p0 or q2a07p90, but overall ρc for q2a04p0 is lower. The

ρc profiles for q2a08p0 or q2a07p90 are almost similar and indicate that effect of varying

in-plane orientations could be as strong as changing the spin value by ∼ 0.1. At SNRs ∼
80, we could almost always measure φSR differences of ±π/2, χp differences of 0.1 and

always measure χp differences of 0.3 at mass-ratio 2. At SNR ∼ 50, we can measure χp
difference of 0.3 for about 60% of the signals, the same goes to about 40% for q2a07p90

and q2a08p0. Hence, for q2 systems, the effect of changing the in-plane spin direction by

±π/2 has a similar effect to that of changing the spin magnitude by 0.1, but not as strong

as a spin magnitude difference of 0.3.

For q4 systems, the effect of changing φSR become more pronounced. About 80% of signals

with different in-plane spin direction (φSR = 90) are easier to distinguish than corresponding

q4a04p0 signals. For 80% of the signals, we can measure φSR differences of 90◦ at SNR ∼
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35 and χp difference of 0.4 at SNR ∼ 40. Though, the results of Fig: 4.10 suggest that on

average we can expect to distinguish signals from q4a08p90 and q4a04p0 at similar SNRs.

4.4.2 QA Angles and mode-asymmetry

In Section 4.4.1 we saw that two systems with a ±π/2 angle difference in the in-plane

spin can be distinguished at moderate to high SNRs and that in some cases, it is easier to

measure the φSR than a spin-magnitude change. As mentioned before, these differences

can arise from the differences in the precessional dynamics and mode-asymmetric content.

In this section, we will compare these two effects separately for systems with a given mass-

ratio.

FIGURE 4.15: Here, we plot the differences in the QA frame angles (α, β, γ) for the system
q2a07p90 with q2a07p0 (blue line) and q2a07p180 and q2a07p0 (red line) for the angles

β (left panel), α (centre panel) and γ (right panel)

FIGURE 4.16: Here, we plot the differences in the QA frame angles (α, β, γ) for the system
q4a08p90 with q4a08p0 (blue line) and q4a08p180 and q4a08p0 (red line) for the angles

β (left panel), α (centre panel) and γ (right panel)

Fig: 4.15 and Fig: 4.16 show the differences in the Euler angles (call it δξi for ξi ∈ (α, β, γ))

required to transform the precessing system to the co-precessing frame. For the q=2 quasi-

symmetric cases, δξi is almost zero at all times; whereas between the φSR = (90, 0) cases,

we see that δξi increases as the system approaches merger. At q=4, δξi between the
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φSR = (180, 0) cases is not always zero, we see slight increase in δξi as the systems

merge. This is one factor for the weaker quasi-symmetry for q=4 as seen in Fig: 4.12.

FIGURE 4.17: Plot of mode-asymmetry measure (a, see Eq: 4.6) throughout the coales-
cence for all the q=2 systems used in this thesis.

In Eq: 4.6, we have defined a rotationally invariant measure of mode asymmetry. Fig: 4.17

plots the mode asymmetry ’a’ for all the q=2 systems used in this analysis. The symmetry

between φSR = 180 and φSR = 0 systems shows up in the almost overlapping asymmetry

in the modes. The asymmetry measure of q2a07p90 shows a similar (yet different) overall

evolution in time as q2a07p0.

FIGURE 4.18: Plot of mode-asymmetry measure (a, see Eq: 4.6) throughout the coales-
cence for all the q=4 systems used in this thesis.



Effects of in-plane spin direction on final waveform 101

Fig: 4.18 gives the a for all the q=4 systems. We see the same behaviour between the

φSR = 180 and φSR = 0 systems as for q2. The φSR = 90 system shows a similar

evolution during late-inspiral as φSR = 0 system with a clear distinction between them at

merger. For the q=2 and q=4 cases, the mode-asymmetric content between systems with

φSR differences of ±π/2 show a similar time-evolution (as compared to systems with a

different spin-magnitude), which suggests that the major effect on distinguishability is from

the differences in the precessional dynamics. We will check for this in Section 4.4.4 where

we analyse waveform with and without mode-asymmetric content.

Fig: 4.19 plots the same for q=1 superkick configuration systems and we observe the same

overall behaviour as for the q=2, 4 cases. The notable difference for the super-kick cases

is that for the quasi-symmetric systems, as the systems near merger, a for φSR = 0, 180 is

exact up to numerical errors.

So, till now we have showed that waveforms with varying in-plane spins can be distinguish-

able from one other at moderate to high SNRs. In this section, we saw that varying in-plane

spin direction can affect the precessional motion of the orbital plane as well as give rise to

slightly different mode-asymmetry content. We conclude that it is the combination of the

differences in the precessional motion of the system with the different mode-asymmetry

content that allows for distinguishability between the φSR = (0, π/2) systems. We now want

to see if the two effects (mode-asymmetry and differential precessional motion) could be

decoupled from each other and how the results behave if one or both of them are turned off.

FIGURE 4.19: Plot of mode-asymmetry measure (a, see Eq: 4.6) throughout the coales-
cence for all the q=1 systems used in this thesis.
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4.4.3 Analysis of QA symmetrized waveforms

In Section 4.4.2 we investigated the differences in mode-asymmetry content and preces-

sional motion between the different waveforms. We first want to see how well the waveforms

match when mode-asymmetry and precession modulations are removed. To do this, we first

use the QA angles to transform each waveform to its co-precessing frame. In this frame, the

(2,1) and (2,-1) modes are suppressed, with the precession modulations mostly removed.

The mode-asymmetries are then removed by taking a symmetric combination of the (2,2)

and (2,-2) modes as,

hsymm22 (f) =
1

2

(
hqa22(f) + h̄qa2−2(f)

)
, (4.39)

with the symmetric (2,-2) mode being the complex conjugate of Eq: 4.39.

FIGURE 4.20: In the left panel, we plot the match between the symmetrized waveforms
in the QA frame for q2a07p90 vs q2a07p0 (Black line), q4a08p90 vs q4a08p0 (Blue line)
and q1a08p90 vs q1a08p0 (Red-dashed line) over a range of signal (θ, φ) values. There is
hardly any variation of the match over signal inclination or coalescence-phase values. For

the right plot, we fix the inclination and calculate the match as a function of fmax.

Using this symmetric waveform in QA frame, we compute the matches between φSR = 90

and φSR = 0 cases over a range of signal (θ, φ) values and compute the match maximised

over the template extrinsic parameters and signal polarisation value. Note that the q1 series

waveforms do not show precessional motion and so we only symmetrise it using Eq: 4.39

without first transforming it to the QA frame. The results of the same are given in Fig: 4.20.

The maximised match for the symmetrized waveforms in the QA frame show no variation

over the (θ, φ) space and remains constant at a match of ∼ 0.9996 (0.9994) [0.994] for the

q1 (q2) [q4] system, which translates to ρc ∼ 120 (100) [35] (see the left panel of Fig: 4.20).

For the full waveform systems with φSR difference of π/2, we have 100% detectability at ρc
< 100 (100) [60] for the q1 (q2) [q4]. The similar QA frame waveforms of φSR = 0, 90 for

q1 and q2 systems suggest that the detectability is majorly affected by both precessional

dynamics and mode-asymmetric content. For the q4 system, the QA frame waveforms has

a match value that is smaller than 20% of the full waveform cases, which suggests that for
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a few cases, inclusion of the precessional dynamics and mode-asymmetric content improve

the match, i.e, makes it harder to distinguish.

In the right panel of Fig: 4.20, we plot the match as a function of fmax for the symmetrized

QA waveforms. The match value is ∼ 1 (1) [0.999] for q1 (q2) [q4] system at fmax of 50 Hz

and settles down to the minimum match after fmax >200Hz. From the high match values

at low fmax indicates that, in the co-precessing frame, the inspiral part of the φSR = 90 and

φSR = 0 waveforms are almost the same with the majority of differences creeping in during

(and post) the merger phase; with the differences being larger as we go from q=1 to q=4.

This conclusion is reinforced by Fig: 4.21 where we plot the q2a07p0/q2a07p90 waveform

and indicate the times at which the waveform has different fmax.

FIGURE 4.21: In the top [bottom] panel, we plot the q2a07p0 (blue) and q2a07p90 (black)
time [frequency] domain waveforms. For the top panel, the dashed lines show the time at
which the waveform has a specific frequency used as fmax value for right panel of Fig:4.20.
For the bottom panel, the dashed lines show the position of that frequency with respect to
the frequency domain waveform. Frequency values of (50, 100, 200, 300, 400) are given

in dashed (red, blue, black, green, yellow) lines respectively.
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FIGURE 4.22: The figure plots the distribution of ρc of Full waveform vs Full waveform (solid
lines) and Symmetrized waveform vs Symmetrized waveform (dashed lines) for q2 series
waveforms. For q2a07p90 signals, a large percentage (∼ 40%) of the signals are much
harder to distinguish with symmetrized signals and templates. Profiles for symmetrized
q2a04p0 and q2a08p0 signals are similar to full signal profiles with the maximum ρc dif-
ference between them is ∼ 20 for q2a08p0, with the symmetrized q2a08p0 signals easier
to distinguish than the full signals. These results indicate at q=2, considering only preces-
sional effects makes it harder to distinguish different φSR for some cases, and easier or

harder to distinguish spin values.

4.4.4 Analysis of Inertial symmetrized waveforms

From Fig: 4.20 we see that, in the QA frame, the match between φSR = 90 and φSR =

0 cases is constant across the signal (θ, φ) space with the differences in the waveforms

near merger leading to the corrsponding match value. In all of the current IMR precessing

waveform models, mode-asymmetry is not considered. We now want to consider two things:

• How does the distinguishability SNR behave if mode-asymmetries are turned off for

both template and signal waveforms (waveforms with only precession modulations)?

• How does the distinguishability SNR behave if mode-asymmetries are turned off for

only the template with signal being the full waveform (mode-asymmetry + precession

modulations)?

From the first check we might be able to gain some idea of the effect of precessional motion

differences (QA angle differences) on ρc and the relative importance of modelling these
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FIGURE 4.23: The figure plots the distribution of ρc of Full waveform vs Full waveform (solid
lines) and Symmetrized waveform vs Symmetrized waveform (dashed lines) for q4 series
waveforms. Symmetrized q4a08p90 and q4a04p0 signals are always harder to distinguish
than full waveforms. Contrast this to the q2 results, where symmetrizing the waveform had

different effects based on spin magnitude (see Fig:4.22).

effects. The second check would give an idea of effects of using templates without mode-

asymmetry to distinguish full signals (mode asymmetry + precessional modulations), which

is more of a realistic situation and is the case for current observations. These results might

indicate the level of importance of mode-asymmetry for waveform modelling.

To check for precessional motion effects of distinguishable SNR, we use the waveforms

symmetrized in the QA frame using Eq: 4.39, rotate them back to the inertial frame and

then compute the matches. Here, "Full waveform" is one with both mode-asymmetries +

precessional motion and "Symmetrized waveform" is one with only precessional motion.

Fig: 4.22 gives the results for ρc for the q=2 series symmetrized waveforms and compares

them to the full waveform results.

When mode-asymmetry is turned off, all of q2a07p90 signals are harder to distinguish than

for full waveforms, with 100% distinguishability at SNR∼150 whereas for full waveforms,

100% distinguishability is at SNR∼100. For q2a04p0 and q2a08p0 systems though, the

Γ(ρ) profiles for waveform with precession+mode-asymmetry effects are similar to those

of waveforms with only precession effects, with symmetrized q2a08p0 signals detected at

lower ρcs than full q2a08p0 signals. This implies that for q=2, it is the mode-asymmetry

differences that would dominate the measurability of in-plane spins and have different effects

based on spin magnitudes. Note that in the QA frame, the symmetrized q=2 waveforms
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FIGURE 4.24: The figure plots the distribution of ρc of Full waveform vs Full waveform
(solid lines) and Full waveform vs Symmetrized waveform (dashed lines) for q2 and q4
series waveforms. Notice that the symmetrized φSR = 0 template sees the full φSR = 0

signal as a different system for both q=2 (dashed-blue) and q=4 (dashed-green).

match with each other to give a ρc ∼ 100 which suggests that for some cases, inclusion of

only precessional dynamics makes it harder to distinguish the two systems.

Fig: 4.23 gives the same as Fig: 4.22, but for the q4 series waveforms. We observe a

similar behaviour between the full and symmetrized waveforms for φSR = 90, 0 case as

for q2, i.e., ρc for symmetrized waveforms is higher for all symmetrized signals. Where for

q2, the symmetrized waveforms with a different spin magnitude are easier (or similar to full

waveform) to distinguish, the same does not hold for q4. We see that the symmetrized

q4a04p0 symmetrized signal is always harder to distinguish than the full waveform. It is

possible that this behaviour is a consequence of the stronger mode-asymmetric content for

q=4 systems as compared to q=2.

From Section 4.4.3, we already know that symmetrized q1a08p90 can be distinguished at

ρc ∼ 120, which is near to the 100% ρc for the full system ρc ∼ 120 (see Fig: 4.13). Hence,

all results indicate that losing mode-asymmetry content information will affect detectability.

For Fig: 4.24, we use full waveforms of q2a07p90, q2a07p0, q4a08p90 and q4a08p0 sys-

tems as the signals and use the corresponding symmetrized waveforms as the proxy tem-

plate (q2a07p0 and q4a08p0). The results are compared with the full waveform results. With

the symmetrized templates, it is easier to distinguish the φSR = 90 system from φSR = 0
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system for both q = 2,4. When the signal is the full q2a07p0 (q4a08p0) waveform, the cor-

responding symmetrized template sees it a different system with 100% distinguishability at

ρc ∼ 75 (40). These results imply that using a symmetrized template to estimate the source

parameters could lead to biased parameter recovery.

4.5 Conclusions

All the results we have quoted above are for match values that are maximised over all the

relevant extrinsic parameters, i.e., the template (θ, φ, ψ) and signal ψ. In Fig: 4.9 we see

that over signal polarisations, ρc shows a SNR variation of ∼ 30 at maximum and ∼ 10

at the minimum. So, for all results shown here for the systems where we maximise the

match over signal polarisations, there would exist signals with lower ρc than what is quoted

in Section 4.4.

The results from Section 4.4.1 show that changing the direction of the in-plane spin does

affect the final waveform and can be distinguished from the base waveform at moderate

to high SNRs. All q1 (q2) [q4] signals with a φSR difference of ±π/2 with respect to the

template can be distinguished if the incoming SNR is ∼ 120 (100) [60] with 50% distin-

guishability at SNR ∼ 50 (55) [20] [see Fig: 4.13]. Also, comparing these results with results

for signals with a different total spin value (same direction as template) show that, for q=2,

varying the in-plane direction can have an effect as strong a change of 0.1 in the in-plane

spin magnitude, but weaker than a change of 0.3. For q=4, changing φSR has a slightly

stronger effect than spin magnitude change of 0.4, but on average we expect these effects

to be comparable. Single spin systems with in-plane spins related by rotation of π about L̂

are quasi-symmetric with each other, which shows up as the very high ρc. In the regime of

a sensitive gravitational wave detector network, albeit rarely, we can expect signals of such

high SNRs. From these results, we wish to indicate that future precessing waveform models,

the description of the precession physics should incorporate the direction of in-plane spin at

reference frequency instead of a single averaged precession spin parameter.

In Section 4.4.2 we showed the differences in the precessional motion and mode asymmetry

content between the φSR = 90 and φSR = 0 cases and saw that the quasi-symmetry seen

in the φSR = 180, 0 case is reflected in the same. After symmetrizing the waveforms in

the Quadrupole Aligned (QA) frame (see Section 4.4.3), we get a constant match across

the signal (θ, φ) space that is higher than corresponding inertial frame match for q=1 &

q=2, for q=4 the match is larger than for ∼ 80% of signals. This indicates that we can

distinguish case φSR = 90 from φSR = 0 due to the different precessional modulations and

mode asymmetry content, and for some q=4 cases, inclusion of both effects can improve

the computed match.
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We then rotate the QA symmetrized waveform back to the inertial frame and compute

matches between the inertial symmetrized waveforms. For these waveforms, the mode-

asymmetry content is essentially turned-off. Without mode-asymmetries in both signal and

template, there is a overall increase in match (and consequently ρc) across the signal sky-

position parameter space between the φSR = 90, 0 cases. For q2 and q4, signals without

mode-asymmetry with a different spin value can be easier or harder to distinguish as com-

pared to full waveforms (see Fig: 4.22 and Fig: 4.23). So, for systems with the same total

spin and varying spin directions, non-inclusion of mode-asymmetry information will make

it harder to distinguish waveforms with different spin directions. For systems with a total

different spin, non-inclusion of mode-asymmetry makes it easier or harder to distinguish the

signals, depending on the mass-ratio of the system.

In Fig: 4.24, we plot the results of using a symmetrized template waveform to distinguish

signal with precessional modulations and mode-asymmetry content. For the φSR = 90, 0

cases, symmetrized template can find it easier to distinguish the signal than a full template

waveform. Also, the signal from a system with mode-asymmetry content is seen as a dif-

ferent system by a template waveform of the same system but without mode-asymmetries.

The distinguishability results are connected to the maximised match value between the

template and signal. Now if the template waveform was from a waveform model, it is very

likely that the waveform model obtains a better match at parameters different as that of the

symmetrized q2a07p0 (q4a08p0) systems. If that happens to be the case, then using that

waveform model in PE would very likely lead to biased parameter recovery.

The results above indicate that; i) it is possible to measure the in-plane spin direction at

reference frequency at SNRs from 15 - 100 (depending on mass-ratio/spin magnitude com-

bination) and ii) disregarding mode-asymmetry content in templates could lead to biased

inferred source parameters. Towards building future IMRPhenom precessing models, the

first priority is towards tuning the QA Euler angles to NR simulations; but the results from

here indicate that inclusion of mode-asymmetric content could also help in improving cap-

turing precessional effects. During the course of this study, surrogate models for precessing

systems from NR waveforms have been built in [196], [197], where the symmetric and asym-

metric parts of waveform modes (in the co-orbital frame) as used as "data-pieces" to build

the model and this model should include the mode-asymmetry effects.



Chapter 5

Parameter estimation with

multi-mode templates

The first ever detection of gravitational waves from a binary black hole source (BBH) was

achieved on the 14th of September, 2015 [3] by the two aLIGO detectors at Hanford and

Livingston. Till April 2019, there have been two observing runs by the aLIGO detectors

and from the second half of 2017, the aVIRGO detector has joined the gravitational wave

network facilitating the first three detector detection of a BBH source. During the first

two observation runs of LIGO, a total of 10 binary black hole (BBH) mergers and one bi-

nary neutron star (BNS) merger were detected, with the total mass of the BBHs ranging

between 18+3.1
−0.7M�(GW170608) and 85+15.6

−10.9M�(GW170729) [8]. Amongst the 10 BBHs,

GW170729 and GW151226 show support for aligned spin binaries (non-zero measured

χeff ), but none of them show any evidence for precession. The inferred parameters are ob-

tained by combining the posteriors recovered from IMRPhenomPv2 and SEOBNRv3 templates.

In [198] the authors used (along with other models) multi-mode aligned-spin waveform mod-

els (IMRPhenomHM and SEOBNRv4HM) to determine the parameters of GW170729 and where

the quadrupole models inferred the mass-ratio between 1 ≤ q ≤ 2.4, the multi-mode models

placed the limits between 1.3 ≤ q ≤ 3.2. The third combined science run lasting for a year

of the two aLIGO detectors and aVIRGO started from April 2019, with increased sensitivity

towards detecting GW signals. With the inferred merger rates of≈ 30−100Gpc−3yr−1 [199],

we can expect a large number of BBH signals during this third observation run.

As mentioned in the previous chapters, the accuracy of measured parameters depends on

the strength of the detector noise and the effectualness of the template waveform model.

During the first two observation runs, almost all available waveform models for aligned-

spin systems modelled only the dominant quadrupole mode and no higher-multipole models

109
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FIGURE 5.1: Behaviour of relative percent power in each mode w.r.t total signal power
(y-axis) against the inclination of the binary system (x-axis) for a q=8 non-spinning system.

were used in the flagship LVC analyses ( [200], [8]). Ref:[2] presented a multimode aligned-

spin phenomenological waveform model (IMRPhenomHM) for BBHs that describes all l =

2, 3, 4 and |m| = l, l − 1 modes (see Section 2.6.3 for a description of the IMRPhenomHM

waveform model). Soon after, Ref: [143] presented a multi-mode aligned-spin waveform

model (SEOBNRv4HM) employing the Effective One Body (EOB) description which models

the modes (l, |m|) = [(2, 2), (2, 1), (3, 3), (4, 4), (5, 5)].

Any gravitational wave (h(θ, φ,~λ, t)) can be decomposed in terms of a spherical harmonic

basis with spin weight -2, −2Ylm,

h(θ, φ,~λ, t) =
∑
l

m=l∑
m=−l

−2Ylm(θ, φ)hlm(~λ, t), (5.1)

where hlm(~λ, t) are the gravitational wave modes. For equal mass (q=1) non-spinning sys-

tem, all odd |m| modes are zero, with |m| = 2, 4, . . . modes being much weaker than the

dominant quadrupole mode. For systems with q > 1, all even and odd m modes are non-

zero. The strength of the sub-dominant modes increases with increasing mass-ratio and

spins. Also, for a given system with non-zero subdominant mode content, the contribution

of sub-dominant modes to the signal power increases as the inclination goes from face-on

to edge-on (see Fig: 5.1).

Previous studies have investigated the effect of employing higher-order mode models for

gravitational wave searches [164], [165], [168], [169] and provided an estimate of the sys-

tematic errors that could be incurred from neglecting higher-order modes in the template

waveforms [163], [166], [167]. In [187] and [201] the authors performed a full Bayesian
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analysis of the effects of including and neglecting higher-order modes in template wave-

forms non-spinning systems. I now summarise some notable results relevant to the current

study.

In [163], the authors used multi-mode NR-PN hybrids as signals and computed the ex-

pected statistical and systematic errors over a range of total mass and mass-ratio values

using quadrupole templates, for a signal sky-averaged SNR of 8. The statistical errors are

estimated from the Fisher Information Matrix, which is the noise weighted inner product be-

tween partial derivatives of the waveform. The authors compute the fitting factor maximised

over the template mass parameters between the multimode signal (with fixed parameters)

and quadrupole template waveform, and then, the effective systematic error is proportional

to the difference between the best fit and true parameters. In this study, the authors found

that non-inclusion of the subdominant modes in templates will lead to ∼ 10% loss in detec-

tion rate for q ≥6 and M ≥ 100M� and will lead to systematic errors larger than statistical

errors for q ≥4 and M ≥ 150M�. The results obtained from a Fisher information matrix

approximation are valid for high SNR events. To study the waveform errors for low or mod-

erate SNRs, a full Bayesian analysis is required (see Section 1.4.3 for a quick introduction

to parameter estimation techniques).

In [187], the authors injected multimode non-spinning NR waveforms in zero-noise at differ-

ent mass-ratios with a fixed inclination of π/3 and compared the systematic and statistical

errors of the posteriors recovered by nonspinning quadrupole-only (EOBNRv2) and multi-

mode waveform models for non-spinning systems (EOBNRv2HM). They found that up to q=6

and for SNRs ≤ 50, the systematic errors from EOBNRv2HM were smaller than or compa-

rable to the statistical errors. The fractional systematic error (defined as the ratio between

systematic bias and statistical error) for the intrinsic parameters are consistently lower for

EOBNRv2HM than EOBNRv2. Also, the posteriors were recovered at a overall higher likelihood

by EOBNRv2HM than EOBNRv2 (see Fig:2 of [187]).

In [201], the authors performed a very comprehensive study of the effects of using EOBNRv2HM

and EOBNRv2 templates to recover EOBNRv2HM signals across a range of total mass values

(50 ≤ MtotalM� ≤ 500) and SNRs (6 ≤ ρ ≤ 18) for q=1.25 and q=4 systems at two in-

clinations (θJN = 0, π/3). Consistent with [187], the posteriors are recovered at an overall

larger total evidence by EOBNRv2HM as compared to EOBNRv2 (see Fig:5 of [201]) for inclined

systems, the difference between which i) increases with increasing inclination, ii) increases

at higher mass-ratios and iii) shows a overall increase with total mass (where the merger-

ringdown contributions would increase). The posteriors are better constrained by the multi-

mode model than quadrupole-only model (see Fig:7 of [201]) with lower systematic bias for

inclined systems. They found that the multi-mode model constrains the inclination angle

better than quadrupole-only model, which in turn leads to better constraints on the distance.
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Note that this behaviour of the extrinsic parameters is expected as presence of higher-order

modes in the templates allows for improved polarisation measurements that translate to

improved constraints on the inclination and distance.

In the previous studies, the authors used non-spinning multi-mode and quadrupole only

waveforms for the Bayesian analysis, and hence, were restricted in the (m1, m2) space for

intrinsic parameters. In this study, we will use a multi-mode aligned-spin waveform template

(IMRPhenomHM) and increase the dimensionality of the problem by one, i.e., (m1, m2 and

χeff ) space for intrinsic parameters. The behaviour of the systematic errors of the intrinsic

recovered parameters in the (m1, m2) space will change in the (m1, m2, χeff ) space due to

the degeneracies between the masses and effective spin parameters [181]. Of course, the

extrinsic parameter space remains the same.

One of the aims of this study is to explore the effects of using a multi-mode aligned-spin

waveform template (IMRPhenomHM) on inferring source parameters from a multi-mode signal

and to contrast it with an aligned-spin quadrupole-only model (IMRPhenomD). For this, we

perform a set of injections at three different mass-ratios and three inclinations in zero-noise

using the IMRPhenomHM waveform as the signal. This would give us an idea of param-

eter errors from both including and not-including the sub-dominant modes in templates.

IMRPhenomHM is an approximate model of the sub-dominant modes and does not model a

few of the higher harmonics, specifically, all modes with l≥5 and the (3,1), (4,2), (4,1) and all

the m = 0 modes. Other than for precessing systems, the m = 0 modes are generally zero.

The sub-dominant modes of the model are not tuned to NR simulations and mode-mixing

effects are not modelled. With that in mind, the other aim of the study is to determine the

ability of IMRPhenomHM (IMRPhenomD) to recover parameters of real physical signals. For

that, we perform injections with the same set of parameters as for IMRPhenomHM injections

but with multi-mode PN-NR hybrid waveforms and compare the parameters recovered by

IMRPhenomD and IMRPhenomHM. We inject non-spinning systems using both waveforms at

q=2, q=4 and q=8 at inclinations of (0, π/3, π/2). As the sub-dominant strength increases

as we go from lower to higher mass-ratio (or inclination), this set of runs should indicate the

differences between using a quadrupole and multi-mode model at different sub-dominant

mode content strength.

For this chapter, the first section will deal with the creation and validation of the multi-mode

hybrids, the second section will detail the parameter estimation (PE) setup for this study and

the chapter will end with the results and their discussion.
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FIGURE 5.2: The figure shows the time-domain modes of the PN-EOB waveform used to
construct the inspiral part of the hybrid waveform (black-dashed) with the corresponding
SXS-NR mode (thick blue) shifted by the parameters (τ, φ0, ψ0) for a q=8 non-spinning

system. The vertical black lines show the region of hybridisation for the modes.
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FIGURE 5.3: The figure shows the time-domain (4,1) mode for the inspiral EOB (black-
dashed) and SXS-NR waveforms (thick-blue).

5.1 Construction and validation of the multi-mode hybrids

In Section 2.4.2 of Chapter: 2, I have already discussed the theory behind construction of

multi-mode hybrids by using the inspiral information from PN-EOB codes and stitching them

with corresponding NR waveforms. The EOB codes used to obtain the inspiral modes is

based on the method described in [202] with the fits to the parameters as published in [203].

To construct a multi-mode hybrid, we require the time-shift (τ), phase and polarisation shift

(φ0, ψ0) between the waveforms.

During inspiral, the frequency of mode (l,m) is related to the (2, 2) mode frequency (f22)

via mf22/2. So, for a NR waveform, modes with m > 2 will start at a higher frequency

than the (2,2) mode. For example: if the NR waveform is such that its (2, 2) mode starts at

flow = 20Hz for a 100M� system, the (4, 4) mode will start at flow = 40Hz.

Generating NR waveforms is computationally expensive and so, the BHs are generally

evolved only for the last few orbits for a given system. If we want all the modes to start

at the same flow, we would have to use overall high-mass values. For this study, we require

that all modes of the injection waveform start at flow = 20Hz and so, we constructed multi-

mode hybrids for the systems under consideration. We construct multi-mode hybrids for all

l = 2, 3, 4 modes, with the exception of the (4, 1) mode (see Fig: 5.2). The inspiral (4,1)

mode as obtained from the EOB code is very weak and does not match the NR data within

the stitching region(see Fig: 5.3). Also, the relative power in the (4,1) mode is ∼ 10−3 times

smaller than the (2,2) mode. For these reasons, we do not include the (4,1) mode in the

hybrid.

Once we have the hybrid waveforms, for cross-validation, we compute the match between

the hybrid waveform and its corresponding SXS-NR waveform at various inclinations, with

the match value optimized over the phase. The total mass of the system is fixed at 100M�
for these systems and the match is computed with flow = 30Hz and aLIGO PSD. We find
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matches of > 0.999 across all inclinations. We also compute the matches between the

hybrid-NR waveform and both IMRPhenomHM and IMRPhenomD over the inclination space

and quote the range of matches over the phase (fixed inclination). In Fig: 5.4 we plot the

matches. We see that IMRPhenomHM gives higher matches than IMRPhenomD across the

mass-ratio and inclination space. The match values with IMRPhenomHM are lower than those

with the hybrid-NR waveforms due to the approximate nature of the mode, but the results

we see here are consistent with those presented in [2].

5.2 Setup for PE runs

For the injections, we constructed a set of hybrid-NR waveforms, of which frames were

created using the pycbc_generate_hwinj function from the PyCBC library [204]. The in-

frastructure employed for generating NR frames is described in [185]. For the injections, the

total mass of the system, low frequency cut-off, the gps-trigger time, the sky-position for the

system, its polarisation and the required SNR of the signal have to be specified.

For all runs, we choose a total mass of 100M� and low frequency cut-off of 20Hz. The

choice of total mass is motivated by two factors; i) at high masses, where the majority of

contribution to total signal power is from the merger phase, systematics due to the approxi-

mate nature of IMRPhenomHM should be apparent and ii) at lower masses the total CPU time

required for PE runs will be larger due to the high computational cost of IMRPhenomHM wave-

form generation. The hybrids are created so that all subdominant modes start at frequencies

less than 20Hz at 100M�. The SNR of the system is fixed to 25. For each inclination value,

the injection code computes the distance at which the binary needs to be placed to obtain

the required SNR. Hence, face-on systems are injected farther away than edge-on systems.

For the PE runs, we wanted a recovery PSD which would be like the O2 detector sen-

sitivity. So, we choose a gps-time that is near the trigger time for GW170814 and set it

to 1186741869. Using this gps-time, we create the median PSD for H1 and L1 using the

BayesWave post-processing script following the instructions as provided in Ref: [205]. The

PSD obtained from that is used for recovery during the PE runs.

The gravitational wave strain as seen by the detector depends on the sky-position and po-

larisation values, which enter via the detector response functions (see Eq: 1.27, Eq: 1.28

and Eq: 1.29). For the sky-position, we first fix the polarisation (ψ = 1.4) and the gps-trigger

time (1186741869) and use those values of (ra, dec) where; i) neither F+ or F× ∼ 0 and ii)

the total detector response is neither too high or too low (see Fig: 5.5).

Once all the parameters are fixed, we generate signals using the hybrid-NR waveforms and

IMRPhenomHM waveforms and the signals are injected in zero-noise. Injecting the signal in
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FIGURE 5.4: This figure gives the match between non-spinning q=2 (top panel), q=4
(middle panel) and q=8 (bottom panel) hybrid NR waveforms with IMRPhenomD (grey) and
IMRPhenomHM (blue) waveforms. The dashed-red line gives the match between the hybrid-
NR waveform and the corresponding SXS waveform optimized over overall phase. The

match are computed with fmin = 30Hz and fmax=1000Hz with aLIGO PSD.
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FIGURE 5.5: This figure plots the variation of total detector response (Ftotal =
√
F 2
+ + F 2

×)

across the sky-position [ra ∈ [0, 2π] and dec ∈ [−π/2, π/2]] for gps time = 1186741869.
The red star gives the sky-position used for the injections which has Ftotal = 0.810 and the

ratio of F+ to F× is 2.3 (1.2) for H1 (L1).

zero-noise ensures that there are no errors due to random detector noise and the results

can then be interpreted as an average over an ensemble of gaussian noise realizations.

For the PE runs, we use the lalinference_nest sampler from the LALInference package

of LALSuite [53]. The number of live points was fixed at 1024 for all runs. All the PE runs

were performed on the ARCCA [186] cluster at Cardiff.

5.3 Results

For this study, we performed a total of 36 PE runs. We injected both hybrid-NR and

IMRPhenomHM waveforms for 3 different mass-ratios at 3 inclinations and the posteriors are

recovered by IMRPhenomD and IMRPhenomHM for each injection. For the results, we will

first discuss the recovery of the intrinsic parameters (Mc, q, χeff ,Mtotal). For the intrin-

sic parameter recovery, we will first discuss the results of IMRPhenomHM injections and then

hybrid-NR injections.

Then, we will discuss the recovery of the extrinsic parameters, i.e., the distance (dL) and

inclination (θJN ). As these are non-spinning systems, ~L ‖ ~J and so, θJN = θLN .
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5.3.1 Recovery of intrinsic parameters:

For these plots, the posterior over a parameter from each run is clipped within its 90% credi-

ble intervals and then we plot them as a violin plot. For each parameter, the y-axis shows the

value of the recovered posterior and the x-axis gives the injected inclination-recovery wave-

form combination. For example; if the recovery is for an edge-on injection by IMRPhenomD,

it is labelled as ι = 90oPhnD. As we are splitting the results for IMRPhenomHM injections and

hybrid-NR injections, there is no need to specify the injected waveform in the plot. Posteriors

for q2, q4 and q8 systems are shown in Blue, Grey and Orange respectively. For reasons

that we will discuss soon, the posteriors are shown at different opacities depending on the

recovered maximum likelihood value of that particular run.

For a given (mass-ratio, inclination) configuration, the improved constraints on the inclination

and distance parameters by using multi-mode templates might lead to better constraints on

the intrinsic parameters. Let us define dmodelλi
= Cupperλi

− C lowerλi
, where Cupperλi

and C lowerλi

are the upper and lower bounds of the 90% CI for a given parameter λi. Hence, dmodelλi

would provide a measure of the posterior width. Using this, we define the relative percent

difference between the credible interval widths for a given configuration (∆λi) as,

∆λi = 100

(
dIMRPhenomDλi

− dIMRPhenomHMλi

dIMRPhenomDλi

)
. (5.2)

For a given intrinsic parameter, ∆λi would quantify the improvements on the parameter

constraints from using multi-mode templates.

The Bayes factor measures how likely one model is compared to the other. From the PE

codes, we get the log Bayes factor (Bi) of a signal hypothesis (which would be the tem-

plate waveform used for that run) against the noise-only hypothesis. Hence, a difference

of the log Bayes factors obtained from IMRPhenomD and IMRPhenomHM recovery will give an

idea of how much better (if) IMRPhenomHM is at recreating the signal in the injection. For

eg: if Log(BPhnD
i ) = 190 and Log(BPhnHM

i ) = 195, then BPhnHM
i /BPhnD

i = e5, i.e.,

IMRPhenomHM is e5 times more likely to recreate the signal as compared to IMRPhenomD. We

will first discuss the results of IMRPhenomHM injections.

5.3.1.1 IMRPhenomHM Injections

The results of recovered intrinsic parameters for IMRPhenomHM injection are given in Fig: 5.6

(for Mc and q) and Fig: 5.7 (for Mtotal and χeff ), with the ∆λi plots in Fig: 5.8. At face-

on inclinations, posteriors recovered by IMRPhenomHM and IMRPhenomD show no bias and

the recovered posteriors are similar to each other. This is expected due to the almost
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zero contributions of higher-order modes to total signal power at face-on inclination (see

Fig: 5.1). Also, as the underlying quadrupole model for IMRPhenomHM is IMRPhenomD, they

should show similar behaviour in situations where the higher-order mode content is weak.

For face-on, we see slightly improved constraints on (Mc,Mtotal, χeff ) for q=4 and q=8 (

∆λi ≥ 0) and the mass-ratio recovered by IMRPhenomHM is always better constrained than

the corresponding IMRPhenomD recovery for all q ( ∆q > 0) (see the top-left plot of Fig: 5.8).

At higher inclination values, IMRPhenomD recovery starts being biased away from the true

value and the parameters are recovered at comparatively lower likelihood. These effects are

stronger with increasing sub-dominant mode contribution to total signal power. At q=2, the

IMRPhenomD recoveredMc and Mtotal are slightly biased away from the true value towards

overall higher total mass with a majority support for mass-ratio being more from near equal-

mass systems. For a given q, the waveform length decreases (increases) at higher (lower)

total mass or more negative (positive) χeff . For q2 then, the effect of an overall higher mass

is compensated by positive χeff recovery. At q=4 and 8, mass-ratio recovery is accurate,

but (Mc , Mtotal) show a moderate bias towards overall lower mass, with the bias increasing

with inclination, which then leads to a biased negative spin recovery. Also, as we go from

q=2 to q=8, the maximum likelihood of the posteriors recovered by IMRPhenomD for a given

inclination reduces.

Let us consider the likelihood in more detail. During the PE run, the recovered posterior de-

pends on the likelihood for that run along with the prior over the parameters. The likelihood

function is,

L ∝ − < d(t)− h(~λ)|d(t)− h(~λ) >, (5.3)

where d(t) = s(t) + n(t) is the detector response with s(t) being the signal and n(t) being

the noise. In case of zero-noise, n(t) = 0, and so, L ∝< s(t) − h(~λ)|s(t) − h(~λ) >. Now,

if the template is able to model the signal in the data accurately, then s(t)− h(~λ) → 0. So,

a higher |L| means that the template is not able to model the signal present in the detector

data and vice versa.

The most extreme case of low likelihood, is the q8 edge-on recovery of the IMRPhenomHM

signal by IMRPhenomD, which shows a bi-modal distribution. For this injection, IMRPhenomD

sees the signal as two completely different systems [ (Mtotal, q, χeff ) ∼ (85, 7,−0.25),

(63, 11,−1.) ] with comparable (but overall very low) likelihood. We performed additional PE

runs for q8 edge-on IMRPhenomHM injection with IMRPhenomD recovery, using a larger num-

ber of live points and effective samples, but this bi-modal posterior distribution persisted.

Two more PE runs were then done where the sky-position of the signal was randomized,

keeping the polarisation fixed and vice versa. Although the IMRPhenomD recovered param-

eters for these runs lost their bi-modal behaviour, they still were 1) highly biased and 2)
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FIGURE 5.6: Posteriors of intrinsic parameters (Mc, q) for IMRPhenomHM waveform injected
at q = 2, 4, 8 with θJN = 0, π/3, π/2. Posteriors for q2 (q4) [q8] are shown in Blue (Grey)
[Orange] with the opacity of each determined from the maximum likelihood value of that
run. The variation of opacity over the likelihood values is shown at the bottom of each
graph. Overall the posteriors recovered by quadrupole only model show increasing bias at
higher θJN for a given q and vice-versa. This behaviour is not present for multi-mode model
posterior recovery. See text for further discussion of the biases, especially the bi-modality

of IMRPhenomD recovered posteriors for q=8 edge-on configuration.
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FIGURE 5.7: Posteriors of intrinsic parameters (Mtotal, χeff ) for IMRPhenomHM waveform
injected at q = 2, 4, 8 with θJN = 0, π/3, π/2. Posteriors for q2 (q4) [q8] are shown in Blue
(Grey) [Orange] with the opacity of each determined from the maximum likelihood value
of that run. The variation of opacity over the likelihood values is shown at the bottom of
each graph. At non-zero inclinations, the χeff recovered by IMRPhenomD drifts away from
the injected value leading to biases on the total mass (see text for how these parameters
affect each other). Posteriors recovered by the multi-mode mode for χeff and Mtotal are
generally accurate, with a slightly biased Mtotal recovery at q=8 edge-on; which can be

explained by observational priors (see text).
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FIGURE 5.8: Plot of ∆λi for all the IMRPhenomHM injections. Results for face-on, π/3 and
π/2 inclination injections are shown in top left, top right and bottom left respectively. ∆λi

for the parameters (Mc,Mtotal, q, χeff ) are shown with red-circle, black-cross, blue-lower
triangle and green-square respectively. Generally, for a given parameter, ∆λi

improves
with q for a given θJN or improves with θJN for a given q. Hence, recovered parameters
tend to be more precise with multi-mode models as compared to quadrupole-only models.

recovered with similar maximum likelihood (∼ -95). The bi-modality of recovered parame-

ters in Fig: 5.6 and Fig: 5.7 is a consequence of IMRPhenomD seeing the signal as from two

different but equally likely systems, which is lost when the signal morphology changes with

changing sky-position and polarisation values. But, for all sky-position and polarisation com-

binations, parameters recovered by IMRPhenomD for q=8 edge-on system show a consistent

bias towards lower total mass and negative χeff . Also, the difference in the log Bayes factor

for the IMRPhenomD and IMRPhenomHM recovery for the bi-modal run is 94, which implies

that the signal as seen by IMRPhenomD is highly unlikely as compared to what IMRPhenomHM

recovers. All this suggests that the observed bi-modality is not real, but a combined ef-

fect of the priors over the physical parameters and the inaccuracy of IMRPhenomD towards

recreating the true signal.

Mc posteriors recovered by IMRPhenomHM are accurate for all the cases. At face-on q=2,

recovered q has a large support from near-equal mass systems, but this behaviour is lost

at higher inclinations. At edge-on q=4 and 8, mass-ratio and Mtotal are slightly biased

towards lower values. The inclination prior has very low support for edge-on inclinations,

and hence, the recovered θJN posterior tends to have more support from non-edge-on

inclinations, which leads to the distance being overestimated. The amplitude (A) of a BBH

source is A ∝ M5/6
c /dL ≡ M5/6√η/dL . At higher masses, Mc and Mtotal are the

better constrained mass parameters. Hence, overestimating dL (with good constraints on
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Mc and Mtotal) would lead to a higher value of η or equivalently, a lower q. This effect

is what causes the slight bias on the IMRPhenomHM recovered q for edge-on q=4 and q=8

IMRPhenomHM injections.

At inclinations of π/3 and π/2, the mass parameters recovered by IMRPhenomHM are always

better constrained than corresponding IMRPhenomD recoveries (see top right and bottom left

panels of Fig: 5.8), i.e., ∆λi > 0. For a given inclination - parameter combination, ∆λi

increases with increasing q. For e.g., for θJN = π/3 inclination, ∆Mc ∼ 20, 30, 50 for q=2, 4

and 8 respectively. The comparatively high ∆λi values for edge-on q8 configuration is due to

the bi-modality of IMRPhenomD recovered posteriors. Overall, we observe better constraints

on the mass-parameters for inclined system across the mass-ratio space.

Where the quadrupole model tends away from zero spin at higher inclinations, IMRPhenomHM

recovery does not. At θJN = π/3, π/2; q=2 recovered χeff posteriors has almost the width

for IMRPhenomD and IMRPhenomHM templates (∆χeff ∼ 0), and although the spread of these

posteriors are similar, χeff recovered by IMRPhenomHM are accurate whereas IMRPhenomD

recovery is biased. At q=4 and q=8, ∆χeff ≥ 0 for all inclinations, IMRPhenomD recovers

biased χeff posteriors for non face-on inclinations whereas IMRPhenomHM recovery is accu-

rate for all configurations.

Although we expect IMRPhenomHM to recover accurate parameters for IMRPhenomHM injec-

tions, this study would also provide an indication of the possible measurement accuracy

from using a multi-mode model. We see that other than for face-on configurations, the re-

covered mass and spin parameters are better constrained (∆λi > 0), with the constraints

improving with increasing mass-ratio or inclination.

5.3.1.2 Hybrid-NR Injections

This section gives the results of posteriors recovered by IMRPhenomD and IMRPhenomHM

for hybrid-NR signals. The hybrid-NR waveforms i) contain extra (3,1) and (4,2) modes in

the waveform and ii) contain the correct mode content for real physical systems. Where

IMRPhenomHM injection results give an idea of the parameter recoveries by multi-mode com-

pared to quadrupole-only templates in the presence of multi-mode signals, the hybrid-

NR injections provide an estimate of the systematic errors of parameters recovered by

IMRPhenomHM due to approximations in the model.

The results of recovered intrinsic parameters for Hybrid NR waveform injections are given

in Fig: 5.9 and Fig: 5.10 and Fig: 5.11 shows the ∆λi for these injections. For q=2, q=4

and q=8, at face-on inclinations, posteriors recovered by IMRPhenomHM and IMRPhenomD

follow the same behaviour as what we had seen for IMRPhenomHM injections. Parameters
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FIGURE 5.9: Posteriors of intrinsic parameters (Mc, q) for Hybrid-NR waveform injected
at q = 2, 4, 8 with θJN = 0, π/3, π/2. Posteriors for q2 (q4) [q8] are shown in Blue
(Grey) [Orange] with the opacity of each determined from the maximum likelihood value
of that run. The variation of opacity over the likelihood values is shown at the bottom
of each graph. Posteriors recovered by quadrupole only model shows similar trends as
seen for IMRPhenomHM injections, with differences in the amount and direction of the bias.
Wherever IMRPhenomHM recovered posteriors are biased, the bias is always smaller than

corresponding IMRPhenomD recovery.
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FIGURE 5.10: Posteriors of intrinsic parameters (Mtotal, χeff ) for Hybrid-NR waveform
injected at q = 2, 4, 8 with θJN = 0, π/3, π/2. Posteriors for q2 (q4) [q8] are shown in
Blue (Grey) [Orange] with the opacity of each determined from the maximum likelihood
value of that run. The variation of opacity over the likelihood values is shown at the bottom
of each graph. Posteriors recovered by IMRPhenomD and IMRPhenomHM for these Hybrid-
NR injections show similar qualitative behaviour across the q − θJN space, with slight

quantitative differences (see text for further discussion).
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FIGURE 5.11: Plot of ∆λi
for all the hybrid-NR injections. Results for face-on, π/3 and π/2

inclination injections are shown in top left, top right and bottom left respectively. ∆λi
for

the parameters (Mc,Mtotal, q, χeff ) are shown with red-circle, black-cross, blue-lower tri-
angle and green-square respectively. Behaviour of ∆λi

is qualitatively similar to that of the
IMRPhenomHM injections across the parameter space, with some quantitative differences.

recovered by both the models are accurate, but the posteriors recovered by IMRPhenomHM

show slightly improved constraints on the mass and spin parameters (∆λi ≥ 0).

At q=2 and inclinations of π/3 and π/2, IMRPhenomD recovered mass and spin parame-

ters shows a slight bias and IMRPhenomHM recovery is unbiased. The behaviour of the

bias (amount and direction) as seen by IMRPhenomD for the hybrid-NR injection is similar

to that for q=2 IMRPhenomHM injections, for e.g., IMRPhenomD recovered χeff (Mtotal) tends

towards positive χeff (higher Mtotal) but contains the true value within its 90% CIs . At

high inclinations, the support towards equal-mass systems for q=2 injection as seen by

IMRPhenomD is lost with IMRPhenomHM. For inclined signals, mass-ratio is better constrained

by IMRPhenomHM (∆q ∼ 20), with the other posteriors recovered with similar widths, i.e, ∆λi

is near zero for λi = (Mc,Mtotal, χeff ).

For q=4 and 8, at high inclinations, IMRPhenomD recovered mass and spin parameters show

increasing bias and the posteriors are recovered at lower maximum likelihood. For exam-

ple: for edge-on q=8 injection, IMRPhenomD recoversMc and q consistent for q=4 injection.

For q=4 at inclinations of π/3 and π/2, the spin is biased towards negative χeff and the

recovered total mass is biased towards lower masses. For q=8, the behaviour of the bias

(amount and direction) changes between the hybrid-NR injections and IMRPhenomHM injec-

tions for these systems.



Parameter estimation with multi-mode templates 127

TheMc recovered by IMRPhenomHM for hybrid NR injections is unbiased for all cases, with

the total mass recovery for q=4 and q=8 at π/3 and π/2 shows a bias towards lower total

mass. For edge-on q=4 injection, the mass-ratio recovered by IMRPhenomHM contains the

real value within its 90% CI bounds, but the posterior has greater support from lower q.

For q=8, the mass-ratio at π/3 and π/2 tends towards lower q values but this bias is al-

ways smaller than corresponding quadrupole recovery, but is larger than the corresponding

IMRPhenomHM injection. For inclined q=8 hybrid-NR injections, the recovered θJN is more off

the true value as compared to corresponding IMRPhenomHM injection which leads to the dis-

tance being over-estimated and hence, a larger bias on q as compared to the IMRPhenomHM

injection. The same explanation can be applied for the q=4 mass-ratio bias.

For all cases, IMRPhenomHM is able to recover the true spin value within it’s 90% CI bounds,

though at q=4 and 8, the posterior has more support from anti-aligned spins. With multi-

mode templates, at higher mass-ratios, the recovered posteriors are more constrained than

the corresponding quadrupole recovery and recovered with overall higher likelihood.

For both IMRPhenomHM and hybrid-NR injections, the quadrupole recovery is biased at high

inclination and mass-ratios, with the bias direction depending on the injected waveform.

IMRPhenomHM recovers accurateMc and consistent χeff for both injection waveforms. For

q=8 systems at π/3 and π/2, IMRPhenomHM recovered Mtotal and q shows a bias towards

overall lower total mass and lower mass-ratio, with the bias being larger for the hybrid-

NR injections than IMRPhenomHM injections. Although the mass parameters inferred by

IMRPhenomHM can show a bias for high inclination and high-mass ratio systems, the bias

is consistently smaller than IMRPhenomD and the spin posteriors always contain the true

value. At lower mass-ratios, IMRPhenomHM can recover the correct q at non-zero inclina-

tions as compared to the large support from equal-mass systems as seen by IMRPhenomD.

The mass-spin posteriors recovered by IMRPhenomHM are generally better constrained or

have similar widths as compared to IMRPhenomD recovery. Overall, we see positive ∆q and

∆Mtotal
for IMRPhenomHM recoveries and the values increase with mass-ratio (for a given

inclination) and inclination (fixed mass-ratio). Hence, use of multi-mode templates lead to

better measurements of the intrinsic parameters across the explored mass-spin space as

compared to the quadrupole-only templates with the accuracy of measurements dictated by

accuracy of sub-dominant mode content.

5.3.2 Recovery of extrinsic parameters

For intrinsic parameters, at face-on configurations, parameter recovery by the quadrupole

and multi-mode models are similar to each other. This behaviour breaks down for the ex-

trinsic parameters. For the distance plots, we show the 90% clipped posteriors for each
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FIGURE 5.12: θJN recovery for IMRPhenomHM injection (top row) and hybrid NR injections
(bottom row) for inclinations 0, π/3 and π/2 and with IMRPhenomHM and IMRPhenomD as
recovery waveform models. Inclination recovery for q2, q4 and q8 configurations are shown
in the left, center and right columns respectively and the posteriors are plotted in Blue, Grey
and Orange respectively. The true value of the injected inclination are given in dashed

Black, Blue and Green lines for 0 , π/3 and π/2.

configuration. The posteriors for q=2, q=4 and q=8 injections are given in Blue, Grey and

Orange. The inclination recovery plots follow the same colour scheme and we plot all the

posterior samples.

5.3.2.1 θJN recovery

Figure: 5.12 gives the results for inclination recovery. For both IMRPhenomHM and hybrid

NR injections, at all mass-ratio and inclination configurations, θJN recovery by IMRPhenomD

shows a similar bimodal behaviour and mostly follows the prior. Inclination recovery is un-

affected by mass-ratio or inclination value for the quadrupole only model and thus it is not

possible to differentiate between a non-inclined and inclined system. For the quadrupole-

only templates, there exists a degeneracy between inclination (θJN ), polarisation (ψ) and

phase (φ), which leads to the similar bi-modal posteriors for θJN for any injected inclination.
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For IMRPhenomHM recovery, the bi-modality for inclination posterior persists, but the posteri-

ors are better constrained. At face-on configurations for IMRPhenomHM and hybrid NR injec-

tions, IMRPhenomHM sees the system as strongly face-on or face-off. The bi-modal structure

of recovered θJN could be better constrained in the presence of multiple detectors due to

the improved measurements of the polarisation and it is possible that this degeneracy could

be broken in some instances. For the two-detector network though, just the presence of

higher modes cannot break the degeneracy. For π/3 IMRPhenomHM injection, the recovered

inclination is peaked near the true value and the constraint on the inclination improves with

increasing mass-ratio. Edge-on IMRPhenomHM injection posteriors show a similar behaviour.

For Hybrid NR injections, inclination recovery for π/3 is peaked just off the true value and for

edge-on, the recovery is completely off. Due to the presence of higher-modes, IMRPhenomHM

is able to capture inclination information better than IMRPhenomD.

5.3.2.2 Distance recovery

Figure: 5.13 gives the results for distance recovery. We plot the relative distance error,

∆dL = dposteriorL − dinjectedL . For IMRPhenomHM injections, the true distance value lies within

the 90% confidence intervals for most of IMRPhenomD and all of IMRPhenomHM recovered

posteriors. At larger inclinations, the quadrupole model tends to overestimate the distance

to the binary. For the q2 Hybrid NR injections, at inclination π/3 and π/2, 90% CIs for dL
recovered by IMRPhenomHM do not include the true value. For all other situations though,

90% CIs for dL recovered by IMRPhenomHM contain the true injected value.

For quadrupole-only templates, as the recovered inclination is the same for all injected incli-

nations, the recovered distance for non-zero inclinations tend towards overall larger values.

For IMRPhenomHM injection - IMRPhenomHM recovery, where injected θJN lies within the 90%

CIs of recovered θJN , the real distance is recovered at all times. For the q=2 and q=4 hybrid-

NR injection - IMRPhenomHM template, recovered θJN at π/3 (π/2) is slightly (completely) off

the true value which causes the recovered distance to be overestimated from the true value,

though for q=4, the injected distance is within the 90% CIs. This is likely due to the different

mode content in the signal and template and the waveform inaccuracies in IMRPhenomHM.

But, these results do indicate that use of multi-mode template waveform will lead to better

distance measurements.

The improved constraints on inclination for IMRPhenomHM recovery translates to improved

constraints on the measured distance of the system as compared to IMRPhenomD recovery.

We see this behaviour for all the configurations. At face-on configurations, IMRPhenomHM
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FIGURE 5.13: Recovered distance error ∆dL recovery for IMRPhenomHM injection (top row)
and Hybrid NR injections (bottom row) for inclinations 0, π/3 and π/2 with IMRPhenomHM
and IMRPhenomD as recovery waveform models. Inclination recovery for q2, q4 and q8
configurations are shown in the left, center and right columns respectively. ∆dL = 0 line
is denoted by the dashed-black line. The injected distance value for IMRPhenomHM [NR]
injection for q2-q4-q8 0 is 895-624-388 [880-639-398] Mpc, π/3 is 537-404-258 [523, 376,

249] Mpc and for π/2 is 387-307-199 [367, 253, 183] Mpc.

constraints the distance about ∼ 20% - 25% better as compared to IMRPhenomD. For higher

inclinations, the constraint improves by about ∼ 30% - 60%.

Over the course of this study, we had performed PE runs with varying sky-positions which

were chosen based on the total detector response (see Fig: 5.5). We observed that the

distance constraints, for the same system, change with varying sky-position (and hence the

total response). For a face-on q=4 injection at a sky-position with maximal response, we

saw about ∼50% improvement in the distance as compared to ∼ 20% for a sky-position

with near minimal response. Hence, for the results we quote here, we chose a sky-position

with average total response. For [2], we had performed a PE run with the BAM q4a05a05
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(aligned-spin) waveform where we observed ∼40% constraint improvement for face-on sig-

nal.

5.4 Conclusions

This is the first study that quantifies the behaviour of inferred source parameters by a multi-

mode aligned-spin template waveform, where the parameters are estimated by a Bayesian

analysis. For that, we inject two families of multi-mode signal waveforms (IMRPhenomHM

and hybrid-NR) over a range of mass-ratios and inclinations (with fixed total mass) and

then we compare the parameters recovered by multi-mode and quadrupole-only templates.

We choose to fix the total mass of injected signals at 100M� due to two reasons; i)

IMRPhenomHM is an approximate waveform model of the sub-dominant modes, is not tuned

to NR waveforms and the most uncertain part of the IMRPhenomHM modelling is in the merger

and ringdown phases and hence, the choice of a high total mass allows us to get an idea

of the systematic errors due to these waveform inaccuracies, and ii) as IMRPhenomHM is a

computationally expensive model, signals with total mass 100M� are short enough to allow

an efficient PE study. An optimized version of this model is under development which will

make it possible to repeat this study with low-mass signals with comparable computational

time. Overall, we observe that the parameters recovered by the multi-mode templates are

generally consistent with the true values and if the parameters are biased, the bias is al-

ways smaller (often significantly smaller) than for the corresponding quadrupole model. The

posteriors recovered by IMRPhenomHM for the mass-spin parameters are better constrained

than the corresponding IMRPhenomD recovery. The results we see here are consistent with

those in [187] and [201] where non-spinning multi-mode models were used for PE.

The authors would like to point out that this study is not comprehensive enough to quantify

the effects of higher-modes on parameter recovery across the entire mass-spin parameter

space as we quote results for non-spinning systems with a fixed total mass while exploring

the mass-ratio space. For gravitational waves, accuracy of parameter measurements vary

with total mass of the system. For example: Mc (Mtotal) is better measured for low-mass

(high-mass) systems. Also, there would be differences for high-spin or precessing configu-

rations. That being said, the recovered parameters by a quadrupole and multi-mode model

show broad trends across the parameter space, which we now attempt to describe and

explain. We expect the same trends to continue for spinning systems, but given that astro-

physical BBH populations favour small spins [8], [206] (based on current observations), the

results here should hold for most likely GW observations.
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A multi-mode model can constraint inclinations much better than a quadrupole model across

the different mass-ratio and inclination values, leading to better constraints on distance mea-

surements. For example, for a q2 face-on injection, the posteriors recovered by the multi-

mode model strongly favour face-on or face-off systems whereas the quadrupole model

gets support from all possible inclinations. The behaviour of recovered parameters between

IMRPhenomHM and hybrid NR injections suggest that higher-order mode templates improve

inclination measurements; with the accuracy of the measured inclination depending on the

accuracy of model to recreate the sub-dominant modes.

For a given system, the contribution of sub-dominant modes towards total signal power in-

creases with increasing inclination, peaking at θ = π/2. The total mass of the system and

distance to the system determine the strength of the signal amplitude and hence, signal

power. For a signal with non-zero inclination, a quadrupole-only template model that gets

more support from non-edge-on inclinations, would tend to find that the (comparatively)

weak signal is from further off and tends to overestimate dL. A multi-mode template model

can better constraint the degeneracy between the inclination, phase and polarisation val-

ues leading to improved constraints on the inclination compared to quadrupole-only model,

which then translates to better constrained measurement of distance. With improved multi-

mode models, we can expect improved inclination constraints and hence, distance measure-

ments. Especially for a three-detector network, where we can expect improved constraints

on the extrinsic parameters as compared to a two-detector network [207], [208].

With multi-mode templates, we find that parameters can be better constrained as compared

to quadrupole-only model with the constraints improving with increasing mass-ratio and

inclination (see Fig: 5.8 and Fig: 5.11). The general behaviour of parameter constraints

from our results are consistent with those seen in [201], but the posterior widths we see

here are slightly larger due to the addition of the spin dimension. For example, the quantity

∆Mobs/Mobs for q=4, M = 100M�, SNR=18 and θJN = π/3(0) in [201] is 0.056 (0.049)

whereas the same quantity for these runs (note that SNR=25) is 0.168 (0.242).

If the source parameters of a BBH signal with strong sub-dominant mode contributions are

estimated using a quadrupole-only waveform model, the recovered parameters will show

a tendency to be biased away from the true value. This systematic error generally in-

creases with increasing mass-ratio or inclination; situations where sub-dominant strength

increases. For IMRPhenomHM injections, parameters recovered by IMRPhenomHM are gener-

ally unbiased and if a bias exists, it can be explained by the combined effect of distance

being overestimated and the priors (for example, biased q IMRPhenomHM recovery for edge-

on IMRPhenomHM injection).

For the hybrid NR injections, intrinsic parameters recovered by IMRPhenomHM can be biased

for high mass ratio - large inclination combinations. For q2 configurations, IMRPhenomHM
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recovery is accurate across the board whereas q4-π/2, q8-π/3 etc. parameters start show-

ing a bias. Two places where this bias could come from are: i) the hybrid NR signals are

composed with more sub-dominant mode content than IMRPhenomHM, specifically, the (3,1)

and (4,2) modes and ii) IMRPhenomHM modes are not calibrated to NR waveforms. Given

that the contribution of the (3,1) and (4,2) modes towards total signal power is small (∼ 1%),

the dominant source of systematic error is probably from the sub-dominant modes not be-

ing tuned to NR waveforms. IMRPhenomHM recovery has the largest bias at the system

where it has the worst match with the NR waveforms, i.e., q=8 edge-on. However, even if

IMRPhenomHM recovered parameters are biased for some systems, the bias is always smaller

than the corresponding quadrupole recovery (see Fig: 5.14).

In [187], the authors had injected NR waveforms at θJN = π/3 and they quantify the bias

amount (δβλi) by the ratio of the systematic error (difference between the maximum a pos-

teriori (MAP) value and true value) and the standard deviation of the recovered posterior.

We plot the same quantity for the hybrid NR injection results of this study in Fig: 5.14 along

with δβMc and δβMtotal
for the q=2 (6), M = 51 (56) , SNR = 48 (48) configurations of [187].

The bias trends across mass-ratio that we see in this study are consistent with [187] 1.

FIGURE 5.14: We plot the quantity δβλi
for the parameters (Mc,Mtotal, q, χeff ) for hybrid-

NR injection results with the solid (dashed) lines indicating the bias value for IMRPhenomD
(IMRPhenomHM) recovery. δβλi for q=2, 4 and 8 are shown in Red, Black and Blue respec-
tively. The systematic bias for the q=2 (6), M = 51 (56) , SNR = 48 (48) configurations [187]
is shown in red (green) with the quadrupole [multi-mode] recovered bias shown with a star

[circle].

1Note: The total mass and SNRs used in [187] are quite different from this study. Also, the NR waveforms
used in [187] do not contain the (l, |m|) = (3,1),(4,3) and (4,2) modes, but include the (l, |m|) = (5,5) and (6,6)
modes.
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The likelihood function used to estimate the source parameters ∝ −|d(t) − h(t, ~λ)|. For a

given PE run, the maximum likelihood would depend on how well the waveform model recre-

ates d(t). The low likelihood at which IMRPhenomD recovers the posteriors and the high

bias over the parameters suggest that at large mass-ratio and inclinations, a quadrupole

only template cannot be trusted for accuracy. For example, from the difference in the

log Bayes factor (of ∼ 95) for the IMRPhenomD and IMRPhenomHM recovery for q8 edge-on

IMRPhenomHM configuration and the bi-modal behaviour of IMRPhenomD recovered parame-

ters for the same, parameters inferred by IMRPhenomD are highly unlikely as compared to

those inferred by IMRPhenomHM.

For both IMRPhenomHM and hybrid NR injections, mass ratio recovered by IMRPhenomD for q2

systems tend to have a greater support from near-equal mass systems. IMRPhenomHM mass-

ratio recovery shows a similar behaviour for face-on configurations. At θJN = π/3, π/2 the

mass-ratio posteriors recovered by IMRPhenomHM show no support from equal-mass and the

posterior is peaked near q=2. This suggests that multi-mode templates could better resolve

the mass-ratio for low mass-ratio systems as compared to a quadrupole only model. Our

results here are in line with the observation for GW170729 [198] where the templates with

quadrupole-only models resolved q between 2.5-1 at 90% CI and templates with higher-

order modes placed the bounds on q between 3.3-1.25 within 90% CIs.

Effective spin recovered by IMRPhenomD tends to be biased at high inclination configura-

tions, with the bias amount increasing with mass-ratio. IMRPhenomHM recovered spins for

IMRPhenomHM injections is consistent for all systems. For hybrid NR injections, the true

value of χeff just about lies within the 90% credible interval for q4/q8-π/2 configurations

and is unbiased for all other configurations. So, IMRPhenomHM will consistently lead to bet-

ter measurements of spins over quadrupole-only models (see the bottom right panel of

Fig: 5.14).

For this study, we investigate the effects of using IMRPhenomHM over IMRPhenomD at recov-

ering non-spinning multi-mode signals with a fixed total mass and SNR value. For a given

template model, the accuracy of measured parameters depends on the total mass of the

system (for e.g., measurement accuracy ofMc at low masses compared to high masses)

and the posterior spread depends on the SNR. In the future, with optimized versions of

IMRPhenomHM (or with models tuned to NR), it would be instructive to study the parameter

recovery behaviour across a range of spins, total mass and SNR values; but we expect the

overall trends of recovered parameters as mentioned here to remain unchanged.



Chapter 6

Conclusions and Future Directions

The aLIGO and aVIRGO detectors have started their third science observation run (O3)

from April 2019 with increased sensitivity and hence, a larger distance reach. During the first

two months of O3, there already have been more GW candidates than during the first two

observation runs put together and we can realistically expect many more BBH detections

before O3 ends in April 2020.

Given a GW detection, the parameters inferred from PE routines strongly depend on the

template waveform model and the spread of posteriors is generally dependent on the de-

tector noise content at that time and the strength of the signal. For the first GW detection,

GW150914, IMRPhenomPv2 was one of the template waveform models used for PE and it

was necessary to check if using IMRPhenomPv2 led to a systematic bias on the measured

parameters and how the bias behaved, if it existed. As shown in Chapter: 3, at q∼ 1.2 and

for non-edge on systems, the systematic errors from using IMRPhenomPv2 are much smaller

than the statistical errors due to detector noise and hence, we can trust the estimated pa-

rameters for GW150914. Some of these results were summarised in [1].

IMRPhenomPv2 generates the precessing modes in the inertial frame by wrapping up the

aligned-spin (2,2) and (2,-2) modes from the QA frame using a model for the Euler angles.

This model uses PN expressions for the Euler angles throughout the inspiral, merger and

ringdown phases. As the PN approximation becomes less accurate as the system nears

merger, the model for the angles does the same. While using IMRPhenomPv2, although

the systematic bias is negligible for q∼ 1.2, the same cannot be confidently said for high-

mass ratio - high-spin precessing systems, where the precession effects are much stronger.

Although we have not yet seen any systems with strong precession, it is highly likely that

such systems exist and will be observed in the future and hence, we wish to improve the

precession description for future models.

135
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Towards improving a phenomenological description of precessing binaries, the first priority

would be to build a model of the Euler angles for the merger-ringdown phases that is tuned

to NR simulations. This work is currently ongoing at Cardiff, where the model is being tuned

to a set of single-spin precessing systems. The NR simulations needed for this required the

spins to be in a specific configuration at a given reference frequency and use the initial data

generation process outlined in Section 4.2.1.

For the precessing waveform models, the precession information is captured by a single

effective precession spin parameter χp (see Section 2.6.2), which is a weighted average of

the in-plane spin components of the binary system. For the study in Chapter: 4, we wished

to check if a change in the in-plane spin direction can be detectable. For that, we generated

a set of NR waveforms with varying in-plane spins (same magnitude, different directions)

and found that:

• For q=2 and |S| = 0.7, a difference of ±π/2 between the in-plane spins could be

measurable at SNRs ∼ 50 and changing in-plane spin direction can have an effect

almost as strong as changing the magnitude by ∼ 0.1.

• For q=4 and |S| = 0.8, a difference of ±π/2 between the in-plane spins could be

measurable at SNRs ∼ 30 and changing in-plane spin direction can have an effect

stronger than changing the magnitude by ∼ 0.4.

• There exists a quasi-symmetry between the systems for which in-plane spins are

related by a ±π angle difference, which also shows up in the match values where

the maximum match for signal with inclination (θs) is from a template with inclination

(θs + π).

• A change in the initial spin direction leads to slightly different precessional motion

and mode-asymmetry content. These differences are what allows the systems with

different in-plane spins to be differentiable from each other.

For current precession waveform models, the direction of the in-plane spin only determines

the reference position of L̂ about the precession cone, with all the other things being the

same. As this is approximately degenerate with the binary phase(φ), waveforms with dif-

ferent φSR are difficult to distinguish from one another. From the results of Chapter: 4, we

indicate that modelling the in-plane spin direction should be considered in the near future.

In Chapter: 4, we also check for the effect of (non-)inclusion of mode-asymmetry content

in the signal and template waveforms. When mode-asymmetry is turned off for both signal

and template, we see that it becomes harder to distinguish signals with different in-plane

spins. For signals with different total spins, the results vary depending on the choice of
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FIGURE 6.1: This figure shows the χp posteriors recovered by IMRPhenomPv2 for the full
(symmetrized) waveforms of the system q2a07t90p0 and q2a07t90p90 which are shown in
sold-black (dashed-black) and solid-blue (dashed-blue) respectively. The true χp is shown

by the dashed-dotted red line.

signal-template systems (see Fig: 4.22 and Fig: 4.23). When mode-asymmetry content is

not included in only the templates, we see that:

• Systems with different in-plane spins (±π/2 angle difference) can be distinguished at

a lower SNR than when templates contain mode-asymmetric content for q=1, q=2 and

q=4 cases (see Fig: 4.24).

• For the same system, signals with mode-asymmetric content are seen as a differ-

ent system at SNRs similar to those of systems with different in-plane spins (without

mode-asymmetry in templates) (see Fig: 4.24).

These two results imply that disregarding mode-asymmetric content for template waveforms

could lead to biased parameter measurements, specifically for high SNR signals (SNRs >

30). For systems with different φSR, mode-asymmetry and precessional motion variations

are weak, yet changing φSR can have a comparable effect to total spin magnitude change.

Given all the results above, we conclude that initial spin direction and mode-asymmetry

effects may be important for future waveform modelling.
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As a test, I injected the NR waveforms q2a07p0 (full and symmetrized) and q2a07p90 (full

and symmetrized) at face-on inclination with SNR=40 and recovered the parameters with

IMRPhenomPv2. For both the systems, the true value of the in-plane spin is χp = 0.7. For

the full (symmetrized) q2a07p0 waveform, the mean of the recovered χp ∼ 0.3(0.3) and

for q2a07p90 it is χp ∼ 0.7(0.3) (see Fig: 6.1), with all other parameters being consistent

within the 90% CIs. So, the IMRPhenomPv2 measured χp is inconsistent for the two full

waveforms (wrong recovery for q2a07t90p0) and consistent but biased for the symmetrized

waveforms. With the above results, we wish to indicate that mode-asymmetry effects can

be strong and that future precessing waveform models might want to consider modelling the

mode-asymmetries. Note that these are preliminary results.

In Chapter: 5, we compared the posteriors recovered by a multi-mode (IMRPhenomHM) and

quadrapole-only (IMRPhenomD) template waveform for multi-mode hybrid NR and IMRPhenomHM

signals over three mass-ratio values (q=2, 4 and 8) and at three inclinations (ι = 0, π/3, π/2),

with a fixed SNR of 25. We found that using multi-mode templates allows for better measure-

ments of the intrinsic parameters across the parameter space. Quite interestingly, where the

quadrapole model consistently returns biased χeff measurements for inclined systems, the

multi-mode model always recovers the correct spins. Even for low mass-ratio systems,

IMRPhenomHM is better at constraining the mass-ratio at moderate inclinations and can com-

pletely rule-out equal mass systems. Using templates with higher-order modes breaks the

degeneracy between the inclination, distance and polarisation parameters, allowing for bet-

ter constraints on the same. We see that the distances can be better constrained by ∼ 20%

- 60% as compared to IMRPhenomD or any other accurate quadrupolar model.

For systems with strong sub-dominant mode power, the parameters recovered by IMRPhenomHM

show a slight bias, which is always smaller than the corresponding IMRPhenomD bias. This

can be explained by the approximations made during the building of this model, viz., i) sub-

dominant modes are not tuned to NR and ii) mode-mixing between the sub-dominant modes

is not modelled. Although the multi-mode models are computationally more expensive (∼
30 times slower than IMRPhenomD at the moment), using multi-mode templates allows for

better parameter measurements across the board and should be seriously considered as

template models for future observations. It would be very helpful to build Reduced Order

Models (ROM) for the multi-mode templates or to highly optimize the waveform generation

codes to reduce the computational time of a given PE run.



Appendix A

3+1 decomposition of GR

Equations in General Relativity relating the spacetime metric to matter sources form a set

of 10 coupled non-linear differential equations for which analytical solutions can be found

for only some special cases (Schwarzschild metric, Kerr metric etc.). The expected gravita-

tional wave signal from a coalescing binary source can be approximated by Post-Newtonian

expansion methods, but this approximation holds only during the inspiral phase of the sys-

tem. To obtain the GW signal during late inspiral and merger phases, we need to solve

Einstein’s equations numerically.

Dynamical evolution of a gravitational field can be posed as an initial value problem wherein

time-evolution of the full space-time metric gab can be determined by specifying the metric

(gab(t0)) and its time derivative (∂tgab(t0)) at a initial time t0. In the 3+1 decomposition of

Einstein’s equations, the space-time is foliated by spacelike hypersurfaces labelled by the

x0 = t co-ordinate. The metric can then be evolved to higher times by obtaining expressions

for ∂2
t gab from the Einstein equations at each point on the hypersurface and solving these to

obtain gab(t0 + δt) and gab(t0 + δt) for hypersurface at time t0 + δt.

The 10 Einstein equations are, Gab =
(
8πG/ c4

)
Tab, with the Bianchi identity ∇bGab = 0

gives,

∂tG
a0 = −∂iGai −GbcΓabc −GabΓcbc, (A.1)

since the RHS terms Eq: A.1 do not contain third time derivatives or higher of gab, the

quantities Ga0 do not contain any second-time derivatives of gab. Hence, 4 of Einstein’s

equations, Ga0 =
(
8πG/ c4

)
Ta0 do not contain any information of dynamical time evolution

of the system, but do provide a set of constraint equations for the initial data, gab(t0) and

∂tgab(t0). The remaining 6 equations determine the time evolution of the metric. Due to the

co-ordinate gauge freedom of general relativity, we can chose g00 = −1 and g0i = 0 and

thus have six metric components, gij which need to be solved for. Thus, given a set of initial
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data, the time evolution of the spacetime metric can be solved via foliating the space-time

with hypersurfaces at different times and solving for the six metric components gij .

The 3+1 decomposition provides a geometric outlook at the problem of solving Einstein’s

equations, in that the space-time is decomposed into the 3-dimensional space and a 1-

dimensional time leading to populating the spacetime with spacelike hypersurfaces labeled

by the time co-ordinate. Time evolution of the metric is then obtained by solving equations

for the six metric components on each time-slice. This decomposition provides us with

four constraint equations for gab and ∂tgab and the matter sources on each time slice and

evolution equations of gab on each time slice.

Let the spacetime manifold (M) have the metric gab defined over it. To decompose space-

time, it’s assumed that (M, gab) can be foliated by spacelike hypersurfaces (Σ) which are

level surfaces of the time co-ordinate (t). From t we can get a 1-form 1,

Ωa = ∇at, (A.2)

and ,

||Ω||2 = gab∇at∇bt = − 1

α2
. (A.3)

The quantity α, called the lapse function, measures amount of proper time elapsed between

two time-slices along the normal Ωa to the slice. Assume that α > 0, so Ωa is a time-like

one-form leading to space-like hypersurface Σ. This allows us to define the normalized 1-

form as ωa = αΩa and unit normal to slices na = −gabωb. As nana = −1, it is time-like and

points in the direction of increasing t . See Fig: A.1 for a visual representation.

Given na, we can define the metric γab induced on Σ by gab as,

γab = gab + nanb. (A.4)

With the metric γab so defined, its action on a tensor will project out any components along

the time-like vector na. γab is purely spatial and allows calculation of distance between two

points on a hypersurface Σ.

Once we have the space-time foliation, we want to decompose the purely spatial (lying on

hypersurface Σ) and time-like (along na) parts of tensors. For that, we need two projection

operators. The operator projecting a tensor Tab on a slice Σ, can be obtained by raising one

index of the spatial metric,

γab = gab + nanb = δab + nanb. (A.5)

1This whole discussion closely follows the one in [92]
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FIGURE A.1: Foliation of manifold M into space-like hypersurfaces (Σ1, Σ2, Σ3 ..) each a
level surface of time (t1, t2, t3...). The normal to the hypersurfaces is given by na

To project Tab, each index has to be contracted by the projection operator. Let us denote

projection of Tab on Σ as ⊥Tab. Then,

⊥Tab = γcaγ
d
bTcd. (A.6)

The normal projection operator is defined as,

Na
b = −nanb = δab − γab . (A.7)

Thus, we can now use the two projection operators given in Eq: A.5 and A.7. These projec-

tion operators can also be used to project the covariant derivatives of tensor quantities on

Σ by the same logic. The co-variant derivative of a scalar function f on Σ is,

Daf = γba∇bf (A.8)

The covariant derivative on Σ can be expressed in terms of the 3-d connection coefficients

Γabc which, in terms of γab are,

Γabc =
1

2
γad (∂cγbd + ∂bγdc − ∂dγbc) . (A.9)

Using these, we can obtain the Riemann tensor associated with γab as,

2D[aDb]wc = Rdcbawd Rdcband = 0. (A.10)
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With this, we can then obtain the 3-dimensional Ricci tensor and Ricci scalar.

Einstein’s equations relate the 4-dimensional Riemann tensor (4)Rabcd to the stress-energy

tensor. We want to decompose (4)Rabcd into its spatial components for recasting the equa-

tions in 3+1 decomposition. Part of its spatial decomposition is the 3d Riemann tensor de-

fined in Eq: A.10, but this contains information of the intrinsic curvature of slice Σ and tells

nothing of it’s shape while its embedded in the manifoldM . This information is contained

in the extrinsic curvature.

FIGURE A.2: The extrinsic curvature Kab measures variation of normal vector na at dif-
ferent points on Σ. It measures the rate at which Σ gets deformed as it’s evolved along

na

The extrinsic curvature Kab can be found by projecting covariant derivatives of the normal

vector of Σ onto Σ. This gives,

Kab = −γcaγdb∇cnd. (A.11)

The extrinsic curvature, intuitively, gives a measure of by how much the normal na changes

as it moves along Σ giving an idea of how the manifold curves; see Fig A.2. For eg:, a

normal to the 2D surface of a sphere going along the line joining two opposite poles will

keep on changing its direction and that rate of change would be dependent on the curvature

of the sphere. We can also express the extrinsic curvature in terms of γab as,

Kab = −1

2
Lnγab, (A.12)
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where Ln is the Lie derivative of along normal na. Thus, the two quantities, (γab,Kab) con-

tain information of the instantaneous state of the gravitational field and serve as fundamental

variables in our formulation.

The choice of (γab,Kab) cannot be arbitrary because they need to follow some constraints

to foliate the manifoldM completely. For that, we need to relate the 4-dimensional (4)Rabcd

ofM to the 3-dimensional Riemann tensor on Σ. These relations are given by the Gauss,

Codazzi and Ricci equations. The Gauss and Codazzi equations depend only on the spatial

derivatives of (γab,Kab) and are given as,

Rabcd +KacKbd −KadKcb = γpaγ
q
bγ

r
cγ

s
dR

(4)
pqrs, (A.13)

DbKac −DaKbc = γpaγ
q
bγ

r
cn

sR(4)
pqrs. (A.14)

These two equations will provide constraint equations for (γab,Kab). The Ricci equation

relates time derivative of extrinsic curvature to a spatial projection of 4d Riemann tensor

and is given as,

LnKab = ndncγqaγ
r
bR

(4)
drcq −

1

α
DaDbα−Kc

bKac (A.15)

To obtain the constraint and evolution equations of our variables (γab,Kab), we take the

Gauss, Codazzi and Ricci equations (given in Eq: A.13, A.14 and A.15 respectively) and

eliminate the 4d Riemann tensor using Einstein’s equations. Doing the former on Gauss

and Codazzi equations gives us the Hamiltonian constraint and momentum constraint which

relate the 3+1 decomposition formalism variables to the total energy density and momentum

density of the matter as observed by normal observer na.

The Hamiltonian constraint equation is,

R+K2 −KabK
ab = 16πρ, (A.16)

where R and K are the 3d Ricci scalar and trace of extrinsic curvature. ρ is the total energy

density of the matter.

The momentum constraint equation which relates the momentum density of matter (Sa) to

the extrinsic curvature is,

DbK
b
a −DaK = 8πSa Sa = −γbancTbc. (A.17)

The equations Eq: A.16 and A.17 provide the conditions for embedding the 3-dimensional

hypersurfaces Σ in the four dimensional manifold M created by the matter source. For
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FIGURE A.3: The time vector ta connects the point with spatial co-ordiante xi on slice t to
the same co-ordinate on slice t + dt. The lapse function α gives the amount of proper time

passed and the vector βa measures the shift of spatial co-ordinate between the slices.

evolving the metric of a physical system, we need to solve these equations to obtain the

initial data.

Time evolution equations can be found from Ricci’s equation Eq: A.15 and Eq: A.12 which

relates the extrinsic curvature to the intrinsic metric of Σ. Taking a derivative along the

normal na will not be a time derivative, as na is not the exact dual of the one-form on

hypersurface Ωa which defines the hypersurface time; naΩa = α−1. We instead choose a

vector, ta, which is defined in Eq A.18. See Fig: A.3.

ta = αna + βa =⇒ taΩa = 1. (A.18)

It’s useful to use the vector ta because it connects two points with the same spatial co-

ordinates on the two slices, let’s call it xa. The term αna measures the amount of proper

time elapsed between the slices and the shift vector βa measures the amount by which

the the point xa has shifted along the surface between the two hypersurfaces. These two

functions determine the evolution of the co-ordinates in time. The choice of the 4 quantities

α and βa are completely arbitrary in a problem. The co-ordinate gauge freedom of General

Relativity is what allows the choice of these four functions to be arbitrary.

Now, we can obtain the evolution equations for (γab,Kab) in general co-variant form, but

the equations are generally solved in the ADM co-ordinate basis and so we will look at that
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basis first and state the equations in that basis. The ADM co-ordinates are chosen such

that, xa = (ta, ea) where ea form a set of basis vectors on slice Σ, so that Ωae
a = 0. In this

basis, the components of the vectors ta and βa are,

ta = (1, 0, 0, 0) βa = (0, βi). (A.19)

This ensures that the Lie derivative along ta will essentially be a partial derivative w.r.t t. The

co-variant (na) and contravariant (na) components of the normal vector are,

na =
(
α−1,−α−1βi

)
na = (−α, 0, 0, 0, ) . (A.20)

We can use these to give us the four-dimensional metric gab in terms of the lapse and shift

vector using which we can write the line element in the 3+1 form as,

ds2 = −α2dt2 + γij(dx
i + βidt)(dxj + βjdt). (A.21)

In this basis, the evolution equations for extrinsic curvature reads,

∂tKij = α
(
Rij − 2KikK

k
j +KKij

)
−DiDjα− 8πα

(
Sij −

1

2
γij(S − ρ)

)
+ βk∂kKij +Kik∂jβ

k +Kkj∂iβ
k, (A.22)

and the evolution equation for spatial metric,

∂tγij = −2αKij +Diβj +Djβi. (A.23)

The hamiltonian and momentum constraints coupled with the evolution equations are equiv-

alent to Einstein’s equations in a 4-dimensional space. To summarise, in 3+1 decomposition

the 4 dimensional manifold M produced by the matter source is first split into slices at dif-

ferent times. Initial conditions on the first slice can be obtained by solving the constraint

equations for a given system which would give us the metric and it’s time derivative at the

initial time, gab(t0) and ∂tgab(t0). We constrain the co-ordinate gauge freedom of GR by

choosing the ADM basis and find the metric at all other times by evolving the hypersurface

slice to higher times.
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