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Abstract

General-purpose computing on GPUs is widely adopted for scientific applications,

providing inexpensive platforms for massively parallel computation. This has motiv-

ated us to investigate GPU performance in terms of speed and memory usage, specific-

ally in relation to data locality in molecular dynamics simulations. The assumption is

that enhancing data locality of these applications will lower the cost of data movement

across the GPU memory hierarchy. In this research, we analyse spatial data locality and

data reuse (temporal data locality) characteristics for row-major, Hilbert, and Morton

data orderings, and hybrid variants of these, and assess their impact on the perform-

ance of molecular dynamics simulations (MDS). Data locality in MDS applications,

based on the relationship between a bin and its neighbouring bins, that are generated

using an approximately spherical stencil, previously has not been widely studied. In

this research, a simple cache model is presented, and this is found to yield results

that are consistent with timing results for the particle force computation obtained on

NVIDIA Geforce GTX960 and Tesla P100 graphical processing units (GPUs). The

NVIDIA profiling tool is used to investigate the execution time results and to observe

the memory usage in terms of cache hits and the number of memory transactions.

The analysis also provides a more detailed explanation of execution behaviour for the

different orderings. To the best of our knowledge, this is the first study to investig-

ate memory analysis and data locality issues for molecular dynamics simulations of

Lennard-Jones fluids on NVIDIA’s Maxwell and Tesla architectures.
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Chapter 1

Introduction

The exploitation of data locality and performance engineering are important issues in

compiler and algorithm design where the aim is to fully exploit device architectures,

especially in multicore/manycore systems, within the context of complex memory hier-

archies governed by various rules and policies. This thesis investigates the data loc-

ality properties of our graphical processing unit (GPU) implementation of a molecu-

lar dynamics simulation. Different orderings of the particle data are investigated and

compared in terms of observed performance and profiling data, and these results are

interpreted in terms of the software and hardware features of the GPUs studied. To

the best of our knowledge, this study has not been conducted before. In this study

we approach the problem of data locality of molecular dynamics simulations on GPUs

using execution time and a number of profiling measurements, especially those related

to GPU execution efficiency and memory access.

1.1 Overview

Alongside the advances in computer architectures, processor speeds, and main memory,

the efficient use of various levels of cache and other specialized memories remains es-

sential to achieving high computation efficiency. Therefore, for scientific applications

where execution time is critical, understanding the data locality properties of the ap-

plication, and the execution platform, can enhance application performance through the
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optimal use of the execution platform. This is particularly true in GPUs where latency

tolerance techniques based on the scheduling of threads are used to mask the disparity

between the bandwidth to global memory and the GPU’s peak execution speed. For

example, for an NVidia P100 system, the global memory bandwidth is a maximum of

732 GB/s and the peak single-precision [4] performance is 9.3 Tflop/s. Thus, in the

absence of latency tolerance, the expected execution speed is 732G/4 Gflop/s, where

G is the number of floating-point operations per global memory access and floats are

assumed to be 4 bytes. For G = 1, this is a factor of 50 less than the peak performance.

Data locality[112, p. 374] is a significant factor in the efficient use of hierarchical

memory. When one item is moved from a lower level of memory to a higher level, other

items that are nearby in memory are also moved along with it as the data are copied in

blocks of fixed size, known as cache lines, rather than as individual elements. Most ap-

plications and computations are local in nature, so if items are stored in memory based

on their location, when one item is moved from low-level memory into a higher level

of memory, the other items upon which its processing depends will also be moved, and

consecutively loaded instructions will process the consecutive data, thereby exploit-

ing spatial data locality and improving performance. Likewise, data that is already in

the higher level memory can be processed by the same or different instructions. This

situation illustrates temporal data locality, where better performance is achieved by

repeatedly accessing data while it is held in the higher levels of the memory hierarchy.

Space filling curves [17, 123], have recently been adopted in various applications to

enhance computation through data ordering. A number of orderings based on space

filling curves have been identified whose properties lead to variations in computation

performance. Their property of grouping related data into virtual blocks means that

the elements of a block can be held together in high level memory, if the block size is

aligned with the size of the high level cache. In addition, processing data along the path

of a space filling curve has a high potential for spatial and temporal data locality as the

data elements are stored in consecutively in memory and elements are located within



1.2 Problem Definition 3

the virtual block close to other data elements upon which their processing depends.

Molecular dynamics simulation (MDS) is a useful tool that uses a deterministic ap-

proach to simulate a molecular system by following the movement of particles and

their status at each time step of the simulation. The interaction forces and potential

energy of a molecular system depend on the adopted numerical model. In this research

the Lennard-Jones model [47, 72] is used to compute particle interactions, and decid-

ing which particles interact is a compute-intensive task that depends on the distance

between particles. In the Lennard-Jones model, particles that are sufficiently far apart

do not interact. However, particles that are closer may interact, and each particle has

a set of neighbouring particles with which it potentially interacts. Only computing the

interactions with these neighbouring particles reduces the computational complexity

for the inter-particle force computation.

GPUs have a complex memory architecture and a high level of dependency between the

hardware components. In addition, the application programmer has little direct control

over the scheduling of threads or the movement of data between levels in the memory

hierarchy. Therefore, application programmers are encouraged to follow best practices

in programming style that coerce the compiler and the runtime system into running

code efficiently, resulting in optimal utilization of the system architecture. NVIDIA

graphics cards and the CUDA programming language are used in this study. CUDA

is highly compatible with NVIDIA GPUs, as they are provided by the same vendor,

which can result in high computation performance. In addition, NVIDIA profiling

tools enable us to investigate the relation between the data locality properties of MDS

applications and the ordering of particles in the GPU implementation.

1.2 Problem Definition

The allocation of data in memory, the degree of dependency between different memory

locations, and the movement of data across the memory hierarchy, significantly af-
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fects application performance. In MDS applications, the generation of the neighbour

lists (discussed in 2) engenders a high degree of data dependency.The ordering of the

particles is based on which spatial bin they are located in, and in turn these bins usually

have a row-major ordering. For example, Fig. 1.1 represents a simple 3-dimensional

array of size 5 × 5 × 5 × 5 and an approximately spherical stencil of width 5 (for sim-

plicity). The yellow shading shows the bins that the bin with index 62 interacts with

for this stencil. The lower part of the figure shows how these bins are scattered in

the memory, and this scattering can degrade application performance because data are

fetched from the memory hierarchy in blocks. Consequently irrelevant data will also

be fetched and a larger number of memory accesses will be required to fetch the data,

compared with the case of consecutive data. Consecutive data have a high likelihood of

being loaded by one memory access, subject to other factors, as explained in Chapter

2, such as cache size, cache line size, and the caching policies.
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Figure 1.1: Simple example of 3-dimensional array with approximately spherical
stencil, and its representation in memory.

A limited number of research works have addressed the data locality properties of MDS
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and most previous studies have focused primarily on reducing the number of neighbour

list particles to make it, as close as possible, the same as the actual interaction list,

as will be seen in Chapter 3. Exploring the data locality properties of MDS enables

deeper understanding of the MDS computations and optimises their performance. In

addition, different data ordering have different characteristics that distinguish them.

Thus, their adoption lead, to differences in performance indicators in terms of execution

time and memory hierarchy utilization. This type of research can then be applied

to different types of application that might have different types of data dependency

relationships. Data locality properties also have a high dependency on the memory

hierarchy architecture, and therefore conducting this study on GPU architectures will

examine the approach to analysing various data orderings and their utilization of the

memory hierarchy.

Therefore, in this research, we will answer the following research questions:

• What is the impact of different computation stencils on the data locality proper-

ties of MDS applications?

• What is the impact of data locality on MDS applications implemented on GPUs?

• Do space filling curves (SFC) have better data locality properties compared with

conventional row-major orderings?

• How should data locality and performance analysis be conducted for GPUs?

1.3 Hypothesis

Increases in processor speed have not been accompanied by a commensurate increase

in memory speed. Therefore, to exploit a processor’s capabilities, the various levels

in the memory hierarchy must be efficiently utilized. Therefore, it is hypothesised

that data locality enhancements in an application lower the cost of data movement
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across the memory hierarchy of a GPU by optimising data reuse in the higher levels of

memory. This increases the likelihood of finding data in the first or the second level

of cache, which, in turn, reduces the latency of global memory accesses. Molecular

dynamics simulations have strong data dependencies as the force computation for a

particle depends on its neighbouring particles. Therefore, we study the properties of

various data orderings in the context of a molecular dynamics simulation on GPUs to

investigate the optimal data ordering for this type of application.

1.4 Aims and Objectives

The main aim of this thesis is to present the relationship between different data order-

ings and computation stencils, and their performance in molecular dynamics simula-

tions. It aims to provide a detailed analysis of the spatial and temporal data locality

properties for each of the adopted orderings. The efficiency of an ordering is not only

measured by the runtime of the application, but also by the properties of the stencil

used, and a detailed analysis of the memory profile. In doing this, the aim is to in-

crease knowledge of the data locality properties of molecular dynamics simulations on

GPU platforms.

In order to achieve our aims we conducted the followings:

• The implementation of the space filling curves data orderings.

• The implementation of the cache model to explore the data locality of the imple-

mented data orderings. This includes the analysis of the cubic and approximate

spherical relationship with implemented different orderings.

• GPU version of the Lennared Jones implementation and conducting the required

modification to the MiniMD version integrated with space filling curves data

orderings.
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• Executing the applications in two different GPUs and with various configurations

and simulation’s sizes.

• NVIDIA profiler is adopted for memory profiling and caompred with cache

model results.

1.5 Thesis Contributions

The main contributions presented by this thesis are:

• The data locality properties for different orderings have been studied from three

perspectives: the relation between a data ordering and an adopted stencil; the

execution time of the force kernel on GPUs; and, memory profiling using the

NVIDIA nvprof profiler. Most of the previous literature (as will be seen in

Chapter 3) does not considered all these prespectives and they are limited to

the execution time analysis. In regards to the GPU implementation and analysis

they did not utilize NVIDIA profiler. The relation between the stencil and data

orderings is not only valid for MDS applications but can be adopted for other

applications. Different stencils have a different relationship with each of the ad-

opted data orderings which requires to modify slightly our cache model.

• A GPU implementation of the Lennard-Jones force computation using CUDA,

without introducing complex data structures to ensure the alignment with the

original CPU version of the miniMD application. This principle enables a fair

comparison between the CPU and GPU implementations. A number of literature

adopted tree-based data structures which introduces additional overhead cost. In

our implementation the modifications to any of the adopted data orderings are of

cost O(∞).

• To the best of our knowledge, this is the first research which has been conducted

into the data locality properties of molecular dynamics simulations, especially
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for Lennard-Jones force computations on GPUs. The implemented cache model

and NVIDIA profiler with the adopted orderings have not been covered by any

previous literature. Thus, this will provide good understanding of MDS data

locality in GPU by using different data orderings.

• To the best of our knowledge, this is the first GPU profiling study for the Lennard-

Jones case to analyse the use of various levels in the GPU memory hierarchy. The

adoption of NVIDA profiler is not only shows how to utilize such tool as part of

MDS tool or any other applications but also to confirm the cache model analysis

and the experiments results how they are aligned.

• This work also acts as a framework for investigating the data localities of other

applications that cannot be readily tiled/blocked as independent data. The ap-

proach adopted in this research can be adopted as guideline to conduct perform-

ance analysis not only for MDS applications but with any other similiar applica-

tions that are implemented within GPU.

1.6 Thesis Structure

In this multi-disciplinary research, our thesis is structured as follows:

• Chapter 2 introduces background knowledge with regard to the concepts that are

used in the rest of this thesis. A general background to the concept of data loc-

ality is given, and issues and limitations are discussed in the context of a GPU

implementation. Space-filling curves are explained in terms of their geometric

and arithmetic representations. It also explains the different types of data order-

ings that are used in this research.The various orderings are: row-major, Hilbert,

Morton, hybrid Hilbert, and hybrid Morton. Molecular dynamics simulations

are introduced, and the main principles explained. The justification for using the

Lennard-Jones force model in our computations is explained. This chapter also
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provides details of the essential concepts and techniques surrounding the main

principles of molecular dynamics simulations. Parallel implementation models,

especially for general-purpose GPU architectures and programming models, are

introduced. The GPU architecture and CUDA implementation are described in

detail in order to understand the algorithm and the implementation chapter of this

research. Finally, key factors in terms of optimization and performance analysis

that need to be considered, and are adopted in this work, are identified.

• Chapter 3 presents a literature review conducted on all aspects of our study. It

shows the research that has been carried out to optimize the data locality from

the perspective of optimizing the computation and data order. The use of space

filling curves for data ordering enhancements in various applications is explored.

Data locality and optimization in molecular dynamics simulation studies conduc-

ted in this field are provided, especially in terms of their implementation on GPU

platforms.

• Chapter 4 clarifies the relationship between data orderings and an approximately

spherical stencil, which is widely adopted in various applications, especially in

molecular dynamics simulations. In addition, a simple cache model is used to

explore in detail the relation between our data orderings and the approximately

spherical stencil.

• Chapter 5 provides an overview of the miniMD implementation that is used in

our performance evaluations. Its various key modules and components are ex-

plained in detail, especially the Lennard-Jones force computation module, which

is used as part of our research to evaluate the impact of various data orderings.

Then we explain the implementation of our work and the modifications that have

been incorporated into the original miniMD implementation. The force compu-

tation module for full and half neighbour list force computations on the GPU,

and the ordering module, are the main modules that are described in this chapter.

• Chapter 6 describes all the various experiments, results and analysis that have
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been conducted in our research. In this chapter, the hardware used for conduct-

ing this research is described in detail. In addition, all the setup of the various

experiments, the simulation size, the data orderings, and the platforms used in

each experiment are identified prior to the discussion of the experimental results.

• Chapter 7 concludes the thesis, linking the thesis contributions to the relevant

chapters, and discussing this work’s limitations and making recommendations

for future work.

1.7 Summary

To sum up, our thesis is as follows: to study and analyse the data locality properties of

various data orderings for a molecular dynamics application implemented on NVIDIA

GPUs. In this chapter, an overview of our research and its hypothesis were briefly

introduced, and the aims and objectives of this work were described. In addition, the

research contributions and thesis structure were provided. The next chapter provides

more detailed information on the problem addressed.
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Chapter 2

Background

This chapter introduces essential background information about the concepts that are

used in the rest of this work. First, the concept of data locality is introduced, together

with its importance as one of the factors that impact computation efficiency. A general

overview of data locality obstacles, issues, and limitations will be presented. Specific-

ally, GPU data locality problems will be defined. Then, some of the solutions that have

been introduced in this field will be considered, before further details are provided in

the literature review (Chapter 3). After that, data orderings and their contribution to

data locality will be briefly introduced. MDS will be outlined, and the reasons for

performing a data locality study for an MDS application will be explored. A number

of simulation tools that have been investigated will be introduced, and the reason for

selecting miniMD in this dissertation will be explained. Introductory MDS works have

been performed on GPU platforms to investigate the key factors in maximizing GPU

utilization. Parallel computing is then broadly discussed, especially computation on

GPUs, which is a central aspect of this work. NVIDIA GPUs have been selected in

this work, and the reasons for this will be explained, together with their architecture

and features.
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2.1 Data Locality

Data locality, also known as the principle of locality, is the propensity for existing data

in high-level memory to be accessed repetitively before being expelled to a lower level

in the memory hierarchy. Two types of data locality are distinguished: spatial data

locality and temporal data locality. Spatial data locality represents how the data are

consecutively ordered in the memory such that consecutive instructions access a con-

tiguous data set, or in a thread-based implementation, the same instruction is applied

to consecutive blocks of data. This feature is based on the fact that the data are fetched

from low level memory into a high level memory in contiguous blocks known as cache

lines. This reduces the number of data fetches needed for each instruction. On the other

hand, temporal data locality, also known as reuse data locality, refers to the repeated

use of a specific data and/or resource by the same instruction, such as processing the

same single data item in a loop, or by other consecutive instructions that depend on the

same data. As with spatial locality, a high degree of temporal data locality reduces the

number of high latency requests for the same data from low-level memory, and as a

result improves the overall application performance.

A brief background on the general cache architecture will be presented in order to

identify the various memory components that affect computation performance. In ad-

dition, the next section will explore cache issues and identify various solutions, as well

as how these could be enabled. Then, ways of enhancing data locality will be intro-

duced, and related features and terminology will be discussed.

2.1.1 Cache Architecture

Rapid advances in processors (CPUs) and media has accelerated the movement of data

between different device components, and as a result has left hierarchical cache and

memory components as a bottleneck for achieving high computational performance.

The memory hierarchy varies from one architecture to another according to a number of
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factors, such as the number of memory hierarchy levels, their size, the bandwidth and

latency between levels, and the configuration policy that is applied. The top level of the

memory hierarchy has the smallest, fastest, and most expensive memory per bit, while

the largest, slowest, and cheapest memory per bit is at the bottom level [112, p. 12]. A

memory hierarchy, as shown in Figure 2.1, is the simplest and most widely used way to

evade the “memory wall" problem, defined by Wulf and McKee in [153]. For example,

the recent Intel Coffee Lake architecture (for core i5/i7 8000 series processors) has

six cores, each with an L1 instruction and data cache size of 32 KB, an L2 cache of

256 KB, and an L3 cache size of up to 2 MB per core (where the L3 cache is shared

between the cores by a ring based connectivity [5, 8, 23]). Intel has announced that the

size of all the caches will be doubled in the new Ice Lake microprocessor architecture,

which is scheduled to be on the market in 2020 [9]. Another factor affecting cache

performance is the cache replacement algorithm, also referred to as the cache policy.

The most common policies are the Random, Least Recently Used (LRU), Partial LRU

(PLRU), and Least Frequently Used (LFU) policies. Random replacement removes

an arbitrary block to insert a new candidate block. It does not record any information

about the request history, which is one of its advantages. LRU replaces the least-

recently accessed data in the cache with the new candidate, if the cache is full. This

process is maintained by using an age-bit to ensure the discarded block is the least-

recently inserted or modified data. PLRU is an approximation for the LRU algorithm

in which the access information is recorded by using a binary tree [73]. LFU records

the number of accesses to each block in the cache and the block with the minimum

number of accesses is discarded and replaced by the new block. Belady’s algorithm

is based on future data use, rather than on historical information, wherein the evicted

data are those which are not going to be used in the next instructions [136]. These

algorithms have trade-offs between miss rate and latency time as they have a high

dependency on the associativity degree.

Associativity organizes the cache blocks into S sets, such that S = B/N where B and

N are the total number of blocks and the degree of associativity, respectively. If the
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Figure 2.1: High level logical presentation of memory hierarchy

number of sets equals the number of cache blocks (i.e., S = B), then this case is known

as direct mapping. On the other hand, if the associativity is equal to the number of

blocks, then it is called a fully-associative cache. Otherwise, it is known as an N-way

associative cache [62, p. 482]. The advantage of this is to reduce the need to search

the full cache and optimize the cache utilization. In the fully-associative cache case,

a search for an address requires the full cache to be scanned. Thus, if the requested

data is situated at the end of the cache, all the preceding cache lines must be checked

to fetch the requested data, which results in a high latency. Thus, a higher degree of

associativity comes with the cost of increasing access time [112, p. 77].

The Translation Lookaside Buffer (TLB) is another type of cache that is located in

the memory management unit. The TLB records recent virtual or physical translated

addresses and, therefore, it resides between the processor and cache, or between differ-

ent caches levels, or between the CPU and main memory. Thus, an architecture may

have multiple TLBs. For example, in the Coffee Lake microarchitecture [5] the L1

data and instruction caches each have a dedicated TLB, and another is provided for the

L2 cache. In general, TLBs are fully associative as they are small, and TLB misses

are costly. In addition, various types of register are part of the CPU, varying from

architecture to architecture. Normally they are very limited in size, and have specific

functionality.
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2.1.2 Types of Cache Miss

Having defined the memory hierarchy in a simple way, the different scenarios in which

a cache does not fulfil a request will be described:

• A compulsory miss occurs the first time data in a block is requested starting with

an empty cache. Therefore, the data is not yet loaded into the cache, and is not

in the TLB either; nor is its value stored in any register. This is also known as

a cold start miss. There is nothing that can be done to reduce the impact of this

type of miss as the cache line and cache capacity are finite in size.

• A capacity miss occurs if the requested data or instruction is not available in the

corresponding cache and the cache is full. Thus, this necessitates removing one

of the cache lines currently in the cache according to the replacement policy and

inserting the new cache line.

• A conflict miss occurs when many memory accesses are mapped to the same

index set in a cache. The likelihood of a conflict miss increases with cache line

size, since the number of blocks within the cache is large. A fully associative

approach with a LRU replacement algorithm would eliminate conflict misses

[76].

• A coherence miss results from being unable to maintain the consistency between

various caches, especially in multiprocessing architectures and distributed sys-

tems [130]. For example, L3 caches are shared between the processors in the

Coffee Lake architecture, as mentioned earlier. Thus, data coherency is essential

to enable processors to load the recently updated data by any other processor.

L3 data coherency, consequently introduces other issues, such as identifying the

type of instruction accesses and preventing modification by different processors

at the same time. Serialization and scheduling of processor modifications to mu-

tually exclusive data requires a hardware and software implementation.
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2.1.3 Cache Use Optimizations

The memory hierarchy facilitates large data bandwidths by accessing multiple data

items in blocks and reducing the memory latency by enabling independent parallel

tasks between processors and various cache levels. However, there are still oppor-

tunities for optimising the use of cache in order to achieve high performance. Such

optimisation could require specific hardware and/or software features to overcome the

performance impact of cache misses. These can be categorized as: reducing the penalty

incurred by a cache miss; minimizing the number of misses; and reducing the number

of memory accesses [125].

The penalty of a cache miss refers to the cost in time during which a processor is stalled

waiting for the completion of a memory access [73]. In this scenario, the solution is fo-

cused on hiding the latency of loading the data from main memory into cache. This can

be done using a non-blocking (or lockup-free) cache that allows the processor to run the

next instruction assuming that next execution cycle does not involve the current missed

data. In fact, it can allow one miss or multiple misses known as “hit-under-miss”

and “miss-under-miss”, respectively. Therefore, this approach requires hardware and

compiler-optimizations to handle all the missed addresses, their destinations and data

dependencies, and to manage the data consistency due to various load and store misses,

especially within the same cache line. Prefetching is another approach, where the data

are loaded before they are needed. The prefetching might be triggered by hardware, or

by an instruction, or by a combination of both. In general, software prefetching meth-

ods are based on the compiler’s ability to analyse a program’s behaviour and predict the

required prefetching instruction as part of the program executable. On the other hand,

hardware methods utilize spatial locality or the access pattern of the executed program

dynamically (see [157] for a list of relevant hardware and software algorithms). One

of the challenges for prefetching methods is to fill the pipeline with prefetched instruc-

tions rather than instructions ready for execution. In addition, prefetching methods

may introduce too much overhead time.



2.1 Data Locality 17

The second factor is reducing the number of misses, which could be accomplished by

increasing the cache size, or by increasing the number of levels in the memory hier-

archy, or by using additional buffers between various levels. For example, Jouppi in

[75] proposed introducing three types of cache between the L1 and L2 caches: the

miss, victim, and stream caches. As discussed earlier, the replacement algorithm and

degree of associativity, if supported by the hardware architecture, can be adapted ac-

cording to the program benefits. In addition, compiler optimization is an essential

component in reducing cache misses, and this will be discussed in more detail in the

next chapter. A common compiler optimsation is to order the instructions to minimize

cache misses and to reduce data swapping between cache memory and registers. In

multithreading implementations, a competitive miss cache is one of the key concerns,

especially within shared caches [117].

Finally, access patterns, which are a focus of this work, are one of the important as-

pects that are in the hands of application developers and compiler designers. As com-

piler optimization contributes to reducing the number of cache misses, restructuring

of the instructions with the required data plays a part in achieving high performance.

In fact, improving the access pattern reduces the cache misses for various buffers and

the memory hierarchy. The access pattern exploits the locality of reference principle,

which has two aspects: spatial and temporal locality. Spatial locality refers to the

degree to which data that are close in the cache space are used by successive instruc-

tions in a consecutive approach. Temporal locality (also called reuse or intrinsic reuse),

refers to when data loaded into a cache are used repeatedly before being evicted . In this

situation, the number of dispatches and loads will be reduced and excessive accesses

to the lower cache levels are minimized. In addition, enhancing the access pattern can

expose parallelism by vectorizing loop iterations.

In order to ensure the access pattern has good locality of reference, the data layout can

be reordered so that the data are organized appropriately for an optimizing compiler.

For example, if a compiler orders matrices in row-major order then the corresponding
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data should be in row-major order. Similarly, if a compiler orders matrices in column-

major order, such as with Fortran compilers, then the data should be in column-major

order. Prefetching methods order the required instructions and data based on the prin-

ciple of locality of reference, and an algorithm’s efficiency is based on the instructions

and data orderings aligning for execution at the right time. Similarly, loop transform-

ation methods are intended to change the order of execution of loops so that data are

accessed with greater temporal locality.

There are a number of methods to enhance data locality, such as using sorting and

search algorithms and adopting various conventional data structures: queues, lists and

different types of tree (some of these methods will to be discussed in the literature

review in Chapter 3). Padding has been found to reduce cross interference of array

references [84]. However, if the padding is within an array it is normal to replace an

array of structures by a structure of arrays, and this results in filling the cache line with

data that is not going to be used. In addition, data merging from various data structures

into one structure is another approach to enhance spatial locality. Array transposition

can be applied for two-dimensional arrays, and has a similar result to loop interchanges,

and enhances data locality. Reordering the data into blocks or tiles has significant

spatial and temporal locality benefits, especially for parallel implementations.

In this work, the row-major, Hilbert (a space-filling curve), Morton and hybrid order-

ings are used to study the data locality properties of different orderings for molecular

dynamics simulations. Background information on space-filling curves and molecular

dynamics simulations is given in the following subsections.

2.2 Space-Filling Curves

The space-filling curve (SFC) was introduced by Peano as a continuous mapping of the

line segment [0, 1] onto the unit square, and this concept was then further developed by

Hilbert and Sierpinski. It is a significant tool used in various types of application, such
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as big data analysis [105], computer graphics, networking algorithms, and volume

slicing. It has been used to ensure a high level of data access coherency, wherein

data can be stored in memory in the traversal sequence furnished by the SFC traversal

pattern. This dissertation focuses mainly on the Hilbert and Morton orderings, thus in

this section the definition of a space-filling curve, its generation and related algorithms

and applications will be introduced.

2.2.1 SFC Definition

In general, a space-filling curve maps the multi-dimensional space (or multi-dimensional

data or key values) into a one-dimensional space (a single key value). Bader in [17,

p. 17] has defined it as follows:

Definition 2.1 (Space-filling Curve). Given a curve f?(I) and the corresponding map-

ping function: f : I → Rn , then f?(I) is called a space-filling curve, if f?(I) has a

Jordan content (area for n=2 or volume for n=3 , . . . ) larger than 0.

The definition above assumes that for a continuous curve, if there is a surjective map-

ping from I onto R such that the curve traverses all the points of the unit square (or

volume in three dimensions), then we call such a curve a space-filling curve. It should

be noted that the Morton ordering discussed below does not correspond to an SFC be-

cause it lacks the necessary continuity property. In terms of our general definition, a

SFC passes through all the various cell elements (coordinates) in the three-dimensional

space and labels them by a single index without missing any one of those cells. This

path represents the order in which those cells will be consecutively visited.

A SFC can be constructed based on geometric, grammatic, and arithmetic representa-

tions. The grammar case normally uses a geometric operation, which is adopted in our

work, (see 2.3). Basic geometric and arithmetic constructions will now be introduced

for generating Hilbert and Morton orderings.
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2.2.2 Geometric Representation

A Hilbert curve can be defined recursively in terms of a basic pattern, h1, composed of

three unit vectors, as shown in figure Figure 2.2. The second level Hilbert curve, h2, can

then be defined by geometric operations on h1. Similarly, the third level Hilbert curve

can be defined by geometric operations on h2 (see figure Figure 2.2). The geometric

operations used are translation, reflection, and rotation [106] Thus, it is possible to

construct hn from a previous curve hn−1 by using the sequence of operations given in

Table 2.1, where wn−1 denotes the width of hn−1. Note that w1 = 1 and wn = 2wn−1 + 1

Operation Operation(s)
Number

1 Rotate hn−1 by 90◦ anticlockwise about the origin and reflect in y-axis
2 Shift hn−1 by (wn−1 + 1, 0)
3 Shift hn−1 by (wn−1 + 1,wn−1 + 1)
4 Rotate hn−1 by 90◦ anticlockwise about the origin, reflect in the x-axis,

and then shift by (wn−1, 2wn−1 + 1)

Table 2.1: Construction of Hilbert curve hn based on previous hn−1 curve where
the edge length is maintained constant (without scaling down the next level to fit
the area of previous level). The last point in each of the first 3 component parts is
then connected to the first point of the next part.

Anticlockwise rotation by angle θ can be performed by using matrix notation as fol-

lows: x′

y′

 =

cos θ − sin θ

sin θ cos θ


x

y

 (2.1)

The reflections in the x and y axes can be performed using the following equations,

respectively: x′

y′

 =

1 0

0 −1


x

y

 , and

x′

y′

 =

−1 0

0 1


x

y

 (2.2)

As an example, consider the construction of h2 from h1, where w1 = 1 and h1 has ver-

tices {(0, 0), (1, 0), (1, 1), (0, 1)}. The first operation performs an anticlockwise rotation
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by 90◦ about the origin, followed by a reflection in the y-axis, as follows:

x′

y′

 =

−1 0

0 1


cos 90 − sin 90

sin 90 cos 90


x

y

 =

0 1

1 0


x

y

 =

yx
 (2.3)

The second operation is a shift by (w1 + 1, 0) = (2, 0). The third operation is a shift by

(w1 + 1,w1 + 1) = (2, 2). The fourth operation performs an anticlockwise rotation by

90◦ about the origin, followed by a reflection in the x-axis and a shift of (w1, 2w1 +1) =

(1, 3) as follows:

x′

y′

 =

 w1

2w1 + 1

 +

1 0

0 −1


cos 90 − sin 90

sin 90 cos 90


x

y


=

13
 +

 0 −1

−1 0


x

y

 =

1 − y

3 − x

 (2.4)

This approach is also valid for generating level h1 from the single coordinate point

h0 = (0, 0), and only requires that the width value be taken as w0 = 0 (as the length of

a point is zero). Further details of the matrices for shifting, reflecting and rotating can

be found in [85, p. 22, 23], where a general notation is provided.

Similarly, Morton order can be generated by using the operations provided in Table 2.2

to obtain the results shown in Figure 2.3. Obviously, all the operations are based on

shifting without any rotation or reflection required. It is worth mentioning that the

basic motif of the Morton curve shape can be presented in different forms, such an

“N” or various flipped “Z”-patterns, depending on the definition of the x and y-axis

orientation and direction.
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Figure 2.2: Each of of the Hilbert orders (h1, h2, and h3) is constructed based
on the predecessor pattern (hn−1) that is manipulated based on the defined opera-
tions in Table 2.1. The curve continuity feature connects all the points within the
defined Hilbert size.

Operation Operation(s)
Number

0 Shift mn−1 by 0, 0 (copy)
1 Shift mn−1 by wn−1 + 1, 0
2 Shift mn−1 by 0,wn−1 + 1
3 Shift mn−1 by wn−1 + 1,wn−1 + 1

Table 2.2: Morton geometrical operations for constructing mn based on the previ-
ous mn−1 pattern.

2.2.3 Arithmetic Representation

The geometric representation of a Hilbert or Morton ordering, based on [18, Chapter 4],

can be used to provide a mapping between a position, q, in the ordering and the corres-

ponding integer coordinate location. For example, in h2 in Fig. 2.2, the point at index

q = 4 along the curve corresponds to coordinate location (2, 0), assuming that indexing

starts at 0. A general arithmetic way of computing such mappings is required. For a

Hilbert curve the basis of this mapping is:

• A given coordinate location is represented in terms of nested intervals, such that
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Figure 2.3: Each of the Morton orderings (m1, m2, and m3) is constructed based on
the predecessor pattern (mn−1) that is manipulated based on the defined operations
in Table 2.2.

each interval is one of the four quarters of its parent interval.

• The index within the ordering is then found by applying scalings and the geo-

metric operations defined in Table 2.1 to the nested intervals representation.

Given an index space of size 2n × 2n, the nesting is expressed in terms of a quaternary

(i.e., base 4) representation of the fraction t = q/4n as t = 04.q1q2 . . . qn. Let h(t) be a

vector representing the coordinate position of t within the unit square. Then, as shown

in [18, Chapter 4], h(t) = Hq1h(t̃ ), where t̃ = 04.q2q3 . . . qn. Thus, h(t) is given by:

h(t) = Hq1 ◦ Hq2 ◦ · · · ◦ Hqnh(04.0) (2.5)

where h(04.0) = [0 0]′, and the Hqi represent the rotation, reflection and translation
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operations described in Sec. 2.2.2. The H transformations are:

H0 =

0 1
2

1
2 0


x

y

 H1 =

1
2 0

0 1
2


x

y

 +

1
2

0


H2 =

1
2 0

0 1
2


x

y

 +

1
2

1
2

 H3 =

 0 −1
2

−1
2 0


x

y

 +

1
2 − α

1 − α

 (2.6)

where α = 0.5/(wm + 1) and wm is width of the Hilbert pattern at the current depth

of recursion. These equations are scaled versions of the geometric transformations

introduced in Sec. 2.2.2. The scaling is necessary to keep all coordinate positions

within the unit square.

For example, suppose n = 3 so the index space is 8 × 8, and q = 56. Then t is the

quaternary representation of 56/64, which is t = 04.320, so t̃ = 04.20. Thus,

h(t) = H3 ◦ H2 ◦ H0

00
 = H3 ◦ H2

00
 (2.7)

= H3

1
2

1
2

 =

 0 −1
2

−1
2 0


 1

2

1
2

 +

3
8

7
8

 =

 1
8

5
8

 (2.8)

where the width of the Hilbert curve in applying H3 has been taken as 3. The value of

h(t) corresponds to the position (1, 5) in the representation of h3 in Fig. 2.2.

Computing the inverse mapping finds the parameter t corresponding to (x, y) on the

Hilbert curve, such that h(t) = [x y]T . First the quadrant, q, that the point lies in is

found based on whether 0 ≤ x < 0.5 and 0 ≤ y < 0.5. The quadrants are labelled as

follows:

3 2

0 1

The position within the quadrant q is then found by applying the inverse operator H−1
q

to the position, to obtain [x̃ ỹ]T = H−1
q [x y]T . This process is then repeated recursively.
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At each level of the recursion one quaternary digit of t is found, starting with the most

significant.

The inverse operators carry out the following transformations:

H−1
0 :=

x

y

→
2y

2x

 H−1
1 :=

x

y

→
 2x

2y − 1


H−1

2 :=

x

y

→
2x − 1

2y − 1

 H−1
3 :=

x

y

→
−2y + 2 + 2α

−2x − 1 − 2α


Similarly, the Morton order can be arithmetically represented by using the same concept

of Hilbert representation, but with different transformation matrices:

M0 =

 1
2 0

0 1
2


x

y

 M1 =

1
2 0

0 1
2


x

y

 +

1
2

0


M2 =

 1
2 0

0 1
2


x

y

 +

1
2

1
2

 M3 =

1
2 0

0 1
2


x

y

 +

01
2

 (2.9)

An alternative approach to Morton ordering is to express it as a manipulation of the

bitwise representation of the column and row array indices, (x, y), to give the Morton

index, k. For a 2n × 2n array of points k is obtained by interleaving the n bits of x and y.

For example, suppose n = 3 and (x, y) = (4, 5). Then 4 and 5 can be expressed as 100

and 101 in binary. Interleaving their bits gives 110010, so k = 50 as can be verified

from the plot of m3 in Fig. 2.3

2.3 Data Orderings

In computational molecular dynamics the simulation box is a 3-dimensional space and

is divided into cells. Each of these cells can be labelled (indexed) according to its pos-

ition in the simulation box. This section discusses how these 3-dimensional cells have
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been ordered in this work. Normally, the location of an item within a 3-dimensional

array of size M × N × P can be labelled by (i, j, k), where i is the row number, j is the

column number, and k is the slab number. For convenience, row, column, and slab dir-

ections can be associated with the x, y, and z axes, respectively; 0 ≤ i < M, 0 ≤ j < N,

and 0 ≤ k < P, are ordered in this work using linear (row-major), Hilbert and Morton

orderings. Consequently, an ordering is a bijective mapping function, O , from (i, j, k)

to a linear index, b, as follows:

b = O(i, j, k). (2.10)

where 0 ≤ b < MNP may be interpreted as the offset in memory, measured in number

of items, from the position of the first item. A memory address for an item can then be

formulated as follows:

ml = memory_base_address + b ∗ data_type_size. (2.11)

where ml, memory_base_address, and data_type_size represents the memory location

(address), the first element address of the defined array, and the data type size of the

array items, respectively, as shown in Figure 2.4. This is because the data in memory

is actually allocated in a one-dimensional array regardless of the size and number of

dimensions. The defined data ordering of an array affects the data layout in memory.

Ensuring that adjacent matrix elements are next to each other in memory significantly

affects the optimization of computations carried out on a regular spatial grid.

2.3.1 Linear Ordering

There are two common linear orderings: row-major and column-major order. The

row-major order is widely adopted by many recent compilers and is formalized as

OR(i, j, k) = j + (i + k ∗ ldx) ∗ ldy, where ldx is the maximum number of elements in

a row and is the offset between adjacent items in the column direction, and ldx∗ldy
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x

y

z

0
(0, 0, 0)

1
(0, 1, 0)

2
(0, 2, 0)

3
(0, 3, 0)

4
(0, 4, 0)

5
(1, 0, 0)

6
(1, 1, 0)

7
(1, 2, 0)

8
(1, 3, 0)

9
(1, 4, 0)

10
(2, 0, 0)

11
(2, 1, 0)

12
(2, 2, 0)

13
(2, 3, 0)

14
(2, 4, 0)

15
(3, 0, 0)

16
(3, 1, 0)

17
(3, 2, 0)

18
(3, 3, 0)

19
(3, 4, 0)

20
(4, 0, 0)

21
(4, 1, 0)

22
(4, 2, 0)

23
(4, 3, 0)

24
(4, 4, 0)

0 1 2 3 4

memory base address

O(i, j, k) O(M,N, P )

M × N × P -elements

Memory Representation

Figure 2.4: Example of 3-dimensional array labelling and memory representa-
tion. In this case, M = N = P = 5, and 0 ≤ i, j, k < 5 .

is the offset between adjacent items in the slab direction. For a row-major matrix,

if the number of columns, N, equals ldy, and the number of rows, M, equals ldx,

then adjacent items in the matrix are ordered contiguously in memory. Furthermore,

without loss of generality, it will be assumed that 3-dimensional array is cubical, so

M = N = P. Therefore, the row-major mapping is presented as follows:

OR(i, j, k) = j + (i + k ∗ M) ∗ M (2.12)

The corresponding column-major ordering swaps round the i and k indices. In fact,

each permutation of i, j, and k gives a different variant of the linear ordering, however,

we restrict our attention to the one defined by Eq. 2.12.

For a linear ordering adjacent items in a matrix are adjacent in memory with respect to

only one dimesion. Thus, for a matrix stored in row-major order, adjacent items in the

same row are labelled consecutively by Eq. 2.12 and so are adjacent in memory. How-

ever, sequential continuity is violated when moving in the column or slab directions.

In addition, blocked linear orderings can be constructed by dividing the matrix items

into a blocks of size m× n× p. Without loss of generality, it is assumed that the matrix

size in each dimension is an exact multiple of the corresponding block size, so the



28 2.3 Data Orderings

number of blocks is M/m× N/n× P/p. This approach provides two levels of indexing

for each dimension: an index for the block and an index within the block. This type of

ordering will be discussed in more detail in Section 2.3.4.

2.3.2 Hilbert Ordering

The Hilbert curve is a well-known example of a space-filling curve, and continuously

maps the interval unit I onto the unit d-dimensional cube, Q. Based on a geometric

generation process, in three dimensions a cube can be subdivided into eight equal sub-

cubes. Similarly, in two dimensions a square can be divided into four quadrants. For

the sake of clarity, Figure 2.5 illustrates each of the first four sub-squares divided into

four further smaller sub-squares, each of which has a length that is half that of the

parent square, so the area is reduced by one-fourth. In addition, the sub-squares are

connected by a pattern as a result of rotation and/or reflection of the parent square. The

continuity of the curve and sequential labelling of the derived sub-square is maintained

such that the exit point of each sub-square is the entry point for the adjacent sub-squares

along the pattern path.

0 1

23

(a)

0

1

3

2

4 5

67

8 9

101112

1314

15

(b) (c)

Figure 2.5: (a), (b), and (c) are examples for Hilbert curves generated for orders
n = 1, n =, and n = 3, respectively, and the number of labels is 4n .

In Figure 2.5, for n = 1, the first generated Hilbert curve takes the shape of A, although

the Hilbert curve could be initiated with alternative motifs such as t, u, and @. The
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choice of initial motif does not affect the recursive generation of the Hilbert pattern,

but it does have slightly different grammar rules. Furthermore, the Hilbert depth and

dimension defines the total number of labels, M = 2dn, where d and n represent the

Hilbert dimension, and recursion depth (level), respectively, and n ≥ 1. The relation

between Hilbert depth n and n − 1 can be represented by a quad-tree. A square with

index b of depth n divides into sub-squares that are indexed from 4b to 4(b + 1) − 1.

There are different approaches to represent the generation of a Hilbert curve. A Linden-

mayer system (or L-system) in terms of parallel rewrite rules [93, 118] is provided here

as an example of how to generate the Hilbert curve in Figure 2.5c as follows:

X → + YF − XFX − FY +

Y → − XF + YFY + FX − (2.13)

where F means draw a line segment with specific length, “+” means turn 90◦ right, and

“−” means turn 90◦ left. Applying these rewrite rules recursively generates the Hilbert

curve to the corresponding recursive depth. For example, applying the rewrite rules

once yields:

X → + (−F + F + F−)F − (+F − F − F+)

F(+F − F − F+) − F(−F + F + F−) + (2.14)

Another grammar-based representation proposed by Bader [18] denotes the motifs as

H = u, A =A, B =@, and C = t, respectively. Then, for each motif, the following

rewrite rules are defined:

H : A ↑ H → H ↓ B

A : H → A ↑ A ← C

B : C ← B ↓ B → C

C : B ↓ C ← C ↑ A (2.15)
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where the letters on the left side define the initial motif and the letters and arrows on

the right side give the corresponding rewrite rule for generating the Hilbert curve. The

arrows in the rewrite rule for a motif follow the motif shape from initial point to end

point. For example, Figure 2.5a is an initial motif represented by A and applying the

rewrite rule 2.15 produces Figure 2.5b. Recursively applying the rewrite rules 2.15

twice draws the Hilbert curve shown in Figure 2.5c, as follows:

A =⇒ H → A ↑ A ← C

=⇒ (A ↑ H → H ↓ B)→ (H → A ↑ A ← C) ↑

(H → A ↑ A ← C)← (B ↓ C ← C ↑ A) (2.16)

In a similar way, a 3-dimensional Hilbert curve can be drawn using rewrite rules of the

form given in Eq. 2.14 or 2.15, although they are rather more complicated than for the

2D case. For example, the following L-system generates a 3D Hilbert curve:

X → ∧ < XF ∧ < XFX − F ∧ >> XFX ∨ F

+ >> XFX − F > X− > (2.17)

where the meanings of the symbols are given in Table 2.3.

Symbol Meaning
F Draw line segment
+ Yaw 90◦

− Yaw -90◦

∧ Pitch 90◦

∨ Pitch -90◦

< Roll 90◦

> Roll -90◦

Table 2.3: Meaning of the symbols in the rewrite rule for a 3D Hilbert curve.

The mapping, OH, gives the index of the Hilbert order for each matrix element. Tracing

the 3D Hilbert curve path using the rewrite rule in Eq. 2.3 enables the tracking of

the corresponding (i, j, k) index in 3-dimensional space, giving the inverse of the OH
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mapping. In a 3D context, the symbol F means “increment or decrement the value of

i, j, or k, depending on the current orientation of the axes”. As an example the Hilbert

ordering for a 4 × 4 × 4 array is shown in Figure 2.6.

3

20

3

1

2

2

1

3

1

00

Figure 2.6: Three-dimensional Hilbert ordering for a 4×4×4 array. The index, b,
increases by 1 each time the red path passes from one location to another, starting
with index 0 at (0, 0, 0) and ending with index 63 at (3, 0, 0).

Using Table 2.3 generates six rotation matrices: yaw, pitch and roll 90◦ corresponding

to the symbols +, ∧ , < represented as follows:

Y =


0 1 0

−1 0 0

0 0 1

 , P =


0 0 1

0 1 0

−1 0 0

 , R =


1 0 0

0 0 1

0 −1 0

 (2.18)

where −90◦ rotation matrices corresponding to the symbols −, ∨, and >, are given by

YT , PT , and RT as follows:

YT =


0 −1 0

1 0 0

0 0 1

 , PT =


0 0 −1

0 1 0

1 0 0

 , RT =


1 0 0

0 0 −1

0 1 0

 (2.19)

The orientation of the axes is defined by a heading vector, H, and two other mutually

orthogonal vectors, denoted by L and U. These orientation axes depend on the first
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Hilbert pattern initialized. Initially, we set H, L, and U to form the orientation matrix

D, where they define its columns, as follows:

H =


1

0

0

 , L =


0

0

−1

 , U =


0

1

0

 , D =


1 0 0

0 0 1

0 −1 0

 (2.20)

The defined orientation can be mapped with the rewrite rule such that: a roll corres-

ponds to a rotation of 90◦ about the H axis; a pitch to rotation of 90◦ about the L

axis; and a yaw to rotation of 90◦ about the U axis. Therefore, according to the de-

sired recursion depth, the resulting string is processed from left to right, then by post-

multiplying the orientation matrix by the rotation matrix corresponding to the current

symbol. Thus, D ← DΘ, where Θ is one of the six rotation matrices. When an F is

encountered a line segment of length 1 is added to the path in the current direction of

H (the first column of D).

2.3.3 Morton Ordering

As with Hilbert ordering, Morton ordering uses a recursive method that requires M =

2m, where M is the number of items along an axis. First, we start with the two-

dimensional case of an M × M row-major array. Morton order is applied to this array

by dividing it into a M/2 × M/2 sub-array. This division is continued recursively until

m − 1 levels of recursion have been applied, at which point the sub-array size is 2 × 2,

as shown in Figure 2.7 .

In 3-dimensional space, the Morton ordering of an M×M×M array can be constructed

in a similar recursive way. In this case, the array is first divided in a 2 × 2 × 2 array

of blocks each of which is an M/2 × M/2 × M/2 sub-array in row-major order. This

approach is then applied recursively by partitioning each sub-array in the same way, so

that after m recursions sub-arrays of size 2 × 2 × 2 are achieved. Figure 2.8 illustrates
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r = 1 r = 2

Figure 2.7: The left-hand part of the figures is the original M × M array. The
middle part shows the result of Morton ordering to level r = 1. The right-hand
part of the figure shows the Morton ordering to level r = 2. In each recursion,
the size of sub-array is M/2r ×M/2r as shown by the shading which highlights the
division into sub-arrays. Each square is labelled starting from the top left corner
until the end of the bottom right corner.

an example of Morton ordering for a 4 × 4 × 4 array.
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00

Figure 2.8: Three-dimensional Morton ordering for a 4×4×4 array. The index, b,
increases by 1 each time the red path passes from one location to another, starting
with index 0 at (0, 0, 0) and ending with index 63 at (3, 3, 3).

Bit manipulation, is another way that is used to obtain the index, b, of a Morton or-

dering. Given a row-major array, the bits of the Morton index b for a given element at
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(i, j, k) is obtained by interleaving the bits of i, j and k:

km−1 jm−1im−1km−2 jm−2im−2 . . . k1 j1i1k0 j0i0 (2.21)

2.3.4 Hybrid Orderings

Hybrid orderings are constructed by splitting an array into sub-arrays such that each

sub-array is internally ordered by a specific ordering that may be different from how

they are externally ordered. Therefore, the 3D array of size M ×M ×M can be divided

into sub-arrays, each of size T × T × T , where M = 2m and T = 2t , then each item

within the sub-array can be sorted, for example, by row-major order, while a Hilbert or

Morton ordering can be applied between them (provided the number of sub-arrays is

the same power-of-two in each direction). The index, b, of the ordering consists of 3m

bits; the lower 3t bits are used to encode the ordering within each sub-array, and the

upper 3(m − t) bits encode the ordering between sub-arrays. In this scenario, the index

b for (i, j, k) can be calculated by finding out first which sub-array (i, j, k) belongs to

according to the ordering of sub-arrays. This involves manipulating the upper (m − t)

bits of i, j, and k. The relative index within the sub-array is obtained by manipulating

the lower t bits of i, j, and k.

Table 2.4 gives an example of some combinations of m and t bit sizes. The total num-

ber of elements generated is 23m. The number of elements within each sub-array is

computed based on the size of t bits, 23t. Thus, the number of generated sub-arrays

(sub-blocks) is 23(m−t). When the sizes of m and t are equal, the number of generated

sub-arrays is only one and the internal elements are ordered with row-major order in

this case.
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3
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1
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3

1

2
01
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Figure 2.9: Three-dimensional hybrid ordering by row-major and Morton for a
4 × 4 × 4 array. In this example, t = 1 and m = 2. Each sub-array consists of
23t items ordered by row-major, presented by the red line. The sub-arrays are
ordered by Morton ordering and sorted according to the black line path.

Internal Order Outer Order
Row-major ordering Morton-ordering

m − bits
Total

number of
elements

t − bits
Number of
elements

m − t
Number of
sub-blocks

1 8 1 8 0 1
2 64 1 8 1 8
2 64 2 64 0 1
3 512 1 8 2 64
3 512 2 64 1 8
3 512 3 512 0 1
4 4096 1 8 3 512
4 4096 2 64 2 64
4 4096 3 512 1 8
4 4096 4 4096 0 1
5 32768 1 8 4 4096
5 32768 2 64 3 512
5 32768 3 512 2 64
5 32768 4 4096 1 8
5 32768 5 32768 0 1

Table 2.4: Examples of the relation between the number of elements within each
sub-block, that are ordered using row-major, and the number of sub-blocks that
are ordered using Morton-ordering. Note, if m − t = 0 , there will be only one
block for which the elements are ordered using row-major ordering.
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2.4 Molecular Dynamics Simulations

Molecular simulation is a computational technique used to calculate the time depend-

ent behaviour of a molecular system in which aggregated molecules are represented

by particles. Each molecular system has it is own defined attributes and behaviour as

a function of time, such as the inter-particle force law, and particle trajectories. These

determine the thermostatic attributes of the system, such as its potential energy, temper-

ature, and pressure. In a molecular simulation, the particles interact and their location

evolves according to the laws of classical physics [2]. There are two techniques for mo-

lecular system simulation: dynamic and Monte Carlo simulation. Dynamic simulation

is based on Newton’s equations of motion using a time-stepping algorithm in which

time can be scaled from pico-seconds to nano-seconds. In addition, dynamic simula-

tion supports various thermodynamic, structural and dynamic properties. On the other

hand, a Monte Carlo simulation is based on a statistical ensemble using a random walk

algorithm in which there is no true analogue of time. The sampling method can be

user-selected and this approach also supports various thermodynamic, structural and

dynamic properties. The dynamic and Monte Carlo approaches are distinct from sim-

ulations that require in-depth atomic modelling in which quantum mechanics is used.

Such cases are based on the solution of the time-dependent Schrödinger equation us-

ing semi-empirical ab initio methods, or simplified approximation methods, such as

the Born-Oppenheimer approximation. Quantum mechanics is probabilistic as it cal-

culates the probability of a particle being at a certain place at a certain time [72, p. 27].

Molecular dynamics simulation (MDS) has been widely used in various applications,

such as biomolecules, electronic properties and dynamics, surfaces, liquids, and crys-

tal structures. There are a number of challenges in MDS, such as simulation run time,

simulation size, and how realistic the adoption of classical forces is within the defined

molecular system. Therefore, this dissertation focuses on molecular dynamics simula-

tion, with particular emphasis on run time issues.
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2.4.1 Main Principles

Given a set of particles with known positions and velocities, molecular dynamics sim-

ulations proceed through a series of discrete time steps. In each time step, the pair-

wise interactions between the particles determines the force on each particle, and each

particle is then moved under the influence of this force according to Newton’s Second

Law of Motion: Fi = miai, where mi is the mass of particle i and Fi is the force acting

on it, which induces an acceleration ai. Thus, given the initial state, S (t0), at time t0,

it is possible to evolve the system through a series of small time steps to find the state

at subsequent times: S (t0 + ∆t), S (t0 + 2∆t), and so on. The time step, ∆t, is chosen

to ensure the accuracy and stability of the method. In updating the system state, new

velocities and positions are found for each particle by integrating the equation of mo-

tion. Although the trajectories of individual particles may not be accurately computed

as the simulation progresses, the molecular dynamics method aims to ensure that the

macroscopic properties of the system as a whole are statistically correct [47].

2.4.2 Molecular Interaction

Molecular interactions can be categorized as being due to intramolecular and inter-

molecular forces. Intramolecular forces are between atoms within a single molecule or

compound, and include all types of chemical bonds. Intermolecular interactions rep-

resent the attraction or repulsion that acts between multiple molecules. Intermolecular

interaction is electrostatic in nature which results from the force between positively

and negatively charged species. In general, interactions can be classified as long-

range, where the interaction potential varies as the inverse of the distance between

the particles, and short-range, where the interaction potential decreases rapidly with

distance [132]. Examples of long-range interactions are electrostatic, induction and

dispersion interactions, while short-range interactions include exchange and repulsion.

In molecular mechanics (another term for molecular dynamics), particles relations are
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described in terms of “bonded atoms”, which have been deformed from some idealized

geometry due to non-bonded van der Waals and Coulombic interactions [65]. Thus,

the molecular mechanics “energy” of a molecule can be described in terms of the total

contribution of bonded and non-bonded interactions [29, p. 3] as follows:

Etotal = Ebonded + Enon−bonded

Ebonded = Estretching + Ebending + Etorsion + Eimproper

Enon−bonded = Evdw + Ecoulombic (2.22)

These contributions are illustrated in Fig. 2.10.
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Figure 2.10: Graphical illustration of interaction forces.

Bonded Forces

As presented in Equation 2.22 and Figure 2.10, the bonded potential energy is com-

posed of stretch, bend (also known as angle energy), dihedral (or torsion) contribu-

tions, which have an ideal form, and an improper dihedral contribution, which arises

from torsion between two different planes, for further details on their definitions and

their computation refer to [91, p. 48].
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Non-bonded Interactions

Non-bonded interactions are mainly used to mimic interactions arising from the elec-

tronic distributions surrounding different particles. These interactions, as mentioned

above, are intermolecular in nature. According to [70, p. 133], these types of inter-

action are supposed to be governed by quantum mechanics (due to the overlap of the

electronic clouds of two interacting particles), however there is no theoretical equa-

tion that can describe their interaction and therefore a number of empirical potential

functions have been introduced. As given in Equation 2.22, the two components for

non-bonded interactions are van der Waals and coulombic (electrostatic energy). Van

der Waals’ energy, Evdw, describes the attraction and repulsion between particles that

are not directly bonded [72, p. 34], and represents the non-polar part that is not linked

to electrostatic energy. Three empirical functions have been introduced for computing

van der Waals’ interactions: the Buckingham, Morse, and Lennard-Jones (LJ) poten-

tials. In our study, we focus on the Lennard-Jones potential, which is used to calcu-

late the long-range attractive interaction and short-range repulsive interaction between

particles. The LJ interaction energy between particles i and j is given by:

ELJ(RAB) =
Ai j

r12
i j

−
Bi j

r6
i j

(2.23)

where Ai j and Bi j are positive constants depending on the types of particles i, j (more

details about how to determine the values of A and B are given in [47, 72]). The

repulsive part of the LJ curve is produced by the r−12
i j term, and the attractive part by

the r−6
i j term. Therefore, this equation can be rewritten as follows:

E(r) = 4ε
[(
σ

r

)12
−

(
σ

r

)6
]

(2.24)

where r is the separation between the particles, σ is the separation at which the poten-

tial is zero, and −ε is the minimum potential, which occurs at r = rm = 21/6σ. Thus,
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for the Lennard-Jones potential the force is:

fi j(ri j) =
12ε
ri j

(rm

ri j

)12

−

(
rm

ri j

)6 r̂i j (2.25)

If the particle separation is greater than rm the particles are attracted, and if the sep-

aration is less than rm they are repelled. For brevity, we write fi j(ri j) as fi j, and since

ri j = r ji and r̂i j = −r̂ ji, it follows that fi j = −f ji, in accordance with Newton’s Third

Law. This can be used to reduce the number of computations needed to find Fi for

i = 0, 1, . . . , n − 1 by about 50%, since when fi j is calculated and added to Fi we can

also add −fi j to F j.

The LJ potential has a number of positive points that motivate its use as part of our

study compared to the other non-bonded computations, and these can be summarized

as follows:

• Buckingham has limitations in terms of short-range interactions.

• Buckingham overestimates interactions at short distances.

• r0 in the Morse case is larger, which may mean that more particles must be

considered in the computation.

• The Morse and Buckingham cases have three parameters as part of the calcula-

tion, while LJ employs only two.

• LJ removes the need to compute square roots in finding the distance between

particles due to the even powers involved in both terms of the interparticle force

computation.

• LJ was found to be the most commonly used function in most of the molecular

dynamics software that we have studied.

Finally, the coulombic potential energy (electrostatic potential energy), results from an
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unequal distribution of charges in a molecule. The interaction between two points of

charge is defined as follows:

Ecoulombic =
1

4πε0ε

∑
i j pairs

qiq j

ri j
(2.26)

where qi and q j are the charges on particles i and j, ri j is the distance between them,

and ε is the dielectric constant. Different electrostatic force calculations can be based

on assigning off-centre positions to the charges, or by considering higher moments,

such as dipoles, but they increase the computation complexity.

2.4.3 Periodic Boundary Conditions

Periodic boundary conditions (PBC) solve the issue of the infinite number of atoms in

the modelled molecular system. The boundaries are imagined as walls surrounding a

fixed number of particles, and it is assumed that the physical boundaries of the real

system are far enough away to not influence the bulk behaviour. PBCs should take into

consideration that a particle should not interact with its own periodic image. This will

be the case as the distance between a particle and its mirror image is large enough to be

able to ignore their interaction (although, in some models, their electrostatic interaction

may be hard to ignore). PCBs must also ensure that the pressure tensor does not contain

perturbations that have a wavelength longer than the simulation cell.

A number of simulation cell shapes has been proposed according to the structure of the

simulated molecular system. However, most simulations use cubic box boundaries.

2.4.4 Neighbour Lists

The Lennard-Jones potential energy computation (see Equation 2.23 ) involves only

those particles that are closer than the cut-off distance r0. Particles i and j are neigh-

bours if the distance between them is less than r0. Consequently, the number of particle
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interactions is reduced in the potential energy computation without compromising its

accuracy. However, identifying and managing neighbour particles for each particle in-

troduces new computation and memory storage requirements. In other words, to find

the neighbour particles for particle i requires (N − 1) comparisons with the remaining

particles to find which particles are within the cut-off distance, where N is the total

number of particles. Furthermore, particle i must store at least 4/3πr0ρ neighbour

particles. In addition, the neighbour list for a particle is required to be modified as a

result of particles moving out of the neighbour list of one particle and joining that of

another particle.

Verlet [140] introduced a neighbour table as a data structure to store neighbour lists

and to tackle the update frequency issue. The neighbour table manages all the particle

pairs that are separated by a distance of less than r0 + rs, where rs is small “skin”

distance. In this approach, updating the particles’ neighbour tables is conducted every

h time steps. Therefore, between neighbour table updates, the computation uses only

particles listed within the neighbour table without performing further comparisons of

distance measurements. This computation is valid as long as particles do not move

more than a distance rs, and (rs − r0) . nv̄h, where v̄ is the mean velocity and n is the

window size for neighbour table evaluation.

Other methodologies that are used for managing neighbour lists will be addressed in the

literature review in Chapter 3 as this topic is an important area for MDS optimization.

2.4.5 Thermodynamics

In molecular dynamics simulations, temperature should be held constant, however,

thermal energy may be generated due to an irreversible dissipation of mechanical en-

ergy. Therefore, a thermostat is needed to remove heat at the same rate at which it is

generated. A number of algorithms have been proposed to do this. Most thermostatic

controls used in MDS are based on controlling the thermal fluctuation velocities. The
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Nosé-Hoover thermostat is commonly used, and is based on the Nosé Hamiltonian

enhanced by a coordinate transformation:

ṙi =
Pi

mi
, (2.27)

ṗi = Fi − ζpi, (2.28)

ζ̇ =
1
Q

 N∑
i=1

pi · pi

mi
− N f kBT

 (2.29)

where ζ is a random Gaussian value with zero mean and variance of 〈ζ2〉 = kBT/M,

with M =
∑N

i=1 mi being the total mass of the system, Q is the Nosé mass, N f is

the number of degrees of freedom in an N-body molecular system, kB is Boltzmann’s

constant, T is the kinetic temperature, and N is the number of atoms.

2.4.6 Time Integration

After computing the force on each particle, the equation of motion is integrated to

calculate the new position and velocity of the particles. A number of algorithms have

been proposed to perform this integration, such as the leapfrog algorithm [141, p. 99],

which is based on calculating position at times t0 + n∆t and velocity at times t0 + (n +

1/2)∆t. The leap-frog integration scheme proceeds as follows:

vi(tn + ∆t/2) = vi(tn − ∆t/2) + m−1Fi(tn)∆t, (2.30)

ri(tn + ∆t) = ri(tn) + vi(tn + ∆t/2)∆t. (2.31)

Another well-known integration scheme in MDS is the velocity Verlet algorithm, which
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is derived from a Taylor series expansion of position r around time step t. The method

subtracts r(t−∆t) from r(t +∆t). The velocity Verlet algorithm is a variant of the Verlet

approach that does not integrate the velocity, but calculates it from the position using

the following finite difference scheme:

ri(t + ∆t) = ri(t) + vi(t)∆t +
1
2

ai(t)(∆t)2, (2.32)

vi(t + ∆t) = vi(t) +
1
2

[ai(t) + ai(t + ∆t)] ∆t. (2.33)

The velocity Verlet scheme has a discretization error ofO(∆t3) for the velocity, whereas

the discretization error for the standard Verlet scheme with a central difference calcu-

lation for the velocity is O(∆t2) [60, p. 38].

2.5 Parallel Programming

There are number of scientific phenomena and scenarios that are large in size (in some

sense), and so cannot be studied, simulated or solved by using one computer, regardless

of its hardware specification and architecture. As the speed of transistors increases so

does their power consumption, and some of this power is dissipated as heat, which

impacts on the reliability of integrated circuits [108]. This places fundamental limits

on the computational power of uni-processor computers. Therefore, it is necessary

to find an effective approach of aggregating computing resources to provide a unified

computing and memory space, thereby overcoming the limitations of a single hardware

resource. Modern processors often contain several power-efficient computing units

on one chip, each of which can execute an independent thread of control, and can

access the same memory concurrently. Thus, parallelism is becoming a common part

of many software products. Each single computing unit is called a core and the term

multicore is used to describe a processor that has several cores [137]. Flynn’s taxonomy
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[49] defines relations between instruction and data and classifies parallel architectures

into various categories: single instruction stream-single data stream (SISD); single

instruction stream-multiple-data stream (SIMD); multiple instruction stream-single-

data stream (MISD); and multiple-instruction stream-multiple data stream (MIMD).

In this section we will focus on the SIMD category, which the CUDA programming

model belongs to [42].

2.5.1 Memory Access and Process Synchronization

The major challenge in parallel programming is how to exchange data between the dif-

ferent processors, and how to synchronize changes carried out on the data with other

processors when they are working together on solving a common problem. Therefore,

there are a number of methods to use different machine resources depending on the

type of problem to be solved, and which obstacles must be overcome. For example,

memory intensive problems may utilize a shared memory model and CPU intensive

computations, or it may be neccessary to overcome resource limitations using a dis-

tributed systems model (sometimes referred to as a network model).

Shared Memory Model

In the shared memory model of parallel computing, which is considered an exten-

sion of the basic sequential model, multiple processors have access to a single shared

memory. Thus, each processor can execute its own local code and can exchange data

with other processors through the shared memory (also referred to as global memory).

Each processor is defined by an ID called the processor ID. This model can also split

into two different approaches: synchronous and asynchronous mode. In synchronous

mode, all the processors operate synchronously under the control of a common clock,

while in asynchronous mode, each processor operates independently [71].
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Distributed Memory Model

In the distributed memory model of parallel computing, the processors of the computer

are interconnected by a communication network and each processor has its own local

memory; there is no shared memory. Each processor can access its local memory easily

and quickly [129]. However, if it needs to access the memory of another processor, it

will need to communicate with the other processor through message passing. A number

of topologies have been proposed for the communication network that connects the

nodes of a distributed memory parallel computer. There is no topology that is optimal

for all parallel algorithms. However, many high performance computers use a 3D torus

topology. Synchronization between the different processors depends on the parallel

methodology adopted, such as the task farm approach, orchestration by a controller

processor, and divide-and-conquer and pipeline algorithms.

Hybrid Models

Hybrid programming models that combine shared and distributed memory techniques

have also recently become an effective approach to utilizing heterogeneous parallel

architectures that contain a mix of processor types. This can be achieved by using mul-

tiple programming APIs such as OpenMP or threads packages (such as Pthreads) [27,

p. 11] and the Message Passing Interface (MPI), to synchronize the computation with

processors within the same node (computer) or external nodes. Detailed examples of

OpenMP and MPI programming can be found in references [27] and [109], respect-

ively.

2.5.2 GPGPU Architecture and Programming

General purpose GPUs have emerged as the most cost-effective high performance com-

puting platform for certain classes of application. GPUs support the shared memory

model within the context of a many-core architecture. GPU architectures focus on
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instruction throughput and memory bandwidth to leverage the optimisation of execu-

tion throughput by adopting massive numbers and levels of threads. Thus, memory

access latency can be hidden by using fine-grain parallelism that allows computation

to be overlapped with memory accesses. Today, there are various GPU vendors that

have their own design and architecture and some of them provide programming inter-

faces to support their use in general-purpose computing. Open Computing Language

(OpenCL) has been proposed as a framework for GPUs, managed by the non-profit

consortium Khronos Group. OpenCL is intended for use in heterogeneous GPU applic-

ations [78, p. 1]. In this research, we have used Nvidia GPU hardware with Compute

Unified Device Architecture (CUDA), a parallel computing platform and application

programming interface (API) for the C/C++ programming language.

2.5.3 GPU General Architecture

To illustrate the typical architecture of a GPU, we are going to use the Maxwell (GM206)

GPU. Maxwell is not the latest Nvidia architecture, and was introduced in 2014. En-

ergy efficiency is one of the significant enhancements compared to earlier Nvidia ar-

chitectures, so that it is nearly twice as efficient as the Kepler GPU architecture[3].

Figure 2.11 illustrates the key components of the GeForce GTX 960 GPU. At a high

level, it is partitioned into multiple GPCs (Graphics Processing Cluster), where each

is composed of several streaming multiprocessors, also known as SMMs, and a Ras-

ter Engine. Each SMM consists of a single PolyMorph Engine, and can be seen as a

mini-processor responsible for multiple functionality, such as vertex fetching, viewport

transformation, handle attribute setup, streams output, and tessellation. Each SMM is

made up of multiple streaming processors (SPs), each containing multiple cores (in

our case, 32 cores per SP). The SPs support a multithreading execution mechanism

for SIMD or SIMT1 implementation (with a high degree of divergent branching), and

is aided by additional Special Function Units (SFUs) and Load/Store Units (LD/ST).

1SIMT=Single Instruction Multiple Threads
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SFUs are used to execute transcendental instructions, such as sine, cosine, reciprocal,

and square roots. LD/ST units are used to load and store the data required for thread

execution, and can perform one load or store operation per clock cycle. Each SP con-

tains 32 cores, 8 LD/ST units, and 8 SFUs, and each has a single instruction buffer,

warp scheduler, and register file, and two dispatch units. The L1 and texture caches

are combined in this architecture into a single unit, known as a Unified Cache of size

24 KB per SP (48 KB per SMM or 384 KB in total for all SMMs) [152]. In addition,

each SMM has 96 KB of shared memory. All SMMs share a 1 MB L2 cache and a dy-

namic random access memory (DRAM) controller through a crossbar interconnection

network.
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Figure 2.11: (a) The general GPU architecture of a GeForce GTX 960 (Maxwell
GM206). It shows two GPCs, 8 SMMs where there are two in each sub-unit. L2
Cache is shared by all SMMs, and one gigathread engine controls and manages
the distribution of computations between SMMs. (b) Shows the components of
each of the streaming processors [35, 152] .

The global memory, also known as device memory, is the GPU off-chip main memory.

It is the most accessed memory as the data that is copied from the host main memory
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are stored in this memory. The size varies from one product to another; in our case, the

size is 2 GB. The performance of global memory is mainly constrained by two factors:

raw memory bandwidth and coalescing degree, which is the extent to which the threads

in a warp access consecutive data in a memory transaction. A warp is the smallest unit

of scheduling on the GPU.

Local memory is not a dedicated physical memory space but rather a small portion

of the global memory. Generally, it complements the functionality of registers, and is

used when there are insufficient registers to store the required thread-local variables,

especially with large structures or arrays. The compiler may decide to spill registers

due to the limited number of registers that the hardware can provide to a kernel, or to

spill an array when their index is not a compile-time constant [44]. Register spilling

means that instead of being stored in registers data is stored in local or shared memory

that is slower to access. Therefore, most GPU architectures cache local memory into

L1 and L2 cache. However, for the Maxwell architecture local memory is only cached

in the L2 cache.

Texture and constant memory are other memories that reside on the GPU. Constant

memory (64 KB) is used to store constant data that is not modified by kernel execution.

Constant memory is cached by its own specific cache, known as the constant cache (8

KB per SMM). Similarly, texture memory is part of global memory and is buffered in

the unified cache.

2.5.4 CUDA Programming

There are a number of languages for performing general purpose computation on

GPUs, and these vary depending on the GPU manufacturer, the extent to which hetero-

geneity is supported, and performance and functionality considerations. OpenCL sup-

ports different GPU manufacturers such as AMD, Intel, and NVIDIA. Unfortunately,

OpenCL does not support GPU-to-GPU communication, and a GPU can communic-
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ate only with the processing node that hosts it and not with other processing nodes.

OpenCL supports both data and task-based parallel programming models, ISO C99

with parallelism extensions and the IEEE 754 specification. It can be configured for

use on handheld and embedded devices, and interoperates efficiently with OpenGL and

other graphics APIs [81].

OpenCL and CUDA [44, 34] provide a low level hardware abstraction and define a

framework for parallel programming in which many details of the underlying hardware

are exposed. It defines the platform model, memory model, execution model, and

programming model. The platform model defines the relation between the CPU and

GPU (or device), and how the architecture of the GPU maps to the API’s hardware

abstraction, such as defining how the streaming multiprocessor (“computing unit” in

OpenCL terminology) is divided into one or more CUDA cores (“processing elements”

in OpenCL).

The memory model describes the structure, contents, behaviour and management of

the memory. The memory model takes into consideration the definition of memory re-

gions, memory objects and their implementations, virtual shared memory and consist-

ency rules that define access, atomic/fence operations, and synchronization relation-

ships. The previous subsection described different memory spaces (device memory,

shared memory, constant memory). Figure 2.12 shows how the CUDA thread hier-

archy defines the access level per thread, block, and grid [34],[32, Chapter 5]. Thus,

global, constant, and texture memory are shared among threads within a grid. Shared

memory is shared among threads in the same thread block. Local memory and registers

are allocated individually and privately per thread.

The execution model [44, Chapter 4] defines the execution of the kernel that takes place

on a device, and the host program that executes on the host side (CPU). Additionally,

it controls the execution of commands, data transfer between the different memory

levels, and synchronization. The device code that is executed as a function on the GPU

side (known as a kernel) is first translated into an intermediate device language called
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Figure 2.12: Memory hierarchy sharing level with threads, blocks and grid, from
top left to right.

PTX (Parallel Thread Execution) and then converted into a binary code which can be

executed on the processing cores. The CPU code may be compiled using a standard

compiler. The Nvidia compiler is able to link both the CPU and GPU binary code,

which results in the ability to access the methods or share the data between them, (for

more details refer to [33]).

The programming model facilitates the optimal use of the GPU when writing a kernel

function, thus maximizing the concurrency of thread execution. In order to optimize

the usage of GPUs, the data are decomposed into small chunks of data (blocks) each of

which is processed by a block of threads, such that each datum in a block is processed

by one thread (this is generally best practice, although each thread can process more

than one datum). Therefore, as highlighted in the thread hierarchy model, a grid of

threads is composed of a number of blocks where each block consists of a group of

threads (recommended to be a multiple of the warp size which is usually 32 threads).

The total number of threads provided by the hardware specification constrains the max-
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imum number of active warps that can be scheduled simultaneously. The scope of a

thread’s access to different memory levels guides developers to cause the data that are

required to be shared at the block level to be stored in shared memory, while those data

required to be shared at the grid level are stored in the global memory. In addition,

the programming model guide the developers to be cautious in atomically accessing

memory and in synchronizing the threads within a block. GPUs also support stream-

ing execution, which is useful if the number of threads executing a kernel is small, such

as in an implementation of the data reduction problem.

CUDA has been found to perform faster than OpenCL due to its high compatibility

with Nvidia devices[79], and because of this OpenCL code compilation is done at run-

time. CUDA offers several APIs for programming, such as the runtime API, Thrust

API, and drivers API. In addition, these APIs can be called from a number of program-

ming languages, such as Python, Java, FORTRAN, and many others. Therefore, in the

research presented in this dissertation we adopted the CUDA programming language,

rather than OpenCL, as performance is one of dominant factors in our study. In ad-

dition, the hardware available to us are Nvidia GPUs. Thus, CUDA guarantees high

GPU compatibility as they are both provided by the same vendor.

2.6 Optimization and Performance Analysis

This section addresses the factors that contribute to optimal performance on GPUs,

depending on the hardware and the nature of the application implemented. Then, we

introduce the performance analysis methods that are adopted in this work.

2.6.1 GPUs Optimizations

Due to the massive parallel architecture of GPUs and the complexity of their memory

hierarchy there are a number of factors that affect the utilization of GPUs, especially
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with an irregular application that has a complex dependency between the data and their

manipulations. GPU performance-critical factors can be defined according to three

strategies. The first is to maximize the parallel executions which means to maxim-

ize the utilization of the available cores to use all the hardware resources. However,

each core executes one of the threads and might face a number of constraints on the

availability of hardware resources, such as the number of registers, data dependencies,

and bank conflicts in the shared memory. The second strategy is related to optimizing

memory throughput, by reducing the data transactions with low bandwidth memory,

such as copying the data between CPU and GPU or fetching data from global memory

or another memory space within the device memory (for example, local, texture, or

constant memories that are not cached or have high miss rates in accessing their cor-

responding cache). If the data required to be shared and synchronized are in the same

block level, then it is highly recommended to store these data in shared memory, be-

cause this enables both write and read with high bandwidth (normally equal to that of

the constant cache). However, shared memory space is limited and requires careful

access, otherwise it may cause a number of bank conflicts or may be subject to thread

race condition issues. As the nature of parallel programming is to deal with massive

data, most data is available in the global memory, as the use of the on-chip caches is

constrained by their limited size. Therefore, performing coalescent memory accesses

by the threads in a warp enhances performance significantly. However, it is limited by

the type and size of the data that are accessed, the transaction line size (128-byte cache

line), the computation capability, and the number of memory transactions that can be

executed per cycle. A third strategy is to maximize instruction throughput, which can

be accomplished by a trade-off between performance and computation precision, min-

imizing warp divergence due to flow control instructions in condition statements (such

as if or switch statements), and loop control conditions. Thread divergence, where the

threads in a warp follow different execution paths, significantly impacts GPU perform-

ance by serializing instructions and increasing the number of instructions per warp. In

addition, this issue has a high potential for creating scattered memory accesses among
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the threads within a warp.

A high level of spatial locality, whether data are stored in one of the caches or in global

memory, results in highly coalesced data access. Thus, the number of transactions per

access is minimized, especially if the data size and the cache line to be fetched are

aligned in memory. As a result, those factors offer significant potential for improve-

ment in the overall execution time of an application.

2.6.2 Performance Analysis

Evaluating the performance of an application often leads to significant outcomes in

terms of enhancing application development, and may provide valuable insights re-

lated to hardware design and optimization. In order to achieve the objectives of this

study, we are going to build a cache model to analyse the relation between the cache

model and the various data orderings that are adopted in this work. Then, we analyse

the execution time of these orderings for both CPU and GPU versions to measure the

application throughput and the ratio of the execution time taken by the CPU and GPU.

MiniMD collects the execution time of each module in its implementation, such as the

neighbour list time, communication time (for an MPI implementation), and the force

computation time. In addition, we will use the NVidia profiler, which provides very

broad information related to kernel execution on GPU platforms. NVidia profiling will

help us to understand the constraints on the execution of instructions and on memory

accesses. In addition, it will help us to evaluate the data locality properties by studying

various memory hierarchy components with our orderings. From a hardware perspect-

ive, we conduct these experiments with two different GPUs: a GeForce GTX 960 and

Tesla P100. More details of the hardware and the analysis carried out are provided in

Chapter 6.

The accuracy of the applications is compared with the original version and the provided

reference data that is part of the MiniMD package. Early GPUs had limitations in terms
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of double-precision computation, however, with most of the recent GPU hardware,

double-precision computation is supported.

2.7 Summary

This chapter has provided a background for all the components of our research: data

locality, space-filling curves, the methods used to generate the indices of data order-

ings, molecular dynamics simulation, GPU architecture and programming, as well as

a brief discussion of optimization and performance analysis. In terms of data locality,

we have explained why, in general, a memory hierarchy and its access policies has

a significant impact on an application’s performance. We have defined space-filling

curves and have shown how they can be geometrically and arithmetically represented.

This chapter also introduced molecular dynamics simulations, and the various types

of inter-particle forces was outlined. In the section on MDS, we focused on Lennard-

Jones force computations and the reasons for adopting this force model compared to

the other available models. We used one of our devices, an Nvidia GeForce GTX 960,

as an example of a GPU architecture and described the specification of this hardware.

In addition, we highlighted in summary, the CUDA programming language for NVidia

GPU hardware, and we explained why CUDA was selected in preference to OpenCL.

Finally, issues relating to optimization and performance that must be taken into consid-

eration in the implementation and analysis phase of our research was provided. This

will help in understanding the implementation and analysis chapters.
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Chapter 3

Literature Review

This chapter presents a literature review for all parts of our study. We shall explore pre-

vious work that has been done to optimize data locality in general, either by instruction

ordering or data ordering. Then we explore how space filling curves, in particular the

Hilbert and Morton curves, are generated and used to improve data locality in various

applications. In the existing literature we have tried to find any work that is similar to

the implementation and analysis that we have carried out in order to make a compar-

ison and to analyse the potential for enhancing our approach. Finally, this literature

review will present various relevant research studies that have been carried out in the

area of molecular dynamics simulation. Different perspectives will be considered, such

as general optimization for any platform, and then specific implementations that have

been conducted on GPUs. Finally we check if any of the existing research addresses

data locality issues.

3.1 Data Locality

In recent years, processor speeds have increased faster than memory speeds, so op-

timization for efficient memory hierarchy use has become a very important research

area. There are a number of literature studies exploring data locality issues on CPU

platforms that can be classified as instruction reordering, data reordering, or both. In-

struction ordering can be achieved by reordering the algorithm instructions in a way
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that allows consecutive instructions to reuse data while they are still in cache or re-

gisters. Loop transformation is an example of instruction reordering that reduces the

number of intervening iterations. Blocking [54] or tiling [149] have been used in-

tensively in numerical algorithms as a mechanism for instruction reordering. Most of

the tiling research focuses on loop transformation theory and proposes a number of

approaches to maximize multiprocessor parallelism.

3.1.1 Loop Transformation

Loop transformation is a technique for compiler optimization and automatic program

parallelization. The literature mainly explores data dependency in respect to the memory

hierarchy and its architecture. Most of the literature has focused on array-based optim-

ization of nested loops. There are a number of methods proposed which primarily rely

on reordering the nested loops or modifying the loop indices in association with their

initial and upper bound constraints. Examples of these methods are as follows:

• Loop fusion, which merges two loops into one loop as shown in Algorithms 3.1

and 3.2. This can be applied when the statements in both loops have the same

order of execution, assuming there is no dependency between the statements S 1

and S 2. Examining the data dependencies and memory requirements helps to de-

cide which loops and statements can be merged into one loop. Merging several

loops should ensure that memory is not displaced from registers and/or cache.

On the other hand, loop distribution, which is an opposite approach to loop fu-

sion, splits the loop body into multiple loops in order to perform an additional

loop transformation method on one or more of the loops. This can also expose

parallelism, and reduce register use.



3.1 Data Locality 59

Algorithm 3.1: Before Loop Fusion
1 for i = 1 to N do
2 S 1
3 end
4 for j = 1 to N do
5 S 2
6 end

Algorithm 3.2: After Loop Fusion
1 for i = 1 to N do
2 S 1
3 S 2

4 end

• Loop interchange (permutation), which is achieved by changing the order of

nested loops. The approach changes the execution order of blocks of iterations,

with the aim of optimizing memory access in the inner loop(s). Hence, data

accessed in the innermost loop has a higher chance of being available in the

cache or in a register, and are accessed in sequential order, while data accessed in

the outermost loop are less likely to be found in cache or registers. For example,

in matrix multiplication of size N × N, Algorithm 3.3 can be transformed into

Algorithm 3.4. The reason for doing this is, if the matrix data are stored in

row-major order, each iteration of the k loop requires data to be fetched from

the memory into the cache as one row of matrix b is larger than the cache size.

In contrast, in Algorithm 3.4, all the matrices are accessed by row so there is

no address jump as the data of the matrices (a, b or c) is accessed along a row.

The iteration over j is used to advance the column index for matrices b and c.

Therefore, in the innermost loop, most data accesses have a high chance of being

found in cache because the rows of the matrices are cached. This will reduce the

number of accesses to main memory and reduce the cache miss rate. With respect

to parallelism, the outermost loop could be handled by different processors and

the innermost loops could be executed by the corresponding processor.
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Algorithm 3.3: Before Loop Inter-
change

1 for i = 1 to N do
2 for j = 1 to N do
3 for k = 1 to N do
4 c[i, j] =

c[i, j] + a[i, k] ∗ b[k, j]
5 end
6 end
7 end

Algorithm 3.4: After Loop Inter-
change

1 for i = 1 to N do
2 for k = 1 to N do
3 for j = 1 to N do
4 c[i, j] =

c[i, j] + a[i, k] ∗ b[k, j]
5 end
6 end
7 end

• Loop Skewing, which is performed by changing the iterator bounds for at least

one of the loop iteration spaces so the shape of the nested loop is changed from

a rectangular to a trapezoidal access pattern. This method is normally used to

allow other transformation methods to be applied directly to deal with depend-

encies and the distance between two nested loops. It can also be used for loop

normalization by resetting the low loop bound to one (or zero).

Algorithm 3.5: Before Loop Skew-
ing

1 for i = 4 to N do
2 for j = i + 2 to N do
3 a[i, j] = a[i − 2, j] + b[i, j]
4 end
5 end

Algorithm 3.6: After Loop Skewing
1 for i = 1 to N − 3 do
2 for j = 1 to N − i − 1 do
3 a[i+3, j+ i+4] = a[i+1, j+

i + 4] + b[i + 3, j + i + 4]
4 end
5 end

• Strip mining, which fragments a large loop into smaller segments or strips. A

similar technique is called unrolling in which, rather than forming a new loop,

the instructions of the existing loop body are replicated. These chunks of com-

putations should be aligned with the cache size to optimize temporal and spatial

locality. Using the above example, Algorithm 3.4 can be strip mined by using a

strip width SW to produce Algorithm 3.7. The transformation does not change

the loop body instructions although it introduces two additional loops which are

called control loops. Strip mining is the basis for what is known as partition

space tiling or blocking.
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Algorithm 3.7: After Strip Mining
1 for kk=1 to N by S W do
2 for j j=1 to N by S W do
3 for i = 1 to N do
4 for k = kk to min(kk + S W − 1,N) do
5 for j = j j to min( j j + S W − 1,N) do
6 c[i, j] = c[i, j] + a[i, k] ∗ b[k, j]
7 end
8 end
9 end

10 end
11 end

There are many other methods and combinations of these techniques explored in the

literature. Performing a transformation is not an easy task as it is necessary to under-

stand the relation between the iteration space and the data dependencies while access-

ing these data through the memory hierarchy to decide the correctness of the applied

transformation. For example, in the loop skewing Algorithms 3.5 and 3.6, which are

similar to an example in [148], the i = 4 and j = 8 iteration produces the value to the

matrix a[4, 8] which, in turn, is used in computing the value of a[6, 8] when the iter-

ator values are i = 6 and j = 8. Using the transformation Algorithm 3.6, matrix value

a[4, 8] is obtained when i = 1 and j = 3, and that value is used to assign a value to

a[6, 8] when the iterator values for i and j are 3 and 1, respectively. Consequently, the

dependency distances before and after the transformation are (−2, 0) and (−2, 2) which

can be presented by dependency notation vectors as (<, 0) and (<, >), respectively. As

the direction vector is (<, >), this prevents loop interchange, if it is required for any

reason. Michael Wolfe has published a number of code transformation techniques for

implementing parallelism and data locality optimization [88, 146, 147, 149, 151]. Most

of this research has investigated the association between data dependency and parallel

or pipelined execution. Therefore, a number of techniques resulting from this research,

have been proposed, such as blocking or tiling, which can be used at different levels

of the memory hierarchy, such as main memory, caches and registers [145]. Tiling re-

orders the loop executions and reduces the number of intervening nested loops which

allows data to be reused while still in cache or in a register, and hence reduces memory
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access time. Tiling may also be used to initially reorder the data to be in consecutive

order, so they are processed in a way that is aligned with the loop order to achieve

optimal performance. Achieving tiling involves going through a number of primitive

transformations, especially in multiple dimensional tiling. This can require applying a

combination of transformation techniques, as in the research conducted in [149], which

proposes transforming the iteration space by using strip mining and loop interchange.

Similarly, Irigoin [106] has focused on defining data dependencies based on the de-

pendence cone. This work claims that a more accurate distance and direction summary

can be achieved, compared to the dependency vector method, due to the representation

reflected by the linear system model. This approach is very well suited to the need for

global parallelization as conducted by the hyperplane or supernode partitioning method

[69]. Moreover, as the loops are constructed by variables and constraints, they could

be expressed as affine transformations on integer sets defined by polyhedra, and the

new, transformed loops bounds can be computed using Fourier’s pairwise elimination

method [13].

A number of initiatives focus on translating an annotated C program into CUDA or

OpenCL for execution on a GPU; for example, as carried out by the Portland Group

[150]. This involves the adoption of loop transformations techniques and using dir-

ectives in parallel regions for GPU codes, in order to achieve high portability between

different GPU programming languages. Automatic transformation of nested loops for

GPU execution has been discussed in a number of studies, such as in [40, 138]. These

carry out the transformation based on uniform dependencies and balanced tiling. A

limited number of papers cover the transformation reduction operations and atomic

data access on GPUs.
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3.1.2 Drawbacks of Loop Transformation

Loop restructuring techniques focus on compiler optimizations, so programmers may

not be able to discover which of these techniques have been applied to their code. It

would be preferable to avoid unnecessarily restructuring loops by hand, as may happen

with commercial compilers that do not reveal their compiler’s code. Compilers could

change the instruction order and modify the implementation according to built-in op-

timization rules. The efficiency of loop restructuring techniques is generally lower for

just a single loop, especially in a parallel environment where partition spaces are re-

duced by at least one loop compared to the original sequential implementation. Most

loop restructuring methods can be applied with uniform data dependency. In addition, a

considerable amount of research focuses on loop transformation despite its difference

to the data dependency representation approach. However, critical sections, atomic

modification, and reduction issues, which are part of the partition space, have been less

fully explored with respect to loop transformation theories.

3.1.3 Data Order

A second approach to optimal use of the memory hierarchy is to order the data within

an array, rather than ordering the execution of the instructions, as explained in Subsec-

tion 3.1.1. The data ordering could be applied to a fundamental data structure, such as

an array, or based on more complex data structures. A third approach, used in irregular

applications, uses an index array to access data on different data structures, such as an

array, and has the form data[index[i]].

The canonical order, which is also referred to as a linear order, is mapped to the

memory in row-major or column-major order, according to the language and com-

piler used. Data are sorted in this order according to the nature of the application’s

dominant task. For example, if searching and retrieving a datum from an array is the

most significant and frequently-executed function, then the data are ordered based on
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their index values. Thus, there are various algorithms related to sorting which optim-

ize data access, such as quicksort [24, 97], bitonic merge sort [113] and radix sort

[67, 155]. Significant efforts have been made to implement these algorithms on GPU

platforms. For example, Satish et al. [127] has implemented a radix sort algorithm on a

GPU and their implementation was able to sort more than 100 million keys in a second.

A speedup of about 33.4% was achieved in [67] by empirically searching for the op-

timal alignment between the algorithmic parameters and the architectural features of

the hardware. Furthermore, Ha et al. [57, 58] have reduced the number of compar-

isons between the elements under evaluation and the next data elements in order to

enhance coalesced data access. In addition, shared memory is used for sum reduction

instead of using the global memory, which results in only one access to write the block

summation.

A non-linear data structure, such as a tree, can be modified to optimize access to its

data or to enhance locality. As an example, various types of trees have been proposed,

such as B-trees, quad trees, k-d trees, and AVL-trees [100]. These algorithms have

been extensively used in image processing, database management, data mining [133],

operating systems, networking services, and other applications demanding expeditious

search algorithms to allocate and access services or data. Most of these algorithms

were originally designed to divide the data into partitions or blocks that can be fetched

efficiently into the higher levels of memory. Normally, these partitions have a defined

affinity associated with them to fulfil the objectives for which the data structures were

created. In addition, they may provide other functionalities, such as insertion, deletion

and tree balancing (in the case of an AVL-tree). Although these algorithms maintain

data structure coherence, they increase the overhead of computations. Most of the liter-

ature assesses these algorithms based on their computational complexity and memory

usage. Investigation of these algorithms from a spatial and temporal data locality per-

spective has not been afforded much consideration.

Most tree-based sort and search algorithms process large amounts of data, so GPU plat-
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forms could accelerate these algorithms, especially if they contain many independent

calculations or tasks. However, mapping the tree structure into the memory hierarchy

of a GPU is a complex task. For example, inserting an element into a tree is not well-

suited for a GPU due to the difficulty of ensuring coalesced memory access [77]. Kim

et al. [82] address these issues by restructuring the tree to be aligned with the hard-

ware architecture of the GPU. They proposed the FAST algorithm which associates

page size and cache line size with the arrangement of data elements in the context of a

SIMD programming model. They have executed their algorithm on a GTX 280 GPU

and were able to process 85M search queries per second, which is around 1.7 times

faster than any previously reported performance.

In contrast to the row-major and column-major orderings, other orderings may make

use of a combination of different sorting algorithms and various data structures. This

type of non-linear ordering is mostly used when the data have a combination of vari-

ables to be sorted over, such as for a composite key (in database terminology). Also,

non-linear ordering is adopted for algorithms that are limited to a single data type, such

as integers. Therefore, the keys are normally sorted in a separate data structure and the

associated data may be optionally sorted according to the compromise between the

overhead to store the data and the latency in accessing the data. In this category, we

may identify hashing, space-filling curves, and any other algorithms that take the form

of data[ f (x)], where f (x) is a mapping function applied to the data. Hashing is com-

monly used in image processing for image comparison and matching. It overcomes

the limitation of float hashing by using its binary representation and string values by

using the image’s integer representation. Hashing supports injective mapping, where a

distinct value can be mapped into multiple sets/buckets without a hash value collision.

Hence it can be used for range search [121]. The first GPU implementation of a per-

fect hash algorithm [37] was conducted by Lefebvre and Hoppe [90]. A composite of

the perfect hashing and cuckoo hashing approach [110, 115] has been carried out by

Alcantara et al. [7]. Their results were compared with the outcomes of the GPU radix

sort from Satish et al. [127] and were found to have a similar construction time while



66 3.2 Space Filling Curve Algorithms

performing better in terms of lookup time. However, the composite hashing approach

uses about 40% more memory. In addition, a comparison with their own implement-

ation of a perfect hash approach [37] shows comparable lookup times, and is much

faster in terms of construction time.

One of the other alternatives for this type of ordering uses space-filling curves (SFC)

and literature pertaining to this is covered in the next section.

3.2 Space Filling Curve Algorithms

In the late 19th century, Peano proposed a continuous mapping of points within the unit

interval [0, 1] onto a subset of the unit square in Rd. In two dimensions this can be

viewed as projecting coordinate points arranged in a 2D 2n × 2n grid onto one dimen-

sion. This is an example of a space filling curve (SFC). Sagan [18, 123] has presented

an extensive study that is recommended for understanding space filling curves and their

applications. The study of space filling curves is an active field of research in various

application areas. For instance, the literature on Hilbert curve generation covers the

following approaches:

• Using a predefined initial value or a computation of a preceding state value, a

state diagram, or a predefined table of values [19, 89, 156]. The storage re-

quirement of this approach rises exponentially with the number of dimensions.

Similarly, tables of predefined values may be used to encode or map a point in

two dimensions onto the Hilbert value, as in [48, 94].

• Using only computation, which generates the Hilbert curve without using any

predefined values, as in [21, 22]. This approach enables the mapping of any

arbitrary ordinal point to its location on the Hilbert curve. In this approach, dif-

ferent implementation strategies have been proposed to find the optimal perform-

ance for generating the Hilbert curve, which can be classified into algorithmic
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and bit-manipulation techniques. The algorithmic computation has been imple-

mented using recursive and iterative methods, and more recently parallel imple-

mentations have been developed.

3.2.1 Hilbert Order

A comprehensive study of 3-dimensional Hilbert curves has been conducted by Haverkort

[63, 64, 122]. Haverkort’s work [63] examines a number of Hilbert curves and how

their various paths can be generated. According to Haverkort, there are a number

of curves that may have better data locality than the general Hilbert curve. This has

also been studied in earlier literature. There is a limited amount of research focusing

on multi-dimensional encoding/decoding of Hilbert curves. Lawder [89] proposed in-

verse mapping from n-dimensions and improved the encoding procedures suggested

by Butz [21, 22]. Chen et al. [28] proposed forward and reverse mappings based on

a replication process of the Hilbert square matrix rather than the bit-processing tech-

nique as proposed by Fisher [48], which is supported by a look-up table. Liu and

Schark [48] used rotation matrices and vector functions in their 3-dimensional Hilbert

encoding/decoding approach.

The Hilbert curve has been adopted in various applications as an approach to compress

multiple keys, weights, or data in order to search for, or store, the data. For example,

in database management where multi-dimensional points have to be sorted into a 1-

dimensional structure [43]. In addition, the Hilbert curve has been applied widely in

other application areas, based on the work conducted by Zhang [156], where it is used

to perform a fast scan of an arbitrarily-sized cuboid region with high computational ef-

ficiency. The Hilbert ordering has been used in solving partial differential equations as

carried out by Haase et al. [59], in which a fractal storage data structure is used to rep-

resent the sparse matrix in a matrix-vector multiplication. Their approach improves the

performance by about 15-20% compared to the compressed row storage format. The

implementation was conducted on a single CPU platform and compared with two dif-
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ferent machines having L2 cache capacities of 256KB and 1MB. In image processing,

McCool et al. [99] have used Hilbert ordering to divide and scan polygon fragments

through the edge equation evaluation approach to determine if all the corners are out-

side the region, in which case it can be skipped and the next block on the Hilbert path is

processed; otherwise the block is subdivided into quarters (octants in 3D). These quar-

ters are then processed recursively, performing corner evaluations until the recursion

is terminated once the desired fragment level is reached. However, this research was

limited to a single polygon and implementing the method on specific hardware results

in overhead from hierarchical searching. Sastry et al. [126] used Hilbert curves to order

mesh vertices and elements to enhance cache utilization in unstructured meshes when

solving a partial differential equation using the finite element method. This method

recursively subdivides a tetrahedral element into eight octants until all the elements are

covered in at least one of the octants, which are in Hilbert curve order. This approach

shows better cache utilization compared to the sparse-matrix partition and computation

algorithms that are normally used in such problems. A shared memory implementa-

tion using OpenMP was carried out on a 48-core multiprocessor system containing

four AMD Opteron 6174 processors connected by AMD Hypertransport links. This

reduced the time required to assemble the stiffness matrix and solve the resulting lin-

ear system by about 20%.

Feng et al. [46] generated a 2-dimensional Hilbert curve on a GPU using a matrix

iteration method and state diagram approach. This method compares the generated

Hilbert values using a built-in special function with matrix multiplications and rota-

tions. The former outperforms the latter when implemented on an NVIDIA GeForce

GTX 480 GPU. Feng et al. [45] have investigated GPU performance of 2-dimensional

Hilbert curve generation algorithms that are based on a block matrix iteration method

and a state diagram method. Hilbert order has been used in GPU applications, such

for information visualization [52]. Unfortunately, this research does not investigate the

impact of the Hilbert ordering compared with linear ordering.
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3.2.2 Morton Order

The literature on Morton orderings has been reviewed by Sagan [123]. The Morton

curve is simpler than the Hilbert curve and it changes from one dimension to another

every two steps along the path. However, the nodes at the end of a segment and the first

node of the following segment are not adjacent, as illustrated in Figure 2.3 (for clarity,

see m3), so there are long lines that link nodes between the four largest segments.

Morton encoding and decoding algorithms have been studied by Raman and Wise [120]

and are used to divide matrices into blocks for optimal use of the memory hierarchy.

Morton order has been used to construct linear quad-trees or to restructure matrices

into one-dimensional arrays [68, 131, 144].

Most of the literature on Morton ordering uses it to partition matrices into blocks

or tiles for mathematical applications. Athanasaki and Koziris [16] restructured the

memory layout of multi-dimensional arrays using binary mask operations in order to

improve cache use in tiled algorithms. In this study, some of the applications used in

their analysis were based on matrix multiplication, and others were based on data that

can be split into blocks that can be processed independently of other blocks. Similarly,

Lorton and Wise [95] analysed the advantages of using Morton and hybrid Morton

order compared with row-major order. Matrices are transformed into Hilbert order

by the OPIE compiler, [51] and the BLAS library [41] was used in executing on Op-

teron and Itanium hardware. The results for block matrix multiplication (defined as a

6-loop algorithm in their work) shows that Morton ordering performs twice as fast as

row-major ordering for a pure C implementation due to the reduced number of TLB

misses in the Morton case. The comparison also considered miss hit rates for L1 and

L2 cache, as well as TLB and page faults for the different orderings on both platforms.

Morton ordering exhibits better performance compared with other orderings, and a

hybrid Morton order shows excellent memory bandwidth for block recursive matrix

multiplication. Additional research has been carried out on Morton ordering, espe-

cially with multi-dimensional matrices in [16, 124, 142] to map the multi-dimensional
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iteration indices to the relevant data in linear memory.

Morton order is widely used in information indexing and sorting in big data and data-

base research. One of the main streams of research it contributes to is in searching

for near neighbours because the different dimension keys are used as factors for data

classification. Therefore, the row data are initially sorted according to their keys, and

then their group/block is sorted according to Morton order as in [83]. In addition, this

order reduces the computation complexity to that of approximate neighbour search al-

gorithms, especially for graph construction and geometry applications. For example,

Connor and Kumar [31] extended the Shift-Shuffle-Sort method [26], which was lim-

ited only to integers, to support float values. In this work, the input points are sorted

using the Morton order, which is also used to assess the partial solution validity by

comparing if the box boundary of the solution found lies within the lower and up-

per bound of the Morton block. It was found that the cache efficiency for Morton

ordering enhances the algorithm scalability to permit a larger size of point sets. The

study shows a lower cache miss rate, and less memory consumption, for graph con-

struction compared to the ANN library [104], which was modified for fair comparison.

Nocentino and Rhodes [107] showed that Morton order performs better than linear

order when segmenting regions for volume rendering. In addition, the Morton order

reduces the number of memory transactions. The Morton indexes are generated on a

GPU as in [120] and implemented as a kernel function in order to identify the block

that each thread should access and process. The study did not include any analysis of

the memory accesses. As the algorithm does not require any neighbouring information,

it improves coalesced access for caches where cache lines are aligned with the warp

size.
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3.3 Molecular Dynamic Simulations Optimizations

Most optimizations of molecular dynamics simulations, especially for non-bonded in-

teractions, have focused on a combination of two approaches. The first minimizes the

neighbour list so it is closer to the actual interaction list. This reduces the number of

distance computations between particles and lessens the number of comparisons with

cut-off radius (rc) as shown in Figure 3.1a. The second approach is related to how

data is represented, generated and accessed in the neighbour list. Of course, in paral-

lel computation, additional optimizations are introduced to match the execution of the

application with the hardware architecture and capabilities.

i

rc

(a)

i

rcrs

(b)

i

rcrs

lc

(c)

Figure 3.1: (a) shows the neighbouring particles that are within the cut-off dis-
tance rc. The neighbour list must be modified every time step as a particle might
move across the perimeter of the circle; (b) shows the search radius (skin radius)
as introduced by Verlet; and (c) shows the linked-cells obtained by dividing the
simulation box cells with edges of length lc = rc .

The force computation for non-bonded interactions has complexity O(n2) using brute

force computation. However, in the Lennard-Jones case, the interaction force between

two particles, fi j, that are a distance larger than the cut-off length apart (ri j > rc) is

not computed (set equal to 0), as shown in Figure 3.2. Computing the distance and

comparing it with the cut-off distance still has O(n2) complexity. To exploit the LJ

property, Verlet proposed in [140] a bookkeeping device known as the Verlet table and

a “skin” depth (rs) added to the cut-off distance. The value of rs should be set large

enough to guarantee the accuracy of the neighbour table, but small enough to make
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the table size manageable. Sutmann and Stegailov [134] mathematically modelled the

values that should be assigned to rs and the time to reconstruct the Verlet table, which

is influenced by the particles’ velocity and the simulation time step δt .

The second conventional method to reduce the number of distance and force computa-

tions is known as the linked cell method, which partitions the simulation domain into

cells [10], as in Figure 3.1c for a 2-dimensional domain. The cell edge length is set

equal to rc, and so to build the neighbour list for a particle i requires all particles to

be examined that are in the same cell as particle i and the other 8 neighbouring cells

(26 in three dimensions), subject to the application of periodic boundary conditions.

The neighbour list and link cell algorithms each have their own advantages and disad-

vantages. While the linked cell algorithm improves the construction of the neighbour

list, on the other hand, it increases the number of particle pairs that are checked to see

if |ri − r j| < rc in the force computation. Therefore, there is an inverse relationship

between the cell edge length and the time interval after which the neighbour list must

be rebuilt. That is to say, if the edge length is too small, the neighbour lists will have

to be rebuilt more often. In addition, reducing the cell edge size increases the number

of cells involved in the force computation for a particle and consequently increases the

memory requirement. The impact of the size of lc was analysed in detail in [134] and

[98] in which an approach was also defined to find the neighbour cells for each cell at

the beginning of the simulation, based on adding the relative cell index offsets to the

cell grid index.

A comparison between the two algorithms has been conducted by Li et al. [92], which

focuses on simulating the gravity-driven collisions in a granular pile consisting of

multi-diameter particles. It was found that the Verlet table simulation time was less

sensitive to variations in the search radius, rs, than to changes in the reconstruction

interval time. However, for the linked cell algorithm, using a longer reconstruction

interval time results in wide variations in the simulation time. The memory access pat-

tern shows a zigzag path, and overly long update times cause the simulation to crash as
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Figure 3.2: Example of LJ curve generated with ε = 157, σ = 3.9 and incremental
time 0.124. rmin is the distance where the potential reaches the equilibrium position
of the two particles.

the neighbour lists become out-of-date. In general, although the Verlet table algorithm

is more efficient in simulating systems that have a small number of particles with low

mobility, the linked cell approach is better for large systems with high particle mobility.

3.3.1 MDS Optimization Based on Reducing the Neighbour List

Size and Update Frequency

Yao et al. [154] improved the neighbour list reconstruction interval for the linked cell

algorithm by defining a flag (called the “dirty flag”) per cell. If a particle’s accumu-

lative displacement is larger than the cell edge length, lc, the cell flag will set to true

to indicate that the neighbour list of the corresponding cell must be updated. After

the reconstruction is completed, the dirty flag is set back to false. The proposed al-

gorithm reduces the total number of cells involved in neighbour list reconstruction. In

addition, partial updates and data ordering are introduced into the improved algorithm.

The results show that in both cases (single and dual-processor), the improved algorithm

outperforms the conventional Verlet and linked cell algorithm, especially for large sim-

ulation sizes. Although data ordering was adopted, they did not give any performance

analysis related to the cache hit rate, and there was no evidence regarding whether the
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boosted performance was due to the partial updates or to the data re-ordering.

Gonnet has performed a number of research studies to enhance the conventional neigh-

bour list algorithm. In [55], the size of the neighbour lists was reduced by project-

ing particle positions in neighbouring cells onto the normalized vector #»r extending

between the cell centres. This projection is carried out using the dot-product definition

( #»a .
#»
b = | #»a ||

#»
b | cos(θ), where a is the vector between particle i and particle j, and b

is the normalized vector #»r /| #»r |). In addition, the particles in the neighbouring cell are

shifted by subtracting the length of the cell edge from their position. Important issues in

this research are the overhead cost of projection and the sorting of the neighbour lists.

The complexity of the sorting algorithms led Welling and Germano [143] to replace

the sorting approach with optimal sorting networks [20], which extended the number

of particles involved in each linked cell list from 10 to 16. However, the overhead cost

of the proposed algorithm compared to the overall cost was not provided. Ignoring the

order of the cells in building the interaction lists affects the data locality and overall

simulation performance. If the overhead cost is not an issue, then this research can

be expanded to project all the neighbour lists, especially for the 3-dimensional case,

onto a spherical surface centred at the middle of the cell containing particle i which,

in turn, will cover all the neighbouring cells and their order is based on the distance of

the projection of their particles projection from the centre point.

3.3.2 MDS Optimization Based on Re-ordering

Meloni et al. [102] have proposed a re-ordering algorithm based on the linked cell

method to improve locality of reference that re-orders particles based on transforming

the sparse interaction matrix into a banded matrix. Element (i, j) of the interaction

matrix is 1 if particle i interacts with particle j, and is 0 otherwise. Re-ordering may be

performed by the reverse Cuthill-McKee (RCM) algorithm based on the Verlet table,

but this has drawbacks related to loss of locality and excessive computation. However,

the solution proposed by Meloni et al. is based on the linked-cell approach; particles
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in the same cell are labelled consecutively and cells are ordered in row-major order.

Meloni et al. found that this ordering produced a higher degree of clustering in the ele-

ments of the interaction matrix compared with the RCM algorithm, thereby improving

data locality and performance.

Luo and Liu [96] sought to improve data locality by storing, for a given cell, Ic, the

position data of all particles in Ic and its surrounding cells in a temporary array. This

is similar to creating a temporary neighbour list for a cell, rather than for individual

particles. Its effectiveness is determined by the trade-off between the overhead in cre-

ating the temporary list for each cell and the performance gain from the improved data

locality.

Gonnet [56] addresses the large memory requirements of storing a neighbour list for

each particle by means of pseudo-Verlet lists, which is a separate array per cell. This

approach is similar to the methods presented in [98, 154]. Particles are processed by

cell, with particles in one cell interacting with those in neighbouring cells. The con-

struction of a pseudo-Verlet list involves sorting particles in each pair of neighbouring

cells along a line connecting their centres. These sorted lists, based on a combination of

quicksort and insertion sort, are then used to determine if two particles interact, rather

than using traditional neighbour lists that store every potentially interacting pair of

particles; in fact, the storage requirement for pseudo-Verlet lists in three-dimensional

simulations is only 13 times the number of particles. Although the approach resolves

the memory conflict issue, its efficiency is reduced as the simulation system has high

density which requires additional memory bandwidth to load the pair-wise Verlet list.

Furthermore, the study does not cover memory analysis, nor the probability of idle

threads in relation to the increase in involved cores, where the number of idle threads

is expected to increase as the pairs in the list are consumed in the computation.

Meel et al. [139] and Anderson et al. [15] were among the first researchers to fully im-

plement molecular dynamics simulations on a GPU using CUDA. The former focused

purely on the implementation itself and the generation of random numbers. Their im-
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plementation was limited to the use of the shared memory, which impacts the size

of the linked cell. In addition, they did not resolve the issue of thread synchroniz-

ation. Their performance analysis is limited to a comparison between the CPU and

GPU implementations. Performance results are presented for Lennard-Jones fluids

and polymer systems, and show that GPUs are a cost-effective alternative to the use

of CPU clusters. They also use a Hilbert ordering for particles, which was found to

reduce execution time in comparison with randomly ordered particles. However, this

research has a number of limitations, such as the simulation size being small (up to

125, 000 particles); memory analysis and CUDA profiling are not presented; the use

of synchronization and shared memory might impact the overall performance due to a

trade-off in avoiding memory conflicts and race conditions; and finally, the algorithm

has a number of conditional statements that may drive the threads to suffer from diver-

gence issues. More recently, Tang and Karniadakis [135] have developed an optimized

molecular dynamics simulation code based on the LAMMPS application. This hybrid

parallel code uses MPI on the CPUs, and each MPI process handles a single GPU.

Cells, and particles within the cell, are indexed in Morton order. Streaming is used

to hide the latency of communication between CPUs and GPUs, and of kernel launch.

Shared memory and a warp-centric programming model is used on the GPU to enhance

performance. Analysis mainly covers the speed-up and data locality that was achieved

by the proposed method based on Morton ordering. In addition, the performance res-

ults were not compared with previous work using other sorting methods.

The GPU performance of molecular dynamics simulations with Tersoff, embedded-

atom model, and Lennard-Jones potentials have been compared by Minkin et al. [103].

Their implementation uses OpenCL, and computes neighbour lists and particle forces

on the GPU. However, it is not clear how frequently the neighbour lists are updated,

and the number of particles considered (up to 16000) is smaller than the simulations

conducted in this dissertation.

The use of Hilbert and Morton orderings to enhance data locality for molecular dynam-
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ics and other irregular applications has been investigated by Mellor-Crummey et al.

[101]. Their simulated results for a uni-processor workstation show that reordering

both the data and computations using a Hilbert curve can significantly reduce the num-

ber of L1 cache, L2 cache, and TLB misses, thereby reducing the number of execution

cycles.

Kunaseth et al. [86] have investigated how the data fragmentation ratio, N f rag, defined

as the fraction of particles in a molecular dynamics simulation that have moved out

of their original cell, affects the number of data translation lookaside buffer (DTLB)

misses. At the start of the simulation the particles in a cubical cell of size r0 are sorted,

so they are contiguous in memory and N f rag = 0. However, as the simulation pro-

gresses some particles will move out of their original cell, causing N f rag to increase.

This effect is more marked at higher temperature. Kunaseth et al. show that in a low

viscosity liquid the value of N f rag and the DTLB miss rate both increase with the num-

ber of times steps, which accounts for the increase in execution time per time step.

The use of Hilbert and Morton ordering for cells is also considered, but was found to

make little difference to the execution time on the Intel Core i7 processor used in their

experiments. Kunaseth et al. also show that there is an optimal frequency of particle re-

ordering, which depends on temperature. The experiments have been carried on silica

material and the combustion of aluminium nanoparticles, but the force field method

used in the simulation is not described.

An alternative to the stencil-based approach to building neighbour lists has been pro-

posed by Howard et al. [66]. They make use of a linear bounded volume hierarchy

(LBVH) for computing neighbour lists, which partitions nearby particles into axially-

aligned boxes. These boxes are then enclosed in increasingly larger boxes to form a

hierarchy, which can be represented by a tree. When building a particle’s neighbour

list certain branches of the tree can be ignored because the corresponding boxes are

too far apart. Howard et al. compare GPU implementations of the stencil and LBVH

approaches to building neighbour lists, and found that the latter is significantly faster
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for colloidal systems characterised by large size disparities.

Another alternative to the stencil-based approach is to manage the neighbour list by

using an octree, which has been adopted specifically for long-range interactions such

as in free energy modelling on GPUs [25]. This is based on a force field approxim-

ation approach, as described in [29, 30]. The Octree Pairwise Approximation (OPA)

algorithm has been customised with a user-defined parameter ε that determines if the

computation should be carried out with an approximate or an exact approach, or to

select which resource (CPU or GPU) to run the computation on. The octree was found

to provide more data locality, outperforms the exact force computation, and is more

memory efficient than the use of neighbour lists. The OPA algorithm has been im-

plemented for multiple GPUs and allows a trade-off between accuracy and simulation

time. Analysis of the memory and cache utilization has not been addressed in this

work.

Jiang et al. [74] have proposed the use of asynchronous data transformations to accel-

erate the task of reordering the data in irregular dynamic applications. This is done by

using a helper thread to analyse the interaction list (this is a list of pairwise interactions

between particles). Based on this analysis, the helper thread provides a new particle

ordering to the master thread, where most of the computation takes place. The helper

and master thread are coordinated through a shared variable protected by a lock. To

ensure program correctness, the actual reordering of particles is done by the master

thread after a new ordering has been determined by the helper thread. Likewise, the

helper thread will start to analyse the interaction list after a new one has been made

available by the master thread. This approach hides some of the overheads associated

with data ordering. Jiang et al. also demonstrated the use of a GPU in performing data

transformations. They view the data locality optimization problem as a graph parti-

tioning problem. Particles correspond to nodes in the graph, and those that interact are

connected by an arc. The partitioning algorithm places nodes in clusters containing

nodes that are close in the graph topology.
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Glaser et al. [53] have shown good GPU scalability on up to 3375 GPUs nodes for

Lennard-Jones and dissipative particle dynamics simulations of up to 108 million particles.

They have reimplemented the traditional MPI decomposition (the CPU-based code of

Plimpton [114]) in a multi-GPU implementation. They use GPU-aware MPI to com-

municate data, especially ghost particles, between the GPUs without copying the data

via the CPU. The traditional MPI version requires only six communications between

the neighbour nodes, typically for large amounts of particle data. In the implement-

ation of Glaser et al. each MPI process communicates directly with all 26 neighbour

processes using non-blocking messages. In addition, mapped and pinned memory have

been used to provide higher bandwidth and to overlap computation and data transfer.

In order to achieve efficient particle exchange, each GPU sorts the particles according

to the MPI rank of the destination and the buffer boundaries are defined according to

the number of particles for each rank. They have compared host-memory MPI, GPU-

aware MPI, and GPUDirect RDMA communication methods. The performance results

for single-precision and double-precision are best for host-memory MPI and GPUDir-

ect RDMA, respectively.

Hardy et al. [61] have implemented a GPU-based algorithm for electrostatic poten-

tials by using the multilevel summation method (MSM) based on the splitting and

interpolation strategies introduced in the Multiple Grid Method [128]. This approach

enables the CPU to control the work assigned to the GPU, and enables the computation

of electrostatic potentials for one million atom systems within a few seconds. MSM

can be used for short-range and long-range lattice cutoffs, and also supports boundary

conditions with no cutoff. Other algorithms that are often used with electrostatic po-

tentials are the Particle Mesh Ewald (PME) and Fast Multipole Method (FMM). The

Hierarchical Charge Partitioning (HCP) approximation has been proposed in [11, 12]

to speed up computation of pairwise electrostatic interactions based on an approxim-

ation to the natural partitioning of biomolecules into their constituent components. In

this method, at short distances from the point of interest, HCP uses the full set of atomic

charges, but for long distance interactions, approximate charge distributions are used
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instead. The results show that for a simulation on a single CPU, the 1-charge and 2-

charge HCP are 40% and 14%, respectively, faster than the spherical cutoff method,

and three times the speed for a single point computation. However, the method is very

sensitive to the number of charges in the approximation, the distribution of charges per

component, and the threshold distance has an inverse relationship between accuracy

and speedup.

Kazachenko et al. [80] have investigated the challenges arising in simulations of com-

plex fluids in the canonical (NVT) ensemble. This work covers the complex and

varied interactions in multicomponent fluids, intramolecular and intermolecular force

components, and fully atomistic and coarse-grained models. This research presents

a CUDA implementation of Lennard-Jones (LJ) and Gay-Berne (GB) pairwise inter-

actions, Ewald summation for electrostatic interactions, and adapted the algorithm of

Martyna to combine a Nosé-Hoover thermostat with fixed bond lengths [14]. They ex-

amined the simulation of 3 systems: 2-(4-butyloxyphenyl)-5-octyloxypyrimidine, SP-

C/E (extended single point charge) water, and an n-hexane/2-propanol mixture. In

these simulations, periodic boundary conditions were used with the minimum image

convention, and a spherical cutoff radius, rc. The data structure for maintaining neigh-

bour lists was created by defining four types of pairwise interactions (LJ-LJ, LJ-GB,

GB-LJ, and GB-GB) in order to guarantee coalesced access to GPU memory. The

neighbour list excludes an atom from interacting with itself and other atoms in the

same molecule that are deemed close.

3.4 Summary

This literature review has covered all aspects of our work to investigate the existing

research that has been conducted in relation to data locality. Data locality has been ex-

plored from the compiler perspective and, in particular, the algorithmic perspective –

specifically for data locality enhancements. Data locality and optimization in molecu-
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lar dynamics simulations have been investigated to discover related research conducted

in this area. Data locality and MDS implementations on GPU platforms were studied

to analyse if there is any research comparable to that presented in this dissertation, or

if there is any research on data locality specifically for GPUs that can be adopted for

MDS implementations on GPUs. However, it was found that only a limited amount

of research addresses the data locality issue for molecular dynamics simulations on

GPUs. Thus, previously the data locality issue has not been addressed widely in GPU

implementations.
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Chapter 4

Stencil and Data Locality Properties

In Chapter 2, previous research on data locality enhancements was highlighted, in

particular methods related to data ordering. In addition, in Section 2.3, various data

ordering methods that are used in this research were identified and detailed. In this

chapter, the data locality properties of each of the data orderings will be investigated.

In spatial applications in which performance is strongly affected by data dependency,

processing an item at (i, j, k) in an array usually requires access to other neighbouring

items in the array. Identifying neighbouring items based on a stencil reduces the com-

putation time compared to searching and finding the neighbouring items every time

that an item is processed. It is assumed that the shape of the stencil is the same for all

locations. Therefore, the stencil centre is at the item’s location and then the memory

offsets of the stencil locations relative to the stencil centre are stored. As an example,

a simple “star” stencil consists of six adjacent items that are adjacent to the centre, and

the stencil offsets are: (0,−1, 0), (−1, 0, 0), (0, 0,−1) (0, 0, 0), (1, 0, 0), (0, 1, 0), and

(0, 0, 1). Hence, for an M ×M ×M row-major ordering, this can be formulated as item

offsets (−M2,−M,−1, 0, 1,M,M2) for all locations. The stencil may consider periodic

boundary conditions, such that those items at the borders have an adjacent neighbour

items on the opposite border.

For Hilbert and Morton orderings, applying the stencil to an item must consider the

position within the ordering. Hence, for Hilbert and Morton orderings the offsets in

memory depend on location and it is not possible to store a common stencil for all

locations. For the sake of simplicity, this issue is resolved by mapping the Hilbert
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and Morton index to the corresponding row-major index, and then applying the stencil

on the row-major ordering to find the adjacent neighbours items. These, in turn, are

mapped back into their corresponding Hilbert or Morton indices. As the arrays that

perform these mappings are generated only once and their values are stored in the

memory, this operation has order of complexity O(1).

4.1 Spherical Stencil

The cubic stencil is one of the most common stencils that is applied in various spatial

applications, such as for solution of partial differential equations. The cubic stencil

consists of a (2g + 1) × (2g + 1) × (2g + 1) block of array locations. Another stencil of

interest, particularly in molecular dynamics simulations (detailed in Chapter 5) is the

approximately spherical stencil. If the 3D array is composed of M × M × M spatial

bins, each of unit size, then the approximately spherical stencil consists of those bins

that are fully or partially within a specified distance, g, of any of the vertices of the

stencil centre, where g is a positive integer. The number of bins in the stencil is given

by:

M0(g) = 1 + 6g + 12
g−1∑
i=0

⌈ √
g2 − i2

⌉
+ 8

g−1∑
i=0

p−1∑
j=0

⌈ √
g2 − i2 − j2

⌉
(4.1)

where p =
⌈ √

g2 − i2
⌉
. The terms on the left-hand side of this equation correspond to:

Term 1: the central bin of the stencil;

Term 2: the bins in each of the 6 directions about the central bin;

Term 3: the bins lying along the 12 edges of the cube;

Term 4: the remaining bins in the 8 quadrants of the cube.
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As g increases the volume of the set of bins in the stencil progressively becomes a

better approximation to that of a sphere of radius g, and M0(g) is shown for a few

values of g in Table 4.1, together with the percentage deviation from sphericity, given

by:

1 −
4π
3

g3

M0(g)

It should be noted that the deviation from sphericity becomes less than 10% for g > 40.

g Number of bins, M0(g) Deviation (%)
1 27 84.49
2 125 73.19
3 311 63.63
4 613 56.27
5 1015 48.41
6 1689 46.43
7 2399 40.11
8 3449 37.82
9 4675 34.68

Table 4.1: Number of bins and the percentage deviation from sphericity.

4.2 Data Locality Metrics

Data locality is impacted by various factors, such as the hardware architecture, cache

size and configuration, data access pattern, data dependency level, and data ordering.

Spatial and temporal locality are the major metrics used to define the efficiency of

cache utilization. Normally, these factors are not revealed in profiling results, and are

represented by only the cache hit or miss rates. The spatial locality principle refers to

the fact that when a data item to be processed is moved into a higher level of memory

other items upon which that processing depends will be brought into that memory level

in the same cache block. Temporal locality refers to whether a data item to be accessed

is found in high level memory, having been placed there previously. In this section, an
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analysis is conducted to study the data locality of different data orderings and stencils

(to our best knowledge, such a study has not been conducted in the existing literature).

4.2.1 Memory Access Patterns

It is assumed that each array location represents a spatial bin containing a number of

items that can be processed independently. This processing depends on using (and

reusing) data within the nearby locations defined by the stencil, and the memory loca-

tions at which the stencil data are stored is determined by the ordering used.

We have analysed the relation between data orderings and the efficient use of memory

hierarchy by examining memory access patterns associated with a given stencil. For

a row-major ordering the memory access pattern for a given stencil is independent of

array location, but for Hilbert and Morton orderings it is not. Therefore, we capture an

overall view of the memory access pattern by making a plot of the memory offsets cor-

responding to a particular stencil and ordering, accumulated over all array locations.

This analysis is achieved by implementing a simple model that measure the distance

between a bin and other neighbour bins that are defined based on the adopted stencil.

The stencil is generated based on Algorithm 5.2, which uses the stencil width as an

input and generates the offsets of the neighbour bins. Then, the adopted stencil is used

to find the neighbour bins for each bin. The distance between each bin and its corres-

ponding neighbour bins is calculated. An histogram of distance is represented by an

array and the index of the array represents the distance. Accordingly, neighbour bins

are registered in the histogram array by incrementing the number of bins within the cor-

responding index as shown in Algorithm 4.1, noting that the stencil is symmetric and

the number of bins can be divided by two, which represents the positive and negative

values (of course, these could be represented by two arrays: one for the positive values

and the second for the negative values). This algorithm can be then used with differ-

ent configurations, such as the type of stencil (cubic or approximately spherical), for
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different sizes of the 3-dimensional array, types of data orderings, and stencil widths.

Algorithm 4.1: distHistogram: high level of the histogram distances computation. The
functions path2RMO and RMO2path convert between a location in the ordering and the
row-major index.

Function distHistogram(ordering,stencil,M,g)
Input: ordering, stencil, integers M and g.
Output: The absoulate distance value between bins i and their sencil bins.
histogram[k]=0
foreach ( ibin ) do

ipath = RMO2path (ibin)
foreach (k, stencil, in ordering) do

jbin = ibin + stencil[sbin]
jpath = RMO2path (jbin)
pathdiff =| jpath − ipath|
histogram[pathdiff ]++

end
end

end
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Figure 4.1: Memory offsets for a block stencil with g = 1.

Figure 4.2 gives a graphical summary of the memory access pattern for a block stencil

with g = 1 for row-major, Hilbert and Morton orderings of a 16× 16× 16 array. In this

case, where g = 1, memory offsets are accumulated over a 14×14×14 array, as a border

of depth g is required by the stencil. The total number of the accumulated memory

offsets for the 27 stencil bin in the row-major ordering case is equal to 143 = 2744,

and this correspond to the offsets shown in Figure 4.1, ranging from -273 to +273. It

is clear that the Hilbert and Morton orderings have a greater degree of scatter in their

memory access patterns, and, in both cases, this extends beyond the limit of the x-axis

in Figure 4.2. In the Hilbert ordering case, the memory offsets lie between ±3767, and
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13.3% are not included in Figure 4.2. For Morton ordering the corresponding values

are ±3073 and 13.8%.
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Figure 4.2: Accumulated memory offsets in bins for a block stencil with M = 16
and g = 1.
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Figure 4.3: Accumulated memory offsets in bins for a block stencil with M = 16
and g = 3.

Figure 4.3 shows another example of similar data to Figure 4.2, but for a block stencil

with g = 3. In this case, the border width of a block is 3, so memory offsets are

gathered over a 10 × 10 × 10 array. It is clear that the memory access pattern is more
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scattered for the Hilbert and Morton orderings than for the row-major ordering, as in

the g = 1 case. For the Hilbert ordering, the memory offsets ranges between ±3794,

and 13.3% and are not covered in Figure 4.3. Likewise, the Morton ordering values are

±3129 and 22.0%.

The data shown in Figures 4.2 and 4.3 show how the bins are scattered in the memory

but do not show the ratio of bins that are allocated close to each other and at which

distance all the bins are allocated. Thus, they can be presented in terms of a histogram

showing the cumulative fraction of bins within a given absolute memory offset by still

using the Algorithm 4.1 and a range of size 100. The cumulative fraction is shown in

Figures 4.4, and 4.5 for g = 1 and g = 3, respectively, and M = 16. It can be seen that

for g = 1, only one third of the bins are within a memory offset of 199 for the row-major

ordering, whereas for the Hilbert and Morton orderings 0.817 and 0.787, respectively

of the bins are within this memory offset. However, for the row-major ordering, all the

bins are within a memory offset of 299, and the corresponding values for the Hilbert

and Morton orderings are 0.867, and 0.862, respectively. As a consequence, compared

with the row-major case, a higher proportion of the bins are within a small memory

offset in the Hilbert and Morton cases, and the reverse is true for large memory offsets.

A similar trend can be observed in Figure 4.5 for the g = 3 case where all the bins

are within a memory offset of 899 for the row-major ordering, whereas only 0.795 and

0.780 are within this offset for the Hilbert and Morton orderings. Moreover, Figures

4.4 and 4.5 also show that a higher proportion of bins are within a given memory offset

for the Hilbert ordering compared with Morton ordering, up to an offset of about 899,

and after that the opposite is true.

Figures 4.4 and 4.5 indicate that for sufficiently small cache sizes, the fraction of the

data needed to update the items in a bin that will fit into the cache is largest for Hilbert

ordering, followed by Morton and row-major orderings; however, for a large enough

cache, this is reversed. Therefore, this suggests that the performance benefits of the

different orderings will depend on the size of the different levels in the memory hier-
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Figure 4.4: Cumulative fraction of bins within a given memory offset for a block
stencil with g = 1 and an array with M = 16. For each set of bars the range is
from 0 up to the x-axis label.
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Figure 4.5: Cumulative fraction of bins within a given memory offset for a block
stencil with g = 3 and an array with M = 16. For each set of bars the range is
from 0 up to the x-axis label.
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4.2.2 Cache Miss Rate

If the x-axis labels are replaced with cache size, then Figures 4.4 and 4.5 can also be

interpreted as hit rate curves; this is a plot of the probability of a cache hit as a function

of cache size. However, in order to obtain a more accurate estimate of the hit rate

and the number of cache line transfers in a given time period, we developed a simple

dynamic model for the cache. In this cache model, bins are stored in memory in some

prescribed order (row-major, Hilbert or Morton order). The model is configured with

cache line size b, and main memory is viewed as being divided into blocks of size

b. Whenever a bin is not found in cache, the block in main memory containing that

bin is moved into the cache. The cache has a limited size and we assume that it can

hold a maximum of c blocks, or cb bins, and whenever the cache is full and a cache

miss occurs, then the least recently used (LRU) block is ejected from the cache. For

each bin in the array, the corresponding stencil bins are accessed and the number of

cache misses is recorded. An outline of the simple cache module is given in Algorithm

4.2, where it should be noted that only bins not in the border zone of depth g are

considered. Additionally, the functions path2RMO and RMO2path are the mapping

functions to and from the row-major and the memory ordering used.

The cache model has various configurable parameters: the ordering, the stencil type

and size, g, the size of the 3D array, M, the number of bins per block size, b, and

the number of blocks in the cache, c.The cache module consists of orderings, stencil,

cacheBlock, and cacheArray classes. The cacheArray objective is to check if the

requested bin is within any of the cache blocks or not, as shown in Algorithm 4.4, that

uses Algorithm 4.3 (a method in cacheBlock) to check individual blocks. In addition,

it is responsible for identifying in which block the bin is going to be stored, which

is used by the addToCache function. The addToCache maintains the first bin index

registered in each block, the least recently used bin, and a counter of number of blocks

that are in the cache.

The simulation is initiated by generating the ordering indices, building the stencil ac-
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Algorithm 4.2: cacheModel: high level view of the cache model. The functions
path2RMO and RMO2path convert between a location in the ordering and the row-major
index.

Function cacheModel(ordering,stencil,M,g)
Input: ordering, stencil, integers M and g defining size of the array and the stencil.
Output: The number of cache misses nmisses.
nmisses = 0
foreach (location, ipath, in ordering) do

ibin = path2RMO (ipath)
if (ibin not in border zone) then

foreach (stencil location, sbin) do
jbin = ibin + stencil[sbin]
jpath = RMO2path (jbin)
if (!inCache (jpath,ordering)) then

nmisses++

addToCache (jbin)
end

end
end

end
return nmisses

end

Algorithm 4.3: inBlock: check if the bin exists witin the block or not.

Function inBlock(bin, ordering)
if ( first bin not yet initiated) then

return 0
end
for i = 0 to binsPerBlock do

ibin = f irstBin + i
if ( bin= ibin) then // bin is found

return 1
end

end
return 0

end

cording to Algorithm 5.2, setting up the cache array according to the input parameters,

and finally calling the simulation of the cache model according to Algorithm 4.2. Al-

gorithm 4.2 traces each bin within the defined ordering path. Then the neighbour bins,

that are generated according to the adopted stencil, are tested by checking their availab-

ility in the cache array. If a neighbour bin is not within the cache, the number of misses
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Algorithm 4.4: inCache: check if the bin exists in any of the blocks within the cache by
calling inBlock method. If the bin exist, modify the recent used bin to the last accessed
bin and increment number of cache misses.

Function inCache(bin, ordering)
for i = 0 to blocksMax do

if ( cacheArray[i].inBlock (bin,ordering) ) then // call inBlock method
cacheArray[i].lastused = tcount + +

return 1;
end

end
nmiss + +

tcount + +

return 0
end

Algorithm 4.5: addToCache: insert the jbin in the block with the jspace index and then
modify the corresponding indices ( f irstBin, lastUsed and nblocks) to track the insertion
and removal of the bins.

Function addToCache(jbin,jspace, ordering)
binsPerBlock = cachArray[0].binsPerBlock // copy binsPerBloc

// [
f]*set the first bin number
cacheArray[ jspace]. f irstBin = ( jbin/binsPerBlock) ∗ binsPerBlock
cacheArray[ jspace].lastUsed = tcount // set last recently used block
nblocks + + // increment the index of the number of blocks

end

will be incremented by one and the block will be stored into the cache according to

Algorithm 4.5, after the required space is created.

A number of cache models have been run and analysed, and these show some common

characteristics. For example, Figures 4.6 and 4.7 show miss rate plots for M = 32, a

block stencil with g = 1, and cache block sizes of b = 2 and b = 8 bins, respectively. In

both plots, it can be seen that in the row-major case the miss rate tends to stay constant

for a range of cache sizes, and then decreases in steps as the cache size increases.

This decrease occurs whenever the cache size is large enough to hold an additional

complete row of bins. The miss rates for the Hilbert and Morton cases do not exhibit

this behaviour as they are not ordered by row. Figure 4.6 shows that for small cache
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size, the miss rate is high for the Hilbert case, but for cache size between c = 64 and

c = 1024, the miss rate is the lowest for the Hilbert ordering, closely followed by the

Morton case, with row-major ordering having the highest miss rate. Figure 4.7 also

shows that the ordering with the lowest miss rate depends on the cache size.
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Figure 4.6: Miss rate as a function of cache size, c, for a block stencil with g = 1,
an M = 32 array, and a cache block size of b = 2 bins.
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Figure 4.7: Miss rate as a function of cache size, c, for a block stencil with g = 1,
an M = 32 array, and a cache block size of b = 8 bins.

Similar behaviour to the block stencil cases is seen for approximately spherical stencils

for all the orderings. For example, Figure 4.8 shows the miss rate for M = 32, an ap-

proximately spherical stencil with g = 3, and b = 8. In addition, for an approximately

spherical stencil with a large cache size, the miss rate is lower than for a block stencil

because the number of stencil bins that are accessed by a bin is less than for the block

stencil case. Figure 4.9 shows the miss rate data for M = 64, a block stencil with g = 1,

and b = 8. The plot emphasises again that the ordering with lower miss rate depends

critically on the cache block size, b, and the overall cache size, c.
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Figure 4.8: Miss rate as a function of cache size, c, for an approximately spherical
stencil with g = 3, an M = 32 array, and a cache block size of b = 8 bins.
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Figure 4.9: Miss rate as a function of cache size, c, for a block stencil with g = 1,
an M = 64 array, and a cache block size of b = 8 bins.
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4.2.3 Shared Stencil Bins

Another factor that has been studied is the number of bins that are shared between the

stencils centred at consecutive bins indexed by i and i + 1. The assumption is that

processing bin i requires a number of stencil bins to be loaded into cache memory;

when processing for bin i is completed the bins needed to process bin i + 1 will be

required, and because the stencils for bin i and i + 1 overlap a portion of these bins

will already be in cache. We found that there is a constant maximum number of bins

shared between the stencils for bins i and i + 1 equal to 2g(2g + 1)2, for all orderings.

Consequently, we can infer that the data ordering has little impact on the temporal data

locality.

4.3 Summary

This chapter has presented an approximately spherical stencil that is often used in vari-

ous applications, especially in molecular dynamics simulations. The relation between

data ordering and an approximately spherical stencil have been explored based on

memory access patterns and a cache model. We found that the memory access pat-

tern is more scattered for the Hilbert and Morton orderings compared to the row-major

order. However, the Hilbert and Morton orderings have a larger number of neighbours

within a short distance of the memory offset.

This chapter presented a simple cache model to explore in detail the relationship between

data orderings and the size and shape of the stencil. It was found that cache block size

and the overall cache size have significant impacts on the cache behaviour of different

data orderings.
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Chapter 5

GPU Implementation

This chapter describes the miniMD application and the modifications made to it in

order to achieve our research objectives. The objectives and scope of our research

will be revisited to aid the reader. The ordering module will be described in detail, as

well as how it is integrated with the other modules of miniMD. The force computation

module, which is used for our research, will be described in detail in order to show

how it is implemented in our study.

MiniMD is a scaled-down version of the LAMMPS molecular dynamic simulation ap-

plication, and was created mainly to achieve high performance as part of the Mantevo

project [36, 87]. This chapter provides an overview of the implementation of miniMD

in order to provide details of how it can be used and how it carries out the MDS for

a Lennard-Jones potential. In addition, this will help to understand the modifications

that have been performed in this research. Therefore, we will highlight miniMD’s

modules and components. As highlighted in Chapter 2, most molecular dynamics

simulation codes are composed of modules for input and output, particle force evalu-

ation, managing neighbour lists, potential energy and thermodynamics computations,

and integration to update particle positions and velocities. In addition, there is data

sharing/communication functionality specific to particular platforms that facilitates a

massively parallel implementation, such as OpenMP and MPI. This is encapsulated in

a communication module in the miniMD application.
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5.1 Objectives and Scope

As mentioned in Chapter 1, the main objectives of our research are to study the data

locality properties of molecular dynamics simulations, and to investigate these in the

context of a GPU implementation of miniMD. It is not the focus of our study to create

an optimised CUDA version of miniMD, although this would definitely improve the

overall simulation time, especially if the data always resided in the GPU memory and

was copied between to host and the GPU only at the beginning and end of the simu-

lation. In addition, with the MPI Direct feature of CUDA, or some other MPI-aware

CUDA implementation, the simulation could be extended to multiple GPUs. Hence,

our modifications to miniMD are limited to the force computation, which is found to

account for more than 80% of the simulation time. In addition, we have maintained the

principle that miniMD was created as a performance comparison tool without trying to

modify the data structures, especially that of the neighbour lists, in order to provide an

additional optimisation that might already have been addressed in our literature review

chapter. Therefore, we limit our research mainly to the study of the locality properties

of different data orderings, and leave other optimisation opportunities for future work.

5.2 MiniMD Modules

MiniMD (version 2.0) was developed using the C/C++ programming language and its

modules are implemented by classes that define variables and methods associated with

each module. It supports both an MPI and a hybrid OpenMP/MPI parallel implement-

ation. MiniMD is limited to Lennard-Jones (LJ) and embedded atom model (EAM)

particle interactions. It uses neighbour lists in the force calculation, which can be of

the full-neighbour or half-neighbour type. In the former case, when finding the force

on a particle, the particle interacts with other particles in all the stencil cells. In the lat-

ter case, use is made of Newton’s Third Law, which means that a particle interacts with

only particles in the cell at the stencil centre and those in half the other stencil cells.
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In version 2.0 of miniMD particle types are introduced in order to simulate multiple

particle types.

5.2.1 Input Module

The input module provides the execution settings, the simulation system configuration,

and technical settings. The run settings configure the number of MPI processors, the

number of threads for OpenMP, and specifies the name of the input file, which sets the

parameters for the simulation, and the data file, which contains the initial coordinates

and velocities of the particles. The miniMD execution settings can be set as arguments

when invoking the program, as shown in Table 5.1.

Argument Value (e.g.) Description.
−np 1 Number of MPI processors, as normally used with

mpirun.
−t or
− − num_threads

1 Number of threads per processor.

−i in.filename Configuration parameters. If not specified the
program will use file name in.lj.miniMD or
in.eam.miniMD for LJ and EAM, respectively.

−b or
− − neigh_bins

0 Number of neighbour bins. If set to zero or not
used, the program will compute the value.

− − hal f _neigh 0 Force neighbour list type; set to 0 or 1 for full or
half, respectively.

−−ghost_newton 0 Set usage of Newton’s Third Law for ghost
particles.

Table 5.1: Key run settings that can be used to set the program execution.

In addition, due to the different types of compilers, especially those for hardware lack-

ing on-chip built-in floating-point capability, there are options to choose float or double

data types for floating-point values. This also enables the application to be set for single

or double precision levels of computation.

Managing large dynamic arrays requires careful memory allocation and alignment,

which improves memory access, especially if the adopted alignment size is compatible
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with the cache line size. Padding is also used when shaping the data structure from a

structure of arrays into an array of structures, which has been found to yield better data

locality and enhance computational performance.

The physics and technical settings can be specified in the input file, as shown in

Table 5.2.

Parameter Name Value (e.g.) Description
Force type LJ Defines force field of interaction: either LJ or

EAM
Data File None Name of the data input file. None implies to

generate particles.
ε and σ 1 1 Values of ε and σ in LJ potential.
System size 32 32 32 Simulation unit cell size of problem.
Time steps 100 Number of simulation time steps to run for.
Time step size 0.005 Integration time step ∆t.
Initial
temperature

1.44 Initial simulation temperature.

Density 0.844200 Density (ρ) of the particles in simulation box
Neighbour
frequency

20 Number of time steps between reconstruction
of neighbour lists.

Force cut-off and
skin

2.5 0.30 LJ cut-off distance and the skin added to the
cut-off r0 = rc + rs.

Thermodynamic
frequency

100 Number of time steps between updates to the
thermodynamic system.

Sorting
frequency

20 Optional, default set equal to neighbour
frequency for optimal execution time.

Table 5.2: Sample of definition of various simulation parameters in LJ units.

The input module uses the setup module to parse the input file and to set up the simu-

lation box. In cases where more than one process is used in the MPI implementation,

the simulation box is divided among a grid of processes and each process has its own

simulation box boundaries, based on its location in the grid and the computed value of

the lattice spacing, (4/ρ)1/3. The lattice, in turn, is used to define the bin dimension.

Particles and their velocity can be randomly generated according to the method pro-

posed by Park and Miller and as in [116, Box 1]. As the equilibrium properties of the

simulation system do not rely on the initial conditions, all reasonable choices of initial
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conditions are, in principle, acceptable [50, p 40]. The boundary of the processor in-

ternal box, or the simulation box boundary in cases of one processor, is also taken into

account. In cases where the input files are defined according to the LAMMPS format

[1], they are parsed by specific functions that are defined to support LAMMPS input

and data files.

5.2.2 Atom Module

The atom module is mainly concerned with how to store the particles’ position, velo-

city, force and type, and manages the particle data structure. It also enforces periodic

boundary conditions when particles move according to the internally defined simula-

tion box. It also packs and unpacks the particles that are exchanged among processors

through the communication module. In addition, it sorts the particles in each coordin-

ate direction, according to their allocation in the bins constructed in the neighbour

module. Algorithm 5.1 illustrates how the module ensures that particles that migrate

outside the simulation box are placed back in the simulation box. In the case of mul-

tiple processes, when particles migrate from one local process box to the local box

of another process, the communication module (see Section 5.2.5) enforces periodic

boundary conditions through data exchanges between the processes. Another key func-

tion of the atom module is to sort the particles according to the ordering of the bins.

Each bin in three dimensions has a coordinate value (x,y, and z) and these values are

used to define the sequential label (a single index) in the ordering used, as will be de-

scribed in the next chapter. Therefore, each particle in the atom array is examined to

determine which bin it is located in. The ordered bins are used, in turn, to sort the

particle data in the position, force, velocity and type arrays.
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Algorithm 5.1: pbc: forces all the particles to be within the simulation box.

Function pbc()
Input: box and x :stores particles coordinates.
Output: x.
// for each particle check their coordination.
foreach particle in x do
// enforce x-boundaries
if x[i*PAD+0] < 0.0 then x[i*PAD+0]+=xprd
if x[i*PAD+0] >xprd then x[i*PAD+0]-=xprd
// enforce y-boundaries
if x[i*PAD+1] < 0.0 then x[i*PAD+1]+=yprd
if x[i*PAD+1] >xprd then x[i*PAD+1]-=yprd
// enforce z-boundaries
if x[i*PAD+2] < 0.0 then x[i*PAD+2]+=zprd
if x[i*PAD+2] >xprd then x[i*PAD+2]-=zprd

end
end

5.2.3 Neighbour Module

The neighbour module is the core component of the MDS where neighbour lists are

managed. Thus, its core functionality is to assign each particle to the corresponding bin

according to its position in the simulation box. However, before doing that, the active

and ghost cells must be defined. Therefore, if the number of bins in each dimension

is not part of the system configuration input then by default it is set to 5/6 of the

simulation box size in each dimension. Then, the bin dimensions are computed by

dividing the simulation box dimension by the number of bins in each direction (x, y,

and z), which is handled by the setup method of this module.

The ghost bins are constructed around the simulation box by using the offset of the

lower edge position (for each direction) minus r0 and a very small value relative to the

overall box length (in the corresponding direction), for round-off safety. The upper

edge position is added to r0 and a very small value relative to the overall box length.

In each direction, the lower ghost bin boundary is subtracted from the upper ghost bin

boundary and the result is divided by the bin length to give the number of bins. This

may be adjusted to ensure full coverage of the simulation box.
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In order to find the number of bins in the stencil, a stencil is constructed by finding all

the bins whose closest corner to the central bin is within the cut-off (r0). The stencil

array stores only the offsets of the neighbours, which can then be applied for any bin

to find the corresponding neighbour bin numbers. If half neighbour lists are used the

stencil covers only those bins to the upper right of the central bin and does not include

the central bin itself, as shown in Algorithm 5.2.

Algorithm 5.2: buildStencil: the algorithm used to build and generate the stencil ar-
ray. It takes into consideration the full or half neighbour-list configuration as the number
of elements can be reduced by half compared to the full neighbour-list. binDistance
returns the distance from the central bin to the bin (i, j, k) .

Function buildStencil(gw, mbins)
Input: gw: number of ghost bins, and mbins : number of bins in one direction

assuming (assuming mbinx = mbiny = mbinz)
Output: stencil.
nmax = (2 ∗ gw + 1) ∗ (2 ∗ gw + 1) ∗ (2 ∗ gw + 1)
stencil← [0, 1, . . . , nmax] // create stencil array of size nmax
nstencil = 0
for k = −gw; k ≤ gw; k + + do

for j = −gw; j ≤ gw; j + + do
for i = −gw; i ≤ gw; i + + do
// if force type full consider all, otherwise only the
upper right bins

if not(half _neight) or (k>0 or j>0 or (j=0 and i>0 )) then
// check if the distance is within r0
if (binDistance (i,j,k) < r0 ) then

stencil[nstencil + +] = i + mbins ∗ ( j + mbins ∗ k)
end

end
end

end
end
return stencil

end

Particles are assigned to bins using the binatoms function that calculates a particle’s

position relative to the grid of bins. The bin array stores the index of the particle and

another array stores the number of particles that have been added to each bin. These

bins and the constructed stencil are used to build the neighbour list (in the neighbors

array) for each particle. The method examines each particle i to find its bin index,
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bini, and then uses the stencil to find all the neighbour bins. Each neighbour bin,

bin j, can be itself, bin j = bini, or a different bin, bini , bin j; in both cases all the

particles in bin j are considered neighbours of particle, i, if they are within distance r0.

Finally, all the neighbours of each particle are stored in an array neighbour and their

type is also stored in the ntypes array. Each particle has the same maximum number

of neighbours and, therefore, neighbour[0] indicates the first neighbour in the list for

particle 0. In cases where the total number of neighbour particles is greater than the

initial defined maximum size of the neighbour array, then the maximum size of the

neighbour lists and their types are redefined by multiplying the old maximum number

of neighbour particles by two and then reconstructing the neighbour list again. This

process is repeated until the defined size is sufficient to store all the neighbours.

5.2.4 Force Module

The force module is mainly concerned with the computation of the LJ and EAM inter-

action forces. In this research, we focus only on the LJ force computation. As men-

tioned above, the force can be computed with full or half neighbour list options. The

advantage of the full neighbour force computation is that it avoids the need to check if

a neighbour particle position is to the upper left of the central bin of the particle under

consideration, as must be done in the half neighbour list force computation. How-

ever, the advantage of the half neighbour list option is that the number of neighbour

particles involved in the computation is approximately half the number of particles that

are involved in the full neighbour list.

For the full neighbour list case, the potential energy is computed by, first, initiating

all the interaction force arrays of each particle and the overall potential energy to zero

and then passing through all the particles in the system by using their position and

their corresponding neighbour particles. The first step is to find the squared distance

between the particle, i, and each neighbour j, in the neighbour list. If the square of the

computed distance is less than r2
0 then the interaction force between the particles can
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be computed by using a reduced form of Equation 2.24 as in Equation 5.1, see [50,

p. 69] for details.

fx =
∂E(r)
∂x

= −

( x
r

) (
∂E(r)
∂r

)
=

48x
r2

(
1

r12 − 0.5
1
r6

)
(5.1)

where x represents the distance and the interaction between particles i and j that con-

tributed to the potential energy, which implies that x is equal to ε. r in this equation is

the distance between the two particles. Algorithm 5.3, shows a simplified algorithm for

both full and half force computation that will be described in more detail in Chapter 6

on the GPU implementation.

Based on the type of neighbour list used and how ghost particles are handled the ap-

propriate force computation is executed. There is a minor difference between these

different implementations, such that in the half neighbour list case the position of each

neighbour particle, j, is checked to ensure it is to the upper right of particle, i. The dif-

ference in the half neighbour list case for MPI only, and MPI with OpenMP threading,

is that in the latter case in internal force computation, the energy and virial pressure

updates must be done atomically.

5.2.5 Communication Module

The communication module is concerned mainly with the spatial decomposition of the

simulation domain over a grid of processes and the communication of data between

adjacent processes in the grid. Each process has its own portion of the simulation box

termed the internal, or local, box to distinguish it from the global simulation box. Con-

sequently, we use a 3-dimensional process grid of size K×M×N, where the simulation

dimension in bins must be divisible by the process grid size in each direction.

The particles that migrate outside their local box are flagged to be moved to a neigh-

bour process together with the corresponding ghost particles. With this approach, the

update between the neighbouring processes takes place only if the swap flag is true,
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Algorithm 5.3: compFullNeigh: shows the computation for full neighbour list of the in-
teraction forces and the potential energy. In a multithreading implementation an Atomic
region is defined to ensure there is no race condition among the threads. This algorithm
is optimized for MPI and OpenMPI (threading).

Function compFullNeigh(atom, neighbour)
Input: atom: stores atoms coordinations, and neighbour : neighbour list particles
Output: force:array of force imposed on each particle.
f = atom.f
x = atom.x
nlocal = atom.nlocal
en = 0
for i = 0; k ≤ atom.nlocal; i + + do // Initialize force array to zero

f [i ∗ PAD + 0] = f [i ∗ PAD + 1] = f [i ∗ PAD + 2] = 0
end
foreach particle i in x do

neigh = neighbour.neighbours[i ∗ maxneighs]
numOfNeigh = neighbour.numneigh[i]
f ix = f iy = f iz = 0
xtmp = x[i ∗ PAD + 0]
ytmp = x[i ∗ PAD + 1]
ztmp = x[i ∗ PAD + 2]
for k = 0;k < numO f Neigh;k + + do

j = neigh[k] // index of a neighbour particle
∆x = xtmp − x[ j ∗ PAD + 0]
∆y = ytmp − x[ j ∗ PAD + 1]
∆z = xtmp − x[ j ∗ PAD + 2]
rsq = (∆x)2 + (∆y)2 + (∆z)2

if rsq<cutforcesq then // check if r2
i j < r2

0
sr2 = 1.0/rsq
sr6 = sr23 ∗ σ6

force = 48.0 ∗ sr6 ∗ (sr6 − 0.5) ∗ sr2 ∗ ε
fix+ = ∆x ∗ force
fiy+ = ∆y ∗ force
fiz+ = ∆z ∗ force
/* EVFLAG is true if evaluation nstate % thermoState is 0 */

if EVFLAG then
t_eng_dwl+ = sr6 ∗ (sr6 − 1.0) ∗ ε
t_virial+ = (∆x)2 + (∆y)2 + (∆z)2) ∗ f orce

end
end

end
f [i ∗ PAD + 0]+ = f ix
f [i ∗ PAD + 1]+ = f iy
f [i ∗ PAD + 2]+ = f iz

end
t_eng_dwl+ = sr6 ∗ (sr6 − 1.0)∗ = 4.0;
t_virial∗ = 0.5;
Atomic(eng_vdwl+ = t_eng_vdwl)
Atomic(virial+ = t_virial)

end

which reduces the required amount of communication among the processes. Thus, the

periodic boundary conditions are taken into consideration even at the local box level.

In our work, we do not use more than one MPI process so most of the communication

module functionality will not be called during a simulation.
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5.2.6 Thermodynamics Module

The thermodynamics modules handles the computation of the temperature, pressure

and energy. The thermodynamic module sets up the parameters and scalar values re-

quired for the computation. The thermodynamics module initially performs the tem-

perature calculation, which is proportional to the square of the particle velocity multi-

plied by its mass, summed over all particles:

T =
1

Tscale

n−1∑
i=0

miv2
i (5.2)

where Tscale is a temperature scaling factor. Next, the energy computation is performed

using the potential energy calculated by the force module. Finally, the pressure is cal-

culated by using the pressure computed in the force module multiplied by the pressure

scale factor and the number of degrees of freedom, as defined in the setup and initial-

ization of this module.

5.2.7 Integration Module

The integration module is at the core of the simulation system, and uses the run method

to integrate the equations of motion using the particle forces computed by the force

module. The atom module is then used to advance the position and velocity of each

particle. In addition to the run method, the integration module contains the initial

method that sets up the initial particle positions and velocities, and the integrate method

that is called at the end of each iteration to set the final velocity values based on the

particle’s interaction force, that is computed earlier by the force module.

At each time step, n, Algorithm 5.4 starts by copying the arrays for the position, x,

and old position, xold, the velocity, v, and the interaction forces, f , as well as the total

number of particles, nlocal. An initial integration then does the first step to advance the

particles’ velocity and position. If necessary, particles are next exchanged among pro-
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Algorithm 5.4: run: the main function to run the MD simulation by calling appropriate
functions every time step.

Function run(atom, neighbor, comm, thermo, timer)
Input: atom: instance of Atom class, neighbor:instance of Neighbor class, comm instance of Comm class,

thermo:instance of Thermo class, and timer: instance of Timer class.
Output: updated particles coordination,forces, velocity, potential energy, thermodynamic parameters

nextSort = sortEvery > 0?sortEvery : ntimes + 1
for n = 0; n ≤ ntimes; n + + do

x = atom.x
v = atom.v
f = atom. f
xold = atom.xold
nlocal = atom.nlocal
// Initialize integration parameters
initialIntegrate () // call function initial integrate
if (n + 1) mod neighbor.every then // is it re-neighbouring time?

comm::communicate (atom) // call function communicate
else

if checkS a f eExchange then
∆max = 0
/* for all particles,i.compute ∆ of x, y and z to set ∆max value. */
∆max =positionDelta (∆max,∆x,∆y,∆z, atom.box)
∆max =

√
∆max

// check particles are not moving beyond box boundry
if ∆max beyond box boundry then print Warning

comm::exchange (atom) // call function exchange
if n + 1 > nextS ort then // is it time to sort?

nextS ort+ = sortEvery
atom::sort (neighbour) // sort particles

/* before neighbouring make lists atoms going to be exchanged */
comm::borders (atom)
if checkS a f eExchange then // only for safe exchange case

// copy computed x coordinate into oldx
foreach i in atom do xold[i] = x[i]

neighbor::build (atom) // binned neighbour list

/* Set the flag to update energy and virial pressure according to nstate */
force→ EVFLAG = (n + 1) mod thermo.nstate == 0
force→compute (atom,neighbor, comm) // call compute forces
if half _neigh and ghost_newton then

comm::reverse_communicate (atom) // call function reverse communication

v = atom.v
f = atom. f
nlocal = atom.nlocal
finalIntegrate () // call fianl integration function
if thermo.nstate then

thermo::compute (n+1,atom,force,timer,comm) // call function compute

cesses by the communicate method, which transfers migrating particles from the local

box of a process to that of another process. If this communication is not performed,

then a safe exchange check is done that issues a warning if any particle has moved

outside the simulation box. The exchange method at each time step moves particles

to the correct process boxes. Thus, any particle that has moved out of the local box
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of a process in any direction is placed into a corresponding communication buffer and

sent to the adjacent process in that direction. At the same time, a process may also

receive particles from other processes. With this approach, each process will exchange

particle data with all six neighbours in the process grid. The next step is to check if

the particles need to be sorted in the current time step. This ensures that the particles

are sorted by bin order so that all the particles in bin i are stored in the particle data

arrays before those in bin i + 1. The borders method is then called to prepare a list

of particles that must be communicated to other processes. This is similar to the com-

municate method, but is called every time step. If the safe exchange protocol is being

used the particle positions are then copied into the xold array. Next, the build method

of the neighbour class is invoked, in which the neighbour list for each particle is

created. Then, the force method computes the interaction force on each particle and

evaluates the potential energy and virial pressure. If half neighbour lists are being used,

the reverse_communicate method is called which works similarly to the communicate

method, except that the communication between the process is from a high rank pro-

cess to a lower rank process. Newly-generated velocity and force values are copied

into the v and f array that will be used by the finalIntegrate method to compute the

new velocity values of each particle. Finally, if the thermostat modification is to be

performed in the current time step, the compute method of the thermo class is called

to update values of energy, pressure and temperature.

5.2.8 Timer Module

The timer module is used to record times for communication, force evaluation, building

the neighbour lists, as well as the total time. Therefore, each module’s timer method is

called to update the corresponding timer variable by first initiating the timer and later

stopping it at appropriate points in the code. The recorded times are then used by the

output module to help to measure the performance of the simulation module and the

time taken by each component of the application.
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5.2.9 Output Module

The output module prints out the simulation parameters and the configuration paramet-

ers used during the simulation, as well as the performance results of the overall execu-

tion time and the time taken by each component of the application. If the yaml_output

flag is enabled, then in addition to the standard output, thermodynamic details and a

histogram of each component’s execution time at each time step can be produced. In

addition, it is possible to print out the position and the type of each particle and use a

third-party application to visualise the particle movements during the simulation.

5.3 Implemented Modifications

Figure 5.1 illustrates the modifications introduced into the miniMD package in order

to conduct this research. In this section, the new modules and the modifications carried

out will be described in detail.
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Figure 5.1: MiniMD before the modifications (a) and after the modifications (b).

5.3.1 Ordering Module

We have incorporated an ordering module alongside the other existing modules in min-

iMD. The ordering module manages two arrays:
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1. ostore[i]: this is the position in the ordering of the item at position i in a row-

major ordering.

2. invstore[i]: this is the inverse mapping, i.e., the row-major index corresponding

to position i in the ordering.

This approach reduces the number of calls to convert between a row-major ordering

index to other orderings. These two arrays are evaluated once at the start of the program

and are then used every time it is necessary to convert between a row-major index and

a Hilbert or Morton index, rather than doing the conversion dynamically. In order to

compute the ostore and invstore arrays the module needs to know the number of bins,

N ×N ×N, where N is the number of bins in each direction. Consequently, the number

of bits that are used to identify the encoding level can be obtained by computing log2 N.

The orderings that are supported in this module are summarised in Table 5.3, which

enables users to select the desired ordering by using the flag -o or --order at execution

time.

Order number Description
0 Row-major ordering
1 Hilbert ordering
2 Morton ordering
3 Hybrid Hilbert and row-major ordering
4 Hybrid Hilbert and column-major ordering
5 Hybrid Morton and row-major ordering
6 Hybrid Morton and column-major ordering

Table 5.3: Different orderings that are supported by the ordering module

The row-major order is the conventional ordering of an array so the value of the entry

is actually equal to the index of the array for both that ostore and invstore arrays, which
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are simply generated according to Algorithm 5.5.

Algorithm 5.5: setRowMajor: generates ostore and invstore arrays for a row-major
ordering. nbins = N × N × N is the total number of bins.

Function setRowMajor()
Input: ostore and invstore arrays.
Output: ostore and invstore values are generated.

for i = 0, p = ostore to nbins do ∗(p + i) = i

for i = 0, p = invstore to nbins do ∗(p + i) = i

end

A Hilbert ordering, as described in Section 2.3, is obtained by expressing the defined

rules as shown in Algorithm 5.6. However, a small modification is necessary to store

the computed value, h, in the ordering array, ostore[ibin] = h, and to use it as an index

to store the ibin value in the inverse ordering array, invstore[h] = ibin. Despite there

being various way to implement the Hilbert ordering, any adopted implementation does

not affect the overall application performance because the mapping arrays are gener-

ated once before the MDS is initiated.
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Algorithm 5.6: hilbert3D: generates Hilbert number h and curve points (px, py, pz)
which are advanced according to Algorithm 5.7.

Function hilbert3D(d,h,px,py,pz,y,p,r,level)
Input: d: direction matrix as defined in Equation 2.19; h integer number represents Hilbert index; (px, py, and pz)

coordination of points of the Hilbert curve, p and r transformation matrices as defined in Equation 2.18; and
level depth of the curve.

Output: d, h and coordinates arrays ( px, py, pz )
if level>=1 then

d = d ∗ p ∗ r; // pitch and rotate 90◦ initial matrix d
// recursive call with level − 1
return hilbert3D(d,h,px,py,pz,y,p,r,level-1)
cordUpdate(px,py,pz,d,h); h + + // advance the point and position

d = d ∗ p ∗ r; // pitch and rotate 90◦.
return hilbert3D(d,h,px,py,pz,y,p,r,level-1)
cordUpdate(px,py,pz,d,h); h + + // advance the point and position

d = d ∗ y′; // yaw −90◦
return hilbert3D(d,h,px,py,pz,y,p,r,level-1)
cordUpdate(px,py,pz,d,h); h + + // advance the point and position

d = d ∗ p ∗ r′ ∗ r′ // pitch 90◦ and than twice yaw −90◦
return hilbert3D(d,h,px,py,pz,y,p,r,level-1)
cordUpdate(px,py,pz,d,h); h + + // advance the point and position

d = d ∗ p′ // pitch −90◦
return hilbert3D(d,h,px,py,pz,y,p,r,level-1)
cordUpdate(px,py,pz,d,h); h + + // advance the point and position

d = d ∗ y ∗ r′ ∗ r′ // yaw 90◦ and than twice roll −90◦
return hilbert3D(d,h,px,py,pz,y,p,r,level-1)
cordUpdate(px,py,pz,d,h); h + + // advance the point and position

d = d ∗ y′ // yaw −90◦
return hilbert3D(d,h,px,py,pz,y,p,r,level-1)
cordUpdate(px,py,pz,d,h); h + + // advance the point and position
d = d ∗ r′ // roll −90◦
return hilbert3D(d,h,px,py,pz,y,p,r,level-1)
d = d ∗ y′ ∗ r′ // yaw and roll −90◦

end
end

Algorithm 5.7: hilbert3D: updates points to move to the next location according to the
orientation matrix.

Function cordUpdate(d,px,py,pz,h)
Input: d: direction matrix as defined in Equation 2.19; h integer number represents Hilbert index; (px, py, and pz)

coordination of a points.
Output: px, py, pz are updated
px[h] = px[h − 1] + d[0, 0]
py[h] = py[h − 1] + d[1, 0]
pz[h] = py[h − 1] + d[2, 0]

end

Similarly, a Morton ordering is constructed based on bit manipulations (as described in

Section 2.3) and implemented as shown in Algorithm 5.8, which generates the Morton

label and the inverse row-major ordering for each of the nbins bins. The algorithm first

computes the 3-dimensional coordinates (the key values), which are then used as input
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for the dilation routine by moving the bits of each key to the correct position.

Algorithm 5.8: morton3D: Translates the row major index into the Morton label.
Function morton3D(i, n)

Input: i is the major row index to be translated into Morton label, n length of an
axis i.e. number of labels in one direction.

Output: The corresponding Morton label.
x = i%n // get x value.
y = (i%(n ∗ n))/n // get y value.
z = i/(n ∗ n) // get z value.
return (dilate3D(x) + dilate3D(y«1) + dilate3D(z«2))

end

Algorithm 5.9: morton3D: Using bit manipulation to dilate the input value in 3D.

Function dilate3D(k)
Input: k stores the input number going to be dilated by t = 3.
Output: x represents the dilated number.
// Initialization
x = 0, t = 0, y = k
while y do

int b = y&1 // copy the first bit
x+ = b << t // Shift bit value by t and then

// added it with previous x value.
t+ = 3 // Advance t according to the dimension size.
y = y >> 1 // Remove processed bit to process the next bit.

end
return (x)

end

A hybrid ordering, as defined in this research, uses row-major or column-major order-

ing to sort the elements within each sub-block, and then these sub-blocks are organized

by using either a Hilbert or Morton ordering, as explained in Section 2.3.4. In other

words, a hybrid ordering can be visualised as having two levels: the first is the sub-

block level, and the second level shows a sub-block containing a number of elements

(bins) which are ordered internally using row-major ordering. The ordering between

sub-blocks is maintained by linking the last bin in a sub-block to the first bin in the

next sub-block.

Algorithm 5.10 shows how the hybrid Hilbert/row-major ordering is constructed. Sim-

ilarly, Algorithm 5.11 shows the generation of a hybrid Morton/row-major ordering.

The hybrid ordering with column-major order within sub-blocks is very similar, and
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therefore we do not present it here. In this work, we set the size of a sub-block to 4, and

so t = 2. Therefore there are 43 = 64 bins in each sub-block. This size was chosen to

set the size covering the number of neighbour bins, and because most of the bins within

the sub-blocks have a neighbouring bin that belongs to a neighbouring sub-block. The

second reason is that this size has high potential to ensure that the bin indexes of a

sub-block are fully copied into the higher cache levels.

Algorithm 5.10: setHybridHilbertRM: generates hybrid Hilbert and row-major order-
ing and the array inverse values.

Function setHybridHilbertRM()
Input: ostore and invstore arrays.
Output: ostore and invstore values are generated.

logm = logn − logt // number of bits of sub-block representations
widthSBlocks = (1 << logm) // number of sub-blocks in one dimension
numSBlocks = (1 << (3 ∗ logm)) // total number of sub blocks
widthBins = (1 << logt) // number of bins in one dimension within sub-block
numBins = (1 << (3 ∗ logt)) // total number of bins inside each sub-block

temp = hilbert3D(. . . ,level=logm) // generate Hilbert ordering for sub-blocks level
for i = 0 to numSBlocks do

// Initial sub-blocks coordinate in relative to the bins coordination
startX = (i mod widthSBlocks) ∗ widthBins
startY = ((i mod widthSBlocks2)/widthSBlocks) ∗ widthBins
startZ = (i/widthSBlocks2) ∗ widthBins
// Internal sub-blocks bins labeling

for bIdx = 0 to numBins do
x = bIdx mod widthBins
y = (bIdx mod widthBins2)/widthBins
z = (bIdx/widthBins2)

rmIdx = (startZ + z) ∗ n ∗ n + (startY + y) ∗ n + (startX + x)
hilValue = temp[i] ∗ numBins + z ∗ widthBins2 + y ∗ widthBins + x
ostore[rmIdx] = hilValue
invstore[hilValue] = rmIdx

end
end

end

Incorporating the Ordering Module

The ordering module is initialized from the neighbour module where the ordering con-

figuration is defined as part of the execution parameters. The number of bins generated

for a Hilbert of Morton ordering must be an exact power of two, and so may differ

from the number of bins that are generated in the row-major ordering case. This, in

turn, increases the number of bins required but does not affect the ordering and the

locations of the bins in memory. In other words, more space will be required but those
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Algorithm 5.11: setHybridMortonRM: generates hybrid Morton and row-major order-
ing by using the dilate3D function that is used for Morton ordering.

Function setHybridMortonRM()
Input: n, ostore and invstore arrays.
Output: ostore and invstore values are generated.
nbins = n3

widthSBlocks = (1 << logt)
// number of bins in one dimension within sub-block

totalSBBins = (1 << (3 ∗ logt)) // total number of bins in each sub-block
for i = 0, p = ostore ; i < nbin; i + +, p + + do

x = i mod n
y = (i mod n2)/n
z = i/(n2)
// set the sub-block label first.

currS Block = dilate3D( (int) x/widthSBlock) + dilate3D(( (int)y /widthSBlock)«1 )
+dilate3D( ((int)z/widthSBlock)«2 )

∗p = currBlock ∗ totalSBBins + (z mod widthSBlocks) ∗ widthSBlocks2

+(y mod widthSBlocks) ∗ widthSBlocks + (x mod widthSBlocks)
invstore[∗p] = i

end
end

bins are kept in consecutive order. Therefore, in the neighbour module, particularly

in neighbour::setup, where the number of bins in each dimension is computed, we

check which dimension has the largest number of bins, even though it is assumed the

simulation size is always equal in all directions. Then, this is used to compute the num-

ber of bits required to represent that number of bins in our bit manipulation module.

Therefore, if the selected ordering is row-major, the number of bins generated will be

according to the standard implementation, mbinx×mbiny×mbinz, otherwise it will be

23∗mbits, where mbits is the number of bits computed to represent the largest number of

bins in any dimension. Finally, the ordering module is initialized and the ostore and

invstore arrays are generated.

In miniMD particles are allocated to bins by the coord2bin method of the neighbour

class. In our implementation this is modified to convert the bins into the desired order

by using the computed row-major order as an index to return the value ostore[index].

On the other hand, processing the neighbour list requires converting an index in the

defined ordering to a row-major index in order to select the bins in the stencil without

the need to construct a specific stencil function for each ordering. Therefore, the bin

label is converted into a row-major index using the invstore array, and the stencil bin is
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added. This gives the row-major index of the stencil bin, which is then converted into

an index in the defined ordering by: ostore[invstore[ibin] + stencil[k]]. As mentioned

previously, this approach of using the two arrays for encoding and decoding between

row-major ordering and any other ordering minimises the amount of computation in

performing index conversions.

5.3.2 Force Computation on the GPU

Full and half neighbour force computations are specified as kernel functions that are

called from the host (CPU) side of the CUDA implementation. As the GPU functions

cannot directly access the host memory, or vice versa, we used paged memory, rather

than pinned or unified memory, to minimize the need to modify any miniMD data

structures and to allow the GPU to support large simulation sizes.

The standard force computation has been modified to check an input value in the con-

figuration file to determine if the force computation should be performed in the stand-

ard way (on the host only) or on the GPU. If the value is less than zero, the force

computation is done on the host. If the value equals zero, the force computation is

done on the GPU and the program sets the thread block size, as computed internally

by the CUDA API, to give the best theoretical warp occupancy. Otherwise the value

is used as the thread block size for GPU execution. In addition, a CUDA compute

function is added to the standard force module to set the parameters used to decide

the type of force computation to call on the GPU, according to a value specified in

the configuration file. If the value is 0, then the full neighbour list force computation

is performed; otherwise, the half neighbour list force computation is executed. The

execution on the GPU of the force computation kernel is managed by the function

cudaLJForceCompute called on the host. This function is responsible for selecting

the GPU device, computing the thread block and grid sizes, computing the maximum

theoretical occupancy, allocating arrays in device memory, preparing all the required

parameters, copying the data needed for the execution of the force kernel, initiating
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kernel execution, measuring the time for kernel execution, and summing the potential

energy and virial pressure computed by the thread blocks. All these tasks are summar-

ised in Algorithm 5.12.

Algorithm 5.12: cudaLJForceCompute: prepares the required parameters and copies
the data between host and device and vice versa. The function records the time taken by
devHalfNeigh or devFullNeigh

Function cudaLJForceCompute(. . .)
Input: ostore and invstore arrays.
Output: ostore and invstore values are generated.

Define required parameter
cudaSetDevice(0) // select GPU device
if neigh_hal f then

cudaOccupMaxPotBlockSize(&sugGS ,&sugBS , dev_hal f _neigh, dySMemUsage, nlocal)
else

cudaOccupMaxPotBlockSize(&sugGS ,&sugBS , dev_ f ull_neigh, dySMemUsage, nlocal)
end
blockSize = (BS ize > 0)?BS ize : sugBS
gridSize = (nlocal + blockS ize − 1)/blockS ize

Allocate device memory and
copy the data from host to device (host → device) for all the required parameters

if neigh_hal f then
cudaEventRecord(&start) // create events and record start time
devHalfNeigh <<< gridS ize, blockS ize >>> (parameters)

else
cudaEventRecord(&start)

// create events and record start time
devFullNeigh <<< gridS ize, blockS ize >>> (parameters)

end
cudaDeviceSynchronize() // Synchronize the device to ensure all the block are done!.
cudaEventRecord(&stop) // record stop time

cudaEventElapsedTime(&elapsedTime, start, stop) // calculate execution time
Copy back all the data from device to host device→ host.
for i = 0 to gridSize do

energy+ = partialEnergy[i]
virial+ = partialViria[i]

end
Free all the variables created and reset device.

end

Full Neighbour List Implementation of the Force Kernel

The full neighbour list force kernel is shown in Algorithm 5.13, where it can be seen

that each thread is first assigned a specific particle, Idx, according to its location in

the thread grid (based on the thread’s block index and index within the block). The

total number of threads could be more than the total number of particles so each thread

must check that its Idx value does not exceed the total number of particles, nlocal.

The thread then copies the particle position information and stores it in registers (if



5.3 Implemented Modifications 121

available). Local variables are used to store the interaction forces, potential energy and

virial pressure, and these are initialised to 0.

The for loop iterates over the particles in the neighbour list of particle Idx. The dis-

tance between the particle and the neighbour list particle is found and if it is within the

cut-off distance, r0, then the force between the two particles is evaluated according to

the Lennard-Jones potential and this force is added to the force on particle Idx, as in

Equation 5.1. If the distance between the particles exceeds the cut-off distance then the

interaction makes no contribution to the force, and subsequently the neighbour particle

will be removed from the neighbour list of particle Idx. The potential energy and virial

pressure are accumulated for each thread block using atomic operations. The atomic

function cudaAtomicAdd has been implemented to support atomic operations on the

data types of the potential energy and virial pressure. This was necessary because the

built-in CUDA atomic functions were not compatible with the compute capability of

the GeForce GTX 960 GPU used in the performance experiments discussed in Chapter

6.
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Algorithm 5.13: devFullNeigh: shows the computation for the full neighbour list case
of the interaction forces and the potential energy. A potential race condition for potential
energy and virial pressure is avoided using the cudaAtomicAdd function.

Function devFullNeigh(. . . )
Input: nlocal number of particles, dev_x coordinations, dev_ f : forces, dev_ntypes number of particles type ,

dev_type particles type, dev_neigh neighbours list, dev_numNeigh, dev_partEng block’s potential energy,
dev_partVirial block’s virial, σdev, εdev

Output: force: computed interaction forces, blocks potential energy, blocks potential virial pressure.

Idx = blockIdx.x ∗ blockDim.x + threadIdx.x
if Idx < nlocal then

neigh = dev_neighbours[Idx ∗ maxneighs]
numOfNeigh = dev_numNeigh[Idx]

xtmp = dev_x[Idx ∗ PAD + 0]
ytmp = dev_x[Idx ∗ PAD + 1]
ztmp = dev_x[Idx ∗ PAD + 2]

f ix = f iy = f iz = 0
t_eng_vdwl = t_virial = 0

for k = 0 to numO f Neigh do
j = dev_neigh[k] // index of a neighbour particle
∆x = xtmp − dev_x[ j ∗ PAD + 0]
∆y = ytmp − dev_x[ j ∗ PAD + 1]
∆z = xtmp − dev_x[ j ∗ PAD + 2]
rsq = (∆x)2 + (∆y)2 + (∆z)2

if rsq<cutforcesq then // check if r2
i j < r2

0
sr2 = 1.0/rsq
sr6 = sr23 ∗ σ6

dev
force = 48.0 ∗ sr6 ∗ (sr6 − 0.5) ∗ sr2 ∗ εdev

fix+ = ∆x ∗ force
fiy+ = ∆y ∗ force
fiz+ = ∆z ∗ force
// EVFLAG is true if evaluation nstate % thermoStae is 0

if EVFLAG then
t_eng_dwl+ = sr6 ∗ (sr6 − 1.0) ∗ εdev

t_virial+ = (∆x)2 + (∆y)2 + (∆z)2) ∗ f orce
end

end
end
cudaAtomicAdd(dev_partEng,t_eng_vdwl)
cudaAtomicAdd(virial+ = t_virial)

end
end

Half Neighbour List Implementation of the Force Kernel

In the half neighbour list case the neighbour list of a particle is constructed to contain

only particles in stencil bins above and to the right of the central stencil bin, plus those

particles in the central bin that are above and to the right of the particle in question.

Thus, the operation count and the storage required for the neighbour lists is approx-

imately half that of the full neighbour list case. The force computation in the half
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neighbour list case is carried out on the GPU as shown in Algorithm 5.13. As in the

full neighbour list case, each thread is responsible for computing the interaction force

between one particle and the particles in its neighbour list, and the general structure of

the algorithm is the same in both cases.

When the force between particle Idx and a particle in its neighbour list is evaluated it is

added to the total force on both particles. Since multiple threads can concurrently up-

date these elements in the force array this results in a race condition. Thus, the atomic

function cudaAtomicAdd is used to accumulate the force for neighbour list particles.
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Algorithm 5.14: devHalfNeigh: computing the inter-particle forces in the half neigh-
bour list case.

Function devHalfNeigh(. . . )
Input: nlocal number of particles, dev_x coordinations, dev_ f : forces, dev_ntypes number of particles type ,

dev_type particles type, dev_neigh neighbours list, dev_numNeigh, dev_partEng block’s potential energy,
dev_partVirial block’s virial, σdev, εdev

Output: force: computed interaction forces, blocks potential energy, blocks potential virial pressure.

Idx = blockIdx.x ∗ blockDim.x + threadIdx.x
if Idx < nlocal then

neigh = dev_neighbours[Idx ∗ maxneighs]
numOfNeigh = dev_numNeigh[Idx]

xtmp = dev_x[Idx ∗ PAD + 0]
ytmp = dev_x[Idx ∗ PAD + 1]
ztmp = dev_x[Idx ∗ PAD + 2]

f ix = f iy = f iz = 0
t_eng_vdwl = t_virial = 0

for k = 0 to numO f Neigh do
j = dev_neigh[k] // index of a neighbour particle
∆x = xtmp − dev_x[ j ∗ PAD + 0]
∆y = ytmp − dev_x[ j ∗ PAD + 1]
∆z = xtmp − dev_x[ j ∗ PAD + 2]
rsq = (∆x)2 + (∆y)2 + (∆z)2

if rsq<cutforcesq then // check if r2
i j < r2

0
sr2 = 1.0/rsq
sr6 = sr23 ∗ σ6

dev
force = 48.0 ∗ sr6 ∗ (sr6 − 0.5) ∗ sr2 ∗ εdev

fix+ = ∆x ∗ force
fiy+ = ∆y ∗ force
fiz+ = ∆z ∗ force
// Check Ghost Newton applied or j<nlocal

if GHOST_NEWTON or j < nlocal then
cudaAtomicAdd(&dev_ f [ j ∗ PAD + 0],−1.0 ∗ (∆x ∗ f orce))
cudaAtomicAdd(&dev_ f [ j ∗ PAD + 1],−1.0 ∗ (∆y ∗ f orce))
cudaAtomicAdd(&dev_ f [ j ∗ PAD + 2],−1.0 ∗ (∆z ∗ f orce))

end
// EVFLAG is true if evaluation nstate % thermoStae is 0

if EVFLAG then
scale = (GHOST_NEWTON or (j < nlocal))?1.0 : 0.5
t_eng_dwl+ = scale ∗ sr6 ∗ (sr6 − 1.0) ∗ εdev

t_virial+ = scale ∗ (∆x)2 + (∆y)2 + (∆z)2) ∗ f orce
end

end
end
cudaAtomicAdd(dev_partEng,t_eng_vdwl)
cudaAtomicAdd(virial+ = t_virial)

end
end

5.3.3 Implementation Analysis

The implementation details presented in this chapter can be related to the description

of molecular dynamics simulations provided in the earlier chapters of this dissertation.
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If we assume a particle with array index, i, has a neighbour list { j0, j1, . . . , jmaxNeigh},

and is located in bini, then:

• Consecutively indexed threads in a block process consecutively indexed particles.

This is aligned with the best practice guidelines provided in Chapter 2. Moreover,

long latency accesses to the particle data arrays is minimized by copying its data

into registers, where appropriate.

• As a result of the particles being ordered in the particle data arrays according

to their bin index, the particles in the same bin are numbered consecutively, and

have similar neighbour lists. Hence, if the cache is large enough, the neighbour

list will be loaded once into cache for the consecutive particles that belong to the

same bin, as has been already addressed in detail in Chapter 4. Another factor in

addition to cache size is the cache line size and its alignment with the maximum

number of neighbours per bin. In the half neighbour list force computation, one

of the main performance implications is that the neighbour list will be evicted

from the cache because of the space required to load the force data for the neigh-

bour particles.

• Experiments and analysis will be required to evaluate the trade-off between the

number of neighbours that are processed, which is larger in the full neighbour

list case, and the extra conditional branches, which cause warp divergence issues,

in the half neighbour list case. Also the additional atomic accesses in the half

neighbour list case for the interaction force computation serializes the threads

within a warp, and this can also impact the execution time.

5.4 Summary

This chapter has covered our GPU implementation of the miniMD application, and the

modifications that have been introduced to achieve this. The modifications are mainly
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related to the incorporation of the ordering module into the miniMD application, and

the GPU implementation of the full and half neighbour list force computations. These

modifications have enabled us to conduct our experiments and analysis according to

our research requirements, as detailed in the next chapter.
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Chapter 6

Performance Experiments, Results

and Analysis

This chapter describes the performance experiments that have been carried out, and

provides an analysis of the research results. Two different hardware platforms have

been used, and the number of time steps, the simulation size, and the size and number

of thread blocks have been varied. All these parameters are used to analyse the data

locality properties for each of the orderings investigated in this work.

6.1 Experimental Objectives

The focus of these experiments is to analyse how the data orderings (as described in

Chapter 4) affect the data locality properties of the miniMD molecular dynamics ap-

plication. The impact of the data orderings on the execution time, and their relation to

the cache constraints and size, are studied by using different execution parameters and

using the NVidia profiler to collect more detailed information about GPU metrics to

understand the relationship between the parameters/configurations and the data locality

properties of the application.
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6.2 Hardware for the Experiments

In this research two hardware platforms were used: Ruthenium and Hawk. Ruthenium

is a desktop computer, and Hawk is a GPU-enabled node of a cluster. They have

different GPUs installed, as mentioned in Chapter 2 and summarised in Table 6.1.

Ruthenium Hawk

Operating System
Ubuntu v14.04.5 LTS (Trusty
Tahr)

Red Hat Enterprise Linux
Server v7.4 (Maipo)

Model name
Inter(R) Xeon (R) i7-5960x
CPU @ 3.00 GHz

Inter(R) Xeon (R) Gold 6148
CPU @ 2.40 GHz

GPU Model Maxwell GeForce GTX 960 Tesla P100
Number of Processors 16 40
Cores per Sockets 8 20
Instruction Cache Size 32KB 32KB
L1 Data Cache Size 32KB 32KB
L1 Way Associative 8 8
L1 Cache Line Size 64 Byte 64 Byte
L2 Data Cache Size 256KB 1MB
L2 Way Associative 8 16
L2 Cache Line Size 64 64
L3 Data Cache Size 20MB 27.5MB
L3 Way Associative 20 11
L3 Cache Line Size 64 64

Table 6.1: Ruthenium and Hawk specifications.

Both machines have three levels of cache, however, they are different in terms of size

and latency. For example, the Hawk machine has a larger L2 cache, which could result

in a lower miss hit rate compared to the Ruthenium machine.

The GPU specification, which has been described in detail in Chapter 2, is summar-

ized in Table 6.2. In addition, we used the built-in device query routine to collect

more information on the GPU specifications of both machines, and this information is

provided in Appendix A.

According to Table 6.2, if the data for a particle consists of position, velocity and

force vectors, then the memory required per particle is 36 and 72 bytes for single and

double precision, respectively. Thus, for the Ruthenium system at single precision,
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Ruthenium Hawk

Model name
Maxwell GeForce
GTX 960

Tesla P100

CUDA Compiler version 7.2 9.2
Compute Capability 5.2 6.0
Number of SMPs 8 56
Number of Cores per SMP 128 64
Maximum threads per block 1024 1024
Unified Cache L1/Texture 48KB 24KB
L2 Cache 1MB 4MB
Device Memory ≈ 2GB ≈ 16GB

Table 6.2: GPU specification for Ruthenium and Hawk.

1365 particles would fit into the L1 cache, and 29127 particles would fit into the L2

cache. As an example, if we assume there is a maximum number of 12 particles per

bin, then about 112 bins would fit into L1 cache and 2400 bins would fit into L2 cache.

Assuming a cache line size of 128 bytes, only about 3 particles would fit within a cache

line. In terms of the Hawk system, half the number of particles would fit into L1 cache,

but four times as many would fit into L2 cache.

6.3 Profiling Tools

As mentioned earlier, the Nvidia Visual Profiler was used to profile the miniMD ap-

plication on both machines. However, the Ruthenium machine has version 7.5 of the

profiler, while Hawk has version 9.2. We noticed that the newer version provides more

measurements about the compute capability of more recent GPUs. The Nvidia visual

profiler supports GPUs with compute capability greater than 7.0.

6.4 Experimental Setup

In order to achieve our experimental objectives, we first specify whether the execution

platform is the host CPU or the GPU. If the intended experiment is run on the CPU
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then the number of threads per block is set to a negative value; otherwise it will run

on the GPU. The next configuration parameter to set is the number and range of the

simulation time steps. Finally, the data ordering, and the parameters of the LJ force

computation must be set as part of the execution parameters. In the case of GPU exe-

cution, three block sizes were used to investigate how performance varies for different

block sizes.These various types of experiments are shown in Table 6.3.

Experiment Parameters Description
Machines Ruthenium (GTX 960) and Hawk (P100)
Application version CPU and GPU
Time-steps 100 and 1100
Data ordering All seven orderings in Table 5.3
Neighbour list configuration Full and Half
Block size (only for GPU case) 576, 640, and 1024 threads

Table 6.3: Various variables of our experiments .

The numbers of experiments generated based on Table 6.3 are provided in Appendix B,

where B.1 and B.2 are for the Ruthenium and Hawk experiments, respectively, which

are executed for each data ordering for both 100 and 1100 time steps. Thus, for each

simulation size, on the GPU platforms, the force computation is configured as full or

half, and then the block size is defined according to the block sizes listed in Table 6.3,

where for each block size the experiment is executed for 10 independent experiments.

In both cases, for time steps 100 and 1100, the average of the last 100 time steps that

call the force computation are considered (called from the integrate module using the

run method). For each of the 10 independent executions the average of the average time

is computed. It should be mentioned that the recorded standard deviation percentage

for the 10 independent experiments was never greater than 3% of the average value.

In addition, we set the Lennard-Jones parameters the same for all our experiments. In

LJ units the input parameters used were σ = 1.0, ε = 1.0, time step =0.005, initial

temperature =1.44, and density =0.8442. Neighbour lists were updated every 20 time

steps; the cut-off distance was r0 = 2.5, and the skin thickness was rs = 0.3. In all sim-

ulations, it is assumed the particles are initially positioned with a face-centered cubic
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layout, which can be represented as a periodic lattice of repeating units, each contain-

ing four particles. The problem size, N, is the number of units in each dimension, and

is related to n, the number of particles, by n = 4N3. All the hybrid orderings are defined

with an internal sub-block size of 2-bits, 2(3∗2) = 4 × ×4 × 4 = 64 bins. In these ex-

periments, we will refer to the hybrid Hilbert row-major, hybrid Hilbert column-major,

hybrid Morton row-major, and hybrid Morton column-major orderings as Hilbert RM,

Hilbert CM, Morton RM and Morton CM, respectively.

In the Hawk case, where the experiments were executed using Slurm (Simple Linux

Utility for Resource Management) a script was developed, and the type of ordering and

type of force computation are provided as input parameters. The script then generates a

batch job that is scheduled by the work load manager according to when the requested

resources are available. The scripts and the batche jobs are provided in Appendix C.

The experimental results are compared with the original version of the miniMD pack-

age (without any modification) in order to ensure the results obtained are valid and

accurate by comparing the results of individual time steps and the overall simulation

summary.

6.5 CPU Experiments

6.5.1 Force Module Execution Time

The objective of this experiment was to show the ratio of the full and half neighbour list

LJ force computations to the overall simulation time. In order to achieve this objective,

the time for the force computation was compared to the total execution time for the

miniMD application running on Ruthenium, using a row-major data ordering. The

results show that the force computation, for both the full and half neighbour list cases,

takes about 80% of the overall simulation time, as illustrated in Figure 6.1. These
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results justify the decision to conduct our investigation of the data locality properties

of molecular dynamics simulations using the the LJ force computation.

32 42 52 62 72 82 92
0

20

40

60

80

100

79
.51

%
80
.38

%

79
.56

%
79
.55

%
80
.33

%

79
.96

%
80
.12

%

Simulation Size

R
at
io

(%
)

Full neighbour list

(a)

32 42 52 62 72 82 92
0

20

40

60

80

100

81
.23

%
82
.22

%

81
.67

%
81
.7%

81
.83

%
81
.93

%

81
.03

%

Simulation Size

R
at
io

(%
)

Half neighbour list

(b)

Figure 6.1: (a) and (b) shows that the force computation for both the full and half
neighbour list cases is about 80% of the overall simulation time, regardless of the
simulation size.

6.5.2 CPU Execution Time for Different Data Orderings

The CPU version of the application has been investigated for different data orderings

using the same parameters as in the previous experiments. These experiments show

which ordering has the best performance for a given simulation size, N. However,

the smallest execution time might not guarantee the best data locality characteristics,

especially for CPU platforms where a number of services and other programs share

the CPU’s resources. Figures 6.2 and 6.3 show that the half neighbour list algorithm is

faster than the full neighbour list algorithm, particularly at larger problem sizes, N. In

addition, the results show that the row-major ordering results in the fastest execution,

especially for the half neighbour list algorithm.
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Figure 6.2: Ruthenium,full neighbour list case: time to execute one time step of
the force computation on the CPU.
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Figure 6.3: Ruthenium, half neighbour list case: time to execute one time step of
the force computation on the CPU.
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6.6 GPU Experiments

The data locality properties of the LJ force computation for GPU implementations

are the focus of our research, therefore a number of experiments were carried out to

understand the relationship between data ordering and data locality. Initially, we will

compare execution on GPUs and CPUs, and then we will use the NVidia profiler to

study each implementation’s use of resources. This profile information will be used

to account for the measured execution time in terms of data locality properties by

investigating accesses and transactions for the various levels of hierarchical memory.

The NVidia Visual Profiler ranks the executions of each kernel by an estimation of

how important it is to optimise that kernel, based on the execution time and achieved

occupancy. NVidia recommends that kernel executions that rank higher (i.e., those that

are expected to benefit most from optimisation), are used to conduct GPU analysis,

rather than taking an average of all the executions for that kernel, as this approach is

more likely to result in improved performance. We have followed this recommendation

in the results and analysis presented in this chapter.

6.6.1 Theoretical Occupancy

The theoretical occupancy is the maximum number of warps that can execute on a

streaming multiprocessor of a GPU divided by the device limit, and it is affected by

factors such as the number of threads per block, the number of registers in use, and the

capabilities of the GPU. Figures 6.4 and 6.5 reflect the relation between thread con-

figuration, theoretical occupancy, and total execution time for the full neighbour and

half neighbour list cases on the Ruthenium and Hawk systems, respectively. In this

experiment, we set the problem size, N = 92, although similar results were obtained

for other problem sizes. For the Ruthenium system, the half neighbour list algorithm,

with a block size of 576, has an optimal theoretical occupancy of 0.563, which is less

than for the full neighbour list case of 0.625, where the block size is 640. This dispar-
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ity arises because the half neighbour list algorithm requires more registers compared

to the full neighbour list case. However, for the full neighbour list case, higher theor-

etical occupancy results in slower execution times. This could be because the actual

occupancy is lower for larger grids. On the other hand, for the half neighbour list case

high theoretical occupancy correlates with faster execution. For the Hawk system, the

general trends are similar to Ruthenium, although for the half neighbour list algorithm,

the execution times are almost identical, as shown in 6.5b.
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Figure 6.4: Ruthenium: dependency of total execution time and theoretical occu-
pancy for different thread block configurations for the full (a) and half (b) neigh-
bour list cases. The problem size is N=92.

6.6.2 GPU Force Computation Ratio

In order to show the ratio of the force computation to the total simulation time for the

CPU and GPU versions, the Ruthenium machine was used to run our experiments for a

row-major ordering. The number of time steps was 100, and in the GPU case the block

size was set to 1024. For the CPU implementation, the ratio of the force computation

to the total simulation time is consistently about 80% for both neighbour list cases, as

shown in Figure 6.6. For the GPU case, in which the force time includes the time for

transferring particle data between the host and the GPU in each time step, the ratio
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Figure 6.5: Hawk: dependency of total execution time and theoretical occupancy
for different thread block configurations for the full (a) and half (b) neighbour list
cases. The problem size is N=92.

decreases as the problem size increases, as shown in Figure 6.7. This is because the

neighbour lists are managed on the host and the processing time for this increases more

rapidly than the force computation on the GPU side. The execution time for the half

neighbour list case is about 60% of that of the full neighbour list case for the CPU

implementation. On the other hand, for the GPU case, the difference is much less,

because the lower number of neighbour particles processed is offset by the need to

accumulate forces atomically.
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Figure 6.6: Total simulation time and force computation time for the CPU imple-
mentation on Ruthenium, accumulated over the first 100 time steps, for different
problem sizes, N. Times are shown for the half and full neighbour list algorithms.
Note the total height of each column is the total time for the simulation.
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Figure 6.7: Total simulation time and force computation time for the GPU imple-
mentation on Ruthenium with 1024 threads per block, accumulated over the first
100 time steps, for different problem sizes, N. Times are shown for the half and
full neighbour list algorithms. Note the total height of each column is the total
time for the simulation.

The ratio of execution time of the CPU and GPU cases for the force computation is

shown in Table 6.4. In general, the ratio tends to increase slowly with problem size, N.

For the half neighbour list algorithm, the ratio is smaller compared to the full neighbour



138 6.7 Locality Analysis

list case, because of the atomic additions performed on the GPU side. Another reason

might be the increased number of stalled threads caused by thread divergence due to

additional conditional statements in the half neighbour list algorithm. This will be

investigated further in the profiling analysis section.

N Row-major Hilbert Morton Hilbert RM Hilbert CM Morton RM Morton CM
Full Half Full Half Full Half Full Half Full Half Full Half Full Half

32 11.68 6.89 8.07 5.98 8.66 6.38 8.63 6.18 8.45 6.05 9.1 6.31 8.85 6.15
42 12.27 7.38 7.32 6.58 7.1 6.77 7.52 6.55 7.28 6.28 7.56 6.58 7.02 6.34
52 12.29 7.75 7.65 6.84 7.49 7.02 8.12 7.02 7.39 6.67 8.02 7.09 7.41 6.72
62 12.14 7.84 7.94 7.21 7.69 7.09 8.32 7.34 7.62 7.03 8.22 7.19 7.83 6.93
72 12.66 7.87 8.03 7.07 7.85 7.57 8.02 7.16 7.48 6.87 8.18 7.42 7.72 7.2
82 12.33 8.01 7.96 7.15 7.57 7.23 8.04 7.22 7.46 7 7.99 7.35 7.52 7.01
92 12.55 8.12 7.95 7.23 7.85 7.26 8.02 7.27 7.62 7.07 8.05 7.33 7.67 7.18

Table 6.4: Ruthenium: ratio of CPU to GPU execution time for the force compu-
tation. In the GPU computation there are 1024 threads per block.

6.7 Locality Analysis

In order to study and compare just the data locality properties of the orderings con-

sidered in this research, and their impact on the performance of the force computa-

tion, all subsequent timing experiments were carried out without including the time

for particle transfers between the CPU and GPU; in other words, the times reported

for only for the kernel function used for the force computation. The experiments were

performed for two scenarios: the first was for time steps 1 to 100, with averages being

computed for this range of time steps; the second was run for 1100 time steps with aver-

gaes being computed over time steps 1001 to 1100. By gathering timing and profiling

data for these two scenarios on the Ruthenium and Hawk machines, the experimental

results show that both scenarios have similar trends in terms of the ordering of execu-

tion time. Figures 6.8 and 6.9 show the time on Ruthenium for the force computation

kernel per time step for differing thread block sizes for the full and half neighbour list

cases, respectively. The half list algorithm achieves faster execution than the full neigh-

bour list algorithm, especially at larger problem sizes. In the case of the full neighbour

list, for all the problem sizes and the block sizes considered, the row-major ordering
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results in the fastest execution, as shown in Figure 6.8. In addition, for all problem

sizes and orderings, a thread block size of 1024 is fastest and 640 is slowest, except

for N = 82 and N = 92, where a block size of 576 results in approximately 2% faster

execution. The advantage of a smaller block size is to increase the number of registers

available per thread, which tends to enhance performance. However, it also decreases

the number of warps per block, which may lead to inefficient GPU utilization. Hybrid

orderings are aligned with other orderings in terms of the optimal performance of the

adopted block size. They are still slower than row-major ordering and have slightly

faster execution times compared with pure Hilbert and Morton orderings, especially

for the Hilbert RM and Morton RM cases which are about 2.8% to 10.8%, and 2.9%

to 7.6%, faster than the pure Hilbert and Morton cases, respectively.
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Figure 6.8: Ruthenium, full neighbour list case. Time for execution of force com-
putation kernel on the GPU for one time step.
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Figure 6.9: Ruthenium, half neighbour list algorithm. Time for execution of force
computation kernel on the GPU for one time step .
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The results for the half neighbour list algorithm, shown in Figure 6.9, also illustrate

that a row major ordering results in the fastest execution, although not by as large an

amount as in the full neighbour list case. In the half neighbour list case with row-major

ordering, it was found that a thread block size of 576 was fastest, with 640 still being

the slowest. On the other hand, for the Hilbert and Morton orderings, a block size

of 640 was the fastest. For hybrid orderings, where the position of the neighbouring

particles can favour either the inner sub-block ordering (row-major or column order) or

the outer block ordering (Hilbert or Morton), it was found that a block size of 640 was

the fastest in most cases, especially for hybrid Morton orderings. However, the results

do not show any of the hybrid orderings being consistently faster than the others.

The corresponding execution times are faster on the Hawk system, however, similar

trends are observed. We provide the corresponding figures for execution on Hawk

in Appendix D, and only the results for 1024 threads per block are provided in Fig-

ure 6.10, as required for the remaining analysis of this work.
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Figure 6.10: Hawk: time for execution of force computation kernel on the GPU
for one time step in the full (upper) and half (lower) neighbour list cases.

6.7.1 Execution Efficiency Analysis

To analyse the locality in more detail, the nvprof profiler was used to collect data on

the execution of the force computation kernel to gain insight into how efficiently it is

being used and how the orderings affect data locality. In these experiments, profiling
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was conducted for a problem size of N = 92 (3114752 particles), a block size of 1024

threads per block, and time steps 1001-1100 for both the full and half neighbour list

cases for the Ruthenium (GTX 960) and Hawk (P100) machines.

The number of eligible warps is shown in Table 6.5. An eligible warp is an active warp

that is able to issue its next instruction, in contrast to a stalled warp that is not able to

make progress.

Table 6.5 shows that the number of cycles to execute the force computation kernel

is approximately 9-12% larger in the full neighbour list case, compared with the half

neighbour list case. This is because the number of computations is higher in the full

neighbour list case. For the Ruthenium system, the percentage of active warps that are

eligible is about 7.4±0.1% for all orderings in the full neighbour list case, but is larger

in the half neighbour list case: 10.25±0.05%. For the Hawk system the corresponding

values are about 2.2% and 3.2%, which accounts for the larger number of cycles needed

to execute the force computation kernel on Hawk, compared with Ruthenium. For the

Hawk system, the low percentage of active warps that are eligible may be due to the

memory-dependent warp stalling seen in Figures 6.13 and 6.14.

Figures 6.11 and 6.12 show further information regarding the cause of the stalled warps

in the force computation kernel for the Ruthenium system. These figures show that

memory dependency and execution dependency are the main reasons for the stalled

warps. Memory dependent stalls occur when required resources are unavailable, fully

utilized or there are too many requests for a load/store operation; in other words, when

a warp must wait for a previous memory operation to release a required resource. In the

full neighbour list case, memory dependencies are the dominant reason for warp stalls,

accounting for 84% to 90% of all stalls, compared with a more uniform value of 90%

for the half neighbour list case. On the other hand, execution dependency stalls occur

when an input required by the instruction is not yet available. In the full neighbour list

case, execution dependencies account for 14% of stalls for a row-major ordering, but

for only 11.5% of stalls for Hilbert and Morton orderings. In the half neighbour list
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GTX 960 Number Eligible
of Cycles Warps (%)

Row-major
Full 11.85 × 109 7.5
Half 10.83 × 109 10.3

Hilbert
Full 12.13 × 109 7.3
Half 10.84 × 109 10.3

Morton
Full 12.08 × 109 7.3
Half 10.76 × 109 10.2

Hilbert RM
Full 11.96 × 109 7.4
Half 10.78 × 109 10.5

Hilbert CM
Full 12.06 × 109 7.4
Half 10.85 × 109 10.2

Morton RM
Full 11.96 × 109 7.4
Half 10.70 × 109 10.5

Morton CM
Full 12.02 × 109 7.3
Half 10.81 × 109 10.2

P100 Number Eligible
of Cycles Warps (%)

Row-major
Full 42.87 × 109 2.2
Half 38.27 × 109 3.2

Hilbert
Full 43.06 × 109 2.2
Half 38.25 × 109 3.2

Morton
Full 42.57 × 109 2.1
Half 37.67 × 109 3.2

Hilbert RM
Full 42.88 × 109 2.1
Half 37.32 × 109 3.3

Hilbert CM
Full 43.32 × 109 2.1
Half 37.77 × 109 3.2

Morton RM
Full 42.89 × 109 2.2
Half 37.59 × 109 3.3

Morton CM
Full 42.76 × 109 2.2
Half 37.20 × 109 3.2

Table 6.5: Number of active cycles and percentage of active warps that are eligible
per active cycle, for N = 92 and 1024 threads per block. Ruthenium (upper) and
Hawk (lower).

case, execution dependencies consistently account for 8% to 9% of stalls. It should be

noted that there are no synchronization stalls as the kernel code contains no explicit

synchronization.
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Figure 6.11: Ruthenium, full neighbour list case. Output from nvprof giving the
cause of warp stalling in the force computation kernel using the different order-
ings.
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Figure 6.12: Ruthenium, half neighbour list case. Output from nvprof giving the
cause of warp stalling in the force computation kernel using the different order-
ings.
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For the Hawk system, warp stalling is caused almost entirely by memory dependency,

as shown in Figures 6.13 and 6.14. In this system, the absence of any significant

execution dependency is due to to the large number of SMPs and cores in the P100,

compared with the GTX960, which reduces the likelihood of a thread having to wait

for another thread to compute a required input. Hybrid ordering is just ±1% compared

to other (standard) orderings for the full neighbour list case, but they are consistent for

the half neighbour list case.
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Figure 6.13: Hawk: full neighbour list case. Output from nvprof giving the cause
of warp stalling in the force computation kernel using the different orderings.
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Figure 6.14: Hawk, half neighbour list case. Output from nvprof giving the cause
of warp stalling in the force computation kernel using the different orderings.

Warp execution efficiency is the ratio of the average number of active threads per

warp to the maximum number of threads per warp supported by the multiprocessor.

In a kernel code different execution paths (arising from conditional statements) and

non-coalesced memory accesses affects warp execution efficiency, which is known as

intra-warp divergence. Branch efficiency is the ratio of executed uniform flow control

decisions over all executed conditionals, and thus gives a measure of divergence. The

warp execution and branch efficiency for Ruthenium are shown in Figure 6.15, which

shows that the warp execution efficiency is about 57% and 83% for the half and full

neighbour list cases, respectively. The branch efficiency is about 7-8% less in the half

neighbour list case, so intra-warp divergence accounts for at least some of the lower

warp execution efficiency in this case. The Hawk system shows similar results to the

Ruthenium system, as shown in Figure 6.16, despite the very small decreases observed

for row-major and hybrid Morton orderings, which could be due to the low spatial cor-

relation of particles as a result of the reduced number of common neighbours. As seen

in Chapter 5, the half neighbour list algorithm has additional control paths (if state-
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ments), compared to the full neighbour list case, which leads to a decrease in warp

efficiency inside the streaming multiprocessor. In other words, although these threads

belong to the same bin, and so should have a high likelihood of processing common

neighbour particles in the memory, yet some threads in the same warp process some

particles while others do not as those neighbour particles do not meet the neighbour-

hood condition of the half neighbour list algorithm.
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Figure 6.15: Ruthenium: warp execution and branch efficiency for the full (a) and
half (b) neighbour list algorithms.
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Figure 6.16: Hawk: warp execution and branch efficiency for the full (a) and half
(b) neighbour list algorithms.

In addition, warp divergence can be studied using the percentage of divergent branches

and control flow divergence percentages (see [44, p. 92]). The divergent branches

percentage is the percentage of branches that are causing divergence in a warp amongst

all the branches present in the kernel. This can be calculated as:

(
100 × divergent branches

)(
divergent branches + non-divergent branches

)
Control flow divergence is the percentage of thread instructions that were not executed

by all threads in the warp. This is calculated as:

100 × ((32 × instructions executed) − thread instructions executed)
(32 × instructions executed)

Despite the fact that some divergence is unavoidable, as in our case, these percent-

ages should be as low possible to achieve higher warp execution efficiency. Both the

Ruthenium and Hawk systems have similar results, except for the Morton and hybrid

Hilbert orderings, which have a lower percentage. This explains why the warp execu-
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tion efficiency for these orderings has a higher percentage for the full neighbour list

case, as shown in Figure 6.16.
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Figure 6.17: Ruthenium: the percentages of divergent branches and control flow
divergence warp execution and branch efficiency for the full (a) and half (b) neigh-
bour list algorithms. Note, low percentage is more efficient.
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Figure 6.18: Hawk: the percentages of divergent branches and control flow diver-
gence warp execution and branch efficiency for the full (a) and half (b) neighbour
list algorithms.Note, low percentage is more efficient.
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6.7.2 GPU Memory Analysis

A memory transaction is the movement of data between two areas of memory. A

smaller number of transactions when accessing data results in higher efficiency. When

loading a data item for all the threads in a warp from global memory to L2 cache, the

number of memory transactions in the ideal case is

⌈
(Number of threads in a warp) × (Size of data item)

Size of cache line

⌉

Thus, if the warp size is 32 threads, the data item size is 8 bytes, and the cache line

size is 32 bytes, then ideally 8 memory transactions are needed. Figure 6.19 shows, for

the Ruthenium system, the actual number of memory transactions per access for the

following accesses in the force computation:

AC: Access an 8-byte coordinate value for a thread’s particle.

NI: Access the 4-byte index of a particle from the neighbour list.

NC: Access an 8-byte coordinate value for a particle in the neighbour list.

NT: Access the 4-byte type of a particle.

FUI: Access an 8-byte force component for a particle in the neighbour list (half neigh-

bour list case only).

FUO: Access an 8-byte force component for a thread’s particle.

Figure 6.19 shows that when accessing 8-byte doubles, the number of memory trans-

actions per access is 2 to 3 times the ideal number, and when accessing integers, the

corresponding ratio is larger. As described in Chapter 5, particle data are stored in

arrays in coordinate order. For example, the x, y, and z coordinates of particle i are

stored at indexes 3i, 3i + 1, and 3i + 2 of the position array. Consequently, the x value

of consecutive particles is separated by 24 bytes so that accessing a single x value for
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all the threads in a warp requires 24 memory transactions (and similarly for the y and

z values). This is the case for the AC, FUI, and FUO accesses in Figure 6.19, but for

the NC access the value is slightly larger than 24 for the full neighbour list case, and

less for the half neighbour list case. Large values occur when not all the accesses for a

warp are in the same block of 32 bytes, while smaller values occur when the neighbour

lists for successive particles have particles in common. Likewise, the time for the NI,

NC, and NT accesses is less for the half neighbour list case, because fewer particles

are processed in this case. This means particle data stays in L2 cache for a longer time

before being evicted.

For the Hawk system, it was found that the number of memory transactions per access

is very similar to those for Ruthenium, as shown in Figure 6.20.
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Figure 6.19: Ruthenium: number of memory transactions per access for the full
(a) and half (b) neighbour list algorithms.
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Figure 6.20: Hawk: number of memory transactions per access for the full (a)
and half (b) neighbour list algorithms.

As indicated in Table 6.2, the L1 and texture caches of both GPUs are combined into a

single unit referred to as the “unified cache”, the size of which is 48 KB and 24 KB for

the Ruthenium and Hawk systems, respectively. The cache line size of both systems is

128 bytes. Since a warp consists of 32 threads, then, for the Ruthenium system, there

are 1536 bytes of L1 cache for each thread. The position and force components for

a particle correspond to six 8-byte values (without padding) for a total of 192 bytes,

so ideally 6 particles per thread will fit into unified cache. For the Hawk system, this

value is halved. However, loading neighbour list particles displaces data already in the

unified cache, and hence this reduces the hit rate. Note that the cache line size for the

L2 cache is 32 bytes. Figure 6.21 shows the following cache hit rates for the force

computation for the full and half neighbour list cases:

• Unified: the cache hit rate for the unified cache, i.e., the percentage of accesses

that are found in the unified cache. Note that for the GPUs used here, by default

read-only data are cached only in the unified cache.

• L2-R: the percentage of read requests (for data that is not read-only) that are

satisfied by the L2 cache.

• L2-W: the percentage of write requests that are satisfied by the L2 cache.



6.7 Locality Analysis 155

• Global: the percentage of accesses to read-only data not satisfied by the unified

or L2 caches that result in a direct read from global memory to unified memory

without going through L2 cache.

For the Ruthenium system, the hit rate for row-major ordering is slightly larger than

for any other orderings, as illustrated in Figure 6.21. The half neighbour list cases

have fewer misses to unified cache, but more misses when writing to the L2 cache.

In general, hybrid Hilbert CM and Morton CM orderings have a lower cache hit rate

compared to all the other orderings for both the full and half neighbour list algorithms,

except for the L2-R hit rate. Figure 6.22, shows that the cache hit rates for the Hawk

system, and demonstrates how the hit rates for the unified cache and for global memory

access are higher than for the Ruthenium system. However, the hit rate for reads and

writes to/from the L2 cache is slightly lower for Hawk compared with Ruthenium,

except for Morton ordering in the full neighbour list case where the hit rate for reads

from L2 cache is higher for Hawk.
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Figure 6.21: Ruthenium: cache hit rate for the full (a) and half (b) neighbour list
algorithms.
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Figure 6.22: Hawk: cache hit rate for the full (a) and half (b) neighbour list
algorithms.

6.8 Summary

This chapter has described the experiments, results and analysis that have been con-

ducted in our research. These experiments covered the execution time and the NVidia

Visual Profiler results, and these data were used to compare the characteristics of the

different data orderings. The profiler provides a useful tool to evaluate the data local-

ity of the different orderings, and the results shows a significant correlation with the

cache model that was introduced in Chapter 4. The next chapter will present the re-

search findings of these results, and make recommendations regarding possible future

research work.
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Chapter 7

Conclusions and Future Work

This chapter presents the findings derived from the work presented in this thesis in or-

der to demonstrate the extent to which our research contributions, that were outlined in

Chapter 1, were achieved. The overarching findings are presented, followed by a more

detailed discussion of the conclusions. This chapter will also present the limitations of

our research, and recommend how our research can be extended in the future.

7.1 Conclusion

This research has presented seven types of data ordering in order to evaluate the data

locality properties of molecular dynamics simulations that use a Lennard-Jones poten-

tial in the inter-particle force computation. Both full and half neighbour list algorithms

have been implemented for GPUs using the CUDA programming framework.

In Chapter 2, specifically Section 2.3, we presented our approach for generating the

various data orderings, especially using space-filling curves and their related hybrid

data orderings. In Chapter 4, we used these orderings in a simple cache model that

investigates the relationship between the stencil shape and data locality properties for

different orderings. The simple model, which evaluates memory access patterns, shows

that for a row-major ordering with a given stencil the data locality properties are inde-

pendent of spatial location (assuming periodic boundaries), while this is not the case

for Hilbert and Morton orderings. Therefore, Hilbert and Morton orderings have a
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higher degree of memory scatter in their memory access pattern compared to a row-

major ordering. The cache miss rate model shows that for a row-major ordering the

miss rate remains constant for a range of cache sizes, and then gradually decreases

as the cache size increases. On the other hand, the Hilbert and Morton orderings do

not illustrate this trend as they are not ordered by row. The orderings are impacted

by the cache block size and the overall size of the cache, resulting in the Hilbert and

Morton orderings having a lower miss rate than a row-major ordering. The comparison

between the approximate spherical stencil and the block stencil shows that the former

has a lower miss rate compared to the latter. Moreover, data reuse or temporal data

locality have less dependence on the ordering used as the number of bins shared in the

processing of adjacent bins is 2g(2g + 1)2, where g is is the stencil size parameter.

In Chapter 6, the execution time and the nvprof profiling tool were used to analyse the

data locality properties of the different data orderings. An analysis of the CPU execu-

tion time showed that the force computation is the most expensive part of each time

step in terms of the execution time. In addition, the row-major ordering has a faster

execution time compared with the other orderings especially for the half neighbour list

algorithm.

The key findings for the GPU implementation can be summarised as follows:

• The ratio of CPU to GPU execution time shows that the GPU implementation

can significantly reduce the execution time for a large problem size.

• The analysis of theoretical occupancy shows that high theoretical occupancy

does not guarantee the optimal performance for an application.

• Threads and data alignment and coalesced data accesses, have a significant im-

pact on application performance.

• Branch divergence significantly impacts the execution time, especially for high

data dependency applications.
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The analysis of data locality that has been carried out shows that the locality proper-

ties of data orderings are affected by cache size, where row-major orderings are best

for a large cache size, while Hilbert and Morton orderings are better for a small cache

size, as demonstrated by the cache model. The number of particles in each bin, and

the amount of padding between particles within the array, affects the properties of data

orderings as the cache size might not be sufficient to store all the particles of a bin

particles in the high level cache, and the padding decreases the amount of particle data

that can be loaded in each cache line. As a result of each thread computing the interac-

tion force between one specific particle and its neighbouring particles, which are also

neighbours with other threads (especially those located in the same bin), the number of

cycles to execute the force computation is very high due to memory dependency and

execution dependency. This is particularly apparent in the Ruthenium results. The half

neighbour list algorithm executes faster than the full neighbour list algorithm due to the

lower number of particles involved in the computation and the lower number of neigh-

bouring particles. However, the extra conditional statements in the half neighbour list

case causes the warp execution efficiency and branch efficiency to decrease the overall

execution efficiency.

Data dependency has an inverse relationship with temporal data locality, especially if

particles are processed with atomic accesses. Therefore, particles being scattered in

the memory might yield better performance since this reduces the cost of serializing

instruction access. In addition, the cost of branch divergence has a slight impact on

the execution time as the execution efficiency is decreased. Branch divergence reduces

both spatial and temporal data locality as it may either not utilize the existing data or

might require uploading different data that cannot be utilized by consecutive threads.

On the other hand, our memory analysis shows that the issue of the padding and align-

ment in accessing various arrays during the force computation increases the number of

memory transactions per access. The displacement of the data during the force com-

putation reduces data locality, especially temporal data locality.
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Cache memory has been analysed with a simple cache model, and the unified cache

hit rate for the Hawk system (which has a smaller cache size) is best for Hilbert and

Morton orderings, in the case of the full neighbour list algorithm. This is because

these orderings have better spatial locality than a row-major ordering as stencil bins

are more clustered in memory around the stencil center, as demonstrated in Chapter 4.

However, Hilbert and Morton orderings have a long ‘memory tail’ in the sense that 10-

20% of stencil bins are further away in the memory than any of the other of stencil bins

in the row-major case. In the case of the Ruthenium system (where the unified cache

is larger), the row-major ordering has a slightly better cache hit rate. These results

suggest that the performance benefits of the different orderings depend on the size of

the different levels in the memory hierarchy, and on the cache line size.

Although the cache model shows that stencil bins are more clustered about the stencil

centre in the Hilbert and Morton cases than for the row-major case, the small size of

the unified cache and the large number of interactions per particle results in a lot of

‘churn’ at this level in the memory hierarchy. This reduces the impact that the different

data orderings have on the data locality properties of the application.

7.2 Research Questions Answered

In this research, we have investigated the relation between different computation sten-

cils and the adopted data orderings by using block (cubic) and approximately spherical

stencils, as illustrated in Chapter 4. Overall this research has examined the data local-

ity properties of different data orderings for MDS applications implemented on GPU

platforms, as shown in Chapters 4, 5 and 6. The space filling curve orderings have

been adopted without modifying the data structure or specific computational workflow

in order to present a consistent study among the various data orderings.

This research also shows how to conduct data locality and performance analysis studies

for other applications that have high data dependency. A cache model have been imple-
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mented which can be utilised as is for other applications, or with some modifications to

account for different data dependency relationships, such as adopting a different type of

stencil. Secondly, a performance analysis has been carried out to study the ratio of CPU

to GPU execution time, the impact of theoretical occupancy and data locality by using

the NVidia profiler. Finally, an analysis has been conducted using the NVidia profiler

in terms of the execution efficiency, which is useful in evaluating different implement-

ations. This type of analysis covers the evaluation of the number of eligible warps and

identifying the reasons for stalled warps. The eligible warps are also studied from the

perspective of the number of cycles required to complete warp execution. In addition,

warp execution efficiency and branch efficiency are studied to analyse the differences

between the full and half neighbour list force implementations. The full neighbour list

case requires more computation, while for the half neighbour case the implemented

conditional branches are costly. Therefore, additional analysis has been conducted to

evaluate the percentage of divergent branches and control flow divergence, as presen-

ted in Section 6.7.1. GPU memory analysis has been performed to study the memory

transactions, the type of memory accesses and the cache hit rates for both full and half

force computations. All these analyses can be adopted as guidelines to use the NVidia

profiler for similar types of application.

Even though this research is aligned with a number of other studies, such as [15, 53, 86,

135], in terms of using GPUs and space-filling curves to improve the MDS perform-

ance and execution time, however, to the best of our knowledge, this research is the first

to address the data locality properties of MDS on GPUs. Moreover, most of the previ-

ous implementations introduced various data structures, such as interaction matrices,

and incurred additional overhead in terms of the execution time. The high correlation,

as explained earlier, between the findings of our cache model and the NVidia profiler

is evidence of the accuracy and relevance of the obtained results and analysis.
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7.3 Limitations

This research was limited to the study of only one application (miniMD) and con-

sidered one model of the potential energy (Lennard-Jones). In addition, the experi-

ments and analysis were conducted on only two NVidia GPUs. Despite these limit-

ations, the Lennard-Jones potential represents a good example of an irregular applic-

ation, that has a high degree of data dependency and cannot be clustered or divided

independently for the computation, to study MDS data locality properties on different

GPUs.

7.4 Future Work

GPUs are an important platform for parallel applications, and are less expensive com-

pared to other HPC environments. Therefore, future work could extend the timing ex-

periments and analyse other NVidia GPUs and a broader range of molecular dynamic

simulations. As an example, the embedded-atom method (EAM) [38, 39], which is one

of the potentials supported by miniMD, will be implemented in our future work to in-

vestigate its data locality and performance characteristics compared to a Lennard-Jones

potential. EAM is widely implemented for purely metallic systems with no directional

bonding, and is used to approximate the structure, energetics, and properties of metals.

This study can also be extended to include other molecular dynamics potentials.

It is possible to extend the GPU implementation to bypass the unified cache so that

only the L2 cache is used. As the size of the L2 cache is large, we assume this will

favour row-major orderings. However, investigating the impact on the overall execu-

tion time might yield different results compared to the full utilization of the memory

hierarchy. In addition, and in order to reduce the data dependency, the work might be

extended by dividing the force computation into various kernel functions such that the

distance computation, neighbourhood test, and the interparticle force computation are
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computed by separate kernel streams. Research could then be focused on investigating

the execution and the memory utilization in this implementation, and the impact of the

reduction operation required in the potential energy computation could be examined.

In this study two types of space filling curve were used, namely the Hilbert and Mor-

ton curves. The research can be extended by adopting other space filling curves. In

addition, the hybrid orderings used a row or column major ordering for the lower bits

of the particle index (the inner ordering) and the upper bits were based on the Hilbert

or Morton ordering (the outer ordering). This can be flipped around so that the inner

ordering is based on the Hilbert or Morton ordering and the outer ordering is based on

the row or column major ordering. In addition, hybrid orderings can be extended to use

two space filling curves, such that the inner ordering is Hilbert and the outer ordering

is Morton, or vice versa. Another interesting future investigation would be to base the

ordering of the the bins based on filling a spherical shell, as proposed in [119]. This

can also be extended to the Morton case. Therefore, that data locality properties of

these cases can be compared with the results of this research.

The issues of data dependency and execution dependency might be examined by modi-

fying the data structure of our implementation to use a two-dimensional array to store

the particle position and force. In this case, one dimension represents the particle under

consideration and the other dimension represents the neighbouring particles. In break-

ing down the computation in this way, the neighbourhood test decision for an interac-

tion can be carried out by a separate kernel to record the results in a two-dimensional

array. With this approach, a one-dimensional grid of two-dimensional thread blocks

can be used to compute the interaction force between particle i and its neighbour j by

one thread represented by the block dimension x and y, respectively. Of course, this

demands handling all the dimensions ( x, y and z) of the position and force arrays. An-

other alternative approach is to replace the two-dimensional array by a one-dimensional

array, using the Hilbert or Morton label as the index of the particle i and its neighbour

j. Thus, the thread at position (x, y) in a two-dimensional block is mapped to access
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the space filling curve label in the one-dimensional array. Comparison of the two ap-

proaches in terms of execution time, memory utilization, and data locality for each

representation can then be evaluated.

Finally, the work can be extended to support multiple nodes and multiple GPUs, with

some modification needed to check the number of GPUs and to modify the communic-

ations module to support multiple nodes by using MPI with CUDA-aware and GPU-

Direct support.

7.5 Summary

In this multidisciplinary research, where the data locality properties of GPU imple-

mentations for molecular dynamics simulations have been studied, we found the op-

timal data orderings are highly dependent on the cache size and the cache line size, as

well as on the nature of the application in terms of the degree of data dependency. This

chapter has emphasised the findings of our research as well as recommendations for

future work that could potentially extend our research.
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Appendix A

Device Query Output

This appendix shows the device query output for the Ruthenium and Hawk systems.

The objective to show the detailed hardware specifications.
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A.1 Ruthenium (GeForce GTX 960)

Device 0: “GeForce GTX 960”
CUDA Driver Version / Runtime Version 7.5 / 7.5

CUDA Capability Major/Minor version number: 5.2

Total amount of global memory: 2045 MBytes (2144141312 bytes)

( 8) Multiprocessors, (128) CUDA Cores/MP: 1024 CUDA Cores

GPU Max Clock rate: 1291 MHz (1.29 GHz)

Memory Clock rate: 3600 Mhz

Memory Bus Width: 128-bit

L2 Cache Size: 1048576 bytes

Maximum Texture Dimension Size (x,y,z)
1D=(65536), 2D=(65536, 65536),

3D=(4096, 4096, 4096)

Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers

Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers

Total amount of constant memory: 65536 bytes

Total amount of shared memory per block: 49152 bytes

Total number of registers available per block: 65536

Warp size: 32

Maximum number of threads per multiprocessor: 2048

Maximum number of threads per block: 1024

Max dimension size of a thread block (x,y,z): (1024, 1024, 64)

Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)

Maximum memory pitch: 2147483647 bytes

Texture alignment: 512 bytes

Concurrent copy and kernel execution: Yes with 2 copy engine(s)

Run time limit on kernels: Yes

Integrated GPU sharing Host Memory: No

Support host page-locked memory mapping: Yes

Alignment requirement for Surfaces: Yes

Device has ECC support: Disabled

Device supports Unified Addressing (UVA): Yes

Device PCI Domain ID / Bus ID / location ID: 0 / 1 / 0
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A.2 Hawk (Tesla P100)

Device 0 : “Tesla P100-PCIE-16GB”
CUDA Driver Version / Runtime Version 9.2 / 9.0

CUDA Capability Major/Minor version number: 6.0

Total amount of global memory:
16281 MBytes (17071734784

bytes)

(56) Multiprocessors, ( 64) CUDA Cores/MP: 3584 CUDA Cores

GPU Max Clock rate: 1329 MHz (1.33 GHz)

Memory Clock rate: 715 Mhz

Memory Bus Width: 4096-bit

L2 Cache Size: 4194304 bytes

Maximum Texture Dimension Size (x,y,z)

1D=(131072), 2D=(131072,

65536), 3D=(16384, 16384,

16384)

Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers

Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers

Total amount of constant memory: 65536 bytes

Total amount of shared memory per block: 49152 bytes

Total number of registers available per block: 65536

Warp size: 32

Maximum number of threads per multiprocessor: 2048

Maximum number of threads per block: 1024

Max dimension size of a thread block (x,y,z): (1024, 1024, 64)

Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)

Maximum memory pitch: 2147483647 bytes

Texture alignment: 512 bytes

Concurrent copy and kernel execution: Yes with 2 copy engine(s)

Run time limit on kernels: No

Integrated GPU sharing Host Memory: No

Support host page-locked memory mapping: Yes

Alignment requirement for Surfaces: Yes

Device has ECC support: Enabled

Device supports Unified Addressing (UVA): Yes

Device PCI Domain ID / Bus ID / location ID: 0 / 59 / 0
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Device 1 : “Tesla P100-PCIE-16GB”
CUDA Driver Version / Runtime Version 9.2 / 9.0

CUDA Capability Major/Minor version number: 6.0

Total amount of global memory:
16281 MBytes (17071734784

bytes)

(56) Multiprocessors, ( 64) CUDA Cores/MP: 3584 CUDA Cores

GPU Max Clock rate: 1329 MHz (1.33 GHz)

Memory Clock rate: 715 Mhz

Memory Bus Width: 4096-bit

L2 Cache Size: 4194304 bytes

Maximum Texture Dimension Size (x,y,z)

1D=(131072), 2D=(131072,

65536), 3D=(16384, 16384,

16384)

Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers

Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers

Total amount of constant memory: 65536 bytes

Total amount of shared memory per block: 49152 bytes

Total number of registers available per block: 65536

Warp size: 32

Maximum number of threads per multiprocessor: 2048

Maximum number of threads per block: 1024

Max dimension size of a thread block (x,y,z): (1024, 1024, 64)

Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)

Maximum memory pitch: 2147483647 bytes

Texture alignment: 512 bytes

Concurrent copy and kernel execution: Yes with 2 copy engine(s)

Run time limit on kernels: No

Integrated GPU sharing Host Memory: No

Support host page-locked memory mapping: Yes

Alignment requirement for Surfaces: Yes

Device has ECC support: Enabled

Device supports Unified Addressing (UVA): Yes

Device PCI Domain ID / Bus ID / location ID: 0 / 216 / 0
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Appendix B

Generated Experiments

B.1 Ruthenium Experiments

For each data ordering, and with 100 and 1100 time steps the experiments are con-

figured with a specific simulation size and block size and then it is executed on Ruthenium

machine.
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Figure B.1: The generated experiments for each data ordering, and with 100 and
1100 time steps.



170 B.2 Hawk Experiments

B.2 Hawk Experiments

Identical to Ruthenium, each data ordering, and with 100 and 1100 time steps the

experiments are configured with a specific simulation size and block size and then it is

executed on the Hawk machine.
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Figure B.2: The generated experiments for each data ordering, and with 100 and
1100 time steps.
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Appendix C

Hawk System Scripts

C.1 Main Execution Script

The script “runAnyOrAll.sh” can be executed by giving the required parameters which

are integer number 0 or 1 to execute the script with full or half force type computation,

respectively, text description “full”/“half”, and data ordering index to order the data

according to the supported application ordering.

1 # ! / b i n / bash

2 # e l i f s t a t e m e n t s

3 # d e c l a r e −a s i z e l i s t = (32)

4

5 d e c l a r e −a s i z e l i s t =(32 42 52 62 72 82 92)

6 d e c l a r e −a t y p e l i s t =(0 1 )

7 d e c l a r e −a typeName =( " f u l l " " h a l f " )

8 d e c l a r e −a B S i z e l i s t =(576 640 1024)

9 d e c l a r e −a o r d e r i n g s =(0 1 2 3 4 5 6)

10 d e c l a r e −a o r d f o l d e r s =( " 00 _ L i n e a r " " 01 _ H i l b e r t " " 02 _Morton " " 03

_Hi lber t4Row " " 04 _ H i l b e r t 4 C o l " " 05 _Morton4Row " " 06 _Morton4Col " ) ;

11

12 s i z e l e n g t h =${# s i z e l i s t [@] }

13 t y p e l e n g t h =${# t y p e l i s t [@] }

14 BSleng th=${# B S i z e l i s t [@] }

15 f i l e n a m e=" 00 _miniMD_any . j o b "

16
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17 o u t f i l e p r e c =" s lurm−"

18 o u t f i l e p o s t =" . o u t "

19 myd=$ ( d a t e +"%d%b%Y" )

20 myd="O" ${myd}

21

22 nodename=" ccs2012 "

23 #===============================

24

25

26

27 funExecMiniMD ( ) {

28 #

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#

29 # 1 . ) $1 I n t e g e r t y p e r e p r e s e n t s f o r c e t y p e 0 f o r f u l l and 1 f o r

h a l f

30 # 2 . ) $2 S t r i n g t y p e r e p r e s e n t s f o r c e t y p e f u l l / h a l f

31 # 3 . ) $3 Order , i n t e g e r t y p e

32 #

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−#

33 o r d f o l d e r =${ o r d f o l d e r s [ $3 ] }

34 ordName=$ ( echo ${ o r d f o l d e r } | c u t −d ’_ ’ − f 2 )

35

36 echo "========= FUNCTION STARTED =================="

37 echo " r e s u l t s w i l l be w r i t t e n i n " ${ o r d f o l d e r } " . "

38 echo " 1 ) Order = ( " ${ordName} " , " $3 " ) "

39 echo " 2 ) f o r c e t y p e = ( " $2 " , " $1 " ) "

40 echo " 1 . ) P r e p a r e Job "

41 echo "−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−"

42 ( exec . / c r e a t e J o b . sh $1 $3 )

43

44 f o r ( ( i =1; i <${ s i z e l e n g t h }+1; i ++ ) ) ;

45 do

46 f o r ( ( b =1; b<${ BSleng th }+1; b++ ) ) ;



C.1 Main Execution Script 173

47 do

48 echo "== The f i l e i n . l j . miniMD p r e p a r a t i o n t a k s =="

49 ( exec . / c r e a t C n f g f i l e . sh ${ s i z e l i s t [ $ i −1]} ${ B S i z e l i s t [ $b−1]} )

50 echo "==========> P r e p r e a t i o n comple t ed =="

51 echo " "

52 echo " "

53 echo "==== Job SUPMISSION PHASE ==="

54

55 j o b I d=$ ( s b a t c h −w ${ nodename } −−p a r s a b l e ${ f i l e n a m e

} )

56 echo "==========> Job Id i s = " ${ j o b I d }

57

58 # ( exec squeue | g rep ${ J o b I d } )

59 w h i l e :

60 do

61 RUNNING=$ ( squeue | g rep $ j o b I d ) # c . c1551517 ‘

62 echo "=======> Runing S t a t u s " ${RUNNING}

63 i f [ [ −z " ${RUNNING / / } " ] ] ; t h e n

64 b r e a k

65 f i

66 s l e e p 2

67 echo " S t i l l r u n n i n g wi th " ${RUNNING}

68 done

69 echo "===========> Runing Block S i z e " ${ B S i z e l i s t [ $b−1]} "

COMPLETED ==="

70 ( exec mv ${ o u t f i l e p r e c } $ j o b I d $ { o u t f i l e p o s t } i b $ { s i z e l i s t [

$ i −1 ] } . ${ordName } . ${myd } . $2 . BS${ B S i z e l i s t [ $b −1 ] } . t x t )

71

72 ( exec mv i b $ { s i z e l i s t [ $ i −1 ] } . ${ordName } . ${myd } . $2 . BS${

B S i z e l i s t [ $b −1 ] } . t x t a n a l y s i s / ${myd } / ${ o r d f o l d e r } / $2 / s i z e $ {

s i z e l i s t [ $ i − 1 ] } / . )

73 echo "

=======================================================================

"

74



174 C.1 Main Execution Script

75

76 echo " "

77 echo " "

78 echo " "

79 s l e e p 1

80 done

81 echo "===> Work With S i z e " ${ s i z e l i s t [ $ i −1]} " COMPLETED

==="

82

83 done

84 }

85 #

##########################################################################

86 ### Main Program ###

87 ### ###

88 ### 1 . $1 r e p r e s e n t s t h e Order Number ###

89 ### 2 . $2 r e p r e s e n t s t h e f o r c e t y p e t o run e i t h e r f u l l =0 h a l f =1

###

90 #

##########################################################################

91 i f [ " $1 " == " A l l " ] ;

92 t h e n

93 # echo " S e l e c t e d Order A l l "

94 # echo "=================="

95 f o r o rd i n { 0 . . 6 }

96 do

97 # i f [ [ ( $ord −eq 0 ) | | ( $ord −eq 1 ) ] ] ;

98 # t h e n

99 # c o n t i n u e

100 # f i

101 echo " Order Number i s " ${ o r d f o l d e r s [ $ord ] } " Number " ${

o r d e r i n g s [ $ord ] }

102
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103 i f [ " $2 " == " f u l l " ] ;

104 t h e n

105 echo " For " $1 " And Order " ${ o r d f o l d e r s [ $ord ] }

106 funExecMiniMD 0 " f u l l " ${ o r d e r i n g s [ $ord ] }

107 e l i f [ " $2 " == " h a l f " ] ;

108 t h e n

109 echo " For " $2 " And Order " ${ o r d f o l d e r s [ $ord ] }

110 funExecMiniMD 1 " h a l f " ${ o r d e r i n g s [ $ord ] }

111 e l i f [ " $2 " == " bo th " ] ;

112 t h e n

113 echo " For " $2 " And Order " ${ o r d f o l d e r s [ $ord ] }

114 funExecMiniMD 0 " f u l l " ${ o r d e r i n g s [ $ord ] }

115 funExecMiniMD 1 " h a l f " ${ o r d e r i n g s [ $ord ] }

116

117 e l s e

118 echo " E r r o r Undef ined P a r a m e t e r . "

119 f i

120 done

121 e l i f [ [ ( " $1 " −ge 0 ) && ( " $1 " − l e 6 ) ] ] ;

122 t h e n

123

124 echo " Order Number i s " ${ o r d f o l d e r s [ $1 ] } " Number " ${

o r d e r i n g s [ $1 ] }

125

126 i f [ " $2 " == " f u l l " ] ;

127 t h e n

128 echo " For " $2 " And Order name " ${ o r d f o l d e r s [ $1 ] } " ==

" ${ o r d e r i n g s [ $1 ] }

129 funExecMiniMD 0 " f u l l " ${ o r d e r i n g s [ $1 ] }

130 e l i f [ " $2 " == " h a l f " ] ;

131 t h e n

132 echo " For " $2 " And Order name " ${ o r d f o l d e r s [ $1 ] } " == " ${

o r d e r i n g s [ $1 ] }

133 funExecMiniMD 1 " h a l f " ${ o r d e r i n g s [ $1 ] }

134 e l i f [ " $2 " == " bo th " ] ;
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135 t h e n

136 echo " For " $2 " And Order name " ${ o r d f o l d e r s [ $1 ] } " ==

" ${ o r d e r i n g s [ $1 ] }

137 funExecMiniMD 0 " f u l l " ${ o r d e r i n g s [ $1 ] }

138 funExecMiniMD 1 " h a l f " ${ o r d e r i n g s [ $1 ] }

139

140 e l s e

141 echo " E r r o r Undef ined P a r a m e t e r . "

142 f i

143

144 f i

C.2 Create Configuration File

The above script will call this script to modifie the experiments simulation size and

block size configurations as shown below.

1 # ! / b i n / bash

2 #

3 f i l e n a m e= i n . l j . miniMD

4 ( exec cp i n . l j . R e s e t $ f i l e n a m e )

5 sed − i " s / 4 0 9 6 / $2 / g " $ f i l e n a m e

6 sed − i " s /3 2 32 3 2 / $1 $1 $1 / g " $ f i l e n a m e

C.3 Create Batch Job

The script“runAnyOrAll.sh” will uses this batch job which will be executed on the

defined node on the script and the job id will be used to check the end of the execution

in order to execute the next simulation size or the next block size.

1 # ! / b i n / bash

2 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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3 # $1 : f o r c e t y p e : 0 f o r f u l l and 1 f o r h a l f

4 # $2 : Order t y p e from 0 t o 6

5 #−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

6 i f [ $# −eq 0 ]

7 t h e n

8 echo "No argumen t s s u p p l i e d "

9 e x i t

10 f i

11

12

13 i f [ [ ( " $1 " −eq 0 ) | | ( " $1 " −eq 1) ] ] ;

14 t h e n

15 i f [ [ ( " $2 " −ge 0 ) && ( " $2 " − l e 6 ) ] ] ;

16 t h e n

17

18 f i l e n a m e =00_miniMD_any . j o b

19 ( exec cp 00 _ m a s t e r . j o b $ f i l e n a m e )

20 sed − i " s /−− h a l f _ n e i g h 0 −−o r d e r 0/−− h a l f _ n e i g h $1 −−o r d e r $2 / g "

$ f i l e n a m e

21 f i

22 f i

As an example the following job is generated where the force computation is set to half

neighbour list force computation and the selected order is hybrid Morton and column-

major ordering.

1 # ! / b i n / bash

2

3 #SBATCH −− job−name=cpu_MD

4

5 #SBATCH −− p a r t i t i o n =gpu

6 #SBATCH −−nodes =1

7 #SBATCH −−n t a s k s =1

8 #SBATCH −−n t a s k s −per −node=1

9 #SBATCH −−g r e s gpu : 1

10
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11 module l o a d CUDA / 9 . 1

12 module l o a d mpi

13

14 MYPATH=/ home / $USER / workspace /00 1 _miniMD

15 EXECPATH=/ home / $USER / workspace /00 1 _miniMD

16 #Go t o work d i r e c t o r y

17 cd ${MYPATH}

18 echo " r u n n i n g "

19 mpirun −np 1 . / miniMD_openmpi −−h a l f _ n e i g h 1 −−o r d e r 6

20 echo " f i n i s h "
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Appendix D

Hawk Execution Time

Chapter 6 provided the execution time of full and half neighbour list force computation

kernels on the GPU for one time step with thread block size 1024. This appendix shows

the execution time for both full and half neighbour list cases for block sizes 576 and

640.
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Figure D.1: Hawk: time for execution of force computation kernel on the GPU
for one time step in the full (upper) and half (lower) neighbour list cases .
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Figure D.2: Hawk: time for execution of force computation kernel on the GPU
for one time step in the full (upper) and half (lower) neighbour list cases .



182 D.2 Block Size: 640



183

Bibliography

[1] 5.3. Input script structure — LAMMPS documentation. ht-

tps://lammps.sandia.gov/doc/Commands_structure.html.

[2] Scalable Algorithms for Molecular Dynamics Simulations on Commodity

Clusters, SC ’06, New York, NY, USA, 2006. ACM. ISBN 0-7695-2700-0.

doi: 10.1145/1188455.1188544. URL http://doi.acm.org/10.1145/1188455.

1188544.

[3] 5 Things You Should Know About the New Maxwell GPU Archi-

tecture. https://devblogs.nvidia.com/5-things-you-should-know-about-new-

maxwell-gpu-architecture/, February 2014.

[4] IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2019 (Revision

of IEEE 754-2008), pages 1–84, July 2019. doi: 10.1109/IEEESTD.2019.

8766229.

[5] Coffee lake - microarchitectures - intel, Jan 2019. URL https://en.wikichip.

org/wiki/intel/microarchitectures/coffee_lake. Accessed: 2019-01-28.

[6] Ibrahim Al-Kharusi and David W Walker. Locality properties of 3D data

orderings with application to parallel molecular dynamics simulations. The

International Journal of High Performance Computing Applications, page

109434201984628, May 2019. ISSN 1094-3420, 1741-2846. doi: 10.1177/

1094342019846282.

http://doi.acm.org/10.1145/1188455.1188544
http://doi.acm.org/10.1145/1188455.1188544
https://en.wikichip.org/wiki/intel/microarchitectures/coffee_lake
https://en.wikichip.org/wiki/intel/microarchitectures/coffee_lake


184 BIBLIOGRAPHY

[7] Dan A. Alcantara, Andrei Sharf, Fatemeh Abbasinejad, Shubhabrata Sengupta,

Michael Mitzenmacher, John D. Owens, and Nina Amenta. Real-time parallel

hashing on the GPU. ACM Transactions on Graphics, 28(5):1, December 2009.

ISSN 07300301. doi: 10.1145/1618452.1618500.

[8] Paul Alcorn. Intel coffee lake vs. kaby lake: A side-by-side comparison, sep

2017. URL https://www.tomshardware.co.uk/intel-coffee-lake-kaby-lake,

news-56880.html. Accessed:2019-01-28.

[9] Paul Alcorn. Intel’s new roadmap revealed: 10nm ice lake in 2020,

14nm cooper lake 2019, aug 2018. URL https://www.tomshardware.co.uk/

intel-roadmap-cooper_lake-ice_lake,news-58945.html.

[10] M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids (Oxford Science

Publications). Oxford science publications. Oxford University Press, reprint

edition, #jun# 1989. ISBN 0-19-855645-4. Published: Paperback.

[11] Ramu Anandakrishnan and Alexey V. Onufriev. An N log N approximation

based on the natural organization of biomolecules for speeding up the compu-

tation of long range interactions. Journal of Computational Chemistry, 31(4):

691–706, 2010. ISSN 1096-987X. doi: 10.1002/jcc.21357.

[12] Ramu Anandakrishnan, Tom R. W. Scogland, Andrew T. Fenley, John C. Gor-

don, Wu-chun Feng, and Alexey V. Onufriev. Accelerating electrostatic surface

potential calculation with multi-scale approximation on graphics processing

units. Journal of Molecular Graphics and Modelling, 28(8):904 – 910, 2010.

ISSN 1093-3263. doi: http://dx.doi.org/10.1016/j.jmgm.2010.04.001.

[13] Corinne Ancourt and François Irigoin. Scanning polyhedra with DO loops. In

Principles and Pratice of Parallel Programming, PPoPP’91, volume Volume

26, pages Pages 39–50, Williamsburg, Virginia„ United States, April 1991. doi:

10.1145/109626.109631. 12 pages.

https://www.tomshardware.co.uk/intel-coffee-lake-kaby-lake,news-56880.html
https://www.tomshardware.co.uk/intel-coffee-lake-kaby-lake,news-56880.html
https://www.tomshardware.co.uk/intel-roadmap-cooper_lake-ice_lake,news-58945.html
https://www.tomshardware.co.uk/intel-roadmap-cooper_lake-ice_lake,news-58945.html


BIBLIOGRAPHY 185

[14] Hans C Andersen. Rattle: A “velocity” version of the shake algorithm for

molecular dynamics calculations. Journal of Computational Physics, 52(1):

24–34, 1983. ISSN 0021-9991. doi: 10.1016/0021-9991(83)90014-1. URL

https://doi.org/10.1016/0021-9991(83)90014-1.

[15] Joshua A. Anderson, Chris D. Lorenz, and A. Travesset. General purpose mo-

lecular dynamics simulations fully implemented on graphics processing units.

Journal of Computational Physics, 227(10):5342 – 5359, 2008. ISSN 0021-

9991. doi: http://dx.doi.org/10.1016/j.jcp.2008.01.047.

[16] E. Athanasaki and N. Koziris. Fast indexing for blocked array layouts to im-

prove multi-level cache locality. In Eighth Workshop on Interaction between

Compilers and Computer Architectures, 2004. INTERACT-8 2004., pages 109–

119, Madrid, Spain, 2004. IEEE. ISBN 978-0-7695-2061-2. doi: 10.1109/

INTERA.2004.1299515.

[17] Michael Bader. Space-Filling Curves: An Introduction with Applications in Sci-

entific Computing. Texts in Computational Science and Engineering. Springer-

Verlag, Berlin Heidelberg, 2013. ISBN 978-3-642-31045-4.

[18] Michael Bader. Space-Filling Curves: An Introduction with Applications in Sci-

entific Computing. Texts in Computational Science and Engineering. Springer-

Verlag, Berlin Heidelberg, 2013. ISBN 978-3-642-31045-4.

[19] T. Bially. Space-filling curves: Their generation and their application to band-

width reduction. IEEE Transactions on Information Theory, 15(6):658–664,

Nov 1969. ISSN 0018-9448. doi: 10.1109/TIT.1969.1054385.

[20] Daniel Bundala and Jakub Zavodny. Optimal Sorting Networks.

arXiv:1310.6271 [cs], October 2013.

[21] A. R. Butz. Alternative algorithm for hilbert’s space-filling curve. IEEE Trans.

Comput., 20(4):424–426, #apr# 1971. ISSN 0018-9340. doi: 10.1109/T-C.

1971.223258. URL http://dx.doi.org/10.1109/T-C.1971.223258.

https://doi.org/10.1016/0021-9991(83)90014-1
http://dx.doi.org/10.1109/T-C.1971.223258


186 BIBLIOGRAPHY

[22] Arthur R. Butz. Space filling curves and mathematical programming. In-

formation and Control, 12(4):314 – 330, 1968. ISSN 0019-9958. doi: http:

//dx.doi.org/10.1016/S0019-9958(68)90367-7. URL //www.sciencedirect.com/

science/article/pii/S0019995868903677.

[23] Katharine Castle. Intel core cpus: Everything we know about

intel’s 8th and 9th gen coffee lake refresh processors, Janu-

ary 2019. URL https://www.rockpapershotgun.com/2019/01/24/

intel-core-cpu-coffee-lake-price-specs-guide/. Accessed:2019-01-28.

[24] Daniel Cederman and Philippas Tsigas. GPU-Quicksort: A practical Quicksort

algorithm for graphics processors. Journal of Experimental Algorithmics, 14:

1.4, December 2009. ISSN 10846654. doi: 10.1145/1498698.1564500.

[25] Deukhyun Cha, Qin Zhang, Jesmin Jahan Tithi, Alexander Rand, Rezaul A.

Chowdhury, and Chandrajit Bajaj. Accelerated Molecular Mechanical and

Solvation Energetics on Multicore CPUs and Manycore GPUs. In Proceed-

ings of the 6th ACM Conference on Bioinformatics, Computational Biology and

Health Informatics, BCB ’15, pages 222–231, Atlanta, Georgia, 2015. ACM.

ISBN 978-1-4503-3853-0. doi: 10.1145/2808719.2808742.

[26] Timothy M. Chan. A Minimalist’s Implementation of an Approximate Nearest

Neighbor Algorithm in Fixed Dimensions, May 2006.

[27] Rohit Chandra, editor. Parallel Programming in OpenMP. Morgan Kaufmann

Publishers, San Francisco, CA, 2001. ISBN 978-1-55860-671-5.

[28] Ningtao Chen, Nengchao Wang, and Baochang Shi. A new algorithm for

encoding and decoding the hilbert order. Software: Practice and Experi-

ence, 37(8):897–908, 2007. ISSN 0038-0644. doi: 10.1002/spe.v37:8. URL

https://doi.org/10.1002/spe.v37:8.

//www.sciencedirect.com/science/article/pii/S0019995868903677
//www.sciencedirect.com/science/article/pii/S0019995868903677
https://www.rockpapershotgun.com/2019/01/24/intel-core-cpu-coffee-lake-price-specs-guide/
https://www.rockpapershotgun.com/2019/01/24/intel-core-cpu-coffee-lake-price-specs-guide/
https://doi.org/10.1002/spe.v37:8


BIBLIOGRAPHY 187

[29] Rezaul Chowdhury and Chandrajit Bajaj. Algorithms for Faster Molecular En-

ergetics, Forces and Interfaces. ICES REPORT 10-32, The Institute for Compu-

tational Engineering and Sciences, August 2010.

[30] Rezaul Chowdhury, Dmitri Beglov, Mohammad Moghadasi, Ioannis Ch

Paschalidis, Pirooz Vakili, Sandor Vajda, Chandrajit Bajaj, and Dima Kozakov.

Efficient Maintenance and Update of Nonbonded Lists in Macromolecular Sim-

ulations. Journal of Chemical Theory and Computation, 10(10):4449–4454,

2014. doi: 10.1021/ct400474w.

[31] Michael Connor and Piyush Kumar. Fast construction of k-nearest neigh-

bor graphs for point clouds. IEEE Transactions on Visualization & Com-

puter Graphics, 16(4):599–608, 2010. ISSN 1077-2626. doi: doi.

ieeecomputersociety.org/10.1109/TVCG.2010.9.

[32] Shane Cook. CUDA Programming: A Developer’s Guide to Parallel Computing

with GPUs. Elsevier, MK, Amsterdam ; Boston, 2013. ISBN 978-0-12-415933-

4. OCLC: ocn773025100.

[33] NVIDIA Corporation. The CUDA Compiler Driver NVCC, August 2010.

[34] Nvidia Corporation. NVIDIA CUDA C Programming Guide. NVIDIA Cor-

poration, 2701 San Tomas Expressway, Santa Clara, CA 95050, version 4.2

edition, 2012. URL http://developer.download.nvidia.com/compute/cuda/3_2/

toolkit/docs/CUDA_C_Programming_Guide.pdf.

[35] NVIDIA Corporation. NVIDIA GeForce GTX 980 Whitepaper, 2014.

[36] Paul Stewart Crozier, Heidi K. Thornquist, Robert W. Numrich, Alan B. Wil-

liams, Harold Carter Edwards, Eric Richard Keiter, Mahesh Rajan, James M.

Willenbring, Douglas W. Doerfler, and Michael Allen Heroux. Improving per-

formance via mini-applications. Technical Report SAND2009-5574, 993908,

September 2009.

http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/3_2/toolkit/docs/CUDA_C_Programming_Guide.pdf


188 BIBLIOGRAPHY

[37] Zbigniew J. Czech, George Havas, and Bohdan S. Majewski. Perfect hash-

ing. Theoretical Computer Science, 182(1):1 – 143, 1997. ISSN 0304-

3975. doi: https://doi.org/10.1016/S0304-3975(96)00146-6. URL http://www.

sciencedirect.com/science/article/pii/S0304397596001466.

[38] Murray S. Daw and M. I. Baskes. Embedded-atom method: Derivation and

application to impurities, surfaces, and other defects in metals. Physical Review

B, 29(12):6443–6453, June 1984. ISSN 0163-1829. doi: 10.1103/PhysRevB.

29.6443.

[39] Murray S. Daw, Stephen M. Foiles, and Michael I. Baskes. The embedded-atom

method: A review of theory and applications. Materials Science Reports, 9(7):

251–310, March 1993. ISSN 0920-2307. doi: 10.1016/0920-2307(93)90001-U.

[40] P. Di, D. Ye, Y. Su, Y. Sui, and J. Xue. Automatic Parallelization of Tiled

Loop Nests with Enhanced Fine-Grained Parallelism on GPUs. In 2012 41st

International Conference on Parallel Processing, pages 350–359, September

2012. doi: 10.1109/ICPP.2012.19.

[41] J. J. Dongarra, Jeremy Du Croz, Sven Hammarling, and I. S. Duff. A set of level

3 basic linear algebra subprograms. ACM Transactions on Mathematical Soft-

ware, 16(1):1–17, March 1990. ISSN 00983500. doi: 10.1145/77626.79170.

[42] Victor Eijkhout. Introduction to High Performance Scientific Computing.

Lulu.com, 2012. ISBN 1-257-99254-6 978-1-257-99254-6.

[43] Christos Faloutsos and Shari Roseman. Fractals for secondary key retrieval.

In Proceedings of the eighth ACM SIGACT-SIGMOD-SIGART symposium on

Principles of database systems, pages 247–252. ACM, 1989.

[44] Rob Farber. CUDA Application Design and Development. Applications of GPU

Computing Series. Morgan Kaufmann, Waltham, MA, 2011. ISBN 978-0-12-

388426-8. OCLC: ocn731925404.

http://www.sciencedirect.com/science/article/pii/S0304397596001466
http://www.sciencedirect.com/science/article/pii/S0304397596001466


BIBLIOGRAPHY 189

[45] Chunsheng Feng, Shi Shu, Junxian Wang, and Zheng Li. The parallel genera-

tion of 2-d hilbert space-filling curve on gpu. In Biomedical Engineering and

Informatics (BMEI), 2012 5th International Conference on, pages 1359–1362.

IEEE, 2012.

[46] Chunsheng Feng, Shi Shu, Junxian Wang, and Zheng Li. The parallel generation

of 2-D Hilbert Space-filling Curve on GPU. In Biomedical Engineering and

Informatics (BMEI), 2012 5th International Conference On, pages 1359–1362.

IEEE, 2012.

[47] M.J. Field. A Practical Introduction to the Simulation of Molecular Sys-

tems. Cambridge University Press, 1999. ISBN 9780521581295. URL

https://books.google.co.uk/books?id=mPgpMig3tx0C.

[48] A. J. Fisher. A new algorithm for generating hilbert curves. Software: Prac-

tice and Experience, 16(1):5–12, 1986. ISSN 1097-024X. doi: 10.1002/spe.

4380160103. URL http://dx.doi.org/10.1002/spe.4380160103.

[49] M. J. Flynn. Some Computer Organizations and Their Effectiveness. IEEE

Transactions on Computers, C-21(9):948–960, September 1972. ISSN 0018-

9340. doi: 10.1109/TC.1972.5009071.

[50] Daan Frenkel and Berend Smit. Understanding Molecular Simulation: From

Algorithms to Applications, volume 1. Academic Press, Inc, 2nd edition, 2001.

ISBN 0-12-267351-4.

[51] Steven T. Gabriel and David S. Wise. The Opie compiler from row-major source

to Morton-ordered matrices. In Proceedings of the 3rd Workshop on Memory

Performance Issues in Conjunction with the 31st International Symposium on

Computer Architecture - WMPI ’04, pages 136–144, Munich, Germany, 2004.

ACM Press. ISBN 978-1-59593-040-8. doi: 10.1145/1054943.1054962.

[52] Petr Gajdoš, Tomáš Ježowicz, Vojtěch Uher, and Pavel Dohnálek. A paral-

lel Fruchterman–Reingold algorithm optimized for fast visualization of large

https://books.google.co.uk/books?id=mPgpMig3tx0C
http://dx.doi.org/10.1002/spe.4380160103


190 BIBLIOGRAPHY

graphs and swarms of data. Swarm and Evolutionary Computation, 26:56–63,

February 2016. ISSN 22106502. doi: 10.1016/j.swevo.2015.07.006.

[53] Jens Glaser, Trung Dac Nguyen, Joshua A. Anderson, Pak Lui, Filippo Spiga,

Jaime A. Millan, David C. Morse, and Sharon C. Glotzer. Strong scaling

of general-purpose molecular dynamics simulations on {GPUs}. Computer

Physics Communications, 192:97 – 107, 2015. ISSN 0010-4655. doi: http:

//dx.doi.org/10.1016/j.cpc.2015.02.028.

[54] GHCF Golub and F CHARLES. Van loan, 1989: Matrix computations.

[55] Pedro Gonnet. A simple algorithm to accelerate the computation of non-

bonded interactions in cell-based molecular dynamics simulations. Journal

of Computational Chemistry, 28(2):570–573, 2007. ISSN 1096-987X. doi:

10.1002/jcc.20563.

[56] Pedro Gonnet. Pseudo-Verlet Lists: A new, compact neighbour list represent-

ation. Molecular Simulation, 39(9):721–727, August 2013. ISSN 0892-7022,

1029-0435. doi: 10.1080/08927022.2012.762097.

[57] Linh Ha, Jens Kruger, and Claudio T Silva. Implicit radix sorting on GPUs.

page 15.

[58] Linh Ha, Jens Krüger, and Cláudio T. Silva. Fast Four-Way Parallel Radix Sort-

ing on GPUs. Computer Graphics Forum, 28(8):2368–2378, December 2009.

ISSN 1467-8659. doi: 10.1111/j.1467-8659.2009.01542.x.

[59] Gundolf Haase, Manfred Liebmann, and Gernot Plank. A Hilbert-order multi-

plication scheme for unstructured sparse matrices. International Journal of Par-

allel, Emergent and Distributed Systems, 22(4):213–220, August 2007. ISSN

1744-5760. doi: 10.1080/17445760601122084.

[60] Jean-Pierre Hansen and Ian Ranald McDonald. Theory of Simple Liquids.



BIBLIOGRAPHY 191

Elsevier, third edition, 2006. ISBN 978-0-12-370535-8. doi: 10.1016/

B978-0-12-370535-8.X5000-9.

[61] David J. Hardy, John E. Stone, and Klaus Schulten. Multilevel summation of

electrostatic potentials using graphics processing units. Parallel Computing, 35

(3):164 – 177, 2009. ISSN 0167-8191. doi: http://dx.doi.org/10.1016/j.parco.

2008.12.005.

[62] Sarah Harris and David Harris. Digital Design and Computer Architecture. Mor-

gan Kaufmann Publishers Inc., San Francisco, CA, USA, second edition edition.

ISBN 978-0-12-394424-5.

[63] Herman Haverkort. How many three-dimensional hilbert curves are there?

arXiv preprint arXiv:1610.00155, 2016.

[64] Herman J. Haverkort. An inventory of three-dimensional hilbert space-filling

curves. CoRR, abs/1109.2323, 2011. URL http://arxiv.org/abs/1109.2323.

[65] Warren.J. Hehre. A Guide to Molecular Mechanics and Quantum Chemical

Calculations. Wavefunction, 2003. ISBN 978-1-890661-18-2.

[66] Michael P. Howard, Joshua A. Anderson, Arash Nikoubashman, Sharon C.

Glotzer, and Athanassios Z. Panagiotopoulos. Efficient neighbor list calculation

for molecular simulation of colloidal systems using graphics processing units.

Computer Physics Communications, 203:45–52, June 2016. ISSN 00104655.

doi: 10.1016/j.cpc.2016.02.003.

[67] B. Huang, J. Gao, and X. Li. An Empirically Optimized Radix Sort for GPU.

In 2009 IEEE International Symposium on Parallel and Distributed Processing

with Applications, pages 234–241, August 2009. doi: 10.1109/ISPA.2009.89.

[68] Chi-Yen Huang and Yu-Wei Roy Chen. Linear quadtree construction in real

time. J. Inf. Sci. Eng., 26:1917–1930, 2010.

http://arxiv.org/abs/1109.2323


192 BIBLIOGRAPHY

[69] F. Irigoin and R. Triolet. Supernode Partitioning. In Proceedings of the 15th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL ’88, pages 319–329, New York, NY, USA, 1988. ACM. ISBN 978-0-

89791-252-5. doi: 10.1145/73560.73588.

[70] Jacob N Israelachvili. Intermolecular and Surface Forces. Elsevier, Academic

Press, Amsterdam, third edition, 2011. ISBN 978-0-12-391927-4 978-0-12-

375182-9.

[71] Joseph JáJá. An Introduction to Parallel Algorithms. Addison Wesley Longman

Publishing Co., Inc., Redwood City, CA, USA, 1992. ISBN 0-201-54856-9.

[72] Frank Jensen. Introduction to Computational Chemistry. John Wiley & Sons,

Chichester, England ; Hoboken, NJ, 2nd ed edition, 2007. ISBN 978-0-470-

01186-7 978-0-470-01187-4. OCLC: ocm70707839.

[73] Jaeheon Jeong, Per Stenström, and Michel Dubois. Simple penalty-sensitive

replacement policies for caches. In Proceedings of the 3rd Conference on Com-

puting Frontiers - CF ’06, page 341, Ischia, Italy, 2006. ACM Press. ISBN

978-1-59593-302-7. doi: 10.1145/1128022.1128068.

[74] Peng Jiang, Linchuan Chen, and Gagan Agrawal. Reusing Data Reorganiza-

tion for Efficient SIMD Parallelization of Adaptive Irregular Applications. In

Proceedings of the 2016 International Conference on Supercomputing, ICS ’16,

pages 16:1–16:10, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4361-

9. doi: 10.1145/2925426.2926285.

[75] Norman P Jouppi. Improving Direct-Mapped Cache Performance by the Addi-

tion of a Small Fully-Associative Cache and Prefetch Buffers. page 46, .

[76] Norman P Jouppi. Reducing Compulsory and Capacity Misses. Technical re-

port, .

[77] Krzysztof Kaczmarski. Experimental B+-Tree for GPU.



BIBLIOGRAPHY 193

[78] David Kaeli, Perhaad Mistry, Dana Schaa, and Dong Ping Zhang. Chapter 1

- Introduction. In David KaeliPerhaad MistryDana SchaaDong Ping Zhang,

editor, Heterogeneous Computing with OpenCL 2.0 (Third Edition), pages 1 –

14. Morgan Kaufmann, Boston, third edition edition, 2015. ISBN 978-0-12-

801414-1. doi: 10.1016/B978-0-12-801414-1.00001-6.

[79] Kamran Karimi. A Performance Comparison of CUDA and OpenCL. page 10.

[80] Sergey Kazachenko, Mark Giovinazzo, Kyle Wm. Hall, and Natalie M. Cann.

Algorithms for GPU-based molecular dynamics simulations of complex flu-

ids: Applications to water, mixtures, and liquid crystals. Journal of Compu-

tational Chemistry, 36(24):1787–1804, 2015. ISSN 1096-987X. doi: 10.1002/

jcc.24000.

[81] Khronos OpenCL Working Group. The OpenCL Specification, Version 2.0,Doc-

ument Revision: 48. July 2015. URL https://www.khronos.org/registry/cl/

specs/opencl-2.0.pdf.

[82] Changkyu Kim, Jatin Chhugani, Nadathur Satish, Eric Sedlar, Anthony D.

Nguyen, Tim Kaldewey, Victor W. Lee, Scott A. Brandt, and Pradeep Dubey.

FAST: Fast architecture sensitive tree search on modern CPUs and GPUs. In

Proceedings of the 2010 International Conference on Management of Data -

SIGMOD ’10, page 339, Indianapolis, Indiana, USA, 2010. ACM Press. ISBN

978-1-4503-0032-2. doi: 10.1145/1807167.1807206.

[83] Haridimos Kondylakis, Kostas Zoumpatianos, Niv Dayan, and Themis

Palpanas. Coconut: A Scalable Bottom-Up Approach for Building Data Series

Indexes. page 14.

[84] Markus Kowarschik and Christian Weiß. An Overview of Cache Optimization

Techniques and Cache-Aware Numerical Algorithms. In Algorithms for Memory

Hierarchies — Advanced Lectures, Volume 2625 of Lecture Notes in Computer

Science, pages 213–232. Springer, 2003.

https://www.khronos.org/registry/cl/specs/opencl-2.0.pdf
https://www.khronos.org/registry/cl/specs/opencl-2.0.pdf


194 BIBLIOGRAPHY

[85] Jack B. Kuipers. Quaternions and Rotation Sequences: A Primer with Applic-

ations to Orbits, Aerospace, and Virtual Reality. Princeton University Press,

Princeton, N.J, 5th edition, August 2002. ISBN 978-0-691-05872-6.

[86] Manaschai Kunaseth, Ken-ichi Nomura, Hikmet Dursun, Rajiv K. Kalia,

Aiichiro Nakano, and Priya Vashishta. Memory-Access Optimization of Paral-

lel Molecular Dynamics Simulation via Dynamic Data Reordering. In Christos

Kaklamanis, Theodore Papatheodorou, and Paul G. Spirakis, editors, Euro-Par

2012 Parallel Processing, Lecture Notes in Computer Science, pages 781–792.

Springer Berlin Heidelberg, 2012. ISBN 978-3-642-32820-6.

[87] Sandia National Laboratories. Mantevo project. https://mantevo.org/, Sep 2011.

URL https://mantevo.org/. Last update: 9, September 2019.

[88] Monica D. Lam, Edward E. Rothberg, and Michael E. Wolf. The Cache Per-

formance and Optimizations of Blocked Algorithms. SIGPLAN Not., 26(4):

63–74, #apr# 1991. ISSN 0362-1340. doi: 10.1145/106973.106981.

[89] J.K. Lawder. Calculation of mappings between one and n-dimensional values

using the hilbert space-filling curve. Technical Report JL1/00, School of COm-

puter Science and Information Systems, Birkbeck College,University of Lon-

don, UK, 8 2000. Technical Report no. JL1/00.

[90] Sylvain Lefebvre and Hugues Hoppe. Perfect spatial hashing. In ACM SIG-

GRAPH 2006 Papers on - SIGGRAPH ’06, page 579, Boston, Massachusetts,

2006. ACM Press. ISBN 978-1-59593-364-5. doi: 10.1145/1179352.1141926.

[91] Errol Lewars. Computational Chemistry: Introduction to the Theory and Ap-

plications of Molecular and Quantum Mechanics. Springer, Dordrecht [Neth-

erlands] ; London ; New York, 2nd ed edition, 2011. ISBN 978-90-481-3860-9

978-90-481-3861-6. OCLC: ocn502425604.

[92] Wan-Qing Li, Tang Ying, Wan Jian, and Dong-Jin Yu. Comparison research

on the neighbor list algorithms: Verlet table and linked-cell. Computer Physics

https://mantevo.org/


BIBLIOGRAPHY 195

Communications, 181(10):1682 – 1686, 2010. ISSN 0010-4655. doi: http:

//dx.doi.org/10.1016/j.cpc.2010.06.005.

[93] Aristid Lindenmayer. Mathematical models for cellular interactions in develop-

ment I. Filaments with one-sided inputs. Journal of Theoretical Biology, 18(3):

280–299, March 1968. ISSN 0022-5193. doi: 10.1016/0022-5193(68)90079-9.

[94] Xian Liu and Günther F Schrack. An algorithm for encoding and decoding

the 3-d hilbert order. IEEE transactions on image processing, 6(9):1333–1337,

1997.

[95] K. Patrick Lorton and David S. Wise. Analyzing Block Locality in Morton-

order and Morton-hybrid Matrices. SIGARCH Comput. Archit. News, 35(4):

6–12, September 2007. ISSN 0163-5964. doi: 10.1145/1327312.1327315.

[96] Jinping Luo and Lijun Liu. Optimisation of data locality in energy calculations

for large-scale molecular dynamics simulations. Molecular Simulation, 43(4):

284–290, 2017. doi: 10.1080/08927022.2016.1267354.

[97] Emanuele Manca, Andrea Manconi, Alessandro Orro, Giuliano Armano, and

Luciano Milanesi. CUDA-quicksort: An improved GPU-based implementation

of quicksort: CUDA-QUICKSORT. Concurrency and Computation: Practice

and Experience, 28(1):21–43, January 2016. ISSN 15320626. doi: 10.1002/

cpe.3611.

[98] William Mattson and Betsy M. Rice. Near-neighbor calculations using a modi-

fied cell-linked list method. Computer Physics Communications, 119(2–3):135

– 148, 1999. ISSN 0010-4655. doi: http://dx.doi.org/10.1016/S0010-4655(98)

00203-3.

[99] Michael D McCool, Chris Wales, and Kevin Moule. Incremental and Hierarch-

ical Hilbert Order Edge Equation Polygon Rasterization. page 8.



196 BIBLIOGRAPHY

[100] Muralidhar Medidi and Narsingh Deo. Parallel Dictionaries Using AVL Trees.

Journal of Parallel and Distributed Computing, 49(1):146–155, February 1998.

ISSN 07437315. doi: 10.1006/jpdc.1998.1432.

[101] John Mellor-Crummey, David Whalley, and Ken Kennedy. Improving Memory

Hierarchy Performance for Irregular Applications Using Data and Computation

Reorderings. International Journal of Parallel Programming, 29(3):217–247,

2001. ISSN 1573-7640. doi: 10.1023/A:1011119519789.

[102] Simone Meloni, Mario Rosati, and Luciano Colombo. Efficient particle labeling

in atomistic simulations. The Journal of Chemical Physics, 126(12):121102,

2007. doi: 10.1063/1.2719690.

[103] A. S. Minkin, A. B. Teslyuk, A. A. Knizhnik, and B. V. Potapkin. GPGPU

performance evaluation of some basic molecular dynamics algorithms. In 2015

International Conference on High Performance Computing Simulation (HPCS),

pages 629–634, July 2015. doi: 10.1109/HPCSim.2015.7237104.

[104] David M. Mount and Sunil Arya. ANN - Approximate Nearest Neighbor Lib-

rary. http://www.cs.umd.edu/~mount/ANN/, January 2010. version 1.1.2.

[105] C. Muelder and K. Ma. Rapid Graph Layout Using Space Filling Curves.

IEEE Transactions on Visualization and Computer Graphics, 14(6):1301–1308,

November 2008. ISSN 1077-2626. doi: 10.1109/TVCG.2008.158.

[106] École nationale supérieure des mines de Paris. Centre d’Automatique et Inform-

atique, F. Irigoin, and R. Triolet. Computing Dependence Direction Vectors

and Dependence Cones with Linear Systems. ENSMP-CAI. Ecole Nationale

Supérieure des Mines de Paris, Centre d’Automatique et Informatique, 1987.

[107] Anthony E. Nocentino and Philip J. Rhodes. Optimizing memory access on

GPUs using morton order indexing. In Proceedings of the 48th Annual Southeast

Regional Conference on - ACM SE ’10, page 1, Oxford, Mississippi, 2010. ACM

Press. ISBN 978-1-4503-0064-3. doi: 10.1145/1900008.1900035.



BIBLIOGRAPHY 197

[108] Peter Pacheco. An Introduction to Parallel Programming. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 1st edition, 2011. ISBN 978-0-12-

374260-5.

[109] Peter S. Pacheco. Parallel Programming with MPI. Morgan Kaufmann Publish-

ers, San Francisco, Calif, 1997. ISBN 978-1-55860-339-4.

[110] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. Journal of Al-

gorithms, 51(2):122–144, May 2004. ISSN 01966774. doi: 10.1016/j.jalgor.

2003.12.002.

[111] S. K. Park and K. W. Miller. Random number generators: Good ones are hard

to find. Communications of the ACM, 31(10):1192–1201, October 1988. ISSN

00010782. doi: 10.1145/63039.63042.

[112] David A. Patterson and John L. Hennessy. Computer Organization and Design:

The Hardware/Software Interface. The Morgan Kaufmann series in computer

architecture and design. Elsevier/Morgan Kaufmann, Morgan Kaufmann is an

imprint of Elsevier, Amsterdam ; Boston, fifth edition edition, 2014. ISBN 978-

0-12-407726-3. OCLC: ocn859555917.

[113] Kipfer Peter and Westermann Rüdiger. GPU Gems 2. https://developer.

nvidia.com/gpugems/GPUGems2/gpugems2_chapter46.html.

[114] Steve Plimpton. Fast Parallel Algorithms for Short-Range Molecular Dy-

namics. Journal of Computational Physics, 117(1):1 – 19, 1995. ISSN

0021-9991. doi: http://dx.doi.org/10.1006/jcph.1995.1039. URL http://www.

sciencedirect.com/science/article/pii/S002199918571039X.

[115] S. Pontarelli, P. Reviriego, and J. A. Maestro. Parallel d-Pipeline: A Cuckoo

Hashing Implementation for Increased Throughput. IEEE Transactions on Com-

puters, 65(1):326–331, January 2016. ISSN 0018-9340. doi: 10.1109/TC.2015.

2417524.

https://developer.nvidia.com/gpugems/GPUGems2/gpugems2_chapter46.html
https://developer.nvidia.com/gpugems/GPUGems2/gpugems2_chapter46.html
http://www.sciencedirect.com/science/article/pii/S002199918571039X
http://www.sciencedirect.com/science/article/pii/S002199918571039X


198 BIBLIOGRAPHY

[116] William H. Press and Saul A. Teukolsky. Portable Random Number Gen-

erators. Computers in Physics, 6(5):522, 1992. ISSN 08941866. doi:

10.1063/1.4823101.

[117] Milcho Prisagjanec and Pece Mitrevski. Reducing Competitive Cache Misses

in Modern Processor Architectures. International Journal of Computer Science

and Information Technology, 8(6):49–57, December 2016. ISSN 09754660,

09753826. doi: 10.5121/ijcsit.2016.8605.

[118] P. Prusinkiewicz and Aristid Lindenmayer. The Algorithmic Beauty of Plants.

Springer-Verlag, Berlin, Heidelberg, 1990. ISBN 0-387-97297-8.

[119] R Purser. Hilbert Curves Isometrically Filling a Spherical Shell, and Their

Application to the Estimation of Spatial Data Density. May 2018. doi: 10.7289/

V5/ON-NCEP-494.

[120] Rajeev Raman and David Stephen Wise. Converting to and from dilated in-

tegers. IEEE Transactions on Computers, 57(4):567–573, 2008.

[121] Rachel N. Robey, David Nicholaeff, and Robert W. Robey. Hash-Based Al-

gorithms for Discretized Data. SIAM Journal on Scientific Computing, 35

(4):C346–C368, January 2013. ISSN 1064-8275, 1095-7197. doi: 10.1137/

120873686.

[122] Hans Sagan. A three-dimensional hilbert curve. International Journal of Math-

ematical Education in Science and Technology, 24(4):541–545, 1993. doi: 10.

1080/0020739930240405. URL http://dx.doi.org/10.1080/0020739930240405.

[123] Hans Sagan. Space-filling curves. Universitext Series. Springer-Verlag, 1994.

ISBN 9780387942650. doi: 10.1007/978-1-4612-08716. URL https://books.

google.co.uk/books?id=gUfvAAAAMAAJ.

[124] Fatima K. Abu Salem and Mira Al Arab. Comparative study of space filling

http://dx.doi.org/10.1080/0020739930240405
https://books.google.co.uk/books?id=gUfvAAAAMAAJ
https://books.google.co.uk/books?id=gUfvAAAAMAAJ


BIBLIOGRAPHY 199

curves for cache oblivious TU decomposition. CoRR, abs/1612.06069, 2016.

URL http://arxiv.org/abs/1612.06069.

[125] Jesús Sánchez. SMART MEMORY MANAGEMENT THROUGH LOC-

ALITY ANALYSIS. doctoralThesis, UNIVERSITAT POLITÈCNICA DE

CATALUNYA, Barcelona (SPAIN), 2001.

[126] Shankar P. Sastry, Emre Kultursay, Suzanne M. Shontz, and Mahmut T. Kan-

demir. Improved cache utilization and preconditioner efficiency through use of a

space-filling curve mesh element- and vertex-reordering technique. Engineering

with Computers, 30(4):535–547, October 2014. ISSN 0177-0667, 1435-5663.

doi: 10.1007/s00366-014-0363-0.

[127] Nadathur Satish, Mark Harris, and Michael Garland. Designing efficient sorting

algorithms for manycore GPUs. In 2009 IEEE International Symposium on

Parallel & Distributed Processing, pages 1–10, Rome, Italy, May 2009. IEEE.

ISBN 978-1-4244-3751-1. doi: 10.1109/IPDPS.2009.5161005.

[128] Robert D. Skeel, Ismail Tezcan, and David J. Hardy. Multiple grid methods

for classical molecular dynamics. Journal of Computational Chemistry, 23(6):

673–684, 2002. ISSN 1096-987X. doi: 10.1002/jcc.10072.

[129] Justin R. Smith. The Design and Analysis of Parallel Algorithms. Oxford Uni-

versity Press, Inc., New York, NY, USA, 1993. ISBN 0-19-507881-0.

[130] Robert C. Steinke and Gary J. Nutt. A unified theory of shared memory consist-

ency. Journal of the ACM, 51(5):800–849, September 2004. ISSN 00045411.

doi: 10.1145/1017460.1017464.

[131] Leo Stocco and Günther Schrack. Integer dilation and contraction for quadtrees

and octrees. In Communications, Computers, and Signal Processing, 1995. Pro-

ceedings., IEEE Pacific Rim Conference on, pages 426–428. IEEE, 1995.

http://arxiv.org/abs/1612.06069


200 BIBLIOGRAPHY

[132] Anthony J. Stone. The Theory of Intermolecular Forces. Oxford University

Press, Great Clarendon Street;Oxford; ox2 6DP;United Kingdom, 2nd edition

edition, 2013. ISBN 978-0-19-967239-4,.

[133] D. Strnad and A. Nerat. Parallel construction of classification trees on a GPU:

PARALLEL CONSTRUCTION OF CLASSIFICATION TREES ON A GPU.

Concurrency and Computation: Practice and Experience, 28(5):1417–1436,

April 2016. ISSN 15320626. doi: 10.1002/cpe.3660.

[134] G. Sutmann and V. Stegailov. Optimization of neighbor list techniques in liquid

matter simulations. Journal of Molecular Liquids, 125(2):197–203, April 2006.

ISSN 0167-7322. doi: 10.1016/j.molliq.2005.11.029.

[135] Yu-Hang Tang and George Em Karniadakis. Accelerating dissipative particle

dynamics simulations on GPUs: Algorithms, numerics and applications. Com-

puter Physics Communications, 185(11):2809 – 2822, 2014. ISSN 0010-4655.

doi: http://dx.doi.org/10.1016/j.cpc.2014.06.015.

[136] O. Temam. An algorithm for optimally exploiting spatial and temporal local-

ity in upper memory levels. IEEE Transactions on Computers, 48(2):150–158,

February 1999. ISSN 0018-9340. doi: 10.1109/12.752656.

[137] Gudula Rünger Thomas Rauber. Parallel Programming: For Multicore

and Cluster Systems. Springer-Verlag Berlin, "Berlin", 2nd edition edi-

tion, 2010. ISBN 978-3-642-04817-3 978-3-642-04818-0. doi: 10.1007/

978-3-642-04818-0. URL "http://opac.inria.fr/record=b1133063".

[138] Xiaonan Tian, Rengan Xu, Yonghong Yan, Sunita Chandrasekaran, Deepak Ea-

chempati, and Barbara Chapman. Compiler transformation of nested loops for

general purpose GPUs. Concurrency and Computation: Practice and Experi-

ence, 28(2):537–556, February 2016. ISSN 1532-0634. doi: 10.1002/cpe.3648.

[139] J. A. van Meel, A. Arnold, D. Frenkel, S. F. Portegies Zwart, and R. G.

"http://opac.inria.fr/record=b1133063"


BIBLIOGRAPHY 201

Belleman. Harvesting graphics power for MD simulations. Molecular Sim-

ulation, 34(3):259–266, March 2008. ISSN 0892-7022, 1029-0435. doi:

10.1080/08927020701744295.

[140] Loup Verlet. Computer "Experiments" on Classical Fluids. I. Thermodynamical

Properties of Lennard-Jones Molecules. Physical Review, 159(1):98–103, July

1967. ISSN 0031-899X. doi: 10.1103/PhysRev.159.98.

[141] Thijs J. H Vlugt, Jan P. J. M. van der Eerden, M Dijkstra, Berend Smit, and Daan

Frenkel. Introduction to Molecular Simulation and Statistical Thermodynamics.

Delft, Netherlands, 2009. OCLC: 934654365.

[142] David W Walker. Morton ordering of 2D arrays for efficient access to hier-

archical memory. The International Journal of High Performance Computing

Applications, 32(1):189–203, January 2018. ISSN 1094-3420, 1741-2846. doi:

10.1177/1094342017725568.

[143] Ulrich Welling and Guido Germano. Efficiency of linked cell algorithms. Com-

puter Physics Communications, 182(3):611 – 615, 2011. ISSN 0010-4655. doi:

http://dx.doi.org/10.1016/j.cpc.2010.11.002.

[144] D.S. Wise. Ahnentafel indexing into morton-ordered arrays, or matrix locality

for free. volume 1900 of Lecture Notes in Computer Science (including subser-

ies Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

pages 771–773. Springer Verlag, 2000. ISBN 978-3-540-67956-1.

[145] E Wolf and S Lam. A Data Locality Optimizing Algorithm. page 15.

[146] M. E. Wolf and M. S. Lam. A loop transformation theory and an algorithm

to maximize parallelism. IEEE Trans. Parallel Distrib. Syst., 2(4):452–471,

October 1991. ISSN 1045-9219. doi: 10.1109/71.97902. URL https://doi.

org/10.1109/71.97902.

https://doi.org/10.1109/71.97902
https://doi.org/10.1109/71.97902


202 BIBLIOGRAPHY

[147] Michael E. Wolf and Monica S. Lam. A Data Locality Optimizing Algorithm.

In Proceedings of the ACM SIGPLAN 1991 Conference on Programming Lan-

guage Design and Implementation, PLDI ’91, pages 30–44, Toronto, Ontario,

Canada, 1991. ACM. ISBN 0-89791-428-7. doi: 10.1145/113445.113449. URL

http://doi.acm.org/10.1145/113445.113449.

[148] Michael Wolfe. Loops skewing: The wavefront method revisited. International

Journal of Parallel Programming, 15(4):279–293, August 1986. ISSN 0885-

7458, 1573-7640. doi: 10.1007/BF01407876.

[149] Michael Wolfe. More iteration space tiling. In In Proceedings of the Supercom-

puting 89, pages 655–664, 1989.

[150] Michael Wolfe. Implementing the PGI Accelerator Model. In Proceedings of

the 3rd Workshop on General-Purpose Computation on Graphics Processing

Units, GPGPU-3, pages 43–50, New York, NY, USA, 2010. ACM. ISBN 978-

1-60558-935-0. doi: 10.1145/1735688.1735697.

[151] Michael J. Wolfe. T echniques for improving the inherent parallelism in pro-

grams. Technical Report UIUCDCS-R-78-929, University of Illinois, 1978.

[152] Don Woligroski and Igor Wallossek. Nvidia GeForce GTX 960: Maxwell In

The Middle. https://www.tomshardware.co.uk/nvidia-geforce-gtx-960,review-

33113.html, January 2015.

[153] Wm. A. Wulf and Sally A. McKee. Hitting the memory wall: Implications of

the obvious. ACM SIGARCH Computer Architecture News, 23(1):20–24, March

1995. ISSN 01635964. doi: 10.1145/216585.216588.

[154] Zhenhua Yao, Jian-Sheng Wang, Gui-Rong Liu, and Min Cheng. Improved

neighbor list algorithm in molecular simulations using cell decomposition and

data sorting method. Computer Physics Communications, 161(1–2):27 – 35,

2004. ISSN 0010-4655. doi: http://dx.doi.org/10.1016/j.cpc.2004.04.004.

http://doi.acm.org/10.1145/113445.113449


BIBLIOGRAPHY 203

[155] Marco Zagha and Guy E. Blelloch. Radix sort for vector multiprocessors.

In Proceedings of the 1991 ACM/IEEE Conference on Supercomputing - Su-

percomputing ’91, pages 712–721, Albuquerque, New Mexico, United States,

1991. ACM Press. ISBN 978-0-89791-459-8. doi: 10.1145/125826.126164.

[156] Jian Zhang and Sei ichiro Kamata. A generalized 3-d hilbert scan using look-up

tables. Journal of Visual Communication and Image Representation, 23(3):418 –

425, 2012. ISSN 1047-3203. doi: http://dx.doi.org/10.1016/j.jvcir.2011.12.005.

URL //www.sciencedirect.com/science/article/pii/S1047320311001672.

[157] D. F. Zucker, R. B. Lee, and M. J. Flynn. Hardware and software cache prefetch-

ing techniques for MPEG benchmarks. IEEE Transactions on Circuits and Sys-

tems for Video Technology, 10(5):782–796, August 2000. ISSN 1051-8215. doi:

10.1109/76.856455.

//www.sciencedirect.com/science/article/pii/S1047320311001672

	Abstract
	Acknowledgements
	Contents
	List of Publications
	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	Introduction
	Overview
	Problem Definition
	Hypothesis
	Aims and Objectives
	Thesis Contributions
	Thesis Structure
	Summary

	Background
	Data Locality
	Cache Architecture
	Types of Cache Miss
	Cache Use Optimizations

	Space-Filling Curves
	SFC Definition
	Geometric Representation
	Arithmetic Representation 

	Data Orderings
	Linear Ordering
	Hilbert Ordering
	Morton Ordering
	Hybrid Orderings

	Molecular Dynamics Simulations 
	Main Principles
	Molecular Interaction
	Periodic Boundary Conditions
	Neighbour Lists 
	Thermodynamics
	Time Integration

	Parallel Programming
	Memory Access and Process Synchronization
	GPGPU Architecture and Programming 
	GPU General Architecture
	CUDA Programming

	Optimization and Performance Analysis
	GPUs Optimizations
	Performance Analysis

	Summary

	Literature Review
	Data Locality
	Loop Transformation
	Drawbacks of Loop Transformation
	Data Order

	Space Filling Curve Algorithms
	Hilbert Order
	Morton Order

	Molecular Dynamic Simulations Optimizations
	MDS Optimization Based on Reducing the Neighbour List Size and Update Frequency
	MDS Optimization Based on Re-ordering

	Summary

	Stencil and Data Locality Properties
	 Spherical Stencil
	Data Locality Metrics
	Memory Access Patterns
	Cache Miss Rate
	Shared Stencil Bins 

	Summary

	GPU Implementation
	Objectives and Scope
	MiniMD Modules
	Input Module
	Atom Module
	Neighbour Module
	Force Module
	Communication Module
	Thermodynamics Module 
	Integration Module
	Timer Module
	Output Module

	Implemented Modifications
	Ordering Module
	Force Computation on the GPU
	Implementation Analysis

	Summary

	Performance Experiments, Results and Analysis
	Experimental Objectives
	Hardware for the Experiments
	Profiling Tools
	Experimental Setup
	CPU Experiments
	Force Module Execution Time
	CPU Execution Time for Different Data Orderings

	GPU Experiments
	Theoretical Occupancy
	GPU Force Computation Ratio

	Locality Analysis
	Execution Efficiency Analysis
	GPU Memory Analysis

	Summary

	Conclusions and Future Work
	Conclusion
	Research Questions Answered
	Limitations
	Future Work
	Summary

	Device Query Output
	Ruthenium (GeForce GTX 960)
	Hawk (Tesla P100)

	Generated Experiments
	Ruthenium Experiments
	Hawk Experiments

	Hawk System Scripts
	Main Execution Script
	Create Configuration File
	Create Batch Job

	Hawk Execution Time
	Block Size: 576
	Block Size: 640

	Bibliography

