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Resonant-state expansion for planar photonic crystal structures
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We present a powerful concept in the field of photonic crystals and metamaterials, applying the resonant-state
expansion (RSE) to planar photonic crystal structures. The RSE allows us to understand and quantify optical
resonances in photonic crystal structures in terms of the analytic resonant states of a homogeneous planar
waveguide. The RSE provides an efficient and reliable tool for accurate calculation of a complete set of the
resonant states of a photonic crystal slab, which is required for the correct description and a better understanding
of its optical spectra. For the proof of principle, numerical verification of the RSE, and demonstration of its un-
precedented accuracy and convergence, an infinite planar photonic crystal slab periodic in one dimension is taken
as an example. To illustrate the power of this approach, we consider the mode evolution with the amplitude of the
periodic modulation, revealing the role of the guided modes in the formation of bound states in the continuum.
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I. INTRODUCTION

Photonic crystal structures exhibit a number of fundamen-
tal optical properties, such as strong confinement and Bragg
scattering of light, which can be used, e.g., for light prop-
agation control in grating couplers [1], photonic integrated
circuits [2,3], and beam splitters [4]. The band structure of
an idealized photonic crystal (PC), infinitely extended in all
directions, is already very complicated [5]. Planar PC systems
provide an opportunity for the light trapped within an optical
waveguide (WG) to couple to the photonic continuum outside
the system [6–9], which makes finding the light eigenmodes
of a PC slab an even more challenging task.

The complex transmission spectrum of a PC slab can be
intuitively understood as a superposition of a large number of
resonances of different linewidth and line shape [7], which can
be rigorously described by the resonant states (RSs). Being in-
troduced in quantum mechanics nearly a century ago [10,11],
the RSs in electromagnetics are the discrete eigenmodes of an
optical system – solutions to Maxwell’s wave equation with
outgoing boundary conditions (BCs) [12]. Physically, RSs
describe a culmination of various constructive and destructive
interferences of waves due to multiple reflections within the
optical system. The RS eigenfrequency is generally complex,
with the quality factor (Q factor) being the half of the ratio of
its real to imaginary part. In planar systems, the RSs include,
as a special case, modes with purely real frequency, such as
WG modes formed as a result of the total internal reflection.
Additionally, a typical optical spectrum of a PC slab con-
tains nonresonant features known as Rayleigh-Wood anoma-
lies [13], which are caused by the opening of new diffraction
orders into free space. Mathematically, they correspond to the
branch cuts in the complex frequency plane caused by the
square root in the light dispersion which can be represented as
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a continuum of modes that lie along the cuts [14,15] and that
are similar to the RSs. In purely numerical approaches, such as
the finite-difference time-domain calculations with perfectly
matched layers used in [16], these cuts can be observed in
a form of isolated resonances, or cut modes. In some cases,
these continua of modes can even be entirely eliminated from
the spectral representation [17,18].

The positions and linewidths of resonances can be
modified, e.g., by introducing imperfections or changes to the
permittivity. This makes the RSs of particular importance for
sensing applications, ranging from measuring the refractive
index and chirality of a medium [19–21] to biosensing of
individual molecules and atoms [22–24]. RSs have also found
applications in miniature lasers [25] and low-loss guiding of
light in photonic crystal fibers [2], to name a few. The concept
of RSs (also known as “quasinormal modes”) is widely used
in the literature as a natural tool for understanding the optical
properties of micro- and nano-resonators (see, e.g., a recent
review [26]).

The resonant-state expansion (RSE) is a novel rigorous
approach developed in electrodynamics [27] for calculating
the RSs of an optical system. Using a complete set of the RSs
of a simpler system as a basis, the RSE performs a mapping
of Maxwell’s wave equation onto a linear eigenvalue problem,
which determines the RSs of the complex system of interest.
In addition to a higher numerical efficiency compared to
other computational methods, such as finite difference in time
domain, finite element, and Fourier modal method, as demon-
strated in [15,28], the RSE provides an intuitive physical
picture of resonant phenomena, capable of explaining features
observed in optical spectra. Also, unlike other approaches, the
RSE guarantees the completeness of the set of the RSs found
within the selected spectral range, provided that the basis set
used as input for the RSE is also complete. The latter is easy
to achieve and to verify when choosing the basis system to be
analytically solvable. Other approaches, in turn, are not able to
guarantee that all relevant modes are found and that there are
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no spurious solutions. The effect of other modes, not included
in the optical spectrum, is commonly treated as a background
contribution adjusted with a number of fit parameters [29,30].

So far, the RSE has been applied to finite open optical
systems of different geometry and dimensionality [14,28,31],
as well as to homogeneous [18,32] and inhomogeneous pla-
nar waveguides [15]. Recently, the RSE was generalized to
systems with frequency dispersion of the permittivity [33]
and later on to magnetic, chiral, and bianisotropic optical sys-
tems [34], enabling its further application to metamaterials.
The RSE has also been used in first order of the perturbation
theory for PC structures to describe refractive index sens-
ing [20], and a rigorous analytic mode normalization in PC
structures has been presented in [20,21]. However, the RSE
has never been applied in full to PC systems.

In this paper, we develop a photonic crystal RSE (PC-
RSE), a rigorous approach for the accurate calculation of RSs
in planar PC structures. The key idea of the PC-RSE is to use
the analytically solvable homogeneous slab as a basis system
and to treat a PC structure as a periodic modulation on top
of the slab. This idea echoes back to the famous nearly free
electron model in the solid-state theory [35]. However, unlike
states of a free electron, the basis RSs of an open optical
system are generally leaky (having finite Q factors), which
makes the implementation of the same idea in optics entirely
different.

The idea of using the eigenmodes of a homogeneous slab
has been already implemented as a guided mode expansion
method [36]. Among different methods available in the liter-
ature, this approach has been considered as the most efficient
way of calculating the eigenmodes of PC structures. It pro-
vides, in particular, a powerful tool for optimizing parameters
of photonic crystal cavities [37]. This method, however, has
a significant disadvantage: A set of the guided modes it
uses as a basis is incomplete. Furthermore, it treats an open
optical system as an effective closed one, not allowing the
eigenfrequencies to be complex. This breach has been patched
by introducing an additional procedure, similar to Fermi’s
golden rule, for an approximate treatment of light leakage
from the system resulting in finite Q factors of modes [36].
Our approach instead adds to this incomplete set of guided
modes all the missing RSs having finite Q factors, as well as
the cut modes responsible for the Rayleigh-Wood anomalies
observed in optical spectra. Having a complete set of modes
generated by the RSE allows us to quantify precisely any
optical observable [38–40], such as the transmission, reflec-
tion, scattering, and extinction of light. It is also expected
that the PC-RSE will become a precise and efficient tool for
calculating high Q-factor modes in PC cavities [41].

The periodicity of a PC structure mixes all possible Bragg
harmonics. Therefore, the basis RSs have to be taken with
different in-plane wave numbers. As a result, the dyadic
Green’s function of the set of Maxwell’s equations has branch
cuts in the complex frequency plane which have to be taken
into account in the PC-RSE along with the RSs. This presents
the major complication of the PC-RSE which we have dealt
with by splitting the cuts into series of discrete, artificial cut
modes added for completeness to the basis RSs, as it was
done, e.g., in [14,15].

A significant technical advantage of treating periodic mod-
ulations of a homogeneous slab as perturbations is that all

the diagonal elements of the perturbation matrix are vanishing
due to periodicity (without homogeneous perturbation). This
guarantees a low level of numerical errors even for small
basis sizes and strong periodic modulations, as we show
in this paper. Using for illustration, a dielectric slab in a
vacuum periodically modulated in one dimension (1D), we
demonstrate the accuracy and efficiency of the PC-RSE in
finding the RSs of PC structures.

For verification of the PC-RSE, we compare it with the
scattering matrix method (SMM) [6,7], also known in the
literature as Fourier modal method [42–45], which has been
considered in the literature as the most accurate and reliable
way of calculating the optical spectra of infinitely extended
periodic open systems. In fact, the SMM is asymptotically
exact, having the total number of the Bragg diffraction chan-
nels taken into account as the only parameter of the method.
However, when used for finding the RSs of the system, the
SMM is limited by rather low numbers of Bragg channels,
struggling to find all modes in a given frequency range and
often returning spurious modes. Recently, a so-called “mode
expansion method” has been introduced in [46] for an accurate
calculation and qualitative study of bound states in the contin-
uum (BICs) in PC slabs. We note, however, that this method,
which appeared under a new name, is nothing else than the
well-known SMM.

The PC-RSE presented here is not only a simple numerical
tool that allows us to accurately calculate a complete set of
the RSs of a planar PC slab with a complicated structure. It
is a powerful concept in the field of PC systems revealing the
origin and the properties of their RSs. To demonstrate this,
we study BICs of a dielectric PC slab with 1D grating. Such
modes, having infinite Q factors while residing inside the
continuum, were predicted in nonrelativistic quantum systems
almost a century ago [47] but have only recently become a
subject of particular interest [48–50] and have been observed
in optics [51]. We show in particular how BICs are formed in
PC structures and how different types of basis RSs of a homo-
geneous slab contribute to BICs and other resonances of the
PC slab, such as quasiguided [7] and Fabry-Pérot (FP) modes.

II. FORMALISM OF THE PC-RSE

Consider a PC slab occupying the region |z| � a, where
z is the coordinate in the growth direction. Assuming the
permittivity and the permeability are isotropic everywhere,
the electric field E, magnetic field H, and the frequency ω

of a given RS of the PC slab satisfy the following Maxwell
equations (the speed of light c = 1):

∇ × E = ω(μ + �μ)iH , (1)

∇ × iH = ω(ε + �ε)E , (2)

which have to be solved together with outgoing wave BCs
outside the PC slab. Here, we have explicitly separated the
total permittivity (permeability), periodic in x direction with
the period d , into a homogeneous part ε(z) [μ(z)] and a
periodic part �ε(x, z) [�μ(x, z)], obeying

�ε(x + d, z) = �ε(x, z), �μ(x + d, z) = �μ(x, z). (3)

For the purpose of a clearer illustration of our approach, we
consider the case of the transverse electric (TE) and transverse
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magnetic (TM) polarizations not coupled to each other, which
is achieved by assuming that the y component of the in-plane
momentum is zero. We note, however, that generalization to
the case of a nonzero y component of the momentum and to
2D periodicity of the PC slab is straightforward, and the whole
formalism remains essentially the same as presented here.

Since the TE and TM polarizations are not coupled, each
polarization can be treated separately. However, due to the
symmetry of Maxwell’s equations (1) and (2) with respect to
a simultaneous exchange of E ↔ iH, ε ↔ μ, and �ε ↔ �μ,
it is sufficient to treat only one of the two polarizations, for
example, the TE polarization, while retaining the permeability
in all results, even if all the constituent materials are nonmag-
netic.

For the TE polarization, Maxwell’s equations (1) and (2)
reduce to

(L̂ + �L̂)F = 0, (4)

where the vector field F is formed from three nonvanishing
components of the electric and magnetic fields

F =
⎛
⎝ Ey

iHx

iHz

⎞
⎠, (5)

and

L̂(x, z; ω) = ωP̂(z) − D̂(x, z) , (6)

�L̂(x, z; ω) = ω�P̂(x, z) (7)

are linear operators, consisting of the generalized permittiv-
ity [34]

P̂(z) =
⎛
⎝ε(z) 0 0

0 μ(z) 0
0 0 μ(z)

⎞
⎠, (8)

the curl operator

D̂(x, z) =
⎛
⎝ 0 ∂z −∂x

−∂z 0 0
∂x 0 0

⎞
⎠, (9)

and the perturbation

�P̂(x, z) =
⎛
⎝�ε(x, z) 0 0

0 �μ(x, z) 0
0 0 �μ(x, z)

⎞
⎠. (10)

Owing to the periodicity, the wave function F obeys
Bloch’s theorem,

F(x + d, z) = F(x, z)eipd , (11)

determining the quasimomentum p in the x direction. We
therefore solve the Maxwell equations (4) for the given p,
using a periodic dyadic Green’s function (GF) Ĝp(x; z, z′) of
the homogeneous slab:

F(x, z)=−ω

d

∫
d
dx′

∫
dz′Ĝp(x − x′; z, z′)�P̂(x′, z′)F(x′, z′),

(12)
where

∫
d dx implies integration over any period interval. This

GF has the same value of p and satisfies Maxwell’s equations

with a periodic array of sources:

L̂(x, z; ω)Ĝp = 1̂δ(z − z′)d
∑

m

eipmdδ(x − x′ − md ), (13)

where m is an integer and 1̂ is the 3 × 3 unit matrix. Using
Bloch’s theorem again, the periodic GF can be written as

Ĝp(x; z, z′) =
∑

g

Ĝp+g(z, z′)ei(p+g)x, (14)

where

g = 2πm

d
, (15)

and Ĝp(z, z′) is another, x-independent GF of the homoge-
neous slab satisfying an equation

L̂p(z; ω)Ĝp(z, z′) = 1̂δ(z − z′), (16)

with a modified operator

L̂p(z; ω) = ωP̂(z) − D̂p(z), (17)

which consists of the homogeneous generalized permittivity
P̂(z) given by Eq. (8) and the curl operator D̂p(z) given by
Eq. (9) with ∂x replaced by ip: D̂p(z) = D̂∂x→ip.

The homogeneous GF Ĝp can be written, using the Mittag-
Leffler (ML) theorem [52], in terms of the RSs of the homo-
geneous slab,

Ĝp(z, z′) =
∑

n

∫ Fn(z; p) ⊗ Fn(z′; −p)

ω − ωn
, (18)

where ⊗ denotes the dyadic vector product and
∑∫

represents
the sum over the RSs of the homogeneous slab, supplemented
with an integral over the branch cuts that are caused by the
square root in the wave vector when using ω representation
(see Appendix B). Fn(z; p) is the vectorial wave function
of the RS n of the homogeneous slab, satisfying Maxwell’s
equation

L̂p(z; ωn)Fn(z; p) = 0 (19)

and outgoing BCs, and ωn is the RS eigenfrequency. Equa-
tion (18) is valid if the RSs are normalized according to a
general normalization condition [21,34] applied to the homo-
geneous planar system,

1 =
∫ z2

z1

F†
n · P̂Fndz + (E†

n × iH′
n − E ′

n × iH†
n) · ez|z2

z1
,

(20)

where ez is the unit vector in the z direction, z1 and z2 are
two arbitrary coordinates outside of the system, such that
z1 � −a and z2 � a, and F†

n(z; p) = Fn(z; −p) is the adjoint
field. En and Hn in Eq. (20) are, respectively, the electric and
magnetic fields of the RS n, combined together into the vector
Fn = {En, iHn} having in general six components which are
reduced to only three for TE or TM polarization, in accor-
dance with Eq. (5); E ′

n and H′
n are the frequency derivatives

of the analytic continuation of the fields En and Hn into the
complex frequency plane (for more details, see [28,34]). Note
that in addition to all the RSs lying on the “physical” Riemann
sheet of complex frequency, the ML series (18) includes also
cut modes, not obeying Eqs. (19) and (20) (for details and
derivation, see Appendices A and B).
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Substituting Eq. (14) into Eq. (12) and using the ML
expansion (18), we obtain, owing to the completeness of the
basis and in agreement with Bloch’s theorem, an expansion of
the wave function F of the RS of the PC slab into the RSs of
the homogeneous slab

F(x, z) =
∑

g

∑
n

∫
cg

nFn(z; p + g)ei(p+g)x, (21)

where the expansion coefficients are given by

cg
n = − ω

ω − ω
g
n

1

d

∫
d

dx e−i(p+g)x

×
∫

dzFn(z; −p − g) · �P̂(x, z)F(x, z). (22)

Then, substituting the expansion (21) into Eq. (22), we arrive
at the the key equation of the PC-RSE:

ω
∑

g′

∑
n′

∫ (
δnn′δgg′ + V gg′

nn′
)
cg′

n′ = ωg
ncg

n, (23)

in which δi j is the Kronecker delta, and the matrix elements
of the perturbation are defined as

V gg′
nn′ =

∫
Fn(z; −p − g) · �P̂g−g′ (z)Fn′ (z; p + g′)dz (24)

with �P̂g(z) being the Fourier coefficients of the generalized
permittivity perturbation

�P̂g(z) = 1

d

∫
d
�P̂(x, z)e−igxdx. (25)

Note that in Eqs. (22) and (23), we have added index g to ωn in
order emphasize the dependence of the basis RS frequencies
on the Bragg channel number g.

Equation (23) presents a matrix eigenvalue problem, linear
in ω (the eigenfrequency of a perturbed RS of the PC slab) and
can be solved simply by diagonalizing a complex symmetric
matrix. This equation is very similar to the RSE equation for a
finite open optical system [27]. However, the main difference
between the two is that Eq. (23) contains a summation over all
Bragg channels, labeled by the index g. Also, the contribution
of the cuts, denoted by the integral, is included in Eq. (23), in
the same way as it was done in the RSE applied to 2D open
optical systems [14] or to inhomogeneous waveguides [15].

Note that the RSE has been recently formulated for PC sys-
tems [20,21], in a form of a perturbation theory treating some
modifications to the already existing periodic structure, i.e.,
using a PC slab as a basis system. It has been applied so far to
either weak perturbations, limiting the RSE basis to a single
mode [20], or to moderate perturbations of quasidegenerate
modes, limiting the basis to such a pair of modes [21]. In this
work we consider instead a homogeneous basis containing
up to several thousands of modes of the homogeneous basis.
This choice of the basis presents a significant advantage in
implementation of the RSE. For example, all different Bragg
channels are fully isolated in the homogeneous basis, whereas
a PC basis has all these channels already coupled together.
This has, in particular, a dramatic consequence on the inclu-
sion of branch cuts in the basis, which is impossible to do
in practice with Bragg channels mixed up as in the PC basis.
Furthermore, owing to the simplicity of the basis system used

in the present approach, all of the basis RSs and cut modes are
found analytically.

III. RESULTS

A. PC-RSE for permittivity perturbations

We now use the PC-RSE derived in Sec. II to find the RSs
of a nonmagnetic PC slab with a periodic modulation of the
permittivity. In this case, the perturbation matrix in the TE
polarization simplifies to

V gg′
nn′ =

∫
Eg

n (z)�εg−g′ (z)Eg′
n′ (z)dz, (26)

where

�εg(z) = 1

d

∫
d
�ε(x, z)e−igxdx (27)

and Eg
n (z) is the electric field (directed along y) of the

homogeneous-slab RS with index n and momentum p + g
along x. In general, this RS is a solution of the Maxwell wave
equation (B7) with the outgoing boundary condition (B15)
and the normalization given by Eq. (B16) (see Appendix B).
Here, we have added index g to the electric field Eg

n and the
eigenfrequency ω

g
n, in order to distinguish different Bragg

channels contributing to the PC-RSE.
Note that in order to treat a permittivity perturbation in the

TM polarization, one should instead set �ε = 0 in Eq. (24)
and use �μ for the modulation of the permittivity, along with
replacements iHx → Ex and iHz → Ez in the unperturbed
wave function Fn(z; p).

As a basis system, we choose a homogeneous dielectric
slab in a vacuum, of thickness 2a, permittivity ε > 1, and
permeability μ = 1. The full permittivity profile of the slab
system is given by Eq. (C1), and the basis RSs and cut
densities are provided in Appendix C. In practical use of
Eq. (23) we apply a cut discretization, described in detail in
Appendix D 2, which modifies the PC-RSE equation to

ω
∑
n̄′g′

(
δn̄n̄′δgg′ + V gg′

n̄n̄′
)
cg′

n̄′ = ω
g
n̄cg

n̄ (28)

with an integer index n̄ labeling both the RSs and the cut
modes [see Eq. (D8)]. Within the slab, |z| � a, the electric
fields of the RSs and cut modes are described by the same
functions

Eg
n̄ (z) = Bg

n̄[eiqg
n̄z + (−1)n̄e−iqg

n̄z] (29)

with the normalization constants for the RSs and cut modes
given by Eqs. (C9) and (D10), respectively. The mode parity
is determined by the parity of n̄ via the coefficient (−1)n̄

taking the values of +1 or −1. The eigenfrequencies ω
g
n̄ are

determined by the secular equation (C7) for the RSs and by
Eq. (D5) for the cut modes. Furthermore, the link between the
mode frequency ω

g
n̄ and the wave number kg

n̄ in vacuum and qg
n̄

in the medium is provided by the following light dispersion
relations: (

ω
g
n̄

)2 = (
kg

n̄

)2 + (p + g)2, (30)

ε
(
ω

g
n̄

)2 = (
qg

n̄

)2 + (p + g)2. (31)

For illustration purposes and also for the ease of compari-
son with the SMM, the perturbation of the homogeneous slab
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FIG. 1. Schematic of the perturbed system: photonic crystal slab
of the total thickness 2a, periodically modulated in x direction, with
period d , within the layer of thickness 2b at the center of the slab.

is taken in the most simple harmonic form

�ε(x, z) =
(

α + β cos
2πx

d

)
�(b − |z|), (32)

where �(z) is the Heaviside step function, b � a, and α and
β are some parameters (see Fig. 1). We note, however, that
the RSE can equally deal with any other shape of the periodic
perturbation, not requiring the separation of variables which
the perturbation in the form of Eq. (32) possesses. The SMM,
in turn, requires this separation. In fact, the transfer matrices
that form the scattering matrix are calculated layer by layer
through the system (see [7]). Therefore, any system changing
smoothly in the growth direction will be approximated by a
stack of slices homogeneous in z, which are ideally infinitely
thin.

For the perturbation given by Eq. (32), the matrix elements
take the following explicit form:

V gg′
n̄n̄′ = Bg

n̄Bg′
n̄′ (2αδgg′ + βXg−g′ )bZgg′

n̄n̄′ , (33)

where

Xg = δg,g1 + δg,g−1 (34)

with g±1 = ±2π/d and

Zgg′
n̄n̄′ = (1 + (−1)n̄+n̄′

) sinc
[(

qg
n̄ + qg′

n̄′
)
b
]

+ ((−1)n̄ + (−1)n̄′
) sinc

[(
qg

n̄ − qg′
n̄′
)
b
]

(35)

with sinc z = sin z/z.
For homogeneous perturbations, used in Appendix D for

the RSE verification and comparison of the k and ω repre-
sentations, we use α �= 0 and β = 0. For all periodic per-
turbations we instead take α = 0 and β �= 0, so that all the
matrix elements, Eq. (26), within the same channel (g = g′)
are vanishing since �ε0(z) = 0, according to Eq. (27). This
property yields a quick convergence of the PC-RSE. In fact,
since the diagonal elements of the perturbation matrix are all
zeros, the first-order contribution of the PC-RSE is vanish-
ing [28]. Then, the lowest-order nonvanishing contribution
of the perturbation can only be quadratic in V gg′

nn′ , making its
overall effect quantitatively small and allows the PC-RSE to
converge quickly to the exact solution.

B. Basis for the PC-RSE

The full basis for the PC-RSE consists of an infinite num-
ber of RSs and cut modes, taken for all Bragg channels g =

2πm/d , where m = 0,±1,±2 . . . . Periodic perturbations,
such as the one given by Eq. (32), introduce coupling between
the basis states belonging to different Bragg channels, so that
in order to obtain the exact result one needs to take all of
them into account simultaneously. In practice, we introduce
a truncation, limiting the number of RSs and cut modes for
each Bragg channel as well the number of Bragg channels
themselves. We do both truncations by introducing a single
real parameter ωmax which defines a circle |ω| < ωmax in
the complex frequency plane containing the basis RSs and
cut modes included in the PC-RSE. For a fixed ratio of
the number of RSs and cut modes in the basis, the total
number of modes scales as ω2

max due to the linearly increasing
number of channels and the linearly increasing number of
modes per channel as ωmax increases which combine to create
a quadratic dependence on ωmax. The set of included RSs,
defined in this way, typically contains a large number of WG
modes. In fact, only the m = 0 channel consists of equidistant
FP modes which we call in the following leaky modes. All
other channels contain WG modes having real frequencies
ω

g
n within the intervals (p + g)/

√
ε < |ωg

n| < (p + g). The
number of WG modes within each channel grows linearly
with g, with the total number increasing quadratically with g.
The WG modes are separated from FP modes by a series of cut
poles of the GF which are positioned vertically down below
the branch points at ω = ±(p + g). For Reω > p + g and
Reω < −(p + g), there are two infinite series of FP modes
for each Bragg channel. All this means, in particular, that for a
given radius ωmax, the basis includes 2M + 1 ≈ ωmax

√
εd/π

channels, most of which consist of only WG modes.
For the purpose of verification of the PC-RSE by compar-

ing it with the SMM, which is presented in Sec. III C below,
we use however a different criterion: We limit the number
of Bragg channels to |m| � M, where M is a fixed number,
and truncate the RSs and cut modes independent of M, i.e.,
using the same number of modes for each selected channel.
This is done in order to avoid a computationally expensive
root searching within the SMM related to the increase of the
S-matrix size with M. Clearly, for adequate comparison, it is
essential to keep the truncation number M the same for both
PC-RSE and SMM. However, the necessity to keep M low
demonstrates the major weakness of the SMM.

The PC-RSE basis used for the comparison with the SMM
is illustrated in Fig. 2, for p = 0 and M = 5, showing the
eigenfrequencies of both the RSs and cut modes for all
selected 11 Bragg channels. Clearly, for p = 0, the positive-
and negative-m channels are degenerate (giving the same
RS eigenfrequencies), and both degenerate channels must be
included in the basis. Additionally, there are now 2M cuts with
discretized cut modes added to the basis. These cut modes are
also degenerate for the same reason as the RSs.

C. Verification of the PC-RSE

Before applying the PC-RSE, we first consider a homo-
geneous dielectric slab in vacuum. Taking ε = 6 and pa = 5
as an example, we demonstrate numerically in Appendix C a
quick convergence with the basis size N of the ML series for
the GF to its exact values, given by the analytic formula (C3).
We show in particular that both k and ω representations of the
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FIG. 2. Basis RSs and cut poles (used for comparison of the
PC-RSE with SMM) for ε = 6, α = β = 0, and M = 5 leading to
11 Bragg channels in the basis, each channel labeled with index m.
The frequencies of the RS and cut modes of channels m and −m are
identical.

GF (the first without and the second with cuts in the basis)
converge in the same way, with the absolute error scaling as
1/N2. The contribution of the cuts to the ML expansion in the
ω representation is taken into account in this case in a form of
a numerical integration.

We then apply in Appendix D the RSE to a uniform per-
turbation of the homogeneous slab for p �= 0, demonstrating
for both k and ω representations a quick convergence of
the RSE to the analytic solution available for the core-shell
geometry used, with the relative error for the wave numbers
scaling as 1/N3. The RSE in the k representation essentially
reproduces the results of [18]. In the ω representation applied
to homogeneous systems, the cut contribution is taken into
account in the RSE in the form of a subset of artificial cut
modes obtained by a numerical discretization of the cuts and
added to the basis. The procedure of the cut discretization is
described in detail in Appendix D 2. These cut modes are then
used in the PC-RSE.

Now, in order to verify the PC-RSE, we consider the pe-
riodic perturbation (32) with α = 0, β = 1, d = 2aπ/5, and
b = a/2. The unperturbed system is a homogeneous slab in a
vacuum of thickness 2a and permittivity ε = 6. Its RSs and
cut modes for TE polarization and p = 0 are shown in Fig. 2.
Perturbed RSs of the PC slab, calculated via the PC-RSE
(with and without cut modes) and by the SMM, are shown
in Fig. 3 along with all the unperturbed RSs and cut modes
present in the displayed spectral range. As already mentioned
in Sec. III B, the same truncation of the Bragg channels with
M = 5 was used for both the PC-RSE and SMM.

While the periodic perturbation is not small (β = 1), lead-
ing to a considerable modification of the RSs, one can see in
Fig. 3 a very good visual agreement between the SMM and
the PC-RSE, even when no cut modes are included in the
basis (green crosses ×). In fact, in this case, there is only a
slight discrepancy between the two calculations seen for some
RSs close to the cuts [see, e.g., region 3 in Fig. 3(b)]. These
discrepancies are fully removed when cut modes are included

(a)

(b)

FIG. 3. (a) RS frequencies of a PC slab with ε = 6, α = 0,
β = 1, b = a/2, and d = 2πa/5, calculated for M = 5 using the
PC-RSE (N = 1998, F = 1) with and without cut modes (red and
green crosses) and the SMM (blue squares with dots). Unperturbed
RSs and both unperturbed and perturbed cut modes are also shown
(black circles with dots, black and blue dots, respectively). (b) Zoom
of (a) showing RSs near and on the real axis.

in the PC-RSE (red crosses +). Interestingly, the PC-RSE also
returns cut modes of the perturbed system, positioned along
the same cut lines at Re (ωa) = 5 and 10, but shifted vertically
with respect to their unperturbed positions [compare red and
black points in Fig. 3(a)].

To quantify the agreement between the PC-RSE and SMM,
we study the relative error for the RS frequencies, which is
shown in Fig. 4(a). Increasing the basis size N , the error does
not improve for some RSs near the cuts, if the cut modes
are not included in the basis. Including the cuts, the relative
error gradually decreases for all RSs, as the basis size grows.
Interestingly, the cut modes do not contribute to all the RSs
evenly, and some RSs close to the cuts show rather small
errors, which do not improve much when the cut modes are
included.

We also show in Fig. 4(b) the relative error of the PC-RSE
with respect to itself for a larger basis size, using the single
truncation parameter ωmax, as described in Sec. III B. We take
in particular the eigenfrequencies calculated for the total basis
size of Ntot ≈ 12 000 as the “exact” values in finding the errors
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FIG. 4. (a) Relative error of the PC-RSE compared to the SMM
result, taking the latter as “exact,” calculated with and without cut
modes, for different basis sized as labeled, F = 1, and parameters of
the PC slab as in Fig. 3. The basis consists of the closest to the origin
modes, with the same number of modes for each Bragg channel, for
M = 5. (b) Relative error of the PC-RSE using the N ≈ 6000 result
as exact, for the same PC slab and the basis size as labeled. The basis
consists of all RSs and cut modes within the circle |ω| < ωmax in the
complex frequency plane.

shown in Fig. 4(b) for different basis sizes. Here, Ntot = N +
FN , where N and FN are, respectively, the number of RSs
and cut modes in the basis. We study the dependence on F of
the relative error in Appendix D 2 [see Fig. 13(c)] and show
that F ≈ 1 presents an optimal value for determining the RSs
within a rather wide spectral range. This value of F is thus
used in the calculations presented in this section.

Looking at the dependence of the error on the basis size,
presented in Fig. 4(b), we see that the error decreases by
roughly an order as the basis size doubles, which is close
to the 1/N3 dependence observed for effective 1D systems
treated by the RSE [27,28,31]. This demonstrates a high
efficiency of the PC-RSE. In fact, its slowest element is matrix
diagonalization for which the compute time scales as N3.
More important is, however, the overall level of errors: even
for 26 RSs and no cut modes in the basis, the perturbed RSs of
the PC slab are calculated with the accuracy of about or less
than 10−3. The same level of errors is seen in Fig. 4(a) when

cut modes are not taken into account, for a large number of
RSs found within a much wider spectral range. This can be
understood by the already mentioned fact that all diagonal
elements V gg

n̄n̄ = 0, leading to the effect of the perturbation
vanishing in first order, and therefore to a rather low level of
corrections and errors.

A large number of the RSs shown in Fig. 3(a) seem to have
the imaginary part of the eigenfrequency close to zero. To see
this more clearly, we zoom in the view of the imaginary part
in Fig. 3(b) by a factor of 100. This allows us to distinguish
two types of modes. The first type is known as bound states
in the continuum (BICs). These modes, much like WG modes
in a planar waveguide, have strictly zero imaginary part and
therefore infinite Q factor or lifetime. However, unlike the WG
modes, BICs lie in the spectral range where they could (but
in reality do not) communicate with the photonic continuum
outside of the system. The second type we call quasiguided
modes (QGMs) [7] which usually have a very small but
nonzero imaginary part of the eigenfrequency (high Q factor),
as compared to, e.g., FP modes. This is again due to the
dominant role of the WG modes in their formation, like for the
BIC, while the small imaginary part is caused by the coupling
between the WG and leaky modes (see Sec. III D below for a
more detailed analysis of both types of RSs).

We also see in Fig. 3(b) some failures of the SMM,
showcasing the superiority of the RSE method. The SMM
ultimately relies on the Newton-Raphson method to find the
poles of the S-matrix [7,53]. This means that it uses a small
but finite tolerance playing the role of the parameter. If the
mode splitting is below the tolerance level, the SMM is unable
to resolve them, such as in region 2 of Fig. 3(b). Reducing
the tolerance can fix this issue, however, with a potential to
generate at the same time spurious solutions at another place
or to miss the modes, such as in region 1 of Fig. 3(b). The
RSE in turn does not require a tolerance and returns the correct
number of RSs in a selected region, neither missing any modes
nor producing any spurious solutions. This is an important and
unique property of the RSE, following from the completeness
of the basis used. Owing to its linearity in ω, the RSE always
returns as an output a set of perturbed modes which is also
complete. Furthermore, the number of perturbed modes is
always equal to the number of basis modes used.

D. Origin and evolution of the RSs in a PC slab

Here, we use the high efficiency and accuracy of the PC-
RSE to find the complete set of the RSs of a PC structure
and to study their origin, formation, and further evolution
with change of the system parameters. Here we change the
most important parameter: the amplitude of the periodic mod-
ulation β. Appendix F also presents results for varying the
thickness of the modulation layer 2b and its period d .

Figure 5 shows the evolution of the RSs eigenfrequencies
with the increase of the amplitude β of the periodic modu-
lation, which we call the perturbation strength. In the p = 0
case illustrated here, all unperturbed RSs (and cut modes)
except the m = 0 channel are doubly degenerate, as discussed
in Sec. III B. The periodic modulation lifts this degeneracy,
which is clearly seen in the figure. Furthermore, leaky and
FP modes shift upward, increasing their Q factors, while the
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(b) ) (d)

FIG. 5. Evolution of the RS eigenfrequencies of a PC slab for the amplitude of the periodic modulation changing from β = 0 to β = 2 as
given by the color code, and the other parameters taken the same as for Fig. 3. Black dotted circles represent the unperturbed modes (β = 0)
and the black crosses the modes shown in Fig. 3 (β = 1). (b)–(d) Zoom-in of particular regions in the complex frequency plane close to the
real axis, with the values of m indicating the Bragg order of the unperturbed modes.

majority of the RSs originating from WG modes are moving
down, away from the real axis, in this way having their Q
factors reduced with β. Overall, this picture demonstrates a
complicated mixing of basis modes with both infinite and
finite Q factors.

Of particular interest are RSs found close to the real axis
of ω. As mentioned in Sec. III C above, perturbing the WG
modes results in two types of RSs, BICs and QGMs. A closer
look provided in Figs. 5(b)–5(d) shows, however, that BICs
are formed only within the region −2π/d < Re ω < 2π/d ,
bound by the cuts of the m = ±1 Bragg channels. Figure 5(b)
demonstrates that each pair of degenerate WG modes within
this region produces one BIC and one QGM, the latter losing
its quality very quickly with the perturbation strength. Outside
this region, we see instead that the RSs originating from the
WG modes of the homogeneous slab have either Q factors
also quickly decreasing with β or very high Q factors weakly
depending on the strength of periodic modulation. The latter
can be called quasi-BICs, the term which has recently become
widely used in the literature for such modes [54,55]. It is also
interesting to see a formation of some of the RSs as a result of

a rather strong coupling between WG modes which are close
in frequency but belong to different Bragg channels (see, e.g.,
in Fig. 5(b) [Fig. 5(d)] the mode repulsion due to the coupling
between WG modes of m = 2 and 1 [m = 3 and 2] channels).

As already discussed in Secs. III A and III C, the perturba-
tion does not contribute in first order (for α = 0), and thus the
RSs eigenfrequencies change ∝β2 for small β, in accordance
with Eq. (38) of [28], see Fig. 6. However, in the case of the
above-mentioned strong coupling between the channels, this
linear in β2 regime takes place only at very low values of β.
Another interesting feature clearly seen in Fig. 6 is that the
degenerate pair of basis WG modes producing a BIC-QGM
pair shows a linear in β2 splitting, while any other pair of
states, not containing BICs, remains degenerate in this order.
This makes BICs even more peculiar.

To understand this and some other properties of BICs,
we look at the basis mode contribution to the perturbation
of different RSs. We show in Fig. 7 the mode contribution
to the BIC-QGM pair selected close to the cut of the first
Bragg channel. Other types of modes (FP, leaky, and cut
modes) are considered in Appendix E. The size of each circle
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FIG. 6. The real and imaginary parts of the modes shown in
Fig. 5(c) and four central modes in Fig. 5(d) as functions of the
square of the permittivity modulation amplitude.

represents how much that mode contributes, with the circle
area proportional to

√
|cg

n|, chosen (instead of the natural |cg
n|2)

in order to demonstrate more clearly the role of different
basis modes. We see that all the basis RSs and cut modes of
the same parity as the chosen modes contribute, even though
the relevant WG mode has the dominant and indeed very large
contribution. It becomes also clear that the main difference
between the BIC and the QGM in the studied pair is that
the leaky modes of the m = 0 Bragg channel does not con-
tribute to the BIC. This confirms that the BICs found in this
system are symmetry protected [56–59].

In fact, owing to the symmetry of the system, the BIC
shown in Fig. 7(a) has a wave function which is odd in the
x direction and thus does not couple to the m = 0 channel
containing only even states. In other words, the m = 0 channel
is not present in the subgroup of odd states, and therefore
this BIC is not even falling into the continuum: for this
subgroup, the continuum starts at the cut positions of the
m = ±1 channels. Furthermore, all doubly degenerate basis
states contribute to the QGM (BIC) with the same (opposite)
amplitude cg

n = ±c−g
n , also reflecting selection by symmetry.

Note that the other mirror symmetry of the system, which is
in the z direction, also results in the formation of the basis and
perturbed RSs of even and odd parity. It is clear, for example,
that every other FP mode does not contribute to the states in
Fig. 7. Indeed, modes of the opposite parity in z do not couple
to each other, and both the QGM and BIC shown in Fig. 7 are
of even parity. This implies in particular that the basis size can
be halved for this kind of perturbation.

It is also clear from Fig. 7 that the cut modes contribute
very little to the perturbed BIC and QGM but are nonetheless
required for accuracy. We have seen, in particular, that includ-
ing even one cut mode, representing the full cut, is far better
than not including any cut modes, despite the cut being very
badly approximated.

Finally, the observed splitting ∝β2 within the BIC-QGM
pair (modes 1 and 2 in Fig. 6) can be understood as a result of
the leaky modes of the m = 0 Bragg channel affecting (not
affecting) the QGM (BIC). If this channel contributes, the
effect of the leaky modes appears already in the second order

FIG. 7. Basis mode contribution to (a) bound state in the con-
tinuum and (b) quasiguided mode, a pair of modes originating from
m = 1 WG mode and shown by black crosses in Fig. 5(c). The area of
each circle is proportional to

√
|cg

n|. A key showing the relationship
between the circle area and |cg

n|2 is given as black circles.

in the perturbation β, and thus causes the splitting of the BIC
and QGM in this order.

The studied systems can also support non-symmetry-
protected BICs which will be a subject of future studies. These
kinds of BICs can form in these systems by tuning their spatial
and material parameters, such as the period and strength of the
periodic modulation, and the thickness of the substrate layer
(see, e.g., [60]).

IV. CONCLUSIONS

This paper offers a unique and powerful concept in the the-
ory of photonic crystal structures, revealing the nature of res-
onances in the optical spectra and quantifying them precisely.
This concept is based on using the analytical resonant states
of a homogeneous slab, along with its cut modes responsible
for Rayleigh-Wood anomalies, as the most natural and simple
basis for expanding the resonant states of a photonic crystal
slab. We present the photonic crystal resonant-state expansion
(PC-RSE), capable of doing this accurately and efficiently,
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and illustrate it on examples of TE-polarized modes in a
photonic crystal slab with a 1D harmonic modulation. These
examples provide a proof of concept and also a verification
of the PC-RSE by comparing it with the accurate scattering-
matrix method.

We have presented a general formalism of the PC-RSE
and its application to dielectric photonic crystal structures. We
have demonstrated that the PC-RSE is an asymptotically exact
approach, which (i) depends on a single parameter (truncation
frequency ωmax) determining the basis size; (ii) guarantees
completeness, i.e., has no missing or spurious modes, so
that any observable can be represented as a superposition of
the modes found; (iii) technically reduces solving Maxwell’s
wave equation to a matrix diagonalization, thus making the
application of the PC-RSE a fully automated and straightfor-
ward procedure, not requiring any supervision. The PC-RSE
provides an accurate and efficient tool for calculating all
physically relevant eigenstates of the PC system within the
selected spectral range. In particular, it can be effectively used
repeatedly many times or in parallel, in order to investigate a
large space of the physical parameters characterizing the sys-
tem, for revealing and optimizing its fundamental properties.
One of the immediate important applications of the PC-RSE
is the optimization of photonic crystal cavities, with a correct
account of the radiative losses of high-quality modes.

We have also demonstrated how the PC-RSE can be used to
study the origin and physical properties of the optical modes.
For illustration, we have traced the evolution of the optical
modes in a photonic crystal slab as the amplitude of the
periodic modulation of the permittivity is increased, starting
from a homogeneous slab with no modulation. This allowed
us, in particular, to reveal the dominant role of the waveguide
modes in the formation of bound states in the continuum and
quasiguided modes. Furthermore, the PC-RSE allows us to
quantify precisely the contribution of each basis state to the
optical mode of interest, which we have also demonstrated in
this work.
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APPENDIX A: DYADIC GREEN’S FUNCTION
OF A HOMOGENEOUS SLAB

Let us consider arbitrary dependencies of the permittivity
ε(z) and permeability μ(z) within a homogeneous slab occu-
pying the region |z| � a and surrounded by a vacuum, so that
outside the slab ε = μ = 1. Denoting the components of the
dyadic GF as (Ĝp)i j = Gi j (z, z′), Eq. (16) becomes⎛

⎝ ωε −∂z ip
∂z ωμ 0

−ip 0 ωμ

⎞
⎠

⎛
⎝G11 G12 G13

G21 G22 G23

G31 G32 G33

⎞
⎠ = 1̂δ(z − z′).

(A1)

Owing to the reciprocity of the optical system, the GF has the
following property:

Gi j (z, z′) = G†
ji(z

′, z), (A2)

where the adjoint † means replacing p → −p.

From Eq. (A1) we obtain for the first column of Ĝp:

Û (μ; ω)G11(z, z′; ω) = ωμ(z)δ(z − z′), (A3)

G21(z, z′) = − 1

ωμ(z)
∂zG11(z, z′), (A4)

G31(z, z′) = ip

ωμ(z)
G11(z, z′), (A5)

where the operator Û is defined as

Û (ζ ; ω) = ζ (z)∂z
1

ζ (z)
∂z + ω2ε(z)μ(z) − p2 (A6)

with ζ (z) being a weight function. For the second column of
Ĝp, it follows from Eq. (A1) that

G12(z, z′) = 1

ωχ (z)
∂zG22(z, z′), (A7)

Û (χ ; ω)G22(z, z′) = ωχ (z)δ(z − z′), (A8)

G32(z, z′) = ip

ωμ(z)
G12(z, z′), (A9)

where

χ (z) = ε(z) − p2

ω2μ(z)
. (A10)

Note that Eq. (A8) is essentially the same as Eq. (A3),
provided that μ(z) is replaced with χ (z). Finally, for the third
column of Ĝp we obtain

Û (μ; ω)G13(z, z′) = −ipδ(z − z′), (A11)

G23(z, z′) = − 1

ωμ(z)
∂zG13(z, z′), (A12)

G33(z, z′) = ip

ωμ(z)
G13(z, z′) + δ(z − z′)

ωμ(z)
, (A13)

demonstrating in particular that the longitudinal component
G33(z, z′) is divergent at z = z′, due to the δ function in the
last term. Also, Eq. (A11) contains exactly the same operator
as in Eq. (A3), and therefore

G13(z, z′) = − ip

ωμ(z′)
G11(z, z′). (A14)

Using the reciprocity Eq. (A2) and Eqs. (A4), (A12),
and (A14), we further obtain

G12(z, z′) = G21(z′, z) = − 1

ωμ(z′)
∂z′G11(z, z′), (A15)

G32(z, z′) = G†
23(z′, z) = − ip

ω2μ(z)μ(z′)
∂z′G11(z, z′),

(A16)
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and therefore

G22(z, z′) = − 1

ωμ(z)
∂zG12(z, z′) + δ(z − z′)

ωμ(z)

= 1

ω2μ(z)μ(z′)
∂z∂z′G11(z, z′) + δ(z − z′)

ωμ(z)
. (A17)

Finally, we find from Eq. (A5):

G13(z, z′) = G†
31(z′, z) = − ip

ωμ(z′)
G11(z, z′), (A18)

in agreement with Eq. (A14). Collecting all this information
about the GF components, we find a compact expression for
the full dyadic GF:

Ĝp(z, z′) = Ôp(z; ω) ⊗ Ô−p(z′; ω)G11(z, z′)

+ 1̂2 + 1̂3

ωμ(z)
δ(z − z′), (A19)

where 1̂ j are 3 × 3 matrices with elements (1̂ j )ii′ = δii′δi j and
Ôp is a vector operator defined as

Ôp(z; ω) =

⎛
⎜⎝

1
− 1

ωμ(z)∂z
ip

ωμ(z)

⎞
⎟⎠. (A20)

Solving Eq. (A3) with outgoing boundary conditions and
studying the pole structure and the cuts of the GF in the
complex ω plane, as done in Appendix B for a general planar
system, allows us to find the ML expansion for G11:

G11(z, z) =
∑

n

∫
En(z)En(z′)

ω − ωn
, (A21)

and also for

g(z, z′) = G11(z, z)

ω
=

∑
n

∫
En(z)En(z′)
ωn(ω − ωn)

, (A22)

where En(z) is the only nonvanishing component (directed
along y) of the electric field of the RS n, which satisfies

Û (μ; ωn)En(z) = 0, (A23)

or En(z) is the wave function of the cut pole (see Appendix B
for details). Obviously, En(z) depends on p2, as does the
operator Û , and thus En(z) is not sensitive to a change of sign
of p, so that E†

n (z) = En(z).
Comparing Eqs. (A21) and (A22) and substituting

Eq. (A22) into Eq. (A3), we obtain with the help of Eq. (A23)
a closure relation

ε(z)
∑

n

∫
En(z)En(z′) = δ(z − z′) (A24)

and a sum rule ∑
n

∫
En(z)En(z′)

ωn
= 0. (A25)

Using Eqs. (A21) and (A25), we obtain from Eq. (A19) the
ML expansion (18) of the full dyadic GF, in which

Fn(z; p) = Ôp(z; ωn)En(z). (A26)

Note that, in general, one also needs to include in Eq. (18) for
completeness longitudinal static modes, in order to take into
account the effect of the ω = 0 pole of the GF.

APPENDIX B: MITTAG-LEFFLER EXPANSION OF THE
GF OF A GENERAL HOMOGENEOUS PLANAR SYSTEM

Let us now consider the scalar GF g(z, z′) of a general
homogeneous system, described by arbitrary functions ε(z)
and μ(z), and derive its ML expansion given by Eq. (A22).
This GF satisfies an equation

Ûk2 (z)g(z, z′) = μ(z)δ(z − z′), (B1)

where the operator Ûk2 (z) is given by

Ûk2 (z) = μ(z)∂z
1

μ(z)
∂z + k2ε(z)μ(z) + p2[ε(z)μ(z) − 1],

(B2)
in accordance with its definition (A6), now written in terms of
k2 = ω2 − p2.

To simplify the derivation, we assume that ε(z) = μ(z) =
1 outside the system (|z| > a). In this case, Eq. (B1) outside
the system takes the form(

∂2
z + k2

)
g(z, z′) = δ(z − z′) (B3)

with k being the normal component of the wave number in the
vacuum. Applying the outgoing wave boundary conditions,
we find that

g(z, z′) = g(±a, z′)e±ikz for |z| > a and |z′| < a, (B4)

where + (−) refers to z > a (z < −a). The outgoing wave
boundary conditions for solving Eq. (B1) can therefore be
written in the following way:

(∂z ∓ ik)g(z, z′)
∣∣
z=±a = 0, (B5)

explicitly showing that g(z, z′) is an analytic function of k.
Having a countable number of simple poles in the complex k
plane, which are at the RS wave numbers kn = √

ω2
n − p2, and

are vanishing at k → ∞, the GF g(z, z′) can be written as

g(z, z′) =
∑

n

Rn(z, z′)
k − kn

, (B6)

using the Mittag-Leffler theorem [52]. To find an explicit
form of the residue Rn(z, z′) we use Maxwell’s wave equation
without sources

Ûk2
n
(z)En(z) = 0, (B7)

determining the RS wave functions En(z), as well as the one
with a source term [28,34],

Ûk2 (z)E (z; k) = μ(z)(k − kn)σn(z), (B8)

determining its analytic continuation E (z; k) in the complex
k plane about the point kn, such that E (z; kn) = En(z). The
source σn(z) can be any function vanishing outside the system
and normalized in such a way that∫ a

−a
En(z)σn(z)dz = kn. (B9)
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In optical systems with degenerate RSs (e.g., due to symme-
try), such that kn = km for m �= n, σn(z) is chosen in such a
way that

∫ a
−a Em(z)σn(z)dz = knδnm.

Solving Eq. (B8) with the help of the GF g(z, z′) and using
its ML expansion (B6), we find

E (z; k) =
∑

n′

k − kn

k − kn′

∫ a

−a
Rn′ (z, z′)σn(z′)dz′. (B10)

Then taking the limit k → kn, Eq. (B10) becomes

En(z) =
∫ a

−a
Rn(z, z′)σn(z′)dz′, (B11)

which can be written, after combining it with Eq. (B9), as∫ a

−a

[
En(z)En(z′)

kn
− Rn(z, z′)

]
σn(z′)dz′ = 0. (B12)

The last equation must be satisfied for any normalized σn(z),
suited for generating the analytic continuation. Clearly, such
a function is not unique, therefore, the integrand in the
last equation should be vanishing, which gives Rn(z, z′) =
En(z)En(z′)/kn and results in the following series for the GF:

g(z, z′) =
∑

n

En(z)En(z′)
kn(k − kn)

. (B13)

We now find the normalization of En(z) which is deter-
mined by the ML form Eq. (B13), which in turn follows from
the normalization of the source Eq. (B9). We therefore use
it again, substituting σn(z) from Eq. (B8) into Eq. (B9) and
subtracting a similar integral vanishing due to Eq. (B7):

(k − kn)kn =
∫ a

−a

1

μ
EnÛk2 E dz −

∫ a

−a

1

μ
EÛk2

n
Endz

=
[

En

μ
∂zE − E

μ
∂zEn

]a

−a

+ (
k2 − k2

n

) ∫ a

−a
EnEε dz,

where the first term in the second line is obtained integrating
by parts. Finally, using the outgoing wave boundary condi-
tions for E and En,(

1

μ(z)
∂z ∓ ik

)
E (z; k)|z=±a = 0, (B14)

(
1

μ(z)
∂z ∓ ikn

)
En(z)|z=±a = 0, (B15)

similar to Eq. (B5), we arrive, after taking again the limit k →
kn, at the normalization condition for the RS wave function:

2
∫ a

−a
E2

n (z)ε(z)dz − E2
n (a) + E2

n (−a)

ikn
= 1, (B16)

which is the same as the one provided in [18] without proof.
Note that Eq. (B16) is equivalent to the general normaliza-

tion (20) used for the TE polarization. In fact, using Eq. (20)
for z1 = −a and z2 = a and the fields replaced by their
analytic continuations for the purpose of taking the frequency
derivatives, we find (denoting here for brevity iH with just H)

1 =
∫ a

−a

[
εE2 + μ

(
H2

x − H2
z

)]
dz − [E∂ωHx − Hx∂ωE ]a

−a

(B17)

[see Eqs. (5), (A20), and (A26)]. Then, using

Hx = − 1

ωμ
∂zE , Hz = ip

ωμ
E , (B18)

and (
μ∂z

1

μ
∂z + ω2εμ − p2

)
E = 0, (B19)

valid for k = kn, we find, integrating by parts,∫ a

−a
μ

(
H2

x − H2
z

)
dz

= 1

ω2

∫ a

−a

1

μ
[(∂zE )2 + p2E2]dz

= [E∂zE ]a
−a

ω2
+ 1

ω2

∫ a

−a

1

μ

[
−Eμ∂z

1

μ
∂zE + p2E2

]
dz

= [E∂zE ]a
−a

ω2
+

∫ a

−a
εE2dz. (B20)

We then use the analytic form of the fields outside the system:

E (z; k) = A±e±ikz, Hx(z; k) = ∓ ik

ω
E (z; k), (B21)

where, again, the upper (lower) sign corresponds to z � a
(z � −a), and the amplitudes A± are also functions of ω or
k. However, their frequency dependence does not contribute
to the normalization since

E∂ωHx − Hx∂ωE = ∓E2∂ω

ik

ω
= ∓ p2

ikω2
E2. (B22)

Collecting all the “surface” terms and differentiating the field
outside the system, using the explicit form of E given by
Eq. (B21), we obtain

− [E∂ωHx − Hx∂ωE ]a
−a + [E∂zE ]a

−a

ω2

=
(

ip2

kω2
+ ik

ω2

)
[E2(a) + E2(−a)]

= −E2(a) + E2(−a)

ik
, (B23)

which proves that Eq. (20) results in the normalization given
by Eq. (B16).

Equation (B13) is the ML series of the GF in k represen-
tation. However, the RSE formulated in Sec. II requires a ML
form of the GF in the ω representation. Being treated as a
function of frequency ω, the GF has simple poles due to the
RSs at ω = ωn (where ω2

n = k2
n + p2) which are distributed

in the complex ω plane symmetrically with respect to the
imaginary axis (see Fig. 8). The residues of the GF at these
poles are given by

lim
ω→ωn

g(z, z′)(ω − ωn) = ∂ω

∂k

∣∣∣∣
kn

lim
k→kn

g(z, z′)(k − kn)

= kn

ωn
Rn(z, z′), (B24)

where Rn(z, z′) is found earlier [see Eq. (B13)].
Apart from these poles, the GF g(z, z′) is analytic in the

complex k plane, as shown above. However, in the complex
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FIG. 8. Poles (blue dots) and cuts (red lines) of the GF in the
complex ω plane, as well the contour of integration leading to the
ML expansion (B26), which includes the cut contributions displayed.

ω plane g(z, z′) has branch cuts, owing to the link between k
and ω,

k =
√

ω2 − p2, (B25)

with the branch points at ω = ±p. Therefore, applying the
ML theorem in the frequency plane results instead in

g(z, z′) =
∑

n

En(z)En(z′)
ωn(ω − ωn)

+ I1(z, z′; ω) + I2(z, z′; ω),

(B26)
where the sum includes only the RSs on the selected Riemann
sheet, which in our case includes all the WG and FP modes
but does not contain anti-WG modes, unlike the series in
Eq. (B13). Integrals

I1,2(z, z′; ω) = − 1

2π i

∫ ±p−i∞

±p

�g(z, z′; ω′)
ω − ω′ dω′ (B27)

describe the contribution of the cuts, which are chosen as
vertical straight lines in the complex ω plane going from
the branch points ±p down to −i∞ (see Fig. 8). According
to [15], this choice of the cuts almost minimizes their contri-
bution to the GF. The jump of the GF value across the cut is
given by the function

�g(z, z′; ω) = gk (z, z′) − g−k (z, z′), (B28)

where we have added index k for convenience, in order to
emphasize the fact that k is changing to −k when going
through the cut with an infinitesimal change of ω.

The jump of the GF described by Eq. (B28) can be evalu-
ated in the general case by using the explicit form of the GF,

g(z, z′) = EL(z<)ER(z>)

ELĖR − ĖLER
, (B29)

in terms of the “left” and “right” functions EL(z) and ER(z),
respectively. These are solutions of the homogeneous wave

equation (B19) and the left or right outgoing boundary condi-
tion. More explicitly, they are given by

EL(z) =
{

e−ikz, z < −a
B+ f+(z) + B− f−(z), |z| < a

(B30)

and

ER(z) =
{

C+ f+(z) + C− f−(z), |z| < a

eikz, z > a
(B31)

in terms of f+(z; ω) and f−(z; ω), two arbitrary linearly inde-
pendent solutions of Eq. (B19) within the slab. While these
functions (depending on ω) do not change when changing
the sign of k, the coefficients B± and C± do modify, leading
to nonvanishing contributions to the jump �g of the GF
across the cuts. Here, in Eq. (B29), z< = min(z, z′) and z> =
max(z, z′), and the derivative

Ė (z) ≡ 1

μ(z)
∂zE (z) (B32)

is introduced for convenience.
Now, choosing the functions f±(z) in such a way that

f+(a) f−(a) + f+(−a) f−(−a) = 0, (B33)

ḟ+(a) ḟ−(a) + ḟ+(−a) ḟ−(−a) = 0, (B34)

f+(−a) ḟ+(a) + f+(a) ḟ+(−a) = 0, (B35)

f−(−a) ḟ−(a) + f−(a) ḟ−(−a) = 0, (B36)

which can always be fulfilled, for any profiles of ε(r) and
μ(r). We obtain, after simple algebra, a convenient form of
the cut integrand

− 1

2π i
�g(z, z′; ω) =

∑
s=±

σs fs(z) fs(z
′), (B37)

where

σs(ω) = 1

π

k

ḟ 2
s (a) + ḟ 2

s (−a) + k2
[

f 2
s (a) + f 2

s (−a)
] .

(B38)

This form allows us to include the contribution of the cuts on
equal footing with the RSs, treating the cuts as continua of
poles of the GF:

g(z, z′) =
∑

n

En(z)En(z′)
ωn(ω − ωn)

+
∑
s=±

∑
s′=±

∫ s′ p−i∞

s′ p

Es(z; ω′)Es(z′; ω′)
ω′(ω − ω′)

dω′

≡
∑

n

∫
En(z)En(z′)
ωn(ω − ωn)

, (B39)

where

Es(z; ω) =
√

ωσs(ω) fs(z; ω). (B40)

Note that in Eqs. (B38), (B39), and (B40), we have added ω to
the arguments of Es, σs, and fs, earlier omitted for brevity of
notations, in order to emphasize now their frequency depen-
dence.

155128-13



SAM NEALE AND EGOR A. MULJAROV PHYSICAL REVIEW B 101, 155128 (2020)

APPENDIX C: HOMOGENEOUS SLAB WITH CONSTANT
PERMITTIVITY AND PERMEABILITY

Consider a dielectric slab in a vacuum, having thickness
2a and constant permittivity and permeability. Their profiles
in space are described by

ε(z) = 1 + (ε − 1)�(a − |z|), (C1)

μ(z) = 1 + (μ − 1)�(a − |z|). (C2)

Within the slab (|z|, |z′| � a) the GF has the form

g(z, z′) = − μ

2iq

ϕ(z<)ϕ(−z>)

1 − ξ 2
; (C3)

see Eq. (B29) in which, due to the mirror symmetry, the left
and right solutions are given by the same function EL(z) =
ER(−z) = ϕ(z), with

ϕ(z) = eiqz + ξe−iqz, (C4)

ξ = 1 + η

1 − η
e−2iqa, η = μk

q
, (C5)

q2 = εμω2 − p2, k2 = ω2 − p2. (C6)

Clearly, the GF has poles at ξ = ±1, determining the secular
equation for the RS frequencies ωn:

(qn + μkn)e−iqna = (−1)n(qn − μkn)eiqna. (C7)

The RS wave functions, which are the solutions of Eq. (B7),
are given by

En(z) =
⎧⎨
⎩

Aneiknz, z > a
Bn(eiqnz + (−1)ne−iqnz ), |z| � a

(−1)nAne−iknz, z < −a
(C8)

with the continuity condition An = Bn(eiqna +
(−1)ne−iqna)e−ikna. The eigenvalues kn and qn are related
to the eigenfrequency ωn via Eq. (C6), and the normalization
constants Bn found from Eq. (B16) have the following explicit
form:

B−2
n = 8(−1)n

[
εa − ip2(εμ − 1)

kn
(
q2

n − μ2k2
n

)
]
. (C9)

For the cuts of the GF in the complex ω plane, the functions
satisfying Eqs. (B33)–(B36) are given by

f±(z) = eiqz ± e−iqz (C10)

within the slab |z| � a. They possess a definitive parity (s =
±1) due to the mirror symmetry of the system, and the same
form as the RS wave functions (C8). According to Eq. (B38),
the cut density functions are given by

σ±(ω) = 1

4π

μ2k

(μ2k2 − q2) cos(2qa) ± (μ2k2 + q2)
.

(C11)

1. GF in k representation

Using the Newton-Raphson method, we have solved the
secular equation (C7) and found all the RS wave numbers in a
selected frequency range (within a circle of radius ωmax in the

0 5 10 15
10-5

10-4

10-2

10-1

100

LM

(a)
total ML
analytic

G
re
en
's
fu
nc
tio
n
|g
(z
,z'
)|/
a

ka

WG
AWG
FP

0 5 10 15

10-5

10-4

10-3

10-2

10-1

10 100 1000
10-7

10-4

10-1 N =
316
626
1250
2594

(b)

re
la
tiv
e
er
ro
r

ka

k-repr.
ω-repr.

ka = 10
∝ N -2

N

FIG. 9. (a) Green’s function g(z, z′) of a homogeneous dielectric
slab in vacuum, with ε = 6, calculated for pa = 5, z = a/2, and z′ =
−a/2 as a function k, the normal component of the wave number
in the vacuum. Partial contributions of WG, anti-WG (AWG), FP
modes, and a leaky mode (LM) are shown along with the sum of
all the contributions and the analytic values of the GF. (b) Relative
error of the GF calculated via Eq. (B13) as compared to its analytic
values Eq. (C3), for different number of modes N included in the
ML series. The inset shows the relative error for ka = 10 [marked by
vertical dashed lines in Figs. 9(b) and 10(b)] as a function of the basis
size N .

complex frequency plane). The RSs include four categories
of modes: WG modes, anti-WG modes, FP modes, and a
leaky mode (LM). The WG and anti-WG modes are present
only if p �= 0. We then use the ML expansion (B13) in the
k representation which includes all types of modes in the
summation and compare it with the analytic GF given by
Eq. (C3)

Results for a slab with ε = 6 and μ = 1 are shown in Fig. 9
for z = −z′ = a/2. We see that all partial contributions to
the GF due to each type of mode is nonvanishing, including
that of the LM which has Re ωn = 0 and which is discussed
in detail in [18,32]. Summing up all the contributions to the
ML series (B13) results in values of the GF approaching
its analytic form (C3). By increasing ωmax, we increase the
number of RSs N included in the series (B13), in this way
making the ML representation more and more accurate [see
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FIG. 10. (a) As Fig. 9(a) but in the ω representation, in which
the AWG modes and the LM do not contribute to the ML expan-
sion (B39), but there is instead an additional component due to
the cuts. (b) Relative error of the GF calculated via Eq. (B39) as
compared to its analytic values (C3), for different number of modes
N included in the ML series, with and without contribution of the
cuts. The dashed line indicates where the value of ωa is equivalent to
ka = 10.

Fig. 9(b)]. The inset demonstrates the convergence of the ML
series to the exact solution, with the error scaling as 1/N2.

2. GF in ω representation

The GF can also be represented as a function of frequency.
However, the square root in Eq. (B25) causes branch cuts
at ω = ±p, which separates the frequency plane into two
Riemann sheets with modes split across both sheets. Only the
modes found on one of the sheets are taken into account. This
is chosen to be the “physical” sheet, on which the WG and FP
modes are found, while anti-WG modes and the leaky mode
turn out to be on the other, unphysical sheet and are thus ex-
cluded from the ML expansion (B39). Figure 10 demonstrates
a comparison, for the same parameters as in Fig. 9, of the
ML expansion (B39) with the analytic solution (C3), again
showing different contributions, including WG, FP modes,
and the cuts. We see that the ML series in the ω representation
again converges to the exact solution, provided that the cut
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FIG. 11. (a) Wave numbers kn of the FP modes calculated for
pa = 5 using the RSE in the k representation (red crosses) for the
core-shell dielectric slab with ε = 6, �ε = 1, and b = a/2, along
with the exact solution (blue squares) and the basis RSs (black circles
with dots). (b) Relative error for the wave numbers of the FP modes
compared to the exact solution, for different basis sizes as given.
(c) Relative errors for WG and anti-WG modes, for the same basis
sizes as in (b). (d) As (a) but with all WG and anti-WG modes, and
the first few FP modes shown.

integrals are included. Note also that the convergence is very
similar to that in the k representation, as it is clear from the
inset in Fig. 9(b). In fact, in both cases the error alternates
between two different boundaries but nevertheless decreases
with the basis size as N−2.

APPENDIX D: RSE FOR A HOMOGENEOUS CORE SLAB

Here, we demonstrate how the RSE in the k and ω repre-
sentations is applied to a homogeneous perturbation. This is
a special case of the PC-RSE which allows an exact analytic
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FIG. 12. Cut weights σ± (solid and dashed lines) as functions of
the imaginary part of the frequency along the cut, for different values
of p as given, along with the discretized cut pole values Cν/�ων

(circles).

solution, but obviously lacking any periodic modulations. We
use α = �ε and β = 0 in Eq. (32). The perturbation of the
permittivity thus has the form

�ε(z) = �ε�(b − |z|). (D1)

The perturbed system presents a core-shell slab consisting
of three homogeneous regions. The secular equation for this
system has the following analytic form:

(γ+λ− − γ−λ+)eiq1b ± (γ+λ+ − γ−λ−)e−iq1b = 0, (D2)

where γ± = (q ± k)e∓iq(a−b), λ± = q ± q1, and q1 =√
ε1ω2 − p2 with ε1 = ε + �ε. The secular equation (C7) for

the homogeneous slab can be restored by setting b = a and
q = q1, or simply b = 0.

1. RSE in k representation

In the k representation, the RSE equation for treating planar
homogeneous systems is given by Eq. (22) of [18], which we
write here as

k
∑

n′
(δnn′ + Vnn′ )cn′ =

∑
n′

(
knδnn′ − p2

kn
Vnn′

)
cn′ , (D3)

with the matrix elements Vnn′ = V 00
nn′ given by Eq. (33) for g =

g′ = 0.
Its application to the perturbation given by Eq. (D1) is

shown in Fig. 11, in comparison with the exact solution (D2)
and the basis RSs of the homogenous slab. The quasiperi-
odic pattern of the wave numbers of the perturbed RSs seen
in Fig. 11 is caused by the perturbation covering only the
middle half of the slab, so that the original homogeneous
slab of thickness 2a is now split into three subsystems of
thickness a/2, a, and a/2, each acting as a resonance cavity.
The distance in frequency between the modes is given by a
fundamental period of π/(2a

√
ε) as in the basis cavity, but the

cavities between −a and −b and between b and a have caused
additional quasiperiodicities, one of them having the period of
π/[(a − b)

√
ε, which for b = a/2 is four times larger than the

FIG. 13. (a) As Fig. 11 but in frequency representation, also
showing even- and odd-parity cut modes of the homogeneous slab.
(b) Relative errors compared to the exact solution (D2) of the RS
frequencies calculated using the RSE, with and without cut modes
in the basis and for different basis sizes as given. (c) Relative error
of the RSE results calculated for a fixed basis size Ntot = 1000 and
different values of F , the ratio of the number of cut modes to the
number of RSs in the basis.

fundamental period. Other cavities present in the system also
contribute to the rich spectrum of RSs seen in Fig. 11.

Looking at the relative error shown in Figs. 11(b)
and 11(c), we see that the RSE in the k representation
quickly converges to the exact solution. The relative error
scales as 1/N3, which is typical for effective 1D systems
(see [14,18,27,28,31]).

2. RSE in ω representation

The RSE equation in this case is given by the general
formula (23) of the PC-RSE, but since this is a homogeneous
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FIG. 14. As Fig. 7 but for two RSs originating from a degenerate
pair of FP modes.

perturbation, there is no mixing of channels, so we use again
g = g′ = 0. Also, Eq. (23) includes the contribution of the cuts
which need to be discretized, giving rise to cut modes to be
used in the RSE on equal footing with the RSs.

The discretization of the cuts is done following the proce-
dure described in [14,15]. For each parity s, the cut with the
branch point at ω = p is divided into Nc intervals bounded by
[ω̃ν, ω̃ν+2], where ν is even (odd) for s = + (s = −), with a
weight given by

Ws =
∫ ω̃ν+2

ω̃ν

√
|σs(ω)|dω, (D4)

where σs is given by Eq. (C11), ω̃1 = ω̃2 = p and ω̃2Nc+1 =
ω̃2Nc+2 = p − i∞. The cut is split into intervals in such a way
that Ws is the same for each interval (for the given parity s).
Within each interval, an artificial cut mode is defined at the
frequency ων , given by

ων = 1

Cν

∫ ω̃ν+2

ω̃ν

σs(ω)ω dω (D5)

with ν = 1, 2, . . . , 2Nc, where s = (−1)ν and

Cν =
∫ ω̃ν+2

ω̃ν

σs(ω)dω. (D6)

FIG. 15. As Fig. 7 but for a RS coming from a nondegenerate
m = 0 leaky mode (top) and for a perturbed cut mode (bottom).

Applying the same discretization to the other cut with the
branch point at ω = −p and extending the ν numbers to
negative integers, the ML expansion (B39) takes the form

g(z, z′) ≈
∑

n̄

En̄(z)En̄(z′)
ωn̄(ω − ωn̄)

, (D7)

where

n̄ =
{

n for RSs,
ν for cut modes (D8)

and

En̄(z) = Bn̄[eiqn̄z + (−1)n̄e−iqn̄z], |z| � a (D9)

with the normalization constant Bn for the RSs given by
Eq. (C9) and for the cut modes by

Bν =
√

ωνCν, (D10)

where Cν is defined in Eq. (D6). Using Eq. (D6), we graph-
ically show in Fig. 12 how these artificial cut modes com-
pensate for the cut, comparing σν (ω) with Cν/�ων , where
�ων = ω̃ν+2 − ω̃ν is the interval of integration.

With these modes added to the basis, the RSE can now
be performed in the ω representation using Eq. (28) with the
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FIG. 16. (a) RS frequencies of a PC slab with ε = 6, α = 0,
β = 1, d = 2πa/5, and p = 0, calculated for F = 1 and M = 5 via
the PC-RSE for different values of b as given. Unperturbed RSs
and cut modes are also shown (gray circles with dots and gray
dots, respectively). (b) Relative error of the PC-RSE compared to
the SMM result, taking the latter as “exact,” calculated for different
values of b and different basis sizes N as given.

index g dropped:

ω
∑

n̄′
(δn̄n̄′ + Vn̄n̄′ )cn̄′ = ωn̄cn̄. (D11)

Figure 13(a) shows the RS frequencies calculated using the
RSE equation (D11), with and without cut modes in the basis.
The unperturbed RSs and even- and odd-parity cut modes of
the basis are also shown. The distribution of perturbed RSs
repeats the oscillatory pattern seen in Fig. 11(a) and discussed
above. The frequencies of RSs found via the RSE match well
the analytic values given by Eq. (D2) even if the cut modes are
not taken into account. In fact, in this case the relative error
is still rather low, as can be seen in Fig. 13(b). Obviously, it
is higher for the modes which are close to cut and does not
improve for these modes with increasing N , the number of the
RSs in the basis. When cut modes are included in the basis,
the relative error scales as 1/N3, almost uniformly for all the
RSs, which is essentially the same as in the RSE used in the k
representation.

The total number of modes in the basis is given by Ntot =
N + 4Nc = (1 + F )N , where we have introduced the factor
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FIG. 17. (a) RS frequencies of a PC slab with ε = 6, α = 0, β =
1, d = 2πa/25, and p = 0, calculated for F = 1 via the PC-RSE
(red crosses). Unperturbed RSs and cut modes are also shown (black
circles with dots and black dots, respectively). (b) Relative error of
the PC-RSE compared to the RSE with N ≈ 4000, taking the latter
as “exact,” calculated for different basis sizes as given.

F , the ratio of the number of cut modes to the number of RSs
included. In Fig. 13(c) we show how the error depends on F
for a fixed Ntot . Higher values of F imply more cut modes
included in the basis at the expense of RSs. It is clear that
larger values of F give generally lower errors for the RSs
close to the cut. However, modes with larger frequencies away
from the cut are less accurately determined in this case, as the
number of basis RSs N reduces with F . We found that the
value F = 1 is close to the optimal one, as all RSs in a wide
spectral range have a similar level of errors. We have made a
similar study of the relative error in the case of the PC-RSE
and found the same optimal value of F . Therefore, unless
stated differently, the value of F = 1 is used in all calculations
throughout this paper.

APPENDIX E: MODE CONTRIBUTIONS

In addition to Fig. 7 of the main text, showing the expan-
sion coefficients for a BIC-QGM pair, Figs. 14 and 15 show
basis mode contributions for three other types of modes: FP,
leaky, and cut modes. Similar to the BIC-QGM pair in Fig. 7,
two perturbed FP RSs in Fig. 14 originate from a pair of
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FIG. 18. As Fig. 17 but for d = 2πa.

degenerate unperturbed FP modes, and only one of them has
a nonzero contribution of m = 0 leaky modes. This makes the

Q factor for that mode slightly lower than for the other one,
since the mode is not affected by any m = 0 basis states due
to symmetry. Interestingly, both perturbed modes are almost
equally strongly influenced by the pair of FP and a pair of
WG basis modes matching the perturbed mode frequency.

Like in Fig. 7, the leaky and cut modes shown in Fig. 15
have a dominant contribution of only one basis mode (or one
pair of modes), while the contribution of any other mode in
the basis does not exceed a few per thousand.

APPENDIX F: OTHER PARAMETERS

We finally study the dependence of the RS frequencies cal-
culated via the PC-RSE and their errors on the two structural
parameters of the PC slab: the half-width of the core layer b
and the period of modulation d , while keeping ε = 6, α = 0,
β = 1, and p = 0 as before.

Increasing b from half-width (b = a/2) to the full-width
value (b = a) does not lead to any significant changes in the
spectrum, as one can see in Fig. 16(a). The relative error is
however getting sensitive to b as b → a. In fact, the error in
Fig. 16(b) shows that the case of b = 0.95a can produce up
to an order of magnitude higher errors (relative to the SMM)
compared to the system with b = 0.5a. The reason for this
increase is related to the ML series changing its convergence
properties on the borders of the system, which requires a
further study. Presently, it prevents the PC-RSE from being
used with exactly b = a.

Figures 17 and 18 show the RS frequencies and the relative
error for the period of modulation d , respectively, five times
smaller and five times larger than that used for Fig. 3 (d0 =
2πa/5). Such changes of the period change the spectrum of
the RSs dramatically, so for instance, in the first case the
number of RSs per cut is much larger than in Fig. 3 and in
the second case, much smaller. Nevertheless, the PC-RSE is
working equally well in all these cases, as we can see from
almost the same level of errors.
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