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Abstract 

The optimised design of composite structures has attracted great interest from 

researchers, in the pursuit of developing more effective and efficient optimisation 

methods. In this thesis, two-stage layup optimisation methods based on the use of 

lamination parameters are developed for both single laminates and large-scale 

composite laminates with ply drop-offs.  

 

For the optimisation of a single laminate, the highly efficient exact strip software 

VICONOPT is employed in the first stage to minimise the weight of the structure with 

lamination parameters and laminate thicknesses as design variables. In the second 

stage, a new method which incorporates the branch and bound method with a layerwise 

technique is combined with a checking strategy to logically search the stacking 

sequences satisfying the layup design constraints to match the optimised lamination 

parameters using four ply angles (i.e. 0°, 90°, +45° and −45°). In addition, the 10% 

constraint in terms of the feasible regions of the lamination parameters for the four 

predefined ply angles is studied and imposed in the first stage optimisation. The 

superior performance of this method is demonstrated by comparison with a stochastic-

based genetic algorithm.  

 

For more complex blended composite laminates, the multilevel optimisation software 

VICONOPT MLO is improved to include lamination parameters and laminate 

thicknesses as design variables and used in the first stage optimisation to minimise the 

weight of the structure. During this iterative multilevel optimisation, the finite element 

software ABAQUS is used to conduct the static analysis of the whole structure to 

obtain load distributions at the start of each design cycle, based on which the exact 

strip software VICONOPT is then employed to optimise each of the component panels. 

In the second stage optimisation, whilst ply drop-off between adjacent panels causes 

ply discontinuity and needs to be avoided, ensuring ply continuity across adjacent 

panels significantly complicates the process of optimising the stacking sequences. 

Accordingly, a novel Dummy Layerwise Branch and Bound method (DLBB) which 

incorporates the dummy layerwise technique with the branch and bound method is 

developed to logically search the blended stacking sequences for the whole structure 

to match the optimised lamination parameters. This two-stage method is applied to a 

benchmark wing box to demonstrate its effectiveness.  

 

To improve the efficiency of the second stage optimisation for these blended 

composite laminates, a novel parallel computation method DLBB-GAGA is developed. 

Firstly, a Guide-based Adaptive Genetic Algorithm (GAGA) which stochastically 

searches the stacking sequences to match the target lamination parameters is developed. 

After this, GAGA is implemented in a parallel process with the DLBB method in the 

parallel DLBB-GAGA method, combing the advantages of both the logic and 

stochastic-based searches. Comparisons are made between the three methods, results 

demonstrate that benefit is gained from the combination of the two different methods. 
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Chapter 1                                                             

General Introduction 

1.1 General background 

Composite materials are increasingly being adopted in the aerospace, marine, 

automotive and civil industries because of their outstanding mechanical performance 

including high strength-to-weight and stiffness-to-weight ratios, strong resistance to 

corrosion, fatigue and impact, as well as low thermal expansion (Jones 1999). 

Composite materials, as the name implies, are made up at least two different types of 

material, providing advantages in performance over that of the individual constituent 

materials (Gürdal et al. 1999). As one of the most common composite materials, 

composite laminates are stacked with a set of layers each of which is composed of 

matrix material and fibres which can be placed with different orientations for different 

layers as shown in Figure 1.1. The most significant benefit derived from the use of 

composite laminates over conventional materials is that they can be designed to meet 

different requirements by tailoring their lay-up to achieve different stiffnesses and 

strengths. 
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Figure 1.1 The composition of an example composite laminate. 
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Minimising the weight of vehicles is always a vital problem, which relates to the 

reduction of CO2 emissions and the cost of material and fuel. Over a lifetime of 20 

years, a reduction of 1 tonne of weight in an aircraft can achieve a reduction of 120 

tonnes in CO2 emissions and roughly 2.7 million pounds worth of fuel (Jenny 2014). 

According to a report from the International Civil Aviation Organization (ICAO 2013), 

the global fuel consumption of aircraft will be between 216 and 239 Mt in 2020, 

causing CO2 emissions of between 682 and 755 Mt. Besides this, the CO2 emissions 

are predicted to be three times higher in 2050 than nowadays. In order to alleviate this 

problem, targets of fuel efficiency for different periods are set by ICAO, for example 

the fuel efficiency is expected to improve by an average rate of 1.76 percent per annum 

for the period between 2020 and 2030. In 2016, ICAO (ICAO 2016) adopted a Carbon 

Offsetting and Reduction Scheme for International Aviation (CORSIA) to urge its 

member states to make more contribution to the fight against the growth of fuel 

consumption and CO2 emissions in aviation.  

 

In order to meet the growing demand of developing eco-friendly and economical 

aircraft, the application of lightweight materials to replace conventional metallic 

materials has been explored over the last few decades. As the best alternative material, 

composite laminates have been extensively used in aircraft. For example, in the Airbus 

A350 XWB, composite laminates made of carbon fibre reinforced polymer (CFRP) 

account for 53 percent of its airframe (Hellard 2008), achieving a 25 percent reduction 

in fuel burn compared with the conventional aluminium airframe (Poulton 2018). As 

a star product of Boeing, the Boeing 787 Dreamliner comprises 50 percent CFRP 

laminate in its airframe even including doors and interiors (Hawk 2005). With related 

technologies (e.g. maintenance and repair) becoming mature, larger amounts of 

laminated composite materials will be incorporated into aircraft structures in the future 

(Morimoto et al. 2017). 

 

When designing an aircraft, there are three successive stages as shown in Figure 1.2: 

conceptual design, preliminary design, and detailed design. First, many different 

design concepts are proposed in the conceptual design stage during which the basic 

structural concepts and loading information as well as the chosen materials are defined 

for the aircraft. In the following preliminary design stage, a great number of candidate  
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Conceptual design Preliminary design Detailed design

 

Figure 1.2 The three successive stages for designing an aircraft. 

 

 

designs are analysed and optimised subject to multidisciplinary requirements in order 

to obtain the most appropriate design. Large numbers of loading cases are considered 

in different types of analyses at this stage to model various possible situations. Finally, 

the complete design information, which includes every single detail of the selected 

structural components and can be used directly to guide production, is obtained in the 

detailed design stage. It is necessary to use the most powerful analysis and design 

methods such as nonlinear Finite Element Analysis (FEA) in the detailed design stage. 

Compared with the detailed design stage, the preliminary design stage needs less 

detailed analyses but has to deal with larger numbers of design cases. Therefore, 

reliable and more efficient design methods need to be employed in the preliminary 

design stage. 

 

As laminated composite structures are increasingly used in the airframe, the optimised 

design of them becomes very significant, and can achieve further weight reductions in 

the aircraft. However, layup optimisation design is still a challenging task, especially 

the development of highly efficient design tools. To reduce weight or improve 

structural performance, the ability to vary the stiffness of laminated composite 

structures can be used to expand the design space by changing the number and fibre 

orientations of the built-up plies. Consideration of design cost and manufacturing 
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limitations means that the fibre orientations in laminated composite structures are 

usually restricted to 0°, 90°, +45° and −45° and the ply thicknesses are always fixed. 

In addition to this, in order to prolong the service life of these laminated composite 

structures and avoid structural damage such as delamination and cracking, a number 

of layup design constraints which provide rules and limitations on choosing the layup 

for single laminates should be considered in the optimisation (Niu 1992). For example, 

there is a limitation on the maximum number of successive plies with the same fibre 

orientation in the laminate to minimise edge splitting. Moreover, for large scale 

laminated composite structures such as the wings and fuselage, the presence of ply 

drop-offs further complicates this optimisation as the continuity of plies across 

adjacent laminates needs to be taken into account. Otherwise, the stacking sequence 

mismatches of adjacent laminates cause stress concentrations and also increase the 

level of difficulty in the manufacturing process. Implementing a continuity constraint 

between adjacent laminates was firstly termed ‘blending’ by Kristinsdottir et al. (2001). 

Consideration of these layup design requirements narrows the design space; however, 

the discrete nature and strict rules for stacking sequences inevitably cause more 

difficulties in the optimisation process. 

 

Genetic algorithms (GAs) have become the most popular method for optimising 

stacking sequences because of their effective performance in discrete processes. 

However, as a stochastic search method, GA incur high computational costs and 

cannot prove that the optimised stacking sequences are globally optimal. Furthermore, 

with the development of computational technology, parallel computation in which 

several executions of processes are able to operate simultaneously provides a good 

way to improve the efficiency of the optimisation design. Research on developing 

parallel computation methods for layup optimisation focuses on parallel GAs in which 

the optimisation task is divided into several parts which are then distributed to GAs 

running on parallel processors. Although parallel GAs can achieve improvements in 

efficiency, their inherent shortcomings in the stochastic searching process cannot be 

overcome. 

 

The large number of layers in a laminate results in a large number of design variables 

in layup optimisation, making the process time consuming. To reduce the number of 

design variables in the optimisation, lamination parameters which are independent of 
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the number of layers can be employed instead of the individual ply angles (Tsai et al. 

1968). When using lamination parameters as design variables, the optimisation is 

usually divided into two stages where the continuous optimisation of the lamination 

parameters and laminate thicknesses is implemented in the first stage. The optimised 

lamination parameters are then used as targets for the discrete optimisation of the 

stacking sequences in the second stage, the aim of which is to find stacking sequences 

to match the lamination parameters determined in the first stage as closely as possible. 

  

In contrast to finite element software which requires a large computational resource, 

the highly efficient panel analysis and optimum design software VICONOPT 

(Williams et al. 1991) provides a potential alternative for layup optimisation and has 

been extended to include the use of lamination parameters as design variables 

(Kennedy et al. 2010). Earlier limitations in terms of the ability of the code to model 

three dimensional large scale structures have been addressed through the development 

of VICONOPT MLO (Fischer 2002) which combines FE analysis of a whole structure, 

such as an aircraft wing, with VICONOPT optimum design of each of the constituent 

prismatic stiffened panels, thus avoiding the drawbacks of both techniques. However, 

lamination parameters have not been used as design variables in VICONOPT MLO. 

Besides, the stacking sequence is fixed in VICONOPT MLO optimisation and the 

thickness of each layer is optimised continuously, so no allowance has been made for 

practical laminate design rules. 

1.2 Thesis objectives 

From the above, the aim of this thesis is to develop more efficient and reliable two-

stage layup optimisation design methods for laminated composite structures to obtain 

more practical designs based on the use of lamination parameters. 

 

For a single laminate, instead of using the stochastic search method in the second stage, 

a more effective and efficient layup optimisation method which performs logic search 

will be developed, with consideration of the layup design constraints. Correspondingly, 

where possible in the first stage optimisation in VICONOPT, the relationships between 

lamination parameters and layup design constraints will be explored.  
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For large scale composite laminates with ply drop-offs, the objective of the first stage 

optimisation is to introduce lamination parameters as design variables into 

VICONOPT MLO to expand its design space. Then in the second stage, as the 

blending constraint significantly complicates the process of searching the layups, the 

layup optimisation method will be extended for optimising these more complex 

blended layups.  

 

Moreover, in order to further improve the efficiency of the second stage blending 

optimisation, a parallel computation method which is able to combine the advantages 

of both logic and stochastic-based search methods is proposed. To do this, a guide-

based blending method incorporating an improved adaptive genetic algorithm will be 

developed and implemented in the parallel process with the extended layup 

optimisation method in order to achieve better optimisation results. 

1.3 Thesis structure 

This thesis has been divided into eight chapters. Following the general introductions 

in this chapter, Chapter 2 provides a literature review of the optimisation of laminated 

composite structures.  

 

In Chapter 3, a background to the theories of optimisation is presented, including the 

mechanics of composite laminates, the use of lamination parameters to express 

stiffness matrices, and the feasible direction method (Vanderplaats and Moses 1973) 

which is the embedded continuous optimisation method used in VICONOPT. The 

principles of two discrete optimisation methods, GAs and the branch and bound (BB) 

method are also described. Finally, the mechanism of parallel computation is 

introduced at the end of the chapter. 

 

Chapter 4 gives a description of the main features of VICONOPT. The fundamental 

theories of VICONOPT are described first. Then, as the two basic analyses available 

in VICONOPT, VIPASA and VICON are introduced and the differences between 

them are presented. After that, the basic optimisation features of VICONOPT are 

described, followed by an introduction to employing lamination parameters as design 
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variables in VICONOPT. Finally, the optimisation features of VICONOPT MLO are 

presented.  

 

Chapter 5 presents a two-stage layup optimisation method for a single laminate. 

VICONOPT is employed to optimise the lamination parameters and laminate 

thicknesses in the first stage optimisation. After that, in order to ensure the optimised 

layup obtained in the second stage can be used in practice, several layup design 

constraints are added into the Layerwise Branch and Bound method (LBB) combining 

the branch and bound method with a global layerwise technieque. In addition, the 

feasible region for the lamination parameters with a layup design constraint which 

requires a minimum percentage of each of four possible ply orientations is studied. 

Good performance of this method is illustrated by comparison with a GA for a range 

of problems with different combinations of the layup design constraints, as well as 

comparisons with the results of other researchers’ work (Herencia et al. 2007).  

 

In Chapter 6, the two-stage method is extended for optimising large scale blended 

laminates. The optimisation capability of VICONOPT MLO is improved to use 

lamination parameters and laminate thicknesses as design variables instead of the real 

layup and this software rather than VICONOPT is used in the first stage of the 

optimisation. Then to determine the complex blended layups in the second stage, a 

new Dummy Layerwise Branch and Bound method (DLBB) is presented. This two-

stage method is applied to a wing box benchmark problem (Fischer et al. 2012) to 

demonstrate its efficacy and potential. 

 

Chapter 7 describes a parallel computation method developed for the second stage 

optimisation for blended laminates. Firstly, a Guide-based Adaptive Genetic 

Algorithm (GAGA) is developed for searching the layups to match the target 

lamination parameters obtained from the first stage optimisation. After that, this 

stochastic-based search method GAGA is employed in a parallel computation method 

to run in parallel with the logic-based search method DLBB developed in Chapter 6 to 

optimise the layups of blended laminates, combining the advantages of both types of 

searches. Results compare the three methods, which are presented after the 

descriptions of the methods.  
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Chapter 8 offers conclusions for this work along with recommendations for the 

development of the proposed methods in future work. 
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Chapter 2                                                         

Literature Review 

As composite structures can be specified for particular applications by tailoring their 

layups, the optimisation of composite structures has attracted a large amount of 

research and many optimisation methods have been developed. In this chapter, a 

review of the literature on the research related to this thesis is presented.  

2.1 Continuous optimisation for composite structures 

In contrast to the optimisation of isotropic panels which mainly focuses on the 

structural geometry and cross sectional dimensions, the optimisation of composite 

structures pays more attention to their layups which dominate their structural 

performance. Layup optimisation is always a complex and challenging task because 

of its non-convex, non-linear, multi-dimensional nature in the space of the ply angles 

and the large number of design variables which can be both continuous and discrete. 

In some research, especially earlier research, layup optimisation is treated as a 

continuous optimisation problem by allowing the ply thicknesses or ply angles to have 

continuous values, for which mathematical programming methods (MP) are generally 

required. Schmit and Rarshi (1977) minimised the weight of symmetric and balanced 

laminates by the continuous optimisation of the ply thicknesses for some preselected 

layups by using a linear programming (LP) method. The non-linear strength and 

buckling constraints needed to be linearised for the linear programming method in the 

optimisation. Hu (1991) employed a sequential linear programming (SLP) method 

together with a move-limit procedure to conduct a layup optimisation for buckling load 

maximisation with the ply angles treated as continuous design variables. The finite 

element method (FEM) was employed for the buckling analysis in the optimisation 

process. As layup optimisations are always non-linear optimisation problems, non-

linear mathematical programming methods are more widely used. Kicher and Chao 

(1971) conducted a continuous optimisation of ply angles and structural dimensions 

for the weight minimisation of composite cylinders using a quasi-Newton (QN) 
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method (Fletcher and Powell 1963). Hirano (1979) maximised the buckling load of 

composite laminates by optimising the ply angles, which have continuous values, 

using Powell’s conjugate direction method (Powell 1964). Powell’s method was also 

used by Sun and Hansen (1988) and Sun (1989) for the buckling load maximisation of 

laminated cylindrical shells with continuous ply angles as design variables. As 

Powell’s conjugate direction method doesn’t require the derivative of the objective 

function, fast convergence can be achieved. Bruyneel and Fleury (2002) employed a 

sequential convex programming method (SCP) based on the method of moving 

asymptotes (MMA) for the continuous optimisation of composite structures in which 

the design variables could be the structure’s geometry, ply thickness or ply angles. As 

the most commonly used gradient-based optimisation method, sequential quadratic 

programming (SQP) was also employed for the continuous layup optimisation 

problem in the works of Mahadevan and Liu (1998); Liu (2001) and Blasques and 

Stolpe (2011) to minimise the weight of composite structures with continuous ply 

thicknesses and ply angles as design variables. 

 

The method of feasible directions (MFD) (Vanderplaats and Moses 1973) was also 

found to be an effective continuous optimisation method for composite structures 

(Vanderplaats and Weisshaar 1989). It then played an important role in further 

research. Fukunaga and Vanderplaats (1991) optimised ply thicknesses and ply angles 

with continuous values to minimise the weight of composite laminates subject to 

strength constraints using MFD. Kumar and Tauchert (1991) utilised MFD to optimise 

continuous ply thicknesses and ply angles for the maximisation of buckling capacity, 

the buckling solutions being obtained by the Rayleigh-Ritz method. Spallino et al. 

(1999) optimised the continuous ply thicknesses of some preassigned layups to 

minimise weight using MFD. Topal and Uzman (2007; 2009) conducted layup 

optimisations to achieve buckling load maximisation by changing the continuous ply 

angles under different boundary conditions. MFD was employed for the optimisation 

processes along with the FEM for the buckling analysis. In Butler and Williams (1992), 

MFD was employed as the underlying method in VICONOPT for the continuous 

optimisation of composite laminates, and the exact strip method was employed for the 

buckling analysis in the optimisation process. As a common drawback of the gradient-

based optimisation methods, the continuous layup optimisations may trapped in a local 

optimum, however, this can be compensated for using different starting points. 
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Continuous layup optimisation can also be implemented with lamination parameters 

and polar parameters as design variables. A review of using lamination parameters for 

layup optimisation is given in Section 2.4, but the utilization of polar parameters is not 

reviewed in this thesis. A comprehensive review can be found in Albazzan et al. (2019). 

2.2 Discrete optimisation for composite structures 

Because of the manufacturing requirements for composite structures, ply angles are 

usually restricted to specific values and the thickness of an individual ply is fixed in 

practice. Discrete layup optimisation is therefore more meaningful for practical design 

and so has attracted more interest from researchers. Due to the presence of discrete 

design variables, the continuous optimisation methods mentioned above are not 

appropriate for such optimisations, and discrete optimisation methods should be 

explored. Park (1982) optimised two ply angles with opposite values to maximise the 

strength of composite laminates, all the values of the ply angle being investigated by 

using a enumeration method. Graesser et al. (1991) employed a random search method 

to optimise the ply angles to obtain laminates with the least number of plies which 

could satisfy specified strength constraints. Haftka and Walsh (1992) and Nagendra et 

al. (1992) used the integer programming method for the buckling optimisation of 

symmetric and balanced composite laminates. When searching the stacking sequence 

during the optimisation process, the continuity layup design constraint, limiting the 

maximum number of successive plies with the same fibre orientation to be four, was 

expressed mathematically by four binary variables coded for the four permitted ply 

orientations. Kim and Hwang (2005) optimised stacking sequences to minimise strain 

energy using the branch and bound method based on an ideal layer procedure. The 

ideal layers, initially assigned with unachievable stiffnesses, were replaced by real 

layers in the sequence. Hence the lower bounds of branches inevitably increase, and if 

any exceeds the upper bound the branch can be discarded directly without further 

exploration. In contrast to the enumeration method, the bounding process in the branch 

and bound method prunes the poor branches in the decision tree which have been 

proved unable to improve on the objective function, so improving the efficiency. 
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Over the past decades, genetic algorithms (GAs) based on a heuristic search have 

become the most popular method for layup optimisation problems. Callahan and 

Weeks (1992) conducted layup optimisation to minimise the weight of composite 

laminates under strength and stiffness constraints using GAs. Le Riche and Haftka 

(1993) optimised the stacking sequences of composite laminates for buckling load 

maximisation subject to strain and continuity constraints using GAs. A permutation 

operator which shuffles the order of plies was firstly developed for stacking sequence 

optimisation, achieving reductions in the cost of the genetic search. Nagendra et al. 

(1996) applied GAs for the minimum weight design of stiffened composite laminates 

subjected to buckling and strain constraints. Todoroki and Sasai (1999) maximised the 

buckling load of balanced composite cylinders subject to continuity and another 

disorientation layup design constraint which requires the angle difference between two 

adjacent plies to be no greater than 45° using GAs. The constraints were implemented 

with a repair procedure instead of using the conventional penalty method. In 

Soremekun et al.’s work (2001), an elitism procedure which can propagate the best 

results to the next generation in a GA was improved to enhance its searching capability. 

The improved GAs were applied to a layup optimisation for the buckling load 

maximisation of a simply supported laminate, and results suggested that the genetic 

search had a better performance. Park et al. (2008) used GAs with a memory technique 

and an improved permutation operator to improve the efficiency of minimum weight 

optimisation of composite laminates. In Walker and Smith (2003); Deka et al. (2005); 

Almeida and Awruch (2009), multi-objective layup optimisation methods for 

composite laminates were explored, in which GAs were utilised in combination with 

FEM. Although FEM has been a common analysis method for layup optimisation, it 

incurs a high computational cost. As GAs require a huge number of fitness function 

evaluations during the iterative search process, employing FEM for structural analysis 

makes the searching process time-consuming. In Abouhamze and Shakeri (2007), GAs 

were associated with an artificial neural network (ANN) which was trained by several 

FEAs and used for fitness function evaluation to improve the efficiency of the 

optimisation for maximising the natural frequency and buckling load of cylindrical 

laminates. In Liu et al.’s work (2008), the highly efficient exact strip software 

VICONOPT was employed for the fitness function evaluation of GAs in a two-stage 

layup optimisation subject to strength, buckling and layup design constraints. In the 

first stage, the laminate was treated as an equivalent orthotropic panel for which 
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continuous optimisation was conducted on the cross sectional dimensions using the 

design option of VICONOPT. Then, in order to substitute the orthotropic panel with a 

laminate, GAs were used to select discrete stacking sequences in the second stage 

during which the structural performance of the laminate was evaluated by the analysis 

option of VICONOPT. Irisarri et al. (2011) employed GAs for the optimisation of 

stiffened composite laminates, the fitness functions being obtained based on 

approximated structural performances. Sadr and Bargh (2012) conducted layup 

optimisation for maximising the natural frequency of symmetric laminates using GAs 

along with the finite strip method for structural analysis. Le Manh and Lee (2014) used 

GAs combined with isogeometric analysis in layup optimisation for maximising the 

strength of composite laminates. In order to improve the efficiency of layup 

optimisation with GAs, some efforts have been made to develop adaptive GAs (AGAs). 

As the performance of GAs is mainly dependent on the parameters chosen, an AGA 

which provides variable probabilities for crossover and mutation according to the 

performance of each chromosome was firstly introduced in Srinivas and Patnaik 

(1994). Hwang et al. (2014) applied AGAs for stacking sequence optimisation for 

maximising the natural frequencies of composite laminates. An et al. (2015) utilised 

AGAs for the minimum weight design of composite laminates under strength and 

buckling constraints. 

 

Apart from GAs, some other heuristic search methods for layup optimisation have also 

been studied. Aiming at obtaining the maximum buckling capacity of composite 

laminates, Erdal and Sonmez (2005) conducted stacking sequence optimisation by 

using the simulated annealing (SA) algorithm. In Akbulut and Sonmez (2011), SA was 

applied for the minimum weight design of composite laminates subject to in-plane and 

out-of-plane loadings with the number of plies and ply angles as design variables. In 

the early stage of the SA optimisation process, poor results are also acceptable with a 

probability, to prevent the premature convergence. Suresh (2007) and Kathiravan and 

Ganguli (2007) employed the particle swarm optimisation (PSO) algorithm for the 

optimal design of a composite box-beam structure with the ply angles as design 

variables. Chang et al. (2010) conducted stacking sequence optimisation for 

maximising the buckling loads of composite laminates under a continuity constraint 

using PSO. A memory procedure was applied to prevent evaluating repeated layups to 

reduce solution time. Bargh and Sadr (2012) maximised the natural frequency of 
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composite laminates by optimising their ply angles using PSO. The ant colony 

algorithm (ACA) was utilised in Aymerich and Serra (2008); Wang et al. (2010) and 

Sebaey et al. (2011) for layup optimisation in maximising the buckling load capacity 

of composite laminates. Fakhrabadi et al. (2013) employed the discrete shuffled frog 

leaping (DSFL) algorithm for minimising the weight and cost of composite laminates 

simultaneously with ply thickness, ply angles and number of plies as design variables. 

The PSO, ACO and DSFL methods are all population-based methods based on 

mimicking the behaviours of animals in nature. Pai et al. (2003) employed the tabu 

search (TS) method to optimise the stacking sequence of symmetric and balanced 

composite laminates for maximisation of buckling and strength capacity under 

continuity constraint. The advantage of the TS method is that the previously searched 

results are not allowed to recur in the following steps.  Rao and Arvind (2005) 

investigated the application of the scatter search (SS) method to the layup optimisation 

of composite laminates for both maximisation of the buckling capacity for a certain 

thickness and minimisation of the weight subject to the required constraints.  

Hemmatian et al. (2014) used the gravitational search algorithm (GSA) to conduct 

layup optimisation to achieve minimum weight and cost for composite laminates. Jing 

et al. (2015b) proposed a permutation search algorithm for the buckling load 

maximisation of composite laminates. In the work of Almeida (2016), the harmony 

search algorithm (HSA) was utilised for stacking sequence optimisation for 

maximising the buckling performance. A new solution is generated according to all 

the solutions in the current group. In addition, hybrid methods which combine the 

merits of some of the above methods have also been explored. The SA was combined 

with TS in  Rao and Arvind (2007) to maximise the buckling load of composite 

laminates under strain and continuity constraints, so once a result is evaluated in SA 

process it will not be revaluated again, reducing the computational cost. To improve 

the efficiency of layup optimisation, hybrid GA-PSO methods have been developed 

for weight minimisation (Barroso et al. 2017) as well as buckling load maximisation 

(Vosoughi et al. 2017), the mutation operator of GA is implemented into the PSO 

optimisation process to provide more diversity to the solutions. Moreover, instead of 

using a heuristic optimisation method, Bruyneel et al. (2012) optimised the discrete 

ply angles of composite laminates based on a topology optimisation technique which 

defined the stiffness of each ply as a weighted sum of the candidate stiffness properties 
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related to different ply angles, converting the discrete ply angle optimisation into a 

continuous optimisation of weighting factors.  

2.3 Multilevel optimisation 

When designing large scale composite structures such as an aircraft wing or fuselage 

which includes complex geometry and a large number of design variables, multilevel 

optimisation based on the idea of divide and conquer provides a good solution. 

Multilevel optimisation consists of design iterative loops between the global level 

process which implements optimisation or analysis for the entire structure and the local 

level process which separately optimises the structural components in detail, 

decomposing a large optimisation problem into several small ones. Multilevel 

optimisation was proposed in the 1970s, and was employed for the minimum weight 

design of an aircraft wing (Giles 1971) and fuselage (Sobieszczanski and Leondorf 

1972). Schmit and Mehrinfar (1982) developed a multilevel optimisation method for 

minimising the weight of an aircraft wing made of stiffened composite laminates. In 

Watkins and Morris (1987); Kam and Lai (1989) and Antonio et al. (1995), multilevel 

optimisation was employed to optimise ply thicknesses and angles which were taken 

as continuous design variables for achieving minimum weight design of large 

composite structures. In order to improve the efficiency of the multilevel optimisation, 

a response surface method was used to replace the time consuming buckling analysis 

techniques in the optimisation process in Balabanov et al. (1996); Ragon et al. (1997) 

and Liu et al. (2000). In Liu et al.’s work (2000), a two level optimisation method 

based on the response surface method was developed, with continuous optimisation 

for ply thicknesses carried out to minimise the weight of the whole wing structures at 

the global level, and then stacking sequences with maximum buckling capacity 

obtained by discrete optimisation using a permutation GA during a local level 

optimisation. Gasbarri (2009) employed multilevel optimisation to determine the 

stacking sequences which achieved maximum flutter speed for an aircraft wing.  

 

In the 1990s, the Group for Aeronautical Research and Technology in Europe 

(GARTEUR) reviewed and investigated multilevel optimisation for the design of 

composite aircraft wings in collaboration with industry and academia. The GARTEUR 
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Action Group published their research in a three volume report (GARTEUR 

1997a,b,c), and multilevel optimisation employing existing analysis and optimisation 

software for the overall system level and more detailed panel level was recommended. 

In response to this, the multilevel optimisation software VICONOPT MLO (Fischer 

2002) was developed at Cardiff University. The finite element software 

MSC/NASTRAN (MSC Software Corporation 1999a) was employed to implement 

the static analysis of the whole structure at system level, and the highly efficient finite 

strip software VICONOPT was used for the optimum design of each of the structure’s 

components based on the results of this static analysis at panel level. The multilevel 

optimisation was based on the interactions of the design variables and loading 

conditions between these two levels during the iterative process. In its later version, 

VICONOPT MLOP (Qu et al. 2011), the multilevel optimisation was extended to 

include postbuckling effects.  

2.4 Lamination parameters 

In order to reduce the large number of design variables in composite layup 

optimisation, lamination parameters which are independent of the number of plies 

were first introduced in Tsai et al. (1968). The stiffness matrix can then be expressed 

as a linear function of these lamination parameters instead of the conventional set of 

equations with a large number of ply orientations. Grenestedt and Gudmundson (1993) 

demonstrated that the optimisation problem is convex if the lamination parameters are 

employed as design variables.  

2.4.1 Feasible regions of lamination parameters 

The feasible regions of lamination parameters should be treated as constraints when 

employing lamination parameters as design variables. At the very beginning of the 

work on lamination parameters, the feasible regions of two in-plane parameters (Miki 

1982) and two out-of-plane parameters (Miki 1985) were defined for symmetric 

laminates which excluded extension-bending coupling. Then the feasible regions of 

four in-plane or four out-of-plane lamination parameters of symmetric laminates were 

determined in Fukunaga and Sekine’s works (1992; 1994). For specially orthotropic 

laminates which exclude shear-extension, extension-bending, and bending-twisting 



 Chapter 2 

17 

 

couplings, the feasible regions of the two membrane and two bending lamination 

parameters and the relations between the membrane and bending lamination 

parameters were studied in Fukunaga and Vanderplaats (1991). Later, in Grenestedt 

and Gudmundson (1993), more accurate relationships between the lamination 

parameters were presented. Up to now, the most accurate feasible regions of 

lamination parameters for specially orthotropic laminates were obtained by Wu et al. 

(2013). In later work (Raju et al. 2014), the shear-extension and bending-twisting 

coupling effects were considered, and the explicit feasible regions of the four 

membrane and four bending lamination parameters were determined. 

 

In Diaconu et al. (2002), the feasible regions in the general design space of the total 

twelve lamination parameters were first presented. Setoodeh et al. (2006) obtained 

approximated feasible regions of lamination parameters which were expressed as 

linear inequality constraints. Liu et al. (2004) obtained a hexagonal feasible region for 

the out-of-plane lamination parameters for given amounts of 0°, 90°, +45° and −45° 

plies. After that, explicit expressions between the membrane, coupling and bending 

lamination parameters when the ply angles were restricted to 0°, 90°, +45° and −45° 

were determined in Diaconu and Sekine (2004). Bloomfield et al. (2009) investigated 

the feasible regions of lamination parameters for any predetermined set of ply angles, 

and as an example, the feasible regions of lamination parameters for ply angles 

restricted to 0°, ±30°, ±45°, ±60° and 90° were presented.  

 

One shortcoming of using lamination parameters as design variables is that it is hard 

to implement the strength and layup design constraints into the feasible regions, 

because these constraints are usually ply-dependent problems. Ijsselmuiden et al. 

(2008) studied the feasible regions of lamination parameters when implementing the 

Tsai-Wu strength criteria to the optimisation problem, although the obtained domains 

in the feasible regions were conservative. In Abdalla et al.’s work (2009), the feasible 

regions of lamination parameters with consideration of the layup design constraint 

requiring each ply angle (without restricting the values to 0°, 90°, +45° and −45°) to 

comprise a proportion of at least 10% of the total layup for balanced laminates were 

obtained. Both the feasible regions obtained for strength and those based on layup 
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design constraint in these two pieces of research were obtained regardless of 

restrictions on ply angles.  

2.4.2 Optimisation methods based on lamination parameters 

Miki and Sugiyama (1993) maximised the stiffness and strength of symmetric and 

orthotropic laminates using a graphical design approach based on the feasible regions 

of two flexural lamination parameters. In Kogiso et al.’s stacking sequence 

optimisation (1994), an approximation method based on two flexural lamination 

parameters was employed to reduce the cost of buckling evaluations in GAs. Fukunaga 

et al. (1995) obtained the maximum buckling performance of symmetric laminates by 

optimising four flexural lamination parameters using MFD. The stacking sequences 

corresponding to the optimised lamination parameters were then obtained by 

investigating the geometrical characteristics of the feasible regions of the lamination 

parameters. Foldager et al. (1998) minimised the compliance of laminates with ply 

angles as design variables. The lamination parameters of the optimised layups were 

obtained and used to calculate the sensitivity information needed to determine a new 

starting layup for the optimisation, which utilised the convexity of the design space of 

lamination parameter to avoid local optimum results.  

 

Most common optimisation methods based on lamination parameters are developed 

by dividing the optimisation into two stages where the continuous optimisation of the 

lamination parameters is followed by discrete optimisation of the stacking sequences. 

Yamazaki (1996) first proposed this two-stage method. In his first stage optimisation, 

the in-plane and out-of-plane lamination parameters and structural dimensions were 

optimised to achieve maximum buckling performance using a LP method, then in the 

second stage GAs were employed to search for the layup which has lamination 

parameters closest to the optimised lamination parameters obtained in the first stage. 

After that, a lot of explorations were made for developing more appropriate methods 

for the two-stage optimisation. Todoroki and Haftka (1998) improved the second stage 

optimisation by adding a repair strategy to the GA for implementing layup design 

constraints. With the purpose of finding layups having a better match to the target 

lamination parameters, Autio (2000) investigated the performances of GAs with 

different coding schemes for the second stage optimisation. The ply thicknesses were 
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also considered as design variables in the GAs with a fitness function added with 

penalty terms for implementing layup design constraints. In Todoroki and Sasai (2002) 

and Todoroki and Ishikawa (2004), continuous optimisation was employed first to 

obtain the optimal lamination parameters based on a global response surface 

approximation and then a more accurate approximation was constructed around this 

optimum using a zooming response surface method. Secondly, a GA was used to 

optimise the stacking sequence around the optimal lamination parameters and the 

buckling performance of each individual layup was evaluated by the obtained 

approximations. Herencia et al. (2007; 2008) developed a two-stage method for 

minimising the weight of long anisotropic laminates with T-shaped stiffeners. Firstly, 

the three membrane and three flexural lamination parameters and laminate thicknesses 

were optimised by mathematical programming under buckling, strength and 

lamination parameters constraints, and secondly the obtained lamination parameters 

were used as targets in a GA to find the actual layup subjected to layup design 

constraints. In their later work (Herencia et al. 2008), a first order linear Taylor series 

was used to approximate the design constraints and to form the fitness function of the 

GA in order to improve the second stage optimisation. Irisarri et al. (2012) optimised 

the lamination parameters for buckling load maximisation in a first stage based on a 

successive approximation technique, and then the stacking sequence was optimised in 

a second stage where a GA based on multipoint structural approximation was 

performed starting from the optimum results of the first stage. The approximation 

methods are used to reduce the computational cost of the constraint evaluations. Liu 

and Toropov (2013) optimised the number of plies of each ply angle (0°, 90°, +45° 

and −45°)  and the flexural lamination parameters to minimise the weight of laminates 

during the first stage of their optimisation, followed by a permutation GA used to 

shuffle the ply orders to match the optimised flexural lamination parameters at the 

second stage. Wu et al. (2014) conducted a two-stage layup optimisation for 

orthotropic laminates considering postbuckling behaviour. Moreover, the two-stage 

layup optimisation method was also employed in Kameyama and Fukunaga (2007); 

Dillinger et al. (2013); Bach et al. (2017) and Othman et al. (2018) for aeroelastic 

tailoring problems, with the consideration of flutter and divergence speed etc. 

 

Although the second stage of these two level optimisations is a pure mathematical 

problem without time-consuming structural analysis, the high computational cost of 
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GAs should not be neglected especially for laminates with large numbers of plies. 

Many alternative methods have been explored to improve the effectiveness and 

efficiency of the second stage optimisation. Bloomfield et al. (2009) employed a PSO 

to search for optimum stacking sequences in the second stage optimisation. In their 

later work (2010), the selection of ply angles by GAs, PSO and ACA was investigated 

and the methods compared, concluding the ACA to be the best for discrete layup 

optimisation. Whilst good results could be obtained using ACA and PSO, as heuristic 

algorithms they still required high computational resources. Todoroki and Terada 

(2004) and Todoroki and Sekishiro (2008) proposed a fractal branch and bound 

method combined with a response surface approximation for determining optimal 

stacking sequences. Benefiting from the fractal pattern of branches, all the 

neighbouring layups near the optimal lamination parameters were efficiently searched. 

Besides, in order to avoid defining the feasible regions of the lamination parameters, 

Dutra and Almeida (2015) created a laminate database which stores the lamination 

parameters for all possible laminates. Hence stacking sequences can be obtained 

directly once the optimal lamination parameters are determined.  

 

In Narita (2003) and Narita and Turvey (2004), a layerwise optimisation (LO) method, 

based on the fact that the outer layers have greater influence on the bending effect than 

the inner layers, was proposed for the layup optimisation of symmetric composite 

laminates in order to maximise fundamental natural frequencies and buckling 

performance. Instead of optimising the layers simultaneously, they were optimised 

sequentially from the outermost layers, the layers that had not been optimised being 

initially assumed to have zero stiffness. This process solves multi-dimensional 

optimisation problems using a one-dimensional search, improving the efficiency of the 

optimisation. The LO method was also employed for the optimisation of laminated 

sandwich structures (Honda et al. 2013; Akoussan et al. 2017). Honda et al. (2009) 

proposed a two-stage optimisation method to maximise the natural frequencies of a 

composite laminate. The four out-of-plane lamination parameters were optimised in 

the first stage, then in the second stage a LO method was utilised to search the 

corresponding stacking sequences. However, the LO methods described above has the 

drawback of getting trapped in local optimum solutions. A LBB method combining an 

improved layerwise technique with the branch and bound method was explored in a 

two-stage optimisation by Kennedy et al. (2010), in which the exact strip software 
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VICONOPT was extended by introducing lamination parameters as design variables 

in the first stage. The optimised lamination parameters were treated as targets in the 

second stage and the optimal stacking sequence, which has lamination parameters 

closest to the targets was obtained efficiently using the LBB method. 

2.5 Blending optimisation 

In real applications, stiffness variation for different parts of laminated composite 

structures is often required, which can be achieved by changing either the fibre 

orientation over the plane of each ply or the thicknesses of different laminates in 

different parts of the structure. Detailed reviews regarding the optimisation of variable 

angle tow laminates can be found in Nikbakt et al. (2018) and Albazzan et al. (2019). 

This section concentrates on variable stiffness laminates with ply drop-off. In large 

scale built-up composite structures, drop-off results in changes in thickness and layup 

between adjacent panels, potentially leading to stacking sequence mismatches, causing 

stress concentrations as well as increasing the level of difficulty in the manufacturing 

process. Therefore, ensuring ply continuity between adjacent panels, which is 

commonly referred to as a blending problem (Kristinsdottir et al. 2001), is essential. 

Consequently as well as layup design constraints, blending constraints should also be 

considered when designing multi-panel composite laminated structures in practice.  

 

Liu and Haftka (2001) optimised a wing box structure for weight minimisation with 

the consideration of a blending constraint which was implemented by measuring the 

continuities of material composition and stacking sequences between adjacent panels 

with mathematical expressions. These measurements can be treated as general design 

constraints and are easily implemented on the design variables in the optimisation 

process. However, if the number of design variables is large, implementing the 

blending constraints in such a way could result in highly constrained problems. 

Therefore, several optimisation methods which are able to output blended stacking 

sequences without adding extra constraints have been developed. In the minimum 

weight optimisation performed by Kristinsdottir et al. (2001), the greater-than-or-

equal-to method which consistently drops plies from the thickest region to the 

periphery was proposed and combined with a random search method to optimise 
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blended layups. However, once a ply is dropped when designing a thinner laminate, 

then it is not allowed to be added back for a thicker laminate. Soremekun et al. (2002) 

developed a GA-based method incorporating the concepts of sub-laminate and design 

variable zones for the optimisation of a 3 × 3 array of sandwich panels and an 18-

panel horse-shoe shaped structure in which the load for each panel was fixed. First of 

all, each design variable zone (i.e. panel) was optimised individually to obtain the 

minimum weight. According to the optimised layup, sub-laminates composed of the 

same continuous layers in adjacent design variable zones were determined and used 

for the blending optimisation. If the blended laminates could not satisfy the constraints, 

layers needed to be added to the sub-laminates and then each design zone was 

individually optimised again. This process was repeated until the convergence 

requirements were met.  Following this further concepts and methods based on GAs 

were developed to obtain blended structures. Adam et al. (2004) proposed the guide-

based blending method, a template stacking sequence, which was used as a guide and, 

together with the number of plies for the component panels, was optimised using GAs. 

The blended structures were then obtained by inwardly or outwardly dropping plies 

from the guide. The guide-based method was then utilised in Adam et al. (2007) for 

the multilevel layup optimisation of a wing box structure where the load in each panel 

was not fixed.  Then in Seresta et al.’s work (2007), the optimisation was improved by 

limiting the number of plies that are added or deleted for each panel at local level, 

preventing large changes after the local level optimisation, and so reducing the number 

of global analyses.  Although the blending problem can be easily solved using the 

guide-based method, the flexibility of the design is seriously restricted.  

 

Liu and Butler (2007) implemented ply drop-off by a tabular method which repeats a 

pre-defined sub-laminate in a stacking sequences table to produce layups for 

component panels. Liu and Krog (2008) developed a method based on the use of ply 

layout cards to impose blending constraints. The ply layout cards in terms of different 

layer orientations were produced based on the optimised laminate thicknesses and ply 

percentages. The number of cards equals the number of layers of the thickest panel 

and the card contains the existence information of a ply angle for the whole structure. 

Blended layups can be obtained by optimising the sequence of the ply layout cards 

using a permutation GA. The shared-layer blending (SLB) method, which also requires 

the number of plies in each panel to be optimised in advance, was firstly proposed in 
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the work of Liu et al. (2011). Firstly, the panels were ranked in terms of the number 

of plies, then the layers which exist in all panels were taken into the first set, and 

similarly the rest of the sets which consisted of the remaining identical layers between 

adjacent panels in sub-regions of the whole structure were subsequently obtained. 

After that, a permutation GA was employed to shuffle the layers in each set to optimise 

the stacking sequence. In the work of Irisarri et al. (2014), a stacking sequence table 

(SST) method which includes the stacking sequences of each panel and thickness 

distribution over the whole structure was developed and combined with an 

evolutionary algorithm for optimising the blended structure. To ensure the continuity 

of the structure, plies were added one by one from the thinner panel to the thicker one 

in the SST. Jing et al. (2015a; 2016) developed a global sheared layer blending method 

based on the SLB. When creating a new set of layers, the SLB was improved by 

combining with a panel-continuity technique to determine accurate shared-layer 

distributions over the structure. The SST was then used to obtain the stacking 

sequences based on the shared layers of GSLB. More reasonable distribution of shared 

layers can be obtained when the structures are divided into several separate sub-regions. 

Fan et al. (2016) introduced a GA with ply-composition and ply-ranking chromosomes 

for each individual, the use of these two chromosomes ensures the obtained layup of 

each individual panel automatically satisfies the blending constraint. Yang et al. (2016) 

proposed a ply drop sequence method (PDS) which is an extension of the guide-based 

method. Instead of dropping plies inwardly or outwardly, any plies in the thicker panel 

could be dropped to obtain a thinner one, and hence, compared with the conventional 

guide-based method, the PDS method provides more design flexibilities. Due to the 

good performance and ease of implementation of PDS, similar concepts were later 

applied to the optimisation of tapered wind turbine blades (Albanesi et al. 2018) and 

tapered aircraft wing panels (Shrivastava et al. 2019). In contrast to the blending 

optimisation methods based on stochastic search, an enumeration method was 

employed in Zein et al. (2014; 2016) to search the blended layups with predefined 

numbers of layers for each ply orientation. The stacking sequences violating the layup 

design constraints were pruned away during the backtracking process to improve the 

efficiency. Sørensen et al. (2014) proposed a Discrete Material and Thickness 

Optimisation (DMTO) which is a topology inspired method for blending problems. 

The discrete optimisation problem can thus be solved using a continuous optimisation 

method, but this method only allows external ply drop-offs. Recently, Sjølund et al. 
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(2018) improved the DMTO method by allowing internal ply drop-offs during the 

blending optimisation process. In Zeng et al.’s work (2019), a multiple SST was 

combined with a SA to optimise stacking sequences for composite structures with ply 

drop-offs. Rather than employing one template in the SST blending optimisation, 

different templates were used for separate sub-regions.  

 

When introducing lamination parameters as design variables for the optimisation of 

blended composite structures, a number of two-stage optimisation methods have been 

developed. Ijsselmuiden et al. (2009) proposed a two-stage method for optimising 

blended stacking sequences. The out-of-plane lamination parameters and thickness of 

each panel were optimised under a local buckling constraint to minimise the weight 

during the first stage using a successive approximation scheme, following which a 

guide-based GA based on single-point structural approximation was utilised to 

optimise the blended stacking sequences starting from the optimum results obtained in 

the first stage. In Liu et al.’s work (2015), the SQP method was employed together 

with FEA in the first stage to conduct a weight optimisation where the out-of-plane 

lamination parameters and the number of plies of each angle were used as design 

variables. After that, in order to match the optimised lamination parameters with the 

given number of plies, the SLB method combined with permutation GAs was 

employed to search the blended stacking sequences of the whole structure subject to a 

number of layup design constraints and criteria in the second stage. There are no time 

consuming constraint evaluations in the second stage optimisation, which is more 

important to these large-scale blended structures. In order to decrease the discrepancy 

between the continuous and discrete optimisations caused by the blending constraint, 

Macquart et al. (2016) studied the blending constraints in lamination parameter space. 

The derived blending constraint was applied to aeroelastic optimisation of an aircraft 

wing (Macquart et al. 2017), but it made the optimisation non-convex if the lamination 

parameters and the laminate thicknesses were both employed as design variables. By 

utilising multipoint structural approximation in a two-stage optimisation, Meddaikar 

et al. (2017) minimised the weight of a large-scale composite structure based on 

lamination parameters and laminate thicknesses in the first stage, with the blended 

stacking sequences obtained using SST combined with GAs in the second stage.  
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2.6 Layup optimisation based on parallel computation 

In order to improve the efficiency of layup optimisation, some efforts have been made 

to use parallel computation methods. Punch et al. (1994) employed a coarse-grain 

parallel GA for the optimisation of a composite beam. The population of GAs was 

divided into several subpopulations which were distributed to different processors with 

a migration operator for exchanging information between them. The optimisation was 

speeded up by solving small problems separately based on the subpopulations, and the 

individual exchanges between subpopulations decreased the probability of premature 

convergence. Henderson (1994) conducted layup optimisation of composite laminates 

using parallel GAs. The GA operations (i.e. selection, crossover, mutation) were 

implemented in a main processor for the whole population, with only the time-

consuming fitness evaluations parallelized. This parallel GA process is commonly 

referred to as a master-slave parallel GA. In the work of Omkar et al. (2012), a parallel 

PSO was developed for the weight and cost optimisation of composite structures, two 

swarms being optimised in parallel with different objectives. The search directions of 

each swarm were influenced by the exchanged particles coming from the other swarm, 

making the optimisation converge to results achieving both objectives. Rocha et al. 

(2014) proposed a hybrid parallel GA for the optimisation of composite structures. A 

coarse-grain parallel GA was employed to partition the population into several 

subpopulations which were assigned with different genetic parameters to mimic an 

evolution environment. Meanwhile, the fitness evaluations of each subpopulation were 

parallelized by a master-slave parallel GA to reduce the solution time. 

 

For optimising large scale composite structures, the use of parallel computation 

methods becomes more necessary. Adam et al. (2003) optimised blended composite 

structures based on the parallelization of a GA where each component panel was 

simultaneously optimised on a different processor. The good individuals were sent to 

the adjacent populations in which the local individuals which were measured close to 

the migrants were rewarded by giving them higher fitness values, increasing the 

similarities between adjacent panels. This method cannot however ensure fully 

blended stacking sequences. In their later work (2004), the guide-based method was 

proposed for implementing blending constraints. Instead of conducting concurrent 

panel optimisations, parallelization was utilised to improve the efficiency of the 
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optimisation by distributing the fitness evaluations to different processors. In cases 

where fitness evaluations are obtained based on FEA, alleviating the computational 

workload becomes more necessary. In the works of Adams et al. (2007), Seresta et al. 

(2007) and Jin et al. (2011; 2016), master-slave parallel GAs were employed in the 

blending optimisations to reduce the large amount of computational time required by 

the global FEA for the whole structure during the fitness evaluation process. The works 

reviewed here have focused on the parallelism of GA dividing one big problem into 

several small ones. However, the inherent shortcoming of GAs in stochastic searching 

cannot be overcome. 

 

To take the optimisation for composite structures forward, new highly efficient two-

stage optimisation methods based on the use of lamination parameters for both single 

and blended composite laminates are developed and presented in this thesis. For the 

first stage optimisation, the exact strip software VICONOPT is used for single 

laminates and the multilevel optimisation code VICONOPT MLO is improved and 

used for blended laminates. In the second stage, layup optimisation methods which 

perform logic-based search are developed for optimising layups for single and blended 

laminates, and a parallel computation method combining a logic-based search with a 

stochastic-based search is also developed for optimising blended layups.  
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Chapter 3                                                       

Theoretical Background 

3.1 Mechanics of composite laminates  

Classical Lamination Theory (CLT) is effective for the analysis and design of thin 

laminates subject to small deflections (Jones 1999; Gürdal et al. 1999). Several 

assumptions are made in CLT, such as the assumption of a perfect bond between layers 

and the pure bending assumptions of the Kirchhoff-Love hypothesis. Correspondingly, 

as shown in Figure 3.1, a line originally straight and perpendicular to the mid-plane 

remains straight and perpendicular to it during the deformation analysis of laminates 

with CLT. The out-of-plane displacements are assumed to be constant through the 

thickness. The stresses and strains in the out-of-plane direction are neglected and the 

through-the-thickness shear deformations are ignored.  

3.1.1 Stress-strain relations of composite lamina  

A layer in a laminate is also known as a lamina which is the basic component of a 

laminate. A unidirectional fibre-reinforced lamina is orthotropic with three orthogonal 

planes of material symmetry each of which defines a principal material direction as 

shown in Figure 3.1.  

𝑧
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Figure 3.1 An orthotropic lamina whose principal material directions are rotated by 𝜃 

with respect to the reference coordinate directions, and its deformation is based on the 

Kirchhoff-Love hypothesis (AB=𝐴′𝐵′). 
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Based on CLT, for a lamina subjected to in-plane loading and bending, the stress-strain 

relations are  
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where 𝜎1, 𝜎2 and 𝜏12, and 𝜀1, 𝜀2 and 𝛾12 are respectively the stresses and strains in the 

principal material directions. 𝑄𝑖𝑗 are the reduced stiffnesses which are defined in terms 

of four independent engineering material constants in principal material directions 1 

and 2 as  
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where 𝐸11 , 𝐸22  and 𝐺12  are respectively the longitudinal and transverse Young’s 

moduli and the shear modulus and 𝜐12 is the major Poisson’s ratio. 

 

For the case where the principal material directions do not coincide with the reference 

coordinate directions as shown in Figure 3.1, the coordinate transformations should be 

taken into account (Jones 1999). The stress-strain relations in the reference x-y-z 

coordinates can be expressed as 
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where �̅�𝑖𝑗 are the transformed reduced stiffnesses. The relationships between the �̅�𝑖𝑗 

and 𝑄𝑖𝑗 are given as follows 
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�̅�11 = 𝑄11 cos
4 𝜃 +  (𝑄12 +  𝑄66) sin

2 𝜃 cos2 𝜃 + 𝑄22 sin
4 𝜃 

�̅�12 = (𝑄11 + 𝑄22 − 4𝑄66) sin
2 𝜃 cos2 𝜃 + 𝑄12(sin

4 𝜃 + cos4 𝜃) 

�̅�22 = 𝑄11 sin
4 𝜃 +  (𝑄12 +  𝑄66) sin

2 𝜃 cos2 𝜃 + 𝑄22 cos
4 𝜃 

�̅�16 = (𝑄11 − 𝑄12 −  𝑄66) sin 𝜃 cos
3 𝜃 + (𝑄12 − 𝑄22 +  𝑄66) sin

3 𝜃 cos θ 

�̅�26 = (𝑄11 − 𝑄12 −  𝑄66) sin
3 𝜃 cos 𝜃 + (𝑄12 − 𝑄22 +  𝑄66) sin 𝜃 cos

3 𝜃 

�̅�66 = (𝑄11 + 𝑄22 −  𝑄12 −  𝑄66) sin
2 𝜃 cos2 𝜃 + 𝑄66(sin

4 𝜃 + cos4 𝜃)  

 

                                                                     

 (3.4) 

3.1.2 Constitutive equations of composite laminates  

Based on CLT, the stresses in the 𝑘𝑡ℎ lamina in a laminates is obtained by  
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where 𝜀𝑥
0, 𝜀𝑦

0 and 𝛾𝑥𝑦
0  and 𝜅𝑥 , 𝜅𝑦 and 𝜅𝑥𝑦 correspond to the strains and curvatures of 

the mid-plane of the laminate, and 𝑧 is the distance between the lamina and the mid-

plane.  

 

To obtain the stress resultants and moment resultants for the laminate, the stresses in 

each layer are integrated with respect to thickness as  
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(3.7) 

 

where ℎ is the laminate thickness, 𝑛 is the total number of layers in the laminate, and 

𝑧𝑘 and 𝑧𝑘−1 are the distances from the mid-plane to the bottom and top of the 𝑘𝑡ℎ layer, 

respectively, as shown in Figure 3.2. 
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𝑘

𝑛 − 1
𝑛
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. . .
. . .
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Figure 3.2 A laminate consisting of 𝑛 layers. 

 

 

The constitutive equations of composite laminates are then obtained by substituting 

equation (3.5) into equations (3.6) and (3.7) as follows  
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The 𝐀, 𝐁, and 𝐃 matrices are the extensional, coupling and bending stiffness matrices, 

respectively. The 𝐀 matrix relates the stress resultants to the strains and the 𝐃 matrix 

relates the moment resultants to the curvatures. As for the 𝐁 matrix, it causes the 

coupling between the in-plane and bending deformations for an unsymmetric laminate, 

however, it vanishes if the laminate is symmetric. Also, 𝐴16 and 𝐴26 are the extension-

shear coupling terms which are avoided in a balanced layup. 𝐷16  and 𝐷26  are the 

bending-twisting coupling terms which almost always exist in laminates which include 

layers with off-axis fibre orientations.   

3.1.3 Lamination parameters  

As discussed above, the elements in the 𝐀,𝐁, and 𝐃 matrices depend on a large number 

of ply angles, which causes difficulties in optimisation. In order to circumvent this 

problem, the stiffness matrices can also be expressed linearly in terms of 12 lamination 

parameters and 5 material stiffness invariants (Tsai et al. 1968) as follows. 
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The material stiffness invariants are  
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The lamination parameters are obtained by the following integrals 
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  (3.14) 

 

where 𝜉𝑖
𝐴 , 𝜉𝑖

𝐵  and 𝜉𝑖
𝐷  (𝑖 = 1, ,3,4) refer to the in-plane, coupling, and out-of-plane 

lamination parameters, respectively, and 𝜃 represents the ply orientation at depth 𝑧 

below the mid-surface. If the ply orientations are restricted to 0°, 90°, +45° and −45°, 

then 𝜉4
𝐴,𝐵,𝐷

 are zero. The 𝜉𝑖
𝐵  ( 𝑖 = 1, ,3,4) parameters are zero if the laminate is 

symmetric. Also, 𝜉3
𝐴 is zero for a balanced laminate. 

3.2 Method of feasible directions 

As the embedded optimisation method in VICONOPT, the gradient-based MFD is 

used in the two-stage layup optimisations which are introduced in Chapters 5 and 6. 

The MFD is able to solve optimisation problems subject to inequality and equality 

constraints, and the derivatives of the objective and active constraints are required for 

obtaining the optimum results (Vanderplaats and Moses 1973).  

 

The general optimisation problem in MFD can be described as  

 

                                       Minimise       𝐹(𝐱) 

                                       Subject to      𝐺𝑖(𝐱) ≤ 0  𝑖 = 1, ,3, … , 𝑛𝑔 

(3.15)                                                           

(3.16) 
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                                       𝐻𝑗(𝐱) = 0  𝑗 = 1, ,3,… , 𝑛ℎ 

                                       𝐱𝐿 ≤ 𝐱 ≤ 𝐱𝑈 

(3.17) 

(3.18)                                                                                                                     

 

where 𝐹(𝐱)  is the objective function, 𝐺𝑖(𝐱)  and 𝐻𝑗(𝐱)  are inequality and equality 

constraints respectively, 𝐱 is a set of design variables, and 𝐱𝐿 and 𝐱𝑈 are the lower and 

upper bounds on the design variables.  

 

The two basic factors in MFD are the move direction and the move distance, which 

should be selected properly when moving iteratively to a new result. The process is 

defined as follows 

 

𝐱𝑞+1 = 𝛼𝐒𝑞 + 𝐱𝑞 (3.19) 

 

where 𝑞 is the step number in the search, 𝛼 is a scalar move distance and 𝐒𝑞 is a vector 

move direction. 𝐒𝑞  is required to determine the search direction along which the 

objective function is decreased (usable direction) without the violation of any 

constraint (feasible direction). Then 𝛼 should be chosen to obtain the new result.  

 

The usability of 𝑺𝑞 is defined mathematically as follows 

 

∇𝐹(𝐱𝑞) ∙ 𝐒𝑞 ≤ 0 (3.20) 

 

where ∇𝐹(𝐱𝑞)  is referred to as the normalized analytic gradient of the objective 

function with respect to the independent design variables, and the feasibility of 𝑺𝑞 can 

be expressed as  

  

∇𝐺𝑖(𝒙
𝑞) ∙ 𝑺𝑞 ≤ 0         𝑖 = 1, ,3…𝑛𝑎 (3.21) 

 

where ∇𝐺𝑖(𝐱
𝑞) is the normalized analytic gradient of the 𝑖th active constraint and 𝑛𝑎 

is the number of active constraints at the current design point. The selected direction 

𝐒𝑞 must satisfy both of the above equations (3.20) and (3.21), as shown in Figure 3.3. 
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 𝐺1( 
𝑞) 𝐹( 𝑞)

𝐺1  𝑞 = 0
𝐺2  𝑞 = 0

𝐹  𝑞 =constant

usable-feasible 

sector

 

Figure 3.3 Usable and feasible direction along which the objective function is 

decreased without violating any constraint (based on (Vanderplaats and Moses 1973)). 

 

 

As the most important part of the optimisation, the determination of 𝐒𝑞  can be 

achieved by  

 

Maximise       𝛽 

Subject to       ∇𝐹(𝐱𝑞) ∙ 𝐒𝑞 + 𝛽 ≤ 0 

                         ∇𝐺𝑖(𝐱
𝑞) ∙ 𝐒𝑞 + 𝜃𝑖𝛽 ≤ 0    𝑖 = 1, ,3…𝑛𝑎 

                       −𝟏 ≤ 𝐒𝑞 ≤ 𝟏   

(3.22)                                                           

(3.23) 

(3.24) 

(3.25)                                                                                                                     

 

where 𝛽 is a scalar and 𝜃𝑖 is a push-off factor. The aim of the maximisation of 𝛽 is to 

obtain an 𝐒𝑞 which leads the steepest decrease in the objective function. In order to 

avoid activating the same constraints at the new design point due to the curvature of 

the constraints, 𝜃𝑖 is used to move the design away from the current active constraints. 

To improve the efficiency of the optimisation, a larger value of 𝜃𝑖  is chosen for 

constraints with a higher degree of nonlinearity and vice versa. Compared with other 

gradient-based optimisation methods, MFD keeps a reasonable distance from the 

constraints. The maximisation problem of equations (3.22)-(3.25) can be solved using 

linear programming.  
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For the case where the obtained result violates the constraints, an 𝐒𝑞 which leads the 

optimisation back to a feasible result while increasing the current objective function 

as little as possible should be determined. Correspondingly, equation (3.20) is included 

in the objective function, rather than taken as a constraint, as below  

 

Maximise       𝛷𝛽 − ∇𝐹(𝐱𝑞) ∙ 𝐒𝑞 

Subject to       ∇𝐺𝑖(𝐱
𝑞) ∙ 𝐒𝑞 + 𝜃𝑖𝛽 ≤ 0    𝑖 = 1, ,3…𝑛𝑎𝑣 

                         −𝟏 ≤ 𝐒𝑞 ≤ 𝟏   

(3.26)                                                           

(3.27) 

(3.28) 

 

where 𝛷 is a weighting factor and 𝑛𝑎𝑣 is the number of active and violated constraints.  

 

After the move direction 𝐒𝑞 is obtained, the determination of the appropriate move 

distance 𝛼 in the direction 𝐒𝑞 can be readily performed by a one-dimensional search. 

A new design point is then obtained using equation (3.19). 

3.3 Genetic algorithms 

As a heuristic optimisation method, a GA mimics biological reproduction, natural 

selection and evolution based on Darwin’s theory (Holland 1975). Instead of utilising 

the gradient information of the objective function and constraint, a stochastic search is 

implemented based on a population of designs. Individuals with higher fitness have 

more probability of being selected for the next generation. Different selection 

procedures can be chosen such as the roulette wheel method, tournament method, 

stochastic universal sampling, etc. As a typical selection method, the biased roulette 

wheel method operates based on the fitness of each individual design. The probability 

𝑃𝑖 of each individual being selected is obtained as  

 

𝑃𝑖 =
𝑓𝑖

∑ 𝑓𝑗
𝑠
𝑗=1

 
                                                                  

(3.29) 

 

where 𝑓𝑖  is the fitness value of the current individual and 𝑠 is the population size. 

Hence, in a biased roulette wheel consisting of 𝑠 sectors, an individual with higher 
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fitness is assigned a proportionally larger sector, increasing the chance of being 

selected.  

 

GAs are ideal for discrete optimisation problems, because the chromosomes are 

composed of a string of genes limited to a set of pre-determined values. For example, 

in layup optimisation, the ply angles are represented with genes which make up the 

chromosomes (i.e. stacking sequences). The optimised results are obtained by 

exchanging the genetic information of the chromosomes between the selected 

individuals using consecutive operators such as crossover, mutation and permutation, 

as shown in Figure 3.4. 

 

The main operator in GAs is the crossover which processes two chromosomes to breed 

offspring by exchanging parts of their strings, combining the characteristics of both. 

Several types of crossover can be used such as one-point crossover, two-point 

crossover, uniform crossover and so on. An example of a two-point crossover is shown 

in Figure 3.4 (a). Firstly, two break points in the parents’ chromosomes are randomly 

selected and then the genes between these points are swapped to produce new 

generation. Since the search capability of GAs relies on crossover, it is usually 

executed with high probability.  

 

(a)

(b) (c)

Before mutation: [4 2 2 1 4 4 2 2 3]

After mutation:   [4 2 3 1 4 4 2 2 3]

Before permutation: [4 2 /3 1 4 4/ 2 2 3]

After permutation:   [4 2 /4 4 1 3/ 2 2 3]

Parent 1: [4 2 /1 2 3/ 4 2 2 3]

Child 1:  [4 2 /2 1 4/ 4 2 2 3] Child 2:  [3 1 /1 2 3/ 1 2 3 4]

Parent 2: [3 1 /2 1 4/ 1 2 3 4]

−4 ° 0° 4 °  0°

 

Figure 3.4 GAs operators (a) crossover, (b) mutation, and (c) permutation. 
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After the crossover operation is completed, the mutation operator is applied with low 

probability to expand the diversity of design in case of getting trapped into local 

optimum results. A typical mutation operator is demonstrated in Figure 3.4 (b). Genes 

in the chromosomes are randomly selected and changed to another permissible value. 

The commonly used permutation operator is also included. As shown in Figure 3.4 (c), 

two break points in the chromosome are randomly selected and the order of the genes 

between them is reversed. New populations are successively generated with the above 

operators until the convergence criteria are reached.  

3.4 Branch and bound method  

The BB method has an effective performance in discrete optimisation problems. In 

contrast to GAs, global optimality can theoretically be obtained as it implicitly 

conducts an exhaustive search. The search space is partitioned into subsets with 

branching and bounding operations, which constitute a rooted decision tree (Little et 

al. 1963), as shown in Figure 3.5.  

 

With the search space 𝑆 being split into smaller spaces, the branches of the tree which 

represent subsets of the solution set 𝑆𝑖 are explored from the top root to the bottom 

branches. At the current branch e.g. branch A in Figure 3.5, the solution subset 𝑆𝐴 is 

evaluated with the objective function 𝑓( ),  ∈ 𝑆𝐴  to determine the next branch to be 

explored. Unlike a complete enumeration method, BB requires less searching as a 

bounding process is implemented at each branch, comparing the best result in the 

remaining subtree with the current best solution. For a minimisation problem, if the 

branch 𝐴 is found to be infeasible or its lower bound 𝐿𝑏 is greater than the current 

upper bound 𝑈𝑏 (i.e. current best solution), it will be pruned without further exploring 

its subtree 𝑆𝐴, improving the efficiency of the searching process. The branching and 

bounding processes are iteratively applied until all the branches are either searched or 

pruned.  

 

 



Theoretical Background 

38 

 

 

 Search space

A B C D

E F G H I J K L M N O P Q I S T

. . .

F
ir

st
 

b
ra

n
c
h
e
s

S
u

b
se

ts
 o

f 

th
e
 f

ir
st

 

b
ra

n
c
h
e
s 

 

Figure 3.5 A decision tree of the branch and bound method. 

 

The computational cost of the BB method is highly dependent on the size of the 

decision tree as well as its upper and lower bounds. In the case where a bounding 

process is unavailable, BB has to search all the possibilities in the whole search space 

like an enumeration method. Therefore, the decision tree should be defined properly 

and navigated intelligently in the optimisation to ensure its efficiency. 

3.5 Parallel computation 

In order to improve the computational efficiency of analysis and optimisation, parallel 

computation has been developed to execute several computational tasks 

simultaneously by utilising multiple computational resources such as a computer 

cluster, multi-CPUs, multi-cores, and CPU with GPU (Joubert et al. 2004). As 

multicore processors become more available in computers, parallel computation 

executed on different cores is becoming more accessible to researchers, providing 

more options for designing efficient programs. 

 

Process decomposition and interaction are the most common problems when applying 

parallel computation. A massive computational work can be decomposed into several 

parallel works with respect to data or tasks. As a typical data-parallel model, Single 

Program Multiple Data (SPMD) is able to allocate different sets of data to different 

parallel processors (e.g. computers, CPUs, cores, etc) performing the same 
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calculations in order to alleviate the workload of processing huge amounts of data. As 

for task parallelism, the parallel program model Multiple Program Multiple Data 

(MPMD) can be implemented to assign different tasks to parallel processors, 

performing different calculations with either the same or different sets of data.  

 

For parallel computation which requires cooperation between the parallel processors, 

interaction between them is required to exchange information between them. 

Communication between the parallel processors is commonly achieved based on 

shared memory or message passing. Message passing is used when the memory is not 

shared by the parallel processors such as under a distributed memory environment. 

Each parallel processor is assigned with a local memory, and the information is 

exchanged by sending and receiving messages between them. Correspondingly, the 

industry standard Message Passing Interface (MPI) has been developed, which defines 

library routines that can be used by several programming languages such as Fortran, 

C, and C++. Besides, some parallel-enabled functions and parallel structures based on 

MPI have also been established in Matlab (MathWorks 2017). 





 Chapter 4 

41 

 

Chapter 4                                                     

VICONOPT 

4.1 Introduction 

This chapter introduces the specialist software VICONOPT, including its fundamental 

theory and procedures for analysis and optimisation.    

 

The exact strip software VICONOPT (VIpasa with CONstraints and OPTimisation) 

was developed in 1990 at Cardiff University in collaboration with NASA Langley 

Research Center and British Aerospace (Williams et al. 1991; Kennedy and 

Featherston 2010), and comprises the earlier programs VIPASA (Vibration and 

Instability of Plate Assemblies including Shear and Anisotropy) (Wittrick and 

Williams 1974) and VICON (VIpasa with CONstraints) (Anderson. et al. 1983). 

VICONOPT performs buckling, postbuckling and free vibration analyses of prismatic 

plate assemblies of isotropic and anisotropic plates and provides a strong structural 

optimisation tool for preliminary aircraft design.  

4.2 Theoretical background 

4.2.1 The exact strip method 

The exact strip method, which is an alternative to the finite element method, is 

employed in VICONOPT.  In contrast to the finite element method, the structure is 

divided into strips, of which the stiffness and mass are assumed to be distributed 

continuously, instead of discretising stiffness and mass at specific nodes. The member 

stiffness matrices 𝐊𝒎 which are used to assemble the global stiffness matrix 𝐊 for the 

structure are obtained by solving the partial differential equations which govern the in-

plane and out-of-plane deformations of the component strips. The relationship between 

the global stiffness matrix, the nodal displacements vector 𝐃 and perturbation loads 

vector 𝐏 can be described as  
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𝐊𝐃 = 𝐏 (4.1) 

 

The calculation of critical buckling load factors or undamped natural frequencies is 

achieved by solving the eigenproblem 

 

𝐊𝐃 = 𝟎 (4.2) 

 

Compared with the finite element method, the reduced number of nodes in the exact 

strip method results in a much smaller global stiffness matrix 𝐊 . However, the 

elements of 𝐊 are transcendental functions of the eigenparameter 𝑓𝑒 and hence highly 

non-linear (Plank and Wittrick 1974; Cheung 1976; Dawe 1977). Therefore, the 

methods developed for linear eigenproblems cannot be employed to obtain the critical 

buckling loads and natural frequencies, which has led to the development of an 

iterative search procedure, the Wittrick-Williams algorithm.   

4.2.2 The Wittrick-Williams algorithm 

The Wittrick-Williams algorithm (Wittrick and Williams 1971; 1973) is a numerical 

technique which calculates 𝐽 , the number of buckling load factors or natural 

frequencies which are less than a trial value 𝑓𝑒 of load factor or frequency. Therefore, 

any difference in 𝐽 between two trial values 𝑓𝑒 is equal to the number of eigenvalues 

lying between them.  

 

The general form of the Wittrick-Williams algorithm is defined as  

 

𝐽 = 𝐽0 + 𝑠{𝐊} (4.3) 

 

where 𝑠{𝐊}, the sign count of 𝐊, is equivalent to the number of negative leading 

diagonal elements of the upper triangular matrix 𝐊∆ which can be obtained from 𝐊 

using conventional Gauss elimination. 𝐽0 is the number of eigenvalues that would be 

less than 𝑓𝑒  if all the nodal freedoms of the structure were restrained, and can be 

obtained from the following equation  
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𝐽0 =∑𝐽𝑚
𝑚

 
(4.4) 

 

where 𝐽𝑚 is the number of eigenvalues of each member of the structure exceeded by 

the trial value of 𝑓𝑒  when the member ends are fixed and can often be obtained 

analytically from the governing differential equations. 

 

After the number of eigenvalues between two trial values of 𝑓𝑒 is found, the buckling 

load factors or natural frequencies in this range can be obtained easily with any 

required accuracy by using the simple bisection method or the more efficient multiple 

determinant parabolic interpolation method (Williams and Kennedy 1988; Kennedy 

and Williams 1991).  

4.3 Analysis features of VICONOPT 

4.3.1 VIPASA analysis 

Typical structures that can be analysed by VICONOPT are shown in Figure 4.1, for 

which the critical buckling loads, undamped natural frequencies and related mode 

shapes can be obtained under any combination of longitudinal, transverse, shear and 

bending loads. The in-plane loadings for a typical component plate are shown in Figure 

4.2. Note that an assembly of such prismatic plates is referred to as a panel in 

VICONOPT. As the first and basic part of VICONOPT, the VIPASA analysis 

(Wittrick and Williams 1974) is based on the exact strip method with the Wittrick-

Williams algorithm as described in Section 4.2 above. As expected, VIPASA has high 

efficiency, and has been shown to be 1000 times faster than the finite element method 

(Butler and Williams 1992).  
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Figure 4.1Typical prismatic plate assemblies (Wittrick and Williams 1974). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 In-plane loadings of a typical component plate. 

 

 

Exact membrane and bending stiffness matrices A and D can be obtained for 

symmetric laminates. Otherwise numerical solutions are available when the coupling 

stiffness matrix B is non-zero (Anderson and Kennedy 1993). 
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In VIPASA analysis, the mode of buckling and vibration is assumed to vary 

sinusoidally in the longitudinal direction, i.e. the displacements 𝑢, 𝑣, 𝑤 and rotation 𝛹 

shown in Figure 4.2 vary sinusoidally in the x direction. The buckling deflection shape 

is defined as  

 

𝑤 = 𝑓1( )sin (
𝜋 

𝜆
) (4.5) 

 

where 𝑤 is the out-of-plane displacement, 𝜆 is the half-wavelength and 𝑓1 is a function 

of   only.  

 

Any support conditions can be easily implemented at the transverse edges of a plate 

by adding longitudinal line supports which constrain any combinations of the four 

degrees of freedom (𝑢, 𝑣, 𝑤,𝛹 ). However, since the plate is assumed to be infinitely 

long in the x direction, support conditions cannot be prescribed at its transverse ends. 

To overcome this, note that the sinusoidal assumption means that displacements are 

constrained at intervals of half-wavelength 𝜆 along the longitudinal axis, producing 

parallel nodal lines (i.e. lines of zero displacement). If the component plates are not 

anisotropic and are not subjected to shear loading, the nodal lines are straight and 

perpendicular to the longitudinal direction, which can satisfy the simply supported end 

conditions provided the half-wavelength 𝜆 divides exactly into the panel length 𝑙 as 

shown in Figure 4.3(a). Exact solutions can be obtained for a range of half-

wavelengths 𝜆 specified by the user by taking 𝜆 = 𝑙, 𝑙   , 𝑙 3 , 𝑙 4 , etc. However, if 

anisotropy or shear loading exists on the plate, the nodal lines are no longer straight 

but skewed as shown in Figure 4.3(b), which means that the simply supported end 

conditions can only be satisfied approximately. Buckling and vibration results are 

therefore approximated and become increasingly conservative as the half-wavelength 

𝜆 approaches the length of the panel 𝑙.  
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                        (a) Straight nodal lines                      (b) Skewed nodal lines 

 

Figure 4.3 Nodal lines in (a) are straight and perpendicular to the longitudinal 

direction, which is consistent with simply supported end conditions. Nodal lines in (b) 

are skewed due to anisotropy or shear loads, approximating the simply supported end 

condition. 

 

4.3.2 VICON analysis  

VICON (VIpasa with CONstraints) was developed to overcome the conservative 

analysis of VIPASA for shear loading and anisotropy (Anderson. et al. 1983). 

Comparison of efficiency between VICON and the finite element software STAGS, 

shows VICON is 150 times faster (Butler and Williams 1992). 

 

In VICON analysis, the assumptions and loading in VIPASA are retained, but the 

VIPASA stiffness matrices for the responses of various half-wavelengths 𝜆  are 

coupled using Lagrangian multipliers, marking the key difference over VIPASA 

analysis.  
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The deflections of the plate are expressed as a Fourier series involving a set of 

appropriate half-wavelengths 𝜆𝑖. Hence the plate in VICON is assumed to be infinitely 

long with constraints repeating at interval 𝑙, as shown in Figure 4.4. The constraints 

are implemented by point supports which can restrain any chosen degree of freedom 

at a node of the plate at any location in the range 0 ≤  ≤ 𝑙. VICON minimises the 

total energy of the panel subject to any set of prescribed constraints.  

 

The mode of buckling or vibration in VICON repeats over a length 𝐿 = 𝑀𝑙, where M 

is an integer. Ideally, an infinite series of half-wavelengths 𝜆𝑖 should be considered to 

obtain the best results. However, to reduce the computational cost at the expense of 

some loss of accuracy, only a finite series of half-wavelengths 𝜆𝑖 is considered in the 

analysis. The choice of this finite series of half-wavelengths 𝜆𝑖  is important for 

obtaining the satisfactory results, and is governed by  

 

𝜆𝑖 =
𝑙

(𝜉 +  𝑖)
        (𝑖 = 0, ±1,± ,… ,±𝑞) 

(4.6) 

 

where 𝜉 =
2𝑁

𝑀
,  𝑁 is an integer in the range 0 ≤ 𝑁 ≤ 𝑀   , hence 0 ≤ 𝜉 ≤ 1, and 𝑞 is 

an integer. 𝜉 and 𝑞 are required to be chosen by the user, and therefore all the values 

of 𝜉 that are likely to be critical should be considered to ensure the lowest buckling 

load can be obtained. When 𝜉 is equal to 0 or 1, the contributions from – 𝑞 are the same 

as those from +𝑞, so the negative 𝜆𝑖 in equation (4.6) can be ignored. 

 

 

 

 

 

 

 

 

 

Figure 4.4 An infinitely long plate assembly in VICON with crosses denoting point 

supports, (a) plan view, (b) isometric view (Williams et al. 1991). 
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The way of calculating the buckling load factors and natural frequencies in VICON is 

similar to that using VIPASA. As the stiffness matrices in VICON are coupled with 

different half-wavelengths, the Wittrick-Williams algorithm has been extended 

accordingly to ensure the eigenvalues can be obtained with certainty (Anderson et al. 

1983), as follows  

 

𝐽 = ∑ (𝐽0𝑖 + 𝑠{𝐊𝑖}) + 𝑠{𝐑} − 𝑟

𝑞

𝑖=−𝑞

 

 

(4.7) 

 

where 

 

𝐑 = −
1

𝐿
∑ 𝐄𝑖

𝑞

𝑖=−𝑞

𝐊𝑖
−1𝐄𝑖

𝐻 

 

(4.8) 

 

𝐄𝑖 is the constraint matrix for 𝜆 = 𝜆𝑖, 𝐻 is Hermitian transpose, 𝑟 is the order of 𝐑 (i.e. 

the number of constraints), 𝐽0𝑖 is 𝐽0 calculated for 𝜆 = 𝜆𝑖. 

4.4 Optimisation features of VICONOPT 

VICONOPT provides an effective and efficient structural optimisation tool for 

prismatic plate assemblies based on the analysis features of VIPASA and VICON. The 

main objective of VICONOPT optimisation is to minimise the mass of these plate 

assemblies subject to initial buckling, strength, stiffness and geometric constraints 

using continuous optimisation (Butler and Williams 1992) or discrete optimisation 

(Kennedy et al. 1999). Design variables in VICONOPT include the widths and 

thicknesses of the plates, the layer thicknesses and the ply orientations. To ensure 

geometric consistency and reduce the computational cost, the design variables can be 

controlled or linked to each other using embedded equality and inequality constraints. 

The optimisation capability of VICONOPT has been expanded by introducing 

lamination parameters as design variables (Kennedy et al. 2010). Moreover, as an 

extension of VICONOPT, VICONOPT MLO (Fischer 2002) has been developed for 

optimising complex three-dimensional structures. 
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4.4.1 Structural optimisation in VICONOPT 

The optimisation process is illustrated in Figure 4.5. It can be seen that the optimisation 

is mainly based on a sequence of sizing design cycles, each including several iterative 

steps, and each of the optimisation procedures will be described below. 

 

At the beginning of the optimisation, the starting configuration is examined with an 

initial analysis to obtain its structural performance (e.g. critical buckling load). Then, 

it is taken into the initial stabilisation step during which some of the design variables 

(e.g. the plate thicknesses) are factored uniformly to force an unstable or over-stable 

configuration to become just stable. The stabilisation factor 𝐹𝑠𝑡  is determined by a 

bisection method based on the information given by the Wittrick-Williams algorithm. 

In the stabilisation step, the most critical buckling mode from the initial analysis is 

considered first, and the configuration is checked by a single iteration stability check 

which iterates on 𝐹𝑠𝑡 to make the critical buckling load factor in equation (4.2) equal 

to 1. Therefore, if the value of  𝐽 in equation (4.3) is greater than zero, it can be proved 

that the buckling constraint is violated. Correspondingly, 𝐹𝑠𝑡  is required to be 

increased to make the configuration stable. After the most critical buckling mode is 

checked, the remaining modes are considered with the same stability check. Note that 

this stabilisation process is also employed in the subsequent sizing cycles.  

 

After the initial analysis and stabilisation is completed, the sizing strategy starts to 

optimise the configuration. The first step of each sizing cycle is a constraint and 

sensitivity analysis during which the buckling constraints for the current configuration 

are calculated based on the buckling load factors which are critical, or close to critical. 

The sensitivities are obtained by calculating the derivatives with respect to all the 

design variables, each of which are perturbed in turn. Since the buckling analyses of 

VIPASA and VICON create transcendental eigenvalue problems, the derivatives 

cannot be obtained by the usual approaches developed for linear eigenvalue problems. 

Consequently, the derivatives are approximated by the following finite difference 

expression (Butler and Williams 1992). 

 

𝜕𝑓𝑒𝑖
𝜕 𝑗

≅
𝑓𝑒𝑖𝑗
′ − 𝑓𝑒𝑖

𝛼𝑖𝑗 𝑗
      𝑖 = 1,  , 3, … , 𝑛𝑏 , 𝑗 = 1,  , 3, … , 𝑛𝑑 

(4.9) 
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where 𝑓𝑒𝑖 is the ith eigenvalue of the unperturbed design, 𝑓𝑒𝑖𝑗
′  is the ith eigenvalue of 

the perturbed design of which the jth design variable  𝑗 is perturbed by 𝛼𝑖𝑗 𝑗, 𝑛𝑏 and 

𝑛𝑑 are the number of buckling modes considered and the number of design variables, 

respectively.  
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Figure 4.5 Flow chart of VICONOPT optimisation. 
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The perturbed eigenvalues 𝑓𝑒𝑖𝑗
′  can be obtained by an efficient approximation method 

(Butler and Williams 1992). In case the data is unsuitable for this approximation, the 

method will automatically recover to a full analysis which is able to obtain 𝑓𝑒𝑖𝑗
′  with 

certainty in all situations. 

 

To reduce the computation time of the constraint and sensitivity analysis, a constraint 

deletion method (Butler and Williams 1990) is implemented, which deletes the 

buckling modes with buckling loads at least 15% higher than the design load by default, 

and any limitation on the exceeded magnitude of the design load can be specified by 

the user.  

 

After the constraint and sensitivity information of the current design is obtained, the 

CONMIN (Vanderplaats 1983) cycle starts from a move limit calculation step which 

provides the upper and lower limits on each design variable for the following 

CONMIN optimisation step to ensure the optimum solution can be obtained properly.  

 

In the CONMIN optimisation step, the MFD is employed to iteratively change the 

design variables between the upper and lower bounds given by the limit calculation 

step. During this gradient based optimisation, linear approximations are made to the 

non-linear constraints by using a first order Taylor series expansion. Note that the 

buckling constraints considered in the CONMIN optimisation step are only the set of 

critical buckling constraints retained by the constraint deletion method at the constraint 

and sensitivity analysis step.  

 

A stabilisation step follows the CONMIN optimisation to make the results obtained by 

the CONMIN optimisation just stable in the same way as described in the initial 

stabilisation step. Because the non-linear constraints are approximated in the 

CONMIN optimisation, which may result in an infeasible design, the stabilisation step 

adjusts the design using the true constraints. In addition, all the buckling constraints 

are considered rather than only the critical set. Another benefit from the stabilisation 

step is that the optimisation convergence is accelerated by using these just stable 

results as starting points. Then in the next CONMIN cycle, the move limits are 
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calculated based on how much the objective function has been reduced and also on 

how much it had to be adjusted by stabilisation. 

 

After the convergence criteria on the final mass are reached and the optimisation 

process is completed, the optimised configuration is checked in the final analysis to 

ensure that the design meets the user’s requirements. 

4.4.2 Lamination parameter optimisation in VICONOPT 

VICONOPT has been extended to include the use of lamination parameters as design 

variables (Kennedy et al. 2010). The stiffness matrices 𝐀,𝐁 and 𝐃 in VICONOPT can 

be obtained easily from the lamination parameters as described in Chapter 2, instead 

of using the usual method which integrates the transformed reduced stiffness  �̅� 

through the thickness of the plate. Each of the lamination parameters 𝜉𝑗
𝑘 ( 𝑗 =

1, ,3,4;  𝑘 = 𝐴, 𝐵, 𝐷) lies between −1 and 1. For layup optimisation which requires 

the ply angles to be restricted to 0°, 90°, +45° and −45°, the following 25 lamination 

parameter constraints are applied, giving a restricted feasible region. 

 

 |𝜉1
𝑘| − 𝜉2

𝑘 − 1 ≤ 0,    |𝜉3
𝑘| + 𝜉2

𝑘 − 1 ≤ 0    𝑘 = 𝐴, 𝐷 (4.10) 

 

 |𝜉1
𝐵| + 𝜉2

𝐵 −  ≤ 0,     |𝜉3
𝐵| + 𝜉2

𝐵 −  ≤ 0，   |𝜉1
𝐵| + |𝜉3

𝐵| − 1 ≤ 0 

 

(4.11) 

 

4(𝜉𝑖
𝐷 + 𝑟)(𝜉𝑖

𝐴 + 𝑟) ≥ (𝜉𝑖
𝐴 + 𝑟)

4
+ 3(𝜉𝑖

𝐵)2,   𝑖 = 1, ,3,   𝑟 = ±1 

 

(4.12) 

16( 𝜉1
𝐷 + 𝑟𝜉2

𝐷 + 𝑟𝑠)( 𝜉1
𝐴 + 𝑟𝜉2

𝐴 + 𝑟𝑠) ≥ ( 𝜉1
𝐴 + 𝑟𝜉2

𝐴 + 𝑟𝑠)4 +

1 ( 𝜉1
𝐵 + 𝑟𝜉2

𝐵)2, 𝑟 = ±1, 𝑠 = 1,−3 

 

(4.13) 

 

16( 𝜉3
𝐷 + 𝑟𝜉2

𝐷 + 𝑟𝑠)( 𝜉3
𝐴 + 𝑟𝜉2

𝐴 + 𝑟𝑠) ≥ ( 𝜉3
𝐴 + 𝑟𝜉2

𝐴 + 𝑟𝑠)4 +

1 ( 𝜉3
𝐵 + 𝑟𝜉2

𝐵)2, 𝑟 = ±1, 𝑠 = 1,−3 
(4.14) 

 

4(𝜉1
𝐷 + 𝑟𝜉3

𝐷 + 𝑠)(𝜉1
𝐴 + 𝑟𝜉3

𝐴 + 𝑠) ≥ (𝜉1
𝐴 + 𝑟𝜉3

𝐴 + 𝑠)4 + 3(𝜉1
𝐵 + 𝑟𝜉3

𝐵)2, 

𝑟 = ±1, 𝑠 = ±1 

(4.15) 
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The non-linear constraints above are implemented by using an exterior penalty 

function method. It is noted that the feasible region is convex (Diaconu and Sekine 

2004) and that the constraints of equations (4.10)-(4.15) are satisfied if all the 

lamination parameters 𝜉𝑗
𝑘 ( 𝑗 = 1, ,3;  𝑘 = 𝐴, 𝐵, 𝐷) are set to zero. Thus when any of 

the constraints is violated, all the lamination parameters are multiplied by a scalar 

𝜑 (0 < 𝜑 < 1) to move the outlying lamination parameters to the boundary of the 

feasible region, so that the most critical constraint is just satisfied, converting an 

infeasible configuration to an artificial just feasible one. For example, as can be seen 

from Figure 4.6, the point V violates the constraint equation (4.10) and so lies outside 

the triangular feasible region of the lamination parameters 𝜉1,2
𝐷 . It is directed to the 

point S which just satisfies this constraint using the exterior penalty function method. 

 

The exterior penalty function method employs a bisection approach to find the 

appropriate scalar 𝜑 (0 < 𝜑 < 1)  during the penalization process. In the stiffness 

matrix calculations, all the lamination parameters 𝜉𝑗
𝑘 and laminate thickness h of the 

infeasible configurations are reduced to 𝜑𝜉𝑗
𝑘 ( 𝑗 = 1, ,3;  𝑘 = 𝐴, 𝐵, 𝐷)  and 𝜑ℎ , 

respectively, making them tend to violate the buckling constraints. Due to the 

artificially low stiffness, the infeasible configurations become unattractive during the 

optimisation. However, the laminate thickness ℎ  is not reduced in the mass 

calculations so the infeasible configuration will not have an artificially attractive 

objective function.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 An example of the penalization process on the feasible region of 𝜉1,2
𝐷 . 
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4.4.3 VICONOPT MLO 

VICONOPT is a highly efficient expert software for the optimisation of individual 

panels. However, it is restricted to applications involving prismatic structures which 

precludes the optimisation of more complex three-dimensional structures such as an 

entire aircraft wing or fuselage. Following the recommendations of the Group for 

Aeronautical Research in Europe (GARTEUR 1997), VICONOPT MLO (Fischer 

2002) was developed to address this limitation. In its later version, VICONOPT MLOP 

(Qu et al. 2011), postbuckling behaviour is also considered in the optimisation.  

 

VICONOPT MLO is a software package which implements multilevel optimisation 

by combining MSC/NASTRAN FEA (MSC Software Corporation 1999a) of the 

whole structure at system level, with efficient VICONOPT optimum design of each of 

the constituent individual panels at panel level, avoiding the drawbacks of both 

techniques. Design variables in VICONOPT MLO include the widths and thicknesses 

of plates, the layer thicknesses and the ply orientations. Furthermore, VICONOPT 

MLO can also be used as a pre-processor for VICONOPT, which provides a Windows-

based interface for the user, allowing the VICONOPT model to be created efficiently. 

 

The multilevel optimisation process of VICONOPT MLO is illustrated in Figure 4.7. 

It can be seen that the finite element model is created with MSC/PATRAN ( MSC 

Software Corporation 1999b) at the start of the optimisation and then a static analysis 

of the whole structure is performed by MSC/NASTRAN at system level. The 

quadrilateral four-node QUAD4 shell element in MSC/NASTRAN is employed for 

the FE static analysis, whose main aim is to obtain the stress distributions in the whole 

structure.  

 

After the static analysis, VICONOPT MLO is used to automatically generate the input 

file (.dat) for the VICONOPT optimisation based on a set of user-defined design 

variables with appropriate bounds and the analysis results from MSC/NASTRAN 

(stress distribution, geometry, etc.) which are stored in the output file (.f06). The 

stresses in each element obtained from the system level analysis are used to calculate 

the stresses to be carried in each component panel, which are taken as applied loadings 

in the VICONOPT optimisation. 
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Figure 4.7 Flowchart of the multilevel optimisation process of VICONOPT MLO. 

 

 

Once the preparation works are completed, VICONOPT is employed to optimise the 

component panels at panel level. The panel masses are minimised separately as 

described in Section 4.4.1, and the output files (.res) which store the optimised 



VICONOPT 

56 

 

geometries are transferred to VICONOPT MLO for the preparation of the next static 

analysis.  

 

After all the panels are optimised by VICONOPT, VICONOPT MLO modifies the 

input file (.bdf) for MSC/NASTRAN based on the optimised geometries in order to 

incorporate the optimised designs into the system level finite element model, and a 

new static analysis is performed to determine the updated load distributions. These 

newly obtained load distributions are then used at the panel level to re-optimise the 

component panels. This process is repeated until convergence for total mass, 

individual mass and the stress distributions of each panel occurs and an optimum 

solution is reached in an efficient manner. VICONOPT MLO is concluded to be 

around 4 times faster than the optimisation purely based on FEA (Fischer et al. 2012).  
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Chapter 5                                                                  

Two-stage Layup Optimisation of Single Composite 

Laminates 

5.1 Introduction  

In this chapter, an efficient method for performing layup optimisation of single 

composite laminates with buckling and layup design constraints is presented. This 

work corresponds to the first journal paper in the publication list of Section 1.4. By 

utilising lamination parameters, the optimisation problem is divided into two stages.  

During the first stage, VICONOPT is employed for buckling optimisation of the 

lamination parameters and laminate thickness. In the second stage, the improved LBB 

method combining the branch and bound method with a global layerwise technique is 

used to search the optimal stacking sequences to match the optimised lamination 

parameters obtained in the first stage.  

 

This two-stage method is an extension of the method developed in Kennedy et al. 

(2010). In the first stage, the feasible regions for the lamination parameters with the 

layup design constraint requiring a specific minimum proportion of each of four 

possible ply orientations (i.e. 0°, 90°, +45° and −45°) are studied and added as 

constraints into VICONOPT. In order to ensure the optimised layup can be used in 

practice, the LBB method is strongly enhanced with a checking strategy which 

imposes any combination of symmetry, balance and up to four layup design constraints 

in the logic-based search process of the second stage optimisation. By comparing the 

improved LBB method with the use of a genetic algorithm for optimising stacking 

sequences under different requirements as well as comparisons with the results of other 

authors, the high efficiency and ability to achieve an optimal result of the improved 

LBB method are demonstrated.  
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5.2 Methodology 

The aim of the optimisation is to minimise the mass of the composite laminate. The 

constraints are buckling, manufacturing and lamination parameter constraints. The 

optimisation approach is divided into two stages. The lamination parameters and total 

laminate thickness are used as design variables in the first stage. Ply orientations, 

which are restricted to 0°, 90°, +45° and −45°, are used to build the actual layup for 

the laminate in the second stage. 

 

Niu (1992) listed layup design constraints for the design of composite aircraft 

components. In this thesis, four major layup design constraints for composite laminate 

design are taken into account in the two-stage optimisation process, as follows:  

(1) Contiguity constraint: the maximum number of successive plies with the 

same orientation is limited to an integer 𝑛cont   to minimise edge splitting. 

𝑛cont = 4 in this thesis.  

(2) Disorientation constraint: the difference between the orientations of two 

adjacent plies should be no greater than an angle 𝜃diff . This constraint is 

applied to avoid microcracking. In this thesis, 𝜃diff is set to be 4 °. 

(3) Minimum percentage constraint: each fibre orientation should comprise a 

proportion of at least 𝑝𝑚𝑖𝑛 of the total layup to prevent the matrix from being 

exposed to direct loads and provide sufficient damage tolerance to the laminate. 

𝑝min = 10% in this thesis. 

(4) Damage tolerance constraint: putting 0° and 90° plies on the exterior surfaces 

of the laminate should be avoided to provide sufficient damage tolerance after 

impact. 

5.2.1 First stage optimisation 

The exact strip software VICONOPT is used for the first stage optimisation problem 

which can be expressed as 

 

                                         Minimise    𝑀(𝐱) (5.1) 

                                         Subject to   𝐺𝑖(𝐱) ≤ 0     𝑖 = 1, ,3, … , 𝑛𝑔 (5.2) 

                                                𝑗
𝑙 ≤  𝑗 ≤  𝑗

𝑢     𝑗 = 1, ,3, … , 𝑛𝑑  (𝑛𝑑 ≤ 10) (5.3) 
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where 𝑀(x)  is the laminate mass. 𝐱  = (ℎ, 𝜉1
𝐴, 𝜉2

𝐴, 𝜉3
𝐴, 𝜉1

𝐷 , 𝜉2
𝐷 , 𝜉3

𝐷 , 𝜉1
𝐵, 𝜉2

𝐵, 𝜉3
𝐵)  is the 

vector of design variables, 𝐺𝑖(𝐱) are inequality design constraints, including buckling 

and lamination parameter constraints. The implementations of these constraints in 

VICONOPT were described in Chapter 4.  

 

The minimum percentage constraint, i.e. layup design constraint (3) above, is added to 

the lamination parameter constraints in this thesis. When giving the percentage of each 

ply orientation a minimum value 𝑝min, the feasible region of the lamination parameters 

is further restricted. Because the number of plies of each orientation is directly related 

to the in-plane lamination parameters 𝜉1,2,3,
𝐴 , and the contribution of each angle is 

known as shown in Table 5.1, the relationship between the number of plies with each 

orientation and the three lamination parameters 𝜉1,2,3
𝐴  can be expressed as follows 

 

𝑛0 + 𝑛45 + 𝑛−45 + 𝑛90 = 𝑛 (5.4) 

𝑛0 − 𝑛90 = 𝑛𝜉1
𝐴 (5.5) 

𝑛0 − 𝑛45 − 𝑛−45 + 𝑛90 = 𝑛𝜉2
𝐴 (5.6) 

𝑛45 − 𝑛−45 = 𝑛𝜉3
𝐴 (5.7) 

 

where the non-negative integers 𝑛 and 𝑛𝜃 represent the total number of plies and the 

number of plies with orientation 𝜃, respectively. The minimum percentage constraint 

can be expressed as 

 

𝑛0 𝑛 = 𝜉1
𝐴   + 𝜉2

𝐴 4 + 1 4 ≥ 𝑝min   (5.8) 

𝑛90 𝑛 = −𝜉1
𝐴   + 𝜉2

𝐴 4 + 1 4 ≥ 𝑝min    (5.9) 

𝑛45 𝑛 = −𝜉2
𝐴 4 + 𝜉3

𝐴   + 1 4 ≥ 𝑝min  (5.10) 

𝑛−45 𝑛 = −𝜉2
𝐴 4 − 𝜉3

𝐴   + 1 4 ≥ 𝑝min (5.11) 
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Table 5.1 Contribution of each ply orientation to the in-plane lamination parameters. 

 𝜉1
𝐴 𝜉2

𝐴 𝜉3
𝐴 

0° 1 1 0 

+45° 0 −1 1 

−45° 0 −1 −1 

90° −1 1 0 

 

 

The related lamination parameter constraints in equation (4.10) are then re-written as  

 

 |𝜉1
𝐴| − 𝜉2

𝐴 + 4𝑝min − 1 ≤ 0,    |𝜉3
𝐴| + 𝜉2

𝐴 + 4𝑝min − 1 ≤ 0 (5.12) 

 

Hence, 𝜉2
𝐴 ∈ [4𝑝min − 1, 1 − 4𝑝min]. Because of the relationship between 𝜉1,2,3

𝐴  and 

𝜉1,2,3
𝐷  as illustrated in equation (4.12), 𝜉2

𝐷 ∈ [16𝑝𝑚𝑖𝑛
3 − 1, 1 − 16𝑝𝑚𝑖𝑛

3]. Therefore, 

the corresponding relationships in equation (4.10) between 𝜉1,2,3
𝐷  for a symmetric 

laminate (i.e. 𝜉1,2,3
𝐵  = 0) are changed to 

 

 |𝜉1
𝐷| − 𝜉2

𝐷 + 16𝑝min
3 − 1 ≤ 0,    |𝜉3

𝐷| + 𝜉2
𝐷 + 16𝑝min

3 − 1 ≤ 0 (5.13) 

  

Feasible regions for 𝜉1,2,3
𝐴  and 𝜉1,2,3

𝐷  are shown in Figures 5.1 and 5.2 respectively. The 

triangular regions with the dashed lines represent the previous feasible regions given 

by equation (4.10). In this thesis, 𝑝min is required to be 0.1 and when the minimum 

percentage constraint is added, these triangles are reduced to the smaller triangles 

surrounded by the solid lines. It is seen that the areas of the feasible regions of 𝜉1,2,3
𝐴  

are reduced by 64% while those of 𝜉1,2,3
𝐷  are reduced by only about 3%.  
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Figure 5.1 Restricted feasible regions of lamination parameters 𝜉1,2,3,
𝐴  when 

considering the minimum percentage constraint 𝑝min = 0.1. 

 

 

 

Figure 5.2 Restricted feasible regions of lamination parameters 𝜉1,2,3,
𝐷  for symmetric 

laminates, when considering the minimum percentage constraint 𝑝min = 0.1. 

 

5.2.2 Second stage optimisation  

After the first stage, the optimised laminate thickness ℎ is rounded to the nearest 

integer multiple 𝑛ℎ𝑝 of the ply thickness ℎ𝑝, and the optimised lamination parameters 

are used as target values in the second stage. The aim of this second stage is a layup to 

match the target values as closely as possible, with the improved LBB methods and 

the most popular technique GAs both having this ability to search the potential layups. 
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5.2.2.1 Layerwise branch and bound method  

The LBB method is a combination of the branch and bound method and a global 

layerwise technique. In the branch and bound method, branches (i.e. choice options) 

constitute the decision tree of which the size (i.e. the number of levels) is dependent 

on the numbers of plies to be optimised. The structure of a decision tree which only 

considers two plies (these are denoted 𝜃4
4 and 𝜃5

4, the notation and the numbers in the 

boxes will be explained later) is shown in Figure 5.3.  

 

As the problem size increases, the search time tends to grow dramatically, for example 

a decision tree with 16 levels potentially has 416 ≅ 4.3 × 109 possibilities to search. 

Therefore, the global layerwise technique is developed to improve the efficiency of 

the branch and bound process. The objective function 𝛤 is obtained by calculating the 

weighted difference between the target lamination parameters given by VICONOPT 

and the actual lamination parameters related to the chosen ply orientations as follows 

 

𝛤 =∑ ∑ 𝑤𝑗

𝐴,𝐵,𝐷

𝑗=𝐴

3

𝑖=1

|𝜉𝑖(𝑎𝑐𝑡𝑢𝑎𝑙)
𝑗

− 𝜉𝑖(𝑡𝑎𝑟𝑔𝑒𝑡)
𝑗

| 
 

(5.14) 

 

where 𝑤𝐴,𝐵,𝐷 are weighting factors, 𝜉1,2,3(𝑡𝑎𝑟𝑔𝑒𝑡)
𝐴,𝐵,𝐷

 are the target lamination parameters 

obtained in the first stage, and 𝜉1,2,3(𝑎𝑐𝑡𝑢𝑎𝑙)
𝐴,𝐵,𝐷

 are the actual lamination parameters for 

the chosen layup.  

 

0.826 0.295 0.689 0.474

0.959 0.863 0.947 0.949 1.138 0.824 1.126 1.1441.206 0.947 1.431 1.251

-45° 

𝜃
4 4

 
𝜃

5 4
 

L
ev

el 1
L

ev
el 2

45° 0° 90° 

-45° 0° 45° 90° -45° 0° 45° 90° -45° 0° 45° 90°  

Figure 5.3 An illustrative branch and bound decision tree for optimising two plies. 
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The branching process can predict the route to proceed to at the next level of the 

decision tree by considering bounds on the achievable values of the objective function. 

The aim is to opt for a branch which is close to the target value of the lamination 

parameters. If a layup is found for which 𝛤 is lower than that of the previous best 

solution, the chosen layup is saved as the incumbent solution. The bounding process 

is used to discard the branches which cannot improve on the objective function of the 

incumbent solution or which violate constraints (e.g. layup design constraints, balance 

constraint, symmetry constraint). Thus the process operates most efficiently on small 

problems or when there is a good incumbent solution. 

 

To obtain good incumbent solutions as quickly as possible in the process, a global 

layerwise technique is employed to accelerate the search. This technique has three 

nested loops: cycle, pass and case, as shown in Figures 5.4 and 5.5. The cycle loop is 

the outer loop which determines how many layers are optimised at once in the decision 

tree. The pass loop makes the optimisation repeat from the outermost layers to ensure 

the result is not a local optimum with the current number of layers being optimised in 

the decision tree. The case loop is the inner loop in which the branch and bound 

optimisation is conducted on a specific subset of layers. The process is illustrated in 

Figure 5.4 using an example of an 8 ply laminate. For each case, the plies available for 

selection by the branch and bound method are shown in bold, and the optimisation 

starts from an arbitrary layup (𝜃1
0, 𝜃2

0, 𝜃3
0, 𝜃4

0, 𝜃5
0, 𝜃6

0, 𝜃7
0, 𝜃8

0). The ply orientations are 

optimised successively, working inwards from the outer plies which make the most 

important contributions to the out-of-plane lamination parameters 𝜉1,2,3
𝐷 . In the first 

cycle, two plies are optimised at once. In the first case of the first pass of the first cycle 

the two outermost plies are optimised to become (𝜃1
1, 𝜃8

1). The newly optimised layup 

is then used as the starting layup for the second case where the solution is (𝜃2
1, 𝜃7

1), and 

so on. When the innermost plies (𝜃4
1, 𝜃5

1) are obtained, the first pass of the first cycle 

is completed and a second pass of the first cycle is made until no further changes are 

made. In the second cycle, 4 plies are optimised at once, again with the process being 

repeated until the value of 𝛤 cannot be reduced. The number of variable plies in the 

third cycle is 6 (or fewer), while all the plies are optimised in the final cycle. (For 

brevity in Figure 5.4, two passes are shown in cycle 2, but only one pass for the other  
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Cycle 0  1 1 1 1  2 2 2 2  3 3  4 

Pass 0  1 1 1 1  1 1 2 2  1 1  1 

Case 0  1 2 3 4  5 6 7 8  9 10  11 

Var. plies 2  2 2 2 2  4 4 4 4  6 2  8 

Ply1 𝜃1
0  𝜽𝟏

𝟏 𝜃1
1 𝜃1

1 𝜃1
1  𝜽𝟏

𝟓 𝜃1
5 𝜽𝟏

𝟕 𝜃1
7  𝜽𝟏

𝟗 𝜃1
9  𝜽𝟏

𝟏𝟏 

Ply2 𝜃2
0  𝜃2

0 𝜽𝟐
𝟐 𝜃2

2 𝜃2
2  𝜽𝟐

𝟓 𝜃2
5 𝜽𝟐

𝟕 𝜃2
7  𝜽𝟐

𝟗 𝜃2
9  𝜽𝟐

𝟏𝟏 

Ply3 𝜃3
0  𝜃3

0 𝜃3
0 𝜽𝟑

𝟑 𝜃3
3  𝜃3

3 𝜽𝟑
𝟔 𝜃3

6 𝜽𝟑
𝟖  𝜽𝟑

𝟗 𝜃3
9  𝜽𝟑

𝟏𝟏 

Ply4 𝜃4
0  𝜃4

0 𝜃4
0 𝜃4

0 𝜽𝟒
𝟒  𝜃4

4 𝜽𝟒
𝟔 𝜃4

6 𝜽𝟒
𝟖  𝜃4

8 𝜽𝟒
𝟏𝟎  𝜽𝟒

𝟏𝟏 

Ply5 𝜃5
0  𝜃5

0 𝜃5
0 𝜃5

0 𝜽𝟓
𝟒  𝜃5

4 𝜽𝟓
𝟔 𝜃5

6 𝜽𝟓
𝟖  𝜃5

8 𝜽𝟓
𝟏𝟎  𝜽𝟓

𝟏𝟏 

Ply6 𝜃6
0  𝜃6

0 𝜃6
0 𝜽𝟔

𝟑 𝜃6
3  𝜃6

3 𝜽𝟔
𝟔 𝜃6

6 𝜽𝟔
𝟖  𝜽𝟔

𝟗 𝜃6
9  𝜽𝟔

𝟏𝟏 

Ply7 𝜃7
0  𝜃7

0 𝜽𝟕
𝟐 𝜃7

2 𝜃7
2  𝜽𝟕

𝟓 𝜃7
5 𝜽𝟕

𝟕 𝜃7
7  𝜽𝟕

𝟗 𝜃7
9  𝜽𝟕

𝟏𝟏 

Ply8 𝜃8
0  𝜽𝟖

𝟏 𝜃8
1 𝜃8

1 𝜃8
1  𝜽𝟖

𝟓 𝜃8
5 𝜽𝟖

𝟕 𝜃8
7  𝜽𝟖

𝟗 𝜃8
9  𝜽𝟖

𝟏𝟏 

 

Figure 5.4 Application of the global layerwise technique to optimisation of an 8 ply 

laminate. (The layers in the current case loop are bold, and the other ones are not 

allowed to change.) 

 

cycles.) Therefore, the branch and bound method initially optimises the layup by 

searching a small decision tree meaning that very low values of  𝛤 can be obtained 

quickly during the first few cycles. Subsequently, when searching larger numbers of 

plies, the previous incumbent value of 𝛤 is used in the bounding process, enabling 

many branches to be discarded without being explored. Therefore, optimised stacking 

sequences can be obtained efficiently. 

 

During each case, after a new incumbent layup has been chosen or it has been shown 

that the currently chosen branch cannot improve on the objective function no matter 

which lower branches are chosen, the remaining branches in the decision tree must 

subsequently be explored (to seek better solutions) or discarded (if they cannot 

improve on the incumbent solution) in order to prove global optimality. An example 

is given to illustrate this backtracking process. Suppose the branch and bound process 

is working on the fourth case of the first pass of the first cycle as shown in Figure 5.4, 

of which the decision tree is shown in Figure 5.3. The required lamination parameters 

are 𝜉1
𝐴 = 0. 7 , 𝜉2

𝐴 = 0. , 𝜉3
𝐴 = −0.08 , 𝜉1

𝐷 = −0.0 , 𝜉2
𝐷 = −0.1 , 𝜉3

𝐷 = −0.44 , 

𝜉1
𝐵 =0.1, 𝜉2

𝐵 =0.8, 𝜉3
𝐵 =0.1, and the incumbent layup before this case is 

[−45/45/−45/90/90/0/0/90] with the value of 𝛤 = 1.144. The numbers in the boxes at 

the lowest level of the decision tree are the exact values of 𝛤 for the complete layup. 

For those at the first level, because the layup has not yet been completed, the numbers 

are lower bounds for each branch, which are obtained by subtracting the maximum 
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achievable contribution of the remaining levels from the exact value of 𝛤 obtained 

from the contributions of the preceding levels. For example, for the branch 0° at the 

first level in Figure 5.3, the ply angle at the second level has not been chosen and the 

provisional value of 𝛤 for the uncompleted layup [−45/45/−45/0/#/0/0/90] is 0.787. 

The maximum achievable contribution of each of the lamination parameters of the ply 

at the second level can be obtained by the following equation 

 

[

𝜉1
𝑘

𝜉2
𝑘

𝜉3
𝑘

] = |∫ 𝑍𝑘
0

−ℎ/8

𝑑𝑧| , 𝑘 = 𝐴, 𝐵, 𝐷, {

𝑍𝐴 = 1/ℎ          

𝑍𝐵 = 4𝑧/ℎ2     

𝑍𝐷 = 1 𝑧2/ℎ3
   

 

(5.15) 

 

Hence, the maximum achievable contributions of the ply at the second level are 

summed to 0.492, and the lower bound for the 0° branch at the first level is obtained 

as 0.787 − 0.492 = 0.295. Actually, this lower bound cannot be reached because the 

maximum contributions of each lamination parameter cannot be achieved 

simultaneously, but it can be used as a conservative limit. As can be seen from the 

decision tree, the branch 0° (whose lower bound 0.295 is the lowest) is chosen at the 

first level in the initial search (see the yellow arrows and boxes). Then at the second 

level the best layup 0°/0° is chosen, and the incumbent value of 𝛤 decreases to 0.863 

which is used as a new upper bound in the process. Then the backtracking process 

starts to check the remaining branches. The second best branch 90° at the first level is 

explored first (see the blue arrows and boxes), and a better layup 90°/0° is then found 

at the second level enabling the incumbent value of 𝛤 to be decreased to 0.824. This 

is lower than the lower bound 0.826 of branch −45° at the first level, indicating that 

better incumbent solutions cannot be found on this branch no matter which lower 

branches are chosen. Hence it can be discarded directly (see the red arrows) without 

being explored further, thus improving the efficiency of the process. Finally the 

backtracking process completes searching the branch 45° and its lower branches 

without finding a better layup, so that the layup 90°/0° is proved to be the global 

optimum in the current case. 

 

Compared with the stochastic search of GAs, the method presented herein is more 

reliable for finding a global optimum, because it implicitly searches all the possibilities 

of the stacking sequence. Often optimal results can be obtained at an early stage even 
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for the laminates with large numbers of plies. However, it takes a long time to prove 

this optimality for laminates with a large number of plies since the decision trees in 

later cycles are very large. Therefore, on large problems it is recommended to apply a 

stopping criterion such as an acceptably low value of 𝛤 (e.g. 0.3), maximum solution 

time or the completion of a specific cycle (e.g. 9th cycle), after which the incumbent 

solution will be accepted without proving optimality. 

 

Input data

Determine number 

of variable plies

Start from outermost 

plies

Logic-checking strategy

(Constraints are implemented)

Search and optimize branches 

based on objective function Γ  

Replace previous incumbent 

solution with new Γ and proceed 

to explore or discard  remaining 

branches

Branch and bound method

Output intermediate result

Stop case loop

Stop pass loop

Stop cycle loop

Output final result

Case 

loop

Pass

 loop

Cycle

 loop

No

No

No

 

Figure 5.5 Flow chart of the improved LBB method. 
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5.2.2.2 Addition of constraints 

A logic-based checking strategy is used for implementing constraints in the search 

process. When adding constraints such as the symmetry constraint, the balance 

constraint and the layup design constraints in the optimisation, this strategy checks and 

discards any branches violating constraints before every branching decision is made. 

Therefore, only the branches satisfying the constraints are searched at each level of the 

decision tree, ensuring that all the intermediate results satisfy the required constraints. 

 

When the layup is required to be symmetric, the branching process is used to find the 

orientation of each ply in the top half of the laminate, and then the checking strategy 

will force the symmetrically located ply in the bottom half to have the same orientation, 

essentially halving the number of levels in the decision tree. 

 

The balance constraint is implemented by checking the difference between the number 

of plies which have already been chosen with +45° (𝑛45) and those with −45° (𝑛−45)  

at every level of the decision tree. If the value of 𝑛45 − 𝑛−45 is equal to 𝑛left, the 

number of plies left to choose in the current case, all the remaining plies must be set 

to −45°. If the value 𝑛45 − 𝑛−45 = 𝑛left − 1, the next ply cannot be set to +45°. 

Analogous rules apply for −45°. As shown in the examples in Figure 5.6, if there are 

8 plies in a case and the first 6 plies have already been chosen, 𝜃4 is under selection. 

In Figure 5.6 (a), two +45° plies and one −45° ply have been chosen and there are 

only two plies left, so 𝜃4 is not allowed to be +45°. In Figure 5.6 (b), 𝜃4 must be set to 

 

             𝜃1 (0°)              𝜃1 (-45°) 

          𝜃2 (45°)          𝜃2 (0°) 

          𝜃3 (90°)            𝜃3 (45°) 

𝜃4  𝜃4 

𝜃5  𝜃5 

           𝜃6 (-45°)             𝜃6 (-45°) 

        𝜃7 (0°)             𝜃7 (-45°) 

          𝜃8 (45°)           𝜃8 (90°) 

 

                                   (a)                               (b) 

Figure 5.6 Checking strategy for balance constraint. (a) 𝜃4  cannot be +45°. (b) 𝜃4 

must be +45°. 



Two-stage Layup Optimisation of Single Composite Laminates 

68 

 

+45°, owing to the fact that there are already three −45° plies but only one +45° ply 

with two plies left to choose. This procedure has advantages over a commonly used 

alternative strategy which combines a +45° ply with a −45° ply as a single design 

variable, which automatically violates the disorientation constraint, i.e. layup design 

constraint (2) above, and potentially misses the global optimal result. Furthermore, all 

possible balanced stacking sequences are searched using this logic-based strategy, so 

the global optimal layup under the balance constraint can be achieved.  

 

Four layup design constraints are included in the logic-based search through the 

checking strategy. The contiguity constraint is implemented by checking plies to avoid 

an adjacent group with more than 𝑛cont identical orientations (where 𝑛cont is 4 in this 

thesis according to practical requirement). If such a group is formed the bounding 

process is forced to discard this choice. For all levels except the final two in each case, 

since the ply angles below the current level (towards the mid-plane) have not been 

chosen, only the four plies above the current level (away from the mid-plane) should 

be checked (hence this check starts from level 9 in Figure 5.7 at which four plies have 

already been chosen above it). If these plies all have the same angle, this branch at the 

current level is discarded. For the last two levels in the case, because the ply angles 

below have also been chosen previously and are not allowed to change in the current 

case, more possibilities for generating five successive plies with the same angle exist. 

For a laminate with an even number of plies, if the second last level in the case is 

smaller than the number of plies in the laminate minus 3, the adjacent plies that need 

to be checked are shown to the left of Figure 5.7, where the triangle and circles in each 

rectangular bar represents the ply under selection and the adjacent plies that need to be 

checked, respectively. As discussed above, for level 11 in this example, the leftmost 

bar is used to check the four plies above, and the remaining bars to check other groups 

of adjacent plies. As the second last level gets closer to the mid-plane, (Figure 5.7 

centre and right), the last level which has not been optimised is included in some of 

the five successive ply groups which should not be checked in the process. Note that 

these groups should be checked for a symmetric laminate, because the last level is 

given the same ply angle as the second last level. Figure 5.8 shows the groups that 

need to be checked for a laminate with an odd number of plies, following a similar 

procedure to that described above.  
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Level 2nd last level < 𝑛 − 3 2nd last level = 𝑛 − 3 2nd last level = 𝑛 − 1

1

3

5

7

9

11 (e.g. 2nd last level = 11)

13 2nd last level 

15 2nd last level 

16 last level

14 last level

12 (e.g. last level =12)

10

8

6

4

2

×
×

×
×
×
×

Mid-plane

 

Figure 5.7 Checking strategy for contiguity constraint for the laminate with even number of plies.
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Level 2nd last level < 𝑛 − 4 2nd last level = 𝑛 − 4 2nd last level = 𝑛 −  2nd last level = 𝑛 − 1

1

3

5

7

9 (e.g. 2nd last level = 9)

11 2nd last level 

13 2nd last level 

15 last level

14 last level 2nd last level 

12 last level

10 (e.g. last level =10)

8

6

4

2

Mid-plane

×
×
×
×

×
×

×
×

 

Figure 5.8 Checking strategy for contiguity constraint for the laminate with odd number of plies.
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When considering the disorientation constraint, the logic-based strategy checks the 

already chosen plies which are adjacent to the ply under selection, and discards the 

choices which would makes the difference with adjacent orientations greater than 𝜃diff. 

For example, in the first case of the third cycle in Figure 5.4, if 𝜃1
9 has been chosen as 

+45°, ply 2 is under consideration, and ply 3 has not yet been chosen, the choices for 

ply 2 are compared with 𝜃1
9 and are restricted to 0°, +45°, 90°, i.e. the choice 𝜃2

9=−45° 

is discarded. Suppose 𝜃2
9 is chosen to be 0°. Then, when ply 3 is being chosen it is 

necessary to consider 𝜃2
9  and 𝜃4

8  simultaneously because 𝜃4
8  was chosen in the 

previous case and is fixed in this case. So if 𝜃4
8 is 90°, 𝜃3

9 can only become −45° or 

+45°. 

 

As for the minimum percentage constraint, this has been included with the lamination 

parameter constraints in the first stage. However, to avoid a rare situation where the 

lamination parameters of the actual layup are located outside of the feasible region, the 

minimum percentage constraint is also included in the logic-based search. During the 

process, the percentage of each angle is calculated every time a new ply orientation is 

chosen, and results violating this constraint are abandoned. 

 

The damage tolerance constraint is implemented by discarding the 0° and 90° branches 

when processing the two outermost plies. 

 

The initial layup for this improved LBB method is normally chosen as a multiple of a 

ply group of [−45/0/45/90]s, which can constitute laminates with number of plies 

equal to multiples of eight. For laminates with other numbers of plies, combinations 

of the following three groups [−45/45]s, [90 or 0]s and [0] are added at the middle of 

the laminate. Note that these plies should be placed next to plies with the same angle 

to avoid violating the disorientation constraint. Thus the logic-based search starts with 

a layup which satisfies all the constraints, ensuring that all the intermediate results and 

the final result satisfy these constraints. 
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5.2.2.3 Genetic algorithm 

As the most popular method in layup optimisation, GAs based on a stochastic search 

have also been employed in the second stage as an alternative to the improved LBB 

method in order to make a comparison of the two techniques. The GA used herein is 

composed of the following procedures: 

 

1. Generate an initial population of random layups. 

2. Select individuals for reproduction based on a fitness function. 

3. Create a new generation through crossover, mutation and permutation operators. 

4. The balance constraint is achieved using repair operators (optional). 

5. The layup design constraints are implemented by adding penalty terms to the fitness 

function (optional). 

6. Repeat steps 2-5 until one individual satisfies the stopping criterion. 

 

The stacking sequence of each individual is represented by a string of genes in the 

chromosome. The values of the genes are 1, 2, 3 and 4, corresponding to ply 

orientations of −45°, 0°, +45° and 90°, respectively. The biased roulette wheel method 

is employed in the selection procedure. The elitism operator is implemented to retain 

the best two individuals for the next generation without being changed. A two-point 

crossover operator with a high value of probability 𝑃𝑐 is used, following which the 

gene in the chromosome is mutated with a low value of probability 𝑃𝑚 (the commonly 

used values (i.e. 𝑃𝑐  = 0.8, 𝑃𝑚  = 0.1), and a population size of 50 are used in this 

chapter). After mutation, a permutation is applied to all chromosomes. The fitness 

function is formulated as 

 

𝑓 = [𝛤 + 𝑝𝑚1 + 𝑝𝑚2 + 𝑝𝑚3 + 𝑝𝑚4]
−1 (5.16) 

 

where 𝛤 is defined in (5.14) and  𝑝𝑚1, 𝑝𝑚2, 𝑝𝑚3 and 𝑝𝑚4 are penalty terms for layup 

design constraints (1), (2), (3) and (4), above, respectively. A new repair operator 

which is similar to that of Todoroki and Haftka (1998) is employed to enforce the 

balance constraint. This operator calculates the difference between the number of +45° 

plies and −45° plies for each individual. If the difference is even, half of the excess 

plies (+45° or −45°) are replaced by plies (−45° or +45°) from the innermost excess 
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plies. If the difference is odd, excess plies (+45° or − 45°) are replaced by 

complementary plies (−45° or +45°) until there is only one excess ply left, and this 

ply is then replaced by one at 0° or 90°. For the special situation when there is only 

one +45° or −45° ply and the number of complementary plies is 0, the innermost 0° 

or 90° ply is replaced by the ply required to balance the laminate.  

5.3 Results and discussion  

Two sets of results are presented here. In the first set, the performance of the proposed 

two-level layup optimisation is demonstrated with the efficiency of the improved LBB 

method used in the second stage illustrated by comparison with the GA. In the second 

set, the target lamination parameters used in the improved LBB method are taken 

directly from (Herencia et al. 2007) to further demonstrate the capability of the 

technique for searching stacking sequences. All the results were obtained on a 4 GHz 

PC. 

5.3.1 Layup optimisation of a simply supported rectangular laminate  

Firstly, layup optimisation results are given for a simply supported rectangular 

laminate loaded in longitudinal compression, the details of which are provided in Table 

5.2. The required buckling load of this laminate is 𝑝𝑑 = 100 kN, and the lamination 

parameters relating to the original layup listed at the bottom of the table are 𝜉1
𝐴 =

−0.187 , 𝜉2
𝐴 = 0.1  , 𝜉3

𝐴 = 0.06  , 𝜉1
𝐷 = −0.   1 , 𝜉2

𝐷 = 0. 0 6 , 𝜉3
𝐷 = 0.1643, 

𝜉1,2,3
𝐵 =0. Different combinations of constraints are imposed on this laminate. 

 

Table 5.2 Properties and dimensions of the example laminate. 

𝐸1 (kN mm2 )                                                                                   128 

𝐸2 (kN mm2 )                                                                                   10.3 

𝐺1 (kN mm2 )                                                                                   6.0 

𝜌   (kg mm3 )                                                                                   1500 

𝜈12                                                                                                      0.3  

Length (mm)                                                                                     150 

Width (mm)                                                                                      100 

Ply thickness (ℎ𝑝) (mm)                                                                   0.125 

Original total thickness (ℎ) (mm)                                                     4.0 

Original layup                     [902/45/90/45/−45/902/45/−45/02/45/−45/0/90]s 
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Table 5.3 shows the optimised results from the first stage of the optimisation taken 

from VICONOPT. After the first stage, the buckling loads 𝑝𝑐 of this laminate under a 

number of different constraints are all equal to the design load 𝑝𝑑 = 100 kN, and the 

laminate thicknesses (ℎ) have reduced to around 3.5 mm allowing the number of plies 

𝑛𝑡 to reduce from 32 to 28. Therefore, it is clearly seen that 12.5% mass savings are 

achieved for these problems during the first stage. In the basic case which is not 

required to be symmetric or balanced, 9 lamination parameters are allowed to vary in 

the optimisation, whereas in the symmetric case, 𝜉1,2,3
𝐵 =0 are forced to be 0, while 𝜉3

𝐴 

is forced to be 0 when the laminate is required to be balanced. The solution times of 

VICONOPT for these problems are all less than 1 second. 

 

The lamination parameters listed in Table 5.3 are used as target values in the second 

stage optimisation where layups under different design requirements are obtained 

using the improved LBB method with all the weighting factors 𝑤𝐴,𝐵,𝐷 equal to 1. There 

are six groups of layups in Table 5.4, which correspond to the six groups of required 

lamination parameters in Table 5.3. 

 

It can be seen from the penultimate column of Table 5.4 that the global optimum results 

for all the symmetric laminates can be obtained within a very short time, usually 

followed by a longer time to complete the whole search. The exception is example 15 

in which the global optimum result is obtained at 6.4 seconds, but a result with a value 

of 𝛤 = 0.118  which is very close to the global optimum result is obtained at 0.38 

seconds.
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Table 5.3 Stage 1 optimisation results. 

Constraints 𝜉1
𝐴 𝜉2

𝐴 𝜉3
𝐴 𝜉1

𝐷 𝜉2
𝐷 𝜉3

𝐷 𝜉1
𝐵 𝜉2

𝐵 𝜉3
𝐵       𝑛 𝑝𝑐 𝑝𝑑  time (s) 

Basic −0.1680 −0.0854 0.0097 0.0746 −0.7087 −0.0261 −0.0072 −0.0072 −0.0072 28 1.0 0.785 

Symmetric −0.1913 −0.0612 −0.0344 0.0259 −0.7922 −0.0303 0 0 0 28 1.0 0.559 

Sym+10% −0.0888 −0.2551 0.0856 0.0628 −0.8113 −0.0123 0 0 0 28 1.0 0.502 

Balanced −0.1542 −0.0802 0 0.0299 −0.8037 −0.0598 −0.029 −0.029 −0.029 28 1.0 0.879 

Sym+bal −0.1519 −0.0621 0 0.0437 −0.7900 −0.0233 0 0 0 28 1.0 0.395 

Sym+bal+10% −0.1196 −0.0585 0 0.0483 −0.7210 −0.0196 0 0 0 28 1.0 0.310 

 

Table 5.4 Stage 2 optimisation results obtained from the improved LBB method. 

Example Constraints Total 

plies 

Layup 𝛤 𝑝𝑐 𝑝𝑑  Time to 

optimum 

soln (s) 

Total 

time 

(s) 

1 Basic 28 [−452/45/−45/452/02/45/904/45/905/(0/−45)2/45/−452/452] 0.0806 1.0 4.77 3600+ 

2 Symmetric 28 [45/−45/45/−45/−45/45/−45/02/905]S 0.1729 1.0 0.52 7.1 

3 Sym + contiguity 28 [45/−452/45/−45/45/0/−45/45/902/0/902]S 0.1768 1.0 0.31 7.4 

4 Sym + disorientation 28 [−452/0/454/90/−45/903/−45/0]S 0.4705 0.97 0.12 0.95 

5 Sym + disorientation 29 [−452/0/454/90/−45/903/−45/02]MS 0.4254 1.06 0.9 1.4 

6 Sym + 10% 28 [45/−453/453/02/−45/90/45/902]S 0.0658 1.0 0.23 5.87 

7 Sym + 10% + contiguity + damtol 28 [45/−453/453/02/−45/90/45/902]S 0.0658 1.0 0.29 5.3 

8 Sym + 10% + contiguity + damtol + disorientation 28 [−452/0/454/90/45/90/−45/90/−45/0]S 0.3404 0.97 0.55 0.64 

9 Sym + 10% + contiguity + damtol + disorientation 29 [−452/0/454/90/−45/90/45/0/−45/902]MS 0.33 1.08 0.23 0.91 

10 Balanced 28 [−45/45/(45/−45)2/0/−45/0/45/907/02/90/452/−45/45/−453/45] 0.0892 1.0 3.76 3600+ 

11 Sym + bal 28 [−45/45/−45/452/−45/0/45/−45/90/0/903]S 0.0984 1.0 0.23 5.95 

12 Sym + bal + contiguity 28 [−45/45/−45/452/−45/0/45/−45/902/0/902]S 0.1115 1.0 0.29 6.34 

13 Sym + bal + disorientation 28 [−452/0/454/90/−45/903/−45/0]S 0.3828 0.97 0.19 0.9 

14 Sym + bal + disorientation 29 [−452/0/454/90/−45/903/−45/02]MS 0.3776 1.07 0.97 1.59 

15 Sym + bal + 10% 28 [45/−452/452/−45/0/−45/0/904/45]S 0.112 1.0 6.4 9.06 

16 Sym + bal + 10% + contiguity + damtol 28 [45/−452/452/−45/0/−45/0/904/45]S 0.112 1.0 0.30 6.55 

17 Sym + bal + 10% + contiguity + damtol + disorientation 28 [−452/0/454/90/−45/903/−45/0]S 0.3307 0.97 0.49 1.01 

18 Sym + bal + 10% + contiguity + damtol + disorientation 29 [−452/0/454/90/−45/903/−45/02]MS 0.2853 1.07 0.69 1.37 
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As the problem size increases, the total searching time will be longer, for example, as 

the number of layers in the basic case is doubled, the number of layers which need to 

be considered for the symmetric cases, have theoretically around 4 × 1028  new 

possibilities added. A promising result is obtained for the basic case at 4.77 seconds 

but it cannot be guaranteed as the global optimum result until the whole search is 

completed which takes more than 1 hour. Therefore, the search is forced to stop after 

the 9th cycle (around 90 seconds) in this analysis, because a very low value of 𝛤 can 

be obtained early in the first few cycles, and the time for completing the decision tree 

search starts increasing dramatically at this point, being around 9 seconds, 80 seconds 

and 1200 seconds in the 8th, 9th and 10th cycles, respectively. Nevertheless, for 

practical design, the search can be stopped as soon as an acceptable result (e.g. the 

value of  𝛤 is less than 0.3) is found. 

 

The contiguity, disorientation and damage tolerance constraints are only introduced in 

the second stage. Owing to the nature of the contiguity and damage tolerance 

constraints, they only make minimal changes to the stacking sequence, and hence have 

only a small impact on the buckling load. 

 

Figure 5.9 shows the contribution of each lamination parameter in the differences 

between the actual lamination parameters and the target values corresponding to the 

18 examples listed in Table 5.4. It is clearly seen that the differences are quite small 

as values of 𝛤 are around 0.1 except when adding the disorientation constraint which 

causes a more significant mismatch on 𝜉2
𝐷. Figure 5.10 compares the actual lamination 

parameters for examples 15, 16 and 17 against the target lamination parameters in the 

lamination parameter space. Target lamination parameters are represented by a blue 

circle. As examples 15 and 16 have the same actual lamination parameters they are 

both represented by red crosses, while the actual lamination parameters of example 17 

are represented by black crosses. It can be seen that these three examples have the 

same 𝜉1,2,3
𝐴 , which means that despite having different layup design constraints applied 

these laminates have the same number of plies for each angle, hence the differences 

between these cases are caused only by the stacking sequences. The distances between 

the actual lamination parameters and the target values for the 𝜉1,2,3
𝐴  are only around 0.1 

as shown in Figure 5.9. As can be seen from Figures 5.10 (c) and 5.10 (d), the 
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contiguity and damage tolerance constraints have no effect on the stacking sequence 

in example 16 and very good matches are achieved for the out-of-plane lamination 

parameters. However, the disorientation constraint which introduces more limitations 

in choosing the stacking sequences causes 𝜉2
𝐷 to be far from the target in example 17. 

 

 

 

 

 

Figure 5.9 The contribution of each lamination parameter to the difference between 

target and actual lamination parameters for the 18 cases considered. 
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(a)                                                                      (b) 

       

 (c)                                                                   (d) 

 

Figure 5.10 Plot of actual lamination parameters against target lamination parameters 

in lamination parameter space. 

 

 

Because the disorientation constraint significantly reduces the search space, the total 

searching time for examples under the disorientation constraint is around 1 second 

which is much shorter than the other examples as shown in Table 5.4. However the 

presence of the disorientation constraint makes it quite easy to violate the buckling 

constraint. The buckling loads 𝑝𝑐  for the examples which involve the use of the 

disorientation constraint are slightly lower than the design load 𝑝𝑑 , and so these 

examples were re-run with the number of plies increased to 29, which increased 𝑝𝑐 by 
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around 10% and thus satisfied the buckling constraint. Note that some examples in 

Table 5.4 have identical optimal layups but different values of 𝛤 due to their different 

target values of lamination parameters. 

 

As shown in Table 5.5, four of the symmetric examples listed in Table 5.4 were re-run 

using GAs in order to make a direct comparison with the improved LBB method in 

optimising the stacking sequences. Since GAs search randomly for each run, each GA 

was run 10 times for each example to guarantee the reliability of these comparisons. 

The times for obtaining the optimal result for each run are listed from the best to the 

worst in Table 5.5. It is observed that the GA almost always takes longer to find the 

global optimal result and is only faster than the improved LBB method in one case. In 

the last column of Table 5.5, as discussed above, the disorientation constraint makes 

the total searching time shorter for the improved LBB method as more branches can 

be discarded logically. However, it causes longer solution times for GAs, because the 

disorientation constraint can easily be violated by the crossover and mutation operators 

of the GAs during their stochastic search. A comparison between the solution times 

for the improved LBB method and the best 5 GAs for the symmetric case is shown in 

Figure 5.11 (a), where the blue circle represents the global optimal result obtained from 

the improved LBB method and the triangles in other colours represent the global 

optimal results given by the GAs. It can be seen that the best GA run (shown in red) 

obtains the optimal result at 0.37 seconds which is faster than the improved LBB 

method, but before this time point, the improved LBB method finds intermediate 

solutions quicker than all the GAs. Note that the end of the blue line indicates the end 

of the logic-based search during which all the possible layups have been implicitly 

searched, confirming that the global optimal result has been obtained. However, 

although all the GAs eventually found the same result, they could not confirm its 

optimality. Table 5.5 shows that the remaining 5 GAs (not shown in Figure 5.11 (a)) 

took a very long time to find the global optimal result. This is because these runs 

obtained a layup of [45/–45/(–45/45)2/0/–45/45/902/0/902]s with 𝛤 = 0.17684 or a 

layup of [(–45/45)3/45/0/90/–45/0/903]s with 𝛤 = 0.1784 at an early stage. Although 

these 𝛤 are close to the optimal value, the corresponding layups are far away from the 

optimum layup, and it subsequently took a long time for the GAs to move away from 

these local optimum results.  
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Table 5.5 Comparison between GAs and the improved LBB method for four 

symmetric examples from Table 5.4. 

 Example 2 

 ( 𝛤= 0.1729) 

Example 11 

 ( 𝛤= 0.0984) 

Example 16 

 ( 𝛤= 0.112) 

Example 18 

 ( 𝛤= 0.2853) 

GAs     

Time for obtaining the 

optimal result (s) 

0.37 0.29 0.47 0.91 

0.71 0.62 0.88 0.95 

2.28 1.29 1.46 1.38 

9.17 1.32 1.89 5.57 

14.69 1.39 2.73 6.15 

39.02 1.40 2.75 11.43 

47.28 3.14 4.57 13.39 

56.86 5.79 6.03 16.03 

89.59 8.02 9.77 17.40 

136.73 9.79 17.80 42.74 

Improved LBB method     

Time for obtaining the 

optimal result (s) 

0.52 0.23 0.3 0.69 

Total solution time (s) 7.1 5.95 6.55 1.37 

 

 

 

 

 

Table 5.6 Comparison between GAs and the improved LBB method for two non-

symmetric examples from Table 5.4. 

 Example 1 

 

Time for obtaining 

this result (s) 

Example 10 

 

Time for obtaining 

this result (s) 

GAs     

Values of 𝛤 after 300 

seconds 

0.0851 33.76 0.0911 133.20 

0.0938 219.98 0.0926 55.11 

0.0956 88.10 0.0926 119.39 

0.1000 16.97 0.0932 42.20 

0.1087 12.56 0.0945 191.41 

0.1101 108.57 0.0965 4.25 

0.1113 3.70 0.0965 277.41 

0.1113 9.62 0.0967 8.39 

0.1135 99.67 0.0967 50.09 

0.1235 246.16 0.0977 7.11 

Improved LBB method     

Values of 𝛤 after 300 

seconds 

0.0806 4.77 0.0892 3.76 
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   (a) 

 

    (b) 

 

Figure 5.11 Comparison between GAs and the improved LBB method. (a) Example 

2: Symmetric. (b) Example 1: Basic. 
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To investigate the efficiency of the improved LBB method with larger numbers of 

plies in comparison with GAs, the basic and balanced cases for which the number of 

plies in the decision trees are double those for the symmetric cases were re-run 10 

times using GAs. Since GAs require a long time to find the same results as the 

improved LBB method, both methods were run for 300 seconds and comparisons were 

then made between the final values of 𝛤 for each which are listed from the best to the 

worst in Table 5.6. For both cases, the improved LBB method found very good results 

efficiently, whilst the GAs could not achieve the same values of 𝛤 as the improved 

LBB method even after 300 seconds. It is observed that the advantage of the improved 

LBB method is more obvious with larger numbers of plies, because it is easier to match 

the target lamination parameters. However, a larger number of plies also leads to more 

local optimum results in the second stage optimisation, and more plies need to be 

changed to move away from these local optimum results, which is to the disadvantage 

of the stochastic search of GAs. A comparison between the solution times for the 

improved LBB method and the best 5 GAs for the basic case is shown in Figure 5.11 

(b), where the blue circle represents the final result obtained by the improved LBB 

method in 300 seconds and the triangles in other colours represent the final results 

given by the GAs. It can be seen that the improved LBB method always takes the lead 

in the comparison over 300 seconds. These comparisons confirm the advantages of the 

proposed logic-based search over stochastic-based search in quickly obtaining reliable 

results, making it more appropriate for layup optimisation. Note that due to 

manufacturing requirements, the ply angles are usually restricted to 0°, 90°, +45° and 

−45°, and only these four angles have been considered in this thesis. 

5.3.2 Layup optimisation of stiffened panels  

To further demonstrate the capability of the improved LBB method for searching 

layups, target lamination parameters for a range of stiffened panels are taken directly 

from Herencia et al. (2007) with the same number of plies being assumed for 

comparison purposes. Herencia et al. (2007) employed GAs in which the fitness 

function was formed by calculating the squared differences between the optimum and 

actual lamination parameters. Here the comparison is focused on which method can 

find stacking sequences which are closer to the target lamination parameters and also 

satisfy the required constraints. 
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The optimised lamination parameters are shown in Table 5.7, while the optimised 

stacking sequences for each example are listed in Table 5.8. The constraints used for 

each laminate for the improved LBB method are the same as those in the second stage 

in Herencia et al. (2007) (i.e. contiguity constraint, minimum percentage constraint 

and a special case of damage tolerance constraint requiring at least one set of ±45° 

plies at the skin and stiffener surfaces). Global optimality was not always confirmed 

because a maximum time criterion was imposed for the thicker laminates. 

 

The stacking sequence in Herencia et al. (2007) for the skin of example C slightly 

violates the 10% constraint (6 plies out of 61) while the results given by the improved 

LBB method satisfy this constraint because it is enforced during the logic-based search. 

For this example the 𝜉1,2,3
𝐴  were constrained to take the same values as in (Herencia et 

al. 2008) and it was not possible to improve on the value of 𝛤 found by Herencia et al. 

(2007). Therefore, direct comparison is not possible for example C in this chapter. 

 

It can be seen from Table 5.7 that for examples A, B and D, the 𝜉1,2,3
𝐴  of the laminates 

resulting from applying the improved LBB method are same as those in Herencia et 

al. (2007), meaning that they have the same strength, percentage of each ply 

orientation and  Poisson’s ratio mismatch. However the results from the improved 

LBB method better match the target values for 𝜉1,2,3
𝐷  which determine the buckling 

performance of each laminate, and hence lower values of 𝛤 are obtained using this 

method. The buckling load factors for the three optimised configurations obtained in 

Herencia et al. (2007) are 1.117, 1.09 and 0.989, while those given by the improved 

LBB method have higher values of 1.124, 1.097 and 1.029, respectively, improving 

the buckling performance between 0.6% and 4.0%. Note that, to make a fair 

comparison, the buckling load factors presented in this thesis have all been calculated 

by VICONOPT. For the optimised configurations obtained in Herencia et al. (2007), 

this gives slightly different values from those listed in the paper. These results suggest 

that the improved LBB method has better capability in searching the stacking 

sequences. This is because GAs sometimes miss the global optimum or can take too 

long to find it for problems with many plies, whereas useful results can be obtained 

quite quickly using the improved LBB method.
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                          Table 5.7 Optimum lamination parameters and 𝛤 for the two methods. 

Example Method 𝜉1
𝐴 𝜉2

𝐴 𝜉3
𝐴 𝜉1

𝐷 𝜉2
𝐷 𝜉3

𝐷 𝛤 

A 

Skin 

(59 plies) 

first stage 0.4603 0.3206 0.1208 −0.0028 −0.2908 0.3911  

second stage (Herencia et al. 2007) 0.4237 0.2542 0.1695 0.1346 −0.2123 0.2672 0.4915 

second stage (this thesis) 0.4237 0.2542 0.1695 0.1315 −0.2719 0.3998 0.3136 

A 

Stiffener 

(31 plies) 

first stage 0.5862 0.5724 0.0002 0.1603 −0.0281 0.0016  

second stage (Herencia et al. 2007) 0.4839 0.4839 0 0.2261 0.0102 −0.0532 0.3499 

second stage (this thesis) 0.4839 0.4839 0 0.2261 0.0102 −0.0532 0.3499 

B 

Skin 

(58 plies) 

first stage 0.4551 0.3102 0.1449 0.0434 −0.1356 0.2124  

second stage (Herencia et al. 2007) 0.4483 0.3103 0.1379 0.1098 −0.0872 0.2314 0.1477 

second stage (this thesis) 0.4483 0.3103 0.1379 0.0950 −0.1364 0.2078 0.0710 

B 

Stiffener 

(47 plies) 

first stage 0.5934 0.5868 0.0009 0.1674 −0.0011 0.0036  

second stage (Herencia et al. 2007) 0.4894 0.4894 0 0.2744 0.0862 −0.0079 0.4081 

second stage (this thesis) 0.4894 0.4894 0 0.2698 −0.0035 −0.0055 0.3162 

C 

Skin 

(61 plies) 

first stage 0.4850 0.3700 0.0866 −0.0185 −0.1623 0.2797  

second stage (Herencia et al. 2007) 0.4426 0.2787 0.0984 0.1303 −0.1244 0.1853 0.4266 

second stage (this thesis) 0.4426 0.3443 0.0656 0.2572 −0.1643 0.2829 0.3703 

C 

Flange 

(18 plies) 

first stage 0.3941 0.1881 0 0.3239 −0.2744 0.1030  

second stage (Herencia et al. 2007) 0.3333 0.1111 0 0.3416 −0.2785 0.1235 0.1799 

second stage (this thesis) 0.3333 0.1111 0 0.3416 −0.2785 0.1235 0.1799 

C 

Web 

(32 plies) 

first stage 0.7541 0.9083 −0.0198 0.6044 0.7372 −0.0542  

second stage (Herencia et al. 2007) 0.625 0.75 0 0.6016 0.7559 −0.0396 0.3433 

second stage (this thesis) 0.5625 0.875 0.0625 0.6013 0.9966 0.0017 0.6256 

D 

Skin 

(63 plies) 

first stage 0.4887 0.3775 0.0796 0.0217 −0.2271 0.2897  

second stage (Herencia et al. 2007) 0.4444 0.3968 0.0794 0.2312 −0.0932 0.1409 0.5560 

second stage (this thesis) 0.4444 0.3968 0.0794 0.1792 −0.1888 0.2824 0.2669 

D 

Flange 

(8 plies) 

first stage −0.0277 −0.3359 0 0.2961 −0.0299 0.0473  

second stage (Herencia et al. 2007) 0 0 0 −0.0937 −0.7500 0.2813 1.7075 

second stage (this thesis) 0 0 0 −0.0937 −0.7500 0.2813 1.7075 

D 

Web 

(53 plies) 

first stage 0.6947 0.7412 0 0.6671 0.3370 0.0321  

second stage (Herencia et al. 2007) 0.6226 0.6981 0 0.7464 0.5427 −0.0181 0.4504 

second stage (this thesis) 0.6226 0.6981 0 0.6268 0.3557 0.0380 0.1801 
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                             Table 5.8 Optimum stacking sequences for the two methods. 

Example Method Layup Percentage for each angle (%) 

0° 90° +45° −45° 

A 

Skin 

(Herencia et al. 2007) [±45/453/902/(±45/04)2/45/04/45/02/90/0/0]MS 52.54 10.17 27.12 10.17 

this thesis [±45/454/(90/45)2/04/−45/04/45/04/90/03/−45/0]MS 52.54 10.17 27.12 10.17 

A 

Stiffener 

(Herencia et al. 2007) [±45/90/−45/04/45/04/90/0/0]MS 61.29 12.9 12.9 12.9 

this thesis [±45/90/−45/04/45/04/90/0/0]MS 61.29 12.9 12.9 12.9 

B 

Skin 

(Herencia et al. 2007) [±45/902/45/±45/02/452/(45/04)2/90/04/−45/02]S 55.17 10.34 24.14 10.34 

this thesis [±45/−45/45/90/452/90/45/02/90/(04/45)2/04/−45/02]S 55.17 10.34 24.14 10.34 

B 

Stiffener 

(Herencia et al. 2007) [(±45)2/02/902/04/−45/04/90/04/45/0]MS 61.7 12.77 12.77 12.77 

this thesis [±45/90/45/0/−452/04/45/04/90/04/90/02]MS 61.7 12.77 12.77 12.77 

C 

Skin 

(Herencia et al. 2007) [±45/45/902/45/(±45/02)2/02/45/03/45/02/90/04/45/0/0]MS 54.1 9.84 26.23 9.84 

this thesis [±45/45/90/454/04/−45/04(−45/03)2/90/02/90/0/90]MS 55.74 11.48 19.67 13.11 

C 

Flange 

(Herencia et al. 2007) [±45/02/45/0/−45/90/0]S 44.44 11.11 22.22 22.22 

this thesis [±45/02/45/0/−45/90/0]S 44.44 11.11 22.22 22.22 

C 

Web 

(Herencia et al. 2007) [02/90/02/−45/02/45/04/90/02]S 75 12.5 6.25 6.25 

this thesis [(03/90)2/0/90/04/45/0]S 75 18.75 6.25 0 

D 

Skin 

(Herencia et al. 2007) [±45/45/±45/02/90/±45/45/04/90/(90/04)2/45/04/−45]MS 57.14 12.7 19.05 12.7 

this thesis [±45/454/−45/45/90/02/(90/04)2/−45/04/90/04/−45]MS 57.14 12.7 19.05 12.7 

D 

Flange 

(Herencia et al. 2007) [±45/90/0]S 25 25 25 25 

this thesis [±45/90/0]S 25 25 25 25 

D 

Web 

(Herencia et al. 2007) [04/±45/02/−45/04/45/(04/90)2/90/0/0]MS 73.58 11.32 7.55 7.55 

this thesis [45/−45/03/45/04/−45/(04/90)3/0]MS 73.58 11.32 7.55 7.55 

Note that the C skin in Herencia et al. (2007) slightly violates the 10% constraint. The reason why the C and D webs shown in this table appear to violate the 

10% constraint is because they are actually laminates which are sandwiched by flanges on both sides to constitute the actual web, as described in Herencia et 

al. (2007).
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5.4 Conclusions 

An efficient two-stage method for performing layup optimisation of single composite 

laminates subject to buckling, manufacturing and lamination parameter constraints, 

has been presented in this chapter. VICONOPT is employed in the first stage to 

conduct a gradient-based optimisation process using lamination parameters. The 

optimised lamination parameters are treated as target values when searching 

corresponding layups in the second stage where an improved LBB method is employed. 

This improved LBB method is a combination of the branch and bound method and a 

global layerwise technique, which can find optimum results for different combinations 

of constraints (e.g. symmetry, balance and layup design constraints). Restrictions on 

feasible regions for lamination parameters when using a 10% minimum percentage 

constraint are studied, showing that the feasible regions for 𝜉1,2,3
𝐴  are reduced by 64%, 

while the feasible regions for 𝜉1,2,3
𝐷  are only reduced by around 3%. In the first set of 

results, 12.5% mass savings are achieved efficiently for a laminate subjected to 

compressive load under different constraints using this two-stage optimisation, and the 

efficiency of the improved LBB method is illustrated by comparison with a GA, 

showing that it is almost always faster in layup optimisation. Benefitting from the 

checking strategy used, the advantages of the improved LBB method are more obvious 

when considering layup design constraints. In the second set of results, the improved 

LBB method is compared with previously published results for stiffened panels based 

on their target lamination parameters and numbers of plies. The results confirm that 

the improved LBB method can find results closer to the target values, and hence give 

a slightly better buckling performance (with an improvement of 0.6% to 4.0%).  
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Chapter 6                                                                  

Two-stage Layup Optimisation of Blended 

Composite Laminates 

6.1 Introduction  

In this chapter, the two-stage layup optimisation method developed in Chapter 5 is 

extended to more complex blended composite laminate structures incorporating 

buckling, blending, manufacturing and lamination parameter constraints. The first 

stage involves multilevel optimisation based on finite element analysis of a whole 

structure and exact strip analysis of its component panels. The lamination parameters 

and the laminate thicknesses of each panel are used as design variables to minimise 

the weight of the whole structure subject to buckling and lamination parameters 

constraints. This is achieved by extending VICONOPT MLO, which was introduced 

in Section 4.4.3, to use lamination parameters and laminate thicknesses as design 

variables and using this software rather than VICONOPT in the first stage of the 

optimisation.  

 

For the second stage, a novel dummy layerwise branch and bound (DLBB) method is 

proposed to search the practical stacking sequences to find those needed to achieve a 

blended structure based on the use of −45°, 0°, +45° and 90° plies and having 

lamination parameters equivalent to those determined in the first stage. To obtain a 

blended composite laminate, the layup of a thinner panel should be a subset of that of 

all its adjacent thicker panels, in terms of both the number of plies of each orientation 

and also the order of plies in the layup. Unlike the stochastic search methods 

commonly used to solve such problems, the DLBB method carries out a logical search 

with similarities between this and the improved LBB method introduced in Chapter 5. 

The effectiveness of the presented method is demonstrated through the optimisation of 

a benchmark wing box. This work corresponds to the second journal paper in the 

publication list in Section 1.4. 
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6.2 Methodology 

6.2.1 First stage optimisation  

As discussed in Chapter 4, the disadvantages of using VICONOPT MLO are that 

because the stacking sequence of each panel is fixed in the optimisation and the 

thickness of each layer is optimised continuously, no allowance has been made for 

practical laminate design rules. 

   

In this chapter, VICONOPT MLO is extended to perform layup optimisation of 

blended composite structures to obtain more practical designs based on the use of 

lamination parameters as design variables. This extended version of the software is 

used in the first stage of the optimisation process to determine lamination parameters 

which are then used to create appropriate designs for individual panels in the second 

stage. 

 

The modified process can be seen in the flow chart in Figure 6.1. First, the finite 

element software ABAQUS (Dassault Systèmes 2013) is employed to perform a static 

analysis on the overall structure with the stiffness matrices calculated from lamination 

parameters, avoiding using specific layups in the FEA. After obtaining the loading for 

each component panel from the resulting ABAQUS output file (.dat), VICONOPT 

input files (.dat) are created (in the first cycle) or modified (in the following cycles), 

and the component panels are then optimised separately again using lamination 

parameters. 

 

The optimised lamination parameters and laminate thicknesses from the VICONOPT 

output files (.res) are then treated as the starting points for the next VICONOPT 

optimisation cycle as well as being used to recalculate the stiffness matrices for the 

ABAQUS input file (.inp) for the next static analysis. This iterative multilevel 

optimisation process repeats until the convergence criteria (i.e. total mass, individual 

mass and stress distribution of each panel) are reached and thus the optimised 

lamination parameters and laminate thicknesses are derived. 
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Figure 6.1 Flow chart of the proposed first stage multilevel optimisation using 

lamination parameters. 



Two-stage Layup Optimisation of Blended Composite Laminates 

90 

 

VICONOPT assumes the loading on the component panels to be longitudinally 

invariant in the buckling analysis, so that some approximations need to be made for 

the transfer of loads from the system level (whole structure) to the panel level 

(component panels). The load transfer process developed in Fischer et al. (2012) is 

used herein. At the system level, for the analysis of composite laminates the four-node 

quadrilateral shell element S4R is used, and ABAQUS is required to output the section 

forces (longitudinal force 𝑓𝑥𝑖, transverse force 𝑓𝑦𝑖 and shear force 𝑓𝑥𝑦𝑖) and moments 

(i.e. longitudinal moment  𝑚𝑥𝑖 ) per unit length for each element 𝑖 . Since the 

optimisation process in VICONOPT requires the overall longitudinal axial load and 

bending moment to be input, these are obtained using the following equations 

 

𝐹𝑥𝑝𝑎𝑛𝑒𝑙 =
∑  𝑓𝑥𝑖 ∙ 𝑤𝑒𝑖
𝑁𝑒
𝑖=1

𝑁𝑙
 

 

 

(6.1) 

𝑀𝑥𝑝𝑎𝑛𝑒𝑙 =
∑  𝑚𝑥𝑖 ∙ 𝑤𝑒𝑖
𝑁𝑒
𝑖=1

𝑁𝑙
 

 

(6.2) 

 

The transverse and shear forces per unit length for each of the component plates of the 

panel models are then calculated as 

 

𝑓𝑦𝑝𝑙𝑎𝑡𝑒 =
∑  𝑓𝑦𝑖
 𝑁𝑝𝑙
𝑖=1

𝑁𝑝𝑙
 

 

 

(6.3) 

𝑓𝑥𝑦𝑝𝑙𝑎𝑡𝑒 =
∑  𝑓𝑥𝑦𝑖
 𝑁𝑝𝑙
𝑖=1

𝑁𝑝𝑙
 

 

(6.4) 

 

Here 𝑁𝑒 is the number of elements in the panel, 𝑁𝑙 is the number of elements along 

the length of the panel, 𝑁𝑝𝑙 is the number of elements in the component plate and 𝑤𝑒𝑖 

is the width of element 𝑖. 

 

Note that in the previous version of VICONOPT MLO (Fischer et al. 2012), the 

QUAD4 shell element in MSC/NASTRAN is employed for static analysis, for which 

only the stresses at the top and bottom surfaces of the element can be output. Hence, 
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further work needs to be done to extract the required section forces from the stresses 

which are then used to obtain the loads required for the VICONOPT models. Thus the 

use of ABAQUS which is able to directly output the section forces and moments 

reduces the complexity of the load transfer in this multilevel optimisation. 

6.2.2 Second stage optimisation  

In the second stage of the optimisation process, the dummy layerwise branch and 

bound (DLBB) method illustrated in Figure 6.2 is proposed to obtain the stacking 

sequences for the whole structure. Instead of searching the stacking sequence 

stochastically as for the heuristic algorithms, the dummy layerwise technique and the 

nature of the branch and bound method make DLBB a logical-search based method.  

The optimised lamination parameters obtained in the first stage are used as the target 

values for the DLBB which optimises the stacking sequences to match these target 

values as closely as possible. Blending and the introduction of the four layup design 

constraints are also implemented through the DLBB. 

 

Once the first stage of the optimisation is completed, the number of plies in each panel 

is optimised and fixed. Before optimising the stacking sequences in the second stage, 

all panels are ranked in terms of their number of plies. Then for each panel except the 

thickest one, dummy plies are added on top to give all the panels the same number of 

plies as the thickest one, forming a dummy layerwise table as shown in Figure 6.3. 

The aim of the DLBB is to minimise the objective function 𝛤 obtained by calculating 

the total difference between the target lamination parameters and the actual lamination 

parameters related to the chosen ply orientations for all of the panels as follows: 

 

𝛤 =∑ 𝛤𝑝𝑎𝑛𝑒𝑙 𝑘
𝑁𝑝𝑎𝑛𝑒𝑙

𝑘=1
 

 

 

(6.5) 

𝛤𝑝𝑎𝑛𝑒𝑙 𝑘 =∑ ∑ 𝑤𝑗
𝑗=𝐴,𝐷

3

𝑖=1

|𝜉𝑖(𝑘)(𝑎𝑐𝑡𝑢𝑎𝑙)
𝑗

− 𝜉𝑖(𝑘)(𝑡𝑎𝑟𝑔𝑒𝑡)
𝑗

| 
 

(6.6) 
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Figure 6.2 Flow chart of the dummy layerwise branch and bound (DLBB) method. 
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Figure 6.3 The dummy layerwise technique: starting layout of the dummy layerwise table. 
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where 𝑁𝑝𝑎𝑛𝑒𝑙 is the number of panels, 𝑤𝐴,𝐷 are weighting factors, 𝜉1,2,3(𝑘)(𝑡𝑎𝑟𝑔𝑒𝑡)
𝐴,𝐷

 are 

the target lamination parameters for panel k, and 𝜉1,2,3(𝑘)(𝑎𝑐𝑡𝑢𝑎𝑙)
𝐴,𝐷

 are the actual 

lamination parameters of the chosen layup of panel k. 

 

As for the improved LBB method developed in Chapter 5, the current best result is 

used as the upper bound in the branch and bound method, and the lower bound is 

obtained by subtracting the maximum achievable contribution of the remaining levels 

in the decision tree from the exact value of 𝛤  obtained by considering only the 

contributions of the chosen levels. Based on these bounds, the branching process 

choose the branch for the next level with the aim of minimising the value of 𝛤 . 

However, whilst the dummy plies used to impose the blending constraint are now 

added into the layerwise process, they are not included in the branch and bound search, 

since they do not contribute to the stiffness of the laminate.  

 

As illustrated in Figures 6.2 and 6.3, the dummy layerwise technique consists of three 

loops: the cycle, pass and case, and the ply orientations are optimised successively, 

working inwards from the outer plies which make the most important contributions to 

the 𝜉1,2,3
𝐷 . As shown in Figure 6.3, initially only two plies from each panel are 

optimised, then three, and so on until in the final cycle all the plies are optimised 

together. The layup search method embedded in the dummy layerwise technique, the 

branch and bound process, thus starts with a small problem which only considers a few 

plies, meaning good results can be obtained quickly. In subsequent cycles, previous 

incumbent solutions give an upper bound on the objective function when searching the 

increasingly larger number of plies, and hence many branches can be discarded 

without being explored, reducing the searching time. Furthermore, the constraints 

required to be applied for each single panel including the balance, symmetry, and four 

layup design constraints can be implemented within this optimisation process. 

 

The DLBB method is illustrated in Figures 6.3-6.6 for the example of a blended 

structure comprising four panels whose symmetric layups contain 12, 8, 6 and 4 layers 

(i.e. plies), respectively. In the first case of the first cycle, only the two outer real layers 

in the thickest panel are optimised and the related decision tree used in the branch and 
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Figure 6.4 Decision trees with a possible determined layup: (a) in the first case of the 

first pass of the first cycle; (b) in the second case of the first pass of the first cycle. 

(a) 

(b)      
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Figure 6.5 Layout changes after the first pass of the first cycle. 
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Case 1

Case 2

S
 

Figure 6.6 A possible starting layup for the second cycle. 

  

 

bound method with a possible determined layup is shown in Figure 6.4 (a). The order 

of the layers for optimisation can be described by: 

 

𝑃𝑖.𝑗  

𝑖 = 1, 𝑗 = 𝑛𝑐𝑦  × 𝑛𝑐𝑎  − 𝑛𝑐𝑦  + 𝑛𝑐𝑎  for the first layer 

𝑖 = 𝑖 + 1 if the layer to the right is not a dummy layer 

𝑖 = 1, 𝑗 = 𝑗 + 1 if the layer to the right is a dummy layer or 𝑖 > 𝑁𝑝𝑎𝑛𝑒𝑙 

 

where 𝑃𝑖𝑗 is the position of the layer in the dummy layerwise table, 𝑖 and 𝑗 represent 

the column and row numbers in the dummy layerwise table respectively and 𝑛𝑐𝑦 and 

𝑛𝑐𝑎 are the cycle number and case number respectively. 
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Then, in the second case of the first cycle, the newly optimised layup is used as the 

starting layup and the optimisation starts from layer 1.3, then goes to layer 2.1. Since 

layers 1.1, 1.2 and 1.3 have already been chosen, layer 2.1 can be chosen to match any 

of these. After that, layers 1.4, 2.2 and 3.1 are selected. For layer 2.2, the choices 

available are the angles of the layers which are below the layer in the panel to its left 

that layer 2.1 has just been chosen to match. The rest of the choices for layer 2.2 are 

pruned by the branch and bound method. Based on the chosen layup of the panel at the 

current level, the checking strategy developed in Chapter 5 is implemented to 

determine which ply should be further pruned to satisfy the layup design constraints.  

In the same way, for layer 3.1 there are two choices, namely to match layer 2.1 or layer 

2.2. Figure 6.4 (b) shows the decision tree with a possible determined layup for the 

second case, with the branches at different levels from the different panels. Moreover, 

after layer 3.1 has been chosen, the branch and bound method will go back to check 

the rest of the possibilities to avoid missing the best layup for the layers in the current 

case. During this backtracking procedure, it is not necessary to search all the further 

branches because the result just obtained in the current case further reduces the value 

of the objective function 𝛤, and so branches predicted as having a larger value of 𝛤 are 

discarded. A benefit of the backtracking procedure and optimisation order described 

above is that decisions regarding the intermediate solutions from each case are made 

based on a balance between all the panels. 

 

The positions of the dummy layers in the dummy layerwise table are changed 

according to the layer choices after each case, enabling flexibility in determining the 

layer drop-off location. Once a layer has been chosen to match the layer which is 

located in the panel to the left in a former case, the layer in the current case will be 

dropped and moved up to the corresponding former case, and a dummy layer in the 

former case will be swapped to the current case. Furthermore, the dummy layers will 

be located from the top to the bottom in each case to provide more choices for the real 

layers. For example, if layers 2.1, 2.2 and 3.1 are chosen to match layers 1.1, 1.4 and 

2.1, respectively, the dummy layers in the first case swap with the real layers in the 

second case as shown in Figure 6.5. Hence, the layout of the dummy layerwise table 

and the optimisation order of the layers are changed for the next pass. In the next pass 

loop, the layer moved up will be optimised in the same case as the layer it is chosen to 

match to ensure the blending constraint. 
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After the last case in a pass loop is completed, a new pass loop starts and repeats the 

process based on the newly obtained layup from the last loop until convergence to a 

constant 𝛤 is achieved. After the first cycle, a possible layout of the dummy layerwise 

table is shown in Figure 6.6, which then becomes the starting layup for the second 

cycle where three rows of layers can be optimised in a case. As the new case contains 

the layers from two cases in the previous cycle, the dummy layers in each new case 

are relocated from the top to the bottom at the beginning of the new cycle. As can be 

seen in Figure 6.6, the positions of the real layers are more flexible in these cases 

because more layers are allowed to be optimised together. Based on the process 

described above, the blended layup can be obtained logically by the branch and bound 

method embedded within the dummy layerwise technique.  

6.3 Results and discussion 

The optimisation of the benchmark wing box structure used in the previous work on 

VICONOPT MLO (Fischer et al. 2012) is presented in this chapter to validate the 

proposed two-stage method. As shown in Figure 6.7, the wing comprises six panels on 

the top, six panels on the bottom, four ribs and three spars. The details of the skin 

panels are shown in Figure 6.8. Each panel has three L-shaped stringers reinforcing 

longitudinal stiffness and increasing local buckling capability. The wing is made of 

high strength carbon-epoxy and the material properties are given in Table 6.1. Three 

concentrated loads of magnitudes 50000 N, 30000 N and 15000 N are applied at the 

rib at the free end, inducing upward bending and twisting of the wing. To model 

realistic boundary conditions, the wing is attached to a steel adapter clamped at its end 

instead of directly clamping the root of the wing.  

 

In this chapter, only the panels on the top of the wing are considered in the layup 

optimisation. The previously optimised configurations in Fischer et al. (2012) are 

taken as starting points for the optimisation presented here. In the previous 

optimisation the stacking sequences of the skin panels, ribs and spars were fixed as 

[−45/45/90/0]s and only the layer thicknesses were optimised. Table 6.2 shows the 

starting layup for this optimisation. 
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Figure 6.7 (a) Geometry of the wing box and the load case.  (b) Bottom panels, ribs 

and spars. 
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Figure 6.8 Geometry of the component panels (in mm). 

 

 

 

 

 

Table 6.1 Material properties. 

Material properties Values 

Young’s modulus in the fibre direction 1, 𝐸11 140000 MPa 

Young’s modulus in the transverse direction 2, 𝐸22 10000 MPa 

Shear modulus 𝐺12 5000 MPa 

Poisson’s ratio 𝜐12 0.3 

Material density 𝜌 0.0016 g mm3  

Ultimate longitudinal tensile strength 1500 MPa 

Ultimate longitudinal compressive strength 1200 MPa 

Ultimate transverse tensile strength 50 MPa 

Ultimate transverse compressive strength 250 MPa 

Ultimate in-plane shear strength 70 MPa 
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Table 6.2 Starting layup and ply thicknesses (mm) (optimised results from Fischer et 

al. (2012)). 

Top Panels  Panel 1 Panel 2 Panel 3 Panel 4 Panel 5 Panel 6 

Skin t(−45) 0.181 0.736 0.358 1.072 1.304 1.174 

 t(45) 0.181 0.125 0.839 0.631 1.500 1.372 

 t(90) 0.433 0.215 1.500 1.500 1.500 1.494 

 t(0) 0.537 1.500 1.500 1.500 1.500 1.500 

Web t(−45) 0.159 0.282 0.364 0.265 0.308 1.208 

 t(45) 0.188 0.282 0.503 0.221 0.308 1.395 

 t(90) 0.354 0.125 0.963 0.964 0.125 2.242 

 t(0) 0.817 1.500 2.000 2.000 0.125 2.499 

Flange t(−45) 0.280 0.593 1.500 1.500 1.467 1.173 

 t(45) 0.280 0.641 1.500 1.500 1.467 1.173 

 t(90) 0.559 0.236 1.500 1.500 1.545 1.448 

 t(0) 1.500 1.500 2.000 2.000 2.500 2.500 

Bottom Panels  Panel 7 Panel 8 Panel 9 Panel 10 Panel 11 Panel 12 

Skin t(−45) 0.13 0.13 0.13 0.13 0.13 0.13 

 t(45) 0.13 0.13 0.13 0.13 0.13 0.13 

 t(90) 0.54 0.88 0.13 0.13 0.13 0.13 

 t(0) 0.13 0.14 0.25 0.32 0.55 0.7 

Web t(−45) 0.13 0.13 0.13 0.13 0.13 0.13 

 t(45) 0.13 0.13 0.13 0.13 0.13 0.13 

 t(90) 0.13 0.13 0.13 0.13 0.13 0.13 

 t(0) 0.13 0.13 0.19 0.15 0.13 0.13 

Flange t(−45) 0.13 0.13 0.13 0.13 0.13 0.13 

 t(45) 0.13 0.13 0.13 0.13 0.13 0.13 

 t(90) 0.13 0.13 0.13 0.13 0.13 0.13 

 t(0) 0.27 0.13 0.19 0.15 0.13 0.13 

6.3.1 First stage optimisation results  

In the first stage of the optimisation of the wing box, in order to be able to replicate 

the results from the previous study, 8952 S4R shell elements were used in the static 

analysis of the whole structure. Elements were uniformly assigned on each panel, and 

the number of elements used to mesh the geometry for the skin, webs and flanges of 

each panel were 450, 75 and 75, respectively. The top panels were mainly subjected 

to compressive loading because they are on the top surface of the wing box. For the 

tip panels, the force calculation equations (6.1)-(6.4) are all multiplied by an empirical 

factor 𝛼𝑒 which is chosen to be 1.1. This factor takes into account the fact that in the 

static analysis of the whole structure, the ribs and spars provide a level of support 

which is between simply supported and free for the panel at the tip, but in the 

optimisation VICONOPT treats it as simply supported which is an overestimate.  
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As the layups are required to be symmetric, there are 21 design variables for each panel 

with the skin, web and flange having 7 variables each (i.e. 𝜉1
𝐴, 𝜉2

𝐴, 𝜉3
𝐴, 𝜉1

𝐷 , 𝜉2
𝐷 , 𝜉3

𝐷 , ℎ), 

hence a total of 126 design variables are specified in this optimisation. Figure 6.9 (a) 

shows the total mass comparison for the top panels. As can be seen, the final mass at 

the end of the first stage converges on a value of 49.1 kg.  Compared with the optimised 

configuration in Fischer et al. (2012), a 4.9 kg reduction is achieved which represents 

a 9.1% saving over the previously optimised weight. It is observed that the design 

space is expanded by using lamination parameters as design variables. The mass 

change of each individual panel is shown in Figure 6.9 (b) where it can be seen that 

the majority of the mass saving for the whole structure is achieved in panels 2, 3 and 

4 whose stacking sequences change significantly in this optimisation. The mass 

reductions of panel 5 and 6 are relatively small, while the mass of panel 1 remains 

almost constant. As expected, the panel mass increases from the tip to the root due to 

the increase in bending moment along the wing. The panels on the right are heavier 

than the adjacent panels on the left due to the twisting effect resulting from the unequal 

magnitudes of the applied loads.  

 

Table 6.3 shows the re-distribution of axial load and bending moment which occurs in 

each panel, obtained at the end of the multilevel optimisation process based on the 

optimised structural configurations. Compared with the loading re-distributions of the 

optimised configurations in (Fischer et al. 2012), it is observed that the newly 

optimised panels are able to carry approximately the same loads with reduced laminate 

thicknesses. The optimised lamination parameters and laminate thicknesses for each 

panel are listed in Table 6.4. 

 

Table 6.3 Re-distributions of axial load and bending moment after the multilevel 

optimisation. 

Panel no.  1 2 3 4 5 6 

Axial load (Fischer et al. 2012) 113.03 122.97 423.57 470.88 719.53 799.38 

(kN) This thesis 110.79 121.80 422.22 462.88 710.24 804.46 

Bending moment (Fischer et al. 2012) 1.1963 5.4909 76.048 86.356 219.09 249.36 

(kNm) This thesis 1.1492 2.6543 68.508 57.671 180.41 251.92 
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Figure 6.9 (a) Total mass comparison of the top panels. (b) Mass comparisons of each 

individual panel. 
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Table 6.4 Optimisation results of the first stage. 

Panel 

no. 

 𝜉1
𝐴 𝜉2

𝐴 𝜉3
𝐴 𝜉1

𝐷 𝜉2
𝐷 𝜉3

𝐷 ℎ(mm) 𝑛 

1 Skin 0.0791 0.4552 −0.0006 −0.2559 −0.2245 −0.0959 2.674 22 

 Web 0.3032 0.5392 0.0173 −0.1470 −0.0817 −0.0240 3.047 25 

 Flange 0.3552 0.5678 −0.0035 −0.1069 −0.0247 −0.0612 5.257 43 

2 Skin 0.2660 0.1988 −0.0758 −0.0890 −0.1208 −0.4364 3.646 30 

 Web 0.4225 0.4028 −0.0274 0.0512 −0.1266 −0.0589 3.598 29 

 Flange 0.3024 0.0878 −0.0197 −0.0823 −0.5315 −0.1410 4.918 40 

3 Skin −0.0729 0.1781 −0.0208 −0.4108 −0.1073 0.0478 7.469 60 

 Web 0.2158 0.4651 0.0019 −0.2970 0.0238 0.0132 7.101 57 

 Flange 0.0527 0.0527 0 −0.1779 −0.5253 −0.0548 12.203 98 

4 Skin −0.0444 0.1639 −0.0359 −0.2338 −0.4526 −0.0274 8.156 66 

 Web 0.2265 0.5485 −0.0131 −0.2851 0.2945 −0.0608 5.971 48 

 Flange 0.0708 0.0709 0 −0.1286 −0.6492 −0.1735 11.273 91 

5 Skin 0.0004 0.0338 0.0338 −0.1028 −0.7205 0.0384 11.027 89 

 Web 0 −0.4225 0 −0.0180 −0.9529 −0.4905 1.645 14 

 Flange 0.1368 0.1592 0 −0.1023 −0.6183 −0.2087 13.260 107 

6 Skin −0.0200 0.1013 0.0183 −0.1750 −0.4797 0.0114 10.761 87 

 Web 0.0131 0.2141 −0.0011 −0.2058 −0.4636 −0.0792 14.261 115 

 Flange 0.1537 0.2174 −0.0221 −0.1471 −0.4700 −0.1508 12.342 99 

 

 

6.3.2 Second stage optimisation results   

In the second stage of the optimisation, the lamination parameters obtained in the first 

stage are used as target values in the DLBB method. Due to manufacturing 

requirements, ply thickness is chosen to be 0.125 mm in each case. For each panel, the 

number of plies after rounding up to the nearest larger integer number n is shown in 

the last column of Table 6.4. After the rounding process, the buckling load factor for 

the first buckling mode, which is local to panel 1 as shown in Figure 6.10 (a), is 1.15. 

Note that the small buckling modes are the plate buckling between the stringers. Figure 

6.10 (b) shows the second buckling mode involves global buckling of the whole top 

surface for which the buckling load factor is 1.17. 
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Figure 6.10 Buckling modes obtained using the optimised lamination parameters and 

rounded thicknesses. (a) First buckling mode with buckling load factor = 1.15. (b) 

Second buckling mode with buckling load factor = 1.17. 

 

6.3.2.1 Layup design without blending constraint 

In order to validate the DLBB method, the stacking sequences are now optimised 

separately without imposing the blending constraint. Table 6.5 shows the stacking 

sequences obtained when optimisation is based only on using the four layup design 

constraints. Compared with the previous results, the stacking sequences obtained here  

(a) 

(b) 
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Table 6.5 Stacking sequences of top panels without blending constraint. 

Panel 

no. 

 Stacking sequences 

1 Skin [45/−45/902/−45/04/45/90]S 

 Web [45/−45/902/−45/02/45/04/45]MS 

 Flange [45/−452/904/45/03/−45/04/45/04/−45]MS 

2 Skin [45/−45/902/−452/02/−45/04/45/90]S 

 Web [45/−45/902/−45/04/45/04/−45]MS 

 Flange [45/−454/90/452/90/45/03/−45/03/45/02]S 

3 Skin [45/−45/90/452/90/−45/902/45/90/−45/90/(−45/902)2/−45/02/45/04/45/02]S 

 Web [45/−452/903/(45/90)2/−45/902/45/04/−45/04/45/04/−45]MS 

 Flange [45/−454/90/454/90/−453/90/452/90/−453/90/45/903/45/02/45/902/45/04/(−45/ 

04)2/45/90]S 

4 Skin [45/−454/90/454/90/−45/90/45/902/−45/904/45/04/−45/04/−45/90]S 

 Web [45/−45/904/−45/902/−45/(04/45)2/03/−45]S 

 Flange [45/−454/90/−454/90/454/90/453/90/−45/904/(−45/04)2/45/04/45/902/45/0/0]MS 

5 Skin [45/−454/90/454/90/−45/90/454/0/−453/0/−45/02/(45/904)2/45/03/−45/04/ 

−45]MS 

 Web [45/−453/90/45/0]S 

 Flange [45/−454/90/−454/90/−452/90/454/90/452/903/−45/0/45(04/45)2/904/−45/(04/ 

45)2/0/0]MS 

6 Skin [45/−454/90/454/90/453/90/−453/90/−45/904/−45/03/45/04/45/904/−45/04/45]MS 

 Web [45/−454/90/454/90/−454/90/453/90/−453/902/45/904/−45/904/45/04/−45/(04/ 

45)3/90/90]MS 

 Flange [45/−454/90/−453/90/454/90/45/90/−453/90/452/0/−45/904/(45/04)3/−45/04/ 

−45]MS 

 

 

are more practical but have more anisotropy. The lamination parameters related to the 

optimised stacking sequences together with their 𝛤 are listed in Table 6.6. 

 

As can be seen, the lamination parameters of the obtained stacking sequence are good 

matches for the target lamination parameters. The thicker laminates have lower values 

of 𝛤, because they have larger numbers of plies making their stacking sequences easier 

to match with the targets. After the stacking sequences are obtained, the optimised 

configuration is checked for buckling in ABAQUS as shown in Figure 6.11. Results 

show that the local and global buckling load factors (i.e. the first and second buckling 

modes) are 1.09 and 1.15, respectively. Comparison of these buckling load factors 

obtained using the stacking sequences with those obtained using the target lamination 

parameters directly, shows that there is only a small decrease in buckling performance 

caused by the mismatch between the target lamination parameters and the actual 

stacking sequences. Therefore, the stacking sequences obtained based on the four 
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layup design constraints in the second stage of the optimisation have lamination 

parameters close to the optimised values obtained in the first stage. 

 

 

 

 

 

 

  

Figure 6.11 Buckling modes obtained using the stacking sequences without 

considering blending constraint. (a) First buckling mode with buckling load factor = 

1.09. (b) Second buckling mode with buckling load factor = 1.15. 

 

 

 

(a) 

(b) 
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Table 6.6 Lamination parameters of the optimised stacking sequences without 

blending constraint. 

Panel no.  𝜉1
𝐴 𝜉2

𝐴 𝜉3
𝐴 𝜉1

𝐷 𝜉2
𝐷 𝜉3

𝐷 𝛤 

1 Skin 0.0909 0.2727 0 −0.1345 −0.1059 −0.0451 0.4857 

 Web 0.3200 0.2800 0.0400 −0.1009 −0.0886 −0.0245 0.3523 

 Flange 0.3256 0.3953 −0.0233 −0.1206 0.0802 −0.0601 0.3415 

2 Skin 0.2000 0.2000 −0.1333 −0.0809 −0.1342 −0.1890 0.3936 

 Web 0.4138 0.3793 −0.0345 −0.0044 0.0349 −0.0473 0.2680 

 Flange 0.3000 0 0 −0.0217 −0.5295 −0.1380 0.1755 

3 Skin −0.0667 0.2000 0 −0.3867 −0.1062 0.0482 0.0745 

 Web 0.1754 0.3333 0.0175 −0.2834 0.0286 0.0115 0.2079 

 Flange 0.0612 0.0204 0 −0.1707 −0.4474 −0.0544 0.1264 

4 Skin −0.0606 0.0909 −0.0303 −0.2273 −0.4123 −0.0259 0.1431 

 Web 0.2083 0.4167 −0.0417 −0.2852 0.2681 −0.0782 0.2225 

 Flange 0.0769 0.0330 0 −0.1390 −0.4555 −0.1711 0.2506 

5 Skin 0 −0.0112 0.0337 −0.1039 −0.4819 0.0349 0.2887 

 Web 0 −0.4286 −0.1429 −0.0525 −0.8834 −0.1603 0.5831 

 Flange 0.1402 0.1028 0 −0.1085 −0.3778 −0.2093 0.3071 

6 Skin −0.0230 0.0575 0.0115 −0.1660 −0.4450 0.0141 0.1001 

 Web 0.0087 0.0957 0 −0.2120 −0.3976 −0.0814 0.1983 

 Flange 0.1616 0.0505 −0.0303 −0.1465 −0.4302 −0.1498 0.2244 

 

 

6.3.2.2 Layup design with blending constraint 

Tables 6.7-6.9 show the optimised stacking sequences which satisfy the four layup 

design constraints and also the blending constraint. Since the panels are stiffened and 

the stiffeners run all the way along the wing, there are five separate blending problems 

including the skins of all of the top panels, the webs of the left hand side panels (i.e. 

panels 1, 3 and 5) and the right hand side panels (i.e. panels 2, 4 and 6) respectively, 

and the flanges of the left and right hand side panels respectively. No constraints are 

applied between the skin, webs and flanges, which are treated as independent laminates 

in the second stage. The related lamination parameters and the values of 𝛤  are 

summarised in Tables 6.10-6.12.  
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Table 6.7 Stacking sequences of skins with blending constraint. 

Panel 

no. 
Stacking sequences 

5 [45/−454/90/454/90/−452/90/454/90/−45/90/45/90/−45/03/−45/904/45/04/−45/04/45

/902]MS 

6 [45/−454/90/454/90/−452/90/453/90/−45/90/45/90/−45/03/−45/904/45/04/−45/04/45

/902]MS 

4 [45/−453/90/453/90/−45/90/45/90/−45/902/−45/02/−45/903/45/02/−45/04/45/90]S 

3 [45/−45/90/452/90/−45/90/45/90/−45/902/−45/02/−45/903/45/02/−45/04/45/90]S 

2 [45/−452/903/−45/04/−45/02/45]S 

1 [45/−45/903/−45/04/45]S 

 

Table 6.8 Stacking sequences of left and right hand side flanges with blending 

constraint. 

Panel 

no. 
Stacking sequences 

 left hand side flanges 

5 [45/−454/90/−454/90/453/90/−452/90/453/902/45/90/−45/04/45/03/45/02/45/04/45/904/

−45/03/45/02]MS 

3 [45/−454/90/−453/90/453/90/−452/90/453/902/45/90/−45/04/45/02/−45/02/45/02/45/ 

904/−45/03/45/0]S 

1 [45/−45/90/−45/90/45/90/−45/04/45/04/−45/03/45]MS 

 right hand side flanges 

6 [45/−454/90/−454/90/454/90/452/90/−45/902/−45/0/45/04/−45/04/45/904/−45/(04/ 

45)2]MS 

4 [45/−454/90/−454/90/454/90/452/903/−45/0/45/0/−45/04/45/904/−45/(04/45)2]MS 

2 [45/−454/90/452/90/45/02/−45/04/45/02]S 

 

Table 6.9 Stacking sequences of left and right hand side webs with blending constraint. 

Panel 

no. 
Stacking sequences 

 left hand side webs 

3 [45/−452/90/45/902/45/903/−45/04/45/02/−45/90/−45/04/45/02]MS 

1 [45/−45/902/−45/03/−45/90/45/02]MS 

5 [45/−453/90/45/0]S 

 right hand side webs 

6 [45/−454/90/−45/90/453/90/45/90/−45/902/−45/903/−45/04/45/90/45/0/45/903/−45/ 

04/45/902/−45/03/−45/902/(45/02)2/02/−45]MS 

4 [45/−45/904/−45/90/−45/04/45/04/45/03/−45/90]S 

2 [45/−45/902/−45/04/45/04/−45]MS 
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Table 6.10 Lamination parameters of the stacking sequences of skins. 

Panel no. 𝜉1
𝐴 𝜉2

𝐴 𝜉3
𝐴 𝜉1

𝐷 𝜉2
𝐷 𝜉3

𝐷 𝛤 

5 −0.0112 0.0112 0.0449 −0.1595 −0.4716 0.0269 0.3624 

6 −0.0115 0.0345 0.0230 −0.1632 −0.4493 −0.0011 0.1346 

4 −0.0606 0.0909 −0.0303 −0.2286 −0.3262 −0.0419 0.2410 

3 −0.0667 0.2000 0 −0.2981 −0.1156 0.0596 0.1817 

2 0.2000 0.2000 −0.1333 −0.1556 −0.1271 −0.1890 0.4450 

1 0.0909 0.2727 0 −0.2923 −0.0428 −0.0225 0.4863 

 

Table 6.11 Lamination parameters of the stacking sequences of left and right hand 

side flanges. 

Panel no. 𝜉1
𝐴 𝜉2

𝐴 𝜉3
𝐴 𝜉1

𝐷 𝜉2
𝐷 𝜉3

𝐷 𝛤 

left hand side flanges 

5 0.1215 0.0654 −0.0187 −0.0933 −0.3958 −0.1832 0.3848 

3 0.0612 0.0204 0 −0.1245 −0.4075 −0.1558 0.3131 

1 0.3721 0.3023 −0.0233 −0.0460 −0.0352 −0.0477 0.3870 

right hand side flanges 

6 0.1414 0.0909 −0.0303 −0.0898 −0.4050 −0.1720 0.2904 

4 0.0879 0.0549 −0.0110 −0.1250 −0.4365 −0.1695 0.2644 

2 0.3000 0 0 −0.0270 −0.5400 −0.1432 0.1760 

 

Table 6.12 Lamination parameters of the stacking sequences of left and right hand 

side webs. 

Panel no. 𝜉1
𝐴 𝜉2

𝐴 𝜉3
𝐴 𝜉1

𝐷 𝜉2
𝐷 𝜉3

𝐷 𝛤 

left hand side webs 

3 0.1579 0.2982 0 −0.2116 0.0219 0.0162 0.3170 

1 0.1200 0.2000 −0.0800 −0.1212 −0.0734 −0.0815 0.7114 

5 0 −0.4286 −0.1429 −0.0525 −0.8834 −0.1603 0.5831 

right hand side webs 

6 0.0174 0.2174 −0.0087 −0.2044 −0.1122 −0.0785 0.3687 

4 0.2083 0.4167 −0.0417 −0.1945 0.2412 −0.0786 0.3403 

2 0.4138 0.3793 −0.0345 −0.0044 0.0349 −0.0473 0.2680 
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As can be seen, the values of 𝛤 in Tables 6.10-6.12 are higher than those in Table 6.6 

because the blending constraint narrows the design space and hence reduces the level 

of match between the target and obtained lamination parameters. For the five blending 

problems with the exception of the webs on the left hand side, the increase in the value 

of 𝛤 for each laminate is acceptable. However, as the numbers of plies in the webs on 

the left hand side are small, which would not be the case in a real aircraft wing design, 

the blending constraint causes a mismatch between the target and obtained lamination 

parameters for the web in panel 1 equal to 0.3591, and the majority of the mismatch is 

in 𝜉1,2
𝐴 . Since the stiffness of each panel is mainly provided by the skin and flanges, 

this mismatch only has a small effect on the load-carrying capability of the wing. The 

obtained stacking sequences are then checked by FEA using ABAQUS and as shown 

in Figure 6.12, the local and global buckling load factors (i.e. the first and second 

buckling modes) decrease to 1.08 and 1.14, respectively. It is observed that there is 

only a slight decrease in the buckling performance when adding the blending constraint, 

and that the optimised configuration still satisfies the buckling constraint. The DLBB 

method is therefore seen to perform well in optimising blended stacking sequences to 

match target lamination parameters from the first stage of the optimisation process.  

Note that, due to the rounding process at the start of the second stage, the weight of 

the final optimised wing box is increased slightly to 49.7 kg as shown in Figure 6.9. 

Compared with the results in Fischer et al. (2012), the stacking sequences of the 

optimised wing box presented herein are more practical, and the weight of the structure 

is reduced by 8.0%, which will lead to significant reductions in the material cost and 

fuel consumption of the aircraft.   
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Figure 6.12 Buckling modes obtained using the blended stacking sequences. (a) First 

buckling mode with buckling load factor = 1.08. (b) Second buckling mode with 

buckling load factor = 1.14. 

(a) 

(b) 
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6.4 Conclusions  

This chapter presents a two-stage layup optimisation methodology using lamination 

parameters for the weight minimisation of blended composite structures under 

buckling, lamination parameter, manufacturing and blending constraints. In the first 

stage, stacking sequences are replaced by lamination parameters and laminate 

thicknesses to permit the use of a linear optimiser. This stage uses an extended 

multilevel optimisation process in which at the start of each design cycle a static 

analysis of the whole structure is conducted using FEA to determine load distributions 

between constituent parts, while efficient exact strip software is used to optimise each 

of these component panels based on these static analysis results. The optimised 

lamination parameters derived are used as targets in the second stage, and, instead of 

using the most commonly used heuristic methods to perform a stochastic search, a new 

DLBB method combining a dummy layerwise technique with the branch and bound 

method are proposed to search the stacking sequences for those which satisfy blending 

and layup design constraints to match the targets. The effectiveness of the proposed 

first stage multilevel optimisation for a three-dimensional composite structure as well 

as the ability of the DLBB method to optimise the stacking sequences with ply drop-

offs is demonstrated by a benchmark problem.  Comparison of the results obtained by 

the presented method with the results in Fischer et al. (2012) shows a further weight 

reduction of 8.0% over the previously determined wing weight even when more 

constraints are added, making the optimised structure more practical and improving its 

performance.
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Chapter 7                                                             

Parallel Computation Method for Optimisation of 

Composite Laminates 

7.1 Introduction  

In this chapter, the DLBB method is again proposed for optimising the stacking 

sequences of blended composite laminates to match target lamination parameters. 

However, in order to improve the efficiency of the second stage of the optimisation, a 

parallel optimisation method DLBB-GAGA is developed.  

 

In the first part of the chapter, a guide-based adaptive genetic algorithm (GAGA) is 

proposed for the blending optimisation problem. According to the performance of each 

individual in the population, variable probabilities are applied not only to the GA 

operators but also to different layers in the laminate to improve the searching capability 

during layup design. The novel parallel DLBB-GAGA method is then developed by 

combining the stochastic-based search method GAGA with the logic-based search 

method DLBB in a parallel computation. Messages are passed between the two 

methods to exchange optimisation information during the parallel process. The 

combination of these two different methods gives the parallel DLBB-GAGA method 

the advantages of both, enhancing searching ability for the blended layup optimisation 

problem. Finally, the superiority of the parallel DLBB-GAGA method is demonstrated 

through comparisons against the two component methods. The results show the 

advantages of the parallel DLBB-GAGA method particularly in practical design where 

more layup design constraints need to be considered.  
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7.2 Methodology 

7.2.1 Guide-based adaptive genetic algorithm 

In this section, a guide-based adaptive genetic algorithm (GAGA) is proposed for the 

second stage optimisation. Several guided-based blending procedures have been 

developed as discussed in Chapter 2, and the blending procedure in this method is 

developed based on the concept of PDS (Yang et al. 2016). Each individual in the 

GAGA has two chromosomes, the first chromosome stores the guide layup with a 

string of genes, the ply angles −45°, 0°, +45° and 90° being represented by numbers 

1, 2, 3, and 4 respectively. As the layup is symmetric, only half of the layers in the 

laminate are represented in the chromosome. The second chromosome stores the 

positions for the layers in the guide with a random order. The layups of the thinner 

panels are obtained by deleting plies from the guide layup according to the position 

values from top to bottom in the second chromosome.  

 

A balance repair procedure is proposed for this optimisation process. Firstly, the first 

chromosome is repaired using the technique described in Section 5.2.2.3. Secondly, 

the repair procedure is implemented to the second chromosome to ensure that the 

position value of each −45° ply puts it just behind a +45° ply in order that the position 

values of the +45° and −45° plies appear as a set in the second chromosome. Then, it 

is ensured that during the blending process, if a position value selected for deleting a 

ply is related to a 45° ply, the next position value related to a 0° or 90° ply which is 

below this set is moved to above it, avoiding deleting different numbers of ±45° plies. 

In addition to this, if a thicker panel with an odd number of layers is adjacent to a 

thinner panel with an even number of layers, requiring the middle layer in the thicker 

panel to be deleted to satisfy the blending constraint, the position value corresponding 

to the middle layer in the second chromosome is moved to the top, leading to the 

middle layer being deleted first.  

 

The process of the GAGA method is illustrated with an example in Figure 7.1. S 

denotes a symmetric layup (with a single middle ply if there is an odd number of plies). 

For each panel, the left hand side is the guide layup and the deleted plies are crossed 

out, the right hand side gives a random sequence of which plies are to be deleted, and  
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90 2 90 2 90 2 90 2

-45 6 -45 8 -45 8 -45 8

90 3 90 6 90 7 90 7

0 8 0 3 0 6 0 6

45 7 45 7 45 3 45 3

0 1 0 1 0 1 0 1

90 4 90 4 90 4 90 4

Guide Positions

s

Guide Positions Guide Positions Guide Positions

 

Figure 7.1 An example illustrating the blending process in GAGA. 

 

 

the plies above the red line have been deleted. The blue box shows +45° and −45° 

plies which must be retained or deleted together to ensure balance. Here, the number 

of layers for each panel are 16, 9, 8 and 4 respectively, the guide is 

0/90/−45/90/0/45/0/90, and the order of the position values is (5 2 6 3 8 7 1 4). The 

thickest panel takes the guide layup. For the second thickest panel, according to the 

position values in the second chromosome, the fifth, second and sixth plies in the guide 

layup should be deleted. If the balance constraint is imposed, the position value 8 will 

be inserted above the set of 6 and 3, so the eighth ply will be deleted instead of the 

sixth ply, making the second panel balanced. Besides, as the second thickest panel has 

an odd number of plies, there is just one 0 ply in the middle. To obtain the layup for 

the third panel, as discussed above, the position value 7 will be moved to the top of the 

second chromosome. Correspondingly, the middle layer of the second panel will be 

dropped off. Finally, the layup of the fourth panel is obtained by deleting a set of a 

+45° ply and a −45° ply. 

 

The optimisation process implemented in GAGA is shown in the flow chart of Figure 

7.2. As can be seen, the guide chromosomes are optimised using a two-point crossover 

and a mutation, and the position chromosomes are implemented with a permutation. 

The biased roulette wheel method is employed in the selection procedure and the 

elitism operator which keeps the best individuals directly for the next generation is 
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also implemented in the generation cycle. The objective function in GAGA is 

represented as:   

 

 

 

Start

Create initial population

Create blended laminates

Blending + balance repair 

procedure

Evaluate blended laminates

Generation cycle

Selection

Calculate adaptive 

parameters

Crossover+mutation

Chromosome 1

Permutation

Chromosome 2

 converged ?

End

No

Yes

 

 

Figure 7.2 Flow chart illustrating the guide-based adaptive genetic algorithm (GAGA). 
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𝛤 =∑ 𝛤𝑝𝑎𝑛𝑒𝑙 𝑘
𝑁𝑝𝑎𝑛𝑒𝑙

𝑘=1
 

 

(7.1) 

 

𝛤𝑝𝑎𝑛𝑒𝑙 𝑘 =∑ ∑ 𝑤𝑗
𝑗=𝐴,𝐷

3

𝑖=1

|𝜉𝑖(𝑘)(𝑎𝑐𝑡𝑢𝑎𝑙)
𝑗

− 𝜉𝑖(𝑘)(𝑡𝑎𝑟𝑔𝑒𝑡)
𝑗

| 
 

(7.2) 

 

where 𝑁𝑝𝑎𝑛𝑒𝑙 is the number of panels, 𝑤𝐴,𝐷 are the weighting factors, 𝜉1,2,3(𝑘)(𝑡𝑎𝑟𝑔𝑒𝑡)
𝐴,𝐷

 

are the target lamination parameters for panel k, and 𝜉1,2,3(𝑘)(𝑎𝑐𝑡𝑢𝑎𝑙)
𝐴,𝐷

 are the actual 

lamination parameters of the chosen layup of panel k. 

 

For standard GAs, performance mainly depends on the predefined crossover and 

mutation parameters. Normally, a high probability of crossover 𝑃𝑐  with a small 

probability of mutation 𝑃𝑚 is used in layup optimisation, because frequent crossovers 

guarantee a random search toward a local or global optimum and some mutation is 

needed to prevent the results converging and getting stuck in local optima. However, 

the values of 𝑃𝑐 and 𝑃𝑚 in standard GAs are left for the user to determine based on 

some empirical experience. In this chapter, the values of 𝑃𝑐 , 𝑃𝑚  and 𝑃𝑝  are varied 

adaptively for each individual during the optimisation according to the fitness values. 

The equations for the adaptive process are expressed as: 

 

𝑃𝑐 = {
𝑃𝑐𝑚𝑎𝑥 ∙ (

𝑓𝑚𝑎𝑥 − 𝑓′

𝑓𝑚𝑎𝑥 − 𝑓𝑎𝑣𝑒
) + 𝑃𝑐𝑚𝑖𝑛 ∙ (

𝑓′ − 𝑓𝑎𝑣𝑒
𝑓𝑚𝑎𝑥 − 𝑓𝑎𝑣𝑒

)          𝑓′ ≥ 𝑓𝑎𝑣𝑒

 𝑃𝑐𝑚𝑎𝑥                                                                                       𝑓
′ < 𝑓𝑎𝑣𝑒   

 (7.3) 

 

𝑃𝑐𝑝(𝑖) = {

1
𝑛𝑒
                                                        𝑓′ ≥ 𝑓𝑎𝑣𝑒 

1
𝑛𝑒

+ (
𝑛𝑒 + 1
 − 𝑖) ∙ 𝑑                       𝑓′ < 𝑓𝑎𝑣𝑒

 

                

(7.4) 

 

 

𝑃𝑚 = {
𝑃𝑚𝑚𝑎𝑥 ∙ (

𝑓𝑚𝑎𝑥 − 𝑓

𝑓𝑚𝑎𝑥 − 𝑓𝑎𝑣𝑒
) + 𝑃𝑚𝑚𝑖𝑛 ∙ (

𝑓 − 𝑓𝑎𝑣𝑒
𝑓𝑚𝑎𝑥 − 𝑓𝑎𝑣𝑒

)           𝑓 ≥ 𝑓𝑎𝑣𝑒

 𝑃𝑚𝑚𝑎𝑥 ∙ 𝑓𝑚(𝑗)                                                                         𝑓 < 𝑓𝑎𝑣𝑒   
 

 

(7.5) 
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𝑓𝑚(𝑗) = 𝑍𝑢 − (
𝑗 − 1

𝑛𝑒 − 1
) (𝑍𝑢 − 𝑍𝑙) (7.6) 

 

 

𝑃𝑝 = {
𝑃𝑝𝑚𝑎𝑥 ∙ (

𝑓𝑚𝑎𝑥 − 𝑓

𝑓𝑚𝑎𝑥 − 𝑓𝑎𝑣𝑒
) + 𝑃𝑝𝑚𝑖𝑛 ∙ (

𝑓 − 𝑓𝑎𝑣𝑒
𝑓𝑚𝑎𝑥 − 𝑓𝑎𝑣𝑒

)           𝑓 ≥ 𝑓𝑎𝑣𝑒

 𝑃𝑝𝑚𝑎𝑥                                                                                     𝑓 < 𝑓𝑎𝑣𝑒   
 

 

(7.7) 

 

where 𝑓𝑚𝑎𝑥 and 𝑓𝑎𝑣𝑒 are the maximum and average fitness values in the population, 

respectively; 𝑓 is the fitness value of each individual, 𝑓′ is the larger fitness value of 

the two individuals to be crossed; 𝑃𝑐𝑚𝑎𝑥, 𝑃𝑚𝑚𝑎𝑥 and 𝑃𝑝𝑚𝑎𝑥 are the maximum values 

of 𝑃𝑐, 𝑃𝑚 and 𝑃𝑝, respectively; 𝑃𝑐𝑚𝑖𝑛, 𝑃𝑚𝑚𝑖𝑛 and 𝑃𝑝𝑚𝑖𝑛 are the minimum values of 𝑃𝑐, 

𝑃𝑚  and 𝑃𝑝 , respectively; 𝑛𝑒  is the number of genes in the chromosome; 𝑑  is the 

difference between values of 𝑃𝑐𝑝(𝑖) for  adjacent genes; 𝑓𝑚(𝑗) is the mutation factor 

giving different genes different 𝑃𝑚; 𝑍𝑢 and 𝑍𝑙 are the upper and lower limits of 𝑓𝑚(𝑗); 

𝑖 and 𝑗 take values from 1 to 𝑛𝑒 to calculate 𝑃𝑐𝑝(𝑖) and 𝑓𝑚(𝑗) from the outermost genes 

which represent the outermost layers to the innermost ones. In this chapter, the 

parameters discussed above are set with 𝑃𝑐𝑚𝑎𝑥 = 0.8,  𝑃𝑐𝑚𝑖𝑛 = 0.3,  𝑃𝑚𝑚𝑎𝑥 = 0. , 

𝑃𝑚𝑚𝑖𝑛 = 0.0 , 𝑃𝑝𝑚𝑎𝑥 = 0.8, 𝑃𝑝𝑚𝑖𝑛 = 0. , 𝑑 = 0.000 , 𝑍𝑢 = 1.1, 𝑍𝑙 = 0. , and the 

population size is 200.   

 

By using equations (7.3), (7.5) and (7.7), 𝑃𝑐 , 𝑃𝑚  and 𝑃𝑝  increase when all the 

individuals converge to one layup to prevent premature convergence, and the 

individuals who have fitness values lower than the average value of the population are 

implemented with the highest 𝑃𝑐, 𝑃𝑚 and 𝑃𝑝 to provide sufficient ability to get rid of 

poor results, with 𝑃𝑐, 𝑃𝑚 and 𝑃𝑝 decreasing as individuals’ fitness values increase to 

avoid disrupting the convergence of good results.  

 

In standard two-point crossover, two genes in each chromosome are randomly selected 

as cross points in the parents, and the parents swap the genes between these two cross 

points to generate a new generation. The genes in the chromosome have the same 

probability 𝑃𝑐𝑝 of being selected as cross points. In the method used here, for the 
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individuals whose fitness values are lower than average, higher values of  𝑃𝑐𝑝 are given 

to the outer layers which make a greater contribution to 𝜉1,2,3
𝐷  using equation (7.4). 

Based on equation (7.6), values of  𝑃𝑚  are also increased for all layers from the 

innermost to the outermost in these poor individuals. Therefore, for layups which have 

a poor match with the target lamination parameters, the outer layers are given a larger 

probability of being selected as cross points and mutating, providing more potential 

for the improvement of the objective function.  

  

7.2.2 Parallel DLBB-GAGA method  

As described in Chapter 6, the DLBB method is a logic-based search method which 

progressively optimises blended stacking sequences from the outer plies to the inner 

ones. Good results can be obtained quickly by solving small problems in the first few 

cycles. However, when the case loop consists of large numbers of plies in later cycles, 

it takes a long time to complete the optimisation during which only a small number of 

plies are optimised, limiting the rate of decrease in the value of 𝛤. As for the GAGA 

method, which is a stochastic search method based on the natural evolution of 

Darwin’s theory, blended layups at each generation are obtained by randomly deleting 

plies from the guide. Instead of logically applying the layup design constraints in the 

searching process as in DLBB, layup design constraints for each panel are imposed 

using the penalty functions in GAGA, making blended structures with large numbers 

of component panels easily penalized. In order to combine the advantages of both 

methods and overcome the disadvantages of each, a parallel DLBB-GAGA method, 

which computes the two different methods in parallel to improve the searching 

efficiency, is developed in this section.  

 

MATLAB is used to conduct this parallel optimisation. The SPMD (Single Program 

Multiple Data) structure in MATLAB provides an option for executing different codes 

on different cores simultaneously, and information exchange between parallel codes is 

allowed. MPI (Message Passing Interface) based functions such as LabSend and 

LabReceive can be used to communicate between parallel works by sending and 

receiving messages between the cores. 
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SPMD

END

while LabProbe = 1

𝛤, Layup = LabReceive ()

if 𝛤 < current 𝛤

replace current 𝛤 & Layup

end 

end 

while LabProbe = 1

𝛤, Layup = LabReceive ()

if 𝛤 < current 𝛤

replace 𝛤 & Layup of the worst individual

end

end

if Labindex = 1 (DLBB) else (GAGA)

Message passing
DLBB optimisation

if new 𝛤 < current 𝛤

LabSend (𝛤, Layup)

end

GAGA optimisation

if new 𝛤 < current 𝛤

LabSend (𝛤, Layup)

end

end

 

Figure 7.3 Optimisation process for the parallel DLBB-GAGA method in MATLAB. (The left column represents the simplified DLBB process 

and the right GAGA, and the message passing functions described in text are shown in bold.) 
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As can be seen from Figure 7.3, the parallel DLBB-GAGA method simultaneously 

executes the logic-based search method DLBB and the heuristic-based search method 

GAGA on two cores to solve the same blending optimisation problem.  

 

Once a new result is obtained by DLBB, it is sent to GAGA with the LabSend function. 

The LabProbe function in GAGA is used to check if any new information has been 

sent from the other core (with Labindex equal to 1), this result is then received by 

GAGA using the LabReceive function. If the value of 𝛤  of the received blended 

stacking sequence is smaller than that of the current best result in GAGA, the received 

result is accepted. After that, Guide and PDS chromosomes are created based on the 

received blended layup, and the worst individual in the population is replaced with the 

received result. GAGA then continues optimising the blended layup with the newly 

updated population. 

 

Alternatively when GAGA obtains a new result, the 𝛤 and the layup are sent to DLBB. 

Once the received result is accepted by DLBB, a new dummy layerwise table is created 

corresponding to the received blended layup. If the result from GAGA is received 

before a case loop, the current 𝛤 , blended layup and dummy layerwise table are 

replaced with the new result, based on which the optimisation is carried on. However, 

if the result is received during a case loop, the 𝛤 is updated and used as a new upper 

bound during the branch and bound optimisation of the current case loop, meaning 

more branches can be pruned without being explored. The blended layup and dummy 

layerwise table are replaced with the received result at the end of the case loop, if 

DLBB has not obtained a better result by itself during the loop. 

 

The benefits of this parallel process are that, at any time both methods are optimising 

the blended stacking sequences based on the current best result, improving the 

efficiency of this time-consuming optimisation problem. The results received from 

DLBB bring more diversity to the population of GAGA, speeding up the process of 

moving away from a local optimum result especially when layup design constraints 

are imposed. The shortcoming of the DLBB method in requiring a long time to 

complete large case loops in later cycles during which only some of the plies in the 
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laminate are allowed to be optimised is also overcome by the parallel optimisation 

method, as any ply in the laminate can be optimised by GAGA during that time.  

7.3 Results and discussion 

The aim of the second stage optimisation is to obtain a blended stacking sequence 

which matches the target lamination parameters obtained in the first stage optimisation 

as closely as possible. The DLBB method, GAGA and the parallel DLBB-GAGA 

method are used herein to optimise the stacking sequences to minimise the value of 𝛤 

based on the target lamination parameters obtained in Chapter 6, and the performance 

of these three methods is compared. There are two sets of results. In the first set, the 

blended laminates are only required to be symmetric. In the second, comparisons are 

made for laminates subjected to the balance constraint and four layup design 

constraints applied to ensure the design of more practical stacking sequences. Since 

GAGA is a stochastic search method, GAGA and the parallel DLBB-GAGA method 

are run 10 times for each example to guarantee the reliability of these comparisons. 

Besides, the same starting layups are used in the DLBB method and GAGA to make a 

fair comparison. 

7.3.1 Symmetric case  

In this section, the five blending problems defined in Chapter 6 are restricted to 

symmetric designs. A comparison between the DLBB method, GAGA and the parallel 

DLBB-GAGA method for the blended skins is shown in Figure 7.4 (a). As can be seen, 

in the early stages GAGA finds better results earlier than the other two methods. 

However after roughly 10 seconds the differences among the three methods become 

relatively small and then the parallel method takes the lead until the end. GAGA is 

more efficient than the DLBB method most of the time, however the final result 

obtained by the DLBB method is better than that of GAGA. The parallel method 

achieves the same result as the final result from GAGA after approximately 100 

seconds, and the final result of the parallel method is slightly better than that of the 

DLBB method, demonstrating its good performance in searching blended layups. Note 

that the parallel method takes longer to obtain its first result because of the overhead 

of the parallel process. Figure 7.4 (b) compares examples of a GAGA run and a parallel  



 Chapter 7 

125 

 

 

 

 

 

 

Figure 7.4 Comparisons between the DLBB method, GAGA and the parallel method 

for blended skins. (a) The results of GAGA and the parallel method are averaged 

values of 10 runs. (b) Examples of a GAGA run and a parallel method run are shown 

in comparison. 
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Figure 7.5 Comparisons between the  DLBB method, GAGA and the parallel method 

for (a) blended right hand side flanges and (b) blended left hand side flanges. 
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Figure 7.6 Comparison between the DLBB method, GAGA and the parallel method 

for (a) blended right hand side webs and (b) blended left hand side webs. 
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method run, with the blue circles and green triangles representing the results obtained 

by the DLBB method and GAGA, respectively. The results obtained by running the 

DLBB method and GAGA in a parallel optimisation are represented by red circles and 

red triangles, respectively. It can be seen that both of these methods make great 

contributions to the reduction of 𝛤 in the parallel optimisation and the message passing 

between the two methods results in obvious mutual promotion throughout the whole 

period of the parallel process, the combination of the two methods improving the 

searching capability of each on their own. 

 

For the blended webs and flanges which are relatively small blending problems, the 

performances of the three methods are again compared. Comparisons for the right hand 

side blended flanges are shown in Figure 7.5 (a), where it is observed that GAGA 

performs better than the DLBB method in the first 20 seconds, after which the two 

methods results are closely aligned until the end. The parallel method obtains better 

results more quickly than the other two methods from a very early stage in this 

optimisation. Figure 7.5 (b) compares the methods for the blended left flanges, where 

it can be seen that the parallel method not only achieves higher efficiency but also 

performs better in finding lower values of 𝛤 than each of the two component methods. 

It only takes the parallel method 10 seconds to reach the same value of 𝛤  that is 

achieved by the other two methods at almost 1000 seconds. As can be seen from Figure 

7.6 (a), GAGA finds better results earlier than the DLBB method until 50 seconds into 

the process after which the DLBB method obtains better results earlier than GAGA. 

The parallel method performs well during the whole optimisation period taking the 

lead after around 90 seconds. Figure 7.6 (b) shows the comparisons for the blended 

left hand webs. It is observed that GAGA performs better than the DLBB method in 

this optimisation, and the parallel method surpasses GAGA from approximately 200 

seconds. As expected, the parallel method performs better than the two methods for 

the blended layup optimisation in this section. 
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7.3.2 Constrained case 

For more practical designs, the balance and four layup design constraints need to be 

imposed in the second stage optimisation. Figure 7.7 shows a comparison between the 

three different techniques for blended skins when these are added. It can be seen that 

the values of 𝛤 are larger than those obtained without considering the extra layup 

design constraints which narrow the design space. GAGA does not achieve the same 

final value of 𝛤 as the DLBB method and the parallel method, and the differences 

between the solutions obtained by the different techniques are greater than those found 

without considering the layup design constraints. The reason for this is that the layup 

design constraints are easily violated in the stochastic search of the GA process, 

especially for a blended structure with several component panels, and because results 

violating these constraints are penalized in the optimisation process, the search 

capability of GAGA is diminished. However, this is not the case for the parallel 

method; on the contrary, the superiority of the parallel method is more obvious as it 

leads from the beginning of the optimisation with a more distinct advantage. It takes  

 

 

 

 

Figure 7.7 Comparison between the DLBB method, GAGA and the parallel method 

for blended skins under symmetry, balance, and four layup design constraints. 
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the parallel method around 200 seconds to achieve the final value of 𝛤 achieved by 

GAGA in this example. The results suggest that the combination of these two methods 

overcomes the disadvantages of each and even provides further improvements, making 

it more appropriate for blended layup design. 

 

The comparisons for the right and left hand side flanges are shown in Figure 7.8 (a) 

and (b), respectively. In contrast to the results obtained without considering the layup 

design constraints, the DLBB method performs better than GAGA most of the time 

during the optimisations, and it obtains lower final values of 𝛤 than GAGA. With the 

extra layup design constraints being added, the lead of the parallel method is more 

apparent from the start of the optimisation. Better still, the parallel method achieves 

lower final values of 𝛤 than the other two methods. For the right hand side flanges, it 

takes the DLBB method and GAGA roughly 1000 and 10000 seconds, respectively, to 

reach the same value of 𝛤 achieved by the parallel method in 100 seconds. Figure 7.9 

(a) shows comparisons for the right hand side webs, where it is observed that after 

roughly 1 second the parallel method starts to find better results more quickly than the 

other two methods, and achieves a lower value of 𝛤  at the end. The competition 

between the DLBB method and GAGA is intense, and in the final stage the DLBB 

method obtains lower values of 𝛤 than GAGA. The comparisons for the left hand side 

webs are shown in Figure 7.9 (b). In this case the DLBB method performs better than 

GAGA in the first 10 seconds, after which GAGA gradually surpasses the DLBB 

method, but the DLBB method achieves the same value of 𝛤 as the other two methods 

at a later stage. The parallel method, again, takes a good lead during the optimisation, 

and almost achieves its final value of  𝛤 after just 10 seconds.  

 

The stacking sequences obtained at 350s using the three methods, for which the 

buckling performances are compared, are shown in Tables 7.1-7.9. The stacking 

sequences obtained by the DLBB method are listed in Tables 7.1-7.3. Results of a 

typical GAGA run and a parallel method run are used for comparison. The stacking 

sequences of GAGA are listed in Tables 7.4-7.6, and those of the parallel method are 

listed in Tables 7.7-7.9. The lamination parameters of these stacking sequences and 

the related values of 𝛤 are shown in Appendix A. The buckling performance of the 

obtained stacking sequences are checked using ABAQUS. For the results obtained by 
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Figure 7.8 Comparison between the DLBB method, GAGA and the parallel method 

for (a) blended right hand side flanges and (b) blended left hand side flanges, under 

symmetry, balance, and four layup design constraints. 
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Figure 7.9 Comparisons between the DLBB method, GAGA and the parallel method 

for (a) blended right hand side webs and (b) blended left hand side webs, under 

symmetry, balance, and four layup design constraints. 
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the DLBB method, the first and second buckling modes are local buckling occurring 

in panel 1 with buckling load factors equal to 1.06 and 1.11, respectively, and the third 

buckling mode is a global buckling mode with a buckling load factor equal to 1.15. 

The same buckling modes occur for the results obtained using GAGA, with buckling 

load factors of 1.03, 1.13, and 1.15, respectively. The buckling load factors for the 

results obtained by the parallel method are slightly higher at 1.08, 1.14, and 1.15, 

respectively. The corresponding buckling modes for the three methods are shown in 

Appendix B.  

 

These comparisons confirm the advantages of the parallel method in optimising 

blended layups, which are more obvious when imposing the extra layup design 

constraints. The combination of the logic-based search and stochastic-based searches 

significantly enhances the searching capability for the whole optimisation period, 

resulting in the value of 𝛤 decreasing until the end. Note that for practical design, the 

optimisation can be terminated as soon as an acceptable result is found (e.g. when the 

value of 𝛤 of each component panel is less than 0.3). 

 

 

Table 7.1 Stacking sequences of skins obtained using DLBB method. 

Panel 

no. 
Stacking sequences 

5 [45/−45/0/−45/(90/452)2/90/−452/90/45/02/−453/90/−45/902/45/02/45/90/−452/(0/ 

45)2/03/45/903/−45/0/0]MS 

6 [45/−45/0/−45/(90/452)2/90/−452/90/45/0/−453/90/−45/902/45/02/45/90/−452/(0/ 

45)2/03/45/903/−45/0/0]MS 

4 [45/−45/0/−45/90/45/903/45/0/(−45/90)2/90/45/0/45/90/−452/0/45/04/45/902/−45/0 

]S 

3 [45/−452/90/45/902/45/0/(−45/90)2/45/0/45/90/−452/0/45/04/45/902/−45/0]S 

2 [45/−45/902/(−45/0)2/45/03/45/902]S 

1 [45/−45/902/−45/03/45/902]S 
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Table 7.2 Stacking sequences of left and right hand side flanges obtained using DLBB 

method. 

Panel 

no. 
Stacking sequences 

 left hand side flanges 

5 [45/−454/90/453/902/−454/90/454/0/45/(90/−452)2/0/452/03/−45/904/45/03/45/02/−45/

04/45/0/0]MS 

3 [45/−454/90/453/902/−454/90/454/0/45/(90/−45)2/−45/0/452/02/−45/904/45/04/−45/ 

04/45/0]S 

1 [45/−45/903/−45/0/452/02/−45/03/−45/04/45/0]MS 

 right hand side flanges 

6 [45/−452(−452/90)2/−45/90/453/90/−452/02/45/90/453/02/45/(90/−45)2/03/45/903/ 

−45/03/45/04/45/0/0]MS 

4 [45/−45(−453/90)2/453/90/−45/02/45/90/452/0/45/(90/−45)2/03/45/903/−45/03/45/ 

04/45/0/0]MS 

2 [45/−452/(−45/90)2/453/03/−45/03/45/0/0]S 

 

Table 7.3 Stacking sequences of left and right hand side webs obtained using DLBB 

method. 

Panel 

no. 
Stacking sequences 

 left hand side webs 

3 [45/(−45/90)2/(45/90)2/902/−45/03/−45/0/45/03/45/04/−45/0/0]MS 

1 [45/(−45/90)2/45/03/−45/0/45/0]MS 

5 [45/−45/90/−45/02/45]S 

 right hand side webs 

6 [45/−454/903/454/90/−453/02/−45/90/45/903/−45/0/(0/45)2/03/(−45/902)2/90/45/903/ 

45/0/(45/04)2/−45/90]MS 

4 [45/−45/904/−45/04/45/04/−45/904/45/0/0]S 

2 [45/−45/90/−45/02/45/03/−45/90/45/0/0]MS 

 

Table 7.4 Stacking sequences of skins obtained using GAGA. 

Panel 

no. 
Stacking sequences 

5 [45/−453/0/−45/(90/452)2/45/903/−45/02/45/902/45/0/−45/903/−45/0/45/(0/−45)2/02/ 

−45/90/−45/0/452/0/0]MS 

6 [45/−454/(90/452)2/45/903/−45/02/45/902/45/0/−45/903/−45/0/45/(0/−45)2/02/−45/90/

−45/0/452/0/0]MS 

4 [45/−453/90/453/903/−45/0/45/(902/−45)2/0/45/04/−45/90/−45/0/452/0]S 

3 [45/−452/90/452/903/−45/0/45/(902/−45)2/0/45/03/−45/90/−45/0/452/0]S 

2 [45/−45/902/(−45/0)2/45/0/−45/0/452/0]S 

1 [45/−45/902/(−45/0)2/452/0]S 
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Table 7.5 Stacking sequences of left and right hand side flanges obtained using GAGA. 

Panel 

no. 
Stacking sequences 

 left hand side flanges 

5 [45/−454/90/−453/90/454/90/−452/90/45/903/−45/03/(−45/0)3/0/45/903/45/04/452/90/

45/03/(45/0)2/0]MS 

3 [45/−454/90/−452/90/454/90/−452/90/45/903/−45/03/(−45/0)3/45/903/45/03/45/90/45/

02/(0/45)2/0]S 

1 [45/−452/90/45/903/(−45/04)2/45/0/45/0]MS 

 right hand side flanges 

6 [45/−453/90/−452/90/−45/0/(45/90)2/−453/(90/45)2/0/−45/90/452/02/45/0/−45/90/45

/903/45/03/−45/02/45/03/45/0/0]MS 

4 [45/−454/90/−45/0/(45/90)2/−453/90/45/90/−45/90/452/02/45/0/−45/90/45/903/45/03/

−45/02/45/03/45/0/0]MS 

2 [45/−454/90/452/90/45/03/−45/04/45/0]S 

 

Table 7.6 Stacking sequences of left and right hand side webs obtained using GAGA. 

Panel 

no. 
Stacking sequences 

 left hand side webs 

3 [45/−45/90/45/902/−45/904/45/0/−452/04/45/0/−45/04/45/0/0]MS 

1 [45/−45/903/−45/04/45/0/0]MS 

5 [45/−45/90/−45/0/45/0]S 

 right hand side webs 

6 [45/−454/(90/45/90/−45)2/0/45/902/452/0/−45/90/−45/902/−45/(0/45)2/904/45/03/ 

−45/903/45/02/−45/03/45/90/−45/03/45/0/0]MS 

4 [45/(−45/902)2/90/45/03/−45/03/45/90/−45/03/45/0]S 

2 [45/−45/90/−45/03/45/90/−45/03/45/0]MS 

 

Table 7.7 Stacking sequences of skins obtained using parallel method. 

Panel 

no. 
Stacking sequences 

5 [45/−453/90/454/90/−45/0/452/0/45/90/−453/903/−45/902/−45/02/45/0/−45/03/45/903

/45/02/−45/0/0]MS 

6 [45/−453/90/454/90/−45/0/453/90/−453/903/−45/902/−45/02/45/0/−45/03/45/903/45/ 

02/45/0/0]MS 

4 [45/−452/90/453/(90/−45)2/−45/904/−45/02/45/04/45/903/45/02/−45/0]S 

3 [45/−45/90/452/(90/−45)2/−45/904/−45/02/45/03/45/903/45/02/−45/0]S 

2 [45/−45/902/−452/04/45/90/45/02]S 

1 [45/−45/902/−45/04/45/90]S 
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Table 7.8 Stacking sequences of left and right hand side flanges obtained using parallel 

method. 

Panel 

no. 
Stacking sequences 

 left hand side flanges 

5 [45/−454/90/454/90/−454/90/453/90/−452/903/45/0/−45/04/45/903/(45/03)2/−45/90/ 

−45/04/45/0/0]MS 

3 [45/−454/90/454/90/−453/90/452/90/−452/903/45/0/−45/02/45/903/(45/03)2/−45/90/ 

−45/04/45/0]S 

1 [45/−452/903/45/0/−45/03/45/03/−45/03/45/0]MS 

 right hand side flanges 

6 [45/−454/90/45/90/−454/90/454/0/−45/90/45/902/−45/903/45/04/−45/04/(45/04)2/45/ 

90/90]MS 

4 [45/−454/90/45/90/−454/90/454/0/−45/90/45/90/−45/903/45/0/−45/04/(45/04)2/45/ 

90/90]MS 

2 [45/−453/90/−45/90/453/02/−45/04/45/0/0]S 

 

 

Table 7.9 Stacking sequences of left and right hand side webs obtained using parallel 

method. 

Panel 

no. 
Stacking sequences 

 left hand side webs 

3 [45/−45/90/−45/90/45/902/−45/90/45/902/45/04/−45/02/45/04/−45/0/0]MS 

1 [45/−45/90/−45/90/45/03/−45/0/45/0]MS 

5 [45/−452/90/45/0/0]S 

 right hand side webs 

6 [45/−452/90/45/90/(90/−452)2/90/454/90/−452/90/45/0/−45/03/45/903/−45/04/−45/ 

904/−45/90/45/04/45/90/45/04/45/0/0]MS 

4 [45/−45/904/−452/90/45/04/45/90/−45/04/45/0/0]S 

2 [45/−45/90/−45/02/45/90/−45/04/45/0]MS 
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7.4 Conclusions 

In this chapter, a parallel optimisation method which implements two different 

methods in a parallel process is developed for the problem of finding a blended layup 

with lamination parameters that are as close as possible to the target lamination 

parameters calculated for optimum design. In order to develop the parallel method, a 

guide-based blending optimisation method incorporated within an improved adaptive 

genetic algorithm (GAGA) is developed. The resulting stochastic search method 

GAGA is run in parallel with the logic-based search method DLBB in the parallel 

DLBB-GAGA method, combining the advantages of both. The performances of the 

three methods in searching for a blended stacking sequence to match the target 

lamination parameters are compared. Results suggest that GAGA performs better than 

the DLBB method most of the time when the stacking sequence is required only to be 

symmetric, but the DLBB method is more appropriate than GAGA for optimisation 

problems in which extra layup design constraints are considered. As expected, the 

parallel DLBB-GAGA method is shown to have the best performance in terms of 

searching capability and efficiency, and the advantage of the parallel DLBB-GAGA 

method is more obvious when imposing extra layup design constraints in practical 

design. 
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Chapter 8                                                      

Conclusions and Suggestions for Future Work 

8.1 Conclusions  

The main objective of this thesis is to develop effective and efficient methods for the 

layup optimisation of laminated composite structures, and also extend the applicability 

of VICONOPT and VICONOPT MLO by providing functionality to enable the design 

of lighter and more practical structures. Two-stage optimisation methods based on the 

use of lamination parameters are proposed for single laminates as well as large scale 

blended laminates. These novel techniques are introduced in Chapters 5, 6, and 7. 

 

Contributions related to the optimisation of single composite laminates are presented 

in Chapter 5, with manufacturing requirements (i.e. symmetry, balance and four layup 

design constraints) considered in the two-stage layup optimisation method developed 

based on lamination parameters. In the first stage, VICONOPT is used to optimise the 

laminate’s thickness and lamination parameters subject to buckling and lamination 

parameter constraints. The 10% minimum percentage constraint is studied and 

imposed in the VICONOPT optimisation by restricting the feasible regions of the 

lamination parameters for the four predefined ply angles −45°, 0°, +45° and 90°. In 

the second stage, the layerwise branch and bound method is employed to match the 

lamination parameters obtained in the first stage optimisation, and extended with a 

checking strategy to logically search for stacking sequences satisfying the 

manufacturing requirements. Benefits of the checking strategy are that the branches 

which lead to the violation of the layup design constraints can be logically discarded, 

so narrowing the search space. Comparisons between the improved global layerwise 

branch and bound method and GAs suggest that the global layerwise branch and bound 

method is more efficient and effective than the GAs, particularly when layup design 

constraints are imposed or the laminate has a large number of plies.  The performance 

of the improved LBB method in searching stacking sequences is further illustrated by 

comparisons with the results in Herencia et al. (2007). Using the same target 



Conclusions and Suggestions for Future Work 

140 

 

lamination parameters and number of plies the improved LBB method finds stacking 

sequences closer to the target lamination parameters, achieving better buckling 

performance.  

 

In Chapter 6, achievements in the development of a two-stage optimisation method for 

more complex blended laminates are presented, which are extensions of the method 

presented in Chapter 5. The multilevel optimisation software VICONOPT MLO is first 

improved to include lamination parameters as design variables, and then employed in 

the first stage of the optimisation to obtain optimised lamination parameters and 

laminate thicknesses subject to buckling and lamination parameter constraints. During 

the iterative multilevel optimisation, ABAQUS is used to conduct the static FE 

analysis of the whole structure to obtain load distributions, based on which 

VICONOPT optimises each of the component panels. Following this, in the second 

stage of the optimisation, a novel dummy layerwise branch and bound method (DLBB) 

which incorporates the dummy layerwise technique into the branch and bound method 

is developed to logically search the blended stacking sequences for large scale 

structures subject to layup design constraints to match the optimised lamination 

parameters. This two-stage method is applied to a benchmark problem which Fischer 

et al. (2012) optimised using the previous version of VICONOPT MLO. A comparison 

of the results demonstrates that the proposed two-stage method obtains a lighter and 

more practical structure, with a further 8.0% reduction in weight over the previous 

optimisation results even with blending and layup design constraints imposed.   

 

Chapter 7 introduces parallel computing in the second stage optimisation to solve 

blending problems more efficiently. First of all, a guide-based adaptive genetic 

algorithm (GAGA) which is a stochastic-based optimisation method, is developed. 

Different probabilities of crossover, mutation and permutation are implemented to 

different individuals according to their fitness. For individuals whose fitness values 

are lower than average, higher probabilities of being selected as cross points and 

mutating are given to the outer plies of the laminate. Next, a parallel DLBB-GAGA 

method which simultaneously executes the logic-based search of the DLBB method 

and the stochastic-based search of GAGA is developed. In order to improve the 

efficiency of the optimisation, the current best result from each method is shared with 

the other method to combine the advantages of these two different types of search. 
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Comparisons between the DLBB, GAGA and the parallel DLBB-GAGA methods 

shows that benefit is gained from combining the advantages of different methods, and 

the parallel DLBB-GAGA method performs with significant superiority in terms of 

both efficiency and ability to find closer matches to the target lamination parameters, 

especially when the extra layup design constraints are considered. 

 

As discussed in the last three paragraphs, the objectives of the author’s research work 

are achieved in this thesis. Several novel optimisation methods for the design of 

laminated composite structures are developed and validated by numerical results 

which demonstrate their high levels of performance.  

8.2 Suggestions for future work 

Based on the study carried out in this thesis, several extensions to the presented two-

stage layup optimisations can be explored to develop the code further. A number of 

suggestions for future work are discussed in the following paragraphs. 

 

The Matlab codes developed could be converted into Fortran or C++ languages so the 

optimisation methods presented in this thesis could be more easily compiled into 

VICONOPT and VICONOPT MLO, providing enhanced functionality and making the 

codes more competitive in the design of composite structures. 

 

The parallel DLBB-GAGA method could be extended by adding more parallel cores, 

implementing more GAGA runs in the parallel process or adding new optimisation 

methods into the parallel method to further improve the efficiency of the optimisation, 

and conducting the parallel DLBB-GAGA method in a more stable and efficient 

parallel computing environment. 

 

The adaptive genetic algorithm could be improved by applying adaptive parameters 

for the population size and number of elite in each generation.   

 

Adding strength constraints, more layup design constraints (e.g. the maximum number 

of consecutive dropped plies is limited to three) and some other structural behaviours 
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(e.g. postbuckling behaviour) into the two-stage layup optimisations could make the 

methods more appropriate for practical design. 

 

The thickness rounding process after the first stage optimisation should be further 

explored to obtain more accurate optimisation results. 

 

The feasible regions and optimisations of lamination parameters could be explored in 

terms of more layup design constraints and structural behaviours. 

 

The feasible regions should be defined using proper VICONOPT constraints (with 

derivative calculations) instead of by penalty functions. 

 

More permissible ply angles could be included (e.g. ply angles with an increment of 

5° or 10°) in the second stage optimisations, and comparisons made between the 

different methods for the increased set of permissible ply angles. 
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Appendix A                                                   

Lamination Parameters of the Layups Obtained in 

Chapter 7 

 

Table A.1 Lamination parameters of the layups of skins obtained using DLBB. 

Panel no. 𝜉1
𝐴 𝜉2

𝐴 𝜉3
𝐴 𝜉1

𝐷 𝜉2
𝐷 𝜉3

𝐷 𝛤 

5 0.0112 0.0112 0 −0.0795 −0.2201 0.0226 0.6067 

6 −0.0115 −0.0115 0 −0.1085 −0.2529 0.0190 0.4405 

4 −0.0303 0.1515 0 −0.1708 0.0058 −0.0032 0.6080 

3 0 0.0667 0 −0.1920 −0.1650 −0.0002 0.5297 

2 0.0667 0.2000 0 −0.0726 −0.1093 −0.0942 0.6464 

1 −0.0909 0.2727 0 −0.1540 −0.1240 −0.0361 0.6153 

 

Table A.2 Lamination parameters of the layups of left and right hand side flanges 

obtained using DLBB. 

Panel no. 𝜉1
𝐴 𝜉2

𝐴 𝜉3
𝐴 𝜉1

𝐷 𝜉2
𝐷 𝜉3

𝐷 𝛤 

left hand side flanges 

5 0.1028 −0.0467 0 −0.1306 −0.4483 −0.0724 0.5745 

3 0.0612 −0.0612 0 −0.1486 −0.4660 −0.0668 0.2231 

1 0.3488 0.2558 0 −0.0711 0.0342 0.0045 0.4824 

right hand side flanges 

6 0.1111 0.0303 0 −0.1041 −0.3576 −0.1640 0.4203 

4 0.1209 0.0330 0 −0.0804 −0.3909 −0.1612 0.4068 

2 0.3000 0 0 −0.0517 −0.4695 −0.1455 0.2070 

 

Table A.3 Lamination parameters of the layups of left and right hand side webs 

obtained using DLBB. 

Panel no. 𝜉1
𝐴 𝜉2

𝐴 𝜉3
𝐴 𝜉1

𝐷 𝜉2
𝐷 𝜉3

𝐷 𝛤 

left hand side webs 

3 0.2281 0.2982 0 −0.2161 0.0304 0.0140 0.2693 

1 0.2000 0.0400 0 −0.1272 −0.2457 −0.0261 0.8056 

5 0.1429 −0.1429 0 −0.1020 −0.4927 0 1.4572 

right hand side webs 

6 0.0087 0.1652 0 −0.1436 −0.1681 −0.0807 0.4136 

4 0.0833 0.5000 0 −0.0862 0.3125 −0.0334 0.4490 

2 0.3103 0.1724 0 0.1372 −0.1228 −0.0413 0.4773 
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Table A.4 Lamination parameters of the layups of skins obtained using GAGA. 

Panel no. 𝜉1
𝐴 𝜉2

𝐴 𝜉3
𝐴 𝜉1

𝐷 𝜉2
𝐷 𝜉3

𝐷 𝛤 

5 0.0112 0.0112 0 −0.1145 −0.2094 0.0209 0.6074 

6 −0.0115 −0.0115 0 −0.1809 −0.2703 0.0283 0.3718 

4 −0.0303 0.0303 0 −0.2239 −0.2454 −0.0072 0.4209 

3 −0.0667 0.0667 0 −0.2756 −0.1179 0.0149 0.3172 

2 0.2000 −0.0667 0 −0.0880 −0.1496 −0.1102 0.7633 

1 −0.0909 −0.0909 0 −0.1931 −0.2261 −0.0766 0.6422 

 

 

Table A.5 Lamination parameters of the layups of left and right hand side flanges 

obtained using GAGA. 

Panel no. 𝜉1
𝐴 𝜉2

𝐴 𝜉3
𝐴 𝜉1

𝐷 𝜉2
𝐷 𝜉3

𝐷 𝛤 

left hand side flanges 

5 0.1028 0.0280 0 −0.1141 −0.3363 −0.2023 0.4654 

3 0.0612 0.0204 0 −0.1412 −0.3381 −0.1705 0.3804 

1 0.2558 0.2558 0 −0.1282 −0.0473 −0.0767 0.4742 

right hand side flanges 

6 0.0707 0.0303 0 −0.1436 −0.2848 −0.1856 0.5158 

4 0.0769 0.0330 0 −0.1282 −0.3120 −0.1719 0.3833 

2 0.3000 0 0 −0.0202 −0.5265 −0.1395 0.1785 

 

 

Table A.6 Lamination parameters of the layups of left and right hand side webs  

obtained using GAGA. 

Panel no. 𝜉1
𝐴 𝜉2

𝐴 𝜉3
𝐴 𝜉1

𝐷 𝜉2
𝐷 𝜉3

𝐷 𝛤 

left hand side webs 

3 0.1579 0.2982 0 −0.3066 0.1014 0.0130 0.3141 

1 0.2000 0.3600 0 −0.2424 0.0221 −0.0338 0.5086 

5 0.1429 −0.1429 0 −0.1195 −0.5277 0.0175 1.4572 

right hand side webs 

6 −0.0087 0.1652 0 −0.2037 −0.1364 −0.0779 0.4023 

4 0.1667 0.3333 0 −0.2137 0.1751 −0.0430 0.4968 

2 0.3103 0.1724 0 0.0929 −0.1051 −0.0679 0.4421 
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Table A.7 Lamination parameters of the layups of skins obtained using parallel 

method. 

Panel no. 𝜉1
𝐴 𝜉2

𝐴 𝜉3
𝐴 𝜉1

𝐷 𝜉2
𝐷 𝜉3

𝐷 𝛤 

5 0.0112 0.0112 0 −0.1017 −0.3715 0.0444 0.4234 

6 −0.0115 −0.0115 0 −0.1386 −0.4083 0.0406 0.2766 

4 −0.0303 0.1515 0 −0.2248 −0.2303 −0.0137 0.3075 

3 −0.0667 0.2000 0 −0.2832 −0.1027 −0.0020 0.2310 

2 0.2000 0.2000 0 −0.0862 −0.1022 −0.1298 0.4710 

1 0.0909 0.2727 0 −0.1345 −0.1059 −0.0451 0.4857 

 

 

Table A.8 Lamination parameters of the layups of left and right hand side flanges 

obtained using parallel method. 

Panel no. 𝜉1
𝐴 𝜉2

𝐴 𝜉3
𝐴 𝜉1

𝐷 𝜉2
𝐷 𝜉3

𝐷 𝛤 

left hand side flanges 

5 0.1028 0.0280 0 −0.1280 −0.4249 −0.0591 0.5338 

3 0.0612 0.0204 0 −0.1609 −0.4126 −0.0554 0.1712 

1 0.3488 0.2558 0 −0.0391 −0.0285 −0.0625 0.3948 

right hand side flanges 

6 0.1313 0.1111 0 −0.1327 −0.3538 −0.1555 0.2862 

4 0.0989 0.0330 0 −0.1371 −0.4192 −0.1710 0.3071 

2 0.3000 0 0 −0.0570 −0.4800 −0.1508 0.1965 

 

 

Table A.9 Lamination parameters of the layups of left and right hand side webs 

obtained using parallel method. 

Panel no. 𝜉1
𝐴 𝜉2

𝐴 𝜉3
𝐴 𝜉1

𝐷 𝜉2
𝐷 𝜉3

𝐷 𝛤 

left hand side webs 

3 0.1579 0.2982 0 −0.2878 0.0229 0.0069 0.2431 

1 0.2000 0.0400 0 −0.1272 −0.2457 −0.0261 0.8056 

5 0.1429 −0.1429 0 −0.0845 −0.7376 −0.0175 1.1773 

right hand side webs 

6 0.0261 0.1652 0 −0.1957 −0.1582 −0.0800 0.3792 

4 0.1667 0.3333 0 −0.2666 0.1317 −0.0612 0.4698 

2 0.3103 0.1724 0 0.0417 −0.1563 −0.0640 0.4142 
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Appendix B                                                          

Buckling Modes of the Wing Box Structures 

Obtained in Chapter 7 

 

Figure B.1 First buckling mode with buckling load factor = 1.06 (DLBB method). 

 

 

 

Figure B.2 Second buckling mode with buckling load factor = 1.11 (DLBB method). 
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Figure B.3 Third buckling mode with buckling load factor = 1.15 (DLBB method). 

 

 

 

 

 

Figure B.4 First buckling mode with buckling load factor = 1.03 (GAGA). 
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Figure B.5 Second buckling mode with buckling load factor = 1.13 (GAGA). 

 

 

 

 

Figure B.6 Third buckling mode with buckling load factor = 1.15 (GAGA). 
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Figure B.7 First buckling mode with buckling load factor = 1.08 (parallel method). 

 

 

 

 

Figure B.8 Second buckling mode with buckling load factor = 1.14 (parallel method). 
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Figure B.9 Third buckling mode with buckling load factor = 1.15 (parallel method). 

 


