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Abstract: Traditional design optimization is an iterative process of design, simulation and redesign, which 

requires extensive calculations and analysis. The designer needs to adjust and evaluate the design parameters 

manually and continually based on the simulation results until a satisfactory design is obtained. However, the 

expensive computational costs and large resource consumption of complex products hinder the wide 

application of simulation in industry. It is not an easy task to search the optimal design solution intelligently 

and efficiently. Therefore, a simulation data driven design approach which combines dynamic simulation data 

mining and design optimization is proposed to achieve this purpose in this study. The dynamic simulation 

data mining algorithm—Online Sequential Extreme Learning Machine with Adaptive Weights 

(WadaptiveOS − ELM) is adopted to train the dynamic prediction model to effectively evaluate the merits of 

new design solutions in the optimization process. Meanwhile, the prediction model is updated incrementally 

by combining new ‘good’ dataset to reduce the modeling cost and improve the prediction accuracy. 

Furthermore, the improved heuristic optimization algorithm—Adaptive and Weighted Center Particle Swarm 

Optimization (AWCPSO) is introduced to guide the design change direction intelligently to improve the 

search efficiency. In this way, the optimal design solution can be searched automatically with less actual 

simulation iterations and higher optimization efficiency, and thus supporting the rapid product optimization 

effectively. The experimental results demonstrate the feasibility and effectiveness of the proposed approach.  

 

Key words: Simulation Data driven design; Dynamic simulation data mining; Design optimization; WadaptiveOS − ELM; Incremental learning; AWCPSO 



1. Introduction 

Traditional design optimization, which identifies the best combinations of design parameters under the 

given constraints to obtain more efficient and lighter structures, is of great significance for reducing the 

development cost and improving the performance of complex product [1,2,3]. Generally, the design 

parameters are adjusted continually and manually based on the simulation results until a satisfactory design 

solution is obtained during the loop of design-simulation-redesign. Since the simulation is computationally 

intensive, metamodel-based optimization attracted the attention of many researchers [2,3,4,5,6,7]. It is solved 

through popular optimization algorithms without actual simulations directly, which will reduce the 

computational cost and improve the optimization efficiency.  

However, it is still difficult to search the optimal design solution efficiently and intelligently. The reasons 

may come from three folds. Firstly, the simulation, which requires a lot of expertise, experience and human 

intervention, is often extremely cumbersome and computationally intensive. Despite of the steady growth in 

computation power, the simulation complexity and cost is also growing fast and it is error-prone when the 

number of design variables increases. Especially, the design process is sensitive to the ability and skills of 

designers and analysts, thus making the design very unstable. Secondly, it is impossible for analysts to 

consider all possible scenarios or different variations even with required hardware resources since the design 

parameters are often numerous and changed continuously. Only a part of feasible parameter combinations 

can be simulated under certain conditions. It is necessary to introduce the optimization strategy to guide the 

search direction automatically and intelligently to improve the search efficiency and reduce the computational 

cost. Thirdly, many researchers have introduced the metamodel to approximate the relationship between the 

input design parameters and the desired performance parameters within acceptable accuracy. However, the 

approximation error between the metamodel and the real model cannot be avoided, thereby reducing its 

availability and reliability. Meanwhile, the metamodel generally does not consider the dynamic growth of the 

simulation data. It is necessary to adopt a more accurate model to simulate the complexity and dynamics of 

the simulation system. Accordingly, simulation and optimization should be considered and complementary 

to each other to facilitate the intelligent and efficient search of optimal design solution.  

Based on the above analysis, a simulation data driven design approach, which combines the dynamic 

simulation data mining and design optimization based on the integration framework of Computer Aided 

Design (CAD) and Computer Aided Engineering (CAE), is proposed in this study. After the introduction of 



the related work, the method overview is given in Section 3. And then, the dynamic simulation data mining 

algorithm—Online Sequential Extreme Learning Machine with Adaptive Weights (WadaptiveOS − ELM) and 

the improved optimization algorithm—Adaptive and Weighted Center Particle Swarm Optimization 

(AWCPSO) are described in Section 4 and Section 5, respectively. Section 6 presents the related performance 

analysis and approach comparison. The conclusions and future work are finally offered in Section 7. 

2. Related Work 

Product design optimization has been a very challenging research issue in the field of engineering design, 

which requires not only a lot of experience and knowledge, but also some appropriate scientific approaches. 

In the traditional design optimization approach, designers usually adjust the design parameters manually 

based on the analysis results to assist the product optimization. However, it is relatively complicated, time-

consuming and cannot be executed automatically. This leads to the design quality that depends on individual 

capabilities, which in turn reduces the robustness of the final design. In the past decades, simulation-based 

optimization methods [2,3,8] have been extensively studied, especially the optimization techniques in the 

CAD/CAE integration framework. The optimization techniques mainly include gradient-based method, 

evolutionary algorithm, approximate optimization algorithm, etc. Every optimization technique has its own 

characteristics and scope of application. 

Hare and Dai et al. [9,10] applied the gradient-based method to provide the direct coupling between 

CAE software and the optimization algorithm to search the optimal solution. However, the gradient 

information is computationally expensive or even unavailable in many cases, and it is sometimes easy to fall 

into local optimum. In addition, many evolutionary algorithms (EAs) such as genetic algorithm (GA) [11,12], 

particle swarm optimization (PSO) algorithm [13,14,15], immune algorithm [16] and artificial bee colony 

algorithm (ABC) [17] are coupled directly with CAE software for structural optimization design as well. 

Compared with the gradient-based algorithm, EAs, which is independent of gradient information, has greater 

stability, applicability and global optimization ability. However, the above methods require a lot of 

performance evaluations performed by computation-intensive simulation, especially for complex products, 

which leads to lower iterative optimization efficiency and higher cost [11].  

Recently, approximation techniques such as response surface method (RSM) [2,3,5,6], radial basis 

function (RBF) [2] and sequential approximate optimization (SAO) [3,18] are extensively explored to address 



the structural optimization design issues. In these algorithms, approximation technique is used to construct 

the approximation model or metamodel, and then the metamodel is combined with GA or PSO to get the 

optimal solution. Wherein, the CAD/CAE integration framework [2,3] is proposed to enable the design 

optimization process to be seamlessly cycled and automatically without manual intervention to free the 

designer from the repetitive tasks, and thus improving the design efficiency and the product quality. Park and 

Dang [2] applied metamodeling techniques including RSM and RBF to the structural optimization. RSM is 

suitable and effective in engineering design applications when the number of design parameters is relatively 

small and the response is not highly linear, otherwise RBF is more suitable. Wang et al. [3] presents an 

integrated framework that performs the structural design optimization by associating the improved SAO 

algorithm with the CAD/CAE integration technique. The SAO algorithm is especially suitable for 

computation-intensive structural design issues since less function evaluations are needed in comparison with 

pure EAs, which greatly reduce the computational cost and improve the optimization efficiency. However, as 

mentioned previously, more accurate models are needed to simulate the complexities and dynamics of the 

simulation system since the error between the approximation model and real model cannot be avoided [19].  

Furthermore, data mining (DM) based approach [20], which uses data mining technique as an effective 

tool, has been applied to product design optimization recently. Chen and Huang [20] proposed a hybrid global 

optimization algorithm that combines DM, evolutionary strategy (ES) and sequential quadratic programming 

(SQP) to search for the global optimal solution effectively. The search space is reduced through the 

classification, association or clustering activities in the DM algorithm to increase the possibility of finding 

the global optimal solution. Better et al. [21] proposed a more comprehensive and integrated model 

framework based on the combined dynamic data mining and simulation optimization techniques. It is used 

on a market research application to illustrate its feasibility and effectiveness, but it is limited to social science 

case studies. After that, Li and Roy [22] applied this idea to the manufacturing area. They brings three distinct 

system paradigms—data analytics, simulation and optimization, into one to provide a computational platform. 

However, due to the high complexity and uncertainty of the real-world system, how to effectively analyze 

and execute the simulation process to improve the system performance is still an open problem. 

Based on the above analysis, three key issues that need to be solved in product design optimization are: 

(1) how to automate the iterative process of design-simulation-optimization-redesign; (2) how to dynamically 

simulate the real world with high complexity and uncertainty as accurately as possible; (3) how to reduce the 

computational cost and improve the iterative optimization efficiency under the premise of efficient and 



accurate performance evaluation of new design scheme. The first question solved through the CAD/CAE 

integration framework by using common scripting, programming languages and Application Programming 

Interface (API) has been studied by some researchers. The last two issues require further study to realize the 

intelligent and efficient search of optimal solution. This research is motivated by this gap and aims to develop 

a methodology to tackle the aforementioned challenges to support the rapid product optimization. 

3. Method Overview 

To cope with all the above issues, a simulation data driven design approach which combines dynamic 

simulation data mining and design optimization based on the CAD/CAE integration framework is proposed. 

The main idea is: (1) the optimization strategy is introduced to guide the design change direction 

automatically to improve the search efficiency by reducing the design search space, which is suitable for 

solving global optimization problems with implicit relationship; (2) the dynamic prediction model is adopted 

to evaluate the performance of new design schemes in the process of optimization evaluation. Only better or 

optimal design schemes are simulated to fully verify the product performance, which will greatly reduce the 

number of actual simulations and improve the computational efficiency; (3) the prediction model is updated 

incrementally by combining new ‘good’ simulation dataset obtained from optimization, on the basis of 

reusing the original prediction model to reduce the modeling cost and improve the prediction accuracy. It is 

of great significance for computation-intensive structural design optimization problem since fewer actual 

function evaluations are required to seek the optimum. In this way, the optimal design solution can be 

searched automatically with less actual simulation iterations and higher optimization efficiency. 

After the selection of dynamic simulation data mining and design optimization technique, the proposed 

approach which combines these two will be executed automatically without manual intervention based on 

the customized CAD/CAE integration framework. The method overview is given in Fig. 1, and the specific 

details outlined below. 



 

Fig. 1 Method overview. 

Stage 1: Design and Simulation. The geometric models were designed in the CAD software based on 

the design of experiment (DOE), such as comprehensive experiment or orthogonal experiment. The 

simulations were performed in the CAE software to obtain the corresponding simulation data. The whole 

process is fully conducted in the CAD/CAE integration framework automatically. 

Stage 2: Dynamic data mining. Original design and simulation data set are provided to construct the 

prediction model for the subsequent performance evaluation. It is used to measure the merits of new design 

schemes when combined with optimization module to decrease actual simulation. Moreover, the prediction 

model is dynamically updated through incremental learning algorithm by combining new ‘good’ dataset 

obtained from the optimization engine. 

Stage 3: Formulation and Optimization. For the product design optimization problem, the objective 

function, decision variables, and constraints should be identified firstly. Then it is converted to an optimal 



search problem under the constraint condition after formulation. Then the training data set is used as the 

initial samples to submit to the optimization engine. The optimization algorithm is applied to guide the right 

design change direction to generate new ‘good’ design schemes to reduce search space. 

Stage 4: Termination criteria evaluation. The iterative optimization process continues until the 

predetermined convergence condition (i.e., the maximum number of iterations) is satisfied. Some better 

design schemes are simulated to get additional data set to dynamically update the prediction model through 

incremental learning algorithm. If the prediction error between the predicted and real simulation results of 

optimal design solution is less than a given threshold, while the real simulation results satisfy a predetermined 

optimization goal, the iterative process stops and outputs the optimal design scheme. Otherwise, dynamic 

data mining and optimization steps are repeated until the satisfactory design solution is obtained. 

Here, the dynamic prediction model and the optimization algorithm should be chosen carefully as they 

affect the optimization accuracy and efficiency. Their details are described in the following two sections. 

4. Incremental Learning based Dynamic Data Mining Algorithm-𝐖𝐚𝐝𝐚𝐩𝐭𝐢𝐯𝐞OS-ELM 

4.1. Problem analysis 

Generally, varieties of simulation systems are involved in the simulation tasks for complex products to 

satisfy the needs of domain-specific simulations, which leads to a growing number of simulation data and 

brings about the challenges of massive simulation data management [23]. Therefore, simulation data mining 

techniques are applied to discover the knowledge and rules implied in the large simulation data for 

performance evaluation. However, the simulation data are often dynamically updated during the iterative 

design optimization process and thus static simulation data mining cannot capture the dynamic nature of a 

simulation system in real time. Especially, batch learning is limited in most cases since the complete data set 

is usually not available at once. It is also time-consuming and computationally expensive to reconstruct the 

prediction model from scratch as it repeats the training with the past data as well as the newly arrived data 

without any difference. Especially, as the complexity of the problem and the size of the sample data set grow, 

the space-time demand will increase rapidly, which will eventually lead to longer training time and poorer 

prediction effects.  How to reuse the dynamic simulation data to simulate the dynamics and complexities of 

the simulation system quickly and accurately is of great significance. Therefore, dynamic simulation data 

mining technique is proposed and applied to the dynamically updated simulation data. On the basis of original 



prediction model, the dynamic prediction model here should support incremental learning, so as to reduce the 

modeling complexity and the overhead of repetitive learning as well as improve the prediction efficiency and 

accuracy.  

Incremental learning [24] means continual learning of new knowledge from newly arrived samples, 

which enables the system to be self-adaptive to the newly added data without retraining the learning model 

from scratch, thereby reducing spatiotemporal requirements to better satisfy the actual needs. The frequently 

used incremental learning algorithms include Support Vector Machine (SVM) [24,25], Recursive Least 

Squares (RLS) [26], On-line Sequential Extreme Learning Machine (OS-ELM) [27] and ensemble learning 

algorithm such as On-line Weighted Ensemble (OWE) [28], Dynamic and On-line Ensemble Regression 

(DOER) [29], Online Accuracy Updated Ensemble (OAUE) [30], etc.  

Among them, OS-ELM, as a fast and accurate incremental learning algorithm for non-linear problem on 

the basis of Extreme Learning Machine (ELM) [31], has many excellent characteristics, such as faster 

learning speed, good generalization performance and relatively simple realization process when compared to 

other popular sequential learning algorithms. Currently, a lot of research work on OS-ELM improvement 

from various aspects has been proposed. Some are improvements to OS-ELM itself [32,33,34], and others 

are research on the ensemble algorithm of OS-ELM [35]. The proposed algorithm in this study belong to the 

former. All of them have their own characteristics and scope of applications, and their performance needs to 

be verified in specific problem and a large number of experiments. 

Similar to ELM, the input weights and biases are randomly assigned without tuning during the learning 

process of OS-ELM, and the Least Squares (LS) method is used to determine the output weight vector 𝜷 as 

well. However, the estimation error cannot be ensured to be the best even when the minimum estimation 

mean square error of the measurement is the smallest. The measurement accuracy may not be high as the 

measurement values are used regardless of their merits. Therefore, more accurate prediction model would be 

constructed if different samples are weighted based on their respective quality. Based on the above analysis, 

an improved OS-ELM with adaptive weights (WadaptiveOS-ELM) is proposed to construct a more accurate 

dynamic prediction model in this study.  

4.2. The 𝐖𝐚𝐝𝐚𝐩𝐭𝐢𝐯𝐞OS-ELM algorithm 

OS-ELM, developed by Liang et al. [27] is reviewed firstly to provide the necessary background. Then 



the algorithm principle and learning algorithm for WadaptiveOS-ELM are given in details. 

4.2.1. Brief review of OS-ELM 

As mentioned above, OS-ELM originates from the batch learning ELM (as shown in Fig. 2), is an on-

line algorithm for single layer feedforward network(SLFN) that can learn data on a sample or batch basis. 

 

Fig. 2. ELM structure. 

For a data set 𝐃 = {(𝑿𝑡, 𝑦𝑡)}𝑡=1𝑁  with N distinct samples, the output of j-th hidden node with respect to 

the input X is activation function 𝐺(𝑎𝑗, 𝑏𝑗, 𝑿𝑡) , and its corresponding parameters of hidden nodes are {𝑎𝑗, 𝑏𝑗}𝑗=1�̃� with �̃� hidden nodes (additive (Sigmoid) or radial basis function (RBF) nodes). 𝜷𝑗 connects the 

j-th hidden node and the output node. The hidden layer is to provide a complex network structure to deal with 

the problem that low-dimensional structure cannot handle. If an SLFN with �̃�  hidden nodes can 

approximate N samples of 𝐃 with zero error, there exist 𝑎𝑗 , 𝑏𝑗 and 𝜷𝑗 such that: 

𝑓�̃�(𝑿𝑡) = ∑ 𝛽𝑗𝐺(𝒂𝑗, 𝑏𝑗, 𝑿𝑡)�̃�
𝑗=1 = 𝑦𝑡(𝑡 = 1, … , 𝑁) (1) 

𝐇𝜷 = 𝐲 (2) 

𝐇 = [𝐺(𝒂1, 𝑏1, 𝑿1) ⋯ 𝐺(𝒂�̃� , 𝑏�̃�, 𝑿1)⋮ ⋱ ⋮𝐺(𝒂1, 𝑏1, 𝑿𝑁) ⋯ 𝐺(𝒂�̃�, 𝑏�̃� , 𝑿𝑁)]𝑁×�̃� (3) 

Here, 𝜷 = [𝛽1, … , 𝛽�̃�]T, 𝐲 = [𝑦1, … , 𝑦�̃�]T, 𝒂𝑗 = [𝑎𝑗1, 𝑎𝑗2, … , 𝑎𝑗𝑟]𝑇 , 𝒃 = [𝑏1, … , 𝑏�̃�]T，𝜷  is the output 

weight vector and 𝐲  is the output vector. H is the hidden layer output matrix. Where, the j-th column 

represents the j-th hidden node output vector with respect to all the inputs, and the t-th row represents the 

output vector of the hidden layer with respect to 𝑿𝑡.  



The OS-ELM algorithm consists of two phases. In the initialization phase, the initial training data set 𝐃0 = {(𝑿𝑡, 𝑦𝑡)}𝑡=0𝑁0  (�̃� ≤ 𝑁0 < 𝑁)  is selected from 𝐃  to train the initial prediction model 𝒇𝟎 . In the 

sequential learning phase, on-line samples are employed either one-by-one or chunk-by-chunk (with fixed or 

varying size) for on-line retraining, where the (k+1)–th (𝑘 ≥ 0) chunk data set 𝐃𝑘+1 with 𝑁𝑘+1 samples is 

defined as follows: 𝐃𝑘+1 = {(𝑿𝑡, 𝑦𝑡)}𝑡=∑ 𝑁𝑙+1𝑘𝑙=0𝑡=∑ 𝑁𝑙𝑘+1𝑙=0 (t = 𝑁0 + 1, … , 𝑁0 + ⋯ + 𝑁𝑘+1) (4) 

Generally, 𝜷𝟎 can be estimated by using pseudo inverse of 𝐇𝟎 with a small nonzero training error ϵ >0 as  𝜷�̂� = 𝐇𝟎†𝒚𝟎 (5) 

𝐇𝟎† = (𝐇𝟎𝐓𝐇𝟎)−1𝐇𝟎𝐓
 (6) 

𝐇𝟎 = [ 𝐺(𝒂1, 𝑏1, 𝑿1) ⋯ 𝐺(𝒂�̃�, 𝑏�̃� , 𝑿1)⋮ ⋱ ⋮𝐺(𝒂1, 𝑏1, 𝑿𝑁0) ⋯ 𝐺(𝒂�̃� , 𝑏�̃�, 𝑿𝑁0)]𝑁0×�̃� (7) 

Here, 𝐇𝟎†  is the Moore-Penrose generalized inverse [36] of 𝐇𝟎. If 𝐇𝟎𝐓𝐇𝟎  is nonsingular and its 

inverse exists, 𝐇𝟎† is calculated based on Eq. (6), where 𝑷𝟎 = (𝐇𝟎𝐓𝐇𝟎)−1
and 𝜷𝟎 is estimated as: 

𝜷𝟎 = (𝐇𝟎𝐓𝐇𝟎)−1𝐇𝟎𝐓𝒚𝟎 (8) 

After that, with the arrival of (k+1)-th chunk with 𝑵𝒌+𝟏  samples, 𝐇𝐤+𝟏 , 𝜷𝒌+𝟏  and 𝒚𝒌+𝟏  are 

computed as follows: 

𝐇𝒌+𝟏 = [𝐺(𝒂1, 𝑏1, 𝑿(∑ 𝑁𝑙𝑘l=0 )+1) ⋯ 𝐺(𝒂�̃�, 𝑏�̃� , 𝑿(∑ 𝑁𝑙𝑘l=0 )+1))⋮ ⋱ ⋮𝐺(𝒂1, 𝑏1, 𝑿∑ 𝑁𝑙𝑘+1l=0 ) ⋯ 𝐺(𝒂�̃� , 𝑏�̃�, 𝑿∑ 𝑁𝑙𝑘+1l=0 ) ]𝑁𝑘+1×�̃� (9) 

𝜷𝒌+𝟏 = 𝜷𝒌 + 𝑷𝒌+𝟏𝐇𝒌+𝟏𝐓(𝒚𝒌+𝟏 − 𝐇𝒌+𝟏𝜷𝒌) (10) 𝑷𝒌+𝟏 = 𝑷𝒌 − 𝑷𝒌𝐇𝒌+𝟏𝐓(𝐈 + 𝐇𝒌+𝟏𝑷𝒌𝐇𝒌+𝟏𝐓)−𝟏𝐇𝒌+𝟏𝑷𝒌 (11) 

𝒚𝒌+𝟏 = [𝑦(∑ 𝑁𝑙𝑘l=0 )+1, … , 𝑦∑ 𝑁𝑙𝑘+1l=0 ]T
 (12) 

4.2.2. The algorithm principle for 𝑾𝒂𝒅𝒂𝒑𝒕𝒊𝒗𝒆OS-ELM 

The core idea of Wadaptive OS-ELM is to adopt the instance weighting (IW) strategy in the on-line 

sequential learning phase, that is, each new sample is dynamically weighted according to its contribution to 



the optimization goal and its prediction error on current prediction model. Here, the weighted least squares 

(WLS) [37] method is adopted to solve the output weight vector 𝜷 to obtain a more accurate model for 

dynamic prediction. Based on the following Theorem 1, if 𝐇𝐓𝐖𝐇 is invertible, 𝜷 in WadaptiveOS-ELM 

can be calculated as 𝜷 = (𝐇𝐓𝐖𝐇)−1𝐇𝐓𝐖𝒚. 

Theorem 1: Let 𝐇𝐓𝐖𝐇 be invertible, the WLS estimate of the parameter x based on the measurement 

information z and the weight matrix 𝐖 is �̂�𝑊𝐿𝑆  = (𝐇𝐓𝐖𝐇)−1𝐇T𝐖𝒛.  

Proof:             min(𝒛 − 𝐇𝒙)𝐓𝐖(𝒛 − 𝐇𝒙) = min(𝒛𝐓𝐖𝒛 − 𝟐𝒛𝐓𝐖𝐇𝒙 + 𝒙𝐓𝐇𝐓𝐖𝐇𝒙) 𝜕𝜕𝒙 (𝒛𝐓𝐖𝒛 − 𝟐𝐳𝐓𝐖𝐇𝒙 + 𝒙𝐓𝐇𝐓𝐖𝐇𝒙) = 𝜕𝜕𝒙 (𝒛𝐓𝐖𝒛 − 𝟐𝒙𝐓𝐇𝐓𝐖𝒛 + 𝒙𝐓𝐇𝐓𝐖𝐇𝒙) = −𝟐𝐇𝐓𝐖𝒛 + 𝟐𝐇𝐓𝐖𝐇𝒙 = 𝟎 ∴ �̂�𝑊𝐿𝑆  = (𝐇𝐓𝐖𝐇)−1𝐇T𝐖𝒛 

(Note:   𝛛<𝐀𝐱,𝐱>𝛛𝐱 = 𝑨𝒙 + 𝑨𝑻𝒙, 𝝏<𝒙,𝒚>𝝏𝒙 = 𝒚 ) 

As the samples with greater optimization contribution and smaller prediction error have higher quality, 

they should be given more attention with larger weight to build a more accurate prediction model in the 

training process. Here, there is a hypothesis that the smaller the optimization goal value is, the better the 

sample is. Let 𝑚 denotes the sample size of training data set, the weight 𝑑𝑡 of each sample 𝑋𝑡 is computed 

as follows: 

(1) Contribution weight 𝑑𝑜𝑡 computation. Generally, the smaller the optimization goal value 𝐹(𝑋𝑡), the 

larger the weight 𝑑𝑜𝑡.  

𝑑𝑜𝑡 = (∑ 𝐹(𝑋𝑡) − 𝐹(𝑋𝑡)𝑚
𝑡=1 ) ∑ 𝐹(𝑋𝑡)(𝑡 = 1, … , 𝑚)𝑚

𝑡=1⁄  (13) 

For example, when the optimization goal is to minimize the model volume to reduce the material 

consumption. 𝐹(𝑋𝑡)  represents the model volume value, and then ∑ 𝐹(𝑋𝑡)𝑚𝑡=1   is the sum value of m 

samples. Correspondingly, sample 𝑋𝑡 with smaller volume value should be paid more attention with larger 

weight 𝑑𝑜𝑡 among all the samples to build more accurate prediction model. 

(2) Prediction error weight 𝑑𝑒𝑡  computation. The relative prediction error computed by the prediction 

model 𝒇𝟎 is �̂�𝑡 = | (𝑦𝑡 − 𝐇𝒌𝜷𝒌) 𝑦𝑡⁄ |. Then 𝑑𝑒𝑡 is defined as: 

𝑑𝑒𝑡 = (∑ �̂�𝑡𝑚
𝑡=1 − �̂�𝑡) ∑ �̂�𝑡 (𝑡 = 1, … , 𝑚)𝑚

𝑡=1⁄  (14) 



Therefore, the sample weight 𝑑𝑡 (0 ≤ 𝛾，𝛿 ≤ 1，𝛾 + 𝛿 = 1) is computed as 𝑑𝑡 = 𝛾 × 𝑑𝑜𝑡 + 𝛿 × 𝑑𝑒𝑡. 

Where 𝛾  and 𝛿  represent the weight of 𝑑𝑜𝑡  and 𝑑𝑒𝑡 , respectively. Their settings depend on the user’s 

needs, and (𝛾, 𝛿) is set to be (0.5,0.5) in this study. 

4.2.3. The learning algorithm for 𝑾𝒂𝒅𝒂𝒑𝒕𝒊𝒗𝒆OS-ELM 

Similar to OS-ELM, WadaptiveOS-ELM is implemented in two phases. In the initialization phase, the 

prediction model is built based on the initial training data set, and it is updated dynamically in the on-line 

sequential based on the newly added samples. According to the standard ELM algorithm and the WLS method, 

the output weight vector 𝜷𝟎 in the initialization phase is calculated as: 𝜷𝟎 = (𝐇𝟎𝐓𝑾𝟎𝐇𝟎)−1𝐇𝟎𝐓𝑾𝟎𝒚𝟎 (15) 𝐇𝟎  and 𝐖𝟎  are the initial hidden layer output matrix and the weight matrix, respectively. 𝒚𝟎 =[𝑦1, … , 𝑦𝑁0]T
is the corresponding initial output vector. If 𝐖𝟎(= 𝐈) is a symmetric positive definite weight 

matrix, that is, the standard ELM algorithm. With the arrival of (k+1)-th (𝑘 = 0) chunk with 𝑵𝟏 samples, 

the new output weight vector 𝜷𝟏 is: 

𝜷𝟏 = ([𝐇𝟎𝐇𝟏]𝑻 [𝑾𝟎 𝟎𝟎 𝑾𝟏] [𝐇𝟎𝐇𝟏])−𝟏 [𝐇𝟎𝐇𝟏]𝑻 [𝑾𝟎 𝟎𝟎 𝑾𝟏] [𝐲𝟎𝐲𝟏] (16) 

Here, 𝐖𝟏 = [𝒅𝑵𝟎+𝟏 ⋯ 𝟎⋮ ⋱ ⋮𝟎 ⋯ 𝒅𝑵𝟎+𝑵𝟏]. Let 𝑸𝟎 = 𝐇𝟎𝐓𝐖𝟎𝐇𝟎, 𝜷𝟎 = 𝑸𝟎−1𝐇𝟎𝐓𝐖𝟎𝒚𝟎, 𝑸𝟏 is calculated as 

follows: 𝑸𝟏 = [𝐇𝟎𝐇𝟏]𝑻 [𝐖𝟎 𝟎𝟎 𝐖𝟏] [𝐇𝟎𝐇𝟏] = 𝐇𝟎𝐓𝐖𝟎𝐇𝟎 + 𝐇𝟏𝐓𝐖𝟏𝐇𝟏 = 𝐐𝟎 + 𝐇𝟏𝐓𝐖𝟏𝐇𝟏 (17) 

According to Eq.(15) and Eq.(16-17), [𝐇𝟎𝐇𝟏]𝐓 [𝐖𝟎 𝟎𝟎 𝐖𝟏] [𝐲𝟎𝐲𝟏] can be rewritten as 

[𝐇𝟎𝐇𝟏]𝐓 [𝐖𝟎 𝟎𝟎 𝐖𝟏] [𝐲𝟎𝐲𝟏] = 𝐇𝟎𝐓𝐖𝟎𝐲𝟎 + 𝐇𝟏𝐓𝐖𝟏𝐲𝟏 = 𝐐𝟎𝛃𝟎 + 𝐇𝟏𝐓𝐖𝟏𝐲𝟏 = 𝐐𝟏𝛃𝟎 − 𝐇𝟏𝐓𝐖𝟏𝐇𝟏𝛃𝟎 + 𝐇𝟏𝐓𝐖𝟏𝐲𝟏 

(18) 

Based on Eq.(16) and Eq.(18), 𝜷𝟏 is recomputed as: 𝜷𝟏 = 𝐐𝟏−𝟏(𝐐𝟏𝛃𝟎 − 𝐇𝟏𝐓𝐖𝟏𝐇𝟏𝛃𝟎 + 𝐇𝟏𝐓𝐖𝟏𝐲𝟏) = 𝜷𝟎 + 𝑸𝟏−𝟏𝐇𝟏𝐓𝐖𝟏(𝐲𝟏 − 𝐇𝟏𝜷𝟎) (19) 

To generalize the above derivation, with the arrival of (k+1)-th (𝑘 > 0) chunk with 𝑵𝒌+𝟏 samples, 𝑸𝒌+𝟏−𝟏 rather than 𝑸𝒌+𝟏 is used to compute the new output weight vector 𝜷𝒌+𝟏 in order to avoid inverse 



calculation in the recursive process. Here, Woodbury formula [38] is used to derive 𝑸𝒌+𝟏−𝟏 as follows: 𝑸𝒌+𝟏−𝟏 = (𝑸𝒌 + 𝑯𝒌+𝟏𝑻𝑾𝒌+𝟏𝑯𝒌+𝟏)−𝟏
 

= 𝑸𝒌−𝟏 − 𝑸𝒌−𝟏𝑯𝒌+𝟏𝑻(𝑾𝒌+𝟏−𝟏 + 𝑯𝒌+𝟏𝑸𝒌−𝟏𝑯𝒌+𝟏𝑻)−𝟏𝑯𝒌+𝟏𝑸𝒌−𝟏 

(20) 

Let 𝑷𝒌+𝟏 = 𝑸𝒌+𝟏−𝟏， 𝜷𝒌+𝟏 can be rewritten as: 𝜷𝒌+𝟏 = 𝜷𝒌 + 𝑷𝒌+𝟏𝐇𝒌+𝟏𝐓𝑾𝒌+𝟏(𝒚𝒌+𝟏 − 𝐇𝒌+𝟏𝜷𝒌) (21) 𝑷𝒌+𝟏 = 𝑷𝒌 − 𝑷𝒌𝐇𝒌+𝟏𝐓(𝑾𝒌+𝟏−𝟏 + 𝐇𝒌+𝟏𝑷𝒌𝐇𝒌+𝟏𝐓)−𝟏𝐇𝒌+𝟏𝑷𝒌 (22) 

In particularly, �̃� different samples should be included in 𝐃0 to make rank(𝑯𝟎)= �̃� to ensure that 𝐇𝟎𝐓𝐇𝟎 is invertible. If 𝑁𝑘 ≡ 1, it means that only one sample in the (k+1)-th chunk. Then Eq.(21-22) can 

be written as: 𝜷𝒌+𝟏 = 𝜷𝒌 + 𝑷𝒌+𝟏𝐡𝒌+𝟏𝐓𝒘𝒌+𝟏(𝒚𝒌+𝟏 − 𝐡𝒌+𝟏𝜷𝒌) (23) 

𝑷𝒌+𝟏 = 𝑷𝒌 − 𝑷𝒌𝐡𝒌+𝟏𝐓𝐡𝒌+𝟏𝑷𝒌𝒘𝒌+𝟏−𝟏 + 𝐡𝒌+𝟏𝑷𝒌𝐡𝒌+𝟏𝐓 (24) 

𝒉𝒌+𝟏 = [𝐺 (𝒂1, 𝑏1, 𝑿(∑ 𝑁𝑙𝑘l=0 )+1) , … , 𝐺(𝒂�̃� , 𝑏�̃�, 𝑿(∑ 𝑁𝑙𝑘l=0 )+1)] (25) 

Based on the above analysis, the learning algorithm for 𝑊𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒OS-ELM is shown in Algorithm 1. 

It is noteworthy that the sample weight matrix 𝐖𝟎 can be recalculated based on the sample contributions to 

the optimization goal and prediction error after initial training to rebuild a more accurate initial prediction 

model. 

Algorithm 1: Learning algorithm for WadaptiveOS-ELM. 

Input: Training data sets 𝐃 = {(𝑿𝑡, 𝑦𝑡)}𝑡=1𝑁  with 𝑁  different samples; an activation function g(∙); 

initial training data set 𝐃0 = {(𝑿𝑡, 𝑦𝑡)|𝑿𝑡 ∈ 𝑅𝑟×1, 𝑦𝑡 ∈ 𝑅}𝑡=1𝑁0  with 𝑁0 samples; the number of hidden 

nodes �̃�(�̃� ≤ 𝑁0 < 𝑁);  

1. Initialization phase: initial prediction model training based on initial training data set 𝐃0 ={(𝑿𝑡, 𝑦𝑡)|𝑿𝑡 ∈ 𝑅𝑟×1, 𝑦𝑡 ∈ 𝑅}𝑡=1𝑁0 . 

(a) Initialize the weights of all the samples 𝑑𝑡(𝑡 = 1, … , 𝑁0) as 1 in the 𝐃0 , and set the initial 

weight matrix 𝐖𝟎 = 𝐈. 

(b) Randomly assign input weight vector 𝒂𝑗 and bias 𝒃𝑗(j = 1, … , �̃�); 

(c) Calculate matrix 𝐇𝟎 using 𝐃0, g(x), 𝒂𝑗, 𝒃𝑗 based on Eq.(7); 



(d) Calculate the output weight vector 𝜷𝟎 through Eq.(15); 

(e) Calculate the output 𝒚𝟎 = 𝐇𝟎𝜷𝟎 to obtain initial model 𝒇𝟎; 

(f) Set k = 0, 𝑡 = 𝑚 = 𝑁0; 

2. On-line sequential learning phase: prediction model incremental learning when new samples are 

added sequentially. 

(a) Set 𝑡 = 𝑡 + 1;  𝑚 = 𝑚 + 1; 

(b) Obtain a new sample (𝑿𝑡 , 𝑦𝑡) from 𝐃 and set 𝐃𝑘+1 = 𝐃𝑘 + (𝑿𝑡, 𝑦𝑡), calculate sample weight 𝒘𝒌+𝟏 = 𝑑𝑡 based on Eq.(13-14); 

(c) Obtain matrix 𝒉𝒌+𝟏 and output 𝒚𝒌+𝟏 through Eq.(25) and Eq.(12), respectively; 

(d) Calculate 𝑷𝑘+1  and 𝜷𝑘+1  using Eq.(24) and Eq.(23), respectively, so as to get the new 

prediction model 𝒇𝒌+𝟏 dynamically; 

(e) Set 𝑘 = 𝑘 + 1 and go to Step 2. 

5. Optimization Algorithm-AWCPSO 

5.1. Selection of the optimization algorithm  

As mentioned above, the optimization algorithm also contributes significantly to the design optimization 

since it affects the reliability, usability, efficiency and computational cost of the entire optimization process. 

As mentioned above, gradient information and sensitivity analysis based traditional optimization algorithms 

are not suitable for complex optimization problem, e.g., when the number of optimization variables and the 

cost of function evaluation increase. Heuristic optimization algorithms such as GA, ANN and PSO do not 

need the continuity and derivative of objective function, which are better for global optimization problem. In 

the product design optimization problem, the optimization objective function and constraints obtained 

through the finite element analysis (FEA) are implicit as well as the relationship between input design 

variables and output performance parameters. It is generally difficult to judge whether the objective function 

is continuous or differentiable. Therefore, the heuristic optimization algorithm with greater stability and 

applicability is more suitable for the search of optimal design solution.  

Based on the above analysis, the AWCPSO algorithm, which is improved on the basis of center particle 

swarm optimization (CPSO) [39] algorithm, is proposed to tackle the design optimization problem to further 

improve the efficiency and accuracy of the iterative optimization. 



5.2. The AWCPSO algorithm 

5.2.1. Theoretical basis 

Suppose that there are M particles moving around in a k-dimensional search space, the i-th particle at 

the t-th iteration has a position 𝑃𝑡(𝑖) = 𝑋(𝑖) = (𝑥1, 𝑥2, … , 𝑥𝑘) corresponding to the i-th design scheme of k 

design variables, and 𝑃𝑡ℎ is the best position achieved so far. 𝑉𝑡 (𝑖) = (𝑣1, 𝑣2, … , 𝑣𝑘) represents current 

velocity, 𝑃𝑤(𝑖) is the weighted center. The velocity and position of the i-th particle at the (t+1)-th iteration 

will be computed based on the following equations: 𝑉𝑡(𝑖 + 1)  = 𝑤𝑖𝑉𝑡 (𝑖) + 𝑐1𝑟1(𝑃𝑡ℎ(𝑖) − 𝑃𝑡(𝑖)) + 𝑐2𝑟2(𝑃𝑤(𝑖) − 𝑃𝑡(𝑖)) (26) 𝑃𝑡(𝑖 + 1)  =  𝑃𝑡(𝑖) + 𝑉𝑡(𝑖 + 1) (27) 

Here, 𝑤𝑖 is inertia weight, 𝑐1 and 𝑐2 (𝑐1, 𝑐2 > 0) are cognitive learning rate and social learning rate, 

respectively, and 𝑟1  and 𝑟2  are random number in the range [0,1]. In each dimension, the velocities of 

particles are confined within [𝑉𝑖𝑚𝑖𝑛, 𝑉𝑖𝑚𝑎𝑥]𝑖=1𝑘 . When any element of 𝑉𝑡 (𝑖) exceeds the threshold 𝑉𝑖𝑚𝑖𝑛 

or 𝑉𝑖𝑚𝑎𝑥, they are set as the corresponding threshold. It means that 𝑃𝑡(𝑖) cannot exceed the search space 

(corresponding to the range of the design parameters). 

The AWCPSO algorithm includes two strategies: (1) Weighted center 𝑃𝑤(𝑖)  rather than simple 

arithmetic center 𝑃𝑐(𝑖)  is adopted to reduce the risk of falling into local optimum, which is computed 

according to the contributions of different particles to extreme search; (2) Inertia weight 𝑤 is adaptively 

adjusted based on the perception factor 𝑤∆ to balance convergence accuracy and rate, which is set according 

to the premature convergence degree of population and individual fitness value to maintain the diversity of 

inertia weight. 

5.2.2. Computation of the weighted center 𝑃𝑤 

The arithmetic center 𝑃𝑐 of all the particles is used as the global best solution 𝑃𝑔 in CPSO algorithm. 

It is more stable and representative but ignores the differences between different particles. Actually, different 

particles have different contributions to extreme value search. In general, the particle close to global optimum 

with small fitness contributes more to the search process and thus should be paid more attention. Thus, the 

weighted center 𝑃𝑤 is proposed to replace 𝑃𝑐 to reflect the differences of individual particle. However, it is 

not appropriate to use particle fitness directly to compute 𝑃𝑤 since the particle with small fitness value has 

greater impact and should have a larger weight.  



Suppose that the maximum and minimum fitness value of the particle swarm are 𝑓𝑚𝑎𝑥 and 𝑓𝑚𝑖𝑛. The 

fitness value and its normalized value of 𝑃𝑖  in the t-th iteration are 𝑓𝑖  and 𝑓𝑖∗ , respectively, and 𝜑𝑖 
represents its weight. Then 𝑃𝑤(𝑖) is computed as follows: 𝑃𝑤(𝑖) = ∑ 𝜑𝑖𝑃𝑡(𝑖)/𝑀 (28) 

𝜑𝑖 = ∑ 𝑓𝑖∗𝑀𝑖=1 − 𝑓𝑖∗∑ 𝑓𝑖∗𝑀𝑖=1  (29) 

𝑓𝑖∗ = 𝑓𝑖 − 𝑓𝑚𝑖𝑛𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛 (30) 

5.2.3. Computation of the inertia weight 𝑤 

The inertia weight 𝑤 describes the influence of previous particle velocity on current particle velocity. 

It is critical as it balances global exploration and local exploitation abilities of the swarm. Generally, 𝑤 

should be set as different values according to different situations to balance the search speed and accuracy. 

Note that the maintenance of population diversity is a prerequisite to converge to global optimum under 

the predetermined convergence condition. In the PSO algorithm, the population diversity is gradually lost 

due to the continuous tracking of global optimal solution. Although it converges fast, it may lead to premature 

convergence. However, the convergence speed will be affected if the tracking of global optimal solution is 

reduced [40]. Thereby, the inertia weight perception factor 𝑤∆  is adopted to evaluate the premature 

convergence degree of the particle swarm. 

Let 𝑓𝑔∗ represent the optimal fitness value in the t-th iteration, and the fitness value of the corresponding 

weighted center is 𝑓𝑤∗. Then, 𝑤∆ is computed as: 𝑤∆ = 𝑓𝑤∗ − 𝑓𝑔∗𝑓𝑤∗  (31) 

The smaller 𝑤∆ indicates that the particle distribution is aggregated, and the particle swarm tends to 

converge prematurely. At this time, it is necessary to increase 𝑤𝑖 to get a greater velocity to effectively 

escape from local optimum and avoid premature convergence. However, it is not suitable to apply the same 

adaptive operation to the whole particle swarm directly since the excellent particles may be destroyed with 

the increase of 𝑤𝑖.  

Therefore, different adaptive operations are conducted based on their individual fitness values to 

maintain the diversity of the inertia weights. Here, 𝑤𝑖 is computed as follows: 



𝑤𝑖 = 𝑒𝑥𝑝 (𝑓𝑖 − 𝑓𝑎𝑣𝑔𝑓𝑎𝑣𝑔 ) (32) 

When the fitness value 𝑓𝑖 of the i-th particle 𝑃𝑖 is smaller than 𝑓𝑎𝑣𝑔, 𝑃𝑖 is a relatively good particle 

and thus should be assigned a smaller 𝑤𝑖 to accelerate the convergence speed. When 𝑓𝑖 is larger than 𝑓𝑎𝑣𝑔, 𝑃𝑖 should be given a larger weight to escape from local optimum to avoid premature convergence. In this 

way, different particles are assigned with different inertia weights to balance the search speed and accuracy 

comprehensively. 

6. Experiments and Discussion 

Three case studies are conducted to demonstrate the feasibility and effectiveness of the proposed 

approach.  

6.1. Experimental data set preparation 

Since industrial data set cannot be obtained easily, CATIA (CAD software) and Abaqus (CAE software) 

are applied to design and simulate models to construct artificial data set for the subsequent design 

optimization. Three parts from simple to complex including Automobile Component (AC), Torque Arm (TA), 

and Bracket Structure (BS), as shown in Fig. 3, are selected as the test objects. 4, 5 and 11 key variables 

which are critical for product performance are used to drive the parametric modeling process respectively, 

while other predefined geometrical parameters remain unchanged. The batch design of geometric models is 

based on the comprehensive or orthogonal experiments in the Statistical Product and Service Solutions 

(SPSS).  

 

 

 

(a) Automobile component model (b) Torque arm model (c) Bracket structure model 

Fig. 3 The CAD models of three test models 

The comprehensive experimental design of 256 experiments (four factors with four levels) are conducted 

to design CAD models for the first part. But only 176 models are generated successfully for the subsequent 

simulation due to the sketch self-intersection caused by the conflicts between different parameters. The reason 



is that invalid parameter combinations cannot design a truly valid model, not to mention the subsequent 

analysis to obtain the simulation data. In the same way, the effective number for the last two parts are 243 

and 145, respectively. 

All the models are performed in the structural analysis with the aim to obtain more efficient and lighter 

structures. The entire process is conducted in the CAD/CAE integration framework. All the test parts were 

easily modeled, automatically updated and analyzed to obtain the training data set based on the changed input 

design variables. The related simulation experimental setting is listed in Table 1, and the corresponding 

tetrahedral mesh models and simulation models are shown in Fig. 4-Fig. 6. The original design and 

corresponding simulation data constitute the input data set for the dynamic data mining algorithm. 

Table 1 The experimental setting of batch analysis of simulation models. 

Part  Material properties Interaction and load conditions 

AC E = 72GPa, v = 0.3 

Fixed constraint at the upper and lower connection region on the left 

Concentration force F=5.4kN at the center of right end 

TA E = 200GPa, v = 0.3 

Fixed constraint at the large end hole 

Bending moment P1=80kN, Compressive force P2=40kN at the center of small end 

BS E = 200GPa, v = 0.3 

Fixed constraint at the four holes in the base 

Compressive force P1=47kN, Bending moment P2=42kN at the center of four 

screw holes 

Note: E (Young’s modulus) and v (Poisson’s ratio). 

 

 

(a) Mesh model (b) Simulation model 

Fig. 4 The mesh model and simulation model of the automobile component model. 



 
 

(a) Mesh model (b) Simulation model 

Fig. 5 The mesh model and simulation model of the torque arm model. 

 

 

(a) Mesh model (b) Simulation model 

Fig. 6 The mesh model and simulation model of the bracket structure model 

6.2. Performance evaluation 

6.2.1. Experimental setting 

The optimization objective of test models is to minimize the model volume to reduce the material 

consumption while the maximum stress is constrained to be less than a given threshold to guarantee model 

strength. The related experimental parameters of prediction model and optimization model are set in Table 2.  

Table 2 The experimental setting of prediction model and optimization model. 

Part model Number of hidden neurons Activation function MaxIt Constraints 

AC Snum = 55, Vnum = 30 Sigmoid function 100 maxStress<=100MPa 

TA Snum = 35, Vnum = 30 Sigmoid function 100 maxStress<=120MPa 

BS Snum = 130, Vnum = 45 RBF function 200 maxStress<=320MPa 

Where Snum and Vnum represent the number of hidden neurons for stress prediction model and volume 

prediction model, respectively. Two types of activation functions including Sigmoid function and RBF 

function are used for the subsequent model training and prediction. MaxIt, the maximum number of iterations, 

which is determined after initial trials, is set as the predetermined convergence condition. It is set differently 



due to the complexity of optimization problem, i.e., MaxIt is set larger for the last case in order to better 

explore the optimal solution space of complex product. The maximum stress constraints are 100MPa, 

120MPa and 320MPa, respectively. 

It can be seen from the table, the numbers of hidden neurons of the first case are 55 and 30 for stress 

prediction model and volume prediction model respectively based on the experimental results of 10-folds 

cross-validation. Generally, the number of hidden neurons for the former is relatively larger since the design 

parameters and volume are more closely related and the design parameters can better describe the volume. In 

addition, the number of hidden neurons for the first two cases are relatively small, while it is larger for the 

last case to improve the prediction accuracy. Meanwhile, RBF function is selected as the activation function 

for the last case. This attributes to the fact that the number of design parameters are relatively large and the 

relationship between design parameters and performance parameters is relatively highly nonlinear. 

6.2.2. Numerical analysis and comparison 

In order to avoid the influence of initial particle swarm, a random sample set containing 1/4 of all the 

samples is selected for multiple independent optimization experiments under the predetermined convergence 

condition and constraints.  

Firstly, 10 independent optimization experiments are conducted for the first model. The related 

numerical analysis results of optimal design solution are shown in Table 3. Where PV, TV, PS and TS 

represent the predicted and true volume and maximum stress, respectively. And REV and RES denote the 

relative error of volume and maximum stress. IterNum is the number of iterations required for optimization 

convergence.  

Note that the optimization target value tends to be stable within specified number of iterations in most 

cases. Most of the experiments converge to the same or similar optimal design solution {30,370,180,6} after 

20 to 40 iterations under the maximum stress constraint. The 2nd and 5th experiments are the optimal and worst 

optimization results, respectively. Although the iterative optimization processes are different, they eventually 

converge to the same optimal solution. Both the maximum stresses satisfy the predefined requirements while 

the volume difference is very small (only 0.581% =（363299-361190）/363299). Moreover, the relative error 

between the actual results and the predicted results of volume and stress are small. Especially for the volume 

prediction, i.e., the maximum relative error is almost less than 0.01%.  



Table 3 The numerical analysis results of optimal design solution of 10 optimization experiments. 

No.[D1,D2,D3,D4] PV（cm^3） TV(cm^3) PS(MPa) TS(MPa) IterNum REV(%) RES(%)

1 [29.84,370,180,6.37] 362600 362581 99.8241 91.1449 60 0.0052 8.6945

2 [30,370,180,5.99] 361210 361190 100 99.3737 36 0.0055 0.6263

3 [30,170,180,6.28] 362280 362261 100 96.1195 27 0.0052 3.8805

4 [30,370,180,6.01] 361260 361245 100 94.7116 20 0.0042 5.2884

5 [30,370,180,6.56] 363340 363299 100 95.3227 21 0.0113 4.6773

6 [29.93,370,180,5.96] 361220 361202 99.4937 95.5895 45 0.0050 3.9241

7 [29.21,370,180,6.12] 361690 361670 99.8325 94.2519 25 0.0055 5.5900

8 [30,370,180,6.08] 361550 361513 99.841 95.3724 36 0.0102 4.4757

9 [30,370,180,6.03] 361360 361319 100 96.2159 35 0.0113 3.7841

10 [30,370,180,6.17] 362090 362067 100 94.959 40 0.0064 5.0410  

Secondly, to further prove the superior performance of the proposed approach, comparative experiments 

are made between the proposed approach and the approach based on the original OS-ELM and PSO on the 

last two test models. The numerical analysis results of optimal design solution of comparative experiments 

are shown in Table 4. 10 independent optimization experiments are conducted for performance comparison 

to eliminate random factors and statistical influences. TA(a) and BS(a) represent the first five experiments 

based on the proposed approach, while TA(b) and BS(b) are the last five experiments based on the original 

OS-ELM and PSO. 

Table 4 The numerical analysis results of optimal design solution of comparative experiments. 

 

The first five experiments for the TA model converge to optimal design solution {3,25,90,30,12} with 

less iterations (20~30) even with random initial particle swarm. However, the last five ones converge to 

optimal design solution more than 40 iterations in most cases. The experiments of the BS model converge to 

the same optimal design solution {25,120,200,40,220,160,20,25,160,350,300}. But the last five experiments 

Part No. PV（cm^3） TV（cm^3） PS（MPa） TS（MPa） IterNum REV(%) RES(%)

1 446290 446421 105.1383 103.7121 30 -0.0294 1.3752

2 445820 446421 103.1209 103.7100 25 -0.1347 -0.5700

3 446760 446421 103.5012 103.7100 22 0.0760 -0.2034

4 443590 446421 104.3256 103.7121 12 -0.6346 0.5915

5 446730 446421 103.0982 103.7100 25 0.0693 -0.5919

1 445400 446421 105.3280 103.7121 40 -0.2289 1.5581

2 446870 446421 102.4409 103.7100 40 0.1006 -1.2257

3 447720 446421 105.0127 103.7100 40 0.2912 1.2540

4 447760 446421 104.7487 103.7100 60 0.3001 0.9995

5 448920 446421 102.8420 103.7121 90 0.5602 -0.8390

1 8.70E+06 8.65E+06 319.9907 311.8591 120 -0.00547 0.025412

2 8.62E+06 8.64E+06 319.9900 307.4200 130 0.001686 0.039282

3 8.59E+06 8.60E+06 319.9932 317.3222 140 0.001055 0.008347

4 8.65E+06 8.66E+06 320.0000 294.5478 60 0.001088 0.079538

5 8.61E+06 8.61E+06 320.0000 320.0880 60 -0.00021 -0.00028

1 8.68E+06 8.73E+06 320.0000 307.3220 200 -0.00519 0.041253

2 8.75E+06 8.82E+06 319.9794 293.9997 220 -0.00723 0.088366

3 8.86E+06 8.89E+06 320.0000 305.8600 260 -0.00285 0.04623

4 8.64E+06 8.67E+06 320.0000 311.5201 250 -0.00370 0.027221

5 8.95E+06 9.03E+06 320.0000 298.5201 280 -0.009 0.071955

TA(a)

TA(b)

BS(a)

BS(b)



converge very slowly, wherein the number of iterations is basically more than 200. It can be inferred that the 

convergence efficiency is improved to some extent by using the AWCPSO algorithm since the optimization 

time increases with the number of iterations. 

Similarly, the prediction accuracy is also improved by using WadaptiveOS-ELM algorithm. The relative 

error of volume of the proposed approach is most less than 0.2% for the TA model, while it is more than 0.2% 

for the original algorithm in most instances. The relative error of maximum stress is relatively large, but the 

proposed approach shows better prediction performance with lower prediction error. The numerical results 

of the BS model are consistent with the TA model. The prediction accuracy of volume and stress of the 

proposed approach are relatively higher, i.e., most of the relative errors of stress are less than 0.04%, while 

they are larger for the last five experiments. 

In addition, the iterative convergence speed of the BS model is relatively slow in comparison with the 

previous two models since the design solution space with more design parameters is relatively large. 

Generally, the more iterations, the longer the optimization time. But the whole convergence process is 

essentially instantaneous due to the fast objective performance evaluation of dynamic prediction model and 

the use of improvement strategies of AWCPSO algorithm. 

6.2.3. Visualization analysis and comparison 

The corresponding iterative optimization processes of volume and stress of above comparative 

experiments are given in Fig. 7 and Fig. 8. Only the best experimental results are listed. All the experimental 

results converge to nearly the same optimal solution within the specified number of iterations regardless of 

different iterative process. But the proposed approach converges faster and the optimization results are better, 

which are consistent with the numerical analysis results in Table 4. 

  

 
 

(a) The proposed approach in this study (b) Approach based on original OS-ELM and PSO 

Fig. 7 The iterative optimization process of comparative experiments for the TA model. 



 

 

 

 

(a) The proposed approach in this study (b) Approach based on original OS-ELM and PSO 

Fig. 8 The iterative optimization process of comparative experiments for the BS model. 

The actual simulation results optimal design solution of all the test models are shown in Fig. 9. For the 

optimal design solution of the 1st test model, the actual volume and maximum stress are 361190cm3and 

99.37Pa, and the relative error are 0.0055% and 0.6263%, respectively, with respect to the corresponding 

predicted results. The prediction model is suitable for performance evaluation of new particle during the 

optimization process due to its high prediction accuracy. The volume and maximum stress of the optimal 

design solution for the BS model are 8599270cm3 and 317.3222Mpa, respectively. And the relative errors 

are nearly 0.0011% and 0.0083%, it is unnecessary to further optimize the prediction model since the 

differences between the actual simulation results and the prediction results are small and the actual results 

satisfy the optimization goal. Only the simulation data set corresponding to the optimal design solution are 

taken as the new samples to dynamically update the prediction model for the next optimization evaluation.  

Based on the above observation, the prediction model with high prediction accuracy is reliable and 

valuable as a reference value for performance evaluation in the optimization process. The proposed approach 

is feasible and effective in seeking the optimal design solution automatically and efficiently. Especially, the 

application of dynamic prediction model and optimization algorithm greatly reduces the number of actual 

simulations and improves the iterative optimization efficiency with less iterations. 

   

(a) Automobile component model (b) Torque arm model (c) Bracket structure model 

Fig. 9 The actual simulation results of optimal design solution of test models. 



7. Conclusion and Future Work 

In this study, a simulation data driven design approach is proposed to support the rapid product 

optimization effectively. The main work is summarized as follows: 

(1) A simulation data driven design approach which combines dynamic simulation data mining and design 

optimization is proposed to search the optimal design solution. In this way, the optimal design solution 

can be searched automatically with less actual simulation iterations and higher iterative optimization 

efficiency. 

(2) An incremental learning based dynamic data mining algorithm— Wadaptive OS-ELM algorithm is 

proposed to construct the dynamic prediction model to evaluate the performance of new design scheme 

quickly and accurately. The prediction model is updated incrementally through new optimum data set to 

effectively simulate the dynamics and complexities of the real simulation system, and thus to reduce the 

modelling complexity, improve the prediction accuracy and efficiency. 

(3) An improved optimization algorithm—AWCPSO algorithm is proposed to guide the search for good 

design solution automatically to reduce the professional experience requirements. The weighted center 𝑃𝑤(𝑖)  and inertia weight 𝑤  are adopted to accelerate the entire product optimization process by 

improving convergence accuracy and convergence speed. 

Extensive experimental results demonstrate the feasibility, effectiveness and correctness of the proposed 

approach for product optimization. But only incorporating “good” data sets may also restrict potential design 

solutions by biasing the training data. In the future, random sampling method will be considered to randomly 

select a part of potential design schemes to increase the diversity and randomness of the incremental samples.   

Meanwhile, the dynamic data mining and optimization module are replaceable, a more extensive knowledge 

base algorithm can be built to solve the practical optimization problems of different characteristics. Large-

scale industrial data set for more complex parts and assemblies with different optimization problems are 

needed to further demonstrate the performance of the approach.  
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