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Wavelet Transform-Based De-Noising for Two-Photon Imaging of Synaptic
Ca2D Transients
Cezar M. Tigaret,†* Krasimira Tsaneva-Atanasova,‡ Graham L. Collingridge,† and Jack R. Mellor†*
†Medical Research Council Centre for Synaptic Plasticity, School of Physiology and Pharmacology and ‡Bristol Centre for Applied Nonlinear
Mathematics, Department of Engineering Mathematics, University of Bristol, Bristol, United Kingdom
ABSTRACT Postsynaptic Ca2þ transients triggered by neurotransmission at excitatory synapses are a key signaling step
for the induction of synaptic plasticity and are typically recorded in tissue slices using two-photon fluorescence imaging with
Ca2þ-sensitive dyes. The signals generated are small with very low peak signal/noise ratios (pSNRs) that make detailed analysis
problematic. Here, we implement a wavelet-based de-noising algorithm (PURE-LET) to enhance signal/noise ratio for Ca2þ

fluorescence transients evoked by single synaptic events under physiological conditions. Using simulated Ca2þ transients
with defined noise levels, we analyzed the ability of the PURE-LET algorithm to retrieve the underlying signal. Fitting single
Ca2þ transients with an exponential rise and decay model revealed a distortion of trise but improved accuracy and reliability
of tdecay and peak amplitude after PURE-LET de-noising compared to raw signals. The PURE-LET de-noising algorithm also
provided a ~30-dB gain in pSNR compared to ~16-dB pSNR gain after an optimized binomial filter. The higher pSNR provided
by PURE-LET de-noising increased discrimination accuracy between successes and failures of synaptic transmission as
measured by the occurrence of synaptic Ca2þ transients by ~20% relative to an optimized binomial filter. Furthermore, in
comparison to binomial filter, no optimization of PURE-LET de-noising was required for reducing arbitrary bias. In conclusion,
the de-noising of fluorescent Ca2þ transients using PURE-LET enhances detection and characterization of Ca2þ responses at
central excitatory synapses.
INTRODUCTION
Single transmission events at excitatory synapses in the
central nervous system elicit fast, short-lived rises in post-
synaptic cytosolic [Ca2þ] (Ca2þ transients). These transients
encode intracellular signals with physiological conse-
quences ranging from the modulation of synaptic currents
to long-term changes in synaptic efficacy (1,2). Ca2þ tran-
sients are readily detected with intracellular Ca2þ-sensitive
dyes in minute (1–2 mm) structures such as dendritic spines,
using two-photon laser-scanning fluorescence microscopy
(TPLSM) (3–5). This technique offers excellent optical pen-
etration and diffraction-limited excitation volume in struc-
tures embedded deep within brain tissue. In combination
with electrophysiology, TPLSM allows the optical recording
of locally elicited excitatory postsynaptic Ca2þ transients
(EPSCaTs) at single spines, simultaneouslywith the synaptic
electrical response recorded at the soma (6). These tech-
niques may be employed to determine how spine EPSCaTs
encode specific patterns of synaptic activity that trigger or
modulate synaptic plasticity (7–11). Due to technical
constraints, the available information concerning EPSCaT
time-course is limited, despite its importance (12,13).
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Accurate measurements of EPSCaT amplitude and time-
course require high spatial and temporal resolution, and rely
on high gain photomultiplier tubes (PMTs) to detect small,
photon-noise-limited, fluorescence signals (14,15). Due to
high sampling rate and reduced fluorophore availability
given the small cellular compartments where they occur,
EPSCaTs tend to be low-photon-count events. Conse-
quently, EPSCaT analysis is hampered by measurement
noise seen as the uncertainty in pixel values, which report
the underlying fluorescence intensity. To resolve the small
signals, experiments may be biased toward stronger
synapses, and the risk of photodamage is increased as
more repetitions are required for an average response.
Several methods have therefore been developed to enhance
the peak signal/noise ratio (pSNR) of the recorded fluores-
cence transients.

Apart from the use of low-noise expensive custom-made
hardware (3), the choice of fluorescent Ca2þ indicators can
improve the quality of the Ca2þ signals, but each has draw-
backs (16,17). High-affinity dyes produce less noisy signals,
but due to added buffer capacity can underestimate the
change in [Ca2þ], and can saturate during stimulus trains.
Medium-affinity dyes have a linear range better suited for
trains of pre- and postsynaptic stimuli, but give off dimmer
signals. At glutamatergic synapses, Ca2þ responses can be
enhanced by removing extracellular Mg2þ or depolarizing
the postsynaptic cell to relieve the constitutive Mg2þ block
of NMDA receptors (18–20). However, depolarization or
removal of Mg2þ is nonphysiological and therefore limited
to providing an indirect optical measure of neurotransmitter
http://dx.doi.org/10.1016/j.bpj.2013.01.015
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release. Alternatively, Ca2þ signals with good pSNR from
individual spines have been obtained using two-photon
photolysis of caged neurotransmitters (21,22), with the
caveat that the glutamate released may not accurately repli-
cate the time course of endogenous neurotransmitter in the
synaptic cleft and may activate more extrasynaptic receptors
than synaptic release (23).

An alternative approach to improve the effective pSNR
for EPSCaTs is to apply a signal-processing algorithm that
can recover EPSCaTs from noisy recordings obtained with
commonly available hardware. Typical approaches use
low-pass or binomial filtering with a moving average
window of arbitrary size (2–33 samples), time-averaging
of an arbitrary number of (successful) trials, or a combina-
tion of these (7,11,18,24–26). Classical low-pass filtering
cleans up the signal by removing the high-frequency com-
ponents (thought to concentrate the noise) and therefore
tends to oversmooth the signal (27), thus introducing
measurement errors for time constants and peak amplitudes.
Because of the trade-off between improving the pSNR and
the accuracy of inferred signal parameters, finding an
optimal low-pass filter type and size has remained elusive.
Time-averaging assumes a stationary synaptic response to
repeated identical stimuli, contrary to some observations
(26), and, because of increased exposure to excitation light
and consequent photobleaching and phototoxicity, it
prevents complex experiments from being performed on
the same synapse (28).

A distinct de-noising technique is based on the wavelet
transform, a decomposition of a signal in terms of localized
basis functions, or wavelets. Mathematically analogous to
the Fourier transform, which realizes a frequency analysis
of the signal as a whole, the wavelet transform creates a mul-
tiresolution representation of the signal (29). One immediate
consequence is that noise is decorrelated from local features
of the signal, and can be removed with minimal alterations
to the underlying signal (30). In this paradigm, the noise is
considered a stationary random process whereas the under-
lying signal is treated either as deterministic or stochastic.
Wavelet transform-based de-noising works in three funda-
mental steps:

Step 1. The signal is transformed in the wavelet domain
to generate a set of wavelet coefficients representing
local signal features at a range of resolutions, and
a coarse (smooth) approximation of the signal.

Step 2. The result from Step 1 is passed through a wavelet
shrinkage and thresholding algorithm (31) adapted to
the statistical properties of the noise.

Step 3. The processed coefficients are transformed back
into the signal domain, to obtain a de-noised estimate
of the signal.

In fluorescence microscopy imaging, measurement noise
arises primarily from the Poisson distribution of the photon
counts arriving at the photodetector device and the uncer-
tainties in the photoelectron emission, compounded by
thermal fluctuations that amount to added white Gaussian
noise (AWGN) (32–34). Data samples are viewed as realiza-
tions of random variables with Poisson distribution having
the mean and variance equal to the intensity of the under-
lying signal, and thus, the level of noise is intrinsically
dependent on signal intensity. Previously, applications of
wavelet de-noising to Ca2þ fluorescence imaging assumed
a Gaussian approximation of the measurement noise (35).
However, this approximation breaks down for low-photon-
count imaging commonly encountered for spine EPSCaTs.
A group of wavelet-based techniques was developed specif-
ically for time-varying signals with a mixture of Poisson and
Gaussian noise (36). Here, we have applied a state-of-the-art
wavelet-based de-noising algorithm designed for de-noising
images corrupted by mixed Poissonian and Gaussian noise
(Poisson unbiased risk estimate-linear expansion of thresh-
olds, PURE-LET) (33), to recover EPSCaTs from TPLSM
recordings made from single dendritic spines in CA1
neurons in acute hippocampal slices.
MATERIALS AND METHODS

Slice preparation

Acute hippocampal slices were prepared with 200–250 g male Wistar rats

after inhalation of a lethal dose of Isoflurane anesthetic. Brains were

dissected in ice-cold aCSF (119 mM NaCl, 2.5 mM KCl, 1 mM NaH2PO4,

26.2 mM NaHCO3, 10 mM glucose, 2.5 mM CaCl2, and 1.3 mM MgCl2,

300 mOsm) equilibrated with 95% CO2 and 5% O2 and horizontal hippo-

campal slices (400-mm thick) were cut with a VT1200 vibratome (Leica,

Wetzlar, Germany). Slices were incubated in aCSF at 36�C for 30 min,

then at room temperature before use. The procedures were carried out in

accordance with Home Office guidelines as directed by the Home Office

Licensing Team at the University of Bristol.
Electrophysiology and two-photon Ca2D imaging

Whole-cell recordings were made from CA1 pyramidal cells visualized

with infrared differential interference contrast optics on a model No.

BX-51 microscope (Olympus UK, Southend-on-Sea, UK) in a recording

chamber perfused with aCSF (35�C) containing 50 mM picrotoxin. Patch

electrodes (5–6 MU) were pulled from borosilicate filamented glass capil-

laries (Harvard Apparatus, Edenbridge, UK) and filled with intracellular

solution containing: 117 mM KMeSO3, 8 mM NaCl, 1 mM MgCl2
10 mMHEPES, 4 mMMgATP, 0.3 mM Na2GTP, and 0.2 mM EGTA, buff-

ered to pH 7.2, 280 mOsm. The intracellular solution was supplemented

with Ca2þ fluorescent indicator (Fluo-5F, 300 mM) and a reference fluores-

cent dye (Alexa Fluor 594, 30 mM) from stock solutions (Invitrogen,

Paisley, UK).

For synaptic stimulation, an aCSF-filled extracellular glass electrode

(6–7 MU) was placed in the stratum radiatum, ~100–200 mm from the

pyramidal cell layer. Whole-cell patch-clamp configuration was established

under voltage-clamp (�70 mV), then cells were switched to current clamp

and dye-loaded by injecting 100–150 pA inward current for 10–15 min

using an AxoPatch 200B amplifier (Molecular Devices, Wokingham, UK)

before imaging. Resting membrane potential was continually monitored

and cells with resting membrane potentials above �60 mV or drifting

by >10 mV were discarded. Membrane potentials were not corrected for

the liquid junction potential, which was calculated to be 9 mV. Signals
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FIGURE 1 Spine EPSCaT recordings from a CA1 pyramidal neuron in

a hippocampal slice. (a) (Left) Montage of maximum intensity projections
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were filtered at 5 kHz and digitized at 10 kHz via a CEDMicro 1401 MKII,

using Signal 2 software (Cambridge Electronic Design, Cambridge, UK).

Alexa Fluor 594 (Alexa) and Fluo-5F fluorescence was visualized via

a LUMPlanFl 60� W/IR (0.9 NA) water immersion objective (Olympus),

using a Radiance 2100 MP two-photon system (Bio-Rad, Berkeley, CA)

equipped with a Mai Tai BB Ti:Sapphire laser (Newport Spectra-Physics,

Didcot, UK), tuned to 810 nm.

After an initial 10–15 min dye-loading, spines on secondary dendrites of

the cell being patched were initially imaged in raster scanning mode (~4.5

frames/s) to allow for the placement of the stimulating electrode tip at

~50 mm distance. Synaptic responses were elicited every 10 s by delivering

1 ms electrical pulses from a DS2A-mkII Isolated Constant Voltage Stim-

ulator (Digitimer, Welwyn Garden City, UK), via the extracellular elec-

trode. The stimulus amplitude was adjusted to yield subthreshold

excitatory postsynaptic potentials. Optically responsive spines (displaying

stimulus-triggered EPSCaTs) were iteratively searched by imaging indi-

vidual spines in line-scanning mode (1200 lines/s) while delivering pairs

of stimuli (25-ms apart, to increase the release probability). Stimulus

delivery was synchronized to 0.1 s after the start of each line-scan series.

Once a responsive spine was identified, subsequent Ca2þ transient record-

ings were performed at 0.2 Hz in line-scanning mode. Any required adjust-

ments to the position of the electrode and image focus were made by briefly

switching to raster-scanning mode between successive Ca2þ transient

recordings.

Images (8-bit quantization) were acquired with LaserSharp2000 v.6.0

software (Carl Zeiss, Welwyn Garden City, UK) and analyzed offline using

software written in the software MATLAB (The MathWorks, Cambridge,

UK). Software gain settings were, respectively: 20 for the Alexa channel,

and 30 for the Fluo-5F channel. The projection image in Fig. 1 awas gener-

ated with the software ImageJ (National Institutes of Health, Bethesda,

MD) (37). Fluorescence intensities are expressed as pixel gray level in arbi-

trary units (a.u.).
of two TPLSM z-stacks of a CA1 pyramidal neuron in a hippocampal slice

loaded with the fluorescent Ca2þ dye Fluo-5F and Alexa Fluor 594 (Alexa).

(Open rectangle, zoomed in top right) Location of the scanning line across

a spine head. (Bottom right) Primary data consisting of line-scan XT images

with Fluo-5F and Alexa channels (0.08 mm/pixel � 1200 lines/s, 1 s,

temporal axis vertical) synchronized with a single stimulus (arrowhead)

delivered via the extracellular electrode. The spine region of interest is

labeled beneath the Alexa line-scan image. (b) (Top to bottom) Fluores-

cence traces calculated by summating line-scan images row-wise within

the spine region of interest, the calculated EPSCaT trace, and associated

EPSP. (Vertical scale bars) 100 a.u. (Fluo-5F and Alexa), 10% (EPSCaT),

and 5 mV (EPSP). (c) Time-average for images (left) and traces (right)

of 30 consecutive sweeps through the spine imaged in panel a. Average

Fluo-5F and calculated EPSCaT traces are fitted with a double exponential

function (Eq. 2). Vertical scale bars: 50 a.u. (Fluo-5F) and 50% (EPSCaT).

Horizontal scale bars in panels b and c: 0.1 s.
Analysis of Ca2D transient data and the two-
dimensional EPSCaT model

One-dimensional spine Ca2þ transients (one-dimensional EPSCaTs) were

calculated from two-channel fluorescence data according to Eq. 1 (5),

yðtÞ ¼ DF

A
¼ F� F0

A
; (1)

where A and F are the instantaneous fluorescence intensities in the Alexa

and Fluo-5F channels, respectively, and F0 is the mean resting Fluo-5F fluo-

rescence intensity. Five kinetic parameters for the one-dimensional EPS-

CaTs: scale (a), offset (b), the rise time constant (trise), the decay time

constant (tdecay), and the onset of the transient (t0) were determined by

fitting with the exponential rise and decay function in Eq. 2:

yðtÞ ¼ a �
�
1� e

�ðt�t0Þ=trise
�
� e

�ðt�t0Þ=tdecay þ b: (2)

Synthetic two-dimensional spine Ca2þ transients (two-dimensional EPS-

CaTs) were generated by combining the one-dimensional EPSCaT model

in Eq. 2 with a spatial one-dimensional Gaussian spine profile model (see

Eq. S1 and Fig. S1 in the Supporting Material). A more detailed description

of this method is given in the Supporting Material.
Measurement noise model

Measurement noise in the two-dimensional EPSCaTs was simulated

according to the multiplicative and additive noise model (Eq. 3) (33),

y ¼ zþ b; with : zzaPðxÞ; and bzN
�
d; s2I

�
; (3)
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where the pixel intensities in the fluorescence image (y) result from the

summation of a scaled-Poisson process (z) parameterized on the fluores-

cence intensity (x) and a stationary, additive normally-distributed random

noise b with mean d and variance s2. The time- and space-varying fluores-

cence intensity signal x is considered deterministic. The noise parameters a,

s2, and dwere determined from image sample mean and variance estimated

on 8 � 8 pixel image windows according to Luisier et al. (33) and Bou-

langer et al. (38) (see Fig. S2 b). A justification of the noise model used,

together with algorithmic details, is given in the Supporting Material.
Algorithm implementation

The PURE-LET de-noising algorithm was implemented using nondeci-

mated two-dimensional wavelet transform in the Haar wavelet basis,

according to Luisier et al. (33). Filtering with moving average window or

binomial filters was implemented using the MATLAB Image Processing
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Toolbox. The binomial filters were generated as the outer vector product of

one-dimensional finite impulse response kernels according to Eq. 4 (25),

h½k� ¼
�

2p
pþ k

�
� 1

4p
; (4)

where h is a filter kernel with 2p þ 1 coefficients, h[k] is the kth coefficient,

p is the order of the filter, and
�
a
b

�
denotes the binomial coefficient. Curve-

fitting was done using MATLAB’s constrained nonlinear least-square

optimization routine lsqnonlin.

The empirical density estimates seen later in Figs. 4 and 5 were obtained

using a fast kernel density estimator (39). All procedures were written in

MATLAB.
RESULTS

To record EPSCaTs we loaded CA1 pyramidal neurons with
a calcium indicator (Fluo-5F) and a reference dye (Alexa
Fluor 594, Alexa) through a patch electrode at the soma
(Fig. 1 a). Because Fluo-5F has low background fluores-
cence, the reference dye is essential to visualize the
dendritic spines and to calculate the relative change in
Ca2þ fluorescence. Spinous EPSCaTs are then elicited by
locally stimulating axonal fibers that synapse onto the
patched cell, by delivering short electrical pulses through
an extracellular electrode near to the neuron’s apical
dendrites. Fluorescence in both Fluo-5F and Alexa channels
is then recorded by successive line-scans across the spine
head, to generate a two-dimensional time-space (XT) image
of fluorescence intensities (primary data, Fig. 1 a). The
EPSCaT signal represents the relative change in Ca2þ fluo-
rescence (Fig. 1 b, EPSCaT trace) calculated from a one-
dimensional time-series of fluorescence intensities obtained
by summating primary data row-wise over the spine region
of interest (Fig. 1 b, Fluo-5F and Alexa traces). Stimulus-
induced transients, when they occur, are time-locked with
the simultaneously recorded excitatory postsynaptic poten-
tial (EPSP) elicited by the stimulus.
Simulation of EPSCaTs

To assess the performance of the PURE-LET de-noising al-
gorithm, we generated synthetic two-dimensional EPSCaTs
with defined noise levels. According to Eq. 1, the fluores-
cence intensity in the Alexa channel merely helps compen-
sate for intensity fluctuations independent of the Ca2þ

transient. Therefore, we concentrated on simulating the
Fluo-5F line-scanning XT images. We note, however, that
in real life both Fluo-5F and Alexa channels are subjected
equally to measurement noise and hence they should both
be processed before calculating the EPSCaT signal. Thus
we simulated two-dimensional Fluo-5F fluorescence to
replicate recorded Ca2þ fluorescence primary data such as
that depicted in Fig. 1.

To obtain a realistic set of EPSCaT parameters for our
simulations, we fitted one-dimensional Fluo-5F fluores-
cence time-course data obtained from a series of 30
EPSCaTs (Materials and Methods, Fig. 1 c and see
Fig. S1). The series was previously recorded ex vivo
from a CA1 hippocampal pyramidal neuron (Fig. 1 a). We
then used the fitted values of the parameters (scale: 76.62
a.u, and offset: 43.33 a.u.), and of the rise and decay time
constants (3.7 ms and 112.6 ms, respectively) to simulate
an idealized (or clean) one-dimensional EPSCaT in the
temporal axis. Note that the values of these parameters are
characteristic of the average Ca2þ response of the spine to
synaptic stimulation.

In most two-photon laser-scanning systems where fluo-
rescence is detected using photomultiplier devices (PMT),
measurement noise arises from a combination of multiplica-
tive and additive processes associated with the stochastic
nature of the incident photon flux and the photodetection
process in the PMT (Materials and Methods, Fig. 2 a, and
see the Supporting Material). We approximated measure-
ment noise by a scaled Poisson process summated with
AWGN (Eq. 3) (33). To verify the general noise model in
Eq. 3 for low photon-counts, we first obtained experimental
background fluorescence data in the Fluo-5F channel.

The data set (256 � 1200 pixels corresponding to
20.43 mm � 1 s) was recorded by line-scan imaging in
a microscope field devoid of fluorophore (see Fig. S2), using
the same gain and offset software settings, sampling rates,
and quantization levels as for our experimental data in
Fig. 1. The scaling factor for the Poisson noise component
(a: 10.7), the variance (s2: 0.8), and mean (d: 0) of the
AWGN were determined as described in Materials and
Methods. We then used these values to synthesize a noisy
image by using Eq. 3 with the fluorescence intensity x set
to the sample mean of the nonzero pixels in the recorded
background data (3.9 a.u.). The distribution of pixel intensi-
ties in the resulting synthetic noisy background data and the
measured values for a-, s2-, and d-parameters agreed well
with those for the experimental background data (see
Fig. S2).

To synthesize two-dimensional EPSCaTs containing
noise levels similar to those in experimental data, we first
estimated the overall level of noise associated with experi-
mental EPSCaTs where noise variance is linked to the
underlying signal intensity. To this end, we used the
pSNR, expressed in decibel (dB) and defined in Eq. 5, where
ymax is the maximum value in the clean signal, and MSE is
the mean-squared error between the clean signal y and its
noisy realization. This parameter is a commonly used objec-
tive measure of noise level in fluorescence imaging (33,38),

pSNR ¼ 10 log10

 
ðymaxÞ2
MSE

!
: (5)

Because the underlying clean signal from experimental data
was unavailable to estimate the pSNR, we synthesized clean
Biophysical Journal 104(5) 1006–1017



FIGURE 2 Simulations of noisy two-dimensional EPSCaT data. (a)

Depiction of signal and noise amplification across dynodes D1 to Dn in

a photomultiplier tube. In high-gain PMTs the output is dominated by the

distribution P (l) of the secondary electrons after the first dynode. Analog

to digital converter (ADC). (b) Examples of simulated two-dimensional
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two-dimensional EPSCaTs using fitted parameters for indi-
vidual recorded sweeps and used them as the clean signal in
Eq. 5. The range of pSNR in experimentally recorded data
varied broadly (Fig. 2 c), consistent with a large variability
in the amplitude of the peak Ca2þ transients (e.g., see later
in Fig. 5).

We initially synthesized a two-dimensional EPSCaT for
which the scale parameter (a) of Eq. 2 was set to a value
commonly found by fitting our experimental data directly
(50 a.u.). Note that this peak value actually represents the
summation of data from 12 pixels corresponding to the
spine region of interest modeled as described in the Support-
ing Material. We then generated a set of noisy realizations of
this data according to Eq. 3 (see Materials and Methods).
The PMT quantum efficiency is difficult to measure directly.
However, the probability p of the binomial selection process
used in our noise modeling (see Materials and Methods and
the Supporting Material) can be considered to reflect the
overall photon efficiency of the TPLSM system due to
some of the emitted fluorescence photons being lost on
the way to the photodetector (40).

To obtain a realistic estimate for this probability, we first
varied the simulated photon efficiency and compared the
pSNR of the outcome to that of our experimental data
(Fig. 2 c). At photon efficiencies of 0.3, 0.35, and 0.4
the pSNR was, respectively, 7.8 dB, 8.5 dB, and 9.2 dB.
These values were close to the experimental data pSNR
(median 5 interquartile range, IQR: 8.7 5 4.1 dB). Next,
we simulated noisy two-dimensional EPSCaTs by fixing
the simulated photon efficiency to 0.3, corresponding to
the contemporary estimates for the best PMTs (32) and
allowing the scale parameter (a) of Eq. 2 to vary across
a range of values typical of our recorded data. The pSNR
values agreed well with those estimated from experimental
data (Fig. 2 c).

Thus, by applying Eq. 3 with a fixed PMT efficiency of
0.3, we produced noisy data similar to that seen in experi-
mental two-dimensional EPSCaTs, but with the benefit of
a defined underlying noise-free signal (Fig. 2, b and c).
Wavelet de-noising of simulated data

To determine the performance of PURE-LET de-noising
on our data, we processed the noisy data generated from
simulated two-dimensional EPSCaTs (photon efficiency,
0.3; signal/scale, 50 a.u) by applying the algorithm of
Fluo-5F fluorescence for an idealized Ca2þ transient (Model), a noisy real-

ization (Simulated), and the experimental data reproduced in the simulation.

(Bottom traces) Simulated and experimental fluorescence intensity profiles

with fitted exponential rise and decay. Calibration bar values are in a.u. (c)

Peak SNR as a function of simulated photon efficiency given the same

underlying signal (left) and as a function of signal amplitude for the

same photon efficiency (middle). (Right) Peak SNR (median, 25th and

75th quartiles, and range) for the experimental data set (Exp.) of 30 sweeps

used in Fig. 1.



FIGURE 3 Performance of PURE-LET de-noising and classical filtering

algorithms on EPSCaT parameter recovery from simulated noisy data. (a)

The outcome of processing the simulated noisy two-dimensional EPSCaT

in Fig. 2 with PURE-LET, moving average, and binomial filtering.

(Top) Processed two-dimensional signals. (Bottom) The one-dimensional

EPSCaT traces with overlaid fitted curves. Calibration bar values are in

a.u. (b) Five measures of performance (pSNR, R2 goodness-of-fit, and
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Luisier et al. (33). We compared the pSNR of the output
to that of the classical filtering methods with a range of
moving average and binomial (25) filter sizes commonly
used to enhance the pSNR in recorded EPSCaTs
(3,6,7,11,18,24,26,41) (Fig. 3 a). The results for 50 simula-
tions are shown in Fig. 3 b. The pSNR for unprocessed
(noisy) data was 7.9 5 0.07 dB (mean 5 standard devia-
tion, SD). PURE-LET de-noising yielded a pSNR of 37.76
dB 5 0.28 dB corresponding to ~30 dB gain in pSNR.
In contrast, pSNR after classical filtering varied non-
linearly with the size of the filter kernel, with the best
gain in pSNR being roughly half of that of PURE-LET
(maximum pSNR was 22.3 5 0.22 dB, and 24.2 5 0.28
dB, respectively, for a moving average filter of 10 � 10
pixels and 10th order binomial filter corresponding to
21 � 21 pixels).

An important aim in de-noising EPSCaT data is to render
them suitable for further analysis, e.g., by fitting the Ca2þ

transient model given in Eq. 2. Therefore, we determined
the ability of PURE-LET and classical filtering algorithms
to recover the original EPSCaT parameters by fitting the
model in Eq. 2 to the one-dimensional EPSCaT obtained
from the de-noised or filtered data (see Materials and
Methods). To this end, we compared the fitted values of
the amplitude, trise and tdecay with the reference values
generated by fitting the one-dimensional trace derived
from the clean two-dimensional EPSCaT, and used the
degrees of freedom-adjusted coefficient of determination
R2 (42) as a measure of the reliability of the fit (Fig. 3 b).
Table 1 shows that PURE-LET de-noising resulted in highly
reliable model fits, with statistically not significant bias in
amplitude and tdecay but a significant bias in trise. By com-
parison, moving average or binomial filtering approached
the R2 values for PURE-LET de-noised data as the size of
the filter kernel increased, for the price of larger bias in indi-
vidual EPSCaT parameters. Filters with size <10 did not
distort trise as much as PURE-LET de-noising but also
had limited reliability (low R2 values).

To compare the validity of the processing algorithms by
simultaneously taking into account the parameter bias, R2

and pSNR, we defined a global figure of merit (FOM). For
a given parameter, FOM is a similarity measure between
the parameter value x obtained after data fitting and its refer-
ence value r (Eq. 6). The FOM score has a value of one when
x equals r and decays exponentially toward zero as a function
of the normalized distance between x and r. The reference
values for R2 and pSNR were, respectively, one (perfect
fit), and the maximum pSNR among all algorithms. For
each processing algorithm the global FOM was calculated
as the average of the individual FOM scores for amplitude,
signal parameters) and the global figure-of-merit for the recovery of

EPSCaT parameters from unprocessed (Noisy) and processed data. Values

are mean 5 standard deviation from 50 simulations. Latent signal: the

underlying signal parameters values used for the simulations.
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TABLE 1 PURE-LET and classical filtering algorithms performance in latent signal parameter estimation and signal/noise ratio

enhancement

Algorithm

(filter order/size)

Parameter bias % (mean 5 SD and p-values)

R2 Goodness of fit pSNR (dB) Global FOMAmplitude tdecay trise

PURE-LET �0.18 5 3.79, 0.74 0.32 5 8.63, 0.8 45.8 5 67.67, < 0.01 0.97 5 0.01 37.76 5 0.28 0.9 5 0.05

Binomial filter 2 0.09 5 3.83, 0.86 �0.02 5 8.07, 0.99 4.04 5 53.39, 0.59 0.76 5 0.01 19.19 5 0.11 0.75 5 0.04

Binomial filter 10 �5.66 5 3.22, < 0.01 �0.4 5 8.03, 0.72 20.26 5 51.14, 0.01 0.88 5 0.01 24.19 5 0.29 0.81 5 0.04

Binomial filter 25 �14.15 5 2.8, < 0.01 �0.79 5 8.03, 0.49 42.85 5 53, < 0.01 0.92 5 0.01 21.55 5 0.24 0.77 5 0.04

Binomial filter 100 �38.03 5 1.87, < 0.01 �1.79 5 8.25, 0.13 123.5 5 60.46, < 0.01 0.96 5 0.01 14.72 5 0.08 0.62 5 0.03

Moving average 2 2.21 5 4.15, < 0.01 �0.04 5 8.01, 0.97 2.04 5 56.71, 0.8 0.62 5 0.02 13.8 5 0.07 0.67 5 0.04

Moving average 10 �9.48 5 3.04, < 0.01 �0.59 5 8.02, 0.61 31.79 5 52.29, < 0.01 0.9 5 0.01 22.32 5 0.23 0.79 5 0.04

Moving average 30 �53.91 5 1.4, < 0.01 �2.45 5 8.43, 0.05 195.34 5 65.15, < 0.01 0.97 5 0.01 11.82 5 0.04 0.55 5 0.02

Unprocessed 1.86 5 4.37, < 0.01 0.18 5 8.07, 0.87 �0.19 5 55.82, 0.98 0.44 5 0.02 7.91 5 0.07 0.58 5 0.04

Table shows the fitted parameter bias expressed as a fraction of the reference values, together with R2, pSNR and FOM. Also shown are the p-values for a two-

tailed t-test of the null hypothesis that the bias values are normally distributed with zero mean. For clarity, values are only listed for classical filtering with

kernel sizes that had comparable performance to PURE-LET on individual measures.
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tdecay, trise, R
2, and pSNR. Results are shown in Table 1, and

plotted in Fig. 3 b. Of all algorithms used, PURE-LET had
the highest FOM (mean 5 SD: 0.9 5 0.05; p < 0.01
compared to the next best FOM 0.81 5 0.05 for binomial
10th order filter, Fig. 3 b and Table 1),

FOMr ¼ exp
�
�
���x
r
� 1
����: (6)

In a similar fashion we tested the performance of PURE-
LET and classical filtering over a range of pSNRs, by

simulating noisy data from synthetic two-dimensional
EPSCaTs with a range of amplitudes spanning the values
we typically obtain in our recorded data (e.g., seen later in
Fig. 5). The lower bound was chosen to be as low as 10 fluo-
rescence intensity units (representing, on average, a gray
pixel value of 2 in the two-dimensional data), to simulate
the extreme situations of signals completely embedded in
noise (see Fig. S3 and Fig. S4 and Table S1 in the Support-
ing Material). Here, we used those classical filtering algo-
rithms that performed comparatively to PURE-LET on
individual measures (Table 1). As expected, the goodness-
of-fit after PURE-LET or classical filtering improved with
pSNR in the noisy data (i.e., with the amplitude value
used to simulate the EPSCaTs; see Fig. S3). PURE-LET
de-noising gave virtually no bias in the amplitude estimate
across the signal intensity range, contrary to the classical
filtering algorithms. Noisy data with the poorest original
pSNR (~3.8 dB) resulted in unreliable estimates for the
kinetic parameters regardless of the processing algorithm
used, as shown by the 95% confidence interval of the fit
(see Fig. S4 and Table S1).

However, for data with ~6 dB pSNR and above, PURE-
LET de-noising yielded a narrower confidence interval,
when compared to classical filtering. Similar to the results
shown in Fig. 3 b, both the reliability and the bias in the
EPSCaT parameters estimates after classical filtering
increased with the size of the filter kernel. At all simulated
pSNRs, the PURE-LET de-noising had a higher global
FOM than the classical filtering. Our data illustrate the diffi-
Biophysical Journal 104(5) 1006–1017
culty of finding an optimal kernel for classical filtering algo-
rithms that would reconcile high certainty with low bias in
signal estimation, across a range of pSNRs. Overall, the
results illustrate that PURE-LET outperforms classical
filtering methods for recovering EPSCaT parameters from
noisy data with the caveat that PURE-LET significantly
distorts fast fluorescent changes. Furthermore, our results
emphasize that classical filtering methods necessarily incor-
porate a tradeoff in performance between de-noising and
oversmoothing where the balance is set arbitrarily, in
contrast to PURE-LET de-noising.
Discrimination of successful and failed synaptic
events

One problem posed by low pSNR in EPSCaT analysis is
the difficulty in distinguishing whether or not an EPSCaT
has occurred in response to a presynaptic stimulus and
thus in estimating the probability of presynaptic release at
an individual synapse. Previously, the discrimination crite-
rion has been set using the distribution of peak EPSCaT
amplitudes, measured on the one-dimensional derived
EPSCaT data (6,24). Instead, we assumed that in the case
of a successful synaptic response, the Fluo-5F signal at
the spine will have more energy (measured as the squared-
root of the sum of squared values, or l2 norm) after stimulus
delivery compared to the energy before the stimulus
(Fig. 4 a). Therefore, we used the ratio between the energy
contained in the two-dimensional signal region restricted to
the spine 100 ms after stimulus delivery and that of the spine
region 100 ms before stimulus, hereafter called the peak/
base norm ratio (PBNR), as the basis for classification of
trials into successes or failures (Fig. 4 a). For failures, the
theoretical value of PBNR is 1. In practice, classification
was based on the distribution of PBNR in a population
of trials.

We tested the predictive power of PBNR classifier on
simulated fluorescence transients. To obtain a more realistic
data set, we used the fitted EPSCaT parameter values used



FIGURE 4 Discrimination of failures in simulated EPSCaTs. (a) (Top left) Schematic of the discrimination criterion, calculated from peak and baseline

regions defined on two-dimensional primary Ca2þ fluorescence signal (one-dimensional projection is shown below). (Top right) Peak/base norm ratio

(median, 25th and 75th quartiles, and range) for the failures and successes in noisy, de-noised, and filtered data from 50 simulated trials. (Bottom) Probability

distribution of the peak/base norm ratio for the noisy, de-noised, and filtered data sets from 50 trials, with the empirical density estimate (density) and

Gaussian fits for the two populations of failures and successes. (b) Classification outcome on the simulated noisy traces and after de-noising or filtering.

Scale bars, vertical: 200 a.u. (noisy data), 100 a.u. (de-noised and filtered data); horizontal: 0.5 s.
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TABLE 2 Binary predictive analysis for event discrimination

after PURE-LET and classical filtering

Unprocessed PURE-LET

Moving

average

(10 pixels)

Binomial

filter

(10th order)

Balanced accuracy 0.77 0.95 0.85 0.75

Correlation 0.65 0.92 0.76 0.61

Recall 0.55 0.9 0.7 0.5

Specificity 1 1 1 1

Table shows four measures for the accuracy for event discrimination

and compares the performance of PURE-LET with moving average or

binomial filter.
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for simulations in Fig. 2. In Eq. 2 we fixed the kinetic
parameters trise and tdecay and allowed the scale and offset
(parameters a and b, respectively) to take independent nor-
mally distributed random values with means moffset¼ 43 and
mscale¼ 30, and standard deviation s¼ 10 (all values in fluo-
rescence units). To replicate a biologically plausible proba-
bility of synaptic transmission, the scale parameter b was
then modulated by a Bernoulli distribution with probability
parameter p ¼ 0.3. This effectively simulated a 0.3 proba-
bility of successfully eliciting an EPSCaT for each trial.
Finally, noisy realizations of the synthetic signals were
obtained as described. A realization of 50 simulations
with successful trials having mscale 32.71 and s 10.13
(40% success rate) is shown in Fig. 4 b.

In the noise-free synthetic signal, PBNR values for the
successful trials were narrowly distributed (median 5
IQR: 2.0 5 0.5). The distribution of PBNR for noisy trials
deemed successful according to the noise-free data overlap-
ped with that of unsuccessful noisy trials and the PBNR
of the whole noisy data set had a unimodal distribution
(Fig. 4 a). Fitting a kernel density estimate of the PBNR
distribution with two Gaussians revealed two largely
overlapping populations (m1: 0.95, s1: 0.19; m2: 1.11, s2:
0.29, Fig. 4 a). After PURE-LET de-noising, the PBNR
distribution became clearly bimodal (m*1: 0.93, s*1: 0.23;
m*2: 1.51, s*2: 0.32). After defining the population with
the lowest mean PBNR as failures, the discrimination
threshold between unsuccessful and successful trials was
set at two standard deviations above the lower mean (m1).

Using the noise-free data as reference, we assessed the
performance of this failure discrimination algorithm on
unprocessed data and after PURE-LET de-noising or clas-
sical filtering. Here, we used the filter sizes with the highest
pSNR (which also had the best performance in terms
of FOM, Fig. 3 b): 10 pixel moving average (pSNR:
22.315 0.23 dB; FOM: 0.795 0.05), and 10th order bino-
mial filter (pSNR: 24.19 � 0.29 dB; FOM: 0.81 5 0.05).
We determined well-known performance measures for
binary classifications (43): the balanced accuracy (propor-
tion of true results), the correlation between the classifica-
tion output and the noise-free reference, recall (probability
to retrieve positives), and specificity (the ability to test a
negative result). These measures take into account all four
possible classification outcomes: true positive, true nega-
tive, false positive, and false negative. The results show
that PURE-LET de-noising enhances the balanced accuracy,
correlation, and recall, but not the specificity, in comparison
to moving average or binomial filter (Table 2).

Next, we applied this classification algorithm to 60 trials
of recorded experimental data where a presynaptic stimulus
was given. The data were recorded as described in Materials
and Methods, and both Fluo-5F and Alexa channels were
processed before deriving the EPSCaT signal, either by
PURE-LET de-noising, or by filtering with kernels that
gave the highest pSNR (10th order binomial and 10 pixel
Biophysical Journal 104(5) 1006–1017
moving average). The PBNR for the unprocessed data had
a skewed distribution from which successes and failures
of synaptic transmission could not be easily distinguished
although its empirical density estimate suggested multiple
modes (Fig. 5 a). The population of failures, defined by
the same principle as for the simulated data, had m ¼ 0.88
and s¼ 0.21 after density fitting, and the failure discrimina-
tion threshold was set to 1.3. This population became
more distinct after data processing: mPURE-LET ¼ 0.94,
sPURE-LET ¼ 0.24; mBinomial ¼ 1.07, sBinomial ¼ 0.21;
mMoving average ¼ 1.06, sMoving average ¼ 0.19), and the failure
discrimination thresholds were, respectively, 1.42, 1.49, and
1.44 (Fig. 5 a).

Examples of the experimental recordings illustrate the
trials that were deemed failures when using PBNR from
raw data and after PURE-LET de-noising or classical
filtering (Fig. 5 b). PURE-LET de-noising revealed
successes of synaptic transmission that would otherwise
be deemed failures, but also a failure that would have
been classified as success. Thus, PURE-LET de-noising
enhances EPSCaT signal detection in dendritic spines re-
corded under physiological conditions. The PBNR classifier
produced comparative results among the data processed by
classical filtering methods but there were discrepancies in
the classification of small amplitude signals. Given the
results from the classification of synthetic signals (Fig. 4),
we therefore conclude that PURE-LET de-noising pro-
vides better discrimination between EPSCaT failures and
successes than classical filtering methods.
DISCUSSION

Transient changes in cytosolic Ca2þ concentration at
neuronal spines provide signals that translate activity at
glutamatergic synapses into sustained changes in synaptic
function, with ultimate impact on learning and behavior
(44). These signals are generated by Ca2þ influx through
neurotransmitter- and voltage-operated membrane conduc-
tances, and amplified by Ca2þ release from intracellular
stores. Understanding the precise contribution of these
mechanisms has wide-ranging implications from drug
discovery to understanding functional aspects of brain
disease, and relies firmly on the accurate characterization



FIGURE 5 Discrimination of failures in experimental data. (a) Distributions of the peak/base norm ratio calculated for 60 sweeps of experimental data

before and after de-noising, or filtering. The density estimates together with their fits with three Gaussians (failures plus two success groups) are also shown.

(b) Examples of traces before and after de-noising or filtering. Scale bars: 10% DF/A (vertical), 0.5 s (horizontal).
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of spinous Ca2þ signals detected under physiological
conditions.

Fluorescence microscopy imaging is currently the single
technology available to record Ca2þ transients on the time-
scale of synaptic events and with the spatial resolution
commensurate with spine size. Ideally, EPSCaTs that vary
widely in response strength should be straightforward to
detect and distinguish from failures in triggering a Ca2þ

transient. In practice, this is hard to achieve because of the
level of measurement noise associated with low-intensity
fluorescence signals. Particularly when stimuli are delivered
via local axonal fibers, small amplitude Ca2þ transients
are likely to escape detection. In addition to measurement
noise, analysis of Ca2þ transients is compounded by spec-
imen-dependent noise such as autofluorescence, photo-
bleaching, or drift in live specimens, which falls beyond
the scope of this article.

Traditionally, the amplitude of individual EPSCaTs is
estimated after local averaging either by taking the mean
of the signal where a peak is expected, or by low-pass
Biophysical Journal 104(5) 1006–1017
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filtering the signal with an arbitrary moving average window
(6,24,26). In contrast, estimation of EPSCaT kinetics by
fitting with known models requires time-averaging of
repeated trials to enhance the SNR of the recorded signals.
After time-averaging, the associated noise is attenuated and
approaches a normal distribution, favorable to least-squares
regression. However, repeated trials increase the risk of
photodamage and photobleaching, and due to uncertainties
in failure detection may not accurately characterize the
Ca2þ response of a spine.

To obtain better EPSCaT estimates from individual
recordings, we implemented a de-noising algorithm for fluo-
rescence microscopy images based on wavelet transform
(PURE-LET) (33). The wavelet transform, implemented
as a collection of filters with bandwidths spanning the
frequency spectrum of the signal, produces a set of coeffi-
cients that emphasize local signal features at multiple reso-
lution levels and decorrelates them from noise (30,45).
Signals are cleaned up by minimizing wavelet transform
coefficients not associated with signal features, by mathe-
matically exploiting the assumption that noise is a stochastic
process occurring throughout the data. For nonstationary
aperiodic signals such as the EPSCaTs, this is an advantage
over classical low-pass filters where the cutoff frequency
and roll-off spectral properties are hard to optimize due to
high temporal and spatial variations in signal intensity.
In contrast to other wavelet de-noising algorithms (reviewed
in Luisier et al. (33) and Besbeas et al. (36)), the PURE-LET
is designed to yield an optimal signal estimate (measured
by mean-squared error) while treating the signal in a non-
Bayesian (i.e., deterministic) framework. One important
consequence is that the algorithm is more effective on large
data sets, such as two-dimensional fluorescence images.

To test the performance of the algorithm, it was essential
to work on synthetic data that closely reproduced experi-
mental recordings degraded by noise levels comparable to
real life. Most fluorescence image processing algorithms
assume a simple noise model that obeys the Poisson distri-
bution. We found that the noise model proposed by Luisier
et al. (33) gives a good description of the measurement noise
in our data.

An ideal signal processing algorithm would both enhance
pSNR and facilitate the estimation of latent signal parame-
ters by model fitting with more confidence and less
distortion. Although PURE-LET de-noising distorts fast
fluorescence changes, a ~30-dB gain in pSNR compared to
~16 dB for the next best classical filter (binomial) argues
strongly that PURE-LET is ideally suited for accurate detec-
tion of peak amplitudes in optical quantal analysis. Tests on
synthetic fluorescence data showed that PURE-LET had an
optimal performance with respect to the increase in pSNR,
goodness-of-fit, and the bias in estimated signal parameters,
across a range of input pSNRs (Fig. 3, and see Fig. S3 and
Fig. S4). By comparison, classical low-pass filtering required
an extensive optimization with respect to a noise level
Biophysical Journal 104(5) 1006–1017
unknown for real-life data. This optimization involves trade-
offs among the distortion of various estimated signal param-
eters and the confidence of the estimation. Notably, fitting
data filtered with small kernels produced smaller amplitude
and decay time bias, but larger rise-time bias compared to
fitting the unprocessed data. Also, filters that yield a higher
pSNR gain and facilitate a more reliable model fitting also
introduce a stronger discrepancy between the smoothed
data and the true signal. We found that PURE-LET outper-
formed optimal low-pass filters found by compounding all
measures of performance into one global FOM score.

The ability of PURE-LET de-noising to give a more
precise estimate of individual signals buried in noise
suggests that the algorithm could be used to predict with
better accuracy when an EPSCaT has failed to occur in
response to a stimulus. As expected, successful responses
were easier to detect in PURE-LET de-noised simulated
data, compared to raw simulated data (Fig. 4). Binary
predictive analysis showed that, in contrast to PURE-LET,
binomial or moving average filters that were found to be
optimal in terms of the FOM, appeared more prone to
misclassify successful trials (Table 2). This performance
was paralleled on experimental data (Fig. 5) where discrep-
ancies in failure discrimination on low amplitude signals
became apparent between PURE-LET and classical
filtering. We believe this adds to the level of uncertainty
associated with classical filter optimization.

We conclude that using the PURE-LET de-noising algo-
rithm improves the detection rate of small Ca2þ responses.
The important benefit to the study of Ca2þ signals in
dendritic spines is that it reduces the need for trial repetition,
thereby reducing the risk of photodamage associated with
the imaging process.
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