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A B S T R A C T

Although electroconvulsive therapy (ECT) is a widely used and effective treatment for refractory depression, the
neural underpinnings of its therapeutic effects remain poorly understood. To address this issue, here, we focused
on a core cognitive deficit associated with depression, which tends to be reliably ameliorated through ECT,
specifically, the ability to learn visuospatial information. Thus, we pursued three goals. First, we tested whether
ECT can “normalize” the functional brain organization patterns associated with visuospatial memory and
whether such corrections would predict post-ECT improvements in learning visuospatial information. Second,
we investigated whether, among healthy individuals, stronger expression of the neural pattern, susceptible to
adjustments through ECT, would predict reduced incidence of depression-relevant cognition and affect. Third,
we sought to quantify the heritability of the ECT-correctable neural profile. Thus, in a task fMRI study with a
clinical and a healthy comparison sample, we characterized two functional connectome patterns: one that ty-
pifies trait depression (i.e., differentiates patients from healthy individuals) and another that is susceptible to
“normalization” through ECT. Both before and after ECT, greater expression of the trait depression neural profile
was associated with more frequent repetitive thinking about past personal events (affective persistence), a
hallmark of depressogenic cognition. Complementarily, post-treatment, stronger expression of the ECT-corrected
neural profile was linked to improvements in visuospatial learning, a mental ability which is markedly impaired
in depression. Subsequently, using data from the Human Connectome Project (HCP) (N=333), we demon-
strated that the functional brain organization of healthy participants with greater levels of subclinical depression
and higher incidence of its associated cognitive deficits (affective persistence, impaired learning) shows greater
similarity to the trait depression neural profile and reduced similarity to the ECT-correctable neural profile, as
identified in the patient sample. These results tended to be specific to learning-relevant task contexts (working
memory, perceptual relational processing). Genetic analyses based on HCP twin data (N=128 pairs) suggested
that, among healthy individuals, a functional brain organization similar to the one normalized by ECT in the
patient sample is endogenous to cognitive contexts that require visuospatial processing that extends beyond the
here-and-now. Broadly, the present findings supported our hypothesis that some of the therapeutic effects of ECT
may be due to its correcting the expression of a naturally occurring pattern of functional brain organization that
facilitates integration of internal and external cognition beyond the immediate present. Given their substantial
susceptibility to both genetic and environmental effects, such mechanisms may be useful both for identifying at
risk individuals and for monitoring progress of interventions targeting mood-related pathology.

Electroconvulsive therapy (ECT) is a widely used and effective treatment for refractory depression, whose therapeutic effects have
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been linked to seizure-induced systems-level reorganization of func-
tional neural connections (Farzan et al., 2017; Husain et al., 2004;
Semkovska and McLoughlin, 2010). Nonetheless, the specific brain
substrates underlying its beneficial effects remain to be elucidated (but
see Dukart et al., 2014). To address this question, here, we focused on a
core cognitive deficit associated with depression, which tends to be
reliably ameliorated through ECT, specifically, the ability to learn vi-
suospatial information (Mohn and Rund, 2016; Semkovska and
McLoughlin, 2010). Our goal was two-fold. First, we sought to shed
light on whether ECT has a unique positive effect on the brain archi-
tecture associated with visuospatial memory, which, in turn, predicts
post-ECT behavioral improvements in visuospatial learning. Second, we
intended to elucidate whether, in the healthy population, the afore-
mentioned neural profile, susceptible to ECT-induced “corrections”,
would predict reduced incidence of depression-related mentation and
affect. This line of investigation could further our understanding of the
neurocognitive markers of depression vulnerability, as well as point to
viable intervention targets for at-risk individuals.

To test these hypotheses, we leveraged pre−/post-treatment fMRI
data from a sample of patients with severe depression who underwent
ECT. Our analyses focused on a cued episodic autobiographical memory
task, in which participants were specifically asked to visualize past
personal events (i.e., the people, objects and spatial layout associated
with each cued event). This was contrasted to a simple number judg-
ment task that relies on non-episodic and, most likely, non-visual pro-
cesses. Our primary goal was to elucidate whether ECT would uniquely
“correct” the patients' functional brain architecture in the auto-
biographical memory condition (i.e., make the patients' functional ar-
chitecture more similar to that of controls in this task).
Autobiographical memory recall draws heavily on visual processing
resources (e.g., Daselaar et al., 2008; Greenberg et al., 2005; Vannucci
et al., 2016) and our task specifically required participants to access the
visuospatial details of the cued episodes. Consequently, we reasoned
that patients' stronger expression of the “corrected” brain profile, spe-
cific to the autobiographical memory task, would predict improvements
in how they process (i.e., perceive and subsequently remember) vi-
suospatial information. To test this hypothesis, we focused on a task
that assesses learning for visuospatial information acquired post-ECT
because access to information acquired pre-ECT is generally impaired
(i.e., retrograde amnesia, cf. Sackeim, 2014; Semkovska and
McLoughlin, 2014). This is assumed to occur because ECT accelerates
neurogenesis and the ensuing systems level functional reorganization
disrupts access to previously acquired memories (Farzan et al., 2017;
Frankland and Josselyn, 2016). Our secondary goal was to characterize
the neural profile associated with trait depression, specifically, the one
that differentiates patients from healthy comparison individuals, both
before and after ECT.

We then tested whether, among unrelated healthy young adults
from the Human Connectome Project (HCP), variations in subclinical
depression could be predicted from how similar an individual's func-
tional brain organization was to the neural profile associated with trait
depression versus the neural profile, susceptible to “correction” through
ECT, as identified in the patient data. Functional brain organization in
the HCP sample was characterized during eight task conditions (Barch
et al., 2013). Our hypotheses focused on the four task conditions (i.e.,
online maintenance versus updating of mental representations, static
versus dynamic relational processing) that assess mental processes re-
levant to visuospatial learning and episodic autobiographical memory,
particularly as tested in the ECT sample (i.e., by emphasizing visuali-
zation; see Palombo, Sheldon, & Levine, 2018, for the unique role of
visualization in episodic autobiographical memory, in general). Of
these, two were derived from a working memory task and focused on
processes relevant to online maintenance of mental representations,
whereas the other two focused on perceptual relational processing (i.e.,
static versus dynamic). The remaining four task conditions were only
introduced to test the contextual specificity of our observed brain-

behavior relationships, given recent evidence of substantial cross-task
overlap in functional brain architecture (Gratton et al., 2018). Finally,
we employed a sample of identical versus fraternal twins from HCP to
quantify the relative contribution of genetic versus environmental fac-
tors to the similarity between an individual's functional brain organi-
zation during the aforementioned mnemonically relevant task condi-
tions (i.e., online maintenance versus perceptual relational processing)
and the neural profiles identified in the patient data.

As noted above, we probed the ability to encode and mentally
manipulate visual information, a key depressogenic deficit (Baune
et al., 2014; Zakzanis et al., 1998). This cognitive facet constituted a
primary outcome in the ECT sample in which it was assessed with a
visuospatial learning task. In the HCP sample, encoding and mental
manipulation of visual information was assessed with a list sorting task.

The second cognitive aspect scrutinized was the predisposition to-
wards thinking repetitively about prior personal episodes, presumably
indicative of a broader tendency to “latch on” to affectively laden self-
relevant information (Watkins and Nolen-Hoeksema, 2014; Whitmer
and Gotlib, 2013). In the ECT sample, this aspect was operationalized as
the self-reported frequency of thinking about past personal episodes. In
the HCP sample, it was operationalized as valuation of delayed rewards,
a proxy for the affective persistence of motivationally relevant stimuli.
The positive conceptualization of this depressogenic cognitive tendency
dovetails prior evidence linking it to better focus on goal-relevant in-
formation among non-depressed individuals (Whitmer and Gotlib,
2013).

The present report is organized as follows. Part 1 focuses on the ECT
sample and details the identification and behavioral relevance of the
functional brain organization patterns linked to trait depression versus
those that are “corrected” by ECT. Part 2 focuses on a sample of un-
related individuals from the HCP (HCP Sample 1) with the goal of de-
termining whether the functional brain organization patterns, identi-
fied in Part 1, can be used to predict subclinical variations in depression
and its associated cognitive deficits. Part 3 focuses on a sample of
identical and fraternal twins from the HCP (HCP Sample 2) in order to
establish the heritability of the functional brain organization patterns
described in Part 1.

Across all samples herein scrutinized, whole brain functional orga-
nization for each participant within each task context (i.e., episodic
memory versus number judgment in the ECT sample; cognitive versus
social-affective context in the HCP samples) was estimated with graph
theoretical tools. In Part 1, we identified differences in whole brain
functional organization between task contexts, as well as between de-
pressed patients and comparison participants by employing partial least
squares analysis (PLS), a powerful multivariate technique, sensitive
enough to use with sample sizes even smaller than ours (cf. McIntosh
and Lobaugh, 2004), which can detect in an unconstrained, data-driven
manner patterns of functional brain organization which differ as a
function of experimental conditions and/or groups. In Parts 2 and 3, the
similarity between each individual's functional brain organization in
each task context and the trait depression versus the ECT-correctable
neural profile was quantified by using the PLS weights corresponding to
each of these two brain patterns, as identified in Part 1. In Part 2, we
used canonical correlation analysis to determine whether similarity
between an individual's functional brain organization and the trait
depression versus the ECT-correctable neural profile predicts his or her
level of subclinical depression and associated cognitive deficits (im-
paired learning, affective persistence). In Part 3, we employed struc-
tural equation modelling to quantify genetic versus environmental
contributions to the similarity between an individual's functional brain
organization and the trait depression versus the ECT-correctable neural
profile, as identified in Part 1.
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1. Part 1: ECT sample

1.1. Method

1.1.1. Participants
Ten healthy, right-handed controls (33.10 ± 8.02 years old;

15.50 ± 2.99 years of education; four men) and fifteen severely de-
pressed patients (47.13 ± 13.26 years old; 14.97 ± 3.43 years of
education; four men; one left-handed), referred for electroconvulsive
therapy (ECT), participated in the study. The controls were part of the
Rotman Research Institute participant pool. The patients were recruited
from psychiatric clinics affiliated with the University of Toronto. All
participants were screened for a history of severe neurological condi-
tions, as well as for physical conditions or bodily implants that may
render their participation unsafe. Participants provided informed con-
sent in accordance with the research ethics board at the Rotman
Research Institute.

For the controls, lack of a psychiatric diagnosis was confirmed by
administering the Structured Clinical Interview for the Diagnostic and
Statistical Manual of Mental Disorders, 4th edition (SCID; First, Spitzer,
Williams, & Gibbon, 1995). For the patients, clinical diagnosis was
made by the treating psychiatrist who recommended the ECT and
confirmed with the SCID. Both before and after ECT, all patients were
on a medication schedule consonant with their diagnosis (see Table 1).
Twelve patients had a diagnosis of major depressive disorder, two had a
diagnosis of bipolar I disorder and one had a diagnosis of schizoaffec-
tive disorder with depression. Tables 1 and S1 contain a full description
of the demographic and clinical characteristics of the ECT sample.

1.1.1.1. Core patient sample. To increase the reliability of the identified
functional connectivity patterns, the analyses aimed at differentiating
the autobiographical memory from the general task architecture in
patients versus controls included only the ten patients who complied
with the study demands (see Tables 1 and S1 for the demographic and

clinical characteristics of this subsample). Specifically, these ten
patients (1) completed all four functional runs; (2) demonstrated
good understanding of the two in-scanner tasks and (3) generated at
least 29 of the 40 requested events, evenly spread out across the four
time periods under scrutiny (see below for details). This filtering was
done in order to ensure that any differences between patients and
controls reflect differences in how the two groups perform the same
tasks, rather than the fact that the two groups perform somewhat
different tasks due to lack of understanding and/or compliance. All ten
patients from the core sample had a diagnosis of major depressive
disorder, making it a fairly homogenous sample. Data from all fifteen
patients were entered in the brain-behavior analyses involving
neuropsychological test performance and affective/motivational
persistence of the recalled autobiographical events (see Method below
for details).

1.1.2. Procedure
1.1.2.1. ECT. ECT was administered with a spECTrum 5000Q device
(MECTA Corporation) according to standards of practice (Sackeim
et al., 2008). Treatment sessions occurred twice or three times per
week and were continued until depressive symptoms were in remission
or improvement had plateaued. Information on ECT type (right
unilateral/bilateral) and number of sessions is included in Tables 1
and S1. Because number of ECT treatments was determined by ongoing
clinical evaluation, it varied across patients (cf. Farzan et al., 2017).
Nonetheless, we verified that number of ECT treatments was not
significantly related to any of the cognitive or brain variables herein
scrutinized (all ps > .27).

Seizure threshold was individually determined by the administra-
tion of repeated stimuli of increasing intensity until a generalized sei-
zure occurred. Stimulus intensity was generally set at 5 times the sei-
zure threshold for unilateral ECT and 3 times the seizure threshold for
bilateral ECT. The intensity was further elevated if there was an absence
of seizures or their intensity was clinically judged inadequate.

Table 1
Demographic and clinical characteristics of the patient and control ECT sample.

Patients
(N=15)

Patientsmain

(N=10)
Controls
(N=10)

Age (yrs) 47.13 ± 13.26 44.30 ± 12.41⁎ 33.10 ± 8.02
Education (yrs) 14.97 ± 3.43 14.80 ± 3.58 15.50 ± 2.99
Sex (men/women) 4/11 3/7 4/6
Session 1-ECT start (days) 6.36 ± 5.76 7.56 ± 6.48 N/A
Session 1-Session 2 (days) 121.27 ± 49.23⁎⁎⁎ 112.80 ± 53.86⁎ 61.00 ± 17.23
ECT end-Session 2 (days) 69.21 ± 40.11 63.56 ± 46.90 N/A
Time since diagnosis (yrs) 12.30 ± 9.08 12.35 ± 9.23 N/A
Number of ECT treatments 11.93 ± 6.23 11.50 ± 6.36 N/A
Number of bilateral ECT treatments 7.57 ± 5.26 7.67 ± 5.45 N/A
Number of unilateral ECT treatments 5.00 ± 4.92 4.78 ± 4.15 N/A
Antidepressants (% patients) 93 100 N/A
Mood stabilizers (% patients) 36 33 N/A
Atypical antipsychotics (% patients) 36 22 N/A
Benzodiazepines (% patients) 57 67 N/A
BDI Score-Session 1 36.47 ± 9.22a 35.40 ± 11.14a N/A
BDI Score-Session 2 27.80 ± 11.74b 24.30 ± 12.54b N/A
BVMT-R -Session 1 24.93 ± 6.22 27.00 ± 4.81 N/A
BVMT-R -Session 2 23.13 ± 7.76 26.80 ± 6.37 N/A
Events-last week 8.40 ± 2.10⁎ 8.90 ± 1.91 10
Events-last month 8.27 ± 1.91⁎⁎ 8.70 ± 1.70⁎ 10
Events-last year 8.67 ± 1.96⁎ 9.50 ± 1.27 10
Events-last decade 8.27 ± 2.71⁎ 9.50 ± .97 10

Note. Patients were on the same medication type both before and after ECT. Different subscripts (a/b) indicate statistically significant differences between Session 1
and Session 2 scores, as revealed by paired-samples t-tests for a p-value < .05.

⁎ Patients differed from controls at p < .05.
⁎⁎ Patients differed from controls at p < .01.
⁎⁎⁎ Patients differed from controls at p < .001. Patientsmain constituted the group of 10 patients included in the multivariate analyses aimed at differentiating the

autobiographical memory from the general task architecture in patients versus controls at Time 1 (pre-ECT for patients) versus Time 2 (post-ECT for patients).
BDI=Beck Depression Inventory. BVMT-R=Brief Visuospatial Memory Test–Revised.
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Methohexital, penthotal, thiopental or thiopentone was administered
for sedation and succinylcholine as neuromuscular blocker.

1.1.2.2. fMRI study. A few days prior to their first fMRI appointment,
participants generated a list of autobiographical events (see below for
details). Subsequently, the entire sample took part in two fMRI sessions,
approximately four months apart (see Table 1 for details). For the
patients, the first appointment preceded the start of their ECT
treatment, whereas the second appointment took place approximately
two months after their last ECT session (see Table 1). On both
occasions, participants completed a series of out-of-scanner and in-
scanner tasks, as described below.

1.1.3. Cognitive-affective measures (out-of-scanner)
1.1.3.1. Autobiographical memory

1.1.3.1.1. Event identification. Prior to their first fMRI appointment,
participants dated and gave titles to 40 autobiographical events, 10
from each of the following time periods: the last week (14 days,
excluding the last 2 days); the last month (3–7weeks); the last year
(6–18months) and the last 10 years (5–10 years) (see Table 1 for a
comparison between controls and patients with respect to the number
of events generated for each period). Time periods were presented as
ranges to allow for sufficient events to be generated across all
participants. Participants were instructed to provide events that were
specific to a single space and took no longer than a day to unfold. To
maximize comparability of recall during the first versus the second
fMRI appointment, participants were instructed to identify events that
comprised two distinguishable episodes and provide a title for each
constituent episode (e.g., “My daughter's wedding”, Part 1: “Wedding
ceremony”, Part 2: “Wedding reception”). Thus, for each event, one
component was cued during the first fMRI appointment, whereas the
second component was cued during the second fMRI appointment.

1.1.3.1.2. Event ratings: affective persistence. After their first
scanning session, participants used a six-point scale to rate each event
on five control dimensions: visualization, emotional valence, emotional
change at the time of the event, importance at the time the event
occurred and present day importance of the event. Our dimension of
interest, frequency of thinking or talking about the event, which we
regarded as a proxy for its affective persistence, was measured on a 12-
point scale, ranging from 0 (never) to 11 (constantly).

1.1.3.2. Visuospatial leaning. Before and after ECT, visuospatial
learning was assessed with the Brief Visuospatial Memory
Test–Revised (BVMT-R, Benedict, 1997). Alternate forms were
administered to minimize practice effects. A change score in
visuospatial learning from before to after ECT was computed by
regressing the post-ECT BVMT total score onto the corresponding pre-
ECT score. At the whole-group level, a paired samples t-test revealed no
statistically significant changes in visuospatial learning, t(14)= 1.102,
p= .289, although there was a statistically significant reduction in BDI
scores, t(14)= 2.894, p= .012 (see Table 1).

The BVMT-R was part of a comprehensive test battery, which also
gauged verbal learning (Hopkins Verbal Learning Test–Revised,
Benedict et al., 1998) and speeded attention/information processing
(Trail Making Test, Parts A and B, Army Individual Test Battery, the
Symbol Digit Modalities Test, Smith, 1982, and verbal fluency).
Nonetheless, because our hypotheses focused on visuospatial learning,
for which, in the context of the present fMRI test paradigm, we ex-
pected the strongest effects, these additional tasks are not discussed in
the present report. None of these additional measures showed statisti-
cally significant associations with any of the functional brain organi-
zation patterns herein documented (all ps > .20).

1.1.4. fMRI tasks
Both fMRI sessions comprised four functional runs. Each run lasted

~11min and contained 10 autobiographical memory and 10 odd/even

number judgment trials (cf. Söderlund et al., 2012). For the auto-
biographical memory task, within each run, two of the scrutinized time
periods were featured with two events each, whereas the remaining
periods were featured with three events each. For each participant,
within each run, the presentation order of the two tasks and of the time
periods for the autobiographical memory trials was randomized. Prior
to testing, participants practiced both tasks outside the scanner.

1.1.4.1. Autobiographical memory. A trial began with a 1 s fixation,
followed by a 4 s cue identifying the upcoming task (“Autobiographical
memory”). Subsequently, participants saw one of their
autobiographical memory titles for 18 s. During this period, they were
asked to re-experience the event as vividly as possible, trying to recall
associated thoughts, feelings and visual images. Next, participants were
allowed 8 s to rate the degree to which they re-experienced the event.
Ratings were made on an 8-point scale via fMRI-compatible response
boxes.

1.1.4.2. Odd/even number judgment. A trial began with a 1 s fixation,
followed by a 4 s cue identifying the upcoming task (“Odd/Even?”).
Next, participants saw 9 numbers, presented one at a time for 1900ms,
each followed by a 100ms interstimulus interval. They had to decide
whether each number was odd or even without making an overt
response. After the presentation of the last number in the trial,
participants were allowed 8 s to rate on an 8-point scale the amount
of re-experiencing of any past personal events. This rating was intended
as a control for the degree to which participants did not focus on the
task at hand, but instead allowed their minds to wander off to
personally relevant information.

1.1.5. fMRI data acquisition
Images were acquired with a 3.0 T (Siemens Magnetom Trio Tim,

Numaris/4Syngo MR B13; Siemens, Germany) with a 12-channel bird-
cage head coil. T1-weighted anatomical scans were acquired with a MP-
RAGE sequence (TR=2000ms, TE= 2.63ms, FOV=256mm,
256× 256 matrix, 176 coronal slices of 1mm isotropic voxels, per-
pendicular to the hippocampus). The high-resolution structural scan
preceded the acquisition of functional scans.

Functional images were acquired over four runs with a single-shot
T2-weighted pulse with spiral in/out (TR=2000ms, TE=30ms, flip
angle= 70°, FOV=200mm, 64×64 matrix, 32 coronal slices, per-
pendicular to the hippocampus, of 3.1× 3.1 mm in-plane resolution,
5mm thick, no gap). To allow magnetization to reach equilibrium, the
presentation of the task stimuli, described above, was delayed by 20 s
from the start of each functional run. Details on the duration of each
task condition, used in the connectivity analyses, are included in the
section on fMRI data analysis.

1.1.6. fMRI data Preprocessing
We performed image processing in SPM12 (Wellcome Department

of Imaging Neuroscience, London, UK). Specifically, we corrected for
slice timing differences and rigid body motion (which included un-
warping), spatially normalized the images to the standard Montreal
Neurological Institute (MNI)-152 template, and smoothed them (full-
width half-maximum, 6mm).

Because motion can significantly impact functional connectivity
measures (Power et al., 2012; Van Dijk et al., 2012), we implemented
several additional preprocessing steps to address this potential con-
found. First, after extracting the BOLD time series from our regions-of-
interest (ROIs, see below), but prior to computing the ROI-to-ROI cor-
relations, we used the Denoising step in the CONN toolbox (version 17c;
Whitfield-Gabrieli and Nieto-Castanon, 2012) to apply further physio-
logical and rigid motion corrections. Specifically, linear regression was
used to remove from the BOLD time series of each ROI the BOLD time
series of the voxels within the MNI-152 white matter and CSF masks,
respectively (i.e., the default CONN option of five CompCor-extracted
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principal components for each, Behzadi, Restom, Liau, & Liu, 2007), a
method for removing both physiological (e.g., breathing, pulse-related)
and rigid motion effects, which is, at least as effective as those based on
actual respiration and pulse measures (e.g., retroicor) (Behzadi et al.,
2007). To further minimize the potential influence of motion-related
artifacts, we also regressed from the BOLD time series of each ROI the 6
realignment parameters, their first-order temporal derivatives and their
associated quadratic terms (24 regressors in total, cf. Bolt et al., 2017).
Our goal was to isolate task-related functional coupling from mere co-
activation effects corresponding to the beginning and end of a task
event (i.e., two regions that are both activated at the beginning of a task
event and de-activated at the end of a task, although they do not
“communicate” with one another throughout the task event). Conse-
quently, the initial and final scans within each 18 s task event were de-
weighted by applying to the BOLD timeseries of each ROI a regressor,
obtained by convolving a boxcar task design function with the hemo-
dynamic response function, and its first temporal order derivative (cf.
Braun et al., 2015; Vatansever et al., 2015; Westphal et al., 2017;
Whitfield-Gabrieli and Nieto-Castanon, 2012). The residual BOLD time
series were bandpass filtered (0.008 Hz < f < 0.09 Hz), linearly de-
trended and despiked (all three are default CONN denoising steps).
Following these corrections (which did not include global signal re-
gression), an inspection of each subject's histogram of voxel-to-voxel
connectivity values across all scrutinized task conditions revealed a
normal distribution, approximately centered around zero, which would
suggest reduced contamination from physiological and motion-related
confounds (cf. Whitfield-Gabrieli and Nieto-Castanon, 2012). We
compared these histograms with those obtained after applying global
signal regression instead of CompCor. As can be seen in Fig. S1,
CompCor was more effective at removing physiological and motion-
related confounds (i.e., the relevant histograms showed less biased
distributions). We assume that this is because signal from the CSF and
WM captures most noise-related variance and CompCor regresses out
five components from each. In contrast, through global signal regres-
sion only one WM and one CSF component are regressed out, in addi-
tion to the global signal from gray matter, which, at least in this case,
does not seem to make a substantial contribution to artifact removal.

1.1.7. fMRI data analysis
1.1.7.1. ROI time series. 229 nodes for 10 networks (i.e., default
[DMN], frontoparietal [FPC], cingulo-opercular [CON], salience
[SAL], dorsal attention [DAN], ventral attention [VAN], somatomotor
[SM], subcortical [SUB], auditory [AUD] and visual [VIS]) were
defined for each participant as spherical ROIs (radius 5mm) centered
on the coordinates of the regions reported in Power et al. (2011) and
assigned network labels corresponding to the graph analyses from this
earlier article. The ROIs were created in FSL (Smith et al., 2004), using
its standard 2mm isotropic space, with each ROI containing 81 voxels.
These template space dimensions were selected because they yielded
the most adequate spatial representation of the Power atlas. The 229
ROIs represent a subset of the 264 putative functional areas proposed
by Power et al. (2011). The 229 ROIs were selected because, based on
Power et al.'s analyses, they showed relatively unambiguous
membership to one of the ten functional networks outlined above.

1.1.7.2. ROI-to-ROI connectivity analyses. For each patient and control
participant, we used the CONN toolbox to compute pairwise bivariate
correlations among all 229 ROIs during each of the ten task conditions
(i.e., four time periods for the autobiographical memory task and one
odd/even number judgment condition for each of the two scanning
sessions). The patients' versus controls' neural profiles specific to each
time period will be described elsewhere. The goal of the present report
is to characterize the unique features that distinguish the functional
architecture supporting episodic autobiographical memory from a non-
episodic generic task (i.e., number judgment) architecture among
severely depressed patients versus healthy controls. Consequently, to

identify for each individual, at each of the two time points, the
functional brain organization underlying mental travel to a specific
past event, irrespective of its remoteness, we averaged the four
correlation matrices corresponding to the four autobiographical
memory periods under scrutiny (one week, one month, one year and
ten years). Thus, for each of the two scrutinized tasks (i.e.,
autobiographical memory vs. number judgment), 360 TRs (720 s)
went into the construction of the associated correlation matrices. For
patients who generated fewer than the required 40 events (see Table 1),
the same number of TRs were dropped from their number judgment
condition in order to ensure that any differences in functional brain
organization between conditions are not due to duration. For all
analyses, the pairwise correlations among all the ROIs were expressed
as Fisher's z-scores.

Consistent with existing practices aimed at maximizing interpret-
ability of results in neural network studies of individual or group dif-
ferences (e.g., sex or age, Betzel et al., 2014; Satterthwaite et al., 2015),
we used both positive and negative z-scores to compute the indices of
interest for all connectivity analyses. We reasoned that such an ap-
proach would be particularly well-justified in our present case since
global signal regression, an artifact removal technique that yields ne-
gative connectivity values, whose interpretation is still controversial,
was not part of our preprocessing pipeline (for further discussion on the
validity of the negative correlations obtained with the CONN toolbox,
see Whitfield-Gabrieli and Nieto-Castanon, 2012).

1.1.7.3. Whole-brain functional organization. For each participant,
within each task condition (episodic memory-time 1, number
judgment-time 1, episodic memory-time 2, number judgment-time 2),
we estimated whole-brain functional organization by employing a
Louvain community detection algorithm implemented in the Brain
Connectivity Toolbox (BCT, Rubinov and Sporns, 2010). This algorithm
partitions a network into non-overlapping groups of nodes with the goal
of maximizing an objective modularity Q function (Rubinov and
Sporns, 2011; Betzel and Bassett, 2017). For each ROI entered in an
analysis, the algorithm identifies a community (i.e., group of other
ROIs) with which it is affiliated during the scrutinized task condition.
For signed networks, such as the ones investigated in our study,
optimization of the Q function can be achieved by either placing
equal weight on maximizing positive within-module connections and
minimizing negative within-module connections or by putting a
premium on maximizing positive connections, which have been
argued to be of greater biological significance (Rubinov and Sporns,
2011). Although we verified that all the reported results emerge with
either formula, for the sake of simplicity and because we agree with
their argument regarding the greater importance of positive weights in
determining node grouping into communities, we report here the
results based on Rubinov and Sporns's modularity formula (cf. Chen
et al., 2016). In this formula, the contribution of positive weights to Q is
not affected by the presence of negative weights in the network,
whereas the contribution of negative weights to Q decreases with an
increase in positive weights. The adapted modularity function Q⁎,
proposed by Rubinov and Sporns (2011) is written as

∑ ∑= − −
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+

+ +
+ −

− −Q
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v v

γe δ1 ( ) 1 (w ) .
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ij ij M M
ij
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where δMiMj= 1 if nodes i and j are in the same module and δMiMj= 0
otherwise; v+ and v− constitute the sum of all positive (w+) and all
negative (w−) weights in the network, respectively; w±

ij represent the
actual within-module positive or negative connection weights with w±

∈(0,1]; γ is a resolution parameter determining the size of the
identified modules; e±

ij is the within-module connection strength
expected by chance and defined, for each node-to-node (i,j)
connection as e±

ij =
± ±

±

s s
v

i j , with s±i and s±j being the sum of all
positive or all negative connection weights of node i and j, respectively,
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while v± is the sum of all positive or all negative connection weights in
the network.

The value of the resolution parameter γ determines the size of the
communities identified with a Louvain community detection algorithm
and, as such, it may affect estimates of community structure. Because
we did not have any specific hypotheses regarding community size, we
followed extant practices in the literature and computed all the relevant
network metrics for three values of the spatial resolution parameter
centered around 1 (γ values of 1.00, 0.95 and 1.05, cf. Braun et al.,
2015). All the steps described below for computing agreement matrices
were implemented separately for each value of the γ resolution para-
meter.

It has been shown that the modularity function Q (in its various
forms) may show extreme degeneracy, which means that the maximal
modularity partition is “hidden” among a relatively large number of
“near-perfect”modularity partitions, which are nonetheless structurally
dissimilar from one another (Good, de Montjoye, & Clauset, 2010). In
order to address the fact that the optimization landscape is character-
ized by the existence of this plateau of high modularity partitions, we
followed existing practices in the literature (cf. Braun et al., 2015; Chen
et al., 2016). Thus, the Louvain algorithm was initiated 100 times.

Following the 100 iterations of the community detection algorithm,
run in each of the four task conditions (episodic memory at time 1,
number judgment at time 1, episodic memory at time 2, number
judgment at time 2) and for each of the three gamma values, we ob-
tained, for each participant, twelve task-related matrices. Each of these
matrices contained each node's assignment to a community across the
100 whole-brain partitions. Subsequently, we used the BCT to compute
an agreement matrix for each participant in each of the four task con-
ditions and for each value of the gamma parameter. Each entry in this
matrix contains the number of times that a given ROI pair was assigned
to the same community across the 100 iterations of the modularity
algorithm in each task condition and for each value of the gamma
parameter. Using the BCT, each participant's agreement matrix was
rescaled, so that all matrix entries fell within the [0,1] interval. Hence,
each entry in this rescaled matrix reflected the probability that two
ROIs belonged to the same community.

Subsequently, based on the idea that core structural aspects of a
network are stable across variations of the estimation parameters (cf.
Betzel and Bassett, 2017), we averaged the three agreement matrices
corresponding to the three gamma values in order to obtain a prob-
abilistic representation of each participant's “true” community structure
within each task context at each of the two timepoints. In the four re-
sulting matrices, entries with higher values corresponded to those ROI
pairs that were more likely to be assigned to the same community
across the three gamma values in each task condition. In order to obtain
a probabilistic representation of community structure across individuals
as a function of task (the episodic memory versus the number judg-
ment) and group membership (patients versus controls), the partici-
pant-specific agreement matrices were entered into a task PLS analysis
(see below).

To confirm the validity of our results, we also ran all the reported
analyses for each individual value of the spatial resolution parameter
(i.e., 0.95, 1, 1.05). All the results described below were replicated.
Hence, for the reasons outlined above (i.e., identification of the true,
stable “core” of the autobiographical memory versus number judgment
task architectures) and for the sake of concision, all the reported ana-
lyses used the agreement matrices averaged across the three values of
the spatial resolution parameter herein scrutinized.

1.1.7.4. Brain-behavior analyses
1.1.7.4.1. Task-based partial least-squares correlation (task PLS). To

identify features of the brain's functional architecture that distinguish
between the two scrutinized task contexts (autobiographical memory
versus the number judgment) as a function of assessment time (time 1/
pre-ECT versus time 2/post-ECT) and group membership (patients

versus controls), we employed PLS (Krishnan et al., 2011), a
multivariate technique, powerful enough to be used with samples
even smaller than ours (McIntosh and Lobaugh, 2004), which can
identify in an unconstrained, data-driven manner, neural patterns (i.e.,
latent variables or LVs) related to different experimental conditions
(task PLS). In PLS, data decomposition is performed in one step, hence
eliminating the need for multiple comparison correction.

It has been argued that PLS can be regarded as a hybrid between
completely hypothesis-driven (e.g., univariate general linear models
[GLM]) and completely data-driven (e.g., independent components
analysis [ICA]) approaches (Lin et al., 2003). Indeed, unlike ICA, the
data decomposition is not performed across all possible dimensions, but
it is restricted to the identified experimental conditions and/or groups.
Nevertheless, PLS is also distinct from completely hypothesis-driven
approaches, which test a single hypothesized contrast across conditions
(i.e., univariate GLM). Instead, PLS identifies the most robust contrasts
in the data, provides an estimate of how much of the covariance in the
data each component accounts for and indicates the brain pattern that
tracks with the identified contrasts. Consequently, within the frame-
work of PLS, if a hypothesized contrast emerges as significant, it means
that it represents a robust way of distinguishing among the brain pat-
terns associated with different experimental conditions and/or groups.

PLS was run on graph theoretical estimates of ROI-to-ROI coupling,
rather than being run directly on Pearson's r correlations in ROI time
series. We opted to do so because the former reflects pairwise ROI-to-
ROI functional association strength (i.e., likelihood of two ROIs being
assigned to the same community), which takes into consideration in-
dividual-specific whole-brain functional organization. Specifically, the
aforementioned graph theoretical measures provide a means for placing
a specific ROI-to-ROI correlation coefficient in the context of the re-
maining ROI-to-ROI correlation coefficients, thereby ascribing it func-
tional significance with respect to the “breakdown” of the whole brain
into non-overlapping communities of ROIs for each individual partici-
pant. This “contextualization” is particularly important in light of re-
cent evidence of the unique information contained in individual-de-
fined whole brain functional architecture (Gordon et al., 2017).
Consequently, we reasoned that consistent cross-patient changes in
functional brain architecture, induced by ECT, would be more ade-
quately characterized if we applied PLS to indices of ROI-to-ROI func-
tional association strength, which took into consideration individual-
specific functional brain organization. We should though point out that
the PLS-identified neural patterns reported below also emerge, albeit
somewhat more weakly, when PLS is run on Pearson's r correlations in
ROI time series. The fact that the PLS-identified patterns are weaker
when PLS is run on coefficients of functional coupling which do not
take into consideration individual-specific functional architecture is not
surprising to us given aforementioned evidence of the unique in-
formation contained in individual-specific brain architecture (Gordon
et al., 2017).

PLS was implemented using a series of Matlab scripts, which are
available for download at https://www.rotman-baycrest.on.ca/index.
php?section=345. We conducted a sole task-PLS analysis in which we
entered patients' and controls' autobiographical memory and number
judgment data at both time points. In this analysis, one matrix corre-
sponded to the brain data, whereas the second matrix corresponded to
the task design data. The brain matrix contained each participant's
concatenated episodic memory and number judgment task agreement
matrices, at time 1 and time 2, respectively. The patients and the
controls were modeled as separate groups in all PLS analyses. Thus, the
design matrix contained a number of dummy coded variables corre-
sponding to each experimental condition within each group (e.g. the
patients' autobiographical memory condition at time 1). Based on these
matrices, PLS extracted pairs of LVs, specifically, one LV based on the
brain matrix and one LV based on the design matrix, with the constraint
that each pair of LVs shares the maximum amount of covariance pos-
sible. By introducing the patients' and controls' data from both time
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points in the same PLS analysis, we were able to test whether the pat-
terns identified by PLS as explaining the most variance in our data are
compatible with our hypothesis that ECT corrects the patients' brain
organization patterns in the autobiographical memory, specifically (i.e.,
renders the patients' brain organization patterns more similar to those
of controls in this condition). By introducing the two groups in the same
analysis, we were also able to test whether the patterns identified by
PLS as explaining the most variance in our data support the hypothesis
of a reliable brain organization profile linked to trait depression (i.e., a
neural profile that distinguishes patients from controls at both time
points).

In all the reported analyses, the significance of each LV was de-
termined using a permutation test with 5000 permutations (in the
permutation test, the rows of the brain data are randomly reordered,
Krishnan et al., 2011). In the case of our present analyses, PLS assigned
to each ROI-to-ROI pair a weight, which reflected the respective pair's
contribution to a specific LV. Here, a higher value positive weight
would characterize those ROI-to-ROI pairs whose assignment to the
same community would constitute a more salient feature of an identi-
fied functional brain organization pattern. Complementarily, a negative
weight higher in absolute value would characterize those ROI-to-ROI
pairs whose assignment to different communities would constitute a
more salient feature of an identified functional brain organization
pattern. The reliability of each pair's contribution to a particular LV was
tested by submitting all weights to a bootstrap estimation (1000 boot-
straps) of the standard errors (SEs, Efron, 1981) (the bootstrap samples
were obtained by sampling with replacement from the participants,
Krishnan et al., 2011). We opted to use 5000 permutations and 1000
bootstrap samples in order to increase the stability of the reported re-
sults, since these parameters are ten times greater than the standard
ones (i.e., 500 permutations/100 bootstrap samples), recommended by
McIntosh and Lobaugh (2004) for use in PLS analyses of neuroimaging
data. A bootstrap ratio (BSR) (weight/SE) of at least 4 in absolute value
(approximate associated p-value of .0001) was used as a threshold for
determining those ROI-to-ROI pairs that made a significant contribution
to the identified LVs. The BSR is analogous to a z-score, so an absolute
value>2 is thought to make a reliable contribution to the LV (Krishnan
et al., 2011), although for neuroimaging data BSR absolute values> 3
tend to be used (McIntosh and Lobaugh, 2004). Potential axis rotations
(i.e., changes in the order of the extracted LVs) and reflections (i.e.,
changes in the sign of the saliences), which may occur during resam-
pling with either permutations or bootstrapping, were corrected with a
Procrustes rotation, which defines a transformation through which the
resampled singular value decomposition outcome (i.e., the identified
LVs) is rotated to match most closely the original singular value de-
composition outcome (Milan & Whittaker, 1995).

Because decisions regarding thresholding (see BSR above) are
somewhat arbitrary, we present both the raw and thresholded brain
patterns. To facilitate network-level interpretations, we also include
graphical renditions of the identified LVs in which the contributions of
the individual connections are aggregated at the level of the entire
functional network (see Figs. 1b, d and 2b, d).

1.1.7.4.2. Task PLS LV scores: pre- to post-ECT change scores. The
PLS analysis described below identified two brain organization
patterns, one that distinguished patients from controls across both
task contexts and time points (i.e., the trait depression LV) and a second
LV which was specific to the autobiographical memory context and
susceptible to “normalization” through ECT. To estimate similarity
between the trait depression versus the ECT-correctable neural profile
and each patient's functional brain organization within each task
context at each time point, we used the weights associated with each
ROI-to-ROI pair in each of the two brain LVs to compute separate LV1
versus LV2 scores as weighted sums across all ROI-to-ROI pairs. An
individual's higher scores on LV1 or LV2 indicated greater similarity
between his or her functional brain organization and the trait
depression (LV1) or the ECT-corrected (LV2) neural profile.

At each of the two time points, a total LV 1 score in the auto-
biographical memory condition was created by averaging the corre-
sponding LV 1 scores at both time points. This score was relevant to our
hypothesis regarding the link between the trait depression neural pro-
file and affective persistence (i.e., ruminative tendencies), which we
expected to emerge in the autobiographical memory condition.
Complementarily, keeping with its task-related pattern (see Results
below and Fig. 2e), a total LV 2 score was created by subtracting the LV
2 score in the number judgment condition from the LV 2 score in the
autobiographical memory condition at each time point. A change score
in LV2 was operationalized as the residual resulting from regression of
the post-ECT LV 2 total score onto the corresponding pre-ECT total
score. For LV2, we focused on all task conditions because at the whole
brain level LV2 reflected the degree of differentiation between the au-
tobiographical memory and the number judgment task.

1.2. Results

1.2.1. Functional task architecture pre- vs. post-ECT2

1.2.1.1. LV #1: Patients vs. controls. The first significant LV, revealed by
the task PLS (p= .0002), accounted for 33.47% of the variance in the
data and differentiated the functional brain architecture typical of
patients versus controls across both time points and task contexts (see
Fig. 1). Relative to controls, patients showed greater fragmentation
within FPC (i.e., the FPC ROIs were more likely to be assigned to
different communities among patients relative to controls), as well as
greater segregation between FPC and the remaining two control
networks (SAL, most strongly, and, to a lesser degree, CON) (see
Fig. 1b, d). They also demonstrated greater integration (i.e.,
assignment to the same community) of the SM ROIs with those from
networks involved in control initiation (SAL, FPC) and, to a lesser
degree, with those implicated in external attention (DAN, VAN) (see
Fig. 1b,d). At the level of individual ROI-to-ROI connections, the
patients were typified by greater integration of the FPC and midline
DMN (aMPFC, PCC) ROIs (eight connections) (see Fig. 1a,c).

1.2.1.2. LV #2: ECT-induced functional brain reorganization. The second
significant LV (p= .0002) explained 16.61% of the variance in the data
and differentiated the functional brain architecture that supported
performance on the autobiographical memory (for patients only post-
ECT) from that which supported performance on the number judgment
task (see Fig. 2). Compared to the number judgment task, the functional
brain organization typical of the episodic memory task was most
reliably characterized by greater segregation between the system
implicated in top-down control (FPC) and the two external attention
networks (VAN, DAN) (see Fig. 2d), stronger fragmentation within FPC,
greater separation between the two control initiation systems (FPC,
SAL), as well as between VIS and AUD (see Fig. 2b,d). At the level of
individual ROI-to-ROI connections, the autobiographical memory task
was distinguished by reliably (BSR > 4) greater integration of MTL
ROIs with both VIS (nine connections) and FPC ROIs (four
connections), as well as of midline DMN (PCC, aMPFC) with FPC
ROIs (six connections) (see Fig. 2a, c).

2 The task-PLS revealed also a third LV (p= .0002), which accounted for
13.73% of the variance in the data and differentiated the ROI-to-ROI connec-
tions recruited by patients post-ECT during the autobiographical memory task
from the connections recruited by controls during the autobiographical memory
task at both time points. Nonetheless, in control analyses in which we used ART
in the CONN toolbox to eliminate outlier scans (i.e., relative scan-to-scan global
signal z-value threshold of 3 and a 0.5 mm relative movement threshold), the
two LVs, described in the main text were reproduced well, whereas the third LV
was not. Given its lower reliability, we opted to not include this LV in the main
report.
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1.2.2. Control analyses
Mann-Whitney tests unveiled significant differences in age

(p= .043) and session 1-to-session 2 delay (p= .007) between patients
and controls. Of these two, only age differences were relevant to LV1,
whereas both age and session delay could potentially impact greater
expression of LV2-associated patterns at time 2. However, Mann-
Whitney tests revealed that residual LV1 scores, controlled for age,
were still significantly higher among patients relative to controls across
both tasks and time points (all ps < .0001). Similarly, Spearman's
correlation analysis revealed no statistically significant association be-
tween either age or session 1 to session 2 delay and LV2 change score
(i.e., time 2 expression controlling for time 1 expression), both ps >
.77.

1.2.3. Functional task architecture and cognitive performance
The analyses described below were based on data from all 15 pa-

tients (see “Task PLS LV scores: Pre- to post-ECT change scores” section
above on how LV1 and LV2 scores were computed for each patient).
Although employing the data from the five patients who did not un-
derstand or comply with the task demands could have impacted the
reliability of the functional brain organization patterns identified with
PLS, we reasoned that these patients' LV1 and LV2 scores should
nonetheless be related to our cognitive variables of interest in a way
similar to the one observed in the core sample of 10 patients (i.e., ad-
dition of the five patients could have added noise to our brain-behavior
analyses, but should not have reversed the overall patterns). To confirm
our assumption, we ran all the relevant analyses for the core patient
sample only. These results are presented in the brackets next to the
effects obtained with the full sample of 15 patients. Sex was introduced

Fig. 1. Functional organization patterns that differentiate patients from healthy comparison participants both before and after ECT. Panel (a) shows all the ROI-to-
ROI connections that are stronger (warm colors) versus weaker (cool colors) in patients relative to controls. Panel (b) presents a network-level summary of the results
presented in panel (a). Panel (c) shows the ROI-to-ROI connections that are reliably (absolute value BSR≥ 4) stronger (warm colors) versus weaker (cool colors) in
patients relative to controls. Panel (d) presents a network-level summary of the results presented in panel (c). In panels (c) and (d) connections that did not meet the
aforementioned BSR threshold were set to zero. Panel (e) shows the average of the mean-centered brain scores from the task PLS analysis for each condition (error
bars are the 95% confidence intervals [CI] from the bootstrap procedure). Non-overlapping CIs indicate statistically significant differences between conditions. Please
note that the brain scores do not have meaningful units since they are computed as the weighted sum of all ROI-to-ROI connections entered in the PLS analysis.
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as a covariate in all analyses to confirm that all reported effects apply to
both male and female patients. Below, greater expression of LV 1 versus
LV 2 implies greater similarity to the trait depression versus the ECT-
corrected functional brain architecture.

1.2.3.1. Pre- to post-ECT changes in functional task architecture and
neuropsychological test performance. Greater post-ECT expression of LV
2 was associated with greater post-ECT improvements in visuospatial
learning, Spearman's rho= .58, p= .023 (see Fig. 3a; [10 patients: rho
of .39, p= .26]).

1.2.3.2. Depression-relevant functional task architecture and

autobiographical memory persistence. Secondly, we tested the
hypothesis that the psychopathological trait-like features, captured by
LV 1, reflect dispositional patterns of cognitive-affective persistence, a
likely building block of the ruminative thinking profile that typifies
depression. To this end, we investigated whether, in the
autobiographical memory condition, at both time points (this LV was
not affected by ECT), LV 1 would be more strongly expressed by those
individuals who recall events that are thought of or talked about more
frequently (i.e., events that are more persistent in the rememberer's
mind). We found that this was indeed the case, Spearman's rho= .57,
p= .027 (see Fig. 3b; [10 patients: rho of .36, p= .31]).

In sum, up to this point, we presented suggestive evidence on the

Fig. 2. Functional organization patterns that differentiate the autobiographical memory from the number judgment task. Panel (a) shows all the ROI-to-ROI con-
nections that are stronger (warm colors) versus weaker (cool colors) in the autobiographical memory relative to the number judgment task. Panel (b) presents a
network-level summary of the results presented in panel (a). Panel (c) shows the ROI-to-ROI connections that are reliably (absolute value BSR≥ 4) stronger (warm
colors) versus weaker (cool colors) in the autobiographical memory relative to the number judgment task. Panel (d) presents a network-level summary of the results
presented in panel (c). In panels (c) and (d) connections that did not meet the aforementioned BSR threshold were set to zero. Panel (e) shows the average of the
mean-centered brain scores from the task PLS analysis for each condition (error bars are the 95% confidence intervals [CI] from the bootstrap procedure). Non-
overlapping CIs indicate statistically significant differences between conditions. Please note that the brain scores do not have meaningful units since they are
computed as the weighted sum of all ROI-to-ROI connections entered in the PLS analysis.
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distinguishable brain organization patterns linked to trait depression
versus those “corrected” by ECT (and related to post-ECT cognitive
improvement). Next, we sought to test our hypothesis that the observed
ECT-normalized neural pattern reflects neurocognitive mechanisms,
which, in the healthy population, may counteract the experience of
depressogenic tendencies (see Part 2 below). Moreover, we attempted
to characterize the extent to which such mechanisms, as expressed in
contexts relevant to visuospatial learning (i.e., online maintenance of
visuospatial representations, perceptual relational processing) are sus-
ceptible to genetic versus environmental contributions. This question
was pursued in order to establish the suitability of the aforementioned
neurocognitive mechanisms as risk and/or potential intervention tar-
gets for increasing resilience among at-risk individuals (see Part 3
below).

2. Part 2: HCP sample 1

2.1. Method

2.1.1. Participants
The sample included 333 individuals who were part of the Human

Connectome Project (HCP) and whose data had been released as part of
the HCP 1200 subjects data package in March 2017. This sample size
represented the largest number of participants from the HCP 1200
subjects data release who were unrelated to one another, who did not
overlap with the twin pairs, confirmed through genetic testing (see HCP
Sample 2 below), and who had available data on all the behavioral and
fMRI assessments of interest.

The majority of participants (N=300) were right-handed. The
sample included 169 younger men (51 between 22 and 25, 69 between
26 and 30, and 49 between 31 and 36 years of age) and 164 younger
women (50 between 22 and 25, 49 between 26 and 30, and 65 between
31 and 36 years of age). Although age is presented here in the range
format, as advocated by the HCP team (see Van Essen et al., 2012 for
the rationale behind this age reporting strategy in HCP data releases),
all our brain-behavior analyses used participants' actual age in years, as
available in the HCP restricted data release.

All participants were screened for a history of neurological and
psychiatric conditions and use of psychotropic drugs, as well as for
physical conditions or bodily implants that may render their partici-
pation unsafe. Diagnosis with a mental health disorder and structural
abnormalities, as revealed by the MRI structural scans, were also ex-
clusion criteria. Participants provided informed consent in accordance
with the HCP research ethics board.

2.1.2. Depression-relevant cognitive-affective profiles
Scores on the scales and tasks described below were available in the

HCP 1200 subjects data release. The depression/anxiety scales and the
delay discounting task were completed on Day 1 of the participants'
HCP schedule, while the list sorting task and the questionnaires on
current affective experience were completed on Day 2.

2.1.2.1. Affective persistence. The decay in the subjective value of
delayed rewards, which was our proxy for affective persistence, was
assessed with a discounting task that identifies “indifference points” at
which an individual is equally likely to choose a smaller reward (e.g.,
$50) sooner versus a larger reward later ($200 in one year). In this task,
the delays are fixed, but the value of the immediate reward is varied in
order to identify as swiftly as possible an individual's indifference point
(see also Estle et al., 2006; Green et al., 2007; Myerson et al., 2001).
The task uses the area-under-the curve (AUC) as a performance measure
with separate indices for a large ($40,000) versus a small ($200)
monetary amount. Because we did not have any distinct hypotheses
regarding the two values and the two demonstrated identical
relationships with the neural variables of interest, we present the
analyses based on the average value of the AUC for the small and large
reward, where higher values indicate greater subjective value
associated with the delayed reward.

2.1.2.2. Learning. As a measure of the participants' ability to encode
and mentally manipulate information, we used the NIH Toolbox List
Sorting Test. We reasoned that this task was the closest analogue in the
HCP task battery to the visuospatial learning task, which yielded
significant effects in the ECT sample. In the List Sorting task,
participants are presented with pictures of foods or animals, each
accompanied by a sound clip and written text that identify the
respective item. List length varies from two to seven items. In the 1-
List condition, participants have to arrange either food items or animals
in size order from smallest to largest. In the 2-List condition, they are
presented with food items as well as animals and are required to report
the food items first in size order, followed by the animals in size order.
The outcome measure is the number of correctly recalled items (i.e.,
lists). For an item to be considered correct, all its constituents need to
be reported in the correct size order.

2.1.2.3. Subclinical depression and anxiety. To assess relatively stable
subclinical variations in depression and anxiety, we used participants'
scores on the DSM-oriented depression and anxiety scales. Both sets of
scores were derived from participants' responses to relevant items on

Fig. 3. The relationship between the two whole-brain connectivity LVs, identified through task PLS and neuropsychological test performance (panel a), auto-
biographical memory characteristics (panel b). All variables have been standardized.
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the Achenbach Adult Self-Report (ASR) instrument for ages 18–59
(Achenbach, 2009). The ASR contains a total of 123 statements relevant
to psychological functioning and requires participants to rate on a 3-
point scale (0 not true, 1 somewhat or sometimes true, 2 very true or
often true) how well each item described them over the previous six
months. The DSM-oriented depression scale includes items such as “I
cry a lot.”, “I am unhappy, sad, or depressed”, “I deliberately try to hurt
or kill myself”, “I feel tired without good reason.”, “There is very little
that I enjoy.”. The DSM-oriented anxiety scale includes items such as “ I
worry about my future”, “I am too fearful or anxious.”.

2.1.2.4. Current negative emotion experience. Participants completed the
NIH Toolbox Negative Affect Survey, which assesses separately current
levels of experienced sadness (e.g., “I felt sad.”,” I felt like a failure.”),
anger (e.g., “I felt angry.”, “I felt bitter about things.”), and fear (e.g., “I
felt frightened.’, “I had a racing or pounding heart.”), respectively. The
measure requires participants to rate on a 5-point scale (1 never to 5
always) how often they experienced the relevant emotion within the
past seven days.

2.1.3. fMRI tasks
We included all the fMRI tasks that are part of the Human

Connectome Project with the exception of the emotion processing task.
In our opinion, this task would have added novel information only if we
could analyze separately its two component conditions (face versus
shape processing), since their shared variance is likely redundant with
the one assessed by the static relational processing task, whose results
are easier to interpret. Given that the duration of each component
condition in the emotion task is approximately 126 s, we reasoned that
their inclusion would affect adversely the reliability of our reported
functional organization patterns.

2.1.3.1. Working memory. Participants completed two runs of an n-
back task, which included as targets four categories of stimuli: faces,
places, tools and body parts. Each run encompassed 8 task blocks
(27.5 s each) and 4 fixation blocks (15 s each). The 8 task blocks
corresponded to two working memory tasks (2-back versus 0-back),
with each comprising all four stimulus categories, presented in separate
blocks. In the 2-back working memory task, participants had to respond
‘target’ whenever the current stimulus was the same as the one
presented two trials before. In the 0-back working memory task, a
condition that is most similar to traditional delayed match-to-sample
tests, a stimulus was presented at the beginning of each block and the
participants had to respond “target” whenever the respective stimulus
was encountered during the block. Each block began with the 2.5 s
presentation of a cue indicating task type and, for the 0-back task only,
target stimulus, followed by 10 trials of 2.5 s each (2 s stimulus
presentation and 500ms interstimulus interval) for a total block
duration of 27.5 s. Each block contained 2 targets and 2–3 non-target
lures (e.g., repeated items in the wrong n-back position, either 1-back
or 3-back) to ensure that participants are actively drawing on their
memory resources to complete the task (for further discussion, see
Barch et al., 2013).

2.1.3.2. Static relational processing. This task was adapted from the one
developed by Christoff and colleagues (Smith, Keramatian, & Christoff,
2007). The task features six different shapes filled with one of six
different textures. In the relational processing condition, participants
see two pairs of objects, one at the top and the second at the bottom of
the screen. They are asked to identify first the dimension on which the
top pair differs (shape or texture) and then decide whether the bottom
pair of objects differs along the same dimension. In the item-based
matching condition, participants see a pair of objects at the top of the
screen and one object at the bottom of the screen. Participants are asked
to determine whether the bottom object matches either of the two top
objects on the dimension (“shape” or ‘texture”) identified by a word

presented in the middle of the screen. Each of the two task runs
comprises three 16 s long relational, matching and fixation blocks,
respectively. Each relational block contains four trials. On each trial,
stimuli are presented for 3500ms with a 500ms interstimulus interval.
Each matching block comprises five trials. On each trial, stimuli are
presented for 2800ms, followed by a 400ms interstimulus interval.

2.1.3.3. Dynamic relational processing (social cognition). Participants
completed two runs of a task, adapted from Castelli et al. (2000) and
Wheatley et al. (2007), in which they were presented with short videos
(20 s) of objects (squares, circles, triangles), either interacting in a
purposeful manner or just moving randomly across the screen. After
each video, the participants had to decide among three alternative
answers: (1) Social Interaction: the video portrayed a social interaction
(i.e., an interaction in which the shapes appear to take into account
each other's thoughts and emotions); (2) Not Sure (whether the video
depicted a social interaction or just random movement); (3) No
Interaction: the video showed shapes moving randomly across the
screen. Each of the two task runs has 5 video blocks of 23 s each (2
Mental and 3 Random in one run, 3 Mental and 2 Random in the other
run) and 5 fixation blocks (15 s each).

2.1.3.4. Financial incentive processing. Participants completed two runs
of a task, adapted from Delgado et al. (2000), in which they were
required to guess the number on a mystery card (represented by a “?”)
in order to win or lose money. They were told that potential card
numbers ranged from 1 to 9 and were asked to indicate if they thought
the mystery card number was more or< 5 by pressing one of two
buttons on the response box. Feedback is the number on the card
(generated by the program, after the participants made their guess, as a
function of whether the trial was a reward, loss or neutral trial) and
either: 1) a green up arrow with “$1” for reward trials, 2) a red down
arrow next to −$0.50 for loss trials; or 3) the number 5 and a gray
double headed arrow for neutral trials. The “?” was presented for up to
1.5 s (if the participant responded before 1.5 s, a fixation cross was
displayed for the remaining time), followed by the feedback for 1 s.
There was a 1 s interstimulus interval with a “+” presented on the
screen. The task was presented in blocks of 8 trials that were either
mostly reward (6 reward trials pseudo-randomly interleaved with
either 1 neutral and 1 loss trial, 2 neutral trials, or 2 loss trials) or
mostly loss (6 loss trials interleaved with either 1 neutral and 1 reward
trial, 2 neutral trials, or 2 reward trials). In each of the two runs, there
were 2 mostly reward and 2 mostly loss blocks (28 s each), interleaved
with 4 fixation blocks (15 s each).

2.1.3.5. Language/mathematical processing. Participants completed two
runs of a task, adapted from Binder et al. (2011), in which aural
presentation of brief stories alternates with aural presentation of math
problems. On each run, participants are presented with four story and
four math blocks, which are matched in duration (each is
approximately 30 s long). On the story blocks, participants are
presented with short adaptations of Aesop's fables (5–9 sentences),
which involve animal and human characters interacting in easily
understandable social situations. Subsequently, participants are
required to answer a two-alternative forced choice question, which
tests their understanding of the story topic. On the math blocks,
participants are asked to solve addition and subtraction problems.
Each trial features an arithmetic operation (e.g., “fourteen plus
eighteen”), followed by “equals”, then two alternatives (e.g., “thirty-
two or twenty-eight”). The math task is adapted on an individual basis,
so that a similar level of difficulty is maintained across subjects.

2.1.3.6. Motor function. This task was adapted from the one developed
by Buckner and colleagues (Buckner et al., 2011; Yeo et al., 2011). In
response to visual cues, participants are required to tap their left or
right fingers, squeeze their left or right toes, or move their tongue. Each
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block, corresponding to a movement type, lasts 12 s (10 movements)
and is preceded by a 3 s cue. In each of the two task runs, there are two
tongue, four finger (two left, two right) and four toe (two left, two
right) movement blocks, respectively, as well as three 15 s fixation
blocks.

2.1.4. fMRI data acquisition
Images were acquired with a customized Siemens 3 T “Connectome

Skyra” scanner housed at Washington University in St. Louis (32-
channel coil). Pulse and respiration were measured during scanning.
T1-weighted anatomical scans were acquired with a 3D MP-RAGE se-
quence (TR=2400ms, TE=2.14ms, FOV=224mm, 320×320
matrix, 256 slices of 0.7 mm isotropic voxels). The high-resolution
structural scan preceded the acquisition of functional scans.

Functional images were acquired with a multiband EPI sequence
(TR=720ms, TE=33.1 ms, flip angle= 52°, FOV=208mm,
104×90 matrix, 72 slices of 2× 2mm in-plane resolution, 2mm
thick, no gap). For each task, two runs of equal duration were obtained,
one collected with a L-R, and the other, with a R-L, EPI phase coding
sequence. The length of one run (in minutes) was as follows: 5:01
(working memory), 2:56 (relational processing), 3:27 (social cogni-
tion), - 3:12 (incentive processing), 3:57 (language/math) and 3:34
(motor).

Individual L-R and R-L scans exhibit distinct regions of complete
signal loss, but it has been verified that the preprocessed datasets are
anatomically well-aligned with one another, even in areas of complete
signal loss (cf. Smith et al., 2013). Because it is only the dropout that
differs between the two scan types, it has been recommended that
connectivity analyses based on HCP data aggregate the respective me-
trics from the L-R and R-L scans (cf. Smith et al., 2013). Consequently,
in the present report, we concatenated the L-R and R-L runs for each
task.

2.1.5. fMRI data Preprocessing
The present report used the preprocessed task data from the HCP

1200 subjects data release. These data have all been preprocessed with
version 3 of the HCP spatial and temporal pipelines (Smith et al., 2013;
for specification of preprocessing pipeline version, see http://www.
humanconnectome.org/data). Additionally, we used the CONN toolbox
to implement the same denoising steps applied to the data from the ECT
sample. Following all these corrections (which did not include global
signal regression), an inspection of each subject's histogram of voxel-to-
voxel connectivity values for each scrutinized task condition revealed a
normal distribution, approximately centered around zero, which would
suggest reduced contamination from physiological and motion-related
confounds (cf. Whitfield-Gabrieli and Nieto-Castanon, 2012). None-
theless, in supplementary analyses, accompanying all the brain-beha-
vior tests, we confirmed that all the reported effects were not driven by
individual differences in motion, as they remained unchanged after
controlling for the average relative (i.e., volume-to-volume) displace-
ment per participant, a widely used motion metric (Power et al., 2012,
2015; Satterthwaite et al., 2013).

2.1.6. fMRI data analysis
2.1.6.1. ROI time series. We followed the same procedure we used with
our ECT sample.

2.1.6.2. ROI-to-ROI connectivity analyses. Pairwise coupling among the
229 ROIs was estimated in CONN, separately for each task condition.

2.1.6.3. Whole-brain functional organization. We followed the same
procedure we used with our ECT sample. To ensure similar durations
for all scrutinized task conditions, we estimated whole-brain functional
organization independently in the zero-back and two-back condition of
the working memory task, as well as in the story and math condition of
the language task. Importantly, this breakdown of the working memory

and language task, respectively, also respected the distinguishable
cognitive requirements of their component conditions (zero-back
versus two-back; story versus math). Thus, the task-relevant
connectivity matrices were based on durations ranging from 192 s
(i.e., static relational processing) to approximately 230 s (motor
function). After conducting our network-level analyses, we were left
with eight agreement matrices per participant, one matrix for each task
condition (zero-back, two-back, static relational, dynamic relational,
story, math, gambling and motor). Entries with higher values
corresponded to those ROI pairs that were most likely to be assigned
to the same community across the three values of the spatial resolution
parameter and 100 iterations of the community detection algorithm,
performed within each task and for each value of the spatial resolution
parameter.

2.1.6.4. Brain-behavior analyses
2.1.6.4.1. PLS: Depression-relevant functional task architecture. To

estimate similarity between the trait depression versus the ECT-
correctable neural profile and each HCP participant's functional brain
organization during each scrutinized task condition, we used the
corresponding connection weights obtained from the task PLS
analysis, conducted on the clinical sample, to calculate “LV scores”.
These LV scores (i.e., two per task context per participant) were
computed as the weighted sum across all ROI-to-ROI pairs and were
employed in all the analyses described next. When computing these LV
scores, we included all connections and not only those with a BSR > 4
in absolute value in the ECT sample because we reasoned that this
approach would yield the most accurate representation of the two LVs.
Specifically, reliability thresholds are somewhat arbitrarily determined
and it was the two whole-brain connectivity patterns, to which all the
connections contributed, that were found to be significantly different
from noise in the permutation testing conducted in the ECT sample.

2.1.6.4.2. Canonical correlation analysis (CCA). To identify the
relationship between the depression-relevant cognitive and neural
indices, we used canonical correlation analysis (CCA, Hotelling,
1936). CCA is a multivariate technique, which seeks maximal
correlations between two sets of variables by creating linear
combinations (i.e., canonical variates) from the variables within each
set. Recently, CCA has been successfully used to investigate the
relationship between brain connectivity patterns and cognitive-
behavioral variables, broadly defined (e.g., age, education, cognition,
affect, drug and alcohol use) in large datasets (see Smith et al., 2015;
Tsvetanov et al., 2016; Vatansever et al., 2017). CCA was implemented
using the canoncorr function in Matlab. The significance of each
canonical variate pair was tested by using a permutation test (i.e.,
shuffling of the brain data across subjects) with 100,000 permutations
(cf. Smith et al., 2015).

To describe the relationship between the behavioral or brain vari-
ables and their corresponding variates (i.e., latent factors), we include
canonical loadings (cf. Hair Jr. et al., 2009), which reflect the raw
correlation between a brain or behavioral variable and its corre-
sponding variate (see also Tsvetanov et al., 2016). In order to obtain
reliable estimates of canonical loadings, CCA requires a sample size at
least ten times the number of variables in the analysis (Hair et al.,
1998). Our sample size exceeded this criterion for all analyses. Al-
though there are no established procedures for ascribing statistical
significance to canonical loadings, the latter are homologous to factor
loadings, which is why it has been recommended that they be subjected
to similar interpretive criteria (Hair et al., 1998).2.1.6.4.2.1. Uni-
variate and multivariate outliers

Univariate and multivariate outliers can adversely impact data
normality and, thus, have the potential to bias the results of canonical
correlation analyses (Sherry & Henson, 2005). Because all the effects
remained unchanged if univariate (z-scores lower than −3.29
or> 3.29) and multivariate (Mahalanobis distance-based) outliers had
been eliminated, we opted to report the results based on the full sample.
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2.2. Results

To test our hypothesis that some of the therapeutic effects of ECT
are due to its boosting the expression of a naturally occurring neural
profile relevant to visuospatial learning, which counteracts the ex-
perience of depressogenic tendencies in the general population, we
conducted a canonical correlation analysis (CCA). In this CCA, we en-
tered affective persistence, list sorting, subclinical depression, sub-
clinical anxiety, as well as currently experienced anger, fear and sad-
ness as part of the behavioral set. Scores on the trait depression- and
ECT-relevant neural LVs, assessed in each of the eight scrutinized task
contexts (zero-back, two-back, static relational processing, dynamic
relational processing, financial incentive processing, semantic proces-
sing, math and motor function) were part of the brain set (sixteen brain
variables in total). This analysis revealed only one significant CCA
mode (r=0.44, p=4×10−5, see Fig. 4a for loadings of each con-
nectivity and cognitive variable on its respective canonical variate, as
well as Fig. 4b for the relationship between the brain and behavioral
canonical variates). Specifically, individuals with a depressogenic cog-
nitive profile (higher affective persistence, poorer learning), worse
current affective experience and greater mood-related (anxiety, de-
pression) symptomatology showed greater expression of the trait de-
pression LV and reduced expression of the ECT-linked LV across both

working memory (zero-back, two-back) and relational processing
(static, dynamic) task conditions, as well as, unexpectedly, in the math
condition. To account for potential demographic and motion-related
confounds, we regressed out from all the behavioral variables, entered
in CCA #1 above, handedness, gender, age, years of education, as well
as the average volume-to-volume displacement across all the scruti-
nized task contexts. A second CCA, conducted on these residual beha-
vioral scores and the same brain scores entered in CCA #1, revealed a
sole significant canonical mode (r= .42, p= .001) and almost iden-
tical canonical loadings for both the behavioral and brain variables as
those identified in CCA #1 (see Fig. S2a for loadings of each con-
nectivity and cognitive variable on its respective canonical variate, as
well as Fig. S2b for the relationship between the brain and behavioral
canonical variates).

2.2.1. Control analysis
To verify that the aforementioned CCA results involving affective

persistence are not merely an artifact of reduced responsiveness to re-
ward, we capitalized on the established finding that the subjective
value of larger delayed rewards decays more slowly relative to the
value of smaller delayed rewards (Myerson et al., 2001). This effect was
replicated in the present sample when comparing the subjective value
of the delayed $200 vs. 40 K, t(332)=−21.32, p= .0001.

Fig. 4. The loadings of the brain and behavioral variables from CCA #1 on their corresponding canonical variates (panel [a]) and the scatter plots describing the
linear association between the brain and the behavioral canonical variates (panel [b]).
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Subsequently, we created a residual score by regressing out from the
reward persistence score, described above, the difference in the sub-
jective value of the delayed $200 vs. 40 K, which indicated the extent to
which participants showed a differentiated response to reward based on
its value. The CCA results, described above remained unchanged when
using this residual reward persistence score. This suggests that our
findings are unlikely to be due to atypical responses to reward, but
instead they are more likely to reflect perpetuation of motivational
value across time, as we proposed.

3. Part 3: HCP sample 2

3.1. Method

3.1.1. Participants
This sample comprised the largest number of twin pairs from the

HCP 1200 subjects data release, whose zygosity had been confirmed
through genetic testing, who had available fMRI data on all the vari-
ables of interest and who allowed us to keep a ratio of 1:1 for DZ versus
MZ pairs, which is recommended as optimal for providing equal power
to detect genetic versus environmental influences (Verhulst, 2017). The
sample included 64 DZ (58 males: 24 between 22 and 25, 26 between
26 and 30, and 8 between 31 and 36 years of age; 70 females: 42 be-
tween 26 and 30, and 28 between 31 and 36 years of age) and 64 MZ
(58 males: 12 between 22 and 25, 32 between 26 and 30, and 14 be-
tween 31 and 36 years of age; 70 females: 40 between 26 and 30, and
30 between 31 and 36 years of age) pairs. An independent samples t-test
confirmed that there were no statistically significant differences in age
between the DZ and the MZ pairs (p > .39). The majority of Sample 2
participants (N=237) were right-handed and self-identified as being
White (N=228). This sample was subject to the same exclusion criteria
as the HCP Sample 1.

3.1.2. fMRI tasks
Participants completed the same tasks as the HCP Sample 1.

3.1.3. fMRI data acquisition
All the image acquisition parameters were identical to the ones

described for the HCP Sample 1.

3.1.4. fMRI data Preprocessing
We followed the same preprocessing steps described for the HCP

Sample 1.

3.1.5. fMRI data analysis
To increase reliability (i.e., estimate network structure based on

more TRs) and in line with their conceptual similarity with respect to
the underlying cognitive processes assessed, we averaged the ROI-to-
ROI correlation matrices corresponding to zero-back and two-back
conditions (average r between these two matrices across all participants
of 0.36 ± 0.06), as well as those corresponding to static and dynamic
relational processing (average r of 0.23 ± 0.05). With respect to the
network-level analyses and projection of the two depression-linked
whole-brain connectivity patterns in each of the two scrutinized task
contexts (online maintenance versus relational processing), we fol-
lowed the same steps as the ones outlined for the HCP Sample 1.

3.1.6. Genetic analyses
To characterize genetic versus environmental influences on the ex-

pression of the two depression-relevant neural connectivity patterns,
we ran two series of analyses, one using an ACE (A=additive genetic
effects; C=shared environmental effects; E=unique environmental
effects) and the second, an ADE (A=additive genetic effects;
D=dominant genetic effects; E=unique environmental effects),
structural equation model (Neale and Cardon, 1992), implemented in
Mplus 8.0 (Muthén & Muthén, 1998–2017) and applied to the fMRI

data from the HCP Sample 2. Such analyses rest on the fact that the MZ
twins share 100% of their genes, whereas the DZ twins share ~50% of
their genes. Hence assuming full genetic determination via additive
effects, the MZ twin correlation on a specific trait should be 1, whereas
the DZ correlation should be 0.50. Full genetic determination via
dominant effects would yield MZ twin correlations of 1 on a specific
trait and DZ twin correlations of 0.25. DZ twin correlations greater than
half of the MZ twin correlations on a given trait are indicative of shared
environmental effects, whereas MZ twin correlations lower than 1 are
said to reflect non-shared environmental influences on the trait under
comparison.

In twins reared together, as is the case of our present sample,
dominant genetic and shared environmental effects may not be disen-
tangled, which is why ACE and ADE models need to be estimated se-
parately. The ACE/ADE model was set up as a two-group (MZ vs. DZ)
analysis. A, C, D and E are modeled as latent factors that affect the trait
under scrutiny. The twin correlation between the corresponding C
factors is set to 1 when both types of twin pairs are reared together (i.e.,
the shared environment is equivalent), as it is the case in the present
study. The twin correlation between the corresponding A factors is set
to 1 for the MZ pairs because they share 100% of their genes and to 0.50
for the DZ pairs who share ~50% of their genes. Following the same
rationale, the twin correlation between the corresponding D factors is
set to 1 for the MZ pairs and to 0.25 for the DZ pairs. The correlations
between the corresponding E factors are set to zero because by defini-
tion these environmental effects are individual-specific, reflecting un-
ique environmental effects and measurement error.

In addition to the chi-square statistic, which assesses the dis-
crepancy between the observed and the fitted covariance matrices (i.e.,
values closer to zero mean better fit), but is very sensitive to sample
size, we report two widely used measures of fit that take into con-
sideration both sample size and model complexity. One is the root-
mean-square error of approximation (RMSEA) statistic, an absolute fit
index that quantifies how well the covariances predicted by the model
match the observed covariances. The second is the Tucker–Lewis index
(TLI), a non-normed (i.e., can exceed 1.0, but is still reported as 1.0 in
these cases) incremental fit index that quantifies how well the model
fits compared with a null model (in our case, a model with only var-
iances but no covariances among the measures). Based on guidelines
from Hu and Bentler (1998), we used RMSEA < .06 and TLI > .95 as
markers of good fit.

3.2. Results

Our ACE/ADE model analyses, corroborated by an inspection of the
raw correlation matrices, suggested that the two depression-relevant
LVs show distinct patterns of heritability in the online maintenance
versus the perceptual relational processing condition (see Fig. 5). Spe-
cifically, in the former context, both LVs demonstrated substantial ad-
ditive genetic effects, whereas in the latter condition it was only the
ECT-linked LV that showed evidence of significant heritability (i.e.,
dominant genetic effects). These results raise the possibility that the
two depression-relevant neural patterns, identified in the ECT sample,
are most closely linked to contexts that require integration of externally
oriented processing (i.e., vigilance to the environment) with internal
cognition (i.e., online maintenance of relevant mental representations).

4. Discussion

Although ECT is a widely used and effective treatment for refractory
depression, the precise neural substrates underlying its therapeutic ef-
fects remain to be fully elucidated (but see Dukart et al., 2014). To
address this issue, the present study tested the hypothesis that some of
the beneficial effects of ECT are due to its stimulating the expression of
a naturally occurring neurocognitive profile relevant to visuospatial
learning, which, in the healthy population, may help counteract the
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experience of depressogenic tendencies. To establish its suitability as a
risk marker and/or intervention target, we quantified its susceptibility
to genetic versus environmental factors. Thus, by pinpointing neural
pathways in depression and their response to clinical intervention, the
present research contributed to existing efforts to establish viable tar-
gets for early detection and treatment of depressive symptomatology.

One important finding of our study was the identification of a
specific whole brain functional organization pattern, which was found
to be susceptible to correction through ECT and whose stronger ex-
pression among healthy individuals was associated with fewer affective
markers of global psychopathology and fewer depression-relevant
cognitive deficits. In the clinical sample, the aforementioned brain or-
ganization pattern was specific to an episodic autobiographical memory
task, in which patients were asked to visualize past personal events. As
expected, given the role of visuospatial processing in autobiographical
recall in general (Daselaar et al., 2008; Greenberg et al., 2005; Vannucci
et al., 2016), and, in our task, in particular, post-ECT “normalization” of
the neural profile specific to the autobiographical memory context was
related to improvements in attending to, specifically, learning, visuos-
patial information, a cognitive function which is significantly impaired
in major depression, but which is reportedly responsive to ECT (Mohn
and Rund, 2016; Semkovska and McLoughlin, 2010). Although there
was no autobiographical memory task in the HCP sample, we were able
to assess the relevance of the ECT-correctable pattern for performance
of cognitive tasks that draw upon the related functions of visuospatial

working memory and perceptual relational processing, which are also
affected in depression (Baune et al., 2014; Korgaonkar et al., 2013; Lee
et al., 2005; Rose and Ebmeier, 2006; Schneider et al., 2012; Söderlund
et al., 2014).

The brain pattern susceptible to “correction” through ECT was ty-
pified by a host of neural markers linked to mental scene construction
in the service of past, present or future-oriented episodic simulation
(i.e., greater integration of the MTL ROIs with both the VIS and FPC
ROIs [Fig. 2a,c], but increased fragmentation within the FPC [Fig. 2b,
d]) among healthy individuals (Andrews-Hanna et al., 2014b; Andrews-
Hanna et al., 2014a; Corbetta and Shulman, 2002; Seeley et al., 2007;
Sheldon et al., 2016; Spreng et al., 2010, 2014; Sridharan et al., 2008;
Westphal et al., 2017). Additionally, it was also characterized by
greater segregation between top-down control (FPC) and attentional
(VAN, DAN) systems (Fig. 2d), implying diminished goal-directed ex-
ternal processing (Spreng et al., 2010, 2014), as well as greater se-
paration between the two control initiation systems (FPC, SAL), which
may suggest more efficient implementation of “supervisory” processes
(Braun et al., 2015; Sporns and Betzel, 2016). Although the precise
mechanisms of ECT are unknown, our results suggest that ECT may
“normalize” access to a cognitive mode that fosters episodic simulation
through the goal-directed integration of perceptual and mental re-
presentations. However, its acceleration of neurogenesis and systems
level functional reorganization disrupts access to previously acquired
memories (Farzan et al., 2017; Frankland and Josselyn, 2016) and, in

Fig. 5. The ACE/ADE models associated with the expression of the LV 1- and LV 2-related brain organization patterns during working memory (panels a and b) and
relational processing (panels c and d). The percentages next to the ACEs/ADEs represent the percentage of variance explained by additive genetic (A), dominant
genetic (D), common environmental (C) and unique environmental (E) factors. Dashed lines represent non-significant effects (p > .05). *p < .05. **p < .0001.
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general, is known to impair recollection for information acquired pre-
ECT (i.e., retrograde amnesia, cf. Sackheim, 2014; Semkovska and
McLoughlin, 2014; Söderlund, Percy, & Levine, 2012). Accordingly, in
our study, the patients' expression of the ECT brain pattern was related
to performance on the BVMT-R, a task assessing memory for visual
information acquired post-ECT.

Complementarily, we identified a whole brain functional organiza-
tion pattern linked to trait depression and rumination in the clinical
sample that was associated with greater incidence of depressogenic
tendencies, both cognitive and affective, among healthy adults. This
pattern was most clearly expressed as stronger functional coupling
between internal cognition (DMN) and internally driven control (FPC)
ROIs (see Fig. 1a, c), greater integration of the SM with control net-
works (SAL, FPC), as well as greater segregation within and between
the latter (Fig. 1b, d) (Andrews-Hanna et al., 2010; Spreng et al., 2010;
Sridharan et al., 2008) These findings are compatible with existing
views on depression which highlight the potential for raw somato-af-
fective states to contaminate and, thus, impair cognitive control pro-
cesses (Dolcos et al., 2011; McTeague et al., 2017; McTeague et al.,
2016; Opel et al., 2017; Ramirez-Mahaluf et al., 2017). These results
also dovetail a substantial body of evidence on the role of self-focused
thinking in guiding cognitive-behavioral control processes, as well as on
the tight intertwining of self-referential and raw somatic states in the
affective persistence (i.e., ruminative) processes associated with major
depression (Burkhouse et al., 2017; Cooney et al., 2010; Davey et al.,
2017; Davey et al., 2016; Hamilton et al., 2015; Jones et al., 2017;
Rayner et al., 2016).

Finally, expanding the existing repertoire of structural and brain
activity markers associated with intergenerational transmission of de-
pression (Foland-Ross et al., 2016; Foland-Ross et al., 2015; Gotlib
et al., 2014; Opel et al., 2017), we have provided evidence on the
heritability of the two functional brain organization patterns relevant to
depression, as identified in the ECT sample. Specifically, we have
shown that they demonstrate substantial susceptibility to genetic in-
fluences in a cognitive context that hinges on visuospatial processing
that extends beyond the here-and-now, but much less so in a context
that requires perceptual processing in the here-and-now. Given that the
expression of the two LVs during the two aforementioned contexts,
working memory versus perceptual relational processing, made simi-
larly strong contributions to depression-relevant cognition and affect in
HCP sample 1 (see Fig. 4a), we find it unlikely that their differential
heritability patterns, as observed in HCP sample 2, would merely reflect
measurement error (i.e., such measurement error would have adversely
impacted the contribution of these two LVs in HCP sample 1). While we
cannot completely rule it out, we think it is more likely that the context-
specific heritability of the two LVs speak to their unique relevance to
tasks that require temporally extended processing of visuospatial in-
formation and, thus, integration of internal cognition with externally
oriented perceptual processing. The fact that LV2 shows both sub-
stantial heritability and susceptibility to change, as revealed by the ECT
intervention and genetic analyses (i.e., the E component, which we
argued above is unlikely to only reflect measurement error) renders it a
viable marker for vulnerability to global psychopathology (as per the
HCP sample 1 results), as well as a locus for assessing success of in-
terventions targeting cognitive deficits linked to mood-related pa-
thology. Although contexts that require visuospatial processing ex-
tended beyond the here-and-now may be of particular interest, results
from the HCP sample 1 suggest that LV2 may be a particularly sensitive
tracker of improvements in the social deficits associated with depres-
sion (see Fig. 4a; Lee et al., 2005; Schneider et al., 2012). Further in-
vestigations are also needed on the nature of the genetic effects to
which the two LVs appear to be susceptible. For example, given the
relative context specificity of the behavioral effects linked to the two
LVs (see Fig. 4a), the question arises as to how genes may impact re-
sponses to specific environmental learning circumstances in a way that
leads to the emergence of the neural configurations observed for LV1

and 2, respectively.
Due to pragmatic considerations related to the availability of such a

vulnerable population, we were able to test only a relatively small
sample of severely depressed patients who underwent ECT (similar
sample sizes for patients and controls have though been used by others
as well, e.g., Dukart et al., 2014; Ristow et al., 2018). While we ac-
knowledge the limitations of our present sample size, our core ECT
sample was relatively homogenous, as it only comprised patients with a
diagnosis of severe major depressive disorder, thereby rendering it
unlikely that the observed functional brain organization patterns were
contaminated by co-existing conditions. We employed powerful statis-
tical tools (i.e., PLS) that are well-suited for use with sample sizes even
smaller than ours (cf. McIntosh and Lobaugh, 2004) and both of the
reported patterns of functional brain organization, which we set out to
characterize, emerged as highly significantly different from noise (as
per the permutation testing used to assess the statistical significance of
the PLS-identified LVs in the ECT sample). Importantly, as outlined
above, our identified pattern of whole brain functional organization
linked to trait depression, the only one of the two herein characterized
that has precedent in the literature, shares significant similarities with
previously documented neural profiles of depression, thereby
strengthening our confidence in our present results. Additionally, the
fact that both of the LVs identified in the clinical sample showed the
predicted robust associations with cognition and affect in HCP Sample 1
further testifies to their conceptual validity.

With regards to the ECT-linked pattern of brain organization, this is
unlikely to merely reflect the influence of time as it emerged in the
patient group following a therapeutic induction of seizures, with no
corresponding change in the control group who was tested after a si-
milar passage of time. Furthermore, it was context-specific and mean-
ingfully associated with cognitive variables that did not show sig-
nificant group-level changes from Time 1 to Time 2 (see Table 1). On
the topic of sample size, we should mention that, although the size of
our present twin sample is similar to that used in other brain-genetics
investigations (e.g., Yang et al., 2016), future studies using larger twin
samples and multiple assessments of connectivity (cf. Ge et al., 2017)
may be needed to confirm our present findings.

Finally, future research may benefit from applying network-based
analyses such as those described here to characterize the neural cor-
relates of ECT-induced improvements in mood. Indeed, in our clinical
sample, we found statistically significant reductions in BDI scores post-
ECT, which were though unrelated to the expression of our two iden-
tified brain LVs. As we have already mentioned, our focus was on the
mnemonic deficits that are associated with depression and susceptible
to correction through ECT, which is what our fMRI tasks were designed
to assess. We expected though that the neural organization patterns
linked to post-ECT mnemonic amelioration would also be associated
with post-ECT mood improvement. Nonetheless, our two identified
brain LVs predicted affective functioning only in the HCP sample. This
may speak to the superiority of the affective assessment tools used by
the HCP (compared to the BDI), as well as to the fact that the much
larger HCP sample afforded the identification of subtler brain-behavior
relationships. Patient studies using explicitly affective tasks may be
needed to characterize the changes in neural organization patterns
specifically associated with ECT-induced corrections in mood. That
being said, we would like to underscore that our two identified brain
LVs do hold promise with respect to their clinical utility. First, they
predicted both affective and cognitive problems in a healthy sample,
testifying to their sensitivity to varying degrees of psychopathology in
the general population. Second, the brain pattern susceptible to cor-
rection through ECT and related to improvements in visuospatial
memory reflected normalization of functional network interactions re-
levant to autobiographical memory retrieval. As such, this brain pattern
is likely relevant to the successful cognitive restructuring of past and
future personal event representations, a key component in therapeutic
interventions such as cognitive-behavioral therapy, as well as in self-
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initiated attempts to repair mood.
In summary, the present study provided suggestive evidence that

some of the therapeutic effects of ECT are due to its ability to “nor-
malize” the expression of a neural profile relevant to visuospatial
learning and personal event (re)construction, which shows some her-
itability, but which can nonetheless be also activated via relevant en-
vironmental learning experiences. As such, our research is directly re-
levant to future interventions aimed at increasing resilience among at-
risk individuals by targeting intrinsic mechanisms which may help
counteract the cognitive and affective deficits associated with depres-
sion, specifically, and global psychopathology, more broadly.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.nicl.2019.101816.
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