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Abstract
In this paper we propose a sufficient dimension reduction algorithm based on the

difference of inverse medians. The classic methodology based on inverse means in

each slice was recently extended, by using inverse medians, to robustify existing

methodology at the presence of outliers. Our effort is focused on using differences

between inverse medians in pairs of slices. We demonstrate that our method out-

performs existing methods at the presence of outliers. We also propose a second

algorithm which is not affected by the ordering of slices when the response variable

is categorical with no underlying ordering of its values.

Keywords Sufficient dimension reduction � Robust � Conditional independence �
Categorical responses

1 Introduction

Sufficient Dimension Reduction (SDR) is a class of dimension reduction techniques

used in regression to address the high dimensionality of a predictor vector X 2 Rp

when a response variable Y (assumed univariate without loss of generality) is

regressed on X. In other words, in SDR we are trying to estimate a p� d ðd\pÞ
matrix b such that

Y X|βTX ð1Þ

The space spanned by the columns of b is called a Dimension Reduction Subspace

(DRS). There are many different b’s that satisfy (1) and the main objective is to

estimate the one with the minimum dimension d. The minimum DRS is known as

the Central Dimension Reduction Space (CDRS) or simply the Central Space (CS)

and is denoted with SY jX. There are some mild conditions of existence of the CS
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which we assume that they hold in this paper (see Yin et al. 2008). A number of

methods have been proposed in the SDR literature. The most well known class of

methods that has been developed and is being used most frequently is probably the

class of methods based on inverse moments—see Li (1991), Cook and Weisberg

(1991), Li and Wang (2007) among others. A comprehensive review of this

methodology can be found in Li (2018).

There are two main drawbacks in the inverse-moment based methodology like

Sliced Inverse Regression (SIR) which was introduced by Li (1991). First is the

dependence on moments which suffer on the presence of outliers. To address this,

Gather et al. (2001), Dong et al. (2015) and Christou (2018) suggested using inverse

medians instead of means. Second is the dependence on the number of slices the

range of Y is discretized into, especially in methods like Sliced Average Variance

Estimation (SAVE—Cook and Weisberg 1991) where the second inverse moment is

used as well. Zhu et al. (2010) suggested a cumulative slicing approach (Cumulative

Mean Estimation—CUME) to avoid using the number of slices as a tuning

parameters. Artemiou and Tian (2015) identified that the solution given by the

cumulative approach will suffer in accuracy in cases where the response is

categorical and in computational time in cases where we have massive datasets.

They proposed Sliced Inverse Mean Difference (SIMD) approach which uses the

difference between slice means and suggested two different algorithms for their

method. One is the ‘‘left vs right’’ (LVR) which is more appropriate to be used when

the response variable is continuous and the other is the ‘‘one vs another’’ (OVA)

which is more appropriate when the response is categorical. The LVR approach was

demonstrated to be theoretically equivalent to CUME, but computationally faster,

and unlike CUME the OVA approach allowed SIMD to be used for categorical

responses.

Although SIMD has certain advantages over similar methods, it suffers in

accuracy at the presence of outliers. In this paper, we take a look in addressing this

by proposing the use of Sliced Inverse Median Difference (SIMeD) which uses the

difference between slice medians. As with SIMD, we propose the use of two

different algorithms as they were proposed in Li et al. (2011). The ‘‘left vs right’’

(LVR) which gives computational speed and works better when the response is

continuous and the ‘‘one vs another’’ (OVA) which gives better accuracy when the

response is categorical. Although there are different definitions for the multivariate

median, in this work we focus on the use of L1 median (spatial median) which was

used in Dong et al. (2015). The main reason is that theoretical results require the

uniqueness of the median and the L1 median is the only one which is shown to be

unique for p[ 2 (Hettmansperger and McKean 1998).

The paper is structured as follows. We discuss previous methodology in Sect. 2

and then in Sect. 3 we discuss the newly proposed method (SIMeD). In Sect. 4 we

demonstrate the performance with numerical studies and we close with a small

discussion section.
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2 Review of previous methodology

In this section we provide a review of the methodology previously proposed in the

SDR framework which mostly relates to our proposal. We will discuss Sliced

Inverse Regression (SIR), Cumulative Mean Estimation (CUME), Sliced Inverse

Mean Difference Regression (SIMD) and Sliced Inverse Median (SIME). Let X be

the p dimensional predictor vector, Y be the response variable and Z ¼ R�1=2ðX �
EðXÞÞ the standardized predictors, where R ¼ varðXÞ.

2.1 Sliced inverse regression (SIR)

SIR was introduced by Li (1991) and is considered the first method introduced in the

SDR framework. As with all the methods we discuss in this section, SIR depends on

the linearity assumption (or the linear conditional mean assumption) which is

satisfied when the predictors have an elliptical distribution. The author proposed to

standardize the predictors and then use the inverse mean EðZjYÞ. By performing an

eigenvalue decomposition of the variance-covariance matrix varðEðZjYÞÞ one can

find the directions which span the CS, SY jZ. One then can use the invariance

principle (see Cook 1998) to find the direction that span SY jX.

One of the most important aspect of SIR is the use of inverse conditional means.

The conditioning on Y is achieved by discretizing Y, that is, by slicing into a number

of intervals (denoted with I1; . . .; IH where H the number of intervals). Therefore,

the inverse mean EðZjYÞ is in practice replaced with EðZjY 2 IiÞ for i ¼ 1; . . .;H
and thus, it is the eigenvalue decomposition of varðEðZjY 2 IiÞÞ which is used to

find the directions which span the CS, SY jZ.

2.2 Cumulative mean estimation (CUME)

Although, it was shown that SIR is robust to the number of slices, Zhu et al. (2010)

proposed the use of Cumulative Mean Estimation (CUME) which removes the need

of tuning for the number of slices. In essence they proposed the use of the

eigenvalue decomposition of the matrix varðEðZjY � yÞÞ to find the directions which
span the CS, SY jZ. In practice this means that one increases the value of y and

recalculates the mean each time the value of y is large enough for a new observation

to be included in the range fY � yg.

2.3 Sliced inverse mean difference (SIMD)

Sliced Inverse Mean Difference (SIMD) was introduced by Artemiou and Tian

(2015) to address issues of the aforementioned methodology. First, they identified

that in case of massive datasets, the cumulative approach by CUME will be

computationally very costly. Second, they identified that in the case of a response

variable that has no underlying ordering, CUME wouldn’t be able to work.

Therefore, they proposed the use of the mean difference between subsets of the data
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(not necessarily slices) using two different algorithms which were influenced by the

work of Li et al. (2011).

The first one, called ‘‘left vs right’’ (LVR) used the eigenvalue decomposition of

varðEðZjY [ qiÞ � EðZjY � qiÞÞ where i ¼ 1; . . .H � 1 and qi is the cutoff point

between slice i and slice iþ 1. This algorithm is shown to be theoretically

equivalent to CUME but computationally more efficient due to the use of fewer

comparisons. As with SIR it was shown to be robust to the number of slices. The

second algorithm, called ‘‘one vs another’’ (OVA) uses the eigenvalue decompo-

sition of varðEðZjY 2 IjÞ � EðZjY 2 IiÞÞ where i ¼ 1; . . .H � 1 and j ¼ i; . . .;H
(essentially one takes the difference between the means of two slices). This method

was shown to be equivalent to SIR, and it was also more appropriate than CUME to

be used in cases where Y was categorical. In cases where Y is categorical different

orderings of the values of Y can lead to different results in CUME and the LVR

approach and therefore comparing the difference between all possible pair of slices

made more sense as the result in these case were not affected by the ordering of the

values of Y.

2.4 Sliced inverse median (SIME)

Finally, the work by Dong et al. (2015) showed that to robustify SIR one can use the

inverse L1 median instead of means. They preferred L1 median due to its

uniqueness in cases where p� 2. In their work they defined the inverse L1 median

as:

Definition 1 The inverse L1 median is given by ~m ¼ argminl2Rp EðkX � lkjYÞ,
where k � k is the Euclidean norm.

Similarly, we denote with ~mZ ¼ argminl2Rp EðkZ� lkjYÞ. Therefore they

performed an eigenvalue decomposition of the matrix: varð ~mZÞ to find the the

vectors which span the CS SY jZ. The authors demonstrated the robustness in the

presence of outliers of this algorithms as well as the good overall performance when

there are no outliers. More recently, similar ideas were proposed by Christou (2018)

but instead of using the L1 median, they suggest using the Oja and the Tukey

median.

3 Sliced inverse median difference (SIMeD)

In this section the main idea of this paper is presented and an estimation algorithm

and a method for determining the dimension of the CS is given.

3.1 Using inverse medians in sufficient dimension reduction

Here we present the foundations of our proposal. Let ðX; YÞ be a random pair where

X 2 Rp denotes the predictors and the response Y is assumed univariate without loss

of generality. We also assume that the range of Y is discretized in H slices, which we

denote with J1; . . .; JH . Also we define the dividing points between two slices with
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q1; . . .qH�1, that is qk separates slice Jk from slice Jkþ1. Finally, let Z ¼ R�1=2ðX �
lÞ the standardized predictors, where R ¼ varðXÞ and l ¼ EðXÞ.

Using the definition of the inverse L1 median one can define now the difference

between medians. We use A1 and A2 to be two disjoint sets of X, the support of Y.

Then we define, ~Y to be the discretized version of Y,

~Y ¼ IðY 2 A1Þ � IðY 2 A2Þ

where Ið�Þ denotes the indicator function. Therefore, one can define the difference

between two medians to be:

~md ¼ arg min
l2Rp

EðkX � lkj ~Y ¼ 1Þ � arg min
l2Rp

EðkX � lkj ~Y ¼ �1Þ:

Depending on the way one chooses to define the sets A1 and A2, then the definition

of ~md may take different forms. In this article, we will use two different definitions

[as it was the case for the difference between means in the proposal of SIMD by

Artemiou and Tian (2015)]. The first is called ‘‘left vs right’’ (LVR) and being more

appropriate in cases where the response is continuous or at least a discrete variable

with a logical numerical ordering of the values it can take. The second is called

‘‘one vs another ’’ and is more appropriate when Y is categorical. With the LVR

approach we select multiple cutoff points q and for each cutoff points we split the

data to those above (A1) and those below (A2) the cutoff point. For the OVA

approach we split the data points in a number of slices (like in previous slicing

methods) and we select all possible pairs of slices, (one slice of the pair is A1 and the

other is A2).

The above two methods lead to the following definitions.

Definition 2 The ‘‘left vs right’’ sliced inverse median difference (SIMeDLVR) is

defined as:

~mLVR
i ¼ arg min

l2Rp
EðkX � lkjY [ qiÞ � arg min

l2Rp
EðkX � lkjY � qiÞ; ð2Þ

for i ¼ 1; . . .;H � 1. Similarly the ‘‘one vs another’’ sliced inverse median differ-

ence (SIMeDOVA) is defined as:

~mOVA
i;j ¼ arg min

l2Rp
EðkX � lkjY 2 JiÞ � arg min

l2Rp
EðkX � lkjY 2 JjÞ; ð3Þ

where i ¼ 2; . . .;H, j ¼ 1; . . .H � 1 and j\i.

To simplify the notation we will avoid using the superscripts LVR and OVA

from the mathematical notation of the median and the subscripts from the name in

the rest of the paper in cases where it is clear which approach is being used.

From the definitions, one can see that each time the LVR algorithm is applied for

each cutoff point one uses all the points, while each time the OVA algorithm is applied

only the points on the two selected slices are used. The fact that the LVR algorithm

uses all the points for different cutoff points, allows it to be more accurate than SIME

which uses only the points within a slice. For example, if one compares SIME with H
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slices where theH � 1 cutoff points between the slices are used as the cutoff points of

the LVR algorithm of SIMeD, then the SIMeD LVR algorithm performs more

accurately and is more robust to the number of slices H. The LVR though will not

perform in cases where the response variable is categorical, with no sense of ordering

between the values, while SIME will still perform perfectly fine. The main problem

with categorical responses in the LVR algorithm of SIMeD is the fact that it is

constructed assuming the responses can be ordered and different orderings of the

categories will give different answers. In SIME, as well as in earlier methods like SIR,

this is not a problem since we use the points of each slide independently to find the

inversemedians. Having this inmind, we propose the use of theOVA algorithmwhich

finds the differences between the medians of all possible pairs of slices. Therefore in

the case of a categorical response, the OVA algorithmwill not be affected by different

orderings of the categorical response. The following theorem gives the theoretical

justification and we will demonstrate the advantages of each algorithm in the

numerical experiments section later. Note that when using the medians we need the

stronger assumption of ellipticity of the predictors instead of the more classic Linear

Conditional Mean assumption in the SDR literature.

Theorem 1 If X are elliptically distributed then ~mLVR
i 2 SY jX and ~mOVA

i;j 2 SY jX

The proof of this theorem is pretty straight forward. Using the fact that Dong

et al. (2015) showed that the L1 median ~m 2 SY jX then ~mLVR
i and ~mOVA

i;j are linear

combinations of vectors in SY jX and therefore they belong in it.

3.2 Estimation algorithm

The estimation algorithm in the LVR case is as follows:

1. Standardize data to find Z ¼ R̂
�1=2ðX � l̂Þ using robust estimators for location

and scale. (we give details below)

2. Divide the range of Y into H slices using cutoff points q1; . . .; qH�1.

3. For each qi, i ¼ 1; . . .;H � 1 calculate the median difference using the sample

version of formula (2), which we denote with ~̂mi.

4. Do an eigenvalue decomposition of the matrix V̂ to find the largest d
eigenvalues and the corresponding eigenvectors v1; . . .; vd, where

V̂ ¼
PH�1

i¼1 ~̂mi ~̂m
T
i .

5. Find bk ¼ R̂
1=2

vk, for k ¼ 1; . . .; d to estimate the vectors that span SY jX.

Similarly, the estimation algorithm in the OVA case is as follows:

1. Standardize data to find Z ¼ R̂
�1=2ðX � l̂Þ using robust estimators for location

and scale. (we give details below)

2. Divide the range of Y into H slices and find all possible pairs, that is H
2

� �
pairs.

3. For each pair (i, j), i ¼ 1; . . .;H and j ¼ 1; . . .; i calculate the median difference

using the sample version of formula (3), which we denote with ~̂mi;j.

123

942 S. Babos, A. Artemiou



4. Do an eigenvalue decomposition of the matrix V̂ to find the largest d
eigenvalues and the corresponding eigenvectors v1; . . .; vd, where

V̂ ¼
P H

2ð Þ
i¼1 ~̂mi;j ~̂m

T
i;j.

5. Find bk ¼ R̂
1=2

vk, for k ¼ 1; . . .; d to estimate the vectors that span SY jX.

We suggest the use of a robust estimator from R ¼ varðXÞ for both algorithms to

provide better results. Since we are using a robust estimator for the mean, it makes

sense to use a robust estimator for R. If we don’t, then outliers will have an effect on

the estimator of R and therefore our results will be affected as well. Therefore, we

use the minimum covariance determinant (MCD) estimator for R, which is defined

as the covariance matrix which has the minimum determinant among all possible

covariance matrices using a set of k points where n=2\k\n. It is implemented in

function covMcd in package robustbase in R. (see Maechler et al. 2018)

3.3 Order determination tests

There are a number of ideas that were introduced in the literature for determining

the dimension of the CS. Sequential tests were proposed for several methods in the

literature [see for example Li (1991) for SIR, Shao et al. (2007) for SAVE,

Artemiou and Tian (2015) for SIMD]. Bura and Yang (2011) proposed a unified

approach. The second method was a BIC-type criterion which was proposed by Zhu

et al. (2006) and also used for other methods like CUME in Zhu et al. (2010) and Li

et al. (2011). Recently, a method called the ladle plot was proposed by Luo and Li

(2016). In this paper, we use the BIC type criterion as the asymptotic distribution,

which is needed for sequential tests, has very complicated variance structure when

the estimators are based on medians. Also the ladle plot requires bootstrapping

which is computationally more expensive than the other two approaches.

In the BIC-type criterion one tries to maximize:

GnðkÞ ¼
Xk

i¼1

ki � k1c1ðnÞc2ðkÞ

where k 2 f1; . . .; pg, ki the ith eigenvalue of candidate matrix V̂ (in the estimation

algorithm), k1 � � � � � kp, c1ðnÞ is a function of n which converge in probability to 0
as n ! 1 and c2ðkÞ is a nondecreasing sequence of numbers that depends on k.

The asymptotic properties and more specifically the asymptotic consistency of

the method were studied in Zhu et al. (2006). Their result assumes that as long as we

have a consistent estimator of the candidate matrix (matrix V̂ in our estimation

algorithm in Sect. 3.2) then the BIC criterion can estimate consistently the

dimension d of the central subspace. Christou (2018) has shown the consistency of

similar criterion when using the Tukey and Oja medians in each slice. We can use

similar arguments in this case to prove the consistency of our criterion. The only

step that will be different is the use of consistency of the estimator of the L1 median

which was proved in Brown (1983).
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4 Numerical experiments

In this section we discuss numerical experiments where we demonstrate the

improvement in performance when Sliced Inverse Median Regression (SIMeD) is

used compared to previous methodology. We start with simulated datasets and we

then use 3 real datasets.

4.1 Simulated datasets

We run three different simulation experiments using the following models:

Model I: Y ¼ X1 þ X2 þ re

Model II: Y ¼ X1=½0:5þ ðX2 þ 1Þ2� þ re;

Model III: Y ¼ 1þ 0:6X1 � 0:4X2 þ 0:8X3 þ re;

Model IV: Y ¼ ð1þ ðr=2ÞeÞÞX1;

Model V: Y ¼ X1ðX1 þ X2 þ 1Þ þ re;

where X ¼ ðX1; . . .;XpÞ (p ¼ 10; 20 or 30) are either simulated form Npð0; IÞ, or
X�Multivariate Cauchy, or even a mixture of two normals where a big proportion

is drawn from Npð0; IÞ and a small proportion is drawn from Npð0; kIÞ where k 2 R.

Furthermore, e�Nð0; 1Þ and n ¼ 100, H ¼ 5; 10; 20. We run 100 simulations and

we report the average trace correlation among all simulations. Trace correlation is

calculated as follows:

r ¼ tracefPBPB̂g
d

; ð4Þ

where PB is the projection matrix on the true subspace and PB̂ the projection matrix

on the estimated subspace. It takes values between 0 and 1 and the closer to 1 the

better the estimation. We compare our newly proposed algorithm with SIR (Li

1991), SIME (Dong et al. 2015) and SIMD (Artemiou and Tian 2015). Here we

have to be careful as SIR and SIME use individual slices and SIMD and SIMeD use

comparison between slices. To make sure we have a fair setting for a comparison,

the number of slices are chosen so that each slice contains approximately the same

number of points. The cutoff points between the slices in SIR and SIME are used as

the cutoff points of the LVR algorithm for SIMD and SIMeD, or in other words,

those cutoff points are the ðkn=HÞth percentiles, for k ¼ 1; . . .;H � 1. Also, note

that, unless otherwise noted, for SIMD and SIMeD we run the LVR approach.

In the first experiment we compare the performance of the four algorithms on the

five models with fixed number of slices H ¼ 10 and different predictor dimension

p when the predictors are distributed from one of the three following scenarios:

• a standard multivariate normal,

• from a standard multivariate Cauchy where the components are pairwise

independent (hence there are outliers)
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Table 1 Comparison of results for SIR, SIME, SIMD, SIMeD for different values of p for the 5 models

Method

Model p Distribution SIR SIME SIMD SIMeD

I 10 a 0.99 (0.004) 0.97 (0.016) 0.99 (0.004) 0.98 (0.011)

b 0.61 (0.274) 0.83 (0.139) 0.62 (0.250) 0.84 (0.137)

c 0.73 (0.159) 0.94 (0.051) 0.74 (0.149) 0.96 (0.031)

20 a 0.98 (0.007) 0.94 (0.041) 0.98 (0.006) 0.95 (0.027)

b 0.49 (0.279) 0.62 (0.196) 0.53 (0.247) 0.69 (0.179)

c 0.80 (0.124) 0.87 (0.080) 0.80 (0.123) 0.92 (0.044)

30 a 0.97 (0.012) 0.90 (0.045) 0.97 (0.010) 0.93 (0.033)

b 0.39 (0.274) 0.39 (0.238) 0.42 (0.250) 0.52 (0.202)

c 0.82 (0.094) 0.74 (0.136) 0.83 (0.088) 0.85 (0.072)

II 10 a 0.82 (0.096) 0.81 (0.081) 0.85 (0.065) 0.84 (0.063)

b 0.39 (0.208) 0.50 (0.131) 0.39 (0.170) 0.49 (0.108)

c 0.53 (0.129) 0.77 (0.114) 0.58 (0.120) 0.82 (0.065)

20 a 0.64 (0.112) 0.61 (0.109) 0.72 (0.074) 0.70 (0.076)

b 0.26 (0.178) 0.31 (0.154) 0.28 (0.162) 0.34 (0.141)

c 0.49 (0.122) 0.61 (0.095) 0.55 (0.118) 0.69 (0.072)

30 a 0.55 (0.089) 0.51 (0.088) 0.62 (0.075) 0.60 (0.074)

b 0.16 (0.161) 0.18 (0.142) 0.18 (0.172) 0.23 (0.148)

c 0.43 (0.094) 0.49 (0.088) 0.51 (0.082) 0.59 (0.072)

III 10 a 0.99 (0.006) 0.91 (0.020) 0.99 (0.005) 0.98 (0.013)

b 0.58 (0.231) 0.81 (0.121) 0.58 (0.225) 0.83 (0.118)

c 0.72 (0.147) 0.94 (0.036) 0.72 (0.143) 0.96 (0.022)

20 a 0.98 (0.010) 0.94 (0.028) 0.98 (0.009) 0.95 (0.023)

b 0.53 (0.263) 0.62 (0.191) 0.54 (0.243) 0.68 (0.174)

c 0.81 (0.121) 0.86 (0.072) 0.81 (0.113) 0.91 (0.038)

30 a 0.96 (0.018) 0.88 (0.059) 0.96 (0.014) 0.91 (0.044)

b 0.46 (0.278) 0.46 (0.231) 0.48 (0.252) 0.55 (0.193)

c 0.81 (0.119) 0.75 (0.129) 0.82 (0.112) 0.85 (0.075)

IV 10 a 0.99 (0.004) 0.97 (0.017) 0.99 (0.003) 0.98 (0.013)

b 0.57 (0.399) 0.83 (0.207) 0.61 (0.386) 0.86 (0.159)

c 0.75 (0.123) 0.94 (0.035) 0.76 (0.120) 0.96 (0.022)

20 a 0.99 (0.007) 0.95 (0.026) 0.99 (0.007) 0.96 (0.020)

b 0.48 (0.398) 0.62 (0.290) 0.52 (0.388) 0.67 (0.262)

c 0.80 (0.131) 0.85 (0.110) 0.81 (0.121) 0.91 (0.062)

30 a 0.97 (0.015) 0.90 (0.048) 0.98 (0.011) 0.93 (0.034)

b 0.37 (0.384) 0.36 (0.308) 0.43 (0.368) 0.51 (0.290)

c 0.83 (0.101) 0.72 (0.149) 0.84 (0.100) 0.85 (0.070)

V 10 a 0.63 (0.145) 0.67 (0.130) 0.73 (0.109) 0.76 (0.097)

b 0.17 (0.155) 0.37 (0.172) 0.27 (0.187) 0.44 (0.168)

c 0.41 (0.148) 0.60 (0.152) 0.45 (0.147) 0.67 (0.139)
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• from a mixture of multivariate normal distributions (where we can control the

number of outliers).

As we can see in Table 1, our proposed algorithms, SIMeD, outperforms by a large

margin SIMD in both scenarios which produce outliers while the two methods

perform similarly when there are no outliers. Also, in all the settings SIMeD is more

robust than SIME which is the algorithm that uses the median in each slice as was

proposed in Dong et al. (2015). A similar advantage was demonstrated between

SIMD and SIR in Artemiou and Tian (2015). Finally, Artemiou and Tian (2015)

observed that the OVA approach of SIMD is equivalent to the SIR algorithm.

Similarly here, we observe that the OVA approach of the SIMeD method is

equivalent to SIME therefore we do not report results.

In the second experiment we compare the four methods on different number of

slices in an effort to check the robustness of the algorithms against the number of

slices. The results for the number of slices H ¼ 5; 10; 20 are presented in Table 2

where we can see that all algorithms are robust when there are no outliers. When we

have outliers in the sample the algorithms using the inverse medians (SIME and

SIMeD) are more robust to the number of slices. Especially our newly proposed

algorithms for models I and II shows no real difference in performance for different

number of slices whether there are outliers or not.

We further study the effect of the variance and the proportion of outliers in the

case when we have mixture of multivariate normals and the results are shown in

Tables 3 and 4 where we can see that our proposed methodology SIMeD is not

affected at all by any of the two tuning parameters. SIME is as well not affected but

SIMeD outperforms it on all settings we have explored.

Finally, we run the four experiments to verify the performance of our BIC

criterion as was described in section 3.3. We set c1ðnÞ ¼ ð1=2Þn�3=5 and c2ðnÞ ¼
kðk þ 1Þ=2 and we run it for two different sample sizes n ¼ 200 and n ¼ 400. We

choose to run the test on model I which has dimension d ¼ 1 and model II which

Table 1 continued

Method

Model p Distribution SIR SIME SIMD SIMeD

20 a 0.42 (0.154) 0.43 (0.148) 0.55 (0.132) 0.55 (0.127)

b 0.12 (0.132) 0.20 (0.150) 0.16 (0.146) 0.24 (0.164)

c 0.33 (0.135) 0.38 (0.141) 0.40 (0.137) 0.47 (0.127)

30 a 0.30 (0.114) 0.28 (0.118) 0.41 (0.120) 0.40 (0.115)

b 0.10 (0.135) 0.09 (0.093) 0.14 (0.147) 0.13 (0.110)

c 0.26 (0.123) 0.25 (0.116) 0.33 (0.119) 0.32 (0.111)

Time in seconds 11.55 89.01 16.53 215.87

The distriution column indicates whether X were drawn from multivariate standard Normal (a), from a

multivariate standard Cauchy (b) or from a mixture of multivariate Normal distributions where 95% of

the points are from standard normal and 5% from Nð0; 10IÞ (c). The number of slices H ¼ 10. The last

line gives information of the time in seconds needed to run all the simulations on the table for each

method
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Table 2 Comparison of results for SIR, SIME, SIMD, SIMeD for different values of H for the 5 models

Method

Model H Distribution SIR SIME SIMD SIMeD

I 5 a 0.99 (0.008) 0.97 (0.017) 0.99 (0.009) 0.97 (0.016)

b 0.56 (0.290) 0.80 (0.140) 0.58 (0.274) 0.81 (0.138)

c 0.70 (0.156) 0.96 (0.026) 0.71 (0.156) 0.96 (0.022)

10 a 0.99 (0.005) 0.97 (0.017) 0.99 (0.005) 0.98 (0.014)

b 0.63 (0.280) 0.79 (0.140) 0.64 (0.264) 0.81 (0.126)

c 0.73 (0.159) 0.94 (0.051) 0.74 (0.149) 0.96 (0.031)

20 a 0.99 (0.003) 0.96 (0.028) 0.99 (0.003) 0.98 (0.015)

b 0.66 (0.240) 0.74 (0.184) 0.68 (0.207) 0.81 (0.153)

c 0.79 (0.121) 0.73 (0.236) 0.79 (0.110) 0.94 (0.200)

II 5 a 0.83 (0.077) 0.82 (0.082) 0.84 (0.070) 0.83 (0.072)

b 0.36 (0.224) 0.46 (0.161) 0.37 (0.223) 0.48 (0.165)

c 0.55 (0.134) 0.80 (0.093) 0.58 (0.122) 0.83 (0.075)

10 a 0.81 (0.101) 0.78 (0.107) 0.85 (0.066) 0.83 (0.072)

b 0.35 (0.230) 0.47 (0.157) 0.37 (0.186) 0.48 (0.133)

c 0.53 (0.129) 0.77 (0.114) 0.58 (0.120) 0.82 (0.065)

20 a 0.76 (0.121) 0.72 (0.123) 0.84 (0.071) 0.82 (0.077)

b 0.36 (0.228) 0.47 (0.168) 0.37 (0.091) 0.48 (0.119)

c 0.49 (0.159) 0.67 (0.135) 0.57 (0.130) 0.80 (0.075)

III 5 a 0.98 (0.008) 0.97 (0.018) 0.98 (0.008) 0.97 (0.017)

b 0.56 (0.234) 0.79 (0.150) 0.56 (0.228) 0.79 (0.147)

c 0.71 (0.133) 0.96 (0.023) 0.71 (0.142) 0.96 (0.020)

10 a 0.99 (0.006) 0.97 (0.020) 0.99 (0.005) 0.97 (0.016)

b 0.64 (0.215) 0.84 (0.116) 0.63 (0.209) 0.85 (0.103)

c 0.72 (0.147) 0.94 (0.036) 0.72 (0.143) 0.96 (0.022)

20 a 0.99 (0.004) 0.96 (0.036) 0.99 (0.004) 0.98 (0.015)

b 0.68 (0.238) 0.67 (0.211) 0.67 (0.228) 0.76 (0.187)

c 0.77 (0.140) 0.73 (0.251) 0.77 (0.123) 0.83 (0.205)

IV 5 a 0.99 (0.007) 0.97 (0.019) 0.99 (0.007) 0.97 (0.018)

b 0.55 (0.390) 0.78 (0.228) 0.58 (0.372) 0.79 (0.222)

c 0.71 (0.144) 0.96 (0.022) 0.71 (0.142) 0.97 (0.019)

10 a 0.99 (0.003) 0.97 (0.018) 0.99 (0.003) 0.98 (0.013)

b 0.58 (0.371) 0.83 (0.211) 0.60 (0.358) 0.85 (0.184)

c 0.75 (0.123) 0.94 (0.035) 0.76 (0.120) 0.96 (0.022)

20 a 0.99 (0.003) 0.96 (0.019) 0.99 (0.003) 0.98 (0.011)

b 0.58 (0.408) 0.75 (0.274) 0.63 (0.371) 0.85 (0.190)

c 0.78 (0.140) 0.76 (0.235) 0.78 (0.123) 0.86 (0.192)

V 5 a 0.61 (0.149) 0.65 (0.148) 0.66 (0.135) 0.69 (0.130)

b 0.19 (0.155) 0.29 (0.178) 0.23 (0.163) 0.32 (0.188)

c 0.41 (0.144) 0.63 (0.144) 0.42 (0.146) 0.65 (0.137)
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has dimension d ¼ 2. We can see from the results in Table 5 that our BIC criterion

works well for SIMeD in all settings and it outperforms the same criterion for SIME

especially when the predictors are drawn from a multivariate standard Cauchy

distribution.

Table 2 continued

Method

Model H Distribution SIR SIME SIMD SIMeD

10 a 0.63 (0.145) 0.67 (0.130) 0.73 (0.109) 0.76 (0.097)

b 0.17 (0.155) 0.37 (0.172) 0.27 (0.187) 0.44 (0.168)

c 0.41 (0.148) 0.60 (0.152) 0.45 (0.147) 0.67 (0.139)

20 a 0.57 (0.171) 0.57 (0.161) 0.74 (0.119) 0.77 (0.096)

b 0.25 (0.195) 0.50 (0.204) 0.41 (0.215) 0.59 (0.176)

c 0.36 (0.156) 0.47 (0.152) 0.42 (0.146) 0.56 (0.144)

Time in seconds 14.12 97.51 21.57 185.09

The distribution column indicates whether X were drawn from multivariate standard Normal (a), from a

multivariate standard Cauchy (b) or from a mixture of multivariate Normal distributions where 95% of

the points are from standard normal and 5% from Nð0; 10IÞ (c). The dimension of the predictor p ¼ 10.

The last line gives information of the time in seconds needed to run all the simulations on the table for

each method

Table 3 Comparison of results for SIR, SIME, SIMD, SIMeD on the effect of the variance of the Normal

distribution the outliers are drawn from for the 5 models when the data are drawn from a mixture of

Normal distributions

Method

Model SV SIR SIME SIMD SIMeD

I 5 0.90 (0.081) 0.96 (0.025) 0.91 (0.072) 0.97 (0.015)

10 0.74 (0.128) 0.94 (0.041) 0.75 (0.123) 0.96 (0.022)

20 0.62 (0.179) 0.94 (0.040) 0.62 (0.174) 0.96 (0.023)

II 5 0.64 (0.137) 0.76 (0.110) 0.68 (0.120) 0.82 (0.080)

10 0.54 (0.153) 0.77 (0.118) 0.58 (0.130) 0.83 (0.079)

20 0.45 (0.148) 0.77 (0.120) 0.49 (0.135) 0.83 (0.064)

III 5 0.89 (0.083) 0.95 (0.029) 0.89 (0.077) 0.96 (0.019)

10 0.73 (0.150) 0.94 (0.042) 0.74 (0.140) 0.96 (0.023)

20 0.60 (0.192) 0.94 (0.035) 0.62 (0.177) 0.96 (0.021)

IV 5 0.90 (0.085) 0.95 (0.031) 0.90 (0.080) 0.97 (0.019)

10 0.74 (0.123) 0.95 (0.032) 0.74 (0.119) 0.97 (0.017)

20 0.57 (0.188) 0.95 (0.032) 0.58 (0.181) 0.97 (0.018)

V 5 0.42 (0.165) 0.58 (0.166) 0.47 (0.165) 0.67 (0.132)

10 0.41 (0.148) 0.60 (0.152) 0.45 (0.147) 0.67 (0.139)

20 0.38 (0.147) 0.62 (0.142) 0.40 (0.157) 0.69 (0.131)

The column ‘‘sv’’ indicates that 5% of the points are drawn from multivariate Normal with mean 0 and

covariance matrix equal to ‘‘sv’’ times the identity matrix. All other points are drawn from a standard

multivariate Normal distribution
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4.2 Real datasets

We run experiments using three different real data sets. With the first two, we do

demonstrate the effectiveness of the SIMeD method in the presence of outliers in a

dataset with few predictors and in one with high number of predictors. With the last

real data experiment we demonstrate the usefulness of the OVA algorithm when we

have discrete responses with no logical ordering.

4.2.1 Concrete Strength dataset

We use the concrete strength dataset (see Yeh 1998) which has 8 predictors

(Cement, Blast Furnace Slag, Fly Ash, Water, Superplasticizer, Coarse Aggregate,

Fine Aggregate, Age) and 1 response variable (Concrete Strength). The dataset has

1030 observations and we use 10 slices. We know from the description of the

dataset that age is very significant along with some ingredients with most important

being the water and the superplasticizer. We use the 4 methods (SIR, SIMD, SIME,

SIMeD) to get an initial estimate of the first direction. Table 6 shows the first

direction and we can see that SIR and SIMD which are based on means rank water

second and age third (with cement close fourth) while age is ranked first and second

Table 4 Comparison of results for SIR, SIME, SIMD, SIMeD on the effect of the proportion of outliers

for the 5 models when the data are drawn from a mixture of Normal distributions

Method

Model k SIR SIME SIMD SIMeD

I 1 0.91 (0.108) 0.97 (0.020) 0.91 (0.105) 0.97 (0.015)

3 0.80 (0.148) 0.96 (0.028) 0.81 (0.144) 0.97 (0.018)

5 0.73 (0.159) 0.94 (0.051) 0.74 (0.149) 0.96 (0.031)

II 1 0.76 (0.104) 0.79 (0.110) 0.80 (0.084) 0.84 (0.066)

3 0.61 (0.150) 0.77 (0.112) 0.65 (0.132) 0.83 (0.068)

5 0.53 (0.129) 0.77 (0.114) 0.58 (0.120) 0.82 (0.065)

III 1 0.92 (0.108) 0.97 (0.022) 0.92 (0.103) 0.97 (0.016)

3 0.82 (0.139) 0.95 (0.024) 0.83 (0.132) 0.97 (0.019)

5 0.72 (0.147) 0.94 (0.036) 0.72 (0.143) 0.96 (0.022)

IV 1 0.94 (0.082) 0.97 (0.017) 0.94 (0.080) 0.98 (0.012)

3 0.83 (0.134) 0.96 (0.023) 0.84 (0.128) 0.97 (0.015)

5 0.75 (0.123) 0.94 (0.035) 0.76 (0.120) 0.96 (0.022)

V 1 0.58 (0.158) 0.64 (0.154) 0.64 (0.137) 0.73 (0.113)

3 0.41 (0.148) 0.60 (0.152) 0.45 (0.147) 0.67 (0.139)

5 0.40 (0.150) 0.60 (0.147) 0.43 (0.150) 0.69 (0.127)

The column k gives the proportion of points drawn from multivariate Normal with mean 0 and covariance

matrix equal to 10 times the identity matrix. All other points are drawn from a standard multivariate

Normal distribution
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in SIME and SIMeD, respectively, and water is ranked third (cement is fourth but

further away than the other 3).

To demonstrate the ability of SIMeD to behave well under outliers, we run 100

experiments where we randomly select 30 observations and we multiply them by

10. Then we calculate the distance of the original coefficient vector we have in

Table 6 to the new vector of coefficients (calculated with outliers) for each one of

the methods. The boxplot in Fig. 1 of the 100 trace correlation distances defined in

(4) for each method, show that SIMeD clearly outperforms the methods based on

means and it also slightly outperforms the SIME method.

Table 5 Proportion of correct

estimation of the BIC criterion

for models I through V when

p ¼ 10 and H ¼ 5

n ¼ 200 n ¼ 400

Model Distribution SIME SIMed SIME SIMed

I a 0.82 0.94 0.93 1.00

b 0.18 0.74 0.27 0.90

c 0.08 0.80 0.34 0.96

II a 0.43 1.00 0.66 1.00

b 0.25 0.66 0.34 0.66

c 0.13 1.00 0.38 1.00

III a 0.71 0.91 0.87 1.00

b 0.31 0.69 0.36 0.91

c 0.03 0.74 0.25 0.95

IV a 0.16 0.94 0.22 1.00

b 0.09 0.70 0.17 0.86

c 0.08 0.80 0.29 0.97

V a 0.39 0.93 0.59 0.97

b 0.03 0.53 0.01 0.80

c 0.01 0.90 0.01 0.97

The distribution column indicates whether we draw our X’s from a

multivariate standard Normal (a), from a multivariate standard

Cauchy (b) or from a mixture of multivariate Normal distributions

where 95% of the points are from standard normal and 5% from

Nð0; 10IÞ (c)

Table 6 Concrete strength: first direction for the 4 methods

Method Cement Blast Fly Ash Water Superplasticizer Coarse

Agg.

Fine

Agg.

Age

SIR - 0.225 - 0.169 - 0.132 0.507 - 0.764 - 0.001 0.012 - 0.251

SIMD - 0.251 - 0.193 - 0.150 0.599 - 0.671 0.000 0.002 - 0.263

SIME 0.128 0.096 - 0.038 - 0.325 0.650 - 0.019 - 0.011 0.666

SIMeD - 0.115 - 0.091 0.033 0.272 - 0.787 0.002 - 0.004 - 0.532

For SIMD and SIMeD the LVR approach is used
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4.2.2 Superconductivity Dataset

The superconductivity data set (see Hamidieh 2018) was obtained from UC

Irvine machine learning repository (see Dua and Karra-Taniskidou 2017) and we

use it to demonstrate the effectiveness in the methodology in handling outliers in

high dimensional cases. The dataset tries to predict the critical temperature of a

superconductor using 81 selected features. There are 21263 observations. We

calculate the original predictor vector. We randomly select 100 points and we

multiply them by 10 to create outliers and we repeat the experiment 100 times. We

calculate the distance of the original coefficient vector (using the true data) to the

new coefficient vector (where 100 points are outliers). Table 7 gives the mean

distances of those 100 experiments for all 4 methods, as well as the median value.

As we can see the two methods that are based on differences between slices, i.e.

SIMD and SIMeD, outperform the other two. SIMeD has better mean distance and

SIR SIMD SIME SIMeD
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Fig. 1 Performance of 100 repetitions of the experiment on the introduction of outliers in concrete
strength dataset

Table 7 Mean and median distances between the original coefficient vector (using the true data) to the

new coefficient vector (where 100 points are outliers)

SIR SIMD SIME SIMeD

Mean 0.46 (0.285) 0.60 (0.246) 0.42 (0.361) 0.62 (0.241)

Median 0.49 (0.270) 0.65 (0.271) 0.29 (0.404) 0.50 (0.261)

In parenthesis we have the standard deviation for the means and the median absolute deviation of the

medians
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SIMD has better median distance. In Fig. 2 we can see the range of values for the 4

methods. We first note that SIR and SIME can be influenced a lot (distances closed

to 0) or not at all (distances close to 0.9). At the same time SIMD has a range

between (0.1 and 0.9) and SIMeD (0.25 to 1). As expected the range of distances for

all methods is much bigger in this dataset, due to the very high-dimensional nature

of the dataset but our proposed method (SIMeD) performs better than SIR and

SIME and is competitive with SIMD.

4.2.3 Iris dataset

We run the the algorithms on the Iris data where we have four predictors sepal

length, sepal width, petal length and petal width. There are 150 observations, 50

from each of three species (setosa, versicolor, virginica). Table 8 shows the first

direction when dimension reduction methods are applied. One can see that both

SIR SIMD SIME SIMeD
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Fig. 2 Performance of 100 repetitions of the experiment on the introduction of outliers in the
superconductivity dataset

Table 8 Iris data first direction

for the 4 methods
Method Sepal length Sepal width Petal length Petal width

SIR - 0.209 - 0.386 0.554 0.707

SIMD - 0.182 - 0.145 0.405 0.884

SIME - 0.138 - 0.069 0.077 0.985

SIMeD - 0.140 0.031 0.111 0.983

For SIMD and SIMeD the LVR approach is used
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SIME and SIMeD give a larger coefficient to petal width which is well known to be

the one mostly separating the three species.

To emphasize the usefulness of the OVA algorithm when the response is

categorical we show the first direction when the three species are first coded as 1 for

setosa, 2 for versicolor and 3 for virginica and then when we keep setosa as 1 but we

code virginica as 2 and versicolor as 3. We see in Table 9 that the OVA approach

does not change estimate while the LVR changes a lot and gives a complete

different direction.

5 Discussion

In this work we propose a new algorithm for robust dimension reduction using

inverse median differences between slices and which we call SIMeD. We

demonstrate the advantages of this algorithm over using a similar algorithm based

on inverse means (SIMD) which was proposed by Artemiou and Tian (2015) at the

presence of outliers and we also demonstrate that in any case it performs better than

just using sliced inverse median regression (SIME) proposed by Dong et al. (2015).

Moreover, we propose the OVA algorithm of SIMeD and demonstrate its advantage

in the case of categorical responses. Although in this paper we choose the L1

median due to its uniqueness for p� 2, we expect similar results to hold when other

multivariate medians are used, for example Tukey and Oja median which were

discussed in the SDR framework by Christou (2018).
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Table 9 Iris data first direction for the LVR and the OVA algorithm of the SIMeD method under 2

different coding schemes for the response

Method Sepal length Sepal width Petal length Petal width

LVR (scheme 1) - 0.140 0.031 0.111 0.983

LVR (scheme 2) - 0.230 - 0.592 0.672 - 0.381

OVA (scheme 1) - 0.143 - 0.066 0.089 0.984

OVA (scheme 2) - 0.143 - 0.066 0.089 0.984
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