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Abstract 

A key challenge in the implementation of anti-metastatics as cancer therapies is the multi-

modal nature of cell migration, which allows tumour cells to evade the targeted inhibition of 

specific cell motility pathways. The NF-κB co-factor B-cell lymphoma 3 (Bcl-3) has been 

implicated in breast cancer cell migration and metastasis, yet it remains to be determined 

exactly which cell motility pathways are controlled by Bcl-3 and whether migrating tumour 

cells are able to evade Bcl-3 intervention. Addressing these questions and the mechanism 

underpinning Bcl-3’s role in this process would help determine its potential as a therapeutic 

target.     

Here we identify Bcl-3 as an upstream regulator of the two principal forms of breast cancer 

cell motility, involving collective and single-cell migration. This was found to be mediated 

by the master regulator Cdc42 through binding of the NF-κB transcription factor p50 to the 

Cdc42 promoter. Notably, Bcl-3 depletion inhibited both stable and transitory motility 

phenotypes in breast cancer cells with no evidence of migratory adaptation. Overexpression 

of Bcl-3 enhanced migration and increased metastatic tumour burden of breast cancer cells in 

vivo, while overexpression of a mutant Bcl-3 protein, which is unable to bind p50, suppressed 

cell migration and metastatic tumour burden suggesting that disruption of Bcl-3/NF-κB 

complexes is sufficient to inhibit metastasis.   

mailto:clarksonr@cf.ac.uk


 
 

2 
 

These findings identify a novel role for Bcl-3 in intrinsic and adaptive multi-modal cell 

migration mediated by its direct regulation of the Rho GTPase Cdc42 and identifies the 

upstream Bcl-3:p50 transcription complex as a potential therapeutic target for metastatic 

disease. 

Keywords-  Bcl-3, NF-κB, Breast cancer, Metastasis, Migration, Cdc42 

Summary 

Overcoming multi-model migration and motility switching represents a key challenge in the 

implementation of anti-metastatic therapies. Here we characterise the role of Bcl-3 in this 

process and identify its interaction with p50 as a potential therapeutic target for metastasis. 

Introduction 

The process of cell migration occurs in a number of normal physiological and pathological 

contexts with cells capable of utilising a variety of mechanisms to promote their movement 

either as single cells or as a collective entity [2-4]. Cell migration is primarily driven through 

Rho GTPase-regulated signalling networks which mediate dynamic changes in the 

cytoskeleton and cell adhesions to produce movement. Cdc42 has been identified as a key 

mediator of this process primarily through regulating the extension of lamellipodia and 

filopodia in both single cell and collective migration [2, 5, 6]. Alternatively single cells can 

also be driven by high levels of Rho/ROCK signalling to propel more rounded cells through 

actomyosin contractions [7], with Cdc42-MRCK signalling also known to regulate this 

propulsion independently of ROCK to drive cell invasion [8, 9].  

Invading cancer cells are able to utilise these different mechanisms and in metastatic breast 

cancer both collective and single cell motility has been observed [3, 10-13].  Although 

metastasis is a complex multi-step process it fundamentally relies on the movement of 

tumour cells from primary to secondary sites, with cells often travelling relatively large 

distances around the body.  There are currently no curative treatments for metastatic breast 
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cancer making it responsible for almost all breast cancer-associated deaths, which is one of 

the most common causes of death from cancer in the UK [14]. Current standard of care for 

metastatic breast cancer focuses on improving quality of life, yet with over 90% of all deaths 

from solid cancers attributed to metastasis it has been argued that existing therapies aimed at 

regressing primary tumours should be complemented with anti-metastatic drugs to prevent 

the initial or ongoing dissemination of disease as early as possible [15, 16]. Candidate anti-

metastatic interventions include the recently coined ‘migrastatics’, which target the 

fundamental mechanisms that drive cell migration [15]. However, to ensure successful 

translation into a clinical setting, such interventions must overcome the dual problems of non-

selective toxicity and cellular plasticity, whereby cells within the tumour are able to evade 

inhibition of specific migration pathway inhibitors by adopting alternative modes of 

migration [15]. Indeed the ability of cancer cells to switch between different types of  motility 

depending on their environment has made migratory cellular plasticity one of the main 

concerns regarding anti-metastatic intervention, as it may lead to treatment resistance and 

phenotypic evasion if all migratory mechanisms are not simultaneously inhibited [15, 17]. 

Despite some promising advances in this area, including next generation ROCK inhibitors 

[18] and agents targeting the actin cytoskeleton [19-21], ongoing issues of toxicity and 

efficacy warrant further studies to identify novel targets of multi-modal cell migration.  

A new anti-metastatic target which has shown early promise in the pre-clinical setting is the 

proto-oncogene B-cell lymphoma 3 (Bcl-3) [22, 23]. Bcl-3 is an atypical member of the IκB 

family of NF-κB regulators capable of regulating transcription through its interactions with 

p50 and p52 homodimers as well as acting independently of NF-κB to mediate a number of 

processes including proliferation, apoptosis and metastasis [22, 24, 25]. Bcl-3 has more 

recently been implicated in the progression and resistance to therapy in a number of solid 

tumour types including colorectal, nasopharyngeal, prostate and glioblastoma [26-29].  In 
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breast cancer, high expression of Bcl-3 has been attributed to a reduction in metastasis-free 

survival [22], while Bcl-3 inhibition has been shown to reduce metastatic tumour burden in 

both triple negative and ERBB2-driven tumour models in vivo [22, 23]. Importantly, 

complete deletion of Bcl-3 in these mouse models resulted in viable animals with only a 

minor disruption to the humoral immunological compartment [30] suggesting that the 

targeted inhibition of Bcl-3 in humans may be well tolerated. These anti-metastatic effects 

following Bcl-3 suppression have been attributed to a reduction in cell migration associated 

with the downregulation of TGF-β signalling [23], yet its potential to inhibit the tumour cell’s 

capacity to stably or transiently adopt one or more modes of cell migration, which represents 

a major clinical hurdle, has not been investigated [5, 31].  

In this study we use three cancer cell lines with distinct migratory properties to show how 

suppression of Bcl-3 using siRNA can reduce three different forms of cell motility, primarily 

by disrupting NF-κB-mediated transcription of Cdc42. We also show that loss of Bcl-3 

maintains its inhibitory effects in cells actively switching motility modes during EMT, while 

overexpression of Bcl-3 promotes migration and metastatic potential in vivo. Together this 

study highlights the therapeutic potential of Bcl-3 as an anti-metastatic target. 

Materials and methods 

Cell lines and reagents 

Verified human breast cancer cell lines MDA-MB-231ER-HER2- , MDA-MB-436 ER-HER2- and 

MCF-7 ER+HER2- cells were obtained from ATCC and used within 6 months and a maximum of 

10 passages after resuscitation. Each cell line was authenticated by short tandem repeat 

profiling as described by the ATCC cell bank and regularly tested for mycoplasma 

contamination.  MDA-MB-231-luc-D3H2LN cells were derived from a spontaneous lymph 

node metastasis from an originally verified MDA-MB-231-D3H1 mammary fat pad 
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tumour by Caliper Life Sciences (Perkin Elmer Inc.). All cell lines were maintained in RPMI 

1640 GlutaMAX media (Invitrogen) supplemented with 10% foetal bovine serum 

(Invitrogen) at 37°C in 5% CO2.  

Cell lines were transfected with Bcl-3 or Cdc42 siRNA using a mixture of 4 small interfering 

RNAs (siRNA) each designed to suppress their respective targets. Bcl-3 siRNA 1: 5’-

AGACACGCCUCUCCAUAUU-3’, siRNA 2: 5’-GGCCGGAGGCGCUUUACUA-3’, 

siRNA 3: 5’-GCGCAAAUGUACUCCGGCA-3’, siRNA 4: 5’-

GCCGGGAGCUCGACAUCUA-3’. Cdc42 siRNA 1: 5’-CGGAAUAUGUACCGACUGU-

3’, siRNA 2: 5’-GCAGUCACAGUUAUGAUUG-3’, siRNA 3: 5’-

GAUGACCCCUCUACUAUUG-3’, siRNA 4: 5’-CUGCAGGGCAAGAGGAUUA-3’ (ON-

Target plus SMART pool, Dharmacon). A pool of control RNAs (scRNA) designed to have 

minimal effect on human gene expression was used to control for transfection (scRNA 1- 5’- 

UGGUUUACAUGUCGACUAA-3’, scRNA 2- 5’- UGGUUUACAUGUUGUGUGA-3’, 

scRNA 3- 5’- UGGUUUACAUGUUUUCUGA-3’, scRNA 4- 5’-

UGGUUUACAUGUUUUCCUA-3’) (Dharmacon). Wildtype Bcl-3 and ANK mutant Bcl-3 

plasmids were a kind gift from Dr. Alain Chariot (University of Liège, Belgium). 

Transfection was performed on 70% confluent adherent cells using lipofectamine 3000 

(Invitrogen) and serum-free Opti-MEM (Invitrogen) according to manufacturer’s 

instructions.  

Bioinformatics analysis 

Gene expression data of 56 breast cancer cell lines was obtained from the cell line 

encyclopedia using cBioPortal [32, 33] and was used for quantifying EMT using the 

previously reported EMT scoring tool [34]. Samples with a significant p-value (<0.05) and a 

positive score were determined as mesenchymal, whereas samples with a significant p-value 
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and a negative score were determined as epithelial. Samples with a p-value that did not reach 

a significant level were considered as intermediate.  

Analysis of affymetrix experiments were carried out in the GeneSpring GX Pathway 

Architect software. The ExonRMA summarisation algorithm was performed on all projects 

with the baseline set to the median of all samples. The samples were quality checked by 

assessing PCA values to ensure appropriate clustering. Probe sets were filtered based on their 

signal intensity values and 43590 out of 48144 entities had values between 20 and 100 

percentiles. The Benjamini and Hochberg False Discovery Rate multiple testing correction 

was performed to determine corrected p-values and entities were filtered based on a cut-off of 

p-value<0.05. 

EMT stimulation 

EMT stimulation was performed using StemXVivo media supplement (R&D systems) which 

contains recombinant human Wnt-5a protein, recombinant human TGF-beta1 protein, anti-

human E-cadherin antibody, anti-human sFRP-1 antibody and anti-human Dkk-1 antibody. 

Cells were treated with StemXVivo for 48h days before media was replaced with fresh EMT 

inducing supplement for a further 3 days. 

Cell viability assay 

To determine cell viability Cell Titre Blue (CTB) assay (Promega) was used on cells grown 

in 96-well plates. On the day of analysis, 20 µL of CTB reagent (Promega) was added to 100 

µL of growth medium in each well. After 1h of incubation at 37oC in 5% CO2 fluorescence 

intensity was measured at 560/590 nm using a ClarioStar plate reader (BMG Labtech).      

Transwell migration assay 

To assess chemotaxis driven migration Fluoroblok migration assays (Corning) were used. 5 x 

103 cells diluted in serum free growth medium were added to the top chambers of a 96-well 
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Fluoroblok culture plate (Corning) before 200 µL of normal growth medium containing FBS 

was added to the bottom chambers. After 24h of incubation the bottom wells were replaced 

with 1 µM Calcein AM (eBioscience) and incubated for 1h at 37oC. Fluorescence intensity of 

each well was then read at 500 nm from the bottom of the plate using a Clariostar plate reader 

(BMG Labtech).     

Random single cell migration assay 

To assess random single cell migration, real-time single cell migration assays were 

performed. Cells were plated at a density of 5 x 104 cells/well into 12-well plates and left to 

adhere overnight. Cells were then imaged over an 18h period using a time-lapse incubation 

chamber (Leica) and analysed using CellTracker image processing software [35] semi-

automatically with a minimum of 50 cells per condition analysed. Dividing cells were 

removed from the data set, and any tracks not-matching cell movement manually adjusted.  

Wound healing assay 

To assess collective migration transwell assays were performed. Confluent cell monolayers 

were scratched using 10 µL pipette tips before cells were washed gently with PBS to remove 

floating cells. Pictures were then taken on an inverted microscope (Leica) at 4 different fields 

of view at 0h and 24h after initial scratches were made. Images were analysed using ImageJ 

to measure changes in the total area covered by cells. 

G-LISA assay 

To determine changes in Rho-GTPase activity G-LISA GTPase activation assays 

(Cytoskeleton) were performed. Cell lysates were harvested on ice by cell scraping with 250 

µL of lysis buffer including protease inhibitor (Cytoskeleton) before being snap frozen in 

liquid nitrogen. Protein quantification, antigen retrieval, antibody incubations and detection 

were all performed following manufacturer’s instructions.  
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Immunofluorescence 

Cells were grown on glass coverslips inside of 6-well culture plates and fixed in 4% formalin 

for 15 min before being washed 3x in PBS. Cells were permeabilized using 0.2% triton-X-

100 (Sigma) followed by 30 min blocking in 1% BSA (Sigma) in PBS. Cells were then 

incubated in primary antibody overnight at 4oC for either Bcl-3-1:100 (C-14, Santa Cruz), 

Vimentin-1:200 (V9, Santa Cruz) or E-cadherin 1:200 (C-36, BD biosciences). Following 3x 

PBS washes fluorescence-conjugated secondary antibodies (Abcam) diluted 1:400 were 

added alongside Phalloidin–Atto 565 (Sigma) (1:400) and incubated for 1h at room 

temperature. Cells were then stained with DAPI (Invitrogen) for 15 min and washed 3x in 

PBS before being mounted in Mowiol solution (Sigma). Visualisation of cells was performed 

on a Leica confocal microscope.         

qRT-PCR analysis  

RNA extraction was performed using the Qiagen RNEasy kit following the manufacturer’s 

instructions. The concentration and quality of RNA was analysed using a nanodrop 3000 

spectrophotometer (ThermoScientific) before being used to synthesise cDNA using the 

QuantiTect Reverse Transcription kit (Qiagen) following manufacturer’s instructions. 

TaqMan probes were purchased from ThermoFischer Scientific: CDH1-Hs01023894_m1, 

CDH2-Hs00983056_ml, VIM- Hs00958111_m1, TWIST1- Hs01675818_s1, Axl- 

Hs01064444_m1, ZEB1- Hs00232783_m1, Bcl-3- Hs00180403_ml, ACTB- 

Hs99999903_m1. Multiplex PCR reactions were performed using TaqMan Universal Master 

mix (ThermoFischer Scientific) and run on a QuantStudio 7 Real-Time PCR machine 

(Applied Biosystems).  
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Chromatin immunoprecipitation (ChIP) 

ChIP assay was performed using the Chromatrap kit (Chromatrap) with anti-p50 antibody 

(Cell Signalling). Cells were cross-linked with formaldehyde and sonicated to an average size 

of 300-to-500 bp. Lysates were added to microwells immobilized with corresponding 

antibody. Cross-linked DNA released from the protein-DNA complex was purified and the 

eluted DNA was further detected by qRT-PCR. Input and IgG was used simultaneously to 

confirm that the detected signals were derived from the specifically bonding of chromatin and 

p50 protein.  

NF-κB luciferase reporter assay 

The NF-κB activity of cells was quantified using a luciferase reporter plasmid. Cells were 

transfected with 900ng of 3x kB luciferase reporter plasmid and 100ng of pcDNA 3.1-LacZ 

plasmid using lipofectamine 3000. After 48 hours post-transfection cell were lysed using 

Glo-lysis buffer (Promega) and transferred to a white walled 96-well plate containing Beta-

Glo or Bright-Glo (Promega) to detect LacZ or luciferase activity respectively. Luminescence 

relative to LacZ was read using a Flurostar Optima plate reader (BMG Labtech) and 

displayed as relative light units (R.L.U). 

Western Blot 

Total cellular proteins were extracted from cultured cells and analysed by Western blotting 

using antibodies specific for Bcl-3 (Proteintech, 23959-1-AP) and GAPDH (Santa Cruz 

Biotechnology; sc365062) and horseradish peroxidise- conjugated secondary antibody 

(Dako). Antibody binding was detected using ECL prime detection reagent (Amersham) 

before being developed in a Biorad Chemidoc MP Imaging System.  
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Animal metastasis studies 

All mouse experiments were performed in accordance with the Animals (Scientific 

Procedures) Act 1986 guidelines and approved by the UK Home Office under project licence 

PPL 30/2849.  Animal and cell work included in this project was approved by the Cardiff 

University Genetic Modification Scientific Committee.  Experimental metastasis was 

established by tail vein injection of 2×105 MDA-MD-231-Luc cells. Cells were suspended in 

100 μL of RPMI media and injected via the tail vein of 8-week old female Hsd: Athymic 

Nude-Foxn1nu mice (Harlan Laboratories). Mice were sacrificed 6-weeks after tumour cell 

injection and organs were immediately harvested and fixed in 4% formalin. Tissues were then 

sectioned and subject to H&E staining before being scanned on Axioscan Z1 (Zeiss) and 

analysed for metastasis. Cdc42 staining was performed using anti-Cdc42 primary antibody 

(HPA069590, Sigma) 1:200 following heat-induced epitope retrieval on 231-Luc orthotopic 

tumour sections. 

Statistical analysis 

Error bars on all graphs represent standard error values with the exception of gene expression 

data which are represented by 95% confidence intervals. For all tests statistical analysis was 

performed on raw data obtained from a minimum of 3 independent experiments. 

Experimental data was analysed in R studio [36] using a repeated measure two-way ANOVA 

(RM-ANOVA) or an unpaired students t test to determine statistical differences. For gene 

expression analysis significance was determined using the 95% confidence interval overlap 

rule described in [1].  
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Results 

 

Bcl-3 suppression inhibits three forms of cell migration 

Invasive tumour cells possess the ability to switch between different migratory phenotypes in 

response to changing microenvironments and pharmaceutical intervention, making this early 

step in the metastatic process difficult to target and inhibit [17, 37]. Many studies of 

presumptive cell motility inhibitors often only report the anti-migratory effects of one form of 

cell migration which may result in resistance when tested clinically. To more robustly address 

the effects of Bcl-3 inhibition on migration, we assessed the migratory phenotypes of three 

breast cancer cell lines which, based on their morphological phenotype and previous reports 

of motility-characteristics [38, 39], we hypothesised to migrate differently. 

As cells can migrate using either individual or collective cell movement, cell lines were 

selected based on distinct morphological features. The mesenchymal-like cell line MDA-MB-

436, which lacks stable cell-cell contacts through E-cadherin [40], was selected as a model 

for single cell migration; the epithelial-like MCF-7 cell line, which has stable E-cadherin-

mediated cell-cell contacts [40], was chosen as a model for collective migration; and the 

MDA-MB-231 cell line was used as an intermediate cell line due to its reduced spindle-like 

appearance compared to MDA-MB-436 cells but lack of  stable cell-cell contacts [40, 41] 

(Fig 1A). These cell characteristics were confirmed through immunofluorescence detection of 

E-cadherin and Vimentin to distinguish epithelial and mesenchymal phenotypes 

(Supplementary Fig 1A). 

To correlate these molecular and morphological characteristics with a migratory phenotype 

each cell line was compared using three different migration assays designed to evaluate 

different modes of motility (Fig 1B-D). Single cell chemotaxis-driven motility was tested 

using Transwell assays in which migrating cells pass through 8 µm pores following 
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chemotactic stimulation. MDA-MB-231 cells migrated significantly better than both MDA-

MB-436 and MCF-7 cells, with the latter barely capable of migrating through the chamber 

pores (Fig 1B). Random single cell migration was then assessed using time-lapse microscopy 

with MDA-MB-436 cells migrating faster and further than MDA-MB-231 cells, with 

epithelial MCF-7 cells unable to migrate individually (Fig 1C & Supplementary Fig 1B). 

Finally, wound healing assays, which have previously been used to track collective cell 

motility in breast cancer cell lines [42-46], were used to model the 2D directional movement 

of cohesive cells. MDA-MB-436 cells showed a significantly reduced rate of cohesive 

motility compared to MDA-MB-231 and MCF-7 cells which showed similar rates of 

collective motility, confirming previous observations that these cells are better suited to 

single-cell movement (Fig 1D & Supplementary Fig 1C). 

To determine whether Bcl-3 expression associated with a specific morphological subtype 

and/or mode of motility, relative Bcl-3 mRNA expression was initially compared across 56 

breast cancer cell lines from the cancer cell line encyclopedia [33] grouped into epithelial, 

intermediate or mesenchymal phenotypes based on their baseline genetic EMT score [34]. E-

cadherin expression was significantly downregulated in mesenchymal cell lines as expected, 

but no significant association was observed between Bcl-3 and cell phenotype, indicating that 

Bcl-3 is ubiquitously expressed across a range of cell types (Fig 1E&F). Expression of Bcl-3 

was confirmed at the protein level in the three cell lines described above with nuclear 

(functionally relevant) Bcl-3 detected in more than 95% of the cells within each of the cell 

lines (Fig 1A). A modest difference in nuclear staining observed between these cell lines was 

confirmed at the mRNA level, where a small but significant difference in Bcl-3 expression 

correlated with their ability to undergo random single-cell migration (Fig 1G). No correlation 

was observed in either chemotaxis-driven or collective migration (Supplementary Fig 

2A&B).  
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We wished to investigate the significance of these findings to determine whether the weak 

correlation with the mesenchymal-like MDA-MB-436 cell line signified a preferential role 

for Bcl-3 in this form of cell migration or whether the ubiquitous expression of Bcl-3 in all 

cell types indicated a more universal role for Bcl-3 in cell-specific migratory phenotypes. 

Bcl-3 was suppressed in each cell line using a pool of 4 Bcl-3 targeting siRNAs which 

resulted in a significant reduction of Bcl-3 expression compared to scRNA treated controls 

(Supplementary Fig 3A), with no concomitant change in cell viability observed in any of the 

cell lines (Supplementary Fig 3B-D). Loss of Bcl-3 expression resulted in a significant 

reduction in chemotaxis-driven single cell motility in all cell lines (Fig 2A-C), with random 

single cell motility reduced in both MDA-MB-231 and MDA-MB-436 cells (Fig 2D&E). No 

change was observed in MCF-7 cells as they lack the ability to migrate individually in this 

assay and remained static (Supplementary Fig 3E). Bcl-3 depletion also resulted in a 

significant reduction in 2D collective migration in each cell line compared to scRNA treated 

control cells (Fig 2F-H). The Bcl-3 specific effect of the siRNA pool used in each assay was 

confirmed by determining the effects of each individual siRNA on MCF-7 cells. Only 3/4 

individual siRNAs were capable of significantly suppressing Bcl-3 expression with a 

significant reduction in migration only observed when Bcl-3 was depleted (Supplementary 

Fig 3F&G). Together this data highlights at least three different forms of cell migration that 

are inhibited through Bcl-3 suppression with no compensatory increases in alternative cell 

motility.  

Bcl-3 is involved in regulating migration during EMT    

Having established that Bcl-3 regulates cell motility in three different assays, we next sought 

to determine whether these effects were maintained in tumour cells undergoing a phenotypic 

switch which altered their mode of motility.  
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Epithelial to mesenchymal transition (EMT) was initiated in the epithelial-like MCF-7 cell 

line through a TGF-β based conditioned cell culture medium (M-EMT) which also included 

recombinant-Wnt-5a and anti-E-cadherin antibodies as previously described [47, 48]. 

Following stimulation with M-EMT for 6 days a large proportion of MCF-7 cells acquired a 

mesenchymal-like phenotype consisting of spindle-like protrusions and a loss of membrane 

bound E-cadherin similar to the phenotype observed in mesenchymal MDA-MB-231 cells 

(Fig 3A). When M-EMT was removed these cells returned to a normal epithelial-like 

morphology within 4 days indicating a reversion back to an epithelial-like state through 

mesenchymal to epithelial transition (MET) (Fig 3A). Although Bcl-3 had previously been 

shown not to correlate with stable epithelial or mesenchymal phenotypes (Fig 1F) we 

hypothesised that TGF-β driven M-EMT stimulation would lead to an increase in Bcl-3 

expression due to the known function of Bcl-3 in regulating TGF-β driven transcription [22]. 

As expected, Bcl-3 expression increased following M-EMT treatment (Fig. 3B) coinciding 

with an increase in EMT markers N-cadherin, Twist, Vimentin, ZEB1 and Axl and loss of 

membrane bound E-cadherin (Supplementary Fig 4A), returning to unstimulated levels after 

removal of M-EMT. Overexpression of Bcl-3 or suppression by siRNA under these 

conditions impacted on only a proportion of these EMT markers suggesting that Bcl-3 was 

not a master regulator of epithelial to mesenchymal transition but may instead impact on one 

or more of the transcriptional regulators directly (Supplementary Fig 4B&C).   

The mobility of M-EMT maintained MCF-7 cells was compared to unstimulated MCF-7 cells 

in each migratory assay described above. M-EMT maintained cells exhibited small increases 

in single cell migration and a concomitant reduction in collective migratory ability compared 

to unstimulated cells (Supplementary Fig 4D-F). Time-lapse observations in wound healing 

assays identified a significant proportion of single highly-migratory cells escaping from the 

collective cell sheet after M-EMT induction (Fig 3C&D). When Bcl-3 was inhibited, the 
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number of these highly-migratory ‘escapees’ was significantly reduced (Fig 3E), as was the 

overall ability of these transitioned MCF-7 cells to migrate in a chemotaxis driven manner 

(Fig 3F), suggesting that the induction of single cell migration following EMT of epithelial-

like cancer cells could also be inhibited by Bcl-3 suppression. The suppression of collective 

migration by Bcl-3 siRNA was also preserved in M-EMT induced cells (Fig 3G).  

Bcl-3 regulates Cdc42 to drive multi-modal cell migration  

We next sought to identify the underlying processes by which Bcl-3 contributed to these 

different forms of cell migration. To do this we initially performed a global gene expression 

screen of MDA-MB-231- luc-D3H2LN (231L) cells treated with Bcl-3 siRNA. This cell line 

was chosen because it exhibited elevated Bcl-3 expression and single-cell migration 

properties compared to its MDA-MB-231 parental control (Supplementary Fig 5A-C).  

Subsequent ontological analyses of the microarray data identified Rho GTPase signalling as 

one of the most significantly affected pathways (Table 1). Of the 27 genes from this pathway 

differentially regulated following Bcl-3 suppression, the key GTPase family member Cdc42 

exhibited the largest change. Downregulation of Cdc42 expression following Bcl-3 

suppression was subsequently confirmed in 231L, MDA-MB-436, MCF-7 and M-EMT 

induced MCF-7 cells (Fig 4A).  

As Bcl-3 is a known NF-κB co-factor we next sought to determine whether loss of Bcl-3 was 

capable of altering Cdc42 transcription through a specific p50/p65 regulator element 

identified in the 5’UTR of the Cdc42 gene (Fig 4B). ChIP analysis demonstrated an almost 

complete loss of p50 binding at the Cdc42 promoter in Bcl-3 suppressed 231L cells (Fig 4C) 

suggesting that Bcl-3 transcriptional regulation of the native Cdc42 locus was mediated via 

its interaction with NF-κB1/p50 at this site. This was confirmed with NF-κB reporter assays 

demonstrating a significant reduction in NF-κB activity in both MDA-MB-436 and 231L 
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cells following Bcl-3 inhibition (Fig 4D). No change in NF-κB activity was observed in 

MCF-7 cells (Supplementary Fig 5D) which is likely due to the well documented low basal 

expression of NF-κB in ER-positive breast cancers including MCF-7 cells making it difficult 

to ascertain a significant difference following Bcl-3 knockdown [49-51]. We next 

investigated whether the decrease in Cdc42 expression in Bcl-3-inhibited cells impacted on 

the levels of functional GTP-bound Cdc42. The proportion of activated GTP-Cdc42 in Bcl-3 

suppressed cells was significantly reduced in MDA-MB-436 and showed a similar trend in 

231L and MCF-7 cells (Fig 4E) when compared to scRNA treated control cells. Final 

confirmation of Bcl-3 specific suppression of Cdc42 was determined by quantitative PCR of 

its downstream target Cofilin 2 which is negatively regulated by Cdc42 and was significantly 

upregulated in our microarray analysis (Table 1). Knockdown of Bcl-3 resulted in a 

significant upregulation of Cofilin 2 in each of the previously tested cell lines (Fig 4F).    

To determine whether loss of Cdc42 expression could account for the observed effects of 

targeting Bcl-3, without compensatory increases in alternative cell motility, different modes 

of migration were tested in each cell line. Following suppression of Cdc42 using pooled 

siRNA (Supplementary Fig 5E) chemotaxis driven and random single cell migration was 

reduced in MDA-MB-231 and MDA-MB-436 cells respectively (Fig 4G&H). A significant 

reduction in 2D collective migration was also observed in MCF-7 cells (Fig 4I). Each cell 

line was also tested for changes in alternative forms of migration, with similar reductions to 

Bcl-3 depletion and no compensatory increases observed (Supplementary Fig 5F-K). While 

attempts to rescue Bcl-3 mediated suppression of migration through overexpression of Cdc42 

was compromised by the detrimental effects of ectopic Cdc42 expression in both control and 

Bcl-3 depleted cells (data not shown), the combined suppression of Cdc42 and Bcl-3 in the 

same cell line demonstrated that these genes share a common outcome (Fig 4H&I).  
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Reducing functional Bcl-3 decreases cell migration and metastatic spread in vivo 

Having established Bcl-3 as a regulator of multi-modal cell migration we next sought to 

confirm Bcl-3 as a suitable anti-metastatic target using in vivo models of metastasis.  

Initially, to confirm the direct role of Bcl-3 in metastasis, wildtype Bcl-3 (WT Bcl-3) was 

overexpressed in both 231L and MDA-MB-436 cells and its relative effect on cell migration 

in vitro and metastatic tumour burden in vivo compared to cells expressing endogenous levels 

of Bcl-3 was determined (Fig 5) (Supplementary Fig 6). Overexpression of Bcl-3 resulted in 

an increase in NF-κB activity (Fig 5A&B) and single-cell motility in vitro with a concomitant 

reduction in collective migration (Fig 5C-E). Metastatic tumour burden was also significantly 

increased in cells overexpressing Bcl-3, manifesting in increased tumour density in lungs and 

liver compared to controls, and a broader dissemination of tumour foci to include bone and 

heart (Fig 5F&G). Although the basal expression of Cdc42 expression remained unchanged 

(Supplementary Fig 6B), elevated expression of Cdc42 was observed in a subpopulation of 

tumour cells within Bcl-3 overexpressing tumours compared to parental 231L controls 

suggesting a transient increase in migrating cells (Supplementary Fig 6C).  

In order to determine whether functional targeting of Bcl-3:NF-κB complexes could be a 

viable therapeutic option, a protein binding mutant of Bcl-3 (ANK Bcl-3) was overexpressed 

in the breast cancer cell lines. This mutant form of Bcl-3 has been shown to be unable to bind 

p50 and p52 homodimers [52, 53] and acts as a dominant negative mutant for endogenous 

Bcl-3 activity [54]. Overexpression of ANK Bcl-3 resulted in a significant reduction in NF-

κB signalling, Cdc42 expression and all three modes of cell migration in vitro (Fig 5B-E) 

(Supplementary Fig 6B). Accordingly, the metastatic potential of ANK Bcl-3 231L cells was 

significantly diminished (Fig 5F) with both the density and tissue tropism reduced compared 

to the parental cell line with endogenous Bcl-3 expression. Furthermore, Cdc42 expression 
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was diminished in tumours overexpressing the Bcl-3-ANK mutant compared to controls 

(Supplementary Fig 6C). The effect of Bcl-3 suppression on experimental metastasis was 

confirmed in mice injected with 231L cells pre-treated with siRNA targeting Bcl-3, 

indicating that transient suppression of endogenous Bcl-3 levels was also sufficient to reduce 

metastatic burden in this model of triple-negative breast cancer (Fig 5G&H).  

Discussion  

The identification of novel therapies to target the metastatic process offers the opportunity to 

improve long-term survival for breast cancer patients either with high risk of developing 

metastatic disease or for those in which the disease has already progressed [55, 56]. One of 

the biggest challenges in targeting potential anti-metastatic candidates is overcoming the 

diverse and interchangeable migratory potential of metastatic cells, which can be used to 

overcome various micro-environmental obstacles [17]. Here we show that suppression of 

Bcl-3 can inhibit at least two distinct modes of cell motility, irrespective of whether this was 

inherent to the tumour cell subtype or transiently induced by the tumour cell 

microenvironment. This pan-migratory effect was determined to be a result of downregulated 

Cdc42 expression and subsequent loss of activity through disrupted NF-κB signalling on the 

Cdc42 promoter. Cdc42 is a key regulator of actin cytoskeletal organization which drives cell 

motility in both individual and collectively migrating cells, making this essential mechanism 

an important therapeutic target for potential migrastatic candidates [6, 8, 15, 57, 58]. 

Although constitutive upregulation of Cdc42 by Bcl-3 was not observed, likely due to an 

intolerance of prolonged Cdc42 expression, a subset of tumour cells overexpressing Bcl-3 

were shown to express high levels of Cdc42 suggesting a transient increase in migrating cells 

and supporting the established role of Cdc42 in the dynamic processes controlling cell 

migration [59, 60]. Moreover, Bcl-3 suppression resulted in the significant alteration of 26 

other Rho GTPase signalling network genes which although not investigated here are likely 



 
 

19 
 

to also contribute to Bcl-3 driven migration. This builds upon previous data showing the 

guanine nucleotide exchange inhibitor (GDI) Arhgdib, which preferentially binds to both 

Rac1 and Cdc42 to regulate cell migration, is upregulated after Bcl-3 inhibition in murine 

models of breast cancer [23].  

Although this study highlights the potential therapeutic benefits of targeting Bcl-3, there are 

currently no approved Bcl-3 specific targeted therapies, and current technologies limit the 

potential use of siRNA-mediated Bcl-3 inhibition in a clinical setting. Given that the anti-

migratory effects observed were dependent on a disruption to the Bcl-3:p50 interaction which 

manifested in a reduction in metastatic tumour burden in vivo (Fig 4C & 5F), the 

development of small-molecule inhibitors capable of blocking this interaction may offer 

therapeutic benefits in the future. Development of such molecules will require continued 

characterisation of Bcl-3-mediated migration utilising new 3D platforms capable of closely 

mimicking the tumour microenvironment which may alter the migratory potential of 

disseminating tumour cells [15, 61]. Furthermore, in order to translate this into a clinical 

setting the most effective and suitable time point for targeting Bcl-3 must also be identified, 

with suggestions that suitable migrastatics should be administered long-term as early as 

possible alongside existing anti-cancer therapies which also target the bulk tumour mass [15]. 

Previous demonstration of the lack of systemic toxicity in Bcl-3-null mice supports the 

potential efficacy of this approach [30].  

The early administration of migrastastatic compounds is also likely to reduce the early 

acquisition of pro-invasive properties during transitional EMT. Here we found Bcl-3 to be 

upregulated during this process, which is likely due to its role in regulating downstream TGF-

β signalling targets [22]. Suppression of Bcl-3 during EMT was found to inhibit the 

upregulation of N-cadherin, Vimentin, Twist and Axl thus partially disrupting EMT-

associated transcription while overexpression of Bcl-3 alone was able to directly induce both 
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Vimentin and Axl expression. Whether these effects were a result of disrupted TGF-β or NF-

κB-mediated transcription was not investigated here however, N-cadherin has been shown to 

be directly regulated through Bcl-3 in melanoma cell lines [62] while Vimentin and Twist are 

known targets of SMAD3-mediated transcription therefore both models are possible [63, 64]. 

In conclusion the data presented here provide evidence for a non-redundant role for Bcl-3 in 

mediating multiple modes of breast cancer cell migration through the regulation of Cdc42. 

We also confirm Bcl-3 as a driver of metastasis supporting its candidacy as an anti-metastatic 

target and identify its interaction with p50 as a future therapeutic drug target to mimic the 

effects of Bcl-3 inhibition. Additional studies are now required to identify the active sites on 

the Bcl-3 protein responsible for these effects so that it might be effectively targeted in the 

future to inhibit metastatic disease.   
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Fig. 1 Breast cancer cell lines exhibit distinct modes of migration. (A) Representative images of MDA-MB-436, MDA-

MB-231 and MCF-7 cell morphology and Bcl-3 localization using immunofluorescence for the actin cytoskeleton marker 

phalloidin (Red) and Bcl-3 (Green) (scale bar 50 µm). Migration assays were used to determine the migration capacity of 

each cell line (B) Transwell assays compared chemotaxis migration, (C) time-lapse microscopy compared random single 

cell migration and (D) wound healing assays compared collective migration. Error bars represent ± SEM of n= 3 (RM-

ANOVA, ***=p<0.001, ****=p<0.0001). The EMT scores of 56 breast cancer cell lines were calculated with each line 

grouped into epithelial, intermediate or mesenchymal subtypes. (E) Comparison of CDH1 expression in each group 

confirmed loss of expression in mesenchymal-like cells; with (F) no difference in Bcl-3 expression observed between each 

group. Error bars represent ± SEM  epithelial n=26, intermediate n=15, mesenchymal n=15  (t test, ***=p<0.001, 

****=p<0.0001). (G) Bcl-3 expression in MDA-MB-436, MDA-MB-231 and MCF-7 cells was determined by qRT-PCR 

with each cell lines relative random single cell migration plotted alongside to highlight the correlation of Bcl-3 expression 

and this form of motility. Error bars for qRT-PCR  data represent confidence intervals n= 3 with interval overlap used to 

determine significance as described in [1], ( **=p<0.01).  
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Fig. 2 Suppression of Bcl-3 inhibits three forms of cell migration. (A) MDA-MB-436 cells were treated with Bcl-3 

siRNA before seeding into Transwell assays to assess chemotaxis driven single cell migration resulting in reduced motility 

compared to scRNA treated controls. (B&C) This effect was also observed in MDA-MB-231 and MCF-7 cells. (D&E) 

MDA-MB-436 and MDA-MB-231 cells were also analysed by time-lapse and CellTracker software for changes in random 

single cell migration with Bcl-3 siRNA treatment resulting in reduced migration in both cell lines. Collective migration was 

reduced following Bcl-3 siRNA treatment in (F) MDA-MB-436, (G) MDA-MB-231 and (H) MCF-7 cells. Error bars 

represent ± SEM of n= 3 (RM-ANOVA, *=p<0.05, **=p<0.01 ***=p<0.001). 
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Fig. 3 Bcl-3 suppression potentiates EMT-mediated migration. MCF-7 cells were treated with EMT inducing 

supplement (M-EMT). (A) Representative images of MCF-7, M-EMT treated MCF-7 (EMT MCF-7) and EMT MCF-7 

cells following the removal of M-EMT for 6 days (MET MCF-7). Immunofluorescence for the actin cytoskeleton marker 

phalloidin (Red), the DNA marker DAPI (Blue) and the cell adhesion molecule E-cadherin (Green) highlighting the loss of 

cell-cell contacts to a more mesenchymal-like morphology following EMT stimulation (scale bar 50 µm). (B) Bcl-3 

expression was upregulated following M-EMT treatment as determined by qRT-PCR. Error bars represent confidence 

intervals of 3 independent experiments with significance determined by confidence overlap as described in [1], 

(**=p<0.01). (C) The number of motile single cells migrating away from the collective front following wound-healing 

assays was determined using time-lapse microscopy, with M-EMT treatment increasing the number of single migratory 

cells. (D) Representative images of MCF-7 and EMT MCF-7 cells 24h after wounds were created. (E) The number of 

single cells migrating away from the collective front in EMT MCF-7 cells was quantified following Bcl-3 suppression, 

which resulted in a reduced number of motile single cells. (F) Chemotaxis driven migration was inhibited in EMT MCF-7 

cells treated with Bcl-3 siRNA. (G) Collective migration was also reduced following Bcl-3 suppression in wound healing 

assays. Error bars represent ± SEM of n = 3 experiments. (RM-ANOVA, **=p<0.01, ***=p<0.001). 
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Fig. 4 Suppression of Bcl-3 inhibits migration through loss of Cdc42 activity. (A) Cdc42 expression was reduced in 

breast cancer cell lines following treatment with Bcl-3 siRNA, determined by qRT-PCR n = 3 (*=p<0.05, **=p<0.01). (B) 

Schematic diagram of human Cdc42 promoter region showing the location of putative NF-κB binding sites. A partial 

sequence of the Cdc42 promoter is shown highlighting NF-κB1 binding sites (Green and Blue) and the region amplified by 

PCR (line above binding site sequences) following p50 IP. Pol 2 indicates binding region of RNA polymerase 2 

(ENCODE) and represents the transcription initiation region. (C) ChIP assays were performed using anti-p50 antibody or 

IgG control following Bcl-3 siRNA treatment in 231L cells. qRT-PCR was used to detect NF-kB specific binding to the 

Cdc42 promoter with Bcl-3 siRNA resulting in a loss of p50 binding. Data shown is representative of 3 independent 

experiments. (D) NF-κB reporter assays following Bcl-3 siRNA showed a reduction in NF-κB activity n = 4 (t test, 

*=p<0.05). (E) G-LISA GTPase activation assays determined a reduction in active Cdc42 following Bcl-3 suppression n = 

3 (RM ANOVA, ***=p<0.001). (F) Increased CFL2 expression was determined by qRT-PCR in each cell line n=3 

(*=p<0.05, **=p<0.01). (G) Chemotaxis driven migration was reduced in 231L cells following treatment with Cdc42 

siRNA. Cdc42 knockdown also reduced (H) random single cell and (I) collective migration in MDA-MB-436 and MCF-7 

cells respectively with no additional effect on either form of migration following combined inhibition with Bcl-3 siRNA 

(RM-ANOVA, **=p<0.05, ***=p<0.001). qRT-PCR error bars represent confidence intervals of 3 independent 

experiments with significance determined by confidence overlap as described in [1].      
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Fig. 5 Bcl-3 overexpression increases single cell migration and metastasis. (A) WT Bcl-3 and ANK mutant Bcl-3 with 

disrupted NF-κB binding were overexpressed in 231L and MDA-MB-436 cells, represented by western blot against Bcl-3 

(B) NF-κB reporter assays showed increased NF-κB activity in WT overexpressing cells while activity was reduced in 

ANK overexpressing cells, n= 4 (t test, *=p<0.05, **p<0.01). Migration assays were performed in each cell line with WT 

Bcl-3 overexpression resulting in increased single cell motility in both (C) chemotaxis driven and (D) random migration 

assays whilst also reducing (E) collective migration, while ANK overexpression inhibited all 3 forms of motility, n= 3 

(RM-ANOVA, *=p<0.05, **= p<0.01 ***=p<0.001). (F) The number of metastatic legions per mouse was represented 

for mice injected with 2x105 MDA-MB-231-Luc cells with overexpression of WT Bcl-3 increasing metastatic burden 

compared to controls while ANK overexpression reduced metastasis incidence rate, n=5 (t test, *=p<0.05).  (G) 

Representative images of H&E stained metastatic legions from mice injected with either WT/ANK overexpressing Bcl-3 

or 231L cells pre-treated with Bcl-3 siRNA. (H) Metastatic incidence rate in the lungs and livers of mice injected with 

231L cells following pre-treatment of Bcl-3 siRNA which reduced metastatic burden compared to scRNA controls, n= 4 (t 

test, *=p<0.05).   
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Supplementary Fig. 1. (A) Representative images of MDA-MB-436, MDA-MB-231 and MCF-7 cells following 

immunofluorescence staining for the mesenchymal marker Vimentin (Green), the DNA marker DAPI (Blue) or the cell 

adhesion molecule E-cadherin (below green) (scale bar 50 µm). (B) Representative images of random single cell motility 

and (C) collective migration in each cell line following wound healing assays, with no clear collective front observed in 

MDA-MB-436 cells.  
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Supplementary Fig. 2. No correlation was observed between Bcl-3 expression determined by qRT-PCR in MDA-MB-

436, MDA-MB-231 and MCF-7 cells compared to their relative (A) single cell chemotaxis driven migration or (B) 

collective migration.  
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Supplementary Fig. 3. (A) Bcl-3 expression was suppressed in each line using pooled siRNA and confirmed using qRT-

PCR. Error bars represent confidence intervals of 3 independent experiments with interval overlap used to determine 

significance as described in [1]. Following Bcl-3 suppression in (B) MDA-MB-231 (C) MDA-MB-436 and (D) MCF-7 cells 

viability was assessed using cell titre blue with no change observed when compared to scRNA treated controls, error 

bars represent ± SEM of n= 3 experiments. (E) Random single cell migration was assessed by timelapse microscopy in 

MCF-7 cells, with difference observed between scRNA or Bcl-3 depleted cells. (F) The specific effects of each individual 

Bcl-3 targeting siRNA was confirmed by qRT-PCR with 3/4 siRNAs significantly reducing Bcl-3 expression in MCF-7 cells. 

(G) Each siRNA was also tested for their ability to inhibit migration using wound-healing assays in MCF-7 cells, with the 

3 siRNAs previously shown to suppress Bcl-3 expression also reducing migration. Error bars represent ± SEM of n=3 

experiments (t test, *=p<0.05).  
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Supplementary Fig. 4. (A) Changes in the expression of a number of EMT associated genes were assessed by qRT-PCR 

in MCF-7, EMT MCF-7 and MET MCF-7 cells, confirming a transient change in cell phenotype following treatment with 

EMT inducing supplement (M-EMT) was at least partially through EMT, n=3.. (B) Bcl-3 was overexpressed in MCF-7 

cells and analysed by qRT-PCR resulting in Twist and Axl upregulation, n=3. (C) Suppression of Bcl-3 using siRNA in EMT 

stimulated MCF-7 cells significantly reduced the expression of 3 pro-EMT gene targets, n=3. Error bars represent 

confidence intervals of 3 independent experiments with interval overlap used to determine significance as described 

in [1], (*=p<0.05, **=p<0.01). (D-F) Migratory phenotype comparison in MCF-7 and EMT stimulated MCF-7 cells. Both 

cell types were compared for their ability to migrate individually using (D) chemotaxis and (E) random single cell 

migration assays by timelapse microscopy and transwell assays respectively, n=3. (F) Wound healing assays were used 

to compare collective migration in each cell line, with no significant difference observed n=3. Error bars represent ± 

SEM of n=3 experiments. 
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Supplementary Fig. 5. (A) Bcl-3 expression in the highly metastatic MDA-MB-231- luc-D3H2LN (231L) cells was compared to 

parental MDA-MB-231 cells by qRT-PCR, n=3. The ability of each cell line to migrate as individual cells by (B) chemotaxis driven 

and (C) random single cell migration was compared with 231L cells showing increased motility in both forms of migration while 

suppression of Bcl-3 was able to rescue this back the level of MDA-MB-231 cells. Error bars represent ± SEM of n = 3 experiments. 

(RM-ANOVA, **=p<0.01, ***=p<0.001). (D) NF-κB reporter assays following Bcl-3 siRNA showed no change in the NF-κB 

activity of MCF-7 cells n=3. (E) MDA-MB-231, MDA-MB-436 and MCF-7 cells were treated with Cdc42 targeting siRNA resulting 

in significantly reduced expression of Cdc42 when compared to scRNA treated controls. qRT-PCR error bars represent confidence 

intervals of 3 independent experiments with significance determined by confidence overlap as described in [1]. (F) MDA-MB-436 

and (G) MCF-7 cells were treated with Cdc42 siRNA before seeding into Transwell assays to assess chemotaxis driven single cell 

migration resulting in reduced motility compared to scRNA treated controls. (H) MDA-MB-231 and (K) MCF-7 cells were also 

analysed by time-lapse and CellTracker software for changes in random single cell migration with Cdc42 siRNA treatment showing 

no increase in compensatory migration in either cell line. Collective migration was reduced following Cdc42 siRNA treatment in (I) 

MDA-MB-436 and (J) MDA-MB-231 cells. Error bars represent ± SEM of n= 3 (t test, *=p<0.05, **=p<0.01).    
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Supplementary Fig. 6. (A) Cytoplasmic and nuclear protein extracts were analysed using western blot to confirm the 

nuclear localisation of wildtype and ANK mutant Bcl-3 overexpression in MDA-MB-231L and MDA-MB-436 cells. To 

confirm successful cytoplasmic and nuclear extraction α-Tubulin and Laminin A/C expression was measured 

respectively. Images are representative of 3 independent experiments. (B) Cdc42 expression was assessed by qRT-PCR 

in MDA-MB-436 cells overexpressing WT or ANK Bcl-3, with ANK overexpression resulting in a reduction in Cdc42 

expression compared to pcDNA controls. Error bars represent confidence intervals of 3 independent experiments with 

interval overlap used to determine significance as described in [1]. (C) Cdc42 protein expression correlates with Bcl-3 

functional protein levels in MDA-MB-231 xenograft tumours. Immunohistochemistry for Cdc42 protein was performed 

on formalin fixed sections of xenografted tumours from Figure 5G. Elevated expression of Cdc42 was observed in a 

subpopulation of tumour cells within Bcl-3 overexpressing tumours compared to parental MDA-MB-231 controls. In 

contrast Cdc42 expression was diminished in tumours overexpressing the Bcl-3-ANK mutant. Images represent one of 

three independent tumours per treatment group. Arrows indicate the pushing borders of the tumours against mammary 

fat pad, scale bar= 100µm. 
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