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Abstract 

Membrane-active peptides have been extensively studied to probe protein-membrane interactions, to 

act as antimicrobial agents and cell-penetrating peptides (CPPs) for delivery of therapeutic agents to 

cells. Hundreds of membrane-active sequences acting as CPPs have now been described including 

bioportides that serve as single entity modifiers of cell physiology at the intracellular level. 

Translation of promising CPPs in pre-clinical studies have however been disappointing as only few 

identified delivery systems have progressed to clinical trials. To search for novel membrane-active 

peptides a sequence from the EGFR juxtamembrane region was identified (named EJP18), 

synthesised and examined in its L- and D-form for its ability to mediate the delivery of a small 

fluorophore and whole proteins to cancer cell lines. Initial studies identified the peptide as being 

highly membrane-active causing extensive and rapid plasma membrane reorganisation, blebbing and 

toxicity. At lower, non-toxic concentrations the peptides outperformed the well-characterised CPP 

octaarginine in cellular delivery capacity for a fluorophore or proteins that were associated with the 

peptide covalently or via ionic interactions. EJP18 thus represents a novel membrane-active peptide 

that may be used as a naturally derived model for biophysical protein-membrane interactions or for 

delivery of cargo into cells for therapeutic or diagnostic applications. 
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1. Introduction 

The term cell-penetrating peptide (CPP) or protein transduction domain relates to short peptide 

sequences, usually less than 30 amino acid residues, that have the capacity to deliver themselves and 

cargo of various forms and sizes to the inside of cells. Since the original discoveries of now well-

characterised protein derived CPPs such as Tat and penetratin[1], and synthetic variants such as 

octaarginine (R8) there has been considerable effort in exploiting their translocating activities for 

therapeutic and diagnostic purposes[2]. In in vitro models these CPPs, and several others, have shown 

impressive capacity to deliver a range of readout and therapeutic cargo to many cell types, including 

small molecule drugs or fluorophores and much larger molecules such as nucleotides, peptides, 

proteins and nanoparticles[3, 4]. Translation of this to effective in vivo delivery has however been 

disappointing and the search continues for novel CPPs or strategic modifications of existing CPPs to 

improve their delivery performance. CPPs can generally be categorised into three major classes: (i) 

cationic, such as Tat derived peptides and polyarginines[5], (ii) amphipathic, in which the alterations 

between cationic and hydrophobic residues give rise to α-helical structures upon membrane 

interactions[6], e.g. MAP and transportan, and (iii) hydrophobic, such as the PFVYLI sequence[7] 

and synthetic variants[8]. Additionally, anionic CPPs have also been shown to deliver fluorophores 

into a range of cell lines[9-11]. It should be noted that in many cases a finite window exists between 

a CPPs ability to translocate in the absence of cell toxicity and its more global effects on cells in the 

form of induction of plasma membrane porosity or other indirect effects[12-14]. 
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Cancer cells which overexpress EGFR (ErbB1) have increased activation of downstream signalling 

pathways driving cell proliferation, survival, angiogenesis, and metastasis[15]. This receptor tyrosine 

kinase has been targeted using antibodies, antibody-drug conjugates, small molecule drugs and 

protein-protein interaction inhibiting peptides that act on the phosphorylated cytosolic portion of the 

receptor to influence its ability to signal[16]. These peptides are often synthesised as CPP chimeras 

to allow plasma membrane translocation and access of the targeting sequence to the receptor. One 

example is TE-64562 containing the HIV-Tat49-58 peptide sequence (bold) linked to an 18 residue 

sequence derived from the juxtamembrane (JM) domain of EGFR (RKKRRQRRRG-

RRRHIVRKRTLRRLLQER)[17]. This EGFR domain region (corresponding to amino acids 645-

682 (RRRHIVRKRTLRRLLQEREL-VEPLTPSGEAPNQALLRI) lies immediately downstream of 

the transmembrane region and harbours a tripartite nuclear localisation sequence (NLS) 

(RRRHIVRKRTLRR, amino acids 645-657) containing three clusters of basic amino acids 

(bold)[18]. The JM region itself regulates receptor dimerization, signalling and endocytosis[19, 20]. 

Our further scrutiny of the EGFR JM region identified three upstream N-terminal amino acids LFM 

(642-5) that would introduce hydrophobicity to this terminus. Along with a double leucine (658-9) 

hydrophobic C-terminus, these hydrophobic termini would flank the tripartite NLS and produce the 

18 amino acid sequence 642-LFMRRRHIVRKRTLRRLL-659. As an unmodified peptide, it would 

have a mass of 2421.0 Dalton, an isoelectric point of 12.88, and a net charge of 8.1 at pH 7.0 

(pepcalc.com). Our interest in this sequence stems from the fact that in this natural sequence located 

at the cytosolic/plasma membrane interface, the cationic (hydrophilic) residues are spaced between 

hydrophobic residues. Based on other CPP sequences and findings that terminal hydrophobicity of 

CPPs influences peptide-cell interactions[21, 22], it was hypothesised that this peptide, that we term 

EGFR Juxtamembrane Peptide-18 (EJP18) may have CPP activity and EGFR dependant cytotoxicity 

when added to cells and thus act as a bioportide[23].  

In this study we demonstrate that EJP18 can be classified as a novel CPP having the capacity to 

effectively deliver a fluorophore and proteins to cells whether as non-covalent complexes or 

covalently in frame after expression in E. coli. At higher concentrations the membrane activities of 

L-EJP18 and especially D-EJP18 were pronounced, manifested as rapid and extensive plasma 

membrane blebbing and damage in cells independent of their EGFR expression. Analysis of the JM 

regions of other receptor tyrosine kinases in the human genome reveal that several may contain 

interesting sequences with cell penetrating capacity. 
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2. Materials and Methods 

2.1. Chemicals and reagents 

All peptides used in this study (Table 1), were purchased from EZBiolab (Parsippany, NJ, USA). Cell 

culture media, serum, trypsin, Hoechst 33342 (#H3570), bovine serum albumin (BSA)-Alexa647 

(#A13100), BSA-Alexa488 (#A34785), dextran-Alexa488 (#D22910) were purchased from Fisher 

Scientific (Loughborough, UK). Agarose, Mini-PROTEAN® TGXTM gels 10% (#456-1033), 

Clarity Western Enhanced Chemiluminescence substrate, sodium dodecyl sulphate (SDS), precision 

plus protein dual colour standards were obtained from Bio-Rad (Watford, UK). Horseradish 

peroxidase (HRP) conjugated mouse anti-β-tubulin (#AB21058) was purchased from Abcam 

(Cambridge, UK). Rabbit anti-EGFR (#HPA018530) was from Sigma (Gillingham, UK) and goat 

anti-rabbit HRP (#32460) was from Fisher Scientific. DRAQ7TM (#DR71000) was from Biostatus 

(Leicestershire, UK) and CellTiter–Blue® viability reagent was purchased from Promega 

(Southampton, UK).  

DMEM, RPMI 1640, 0.05% Trypsin-EDTA were all obtained from Life Technologies (Fisher 

Scientific). Phosphate-buffered saline (PBS) was made in house and buffered to pH7.4.  

All peptides and protein conjugates used in this study are described in Table 1. 

2.2. eGFP-CPP conjugates 

Plasmids pEV eGFP and pEV eGFP-R8 were described previously[24]. To construct plasmid pEV 

eGFP-EJP18, the vector for the plasmid was PCR-amplified from pEV eGFP with primers 

TAGGAATTCAAGCTTAAGCTGAGCAATAACTAGC and CCATGTGGTGGTGGTGGTGGT-

GCATATGTATATCTC, the insert for the plasmid was PCR- amplified from pEV eGFP with 

primers CCACCACCACCACCACATGGTGAGCAAGGGCGAG and AGCTTAAGCTTGAAT-

TCCTACAGCAGGCGGCGCAGGGTGCGTTTGCGCACAATATGGCGGCGGCGCATAAACA

GCTTGTACAGCTCGTCCATGCCGAG. The two PCR fragments were joined together by Gibson 

assembly to afford the desired plasmid. The nucleotide sequences encoding eGFP-EJP18 and the 

corresponding amino acid sequence are shown in the Supplementary Information. Characterisation 

data can be found in Supplementary Information, Figures S1 and S2. Recombinant eGFP, eGFP-R8 

and eGFP-EJP18 proteins were expressed and purified as previously described [25].  
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2.3. Cell culture 

HeLa, human cervical carcinoma, cells (ATCC, Middlesex, UK), MCF-7 and MDA-MB-231, both 

breast cancer cells (ATCC), and A431 epidermal cancer cells (School of Dentistry, Cardiff 

University) were maintained in a humidified 5% CO2 37 °C incubator in DMEM supplemented with 

10% foetal bovine serum (FBS). Human acute myeloid leukaemia KG1a cells (ECACC, Porton 

Down, UK) were maintained as a suspension in RPMI 1640 medium supplemented with 10% FBS. 

Herein medium supplemented with FBS are termed complete media (CM). Each adherent cell line 

was sub-cultured after 3-5 days of growth, at 70-90% confluency. KG1a cells were passaged at 

confluencies between 2 – 5 x105 cells/mL. All cell lines were routinely tested for mycoplasma 

contamination and confirmed negative. 

2.4. Cell viability studies 

To account for different growth rates, cells were seeded in black 96-well plates at densities that 

provided 80-90% confluency after 24 h; KG1a cells (1.5 × 104 cells/well), HeLa (8 × 103 cells/well), 

MCF-7 (2.5 × 103 cells/well), MDA-MB-231 (2 × 103 cells/well) and A431 (2 × 103 cells/well) in a 

total volume of 100 μL. After a minimum of 24 h, cells were treated with peptides in CM for 24 h. 

Viability studies were conducted using the CellTiter-Blue® assay where cells were incubated with 

100 µL peptide in CM for 20 h and additionally for 4 h with 20 µL of CellTiter-Blue® reagent added 

prior to measurements. Samples were read on a FLUOstar Optima fluorescent plate reader (Ex. 

584nm, Em. 612nm) and viability determined after background subtraction by comparison to a 

vehicle control. 

2.5. Determination of EGFR levels in cancer cell lines 

For adherent cell lines (HeLa, A431, MCF-7 and MDA-MB-231), cells were grown to approximately 

70% confluency in T-75 tissue culture flasks. The medium was aspirated, and the cells were washed 

three times with PBS. Ice cold lysis buffer 0.5 mL (50 mM NaCl, 50 mM Tris base pH 8.0, 1% 

Nonidet p-40 [Sigma Aldrich, Gillingham, UK] plus cOmplete Mini protease inhibitors [Roche, 

Burgess Hill, UK]) was added on ice and the cells were scraped from the flask surface. The flask 

content was transferred to an Eppendorf tube and kept on ice for 5-15 min, then centrifuged (13,800 

× g, 4 ºC) for 15 min, prior to removing the supernatant to a clean Eppendorf tube. For the 

non-adherent KG1a cells, the total volume of a T-75 flask was transferred to a 15 mL centrifuge tube, 
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centrifuged at 900 × g for 2 min and then resuspended in 5 mL fresh CM. A volume containing 1 x 

106 cells was pelleted by centrifugation at 900 x g and resuspended in PBS, washed again in PBS 

before resuspending the pellet in ice cold lysis buffer (620 μL). After 5-15 min, the sample was 

centrifuged (13,800 × g, 4 ºC) and the supernatant was harvested. For all cell lines, following lysate 

collection and protein quantification via the BCA assay (Fisher Scientific), 20 μg of protein was 

loaded and run (100 V, 60 min) on a 10% precast gel (Bio-Rad). Proteins were transferred to 

polyvinylidene fluoride membranes (Immobilon-P transfer membrane, Fisher Scientific) and EGFR 

was detected via immunoblotting (anti-EGFR Ab diluted 1:1000 in 2% milk/PBS/0.2% Tween 

[Sigma Aldrich] and incubated overnight). Samples were washed 3X for 5 min in PBS/0.2% Tween 

and incubated with the secondary antibody (1:1000 in 2% milk/PBS/0.2% Tween), after further 

washing of 3X 5 min in PBS/0.2% Tween, membranes were incubated with Clarity ECL reagent and 

luminescence detected using a ChemiDoc system (Bio-Rad). 

2.6. Cell morphology studies 

HeLa cells, MDA-MB-231 and A431 cells were seeded in imaging dishes (2.5 × 105, 1.8 × 105 and 

2.5 × 105 cells per dish, respectively) and allowed to adhere overnight. Just prior to experimentation, 

the cells were washed three times with serum free media (SFM). In addition, 5 × 105 KG1a cells were 

collected in an Eppendorf tube and centrifuged (400 × g, 3 min) before being resuspended in SFM 

and transferred to an MatTek imaging dish (Ashland, MA). Peptide solutions (L-EJP18 or D-EJP18 

in a final concentration of 20 µM in 200 µL SFM containing 1 µL DRAQ7™) were then added to the 

cells. Cells were kept on a humidified stage (5% CO2, 37ºC) and imaged by confocal microscopy 

using the 633 nm laser with a 63× 1.4NA objective. Images were acquired at 30 s intervals over 1 h. 

Images were processed using ImageJ software[26]. 

2.7. Confocal microscopy of Rh-CPP, eGFP-CPP and CPP:BSA complexes  

HeLa cells and MDA-MB-231 cells were seeded at a density of 1.8 × 105 cells per imaging dish and 

allowed to adhere overnight under tissue culture conditions. The next day, where applicable, cell 

lysosomes were labelled by incubating the cells with 100 µg/mL 10 kDa dextran-Alexa488 (Dex488) 

or 10 kDa dextran-Alexa647 (Dex647, both Fisher Scientific) for 2 h in CM under tissue culture 

conditions. Subsequently, cells were washed three times with CM and incubated for 12-14 h to chase 

the dextran into the lysosomes[27, 28]. 
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On the day of experiment, cells were washed with SFM and incubated with either Rh-CPP, eGFP-

CPP or CPP:BSA complexes in SFM for 1 h, 37 °C 5% CO2. Complexes were formed containing 

8 µM CPP and 240 nM BSA-Alexa647 (BSA647) in nuclease free distilled water for 30 min at room 

temperature following a protocol based on Sayers et al.[29]. Following this the complexes were 

diluted 1:3 with SFM giving final CPP and BSA concentrations of 2 µM and 60 nM respectively and 

incubated with the cells for 1 h under tissue culture conditions. For pulse-chase peptide experiments 

in cells (Figure 6), lysosome labelled cells were washed in CM and re-incubated for 1 h before 

imaging.  Where low temperature experiments were performed, cells were pre-chilled on ice (4 °C) 

for 15 min before washing and incubating with prechilled Rh-CPP in SFM for 1 h. Here, cells were 

washed and imaged in pre-chilled imaging medium.  

After the incubation period, cells were washed with imaging medium (phenol red free DMEM 

supplemented with 25 mM HEPES pH 7.4 and 10% FBS) and finally imaged in imaging medium 

containing Hoechst 33342 (10 µg/mL) and analysed on a Leica SP5 confocal microscope (63x 1.4 

N.A. objective using 405 nm, 488 nm or 543 nm and 633 nm lasers with a 95.5 μm pinhole, pixel size 

is 283 nm, using Leica Type F immersion oil). Sequential scanning was used to separate overlapping 

emission profiles. All cell imaging was performed in live cells at 37 °C, 5% CO2, 90% humidity over 

the course of the experiment apart from low temperature uptake studies that were imaged in ice cold 

imaging medium. 

2.8. Flow cytometry analysis of Rh-CPP, eGFP-CPP and CPP:BSA complexes 

HeLa cells and MDA-MB-231 cells were seeded at a density of 1 × 105 cells per well in 12-well 

plates so that they were 80-90% confluent on the day of experiment. On the day of experiment, the 

medium was aspirated, and the cells were washed with SFM and then incubated  under tissue culture 

conditions for 1 h with test compounds (L-EJP18, D-EJP18 or L-R8 at 1-5 µM in SFM) either as Rh-

labelled conjugates, or as BSA647 complexes prepared as above. The experiment was repeated at 4 

°C for the Rh-labelled conjugates at 2 µM. Following 1 h of exposure, the test compounds were 

removed, and cells were washed with ice-cold PBS and then detached with trypsin at 37 °C. The 

trypsinisation was terminated by addition of ice-cold CM, and the cell suspensions were collected in 

Eppendorf tubes and centrifuged (270 × g, 4 °C, 4 min). The supernatant was removed and the cells 

were washed with ice-cold heparin sulphate (Sigma Aldrich, diluted 20 µg/mL in PBS) before being 

centrifuged again under the same conditions and resuspended in ice-cold CM. Hereafter, the cells 

were kept on ice before analysis on a Gallios flow cytometer (Beckman Coulter, Fullerton, CA, USA). 
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At least 5000 viable cells were counted, using gating for front- and side scattering. Rh-labelled EJP18 

and BSA-Alexa647 were detected using red and far-red filters. 

 

2.9. Data analysis 

The IC50 values for EJP18 towards each cell line were calculated using GraphPad Prism (GraphPad 

Software, La Jolla, CA, USA) and the Hill equation (shown below), as described by Birch et al. [30]. 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑣𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (%) =  
𝑇𝑜𝑝 − 𝐵𝑜𝑡𝑡𝑜𝑚

1 + 10(𝐿𝑜𝑔𝐼𝐶50−𝐿𝑜𝑔[𝐶𝑃𝑃]) ×𝐻𝑖𝑙𝑙 𝑠𝑙𝑜𝑝𝑒
 

In order to prevent erroneous calculations as a result of autophagocytosis, the top of the curve was 

constrained at 100 % viability. 

Data were compared with a one-way ANOVA combined with a Tukey’s multiple comparison analysis 

using GraphPad Prism. 

 

3. Results 

Both L- and D-forms of the EJP18 peptide were initially tested against four cancer cell lines from a 

range of tissues to determine the effects of the L (Figure 1A) and D (Figure 1B) forms on cell viability 

(Table 2). Both showed little toxicity below 10 μM when incubated with cells for 24 h and above this 

concentration the different cell lines had varied sensitivities. In the skin epithelial A431 cell line only 

limited toxicity was observed to the L enantiomer (IC50 > 100 µM) and moderate toxicity against the 

D enantiomer (IC50 ~ 22 µM). In contrast, the acute myeloid leukaemia cell line KG1a showed the 

highest susceptibility to L-EJP18 with toxicity only marginally higher when exposed to the D 

enantiomer (IC50 20 vs 15 µM). The cervical epithelial HeLa line showed a much higher level of 

sensitivity to the D over the L form of the peptide giving IC50 values of 63 µM vs 12 µM, respectively. 

Mammary epithelial line MDA-MB-231 proved the most resistant to toxicity from D-EJP18, with an 

IC50 approximately half the value than when incubated with L-EJP18. 

To determine if there was any relationship between toxicity of our peptide and EGFR expression 

levels, protein normalised EGFR expression was tested by western blot. Both A431 and MDA-MB-
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231 cell lines showed high EGFR expression while HeLa and KG1a, respectively, produced low and 

undetectable levels of this protein. This is in agreement with mRNA expression profiles from ‘The 

Human Protein Atlas’ and the ‘Cancer Cell Line Encyclopaedia’ (CCLE) for HeLa, MDA-MB-231 

and A431 cells[31, 32], and no EGFR data could be identified for KG1a cells. The high EGFR 

expressing cell line, A431, had the lowest L-EJP18 toxicity and the lowest EGFR expressor, KG1a, 

had the highest L-EJP18 toxicity. MDA-MB-231 and HeLa cells have similar toxicity profiles and D-

EJP18, showed no correlation between EGFR expression and toxicity. 

Using live cell time lapse confocal microscopy, we have previously shown that some cationic toxic 

peptides very rapidly cause large protrusions to emanate from the plasma membrane immediately 

prior to evidence of membrane damage and porosity to dyes such as propidium iodide[7, 21]. 

Focusing on a high EGFR expressor (MDA-MB-231), a low expressor (HeLa) and the previously 

tested suspension cell line KG1a, we evaluated their immediate responses to 20 µM of both EJP18 

enantiomers in comparison with r8-PAD (rrrrrrrrGGklaklakklaklakGC) that we previously showed 

to be extremely plasma membrane-active and toxic at 20 µM[7]. Cells incubated with the peptides 

were imaged by time-lapse microscopy every 30 s for 1 h in the presence of DRAQ7, a marker for 

membrane permeability, and the results are shown as movies M1-M12 (Supplementary Information); 

the 1 h time point is shown in Figure 2. The movies clearly demonstrate very rapid high plasma 

membrane activity of r8-PAD producing large blebs on the surface of all three cell lines before 

showing the first signs of porosity to DRAQ7 between 5 min and 10 min; within 1 h all cells were 

DRAQ7 positive. KG1a cells incubated with the EJP18 enantiomers also showed rapid and extensive 

‘blebbing’ of the plasma membrane with D-EJP18 (Supplementary Information, M11) producing 

blebs on the surface within 25 min compared to 40 min for L-EJP18 (Supplementary Information, 

M10). Despite this, the cells were not strongly positive for DRAQ7 with weak dye signals identified 

in a minority of cells after 1 h. MDA-MB-231 cells showed minor membrane disturbance when 

incubated with both enantiomers and remained DRAQ7 negative throughout the 1 h period 

(Supplementary Information, M6 and M7). Membrane protrusions were visible for both enantiomers 

of peptide when incubated with HeLa cells (Supplementary Information, M2 and M3), and those 

incubated with D-EJP18 showed evidence of membrane porosity. Overall, these time lapse 

experiments reflect the data seen in the 24 h viability assays (Figure 1) and noticeable is that the HeLa 

cell line is much more susceptible to the D-enantiomer over the L-enantiomer.  
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As the peptides clearly showed plasma membrane activity, we analysed their ability to carry a 

fluorescent model small molecule ([tetramethyl]rhodamine, Rh) and protein cargos (albumin and 

eGFP) to MDA-MB-231 and HeLa cells at 1-5 µM. Cells were incubated with L- and D-Rh-EJP18 

for 1 h and analysed by live cell confocal microscopy and flow cytometry, along with Rh-L-R8 

representing a very well characterised CPP[33, 34]. At 2 µM all three peptides were visible in 

vesicular structures in both cell lines (Figure 3A and B). Intensity of these vesicles was most 

prominent in HeLa incubated with Rh-L-EJP18. Fluorescence from both Rh-EJP18 enantiomers and 

Rh-L-R8 was punctate-scattered in the cytoplasm with some enrichment in a juxtanuclear region; 

similar subcellular distribution of fluorescence was observed in MDA-MB-231 cells. For both these 

cell lines there was little colocalisation of either enantiomer with Transferrin-Alexa488 (a marker for 

early and recycling endosomes) following a 1 h pulse (Supplementary Information, Figure S4). 

Incubating cells on ice with 2 µM Rh-peptides (Table 1) for 1 h produced no visible fluorescence 

(data not shown). Increasing peptide concentration to 10 µM showed little internalised fluorescence 

of either Rh-EJP18 peptide with a minority of cells showing small plasma membrane bound 

aggregates (Supplementary Information, Figure S5). As seen previously using L-R8-Alexa488[33], 

Rh-L-R8 gives cytosolic and nuclear labelling when incubated at high concentrations (here 10 µM) 

at 4 °C in serum free medium. This highlights that uptake of EJP18 peptides can only occur in the 

presence of energy and unlike L-R8 the sequence cannot directly translocate through the plasma 

membrane at 4 ˚C.  

We then used flow cytometry to quantify peptide uptake and at 1 µM, in both cell lines, cell-associated 

fluorescence was significantly higher (P<0.001) for Rh-D-EJP18 compared with Rh-L-EJP18 or Rh-

L-R8 for both cell lines (Figure 3C-D). Morphological effects in cells incubated with higher 

concentrations of Rh-D-EJP18 resulted in the majority of cell counts falling outside of the gated 

region (data not shown) and a reliable fluorescence intensity reading for these concentrations could 

not be obtained. Uptake levels were similar between Rh-L-EJP18 and Rh-L-R8 at 2 µM and 5 µM 

(P>0.05). 

Cell-penetrating peptides have been shown to deliver proteins to cells as non-covalent complexes or 

CPP-fusions expressed in E. coli and purified[25, 35-38]. Enhanced green fluorescent protein (eGFP) 

was selected as a model protein and synthesised in frame with EJP18 and purified as an eGFP-EJP18 

conjugate. Its cellular uptake was analysed by microscopy in comparison with eGFP-R8 in HeLa 
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(Figure 4A) and MDA-MB-231 cells (Figure 4B). For both cell lines there was appreciably higher 

visible cell-associated fluorescence after incubation with 2 µM eGFP-EJP18 than eGFP-R8, with 

eGFP alone showing no observed fluorescence under these microscopy settings. While cells 

incubated with Rh-EJP18 showed only punctate endosomal fluorescence after 1 h, eGFP-EJP18 was 

present as punctate vesicular fluorescence but also clearly labelled the plasma membrane. Labelling 

the plasma membrane of both cell lines showed, in addition to endocytic structures, aggregation of 

the protein-peptide conjugate at or very close to the plasma membrane after 1 h of incubation 

(Supplementary Information, Figure S6). Brightness enhancing the eGFP-R8 images incubated with 

both cell lines allowed us to more easily determine these subcellular localisations (Supplementary 

Information, Figure S7). In both cell lines eGFP-R8 was located to small scattered vesicles. 

To assess the capacity of EJP18 to internalise protein as non-covalent CPP:protein complexes, the 

peptides were mixed with fluorescent BSA647 at a molar ratio of 100 to 3 before adding to cells as 

CPP:BSA647. L-R8 and L-EJP18 failed to enhance BSA647 internalisation above background levels 

in either HeLa or MDA-MB-231 cells at any of the tested concentrations (Figure 5). However, D-

EJP18 proved successful in internalising significant amounts of this protein at 2 µM localising to 

scattered vesicles in a similar pattern seen with the Rh-EJP18 peptides. This high uptake was mirrored 

by flow cytometry where, at the lowest concentration, D-EJP18 was able to internalise significantly 

higher amounts of BSA647 than the other peptides in both cell lines and values for D-EJP18:BSA647 

exceeded values obtained when the other peptides were at five times higher concentrations. It should 

be noted that, similar to results seen for the rhodamine constructs, D-EJP18:BSA647 produced 

morphological changes at 2 and 5 µM that shifted HeLa and MDA-MB-231 outside of the gated 

region after preparation for flow cytometry. In Hela cells there were no significant differences in the 

uptake of BSA647 by either L-EJP18, L-R8 or without peptide complexation. In MDA-MB-231 cells, 

1 µM D-EJP18 internalised significantly more BSA than the L-enantiomer; and notably, in this cell 

line L-R8 outperformed L-EJP18 at low concentrations (1 or 2 µM), however, at 5 µM they were 

statistically equivalent. 

To further explore the endocytosis of EJP18-cargo, we investigated whether, once internalised, they 

trafficked by endocytosis to lysosomes. For these experiments lysosomes were labelled via a short 

pulse and overnight chase with fluorescent dextran that is known to traffic to these organelles via 

Rab7a labelled late endosomes[27]. This then allowed for subsequent analysis of the intracellular 

delivery of the EJP18 conjugates to these organelles in HeLa and MDA-MB-231 after a short one 
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hour ‘pulse’ incubation (Figure 6). HeLa incubated with Rh-labelled D- or L-EJP18 showed a 

moderate level of colocalisation between with the probe and lysosomes. In both cases fluorescent 

peptide was scattered throughout the cell. A similar level of colocalisation and distribution was seen 

with EJP18:BSA647 complexes. In contrast, MDA-MB-231 incubated with either Rh-EJP18 or 

EJP18:BSA647 showed low levels of colocalisation indicating that either the peptide/protein 

complexes trafficked differently in this cell line, or the overall rate of trafficking to the lysosome was 

much slower. Interestingly both the Rh-EJP18 and EJP18:BSA complexes seemed to localise to a 

similar juxtanuclear region containing dextran labelled-lysosomes; that in this cell line also harbours 

EEA1-labelled early endosomes and LAMP-1-labelled lysosomes[39, 40]. Both HeLa and MDA-

MB-231 incubated with eGFP-EJP18 showed no colocalisation with lysosomes. In both cases 

fluorescence was limited to puncta at the periphery of the cell indicating that further internalisation 

of this fraction to the lysosomal system is relatively slow.  

 

4. Discussion 

Our time lapse microscopy experiments clearly highlighted the capacity of both EJP18 enantiomers 

to affect plasma membrane integrity at concentrations higher than 10µM. Based on this and the  

collected viability data together with EGFR expression analysis it is very unlikely that EJP18 toxicity 

is linked to the expression of this receptor. This suggests that the peptide has an alternative mechanism 

for inducing cell toxicity that most probably lies at the level of the plasma membrane. EGFR levels 

were predictive of the toxicity of another EGFR JM derived peptide conjugated to Tat49-58 (TE-64562) 

[17]. Cell lines that expressed moderate to high EGFR were more susceptible to TE-64562 and there 

was no toxicity (up to 100 µM) or delivery capacity associated with the JM sequence alone 

(RRRHIVRKRTLRRLLQER). Noted is that this sequence, like that of EJP18 is also composed of 18 

residues however at the N- and C terminus lie cationic residues. This strongly supports our initial 

hypothesis that hydrophobic termini aid membrane interaction. However, it is very difficult to refute 

the possibility that the JM cargo peptide in TE-64562 had a significant influence on the capacity of 

Tat49-58 to enter cells. In support of this finding, a very short threonine phosphorylated peptide termed 

T654 from this JM of EGFR (Ac- RKRTPLRRLK-fluorescein) entered cells and inhibited irradiation-

induced nuclear localization of EGFR[41]. However, uptake was monitored after 16 h and it is very 

difficult to determine its subcellular localization. More recently a peptide consisting of a pH 
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dependent membrane spanning sequence (pHLIP) in frame with a very short EGFR JM sequence 

654-TLRRLLQ-660 was shown to inhibit EGRF dimerization, inhibit cell migration and induce 

cytotoxicity and downstream effects[42]. It would be interesting to determine whether this shorter 

peptide influences the membrane spanning capacity of pHLIP or whether EJP18 could also be active 

in this way attached to pHLIP to give higher selectivity. While there were no links between EGFR 

expression and EJP18 induced toxicity, the peptide may be having some effects on receptor 

dimerisation and/or activation, similar to those seen with TE64562, T654 and pHLIP-JMA[17, 41, 

42]. To interact with the EGFR JM domain, as initially predicted, would require crossing the plasma 

membrane to reach the target. While there was little evidence of cytosolic delivery, we cannot refute 

the possibility that a very low fraction, beyond the limit of detection of our assay, was able to perform 

this feat. 

The general increased toxicity of the D- versus L-EJP18 is likely to be due to degradation of the latter 

by proteases that are known to have significant effects on CPP translocation activities [43]. These 

may be present in the serum as a purchased product or may be released from cells during the 

incubation stages. Thus the effective concentration of D- versus L- forms are maintained for a longer 

period to mediate effects[44]. This is corroborated by similar studies on the exposure of penetratin to 

Caco-2 cells, in which intact D-penetratin elicited more detrimental effects than the corresponding L 

form [45].  

The mechanism by which these peptides cause such profound membrane disruption is unknown and 

also unknown is whether pores are initially formed before physical blebbing and DRAQ7 staining 

can be observed. These observations are similar to the effects on mammalian cells of equivalent 

concentrations of the extensively studied pore forming bee venom toxins melittin and mastoparan[46, 

47]. Interestingly, four of the five cationic residues on the 26 residue melittin 

(GIGAVLKVLTTGLPALISWIKRKRQQ) are localized together at the C-terminus whilst two of the 

three same residues in mastoparan also are localized at the C-terminus (INLKALAALAKKIL). Both 

these peptides have toxic effects on mammalian and eukaryotic cells is thought to be induced by the 

formation of pores in membranes [48]; other membrane interacting effects have also been noted[49]. 

It remains to be determined whether the interaction of these peptides with membranes is similar to 

that of EJP18 with its cationic residues spaced throughout the sequence, flanked by two hydrophobic 

residues at each end. The presence of punctate spots on (or adjacent to) the plasma membrane suggests 

the occurrence of oligomerisation. It has been noted that peptide dimers of the amphiphilic peptide, 
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LK-3, induced further oligomerisation and the burying of their hydrophobic motifs in the plasma 

membrane to aid internalisation [50]. 

Overall EJP18 managed to deliver a small-molecule fluorophore and macromolecular protein cargoes 

covalently attached via a peptide bond or as non-covalent protein:peptide complexes. There is still 

significant interest in delivering proteins to cells by CPPs to mediate a biological response interest or 

for delivery across a biological barrier[37, 51]. The eGFP-EJP18 protein conjugate appeared to 

aggregate on the plasma membrane of the cell. However, further scrutiny clearly identified endocytic 

uptake as well as association with different regions of the plasma membrane. However, when the 

peptide was complexed with BSA there was clear signs that endocytosis was occurring and this was 

marked by very different eGFP-EJP18 and EJP18:BSA localisation after a 1 h pulse – 1 h chase. 

Interestingly both the Rh-EJP18 and EJP18:BSA complexes seemed to localise to a similar 

juxtanuclear region containing dextran labelled-lysosomes; that in this cell line also harbours EEA1-

labelled early endosomes and LAMP-1-labelled lysosomes[39, 40]. Our initial experiments with the 

Rh-conjugated peptides and transferrin suggests little or no involvement of clathrin mediated 

endocytosis as an uptake process and this warrants further analysis. For all studies presented here 

there was little evidence that either L- or D-EJP18 was able to promote delivery of fluorophore or 

protein to the cytosol of cells but and small fraction that may escape through the plasma membrane 

of endosomal membrane is extremely difficult to detect by fluorescence microscopy.  

The EJP18 sequence was derived from the JM of EGFR, a member of the ErbB family of signalling 

receptors that, in humans, form the larger 58-member receptor tyrosine kinase family[52]. Within the 

JM region there are some interesting and notable sequence conservation that is predicted to influence 

function through interactions with negatively charged lipids[52]. Of interest is the fact that the JM 

regions of many RTKs are rich in positively charged residues suggesting that other potential CPPs 

may be hidden within this family of proteins (Table 3). This hypothesis remains to be tested. 

 

5. Conclusions 

Peptides such as melittin and mastoparan have been extensively studied as models of protein-

membrane interaction and EJP18 can be seen as a new member of this family. As a natural membrane 

interacting region within EGFR, this sequence interacts with phosphatidylinositol 4,5 bisphosphate 
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(PIP2) and other phospholipids on the inner leaf of the membrane[53]. Further information on EJP18 

membrane interaction may be gleaned from studies with artificial membranes containing PIP2 that 

has been shown to mediate the oligomerisation of antimicrobial defensin peptides leading to 

cytotoxicity[54, 55]. At concentrations greater than 10 µM L- and D-EJP18 are highly membrane-

active and differentially toxic to the cell lines studied here. There remains significant interest in 

cytotoxic peptides and their derivatives as anti-cancer agents and delivery vectors[56] and EJP18 may 

in the future fall into this category. A clear overlap between sequences of cell-penetrating and 

antimicrobial peptides has been noted[57, 58] and it remains to be determined whether our sequence 

also has activity against prokaryotes and fungi. At low concentrations, the EJP18 sequences were at 

least as effective as L-R8 in delivering a fluorophore and proteins to cells thus allowing for their 

classification as novel CPP. This merits further analysis of whether their translocation activities can 

be exploited to deliver a therapeutic cargo across a biological barrier to mediate a physiological 

response. 
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11. Tables 

Table 1: Peptides and proteins used in this study. 

Peptides Sequence 

L-EJP18 Ac-LFMRRRHIVRKRTLRRLL-NH2 

D-EJP18 Ac-lfmrrrhivrkrtlrrll-NH2 

Rh-L-EJP18 Rh-LFMRRRHIVRKRTLRRLL-NH2 

Rh-D-EJP18 Rh-lfmrrrhivrkrtlrrll-NH2 

L-R8 Ac-RRRRRRRR-NH2 

Rh-L-R8 Rh-RRRRRRRR-NH2 

r8-PAD Ac-rrrrrrrrGGklaklakklaklakGC-NH2 

Proteins  

eGFP-R8 His6-eGFP-RRRRRRRR 

eGFP-EJP18 His6-eGFP-LFMRRRHIVRKRTLRRLL 

eGFP His6-eGFP 

Capital letters represent L amino acids, lower case represents D amino acids, Rh = tetramethylrhodamine, Ac 

= acyl, NH2 = amide and italics eGFP represent full length enhanced green fluorescent protein. 
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Table 2: IC50 cell viability values for the four cell lines tested 

Cell line L-EJP18 IC50 (µM) D-EJP18 IC50 (µM) 

HeLa 63.7±7.9 12.2±1.3 

MDA-MB-231 63.0±20.3 28.9±2.5 

KG1a 20.2±1.5 15.8±2.9 

A431 > 100  22.6±8.2 

Values calculated from viability curves in Figure 1. Values represent the mean of the repeats +/- 

SEM, n = 3, N = 3.  
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Table 3: Juxtamembrane and transmembrane (TM) peptide sequences of 58 human RTKs 

Class RTK Upstream 

TM (5 aa) 

Juxtamembrane Sequence 

(20 aa) 

 Class RTK Upstream 

TM (5 aa) 

Juxtamembrane Sequence 

(20 aa) 

I EGFR IGLFM RRRHIVRKRTLRRLLQEREL  XI Tyro3 LALIL LRKRRKETRFGQAFDSVMAR 

I ErbB2 FGILI KRRQQKIRKYTMRRLLQETE  XI Mer SLAIR KRVQETKFGNAFTEEDSELV 

I ErbB3 GGTFL YWRGRRIQNKRAMRRYLERG  XII TIE1 LLTLV CIRRSCLHRRRTFTYQSGSG 

I ErbB4 FAVYV RRKSIKKKRALRRFLETELV  XII TIE2 AFLII LQLKRANVQRRMAQAFQNVR 

II InsR IYLFL RKRQPDGPLGPLYASSNPEY  XIII EphA1 GILVF RSRRAQRQRQQRQRDRATDV 

II IGF1R LYVFH RKRNNSRLGNGVLYASVNPE  XIII EphA2 VGFFI HRRRKNQRARQSPEDVYFSK 

II IRR ALGFF YGKKRNRTLYASVNPEYFSA  XIII EphA3 YVLIG RFCGYKSKHGADEKRLHFGN 

III PDGFR LVVIW KQKPRYEIRWRVIESISPDG  XIII EphA4 AAFVI SRRRSKYSKAKQEADEEKHL 

III PDGFR LIILI MLWQKKPRYEIRWKVIESVS  XIII EphA5 IGVLL SGSCCECGCGRASSLCAVAH 

III KIT MILTY KYLQKPMYEVQWKVVEEING  XIII EphA6 LFFLI TGRCQWYIKAKMKSEEKRRN 

III CSF1R LLLLY KYKQKPKYQVRWKIIESYEG  XIII EphA7 MVFGF IIGRRHCGYSKADQEGDEEL 

III FLT3 TLLIC HKYKKQFRYESQLQMVQVTG  XIII EphA8 LLLIC KKRHCGYSKAFQDSDEEKMH 

IV VEGFR1 LTLFI RKMKRSSSEIKTDYLSIIMD  XIII EphA10 VMSVL AIWRRPCSYGKGGGDAHDEE 

IV VEGFR2 LLVII LRTVKRANGGELKTGYLSIV  XIII EphB1 ISIVC SRKRAYSKEAVYSDKLQHYS 

IV VEGFR3 LLLLI FCNMRRPAHADIKTGYLSII  XIII EphB2 VIAIV CNRRGFERADSEYTDKLQHY 

V FGFR1 SVIVY KMKSGTKKSDFHSQMAVHKL  XIII EphB3 VIAIV CLRKQRHGSDSEYTEKLQQY 

V FGFR2 TVILC RMKNTTKKPDFSSQPAVHKL  XIII EphB4 IVVAV LCLRKQSNGREAEYSDKHGQ 

V FGFR3 AVTLC RLRSPPKKGLGSPTVHKISR  XIII EphB6 AITVL AVVFQRKRRGTGYTEQLQQY 

V FGFR4 LAGLY RGQALHGRHPRPPATVQKLS  XIV Ret SAFCI HCYHKFAHKPPISSAEMTFR 

VI PTK7 GLMFY CKKRCKAKRLQKQPEGEEPE  XV RYK AIILA VLHLHSMKRIELDDSISASS 

VII NTRK1 LLLVL NKCGRRNKFGINRPAVLAPE  XVI DDR1 IALML WRLHWRRLLSKAERRVLEEE 

VII NTRK2 MLFLL LARHSKFGMKGPASVISNDD  XVI DDR2 VIILW RQFWQKMLEKASRRMLDDEM 

VII NTRK3 LFVMI NKYGRRSKFGMKGPVAVISG  XVII ROS LTFVW HRRLKNQKSAKEGVTVLINE 

VIII ROR1 FFICV CRNNQKSSSAPVQRQPKHVR  XVIII LMTK1 LMLAC LCCKKGGIGFKEFENAEGDE 

VIII ROR2 CLFFL VCMCRNKQKASASTPQRRQL  XVIII LMTK2 IVLIA NCVSCCKDPEIDFKEFEDNF 

IX MuSK ITTLY CCRRRKQWKNKKRESAAVTL  XVIII LMTK3 LLTCL CCKRGDVGFKEFENPEGEDC 

X MET FFLWL KKRKQIKDLGSELVRYDARV  XIX LTK VLILV KQKKWQGLQEMRLPSPELEL 

X Ron TALVF SYWWRRKQLVLPPNLNDLAS  XIX ALK IMIVY RRKHQELQAMQMELQSPEYK 

XI Axl ALFLV HRRKKETRYGEVFEPTVERG  XX STYK1 GVILW LFIREQRTQQQRSGPQGIAP 

Positively charged amino acids in green, negatively charged amino acids in red, bold represents 

phosphorylated or putative phosphorylated amino acids (data collected from Uniprot). 
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12.  

Figure 1: Viability and EGFR expression of cell lines incubated with L- and D-EJP18  

Viability of HeLa cells (red), MDA-MB-231 cells (yellow), KG1a cells (green) and A431 (purple) 

following incubation with L-EJP18 (A) or D-EJP18 (B) for 24 h in CM. The dotted line depicts 50 % 

viable cells. Mean ± SEM, n = 3, N = 3. (C) Representative western blot showing the relative 

expression of EGFR in the four cell lines normalised by total protein concentration. 
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Figure 2: Morphological changes in KG1a, HeLa and MDA-MB-231 cells incubated with L- 

and D-EJP18. Cells were incubated with/without 20 µM CPP for 1 h in SFM in the presence of 

DRAQ7 (red). Representative images are from two identical experiments in different passages. Scale 

bars = 20 µm. For one-hour time lapse movies see Supplementary Information, M1 to M12. 
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Figure 3: Uptake of Rh-EJP18 in HeLa and MDA-MB-231 cells  

HeLa (A) and MDA-MB-231 (B) cells were incubated with 2 µM Rh-labelled L-EJP18, D-EJP18 or 

L-R8 (green) in SFM for 1 h prior to washing and imaging. Scale bars = 20 µm. Relative uptake of 

Rh-L-EJP18, Rh-D-EJP18 and Rh-L-R8 into HeLa (C) and MDA-MB-231 (D) cells. Cells were 

treated with test solution (1-5 µM in SFM) for 1 h at tissue culture conditions and subsequently 

analysed by flow cytometry. Fluorescence values are a mean of the mean geometric mean from three 

independent experiments performed in triplicate. Mean ± SEM, n = 3, N = 3. For example histograms 

see Supplementary Information, Figure S3, for additional comparative statistics from the ANOVA 

see Supplementary Information, Tables 1 and 2. 
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Figure 4: Cell uptake of eGFP by EJP18 and L-R8 

HeLa (A) and MDA-MB-231 (B) cells were incubated with 2 µM eGFP-EJP18, eGFP-R8 or eGFP 

in SFM for 1 h prior to washing and imaging by confocal microscopy. Scale bar = 20 µm. 
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Figure 5: Cell uptake of peptide-BSA complexes in cells 

Complexes of CPP and BSA were formed by mixing 8 µM L-EJP18, D-EJP18 or L-R8 (unlabelled) 

with 240 nM BSA-Alexa647 (molar ratio CPP:BSA 100:3) in distilled water for 30 min at room 

temperature. Complexes were subsequently diluted 1 part in 4 in SFM, to produce final peptide and 

protein concentrations of 2 µM and 60 nM respectively, and incubated with (A) HeLa or (B) MDA-

MB-231 cells for 1 h prior to washing and imaging. Scale bars = 20 µm. Relative uptake of L-EJP18, 

D-EJP18 and L-R8 complexed with BSA-Alexa647 into (C) HeLa and (D) MDA-MB-231 cells. Cells 

were treated with tested peptides (1-5 µM in SFM) for 1 h at tissue culture conditions and 

subsequently analysed by flow cytometry. Fluorescence values are a mean of the mean geometric 

mean from three independent experiments performed in triplicate. Mean ± SEM, n = 3, N = 3. For 

example histograms see Supplementary Information, Figure S8, for additional comparative statistics 

from the ANOVA see Supplementary Information, Tables 3 and 4. 
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Figure 6: Differential rates of endocytic traffic to lysosomes for small molecule or protein cargo 

delivered by EJP18 

HeLa (A) and MDA-MB-231 (B) cells, with the lysosomes pre-loaded with fluorescent dextran 

(magenta), were incubated with 2 µM rhodamine labelled L- or D-EJP18, 2 µM L- or D-EJP18 

complexed with 60 nM BSA-Alexa 647 or 2 µM eGFP-EJP18 (all in green) in SFM for 1 h. Cells 

were chased by incubating in CM for a further 1 h before imaging in the presence of Hoechst 33342. 

Scale bar = 20 µm. Arrows indicate colocalised cargo and lysosomal dextran, solid arrows indicate 

non-colocalised cargo and hollow arrow heads indicate non-colocalised lysosomal dextran. Image 

intensities have been adjusted so that differences in colocalisation can be more evenly compared. All 

images are single sections. Enlarged overlays can be found as Supplementary Information, Figure S9. 
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Supplementary Movie M1: HeLa cells were incubated in serum free medium (SFM) for 1 h and 

imaged in presence of DRAQ7, a marker for membrane permeability. 

Supplementary Movie M2: HeLa cells were incubated with 20 µM L-EJP18 in SFM for 1 h and 

imaged in presence of DRAQ7, a marker for membrane permeability. 

Supplementary Movie M3: HeLa cells were incubated with 20 µM D-EJP18 in SFM for 1 h and 

imaged in presence of DRAQ7, a marker for membrane permeability. 

Supplementary Movie M4: HeLa cells were incubated with 20 µM R8-PAD in SFM for 1 h and 

imaged in presence of DRAQ7, a marker for membrane permeability. 

Supplementary Movie M5: MDA-MB-231 cells were incubated in serum free medium (SFM) for 

1 h and imaged in presence of DRAQ7, a marker for membrane permeability. 

Supplementary Movie M6: MDA-MB-231 cells were incubated with 20 µM L-EJP18 in SFM for 

1 h and imaged in presence of DRAQ7, a marker for membrane permeability. 

Supplementary Movie M7: MDA-MB-231 cells were incubated with 20 µM D-EJP18 in SFM for 

1 h and imaged in presence of DRAQ7, a marker for membrane permeability. 

Supplementary Movie M8: MDA-MB-231 cells were incubated with 20 µM R8-PAD in SFM for 

1 h and imaged in presence of DRAQ7, a marker for membrane permeability. 

Supplementary Movie M9: KG1a cells were incubated in serum free medium (SFM) for 1 h and 

imaged in presence of DRAQ7, a marker for membrane permeability. 

Supplementary Movie M10: KG1a cells were incubated with 20 µM L-EJP18 in SFM for 1 h and 

imaged in presence of DRAQ7, a marker for membrane permeability. 

Supplementary Movie M11: KG1a cells were incubated with 20 µM D-EJP18 in SFM for 1 h and 

imaged in presence of DRAQ7, a marker for membrane permeability. 

Supplementary Movie M12: KG1a cells were incubated with 20 µM R8-PAD in SFM for 1 h and 

imaged in presence of DRAQ7, a marker for membrane permeability. 
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