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Abstract: 

Improving the prediction accuracy of agricultural product futures prices is important 

for the investors, agricultural producers and policy makers. This is to evade the risks 

and enable the government departments to formulate appropriate agricultural 

regulations and policies. This study employs Ensemble Empirical Mode 

Decomposition (EEMD) technique to decompose six different categories of 

agricultural futures prices. Subsequently three models, Support Vector Machine 

(SVM), Neural Network (NN) and ARIMA models are used to predict the 

decomposition components. The final hybrid model is then constructed by  

comparing the prediction performance of the decomposition components. The 

predicting performance of the combination model were then compared with the 

benchmark individual models, SVM, NN, and ARIMA. Our main interest in this study 

is on the short-term forecasting, and thus we only consider 1-day and 3-days forecast 

horizons. The results indicated that the prediction performance of EEMD combined 

model is better than that of individual models, especially for the 3-days forecasting 

horizon. The study also concluded that the machine learning methods outperform the 

statistical methods to forecast high-frequency volatile components. However, there is 

no obvious difference between individual models in predicting the low-frequency 

components.  
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1. Introduction 

The first standardized futures contract in China was made in |May 1993 for Wheat. 

1993. There are currently around 20 categories of agricultural futures listed in China, 

with the trading volume of 978 million and turnover of 34.89 trillion yuan. 

 

Chinese agricultural futures market has significant impact on the world futures 

market, with the market share of 58% in the trading volume in the global agricultural 

market in 2011. As reported in the United States Futures Association in 2014, half of 

the top 20 trading volume of agricultural futures and options products are from China. 

Among them, vegetable, soybean, sugar, natural rubber, and palm oil ranked in the top 

5 products and soybean oil, eggs, cotton, yellow soybean and rapeseed oil listed the 7th, 

9th, 10th, 13th and 18th, respectively. The trading volume of the above ten categories 

amounted to more than 940 million, which is approximately 70% of the total trading 

volume of global agricultural futures and options. Therefore, the Chinese agricultural 

futures play an increasingly important role in the international market, and hence 

accurate forecast of prices is vital for producers and investors. 

 

The available studies on forecasting futures prices have been focused on the crude oil 

(Wei, 2012; Kang & Yoon, 2013; Sévi, 2014; Barunik & Malinská, 2016; Wen, Gong 

& Cai, 2016; Fileccia & Sgarra, 2018; Liu, Yang & Zhang, 2018; Ma et. al, 2018; Yang, 

Gong & Zhang, 2018), precious metals (Wei, 2009; Yang & Dai, 2013, Li & Li, 2015; 

Luo & Ye, 2015; Lin & Gong, 2017; Bonato et. al, 2018; Fang & Xiao, 2018; Fang, Yu 

& Xiao, 2018), stock index (Hamid & Iqbal, 2004; Chu et. al, 2009; Yang & Liu, 2014) 

, and carbon (Byun & Cho, 2013). The influence of crude oil on the agricultural futures 

prices have also been examined and the risks associated with agricultural future prices 

are investigated in (Huang, Huang & Wang, 2013; Yang & Tian, 2014a, 2014b; 

Cartwright & Riabko, 2015; Tian & Yang, 2016; Tian, Yang & Chen, 2017; Yang et. al, 

2017). 

 

 

With the increasing share of China's agricultural futures in the international market, 

increasingly more scholars began to pay attention to Chinese agricultural futures (Li & 

Lu, 2011; Bohl, Siklos & Wellenreuther, 2018). Xiong et al. (2015) applied the VECM-

MSVR technique to predict interval prices for the Chinese agricultural futures, and 

showed that the linear and non-linear information of the time series can be captured 

better by combination models. Teng & Zhou (2017) and Chu (2014) 

employed ARMA and ARMA (2,2)-Garch (1,1) models and Liang & Tai (2014) used 

the EGARCH-EWMA model to forecast soybean futures prices. Gao & Yu (2014) 

predicted cotton futures prices, using the EGARCH-EWMA and ARIMA models, and 

concluded that the performance of the EGARCH-EWMA model was better than that 

ARIMA. Teng & Zhou (2017), Chen & Huang (2010) compared econometric models 

with ARIMA and showed that ARIMA could achieve better results in the short-term 

forecasting.   
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With the developments of the theory and practice of artificial intelligence, these 

methods were also extensively employed in forecasting. For example, the wavelet 

method was applied to forecast the international crude oil prices and convolution neural 

network and back propagation neural network were employed to forecast the prices of 

zinc (Lin & Gong, 2017; Yousefi, Shahriar et al., 2005; Hamid & Iqbal, 2004). Yang & 

Dai (2013) optimized the SVM by the improved fish swarm algorithm, and predicted 

non-ferrous metal prices, showing improvement in the short term foresting.  Zhang 

(2012) further found that the multi-variate least squares support vector machine 

outperforms the uni-variate method in predicting maize prices. 

 

With the popularity and increasing use of combination models, ARIMA and 

EGARCH-EWMA model were applied by Gao & Yu (2014) to forecast the short-term 

prices of cotton. Xiong et.al (2015) implemented the vector error correction model to 

predict the linear feature of the futures prices, and multi-output support vector 

regression to fit the non-linear feature of cotton and corn prices in Zhengzhou 

Commodity Exchange in China. The research showed that the combination model 

outperforms the individual models. The combination model of ARIMA and LSSVM 

were implemented by Wang (2015) to predict carbon prices, again proving the 

advantage of using the combination methods. Yang & Liu (2014) used SYM8 wavelet 

to reduce the noise in the data, then BP neural network was trained and tested both on 

the de-noised and raw data. The result showed that the reducing noise could improve 

the forecast accuracy of stock index futures significantly. 

 

In this paper, the Ensemble Empirical Mode Decomposition (EEMD) technique  

was used to decompose the data into linear and non-linear characteristics, then different 

prediction models were applied on the decomposed components, choosing the best 

model for each component. The results of the combination model are then compared 

with the individual models of SVM, NN and ARIMA, as the benchmark models. The 

research framework of this paper is organized as follows. In Section 2, we briefly 

describe the hybrid models for forecasting time series data. Section 3 describes the 

agricultural futures prices data used in the study. The results of combination model and 

individual models are analyzed and compared in Section 4, conclusions are drawn in 

the final section. 

 

2. Methodology 

2.1 Ensemble Empirical Mode Decomposition 

In this section, we first briefly describe the original Empirical Mode Decomposition 

(EMD), which is proposed by Yeh et. al (2010). EMD is an adaptive method suitable 

for effectively capturing non-stationary and non-linear behavior in time series data. 

EMD decomposes the time series into n Intrinsic Mode Functions (IMF) with different 

frequency and amplitude, and a reminder as follows: 

 

1. Determine the maximum (minimum) values of the original time series. 

2. Apply a cubic interpolation and connect all the maximum (minimum) to generate 
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the upper(lower) envelope. 

3. Obtain the local mean values of the two envelopes 

         max1 min( ) ( ) ( ) / 2m t x t x t  = +      (1) 

4. Subtract the means obtained in (1) from the original time series data 

 1 1( ) ( ) ( )h t x t m t= −        (2) 

5. If 1( )h t  satisfies the IMF conditions, then repeat step 1 to step 4 until the 

remainder becomes a monotonic function and no more IMF can be extracted, in 

which the series is decomposed into n  independent IMFs and a remainder,   

      
1

( ) ( ) ( )
n

ii
x t h t r t

=
= +  

 An improved Ensemble Empirical Mode Decomposition (EEDM) is proposed by Wu 

& Huang (2009) to avoid aliasing produced by empirical mode decomposition, by 

adding noise to the data set. The process of ensemble empirical model decomposition 

is as following. 

1. A white noise series confirming to normal distribution )(tn   is added to the 

original time series, which generates a new time sequence as:  

( ) ( ) ( )n nx t x t t= +                      (3)     

   2.  Decompose the time series data obtained in (3) into IMFs. 

   3.  Repeat step 1 and step 2 m-times, with adding different white noise series. 

   4.  As the final result, compute the averages of the corresponding IMFs obtained     

       in the decomposition, step 2.   

 
1

1( ) ( )
m

n ini
h t h t

m =
=   

The advantage of EEMD is that the added noise cancel each other in the end results 

and the chance of mode mixing is significantly reduced. The final decomposition 

result is given as:  

 
1

( ) ( ) ( )
n

ii
x t h t r t

=
= +  

Where , 1,2,....ih i n=  are the final IMFs and r is the remainder.  

The intrinsic model functions and the remainder obtained by ensemble empirical 

model decomposition preserve the non-stationary and non-linear features of the original 

time series data while avoid the modal aliasing. 

 

2.2 Support Vector Machine 

Support Vector Machine (SVM) is a new machine learning method and has been widely 

used in many fields. SVM can deal with practical problems effectively, such as small 

sample problem, non-linear regression and high dimension pattern recognition Vapnik, 

(1998).By using the pre-selected kernel function, the input data is mapped into a high 
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dimensional feature space. Then the optimal classification plane which maximizes the 

distance between the hyperplane is constructed from this high dimensional feature 

space. Support vector machine method can be used in the linear and non-linear 

forecasting, the fitting equation is given below: 

  𝑓(𝑥) = 𝑤𝑇𝑥 + 𝑏                              (4)   

 

 Where w is the weight coefficients andb is the offset item. The weight parameters and 

the offset term can be obtained by introducing the Lagrangian function and find the 

optimized solution for the non-linear regression given below: 

 
*

1
( ) ( ) ( )

n

i i ii
f x a a k x x b

=
= − +                                               

 

Where ia  , *
ia  , b   are the optimum solution for the parameters and ( )ik x x  is the kernel 

function. 

 

2.3 Neural Network 

Neural network was first proposed by Rumelhant and Mcllelland in 1986 as a forward 

multilayer backward propagation network. Its structure includes input layer, hidden 

layer and output layer, and obtains the best fit to the data by adjusting the weights and 

thresholds of neural network nodes Rumelhart & McClleland (1986).The NN 

estimation procedure is briefly described below: 

 1. Compute the input signal 
kS   of the k hidden layer neuron by a weighted 

combination of all the inputs, i.e. 

 

  𝑆𝑘 = ∑ 𝑤𝑘𝑠𝑥𝑠
𝑚
𝑘=1 + 𝑑𝑘  

Where ksw indicates the k
th neuron weight of each neuron in input layer, and

kd is the

k th neuron’s threshold. 

2. Calculate the output value ky  from the hidden layer neuron node k as   

 ( )k ky f S=                                                      

Where f is activation function of the hidden layer. 

3. The error signal is transmitted back to each neuron through the network according 

to the original connection path, and the weight w between each neuron node and the 

threshold d of the node are modified continuously until the output result meets the 

expected result. 

                                                            

2.4 Autoregressive Integrated Moving Average Model 

The autoregressive integrated moving average model ARIMA(p,d,q) is an 

extension of the autoregressive moving average model ARMA(p,q) proposed by Box 

& Jenkins (1970), where d is the differencing parameter and p and q are orders of the 

lags. 
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𝑥𝑡 = 𝜑0 + 𝜑1𝑥𝑡−1 + 𝜑2𝑥𝑡−2 +⋯+ 𝜑𝑝𝑥𝑡−𝑝 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 +⋯+ 𝜃𝑞𝜀𝑡−𝑞 

 

Because most of the time series are non-stationary, it is necessary to transform the 

non-stationary time series data into the stationary time series by the d-order differencing 

and then apply ARMA model fitting procedure. The parameters p, q are chosen by 

Akaike information criterion (AIC) or Bayesian information criterion (BIC) in this 

paper.  

 

 

 

 

 

3. The Data and EEMD Decomposition 

 

The data used in this study are taken from Wind database. Six categories of 

agricultural futures are selected: vegetable meal, soybean meal, stalked rice, strong 

wheat, Zheng Cotton and early Indica rice. The data of futures prices are the daily 

closing prices and in all cases, our sample period starts from 27th November 2014 and 

ends in 11th October 2017. The number observations, presented in Figure 1, for each 

category is 700. The summary statistics of the data are given in Table 1. 

 

              Table 1: Descriptive Statistical of Future Prices 

 

Category Mean Standard 

deviation 

Minimum  Maximum  C.V. 

Vegetable meal 2167.1 199.29 1529 2746 9.2% 

 Soybean meal 2783.1 224.73 2323 3486 8.8% 

Stalked rice 3113.9 140.18 2762 3490 4.5% 

Strong wheat 2697.9 72.915 2566 2992 2.6% 

Early Indica rice 2575.0 206.89 1948 3096 8.0% 

Zheng Cotton 13798.5 1716.64 10070 16880 12.4% 

 

As can be seen from table 1, the standard deviation of the futures prices ranging from 

72.91 for strong wheat to 1716.64 for Zheng Cotton. The highest coefficient of variation 

is also obtained for Cotton as 12.4%, which indicates much more volatility and 

fluctuation for Zheng Cotton than the other five products. The average price of cotton 

also was 4 to 6 times higher than the other five products in this period. 

 

 In this study, we utilize the logarithm of future prices, with 80% of the data (560 

observations) used for modeling, the remaining 20% (140 observations) were used for 

testing. The EEMD method is used to decompose the transformed data. Figure 2 shows 

the decompositions of the six categories of future prices. 

 

It can be seen from Figure 2 that the futures prices of six categories of agricultural 
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commodities are decomposed into eight intrinsic model function components (from 

high to low frequency) and a remainder. The fluctuation period reflects the time length 

and the amplitude reflects the magnitude of the shock on the futures prices. The 

remainder displaying a monotonous increasing trend determines the long-term trend of 

future prices, which accords with the termination conditions of ensemble empirical 

mode decomposition. 

 

 

 

   

       

a. vegetable meal                          b. soybean meal 

     

c. stalked rice                               d. strong wheat 
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e. early Indica rice                                f. Zheng Cotton 

 

Figure 1: Future Prices for the Six Commodities 

                                                             

     

a. vegetable meal                           b. soybean meal 
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c. stalked rice                               d. strong wheat 

    

e. early Indica rice                                f. Zheng Cotton 

Figure 2: Intrinsic Model Functions of Future Prices 

4. Forecast Evaluation  

 

We now turn to the main issue of this study, which is to evaluate the optimal 

combination forecasting performance using the Ensemble Empirical Mode 

Decomposition (EEMD) technique. Our interest is on short term forecasting. Hence, 

we only consider one and three days ahead forecasting in this paper. The Neural 

network, Support Vector Machine and ARIMA models are estimated using the first 80% 

(560 observation) of the data. Post-sample forecasts for these models and from the 

optimal combination forecasts are computed for the remaining 20% (140 observations).   

The post-sample Relative Root Mean Square Errors (RRMSE) give below is used to 

measure performance.  
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Where ˆ
t kx +  is the k-step ahead forecast computed by the optimal combination method 

and t kx +  is the k-step ahead forecast obtained either by SVM, NN or ARIMA.  

 

4.1 Optimal Models for Intrinsic Model Function Components 

 

In this paper, radial basis kernel function is selected to find the optimal support vector 

machine model. We utilize Grid search (Gridsearch), Genetic Algorithm (GA) and 

Particle Swarm Optimization (PSO) to optimize the parameters. The input vector 

dimension varies from 1 to 5 and the cross-intersection method is used to optimize the 
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training set. The optimal dimension parameter and algorithm for SVM are chosen by 

comparing the prediction accuracy.  

 

NEWFF () function is utilized to establish the neural network model, the maximum 

training times is 5000, the learning efficiency is 0.01 and the training precision is 

selected as 0.001. Tansig and logsig functions are chosen as the activation function, the 

trainlm and the traingd are selected as the training functions of neural network. The 

number of neurons in the hidden layer is set from 2 to 10. The optimal activation 

function, training function and the number of neurons of each component for six 

categories is obtained by using cross experiment and comparing their prediction errors.  

 

For each IMF and remainder of agricultural products futures prices for six categories, 

the unit root and white noise tests are carried out. The BIC criterion is used to find the 

optimum number of lags and the established model is subjected to parameter estimation 

and parameter test in turn. The optimal ARIMA model were then employed to compute 

the forecasts.      

 

  Finally, the optimal combination prediction models corresponding to each 

component is chosen by comparing their prediction error (RMSE) The final optional 

forecast models are given as Table 2. (Further details about the selection of optimal 

models and forecasting performance of the decomposed components are available from 

the authors upon request). 
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Table 2: The Optimal Model for IMFs for the six categories 

 

 vegetable 

meal 

soybean 

meal 

stalked 

rice 

strong 

wheat 

early 

Indica rice 

Zheng 

Cotton 

IMF1 NN 

(L,TR,7) 

ARIMA  

(4,0,0) 

SVM(G,4

) 

SVM(G,4

) 

NN (L, 

TR,9) 

NN 

(L,TR,10) 

IMF2 NN 

(L,TR,9) 

SVM(P,5) NN 

(L,TR,5) 

NN 

(L,TR,3)  

SVM(GS,

5) 

NN 

(T,TR,5) 

IMF3 ARIMA 

(6,0,0) 

ARIMA  

(6,0,0) 

ARIMA 

(6,0,0) 

ARIMA 

(6,0,0) 

ARIMA 

(6,0,0) 

ARIMA 

 (6,0,0) 

IMF4 ARIMA 

(4,0,2) 

ARIMA  

(6,0,0) 

ARIMA 

(6,0,0) 

ARIMA 

(6,2,0) 

ARIMA 

(6,0,0) 

ARIMA 

 (6,2,2) 

IMF5 SVM(G,2

) 

SVM(G,5) ARIMA 

(6,0,0) 

SVM(G,4

) 

SVM(G,2) SVM(G,2) 

IMF6 ARIMA 

(6,0,0) 

SVM(G,2) ARIMA 

(6,1,0) 

ARIMA 

(5,1,0) 

ARIMA 

(6,1,0) 

ARIMA  

(6,1,0) 

IMF7 ARIMA 

(6,0,0) 

ARIMA  

(6,0,0) 

SVM(G,4

) 

ARIMA 

(5,0,0) 

ARIMA 

(6,0,0) 

ARIMA 

 (6,1,0) 

IMF8 ARIMA 

(4,0,0) 

ARIMA 

 (1,1,0) 

NN 

(T,TR,7) 

NN 

(L,TR,6) 

ARIMA 

(4,1,0) 

NN 

(T,TR,5) 

RE ARIMA 

(6,1,0) 

SVM(G,2) NN 

(L,GS, 2) 

NN 

(T,TR,5) 

ARIMA 

(2,1,0) 

NN 

(L,TR,5) 

Note:L indicates logsig function, TR indicates trainlm function, T indicates tansig 

function, P indicates PSO function, G indicates GA function and GS indicates 

GridSearch function. 

 

We can generally conclude from Table 2 that the non-linear models (SVM and NN) 

are more suitable for the high-frequency components, (IMF1 and IMF2), except for 

IMF1 of soybean meal (AR model). However, for the low frequency components and 

the remainder, there is no obvious pattern for selection of the individual models.  

 

 4.2 Forecast Results 

In this paper, we combine the forecast results for all components of each category 

decomposed by EEMD method and obtain the final combination prediction results for 

each agricultural commodity futures price. Support vector machine, neural network and 

ARIMA model are chosen as the benchmark models for comparison. Table 3 presents 

the post-sample Relative Mean Square Error (RRMSE) for the one-day ahead forecasts 

of the six agricultural products. 
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Table 3: One-step ahead post-sample RRMSE 

 

 

 

 

 

 

 

 

 

 

 

Diebold-Mariano test was employed to test the equality of forecast errors between EEMD and the 

benchmark models for individual product types. *: significant at 5% , **: significant at 1% level 

 

 

It can be seen from Table 3 that the prediction errors among the two individual 

models, support vector machine, neural network, are almost the same, and they are 

slightly better than the linear ARIMA model. The prediction error of the combined 

model is much smaller than that of support vector machine, neural network and ARIMA 

model for all the six products, which suggests the superiority of the combined model 

utilizing EEMD approach. In fact, the combined model outperforms the SVM, NN and 

ARIMA by 30%, 30% and 32% respectively.  

 

To further test the superiority of the proposed combination approach in this paper, 

we also computed the three-steps ahead forecasts for the futures realization prices of 

the six products, with SVM, NN and ARIMA as the benchmark models for comparison.  

Table 4 shows the post-sample RRMSE. 

  

Table 4: Three-step ahead post sample RRMSE 

 

 

 

 

 

 

 

 

 

 

 

 Diebold-Mariano test was employed to test the equality of forecast errors between EEMD and the 

benchmark models for individual product types. *: significant at 5% , **: significant at 1% level 

Category EEMD/SVM EEMD/NN EEMD/ARIMA 

Vegetable meal 0.6968** 0.7031** 0.6922** 

Soybean meal 0.6248** 0.6231** 0.6209** 

Stalked rice 0.6144** 0.6241** 0.5136** 

Strong wheat 0.6565 0.6558 0.6517 

Early Indica rice 0.8272** 0.8324** 0.8256** 

Zheng Cotton 0.7796** 0.7755** 0.7738** 

Average 0.7043 0.7067 0.6872 

Category EEMD/SVM EEMD/NN EEMD/ARIMA 

Vegetable meal 0.6166** 0.5417** 0.6051 

Soybean meal 0.4913* 0.4869* 0.5504* 

Stalked rice 0.6684** 0.6774** 0.6819** 

Strong wheat 0.6490 0.5796 0.6859 

Early Indica rice 0.7505 0.7143 0.8955 

Zheng Cotton 0.5024** 0.4764** 0.5024** 

Average 0.6199 0.5863 0.6657 
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We employed the Diebold-Mariano test to test the significance of 1-step ahead and 

3-steps ahead forecasting errors between EEMD and SVM, NN, ARIMA models, and 

reported the result in Table 3 and Table 4. For one-step ahead forecast error tests, we 

arrived the conclusions that the errors of EEMDs are at 1% significantly less than the 

three benchmark models for all commodities. For statistical tests of three-steps ahead 

post sample forecast errors, we concluded that for all commodities , the results are  

significant either at 1% or 5% level. Only for Strong Wheat and Early Indica Rice, the 

forecast errors are not significantly different.  

 

From Table 4, again the results support the superiority of the combined models with 

EEMD in all cases. In fact, for the 3 days ahead forecasts, the gains in the accuracy are 

more than the gains obtained for the 1 day ahead forecasts. They outperform the SVM, 

NN and ARIMA models by 38%, 42% and 33% respectively. The results for the hybrid 

non-linear models are generally better than the linear ARIMA. 

 

5. Conclusions 

In this study, the futures prices of 6 categories of vegetable meal, soybean meal, 

stem rice, strong wheat, early Indica rice and Zheng cotton were decomposed by 

utilizing the ensemble empirical mode decomposition approach. The combination 

models of support vector machine, neural network and ARIMA model were then used 

to predict the agricultural futures prices of this six categories. 

  

Comparing the combined models with the benchmark models, SVM, NN and 

ARIMA, showed that the prediction performance of the combination models is superior 

to that of individual models. With the increase of the prediction horizons, the superiority 

of the combined models using the empirical mode decomposition (EEMD) becomes 

more pronounced. The performance of the two non-linear models are better than the 

linear ARIMA, however, there is no obvious difference between the two non-linear 

models. In particular, the results indicate higher accuracy in forecasting high frequency 

components using SVM and Neural network than that of ARIMA models, which show 

that support vector machine and Neural Network are more suitable for the predicting 

high frequency components. 
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