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Coordinated activation of distinct Ca2þ sources
and metabotropic glutamate receptors encodes
Hebbian synaptic plasticity
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At glutamatergic synapses, induction of associative synaptic plasticity requires time-correlated

presynaptic and postsynaptic spikes to activate postsynaptic NMDA receptors (NMDARs). The

magnitudes of the ensuing Ca2þ transients within dendritic spines are thought to determine

the amplitude and direction of synaptic change. In contrast, we show that at mature

hippocampal Schaffer collateral synapses the magnitudes of Ca2þ transients during plasticity

induction do not match this rule. Indeed, LTP induced by time-correlated pre- and postsynaptic

spikes instead requires the sequential activation of NMDARs followed by voltage-sensitive

Ca2þ channels within dendritic spines. Furthermore, LTP requires inhibition of SK channels by

mGluR1, which removes a negative feedback loop that constitutively regulates NMDARs.

Therefore, rather than being controlled simply by the magnitude of the postsynaptic calcium

rise, LTP induction requires the coordinated activation of distinct sources of Ca2þ and

mGluR1-dependent facilitation of NMDAR function.
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H
ebbian synaptic plasticity at glutamatergic synapses
mediated by NMDA receptors (NMDARs) is the
principal mechanism underlying associative learning.

The classical exposition of Hebbian plasticity is spike
timing-dependent plasticity (STDP) where temporally correlated
pre- and postsynaptic activity induces bidirectional NMDAR-
and Ca2þ -dependent changes in synaptic strength1. Canonical
STDP occurs when a presynaptic spike is paired with a
postsynaptic action potential and has two defining
characteristics: (1) the magnitude of synaptic plasticity is
inversely related to the millisecond delay between the pre- and
the postsynaptic spikes and (2) the direction of plasticity is
determined by the temporal order of the spikes, with pre-
before-post leading to long-term potentiation (LTP) and
post-before-pre leading to long-term depression (LTD)2–4.

The Ca2þ hypothesis for synaptic plasticity as applied to STDP
states that the activation of synaptic NMDARs and the
ensuing excitatory postsynaptic Ca2þ transients (EPSCaTs)
within dendritic spines provide a critical trigger for the induction
of plasticity, with large EPSCaTs leading to LTP whereas
moderate signals induce LTD (Fig. 3a)5–7. In this framework
the postsynaptic spike provides the necessary depolarization
for removal of NMDAR block by Mg2þ within a narrow
time window relative to synaptic release of glutamate8,9

(but see ref. 10).
Evidence in support of the Ca2þ hypothesis comes from three

main sources. First, synaptic plasticity is voltage dependent;
pairing of synaptic stimulation with moderate depolarization
induces LTD whereas pairing with strong depolarization
induces LTP11,12. Second, titration of EPSCaTs with increasing
concentrations of postsynaptic Ca2þ chelators shapes the
induction of plasticity according to Ca2þ hypothesis
predictions12–14. Third, the magnitude of somatic/dendritic
postsynaptic Ca2þ transients correlates with the direction and
amplitude of synaptic plasticity15–17. However, this correlation
may not apply to EPSCaTs within dendritic spines. Most
dendritic spines behave as semi-independent biochemical
compartments endowed with intrinsic mechanisms for
controlling the local concentration of free Ca2þ (refs 18–20).
The electrical compartmentalization provided by the spine
neck21,22 can further shape the local spine Ca2þ signals
triggered by synaptic activation23,24. Since it is proposed that
high Ca2þ buffering capacity within spines localizes Ca2þ

signals to nanodomains surrounding Ca2þ permeable
channels25–27, Ca2þ from distinct spatial locations may activate
specific molecular events to express LTP or LTD. Indeed, the
correlation between EPSCaT magnitude and synaptic plasticity
breaks down when applied to STDP28 presenting a potential flaw
in the Ca2þ hypothesis. In this instance the breakdown in
correlation may be due to NMDAR-independent STD–LTD at
immature synapses28–31 but this still leaves open the mechanisms
governing STDP at mature synapses.

We therefore sought to test the Ca2þ hypothesis for synaptic
plasticity by correlating the magnitude of EPSCaT during STDP
induction with the magnitude and direction of synaptic plasticity
at mature Schaffer collateral synapses in the hippocampus. We
find that EPSCaT magnitude alone cannot accurately predict the
induction of synaptic plasticity and instead STDP requires
precisely timed Ca2þ transients mediated by NMDARs and
voltage-sensitive Ca2þ channels (VSCCs). In addition, STDP is
facilitated by activation of mGlu1 receptors that inhibit SK
channels that otherwise restrict NMDAR opening. Collectively,
our data suggest that the requirement for postsynaptic spikes in
the induction of plasticity at mature CA3-CA1 synapses is
explained by the coordinated activation of distinct spine Ca2þ

sources and of mGluR1.

Results
STDP at mature hippocampal synapses. To test the Ca2þ

hypothesis for STDP we sought to determine whether EPSCaT
amplitude predicts the magnitude and direction of synaptic
plasticity in response to STDP induction protocols. We first
characterized the plasticity induction rules at adult Schaffer
collateral-CA1 synapses by defining a range of stimulation
protocols pairing subthreshold presynaptic stimuli (excitatory
postsynaptic potentials (EPSPs)) with postsynaptic back-
propagating action potentials (bAPs) and elicited as a causal
(EPSP-bAP) or anti-causal (bAP-EPSP) pairing (referred to as
Pre–Post or Post–Pre pairings, respectively) over a range of time
intervals (Fig. 1a–c,f,g,i and Methods section). The stimulations
were applied to the test pathway as a single theta frequency train
(300 simulations at 5 Hz, for 1 min)32. Causal pairing of single
EPSPs with single bAPs at 10 ms interval (1Pre-1Post-10) failed
to induce plasticity (Fig. 1a,i). However, robust pathway-specific
LTP was induced when two bAPs were elicited 10–50 ms after the
onset of the EPSP (Fig. 1b,c,i). This confirmed results showing
developmental changes in the activity requirements for synaptic
plasticity at hippocampal Schaffer collateral-CA1 synapses where
induction of LTP at mature synapses requires pairing presynaptic
activity with a burst of postsynaptic action potentials32,33. In
common with other STDP studies3,32–34 LTP was expressed
gradually over a period of 20–30 min reflecting the absence of an
initial post-tetanic potentiation, which is more characteristic of
induction protocols that use high-frequency presynaptic
stimulation (Supplementary Fig. 1).

LTP induced by the 1Pre-2Post-10 stimulation protocol was
blocked by the NMDAR Gly-site antagonist L-689560 (5 mM)
confirming that this form of synaptic plasticity is NMDAR
dependent (Fig. 1d,i). In addition, consistent with the require-
ment of postsynaptic spikes for induction of LTP, presynaptic
activity alone delivered as a train of paired subthreshold EPSPs at
10 ms inter-spike interval (ISI) did not induce plasticity (Fig. 1e,i).

The canonical STDP paradigm posits that the temporal order
of pre- and postsynaptic spikes determines the direction of
plasticity2,3. We tested this hypothesis and found that anti-causal
association of one EPSP with two bAPs failed to induce plasticity
irrespective of the time interval (Fig. 1f,g,i). Since none of the
induction protocols tested so far generated any LTD, we asked
whether synaptic depression could be induced in our
preparations. Indeed, a train of 900 presynaptic pulse pairs at
50 ms ISI delivered at 3 Hz for 5 min34 induced a robust LTD
(Fig. 1h,i). This suggests that the cellular mechanisms for synaptic
depression are functional at these synapses, although not engaged
by the bAP-EPSP spike timing protocols tested.

Our results show a requirement for minimal postsynaptic
activity bursts to induce Hebbian LTP at adult Schaffer collateral-
CA1 synapses, in agreement with previous reports32,33,35.
Furthermore, our data show that anti-causal spike pairing does
not induce LTD and that instead prolonged low-frequency
stimulation is required.

Comparison of spine EPSCaTs with STDP. A direct test of the
Ca2þ hypothesis for STDP is to correlate the magnitude of the
Ca2þ transients (EPSCaTs) elicited by paired stimulations in
individual dendritic spines with the change in synaptic efficacy.
To determine this correlation we performed dual-channel
two-photon imaging of Ca2þ transients in individual spines
located on oblique branches of apical dendrites, where the
majority of the excitatory Schaffer collateral input arises. Synapses
on spines located 120–280mm from the soma (Supplementary
Fig. 2) were stimulated locally via an extracellular electrode and
bAPs were evoked by current injections via the somatic patch
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electrode (Fig. 2a and Methods section). Our aim was to compare
the EPSCaTs evoked at single spines by the paired stimulations
tested in the LTP experiments. We performed EPSCaT imaging
separately from the LTP experiments to avoid potential LTP
washout during dye loading of the cells in whole-cell mode and
employed the same physiological conditions. We interleaved
different stimulation protocols at a low frequency (0.05–0.1 Hz) at
the same synapse to directly compare responses while minimizing
photodamage. To test the validity of comparing the low-
frequency stimulation with the 5-Hz stimulation used in LTP
experiments we also imaged spine Ca2þ during the 60 s 5 Hz
stimulus trains. EPSCaTs did not summate and attenuated
rapidly, with the largest EPSCaTs occurring within the first
second of the 5 Hz stimulation (Supplementary Fig. 3a–c).
This attenuation was likely due to a steady-state EPSP attenuation
(Supplementary Fig. 3d) combined with activity-dependent

depression of action potential back-propagation and
voltage-gated calcium channels36–39. Thus EPSCaTs evoked by
individual stimuli at low frequency accurately represent the spine
Ca2þ signals elicited during the effective time window of the LTP
induction protocol. To further reduce the amount of light
excitation we separated the stimulation protocols into two groups
and tested them in separate experiments (Fig. 2 and
Supplementary Fig. 4a,b). The analysis aggregates data from
both sets of experiments where there was overlap.

Single subthreshold EPSPs (1Pre) evoked EPSCaTs with
average DF/A amplitude and time integral, respectively, of
0.029±0.004 and (3.8±0.7)� 10� 3, rising to 0.080±0.008
(Po0.001) and (14.2±2.2)� 10� 3 (Po0.001, both compared
with 1Pre, one-way analysis of variance (ANOVA) with post hoc
Tukey HSD test) when triggered by a pair of subthreshold EPSPs
at 10 ms interval (2Pre-10). Normalizing these values to the
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Figure 1 | Electrophysiological rules for induction of pathway-specific LTP at mature Schaffer collateral–CA1 pyramidal neuron synapses. (a–h) LTP

induction by theta frequency trains requires causal association of synaptic input with postsynaptic activity bursts. (a) Single presynaptic EPSPs paired with

single bAPs at 10 ms interval fails to induce plasticity (1Pre-1Post-10; n¼6). (b,c) Single EPSPs paired with two bAPs at 10 ms interval (1Pre-2Post-10, b;

n¼ 8) or at 50 ms interval (1Pre-2Post-50, c; n¼ 7) induce test pathway-specific LTP. (d) NMDAR antagonist L-689560 (5mM, n¼ 5) blocks induction of

LTP by a train of 1Pre-2Post-10 stimulations. (e) Presynaptic paired pulses at 10 ms interval do not induce plasticity (2Pre-10; n¼8). (f,g). Single EPSPs

preceded by two bAPs at 50 ms (2Post-1Pre-50, f; n¼6) or 20 ms interval (2Post-1Pre-20, g; n¼ 10) do not induce plasticity. (h) Paired EPSPs at 50 ms

interval (3 Hz, 5 min) induce test pathway-specific LTD (2Pre-50; n¼ 9). Plots in a–h show the time course of the EPSC amplitude in test and control

pathways normalized to the 5 min average before plasticity induction protocol was applied to the test pathway (arrows). Top schemes depict the

stimulation protocol used in each panel. Insets: average EPSC waveforms before (1, black) and 30–35 min after plasticity induction (2, red) recorded in test

and control pathways. Scale bars, 50 pA and 50 ms. (i) Summary of changes in normalized EPSC amplitude at 30–35 min after the induction protocols in a–

h. *Po0.05, Wilcoxon rank-sum test.
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Figure 2 | Magnitude of spine EPSCaTs elicited by pre- and postsynaptic spike pairing. (a) Two-photon line-scan imaging of spine EPSCaTs. Left:

pseudo-colour overview of a CA1 pyramidal cell patch-loaded with Fluo-5F (F) and Alexa Fluor 594 (A) visualized in the Alexa channel. Stim: Alexa-filled

extracellular patch electrode in stratum radiatum, near an oblique apical dendrite. White square marks the region scaled up in right top. Scale bar, 50mm.

Right top: two spines (1, 2; filled arrowheads) and their parent dendrite were imaged in line-scan mode (red dashed line shows the scan direction).

Scale bar, 5 mm. Right middle: dual-channel (A and F) visualization of a line-scan series (time on the abscissa), through spines 1 and 2; a single EPSP was

elicited (arrowhead) via the Stim electrode. Right bottom: the corresponding EPSCaT traces (DF/A, grey and double exponential fit, red) for spines 1 and 2

and parent dendrite, and the somatic membrane potential (Vm) recorded during the stimulus. Scale bars, horizontal: 0.1 s; vertical: 2 mm and 0.05 DF/A.

a.u., arbitrary units. (b) Somatic membrane potentials (middle) and EPSCaT waveforms (bottom, grey) evoked by the stimulations depicted at top (see also

Fig. 1). Traces are averages of 7–9 trials. 2Pre-50, 2Post-1Pre-50 and 1Pre-2Post-50 EPSCaTs were fitted with two double exponential curves (blue and

green), which were then summated (red). Scale bars, horizontal: 0.1 s; vertical: 50 mV (10 mV for 1Pre, 2Pre-10 and 2Pre-50) and 0.05 DF/A for EPSCaTs.

(c) Summary of EPSCaT amplitudes and time integrals for the stimulations in b. Left: average values across all trials (including failures). Right: average

potencies (see Methods section). (d) Linearity factors for the summation of EPSCaT amplitude and time integral evoked by pre–post paired stimulations,

versus time interval between the onset of EPSP and the first bAP (red in the schematics of panel b). Data calculated from the potencies in panel c (right)

and Supplementary Fig. 4b.
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EPSCaTs evoked by 1Pre for each spine revealed that the Ca2þ

transients elicited by 2Pre-10 summated supra-linearly
(DF/A amplitude and time integral, respectively, of 3.5±0.43
and (7.8±1.9)� 10� 3, both Po0.001, Wilcoxon rank-sum test).
Single bAPs (1Post) elicited Ca2þ transients with average
DF/A amplitude of 0.026±0.004, and time integral of
(2.9±0.4)� 10� 3 that summated to 0.042±0.004 and
(4.9±0.67)� 10� 3, respectively, when elicited with two bAPs
at 10 ms ISI (2Post).

EPSCaTs evoked by paired pre- and postsynaptic stimulations
were either smaller or not significantly different from those
evoked by 2Pre-10 (Fig. 2b,c and Supplementary Fig. 4a,b). In
particular, the LTP-inducing 1Pre-2Post-10 and 1Pre-2Post-50
stimulations or the canonical STDP simulation 1Pre-1Post-10
evoked smaller EPSCaTs compared with 2Pre-10 (DF/A
amplitude and time integral, respectively, for 1Pre-2Post-10:
0.066±0.006, P¼ 0.35, and (9.7±1.5)� 10� 3, Po0.05;
1Pre-2Post-50: 0.047±0.019, Po0.05, and (4.7±2)� 10� 3,
Po0.001; 1Pre-1Post-10: 0.052±0.006, Po0.01, and
(8.4±1.4)� 10� 3 , Po0.05; one-way ANOVA with post hoc
Dunnett test).

Presynaptic stimuli elicited EPSCaTs stochastically with an
apparent success rate for 1Pre of 0.68±0.05 rising to 0.93±0.02
for 2Pre-10, and to 0.88±0.04 for 2Pre-50 stimulations, reflecting
failures in neurotransmitter release40,41. We also observed failures
in spine Ca2þ transients evoked by 1Post and 2Post (success
rates 0.74±0.05 and 0.86±0.03, respectively), consistent
with previous observations42. Pairing pre- and postsynaptic
stimuli raised the apparent success rates to 0.98±0.01 (2Post-1
Pre-50), 0.98±0.01 (2Post-1Pre-20), 0.87±0.04 (1Pre-1Post-10),
0.93±0.03 (1Pre-2Post-10) and 0.92±0.04 (1Pre-2Post-50).

To avoid the potential bias in efficacy measurement introduced
by different success rates when averaging across multiple trials,
we compared the potencies of EPSCaTs evoked by the various
stimulations. For single stimuli and paired stimulations with
50 ms ISI the EPSCaT potencies were determined directly by
averaging successful trials, whereas for paired stimulations with
10 ms ISI they were inferred as described in Methods section
(Fig. 2c and Supplementary Fig. 4b). The potencies of Ca2þ

transients elicited by paired pre- and postsynaptic stimulations
were smaller compared with the 2Pre-10 EPSCaTs. The
DF/A amplitude and time integral potencies were, respectively,
for 2Pre-10: 0.10±0.01 and (18.7±2.6)� 10� 3; 1Pre-2Post-10:
0.068±0.01, P¼ 0.1, and (13.4±2)� 10� 3, Po0.05;
1Pre-2Post-50: 0.064±0.008, Po0.05, and (5.8±0.8)� 10� 3,
Po0.001; 1Pre-1Post-10: 0.074±0.01, Po0.05, and
(10±1.6)� 10� 3, Po0.001; all P-values compared 2Pre-10
potencies using one-way ANOVA and post hoc Dunnett test).
The observation that LTP-inducing stimulations evoke
smaller EPSCaTs relative to 2Pre-10 was consistent across the
entire range of spines and was not correlated with the
magnitude of EPSCaTs evoked by a single presynaptic
stimulation (Supplementary Fig. 5). In addition, EPSCaTs
evoked by the LTD-inducing stimulation 2Pre-50 had DF/A
amplitude 0.054±0.008 and time integral (5.4±0.7)� 10� 3.
These analyses reveal the relative potency of EPSCaTs elicited by
the different stimulation protocols and confirm that pairs of
subthreshold EPSPs that do not induce plasticity (2Pre-10)
produce the largest EPSCaTs.

The Ca2þ transients induced by pairing pre- and postsynaptic
spikes have been shown in some cortical and hippocampal
preparations in vitro to reflect a supra-linear summation of the
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Figure 3 | The electrophysiological rules for induction of plasticity do not match the size of spine EPSCaTs triggered by paired pre- and postsynaptic

spikes. (a) Hypothesized relationship between the relative change in synaptic strength and free Ca2þ concentration during a stimulation-evoked

Ca2þ transient in the spine. (b) Relationship between the relative change in synaptic strength for data in Fig. 1 and amplitude (top) or time integral

(bottom) for the average EPSCaT response (left) or potency (right). The EPSCaT data are summaries of experiments in Fig. 2 and Supplementary Fig. 4.
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Ca2þ signals evoked by the individual spikes delivered
separately43–45, but see ref. 46. Indeed, the potency of EPSCaTs
triggered by 1Pre-2Post pairings summated supra-linearly
at 10 ms ISI and became sub-linear for anti-causal pairings or
longer causal intervals (Fig. 2d). The reported variability in
supra-linearity could be due to a number of factors including the
age of animals or resting membrane potential of recorded cells.

To summarize the relationship between EPSCaTs and plasticity
induction by the various stimulation protocols, we compared the
EPSCaT amplitude and time integral values to the change in
synaptic strength (Methods section). Since the EPSCaT
magnitude was recorded separately (and in separate spines) from
the plasticity, data were category-binned according to the paired
stimulation. As shown in Fig. 3, the relationship bore no
immediate comparison to the predictions made by the Ca2þ

hypothesis for STDP (Fig. 3a). Furthermore there was no linear
correlation between the change in synaptic strength and the
average EPSCaT magnitude (Pearson correlation coefficient and
95% CI, respectively, for amplitude: 0.08, � 0.17 to 0.78, P¼ 0.85
and time integral: 0.1, � 0.7 to 0.79, P¼ 0.82). Similarly, the
change in synaptic strength did not correlate with the EPSCaT
potency (amplitude: 0.21, � 0.63 to 0.83, P¼ 0.63; time integral:
0.05, � 0.72 to 0.77, P¼ 0.91). These results indicate that the
magnitude of EPSCaTs evoked by paired pre- and postsynaptic
stimulations is not sufficient to explain the plasticity induction
rules at mature Schaffer collateral-CA1 synapses.

The critical events required for LTP induction are postsynaptic
action potentials occurring within close temporal proximity after
presynaptic release of glutamate2,3. Since we show this
requirement is not dependent on the total amount of Ca2þ

influx into dendritic spines (Fig. 3) we next tested the hypothesis
that Ca2þ influx through VSCCs activated by bAPs immediately
after Ca2þ influx through NMDARs is required for LTP.

Role of VSCCs in STDP. Back-propagated action potentials
activate VSCCs at the dendritic spine, such that the bAP-evoked

spine Ca2þ transients arise mainly from the activation of the
CaV3 (T-type), CaV2.3 (R-type) and CaV1.2/1.3 (L-type)
VSCCs47. VSCCs contribute to LTP induced by high-frequency
burst firing of pre- and postsynaptic neurones48,49 but are
not required for STD–LTP in hippocampal cultures or cortical
synapses3,28. We hypothesized that the activation of these VSCC
types by bAPs provides a critical signal for LTP induction in the
causal pre–post-pairing stimulation.

To determine the contribution of these VSCC types to LTP
induction by a train of 1Pre-2Post-10 stimulations we used the
T-type-preferring blocker Mibefradil (5mM), the L-type-selective
antagonist Nimodipine (20mM), and the R-type preferring blocker
NiCl2 (50mM)50. The block of individual VSCC types did not
affect LTP induction (Fig. 4a–c,e) and the magnitudes of LTP were
not significantly different from that of the control experiment
without drugs. However, collective block of all three VSCC types
with a cocktail of antagonists did block LTP (Fig. 4d,e). These
results indicate that activation of all three VSCC types contribute
to the induction of LTP by 1Pre-2Post-10 stimulation. The fact
that individual selective antagonists did not inhibit LTP suggests a
compensatory effect by the unblocked VSCC types.

To assess the relative contribution of NMDARs and VSCCs to
spine Ca2þ transients elicited by the paired stimulations, we
recorded individual spine EPSCaTs elicited by three interleaved
stimulation protocols (2Pre-10, 2Post-10 and 1Pre-2Post-10)
before (control) and during bath application of antagonists
(Fig. 5). The NMDAR antagonist L-689560 abolished the
EPSCaTs elicited by presynaptic paired pulses, and strongly
inhibited the spine Ca2þ transients triggered by the
LTP-inducing stimulation, while having no effect on the Ca2þ

signals triggered by the bAPs. Individual VSCC type-selective
antagonists inhibited the Ca2þ transient triggered by the
2Pre-10, 2Post-10 and 1Pre-2Post-10 stimulations to various
degrees without any one antagonist showing substantial
reduction. However, the VSCC antagonist cocktail substantially
reduced the Ca2þ transient amplitude for the 2Post-10 and
1Pre-2Post-10 stimulations (Fig. 5 and Supplementary Tables 1
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Figure 4 | Induction of LTP by paired pre- and postsynaptic spikes requires the activation of NMDARs and VSCCs. (a–c) LTP induction occurs under the
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block of L-, T- and R-type VSCCs inhibits induction of LTP (drug concentrations as in a–c, n¼ 8). Drugs were bath-applied throughout the experiment.

Panels depict the time course of the EPSC amplitude for test and control pathways, normalized to 5 min average before plasticity induction (arrows). Insets

show 5 min average EPSC waveforms before (1) and 30–35 min after plasticity induction (2) in test and control pathways. Scale bars: 50 pA and 50 ms.

(e) Summary of changes in normalized EPSC amplitude 30–35 min after the induction, for the treatments in a–d. *Po0.05, Wilcoxon rank-sum test.
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and 2). Presynaptic R-type VSCCs have been shown to control
neurotransmission at the hippocampal mossy fibre–CA3 synapse,
but the data supporting a role for R-, T- or L-type VSCCs at SC
synapses in CA1 is less clear51–53. We controlled for this
possibility by measuring the summated EPSPs evoked by 2Pre-10
stimulations and found no effect of the VSCC antagonists.
EPSP peak amplitudes (mV) during control and antagonist
application, were, respectively, for L-689560: 10.98±1.18 and
9.34±1.13 (P¼ 0.39); Mibefradil: 12.26±1.19 and 15.91±3.87
(P¼ 0.86); Nimodipine: 12.63±1.12 and 13.25±1.53 (P¼ 0.69),
NiCl2: 13.70±0.90 and 13.53±1.08 (P¼ 1); Nimodipineþ
MibefradilþNiCl2: 10.88±1.68 and 10.78±1.46 (P¼ 1);
L-689560þNimodipineþMibefradilþNiCl2: 11.87±1.00 and
9.72±1.23 (P¼ 0.2).

Collectively, these results indicate that the activation of
synaptic NMDAR and of spine VSCCs have a significant role
in the spine Ca2þ transients during STDP. Together with our
observations from the plasticity experiments, these results
confirm that NMDAR-mediated Ca2þ influx is required for
LTP and further suggest that, although the Ca2þ influx through
each individual VSCC type alone is not required; the combined
influx through two or more types of VSCC at dendritic spines is a
critical component of LTP induction.

Role of mGluRs in STDP. Postsynaptic membrane depolarization
by bAPs coincident with synaptic release at the excitatory synapses
on CA1 pyramidal cells can increase the lifetime of glutamate in
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the synaptic cleft54. At cerebellar granule cell synapses
this phenomenon boosts the activation of perisynaptic group I
metabotropic glutamate receptors (mGluRs) to facilitate NMDAR
currents55. Group I mGluRs can also increase dendritic Ca2þ by
stimulating release from Ca2þ stores via IP3 receptors56.
Functional evidence for the role of mGluRs in synaptic
plasticity at CA1 pyramidal cells57–59 suggests that the pre–post
spike coincidence may also engage this mechanism at Schaffer
collateral-CA1 synapses.

Therefore we next tested whether group I mGluRs are required
for LTP induction. The mGluR5 selective antagonist 2-methyl-6-
(phenylethynyl)pyridine hydrochloride (MPEP; 10 mM) had no
effect on LTP induction by a train of 1Pre-2Post-10 stimulations
(Fig. 6a,d). In contrast, block of mGluR1 by the selective
antagonist YM298198 (100 nM) or combined block of
both mGluR1 and mGluR5 abolished the induction of LTP
(Fig. 6b–d). These results show that the induction of LTP by
1Pre-2Post-10 stimulation train is dependent on the activation of
mGluR1 subtype.

To investigate the mechanism by which mGluRs facilitate LTP
induction we tested whether mGluRs directly facilitate Ca2þ

transients by recording EPSCaTs evoked by individual
stimulations as described above for the VSCC antagonists.
YM298198 (100 nM) had no effect on the EPSCaTs triggered
by either 2Pre-10, 2Post-10, or 1Pre-2Post-10 (Fig. 6e,f).
mGluR1s are coupled to a Gq G-protein/phospholipase C
(PLC) signalling pathway that is at least one order of magnitude
slower than the fast ion channel-initiated EPSCaTs56. Thus the
effects of mGluR1 activation might be expected to develop slowly
during the course of an LTP-inducing stimulus train. We tested
this hypothesis by imaging spine EPSCaTs during a short theta
frequency train of 1Pre-2Post-10 stimulations (Methods section
and Supplementary Fig. 3a). Individual EPSCaTs decayed within
200 ms and therefore did not summate during a 5-Hz
LTP-inducing stimulus train (Supplementary Fig. 3a and
Fig. 6g). YM298198 (100 nM) reduced the amplitude of the
EPSCaTs evoked during the stimulus train (compared with
control before antagonist : 0.6±0.11, Po0.05; n¼ 9 spines,
4 cells, Fig. 6g), with no effect on the time integrals (0.83±0.17,
P¼ 0.35, compared with control). This attenuation
was comparable to that of Ca2þ transients elicited by
1Pre-2Post-10 in the presence of VSCC antagonist cocktail
(P¼ 0.16, two-sided unpaired Wilcoxon rank-sum test), that also
inhibited LTP. Furthermore, during the stimulus train we did not
observe a sustained rise in spine Ca2þ that was sensitive to
YM298198. Together, these results indicate that LTP induction
requires mGluR1 activation during coincident pre- and
postsynaptic activity that increases the Ca2þ influx during
repeated presentations of coincident activity.

Our next goal was to determine the mechanism by which
mGluR1 facilitates Ca2þ influx. Group I mGluRs are coupled to
the Gq G-protein that activates phospholipase C signalling
pathway causing release of Ca2þ from internal stores. However,
this mechanism would be expected to induce a slowly developing
and persistent release of Ca2þ (ref. 56), which we did not
observe. Interestingly, group I mGluRs activate a signalling
pathway in common with the M1 muscarinic receptors (mAChR)
that have been shown to facilitate NMDAR function via the
inhibition of a Ca2þ -dependent SK channel-mediated negative
feedback loop60,61. We therefore investigated whether this
mechanism is also engaged by mGluR1. NMDAR modulation
by SK channels is most physiologically relevant and clearly
demonstrated at resting membrane potentials under normal
extracellular Mg2þ (ref. 60) so similar to previous studies
we used the decay time constant of summated EPSPs evoked by
a burst of presynaptic stimuli in slices from juvenile rats as a

measure of the NMDAR component of the synaptic response60,62

(Methods section). Bath application of the group I mGluR
selective agonist (S)-3,5-dihydroxyphenylglycine (DHPG; 50 mM)
depolarized the membrane potential by 3.4±2.1 mV and
prolonged the summated EPSPs without affecting EPSP
amplitude (Fig. 7a). This effect was reversed by addition of the
NMDAR antagonist 5 mM L-689560 (Fig. 7a). In separate
experiments, L-689560 (5 mM) alone did not affect the EPSP
decay time (normalized to control: 0.9±0.04, P¼ 0.06, n¼ 5)
confirming previous observations60,62. When the membrane
potential was repolarized to the membrane potential before
DHPG, L-689560 still reduced the EPSP decay time constant,
indicating the enhancement of the NMDAR-mediated
component of the EPSP was not due to membrane
depolarization (decay time constant normalized to control
1.35±0.15 in DHPG and 0.78±0.11 with addition of
L-689560, n¼ 7, Po0.01). The selective SK channel blocker
apamin (100 nM) also increased the EPSP decay time constant
and occluded the effect of 50 mM DHPG (Fig. 7b). The effects of
DHPG were not affected by 30 mM MPEP (Fig. 7c) but were
blocked by 1 mM YM298198 (Fig. 7d). The effects of DHPG and
apamin on the decay time constant of summated EPSPs were
replicated in slices from mature rats demonstrating the regulation
of NMDAR activity by mGluRs was consistent regardless of
developmental stage (Supplementary Fig. 6). These results show
that activation of mGluR1 facilitates NMDAR activation and
indicates that the mechanism is via inhibition of SK channels.

To test this directly we measured SK channel activity by
recording afterhyperpolarization currents (IAHP) in voltage clamp
using the perforated patch technique (Methods section).
Membrane depolarization from � 50 to þ 10 mV for 100 ms
and back to � 50 mV in the presence of the KCNQ channel
blocker XE-991 (10 mM) revealed an IAHP that was inhibited by
apamin (100 nM; Fig. 7e,f) allowing subsequent pharmacological
subtraction of the SK-mediated component of the IAHP. DHPG
(50 mM) depressed the SK-mediated IAHP (Fig. 8e; normalized to
control before drug: 0.8±0.08, Po0.05; n¼ 6) that partially
recovered on washout. DHPG (50 mM) had no effect on IAHP after
application of 100 nM apamin confirming that DHPG inhibited
SK-mediated currents (Fig. 7f; n¼ 7). These results show that
mGluR1 activation facilitates NMDAR function by inhibiting SK
channels, likely by acting via the G-protein/PLC signalling in
common with M1 mAChRs.

Discussion
In this study we have identified distinct Ca2þ sources that are
required for the induction of LTP by precisely timed pre- and
postsynaptic spiking at mature hippocampal synapses. We also
show that the combined Ca2þ signal from these sources does not
predict plasticity outcome and that mGluR1 activation is required
for LTP. From these observations we propose that postsynaptic
spiking has a central role in the induction of STDP by providing
activation of VSCCs, depolarization for NMDARs and indirect
enhancement of NMDAR function by facilitating mGluR1
activation. Thus, postsynaptic spiking is a better predictor of
LTP induction than Ca2þ influx through NMDARs.

Our test of the Ca2þ hypothesis predictions showed that
EPSCaTs measured across the entire spine head did not correlate
with the induction of STDP. In particular, EPSCaTs in response
to paired presynaptic stimulation (2Pre-10) were consistently
larger than EPSCaTs produced by any other STDP protocol
including those that induced LTP. This suggests that the
membrane potential within spines is substantially depolarized
by EPSPs and that high levels of NMDAR activation can be
produced by EPSPs in the absence of bAPs. Large amplitude spine
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EPSPs can only be generated if the spine neck resistance is
sufficiently large to provide a high degree of electrical isolation of
spine heads from the parent dendrites. Indeed this has been
demonstrated by voltage dye, EPSCaT and super-resolution

imaging studies coupled with electrophysiological recording and
modelling21,22,63. Together, these observations argue that bursts
of presynaptic stimulation produce substantial Ca2þ influx
through NMDARs but since presynaptic bursts alone do not
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induce synaptic plasticity, Ca2þ influx through NMDARs cannot
be the only trigger for synaptic plasticity. In this study we show
that another critical trigger for the induction of synaptic plasticity
is the activation of VSCCs.

L-, R- and T-type VSCCs have all been shown to contribute to
Ca2þ transients in dendritic spines23,47. Our data broadly
support these conclusions and show that combined blockade of
these three VSCC types reduces EPSCaTs evoked by paired
pre- and postsynaptic stimulation, whereas blockade of each
subtype alone only contributes a small component. As expected,
EPSCaTs evoked by presynaptic stimulation were mediated
primarily by NMDARs, whereas EPSCaTs evoked by
postsynaptic bAPs were mediated principally by VSCCs. A
significant fraction of the presynaptically evoked EPSCaTs when
NMDARs were active was mediated by VSCCs (Fig. 5). These
EPSCaTs were almost entirely blocked by the NMDAR
antagonist, suggesting that NMDAR activation during
presynaptic bursts may provide enough spine membrane

depolarization to activate VSCCs. Interestingly, a component of
EPSCaTs evoked by bAPs was not mediated by L-, R- or T-type
VSCCs that could potentially result from N- or P/Q-type
channels. EPSCaTs evoked by paired pre- and postsynaptic
stimulation were mediated by both NMDARs and VSCCs
supporting the requirement for both Ca2þ sources for
LTP induction. Furthermore, LTP was only prevented by
blockade of L-, R- or T-type VSCCs together but not each
subtype separately indicating that individual VSCC subtypes may
each contribute to a common Ca2þ influx required for LTP.
This may explain why previous studies have found no or only
partial inhibition of STD–LTP after blockade of individual VSCC
subtypes3,28,49.

An additional role for postsynaptic spikes in the induction of
synaptic plasticity comes from the observation that postsynaptic
depolarization prolongs the dwell time of glutamate in the
synaptic cleft at central synapses including hippocampal Schaffer
collateral-CA1 (ref. 54). In the cerebellum, this promotes the
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recruitment of perisynaptic group I mGluRs to facilitate the
NMDAR-mediated component of the synaptic response via a fast,
Homer-mediated direct action on NMDARs55. We also find that
recruitment of mGluR1 facilitates NMDAR activity but show that
this is a slow indirect mechanism since blockade of mGluR1 only
reduces EPSCaTs evoked by multiple rather than isolated paired
stimulations. Furthermore, our data do not show a sustained
increase in basal Ca2þ during repetitive pre- and postsynaptic
paired stimulation arguing against a role for IP3 receptor-
mediated release of Ca2þ from internal Ca2þ stores. We propose
that mGluR1 enhances NMDAR activation by a similar
mechanism to that engaged by another Gq coupled receptor M1

muscarinic receptors60,61; namely that mGluR1 inhibits Ca2þ -
sensitive SK channels which normally function to restrict
NMDAR activation as part of a negative regulatory feedback
mechanism within dendritic spines47,64 (Fig. 8). Our data support
a model where the requirement for mGluRs in synaptic plasticity
is to facilitate NMDAR activity which may not be necessary under
strong induction protocols57–59,65.

Contrary to the canonical rules for STDP at immature synapses
there is a notable absence of LTD induced by anti-causal pairings
of pre- and postsynaptic spikes in our data and other studies
of STDP at mature synapses32,33,66. STD–LTD at immature
synapses is not dependent on postsynaptic NMDARs and instead
requires postsynaptic mGluR and VSCC activation leading to
endocannabinoid production, which retrogradely reduces
presynaptic release probability28–31. Mature synapses apparently
lack this form of LTD induction. We show LTD occurs at mature
hippocampal synapses but it requires prolonged low-frequency
presynaptic stimulation and the amplitude of EPSCaTs produced
by this stimulation does not map onto the Ca2þ hypothesis for
STDP (Fig. 3). These results argue for a reassessment of the rules
defining STDP at mature hippocampal synapses. Spike timing is
important and controls the induction of LTP but anti-causal spike
timings do not induce LTD.

Here we show that Ca2þ influx to the spine through both
NMDARs and VSCCs is required for the induction of STD–LTP.
Coupled with the lack of correlation between EPSCaT magnitude

and LTP induction, this suggests there are distinct Ca2þ sensors
located in nanodomains surrounding the Ca2þ sources separated
by the presence of Ca2þ buffers25–27. In addition, evidence
indicates that Ca2þ signals from these sources can be augmented
by Ca2þ -induced Ca2þ release from internal stores that are
present in a subset of spines41,67,68. Moreover, Ca2þ elevations in
the spine heads are short-lived owing to locally controlled plasma
membrane extrusion, sequestration in the internal stores, and
diffusion through the spine neck19,20,23,69. An important, yet still
unanswered question is how these mechanisms converge onto
distinct Ca2þ sensors to shape the spine response to pre-and
postsynaptic activity patterns and determine the direction and
magnitude of Hebbian synaptic plasticity.

Methods
Slice preparation. Acute hippocampal slices were prepared from adult (P50-55,
200–250 g) male Wistar rats following a lethal dose of isoflurane inhalation, in
accordance with Home Office guidelines as directed by the Home Office Licensing
Team at the University of Bristol. For experiments on summated EPSPs and IAHPs

(Fig. 7) juvenile (p13–15) male Wistar rats were used similar to previous studies60.
Hippocampi were dissected in ice-cold slicing solution containing (in mM): 119
NaCl, 10 glucose, 26.2 NaHCO3, 2.5 KCl, 1 NaH2PO4, 0.5 CaCl2 and 5 MgCl2,
300 mOsm, equilibrated with 95% CO2 and 5% O2 then mounted on agar.
Transverse slices were cut (400-mm thick) using a VT1200 vibratome (Leica). Slices
were incubated in artificial cerebrospinal fluid (aCSF) containing (in mM): 119
NaCl, 10 glucose, 26.2 NaHCO3, 2.5 KCl, 1 NaH2PO4, 2.5 CaCl2 and 1.3 MgCl2,
300 mOsm, equilibrated with 95% CO2 and 5% O2 at 36 �C for 30 min, then kept at
room temperature until use. For synaptic plasticity experiments, the slices were cut
between CA3 and CA1 just before being transferred to the recording chamber.

Electrophysiology. Whole-cell patch-clamp recordings were made from CA1
pyramidal neurons visualized under infrared differential interference contrast on a
SliceScope Pro 6000/Multiphoton Imaging System (Scientifica) in a recording
chamber superfused (B1.5–2 ml min� 1) with aCSF at 35 �C containing 50mM
picrotoxin to block GABAA receptor-mediated transmission. Patch electrodes
(3–5 MO) were pulled from borosilicate filamented glass capillaries (Harvard
Apparatus) on a PC-87 Micropipette Puller (Sutter Instrument). Electrodes were
filled with intracellular solution containing (in mM): 117 KMeSO3, 8 NaCl,
1 MgCl2, 10 HEPES, 0.2 EGTA, 4 MgATP and 0.3 Na2GTP, buffered to pH 7.2,
280 mOsm.

Recordings were made with a Multiclamp 700A amplifier (Molecular Devices),
filtered at 4 kHz and digitized at 10 kHz using a CED micro 1401 MKII board and
Signal 5 acquisition software (Cambridge Electronic Design). Synaptic responses
were evoked using 0.1–1 ms square pulses (Digitimer). When used, back-
propagated postsynaptic action potentials (bAPs) were elicited via somatic current
injection (1–2 nA, 2 ms). Membrane voltage was not corrected for liquid junction
potential, which was calculated at � 9 mV.

For STDP experiments, synaptic responses were recorded in voltage clamp
(� 70 mV). EPSCs were evoked alternatively at 0.1 Hz in test and control pathways
using tungsten bipolar stimulating electrodes (100 kO, 119mm tip spacing,
MicroProbes) placed in the stratum radiatum, on opposite sides of the patched cell
and at different distances from the stratum pyramidale. The pathways were tested
regularly for independence using paired-pulse protocols. Consecutive EPSCs were
averaged online every minute, and their amplitudes were normalized offline to the
average of 5 min before the plasticity induction protocol (baseline). The relative
change in synaptic strength (Fig. 3b) was calculated as the difference between the
average change in EPSC amplitudes in the test and control pathway over the last
5 min of recording, relative to baseline. Series resistance was monitored throughout
the experiments and cells with series resistance above 30 MO or showing 420%
change were discarded from subsequent analysis. Spike timing and theta burst
pairing protocols were applied in current-clamp mode within 10 min of
establishing whole-cell configuration to avoid washout of LTP. The average resting
membrane potential of recorded CA1 pyramidal cells was � 73.3±2.2 mV (n¼ 52
cells without drug treatment). For spike timing protocols, the test pathway received
a theta frequency train (300 stimulations at 5 Hz for 1 min) unless specified
otherwise. EPSPs and summated EPSPs were set to be subthreshold for action
potential generation. The pre–post timing intervals were measured between the
onsets of the presynaptic stimulus and that of the first postsynaptic spike (Fig. 1).
The theta burst pairing protocol consisted of three trains of 10 bursts. Each burst
consisted of five coincident pre- and postsynaptic spikes at 100 Hz. The frequency
of the bursts was 5 Hz. The trains were separated by 10 s intervals. When used,
drugs were bath-applied throughout the experiment.

Summated EPSPs recorded in the presence of GABAA and GABAB receptor
antagonists picrotoxin (50 mM) and CGP55849 (5mM) were evoked by a burst of
stimuli consisting of five subthreshold stimuli at 100 Hz every 30 s and three
consecutive sweeps were averaged every minute. EPSP decay times were
determined by fitting average EPSP waveforms with a single exponential decay
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Figure 8 | Spine Ca2þ transients are controlled by mGluR1 or M1

muscarinic receptor inhibition of SK channels. mGluR1 or M1 muscarinic

receptors inhibit SK channels, which removes a negative feedback

regulation of NMDARs within dendritic spines thereby enhancing Ca2þ

influx. Facilitated Ca2þ influx through NMDARs and Ca2þ influx through

VSCCs are both required for the induction of LTP by STDP.
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function between peak and return to resting membrane potential. Drugs were
washed in after 10 min recording (control) and applied for 10 min. Decay times in
the presence of drugs were normalized to the mean control values and averaged
over the last 5 min of drug application.

IAHP currents were recorded in voltage clamp using the perforated patch
technique. Perforated patch recording were performed using patch pipettes
(5–6 MO tip resistance) tip filled with intracellular solution containing (in mM):
120 KMeSO3, 8 NaCl, 10 KCl, 10 HEPES, 0.2 EGTA, 4 MgATP and 0.3 Na2GTP,
buffered to pH 7.4, 280 mOsm and then back filled with the same solution
supplemented freshly with 80 mg ml� 1 gramicidin from dimethylsulphoxide stock
solution (20 mg ml� 1). After forming a gigaohm seal, the series resistance was
monitored and recordings commenced once it stabilized usually 30–40 min after
seal formation. Average series resistance for perforated patch recordings was
B40 MO. Spontaneous rupture of the perforated patch was checked by continuous
monitoring of the series resistance. IAHPs were elicited by a 100 ms depolarizing
step from � 50 to þ 10 mV then back to � 50 mV, every 30 s. Consecutive traces
were averaged every minute and the amplitude was calculated as the difference
between the IAHP peak and the current before the step depolarization. Drugs were
applied for 10 min after the control period and the IAHP amplitude values over the
last 5 min were averaged.

Two-photon Ca2þ imaging. For spine Ca2þ imaging the intracellular solution
was supplemented on the day of the experiment with a Ca2þ fluorescent indicator
(Fluo-5F, 200 mM) and a reference fluorescent dye (Alexa Fluor 594, 30 mM) from
stock solutions. The medium affinity Ca2þ dye Fluo-5F was chosen for its better
dynamic range and reduced buffer capacity compared with commonly used dyes
OGB-1 and Fluo 4 but has low fluorescence at rest necessitating the use of a
reference fluorescent dye70. To avoid additional Ca2þ buffer capacity EGTA was
omitted from the intracellular solution, which contained (in mM): 117 KMeSO3, 8
NaCl, 1 MgCl2, 10 HEPES, 4 MgATP, and 0.3 Na2GTP, buffered to pH 7.2,
280 mOsm. Spine Ca2þ transients (EPSCaTs) were imaged on secondary apical
dendrites in dual-channel fluorescence40 via a � 60 water immersion objective
(Olympus). Fluorescence excitation source was provided by a Ti:sapphire laser
(Newport Spectra-Physics) tuned to 810 nm. Whole-cell configuration was initially
established in voltage clamp (� 70 mV). Cells were switched to current clamp and
dye-loaded by injecting 100–150 pA inward current for 10–15 min. Subthreshold
EPSPs were evoked at 0.1 Hz via a monopolar extracellular patch electrode filled
with 5 mM Alexa-containing aCSF for visualization (Fig. 2a). The electrode was
placed in the stratum radiatum in the proximity of the patched cell. Spines were
initially visualized in raster scanning mode to allow for the placement of the
stimulating electrode tip at B20–30 mm distance from an apical dendritic branch.
Optically responsive spines were located as described previously40. EPSCaTs were
recorded in line scanning mode. Line-scan series (1,000 lines per second for 1 s)
were acquired with a single spike timing stimulation (see above) delivered 0.25 s
after the start of each series. To minimize photodamage EPSCaTs were recorded in
batches of up to nine line-scan series, every 15–20 s. Different spike timing
stimulations were interleaved within a batch. EPSCaT traces were then grouped by
stimulation type and averaged offline. Where drugs were applied, data from
batches acquired 5 min after drug wash in were normalized to the data collected
before drug application (control). Imaged spines were monitored for drift in the
Alexa channel and drifts o1 mm were compensated. Cells were discarded from
subsequent analysis whenever the imaged spines or parent dendrites had localized
swelling, sustained increase in the resting Ca2þ fluorescence, or when the
stimulation resulted in a tonic increase in Ca2þ fluorescence without return to pre-
stimulus level. Resting membrane potential was continuously monitored and cells
with resting membrane potentials above � 60 mV or changes 410 mV were
discarded. Images (12 bit quantization) were acquired with a data acquisition board
(National Instruments Corporation) using ScanImage r3.8 software.

Fluorescence data were denoised using the PURE-LET algorithm then EPSCaT
traces were calculated as the relative change in Fluo-5F fluorescence channel
versus Alexa Fluor channel (DF/A) and fitted with a double exponential function
(Fig. 2a)40. EPSCaTs elicited by paired stimulations with ISI of 50 ms (2Pre-50,
2Post-1Pre-50, and 1Pre-2Post-50, Fig. 2b) could be resolved in a doublet of Ca2þ

transients 50 ms apart and were fitted with a sum of two double exponential
functions (blue and green traces in Fig. 2b). We used the peak amplitude of the
fitted curve (DF/A amplitude) and the time-integrated change in Ca2þ

fluorescence (DF/A time integral) as EPSCaT measures throughout. DF/A time
integral was calculated by numerical integration of the fitted function over 0.5 s
interval from the onset of the transient. Fluorescence data were not calibrated for
Ca2þ concentration.

For theta train EPSCaT recordings, short trains of EPSP–2bAP pairs
(1Pre-2Post-10 stimulations, at 5 Hz for 2 s) were delivered and spines were
imaged during the second half of the stimulus train, to avoid photodamage. Ca2þ

transients were time-locked with the stimulus, and had variable intensity consistent
with the occurrence of EPSCaTs evoked by stochastic neurotransmitter release
summated with bAP-elicited Ca2þ transients (Supplementary Fig. 3). The
acquisition was repeated 6–8 times (20 s interval) in two batches: before (control)
and 5 min after drug wash in. Data within a batch were averaged then EPSCaT
traces were fitted with the sum of five exponential rise and decay curves separated
by 0.2 s, and the waveform average of the five EPSCaTs was calculated.

Analysis of optical response potencies. Successes and failures in optical response
were discriminated by comparing the signal energy in the Fluo-5F signal (the square
root of the sum of squared signal values) during the putative EPSCaT peak (50 ms
after the stimulus) to that of the baseline (50 ms before stimulus), termed the l2 norm
ratio40. Responses were deemed successful if the peak to baseline l2 norm ratio was at
least 1.3, as detailed previously40. For 50 ms ISI stimulations, two putative EPSCaT
peak windows were used to test for each Ca2þ transient in the doublet. The average
EPSCaT response to a given stimulation type was determined as the average of all
trials, including failures. The EPSCaT potency was defined as the size (peak
amplitude, time integral) of the average successful response elicited by a single
stimulus or jointly by the components of a paired stimulation. For single pre- or
postsynaptic stimuli, EPSCaT potency was determined as the average of successful
trials. For paired stimulation with 50 ms ISI, the EPSCaT potency was determined as
the average of the trials successful in both components of the Ca2þ transient
doublet. The potency of EPSCaTs evoked by paired stimulations with 10 ms ISI was
inferred using the approach described below.

We considered four possible outcomes when two independent stimuli S1 and S2

are delivered as a pair (S1S2): (1) no response, with probability P00; (2) response
only to S1, with probability P10; (3) response only to S2, with probability P01; (4)
joint response (evoked by both S1 and S2), with probability P11. Furthermore, Pp is
the probability of a successful optical response (any of the outcomes 2–4). These
probabilities are related by equations:

P00 þ P10 þ P01 þ P11 ¼ 1 ð1Þ

Pp ¼ 1�P00 ¼ P10 þP01 þ P11 ð2Þ
When S1 or S2 are delivered individually, EPSCaTs occur as Bernoulli trial

processes with probability P1 or P2, respectively. In particular, single EPSPs and
single bAPs elicit spine Ca2þ transients stochastically41,42. Assuming that the
responses to S1 and S2 are independent, P01 and P10 can be expressed as the success
probability of one stimulus conditioned on a failure of the other:

P10 ¼ P1�ð1� P2Þ ð3Þ

P01 ¼ P2� 1� P1ð Þ ð4Þ
We also denote by A1 and A2 the response potencies of S1 and S2 when tested

separately, and by Ap the potency of the response to S1S2 with any of the outcomes
2–4. Assuming linear summation of the responses, the joint potency A11 can be
calculated as:

A11 ¼ Ap�Pp �A1�P1�ð1� P2Þ�A2�P2�ð1� P1Þ
� �

=P11 ð5Þ
The unknown probabilities P1, P2 and Pp were estimated by their corresponding

sample frequencies of success P̂1, P̂2 and P̂p determined experimentally.
The potencies A1, A2 and Ap were determined as the average of optically successful
responses to S1, S2 and S1S2, respectively. When used, the postsynaptic spike
pairs at 100 Hz were considered as a unique stimulus. For the 2Pre-10 stimulations,
the probability P̂2 of success for the second EPSP was further adjusted by a paired-
pulse facilitation previously described at the Schaffer collateral-CA1 synapses36:

P̂2 ¼ 1� 1� P̂1
� �1=

ffiffiffiffi
P̂1

p
ð6Þ

Linearity factors for the summation of EPSCaTs elicited by paired pre- and
postsynaptic stimulations were calculated as the ratio of the EPSCaT potency
normalized to the sum of the EPSCaT potencies of individual stimuli. The analysis
was performed offline with software written in Matlab (The MathWorks).
Distances from the imaged spines to the soma were measured using the Simple
Neurite Tracer plugin for Fiji/ImageJ on image stacks acquired in the Alexa
channel at the end of the experiment. For illustration purposes, raster scan (XY)
images were noise filtered with a three-dimensonal median filter. The cell overview
in Fig. 2 was obtained from three partially overlapping image Z stacks that were
collated using Pairwise stitching plugin for Fiji/ImageJ.

Statistical analysis. Statistical analysis was performed in R. Data distributions
were tested for normality using Lilliefors (Kolmogorov-Smirnov) test. Significant
differences between the Ca2þ responses to different stimulations were tested at the
family level using one-way ANOVA, followed by multiple pairwise comparisons
with Tukey HSD test. The EPSCaTs were also compared directly to the 2Pre-10
responses using Dunnett post hoc adjustment for many-to-one comparisons.
Statistical comparisons for normalized data were performed using two-sided
Wilcoxon rank-sum tests. Sample sizes were determined by power calculations
based on typical effect sizes. For synaptic plasticity experiments comparisons were
made between the test and control pathways on EPSC amplitudes averaged over
the last 5 min of recording against the null hypothesis of no difference between
sample means. Linear correlations were tested against the hypothesis of no cor-
relation between data sets. Other statistical tests were performed as described in
Results section. The level of significance was set to 0.05. The calculated probabilities
are symbolized by asterisks as follows: *Po0.05, **Po0.01, ***Po0.001. Pooled
data are presented as mean±s.e.m.

Reagents. Picrotoxin, ethylene glycol-bis(2-aminoethylether)-N,N,N0 ,N0-tetraacetic
acid (EGTA), trans-2-Carboxy-5,7-dichloro-4-phenylaminocarbonylamino-1,2,3,4-
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tetrahydro-quinoline (L-689560), Nimodipine, Mibefradil, apamin, TTX, DHPG,
MPEP and 6-amino-N-cyclohexyl-N,3-dimethylthiazolo[3,2-a]benzimidazole-2-
carboxamide (YM298198) hydrochloride were purchased from Tocris. Fluo-5F
and Alexa Fluor 594 were purchased from Invitrogen. All other chemicals were
purchased from Fisher Scientific.
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