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A GMM Skewness and Kurtosis Ratio Test for Higher
Moment Dependence

Abstract

This article extends the variance ratio test of Lo and MacKinlay (1988) to tests of

skewness and kurtosis ratios using the generalized methods of moments. In particular,

overlapping observations are used in which dependencies are explicitly modelled to

make the tests more powerful and have better size properties. The proposed higher

order ratio tests can be useful in risk management where risk models are estimated using

daily data but multiperiod forecasts of tail risks are required for the determination of

risk capital. Application of the tests �nds signi�cant higher moment dependence in

the US stock market returns.
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1 Introduction

This article extends the variance ratio test of Lo and MacKinlay (1988) to tests of skewness

and kurtosis ratios. Speci�cally, under the independently and identically distributed (IID)

assumption, the skewness and kurtosis of single-period returns are respectively
p
h and

h times the corresponding third- and fourth-moment statistics of h-period returns. One

challenge to testing the validity of these relationships is the use of higher order statistics

which are associated with large estimation errors. To circumvent the estimation problem,

this paper employs the GMM approach used by Richardson and Smith (1991) in which

the dependencies of overlapping observations are explicitly modelled in order to obtain the

required weighting matrix for the test of higher order moments. Monte-Carlo simulations

show that the analytically derived weighting matrix is signi�cantly better than the popular

Newey-West covariance matrix, for the former fully utilizes information from the data thereby

giving rise to more powerful tests with relatively good size properties.

The use of higher-order statistics for testing nonlinearity can be traced back to Subba

Rao and Gabr (1980) and Hinich (1982). The tests apply Fourier transform to third order

covariances to obtain the bispectrum which varies with frequency if nonlinear dependence is

present in the time series. Wong (1997) later extends the bispectral test from univariate to

multivariate time series and shows that the component of a linear non-Gaussian multivariate

process cannot be represented as a linear time series. Based on the bispectral test, Hinich and
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Patterson (1985) �nd evidence of nonlinearity in the US daily stock returns. The bispectral

test is also used together with other tests such as the BDS test of Brock et al. (1986),

the neural network test of Lee et al. (1993), the Lyapunov exponent test of McCa¤rey et

al. (1992) and so on to �nd evidence of chaos due to deterministic nonlinearity in �nancial

time series. Instead of chaos, Abhyankar et al. (1995, 1997) �nd heteroscedasticity as the

main stylized feature in the S&P 500 and other major stock indices. Given the ubiquity of

heteroscedasticity in �nancial processes, the squared residual autocorrelation tests of McLeao

and Li (1983) and Li and Mak (1994) become the popular nonlinearity tests in the form of

diagnostic checks for the residuals of GARCH-type processes; see for example Hsieh (1989)

and Tse and Tsui (2002).

The proposed higher-order ratio tests can be a useful complement in relation to the

existing nonlinear dependence tests. First, zero squared residual autocorrelations do not

necessarily imply that the skewness-kurtosis ratio relations would hold. On the other hand,

if higher-order ratios fail to hold, it will be of interest to investigate which higher-moment

dependence is the cause as such information can be relevant to various �nancial applications.

For example, correlation between squares of price innovations would render the kurtosis ratio

invalid and such dynamics can be captured by GARCH models. Another example could

take the form of a higher volatility followed by a higher price shock in the next period; such

nonlinear relationship would give rise to a higher than expected multiperiod-return skewness

and is related to the asset pricing literature speci�ed by the GARCH-in-mean models. To this

end, some relevant higher-moment dependence t-statistics in association with the proposed

ratio tests are suggested.

Finally, since the proposed tests focus speci�cally on skewness and kurtosis, they are

relevant to risk management which is concerned with tail events. In particular, the ratio

tests can help identify an appropriate risk model for the determination of risk capital which

is related to tail risk measured over a multiperiod horizon.1 A study of the US stock market

returns shows that the residuals of some popular GARCH models pass both Ljung and Box

(1978) and Li and Mak (1994) tests but fail the skewness-kurtosis ratio tests. Furthermore, it

is found that the multiperiod Value-at-Risk (VaR) obtained using the square root scaling law

is over conservative, whereas the higher-order dependence remained in the GARCH residuals

produces a multiperiod VaR that fails to provide su¢ cient coverage.

The rest of the paper is organized as follows. Section 2 introduces some preliminary

properties that are useful for the derivation of the skewness and kurtosis ratio tests in Section

3. The next section investigates the size properties of the proposed tests by simulation

analyses. The empirical results of applying the ratio tests to the US equity markets are

1Basel III stipulates the use of 10-day tail risk for the determination of risk capital.
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reported in Section 5. Finally, a summary is provided in Section 6.

2 Some preliminaries

2.1 Cumulants

In this paper, the analyses and results are presented in terms of cumulants. Formally, the p-th

order joint cumulant of p-variate random variable (y1; : : : ; yp), denoted as cum(y1; : : : ; yp), is

de�ned as the coe¢ cient of int1 � � � tp in the Taylor series expansion of the natural logarithm
of E

h
exp

�
i
Pp

j=1 yjtj

�i
. For the special case yj = y, j = 1; : : : ; p, cum(y1; y2; : : : ; yp) is

simply the p-th order cumulant of y. Note that cum(y) = E(y) and cum(y; y) = var(y).2

Listed below are some properties that motivate the use of cumulants in the subsequent

analyses.

Lemma 1 Let z1 and y1; : : : ; yn be random variables whose joint cumulant exists. Then

1. cum(y1; : : : ; yn) is symmetric in its argument.

2. cum(y1 + z1; y2; : : : ; yn) = cum(y1; y2; : : : ; yn)+ cum(z1; y2; : : : ; yn) :

3. If any of y1; : : : ; yn is independent of the remaining y�s, cum(y1; : : : ; yn) = 0:

4. If a is a constant, cum(a; y1; : : : ; yn) = 0.

5. If a1; : : : ; an are constants, cum(a1y1; : : : ; anyn) = a1 � � � ancum(y1; : : : ; yn).

2.2 Higher-order ratio relations

We shall now proceed to obtain the higher-order ratio relations based on which the proposed

tests are formulated. Consider the log returns (rt) of prices (Pt), with the former de�ned as

rt = ln (Pt=Pt�1). Now de�ne ert = rt�h+1 + � � �+ rt
as the h-period return at t. From now onwards, as in ert, we use �~�to indicate that the
variable of interest is of h-period. For simplicity, h is suppressed in all multiperiod variables

in this paper. Lo and MacKinlay (1988) made use of the fact that if rt is IID, the stock price

returns should pass the variance ratio test, i.e. the relationship

var (ert) = hvar (rt) (1)

2The appendix at the end of the paper provides further relations between higher order central moments
and cumulants.
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holds. The variance ratio relation can now be easily extended to higher orders in terms of

cumulants, as follows. Under the IID assumption of rt, by virtue of properties 2 and 3 of

Lemma 1,

e�p = h�p; (2)

where e�p and �p are the p-th order cumulant of ert and rt respectively. The result in (2) forms
the basis for the higher-order ratio tests studied in this paper. If p = 2, (2) reduces to (1),

as the second order cumulant is simply the variance.

Since skewness and kurtosis are now widely used, it is useful to relate the result of (2) to

the two statistics. Let �2, �3 and �4 be the variance, skewness and kurtosis of rt respectively.

Then under the IID assumption,

e�3 =
e�3e�3 = h

h3=2
�3
�3
=

1p
h
�3; (3)

e�4 =
e�4e�4 = h

h2
�4
�4
=
1

h
�4: (4)

That is, as the holding interval h increases, e�3 and e�4 decline at a rate of h�1=2 and h�1
respectively. This is the so-called intervalling e¤ect on skewness and kurtosis that were

studied by Hawawini (1980) and Lau and Wingender (1989).

Before we proceed to derive the required tests, it is worthwhile to provide an example to

illustrate why the higher order relations may not hold. Consider the two-period overlapping

returns ert = rt�1 + rt. By virtue of Lemma 1, the third order cumulant of ert is
cum (ert; ert; ert) = cum (rt�1; rt�1; rt�1) + cum (rt; rt; rt)

+3cum (rt�1; rt�1; rt) + 3cum (rt�1; rt; rt)e�3 = 2�3 + 3cum (rt�1; rt�1; rt) + 3cum (rt�1; rt; rt) : (5)

So testing e�3 = 2�3 is equivalent to testing cum(rt�1; rt�1; rt)+ cum(rt�1; rt; rt) = 0: That

is, if higher order intertemporal dependency exists between rt�1 and rt, the skewness ratio

relation does not hold.

Now, suppose rt follows an AR(1) process:

rt = m+ art�1 + et (6)

where m and a are constants and the innovation et is an IID random variable which has a
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�nite non-zero third order cumulant or moment. Then according to Lemma 1,

cum (rt�1; rt�1; rt) = a � cum (rt�1; rt�1; rt�1) = a � �3 6= 0: (7)

Thus, linear autocorrelation in rt would also result in the rejection of the skewness ratio

relation; similar arguments also apply to the kurtosis ratio test. In short, both linear and

nonlinear dependence could render the higher-order relation in (2) invalid.

3 Higher-order ratio tests

Richardson and Smith (1991) proposed a GMM approach for the variance ratio test, using

(1) as a restriction in the sample moment conditions. A major contribution by Richardson

and Smith is the use of an analytically derived weighting matrix in the presence of over-

lapping returns for the GMM test. By explicitly modeling the dependencies of overlapping

observations, the approach uses more information from the data and thus enjoys higher

test powers and better size properties. This section extends Richardson and Smith�s GMM

approach to the skewness and kurtosis ratio tests.

3.1 GMM test

To apply the GMM test procedure, for each period t we construct an R-vector ft (rt; ert; �)
where � is a P -vector of unknown parameters, namely �, �2 and �j, to be determined. Each

element of ft (�) corresponds to a restriction, at least one of which is attributed to the higher
order-ratio relation given in (2). Given the time series frt; ertgTt=1,

gT (�) =
1

T

TX
t=1

ft (rt; ert; �) (8)

tends to zero as T tends to in�nity if the higher order-ratio relation holds. The idea behind

the GMM approach is to obtain the estimator b� such that it has a minimum variance-

covariance matrix. Hansen (1982) showed that this can be achieved by solving the system

of equations

D0
0S

�1
0 gT (�) = 0; (9)
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where

D0 = E

�
@g0 (�)

@�

�
; (10)

S0 =

1X
l=�1

E
�
ft (�) ft�l (�)0

�
: (11)

It can be shown that under the null hypothesis,

p
T
�b� � �� �! N

�
0;
�
D0
0S

�1
0 D0

��1�
; (12)

TgT

�b��0 S�10 gT �b�� �! �2R�P ; (13)

where R > P . One reason for the popularity of the GMM approach lies in its validity

when D0 and S0 are replaced by their consistent estimators, denoted respectively as DT

and ST . In particular, the ST is often calculated by the two-step procedure of Hansen

and Singleton (1982) or the Newey and West (1987) approach, which guarantees a positive

de�nite weighting matrix based on the sample estimates of (11).

A contribution of this article is to derive analytically, under the IID assumption, the

matrix S0 when overlapping observations are used. As is shown in the following subsections,

only certain cumulants are required to be estimated if S0 is analytically derived.

3.2 Skewness ratio test

For the skewness ratio test, ft and D0 are

ft =

264 rt � �
(rt � �)3 � �3
(ert � h�)3 � h�3

375 , D0 =

264 �1 0

�3�2 �1
�3h2�2 �h

375 , (14)

with R = 3, P = 2 and � = (� �3)
0. To derive the required covariance matrix S0, con-

sider for example the covariance between the second and last elements of ft in (14), i.e.

cov((rt � �)3 � �3; (ert � h�)3 � h�3). Since �3 is non-stochastic, by virtue of the properties
in Lemma 1, the required covariance is simply cum(x3t ; ex3t ) where

xt = rt � �, (15)ext = ert � h�. (16)
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So, the associated element of S0 is
P1

l=�1cum
�
x3t ; ex3t�l�, which can be denoted as s3;31;h, where

the superscripts refer to the powers of random variables and the subscripts to the periods

over which the returns are measured. Using the same notation, the required covariance

matrix can be written as

S0 =

264 s
1;1
1;1 s1;31;1 s1;31;h
s3;11;1 s3;31;1 s3;31;h
s3;1h;1 s3;3h;1 s3;3h;h

375 :
Exploiting the overlapping dependencies and the IID assumption, the elements of S0 are

derived in Appendix as:

s1;11;1 = �2; (17)

s1;31;h = h
�
�4 + 3h�

4
�
; (18)

s3;31;h = h
�
�6 + (3h+ 12)�4�

2 + 9�23 + (9h+ 6)�
6
�
; (19)

s3;3h;h = h2�6 +
�
6h3 + 9Ah

�
�4�

2 + 9Ah�
2
3 +

�
9h4 + 6Bh

�
�6; (20)

where Ah = h (2h2 + 1) =3 and Bh = h2 (h2 + 1) =2. Note that if h = 1, Ah = Bh = 1; (18)

reduces to s1;31;1 and both (19) and (20) simplify to s
3;3
1;1.

3.3 Kurtosis ratio test

For the kurtosis ratio test, the corresponding ft and D0 are

ft =

266664
rt � �

(rt � �)2 � �2

(rt � �)4 � 3�4 � �4
(ert � h�)4 � 3h2�4 � h�4

377775 , D0 =

266664
�1 0 0

0 �1 0

�4�3 �6�2 �1
�4h2�3 �6h2�2 �h

377775 . (21)

Here, R = 4, P = 3 and � = (� �2 �4)
0. Using the same notation as in the skewness ratio

test, the associated weighting matrix is given by

S0 =

266664
s1;11;1 s1;21;1 s1;41;1 s1;41;h
s2;11;1 s2;21;1 s2;41;1 s2;41;h
s4;11;1 s4;21;1 s4;41;1 s4;41;h
s4;1h;1 s4;2h;1 s4;4h;1 s4;4h;h

377775 ;
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where the required covariances are derived in Appendix as

s1;21;1 = �3; (22)

s2;21;1 = �4 + 2�
4; (23)

s1;41;h = h
�
�5 + 10h�3�

2
�
; (24)

s2;41;h = h
�
�6 + (6h+ 8)�4�

2 + (4h+ 6)�23 + 12h�
6
�
; (25)

s4;41;h = h�8 + (6h+ 22)�6�
2 + (4h+ 52)�5�3 + 34�

2
4

+(84h+ 120)�4�
4 + (100h+ 180)�23�

2 + (72h+ 24)�8; (26)

s4;4h;h = h2�8 +
�
12h3 + 16Ah

�
�6�

2 +
�
8h3 + 48Ah

�
�5�3 + 34Ah�

2
4

+
�
36h4 + 96hAh + 72Bh

�
�4�

4 +
�
64h4 + 72hAh + 144Bh

�
�23�

2

+
�
72h2Ah + 24Ch

�
�8: (27)

In (27), Ch = h (6h4 + 10h2 � 1) =15. Similar to the case of the skewness ratio test, when
h = 1, Ch = 1, (24) yields s

1;4
1;1, (25) yields s

2;4
1;1 and both (26) and (27) simplify to s

4;4
1;1.

3.4 Joint skewness and kurtosis ratio test

We also consider a joint test based on both skewness and kurtosis ratio relations, for the two

statistics are often used together as in the case of normality test by Jarque and Bera (1980).

For the joint skewness and kurtosis ratio test, we have

ft =

26666666664

rt � �
(rt � �)2 � �2

(rt � �)3 � �3
(rt � �)4 � 3�4 � �4
(ert � h�)3 � h�3

(ert � h�)4 � 3h2�4 � h�4

37777777775
, D0 =

26666666664

�1 0 0 0

0 �1 0 0

�3�2 0 �1 0

�4�3 �6�2 0 �1
�3h2�2 0 �h 0

�4h2�3 �6h2�2 0 �h

37777777775
(28)
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with R = 6, P = 4 and � = (� �2 �3 �4)
0. The covariance matrix is

S0 =

26666666664

s1;11;1 s1;21;1 s1;31;1 s1;41;1 s1;31;h s1;41;h
s2;11;1 s2;21;1 s2;31;1 s2;41;1 s2;31;h s2;41;h
s3;11;1 s3;21;1 s3;31;1 s3;41;1 s3;31;h s3;41;h
s4;11;1 s4;21;1 s4;31;1 s4;41;1 s4;31;h s4;41;h
s3;1h;1 s3;2h;1 s3;3h;1 s3;4h;1 s3;3h;h s3;4h;h
s4;1h;1 s4;2h;1 s4;3h;1 s4;4h;1 s4;3h;h s4;4h;h

37777777775
: (29)

Most of the elements of S0 in (29) have been provided in the preceding analyses. The

remaining required covariance elements are (see Appendix for proofs)

s2;31;h = h
�
�5 + (3h+ 6)�3�

2
�
; (30)

s4;31;h = h
�
�7 + (3h+ 18)�5�

2 + 34�4�3 + (30h+ 72)�3�
4
�
; (31)

s3;41;h = h
�
�7 + (6h+ 15)�5�

2 + (4h+ 30)�4�3 + (66h+ 36)�3�
4
�
; (32)

s3;4h;h = h2�7 +
�
9h3 + 12Ah

�
�5�

2 +
�
4h3 + 30Ah

�
�4�3

+
�
30h4 + 36hAh + 36Bh

�
�3�

4: (33)

Again, setting h = 1 reduces (30) to s2;31;1 whereas (31), (32) and (33) become s
3;4
1;1.

3.5 On heteroscedasticity

Lo and MacKinlay (1988) uses White�s (1980) heteroscedastic-consistent covariance ma-

trix estimator to calculate the standard errors of lagged serial correlation coe¢ cients in

order to make the variance ratio test heteroscedastic-consistent. However, it is worth not-

ing that Richardson and Smith (1991) does not make its GMM procedure for overlapping

observations heteroscedasticity-consistent. This is because, to make the GMM ratio test

heteroscedasticity-consistent, additional estimation of numerous autocorrelation parameters

are required, resulting in poor size properties in small samples. While it is theoretically

possible to make the proposed skewness-kurtosis ratio tests heteroscedasticity-consistent, it

will be either extremely complex (given the already complex covariance-matrix analytically

derived in this section) or the higher-order ratio tests will have very poor size properties if

Lo and MacKinlay�s use of White�s covariance matrix estimator is followed (as can be seen

from the simulation study in the next section when Newey-West�s (1987) method is employed

to obtain the weighting matrix). The proposed higher-order ratio tests may be regarded as

diagnostic tests similar to those of McLeod and Li (1983) and Li and Mak (1994) for IID

processes or shocks. Indeed, it is the IID assumption that allows information to be retrieved
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fully in a simple manner from overlapping observations, thereby making the tests powerful

with good size properties.

4 A simulation study of size properties

This section uses Monte Carlo simulations to investigate how well the asymptotic results

derived in the last section would hold in practice. In particular, in order to demonstrate the

advantage of the analytically derived S0 over the widely used Newey-West covariance matrix,

Snw, we also consider ratio tests that use the latter covariance matrix in place of the former.3

The empirical sizes are calculated as the proportion of rejections in 5,000 replications of the

proposed tests on various supposedly IID processes of sample size N equals to 250 and 1,000.

Table 1 provides the calculated test sizes at 10%, 5% and 1% levels with h equals 5 and 10

periods for the skewness (Skew), kurtosis (Kurt) and their joint (Joint) ratio tests.

< Table 1 Empirical sizes >

In Panel A, IID standard normal samples are generated and the entries in columns 3

to 5 are test sizes obtained using S0. It can be seen that the tests are generally under-

sized at 10% level but over-sized at 1% level. At 5% level, the empirical sizes are close

to the theoretical value for both skewness and joint ratio tests but slightly under-sized for

the kurtosis ratio test. The empirical sizes in the last three columns are obtained using

the covariance matrix Snw. It seems that the Newey-West approach estimates the required

covariance matrix of higher-cumulants poorly, resulting in hugely under-sized skewness tests

but over-sized kurtosis tests.

Now let zt � skst (�; ln �) denote an IID zero-mean unit-variance skewed Student process
where � and ln � are the degree of freedom and skewness parameter respectively; see Hansen

(1994) for further details. Since stock returns are well known to be skewed, leptokurtic and

heteroscedastic, the process considered in Panel B is zt whereas Panel C studies the estimated

standardized residuals bzt of a GARCH time series rt = "t = �tzt, �2t = �0+�1"2t�1+��2t�1. In
both cases, zt � skst (8;�0:1).4 Possibly due to the non-normality of the simulated process,
the empirical sizes in Panel B and C at 10% level tend to be slightly smaller than those of

Panel A; the di¤erence is smaller at 5% level and it disappears at 1% level. However, the

entries in Panel C are qualitatively similar to those in Panel B, suggesting that GARCH does

not produce the expected di¤erence as explained by Li and Mak (1994) which shows that

3The Newey-West covariance matrix is estimated by Snw =
P

jlj<h
P

t (1� l=h) f (t) f (t� l)
0
:

4A negative ln � implies a left-skewed distribution. The sample of US stock market returns studied later
in the next section is found to have similar � and ln � values.
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the sampling distribution of higher moments of bzt is not necessarily the same as that of zt. It
is conjectured that the reason lies in the two di¤erent constructs of the traditional squared

residual autocorrelation test and the proposed GMM ratio test. The former sums up the

squares of the autocorrelations and hence its degree of freedom varies with the number of lags

used. The GMM approach, on the other hand, estimates P parameters with R constraints

giving rise to R� P degree of freedom that is independent of h.

Finally, it is noted that noticeable improvements in empirical sizes are observed for all

three processes as the sample size increases from 250 to 1,000. To con�rm the validity of

the asymptotic distribution, Table 2 below reports the empirical sizes when the sample size

N increases from 2,500 to 10,000. Also reported in Panel D of the table are the averages of

absolute di¤erences or errors between the empirical sizes of the three ratio tests and their

corresponding theoretical sizes. We can see that as N increases, the average absolute errors

decline in almost all cases. The only exception is the case h = 5 at 10% level when N

increases from 2,500 to 5,000, the average error becomes larger at 0.64. When the sample

size increases to 10,000, the error reduces to 0.26.

< Table 2 Asymptotic empirical sizes >

To sum up the above simulation study, the analytically derived covariance matrix S0
gives rise to empirical test sizes that are reasonably close to their true value, especially when

sample size is large. Moreover, the size properties of the proposed ratio tests remain good

when the tests are applied to GARCH residuals.

5 Higher-moment dependence in stock markets

In this section, we apply the proposed GMM tests to the US stock markets and �nd signi�cant

presence of higher-order dependence even after �tting some of the most popular GARCH

models. No attempt is made to identify the best GARCH model in terms of goodness of �t,

forecast, or ability to pass diagnostic tests, for the aim here is to illustrate the complementary

role of the skewness and kurtosis ratio tests. To explain the breakdown of higher-order ratio

relations, we also provide simple t-tests of certain higher-moment statistics. Finally, the

association of multiperiod tail risks with higher-order ratios is illustrated.

5.1 Data and descriptive statistics

Consider the S&P 500 stock index, a total of 2,516 log returns from 2 January 2006 to 31

December 2015.5 Table 3 provides the descriptive statistics as well as the scaled standard
5For the empirical analysis, the log returns are calculated as rt = 100� ln (Pt=Pt�1) :
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deviation (sd), skewness (sk) and kurtosis (ku) for various multi-period horizons h = 5; 10

and 20. Note that the scaling is achieved by setting sd = h�1=2e�, sk = h1=2e�3 and ku = he�4,
so that their expected values would remain constant for di¤erent values of h if the ratio

relations hold.

< Table 3 Basic statistics >

It can be seen from the sk and ku values that as h increases, the returns are increasingly

more left-skewed and leptokurtic than would be the case if the returns were IID. To �nd out

whether the changes in sk and ku are statistically signi�cant, we apply the GMM ratio tests

below.

5.2 Applying the skewness-kurtosis ratio tests

The skewness-kurtosis ratio tests, Li and Mak (1994) (LiMak) test as well as the Ljung

and Box (1978) (LB) test are applied to the log returns, residuals of an AR(1) model, and

standardized residuals of AR(1)-GARCH with Gaussian shocks (GARCH-g) and AR(1)-

Asymmetric GARCH with skewed Student shocks (AGARCH-skst). In Table 4, Panel A

reports the test results whereas Panel B provides the estimates of the models. Under the

null hypothesis, the reported test statistics of Skew, Kurt and Joint are distributed as chi

square with 1, 1, and 2 degree of freedom respectively; for both LB and LiMak, the degree

of freedom is h + 10. In the last three columns of Panel A, sd, k3 and k4 are the scaled

standard deviation and standardized third and fourth order cumulant statistics for e�=ph,e�3=(h�3) and e�4=(h�4) respectively.6 If the returns are IID, the expected values of these

statistics will not vary with h. Hence any large changes in them, especially k3 and k4, would

likely be accompanied by large, signi�cant skewness and kurtosis test statistics.

< Table 4 GMM ratio tests >

First it can be seen that the squares of log returns of our sample are highly autocorrelated,

as is evidenced from the large LiMak statistics (72.89 and 107.4). Similarly, the results of

skewness and kurtosis ratio tests indicate the presence of third and fourth order dependence

in the US stock markets.

After applying the AR(1) �lter, the Ljung-Box test statistics have become lower but re-

main signi�cant. As explained in Section 2, higher-order dependence could also be caused

6Note that e�2, e�3 and e�4 are estimated using the h-period returns ert whereas � is obtained from the
daily returns rt. Under the IID assumption, k3=

p
h and k4=h are respectively the skewness and kurtosis of

h-period returns.
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by linear autocorrelation. It is thus surprising to see that, instead of lower dependence,

the AR residuals show signs of further deviation from the null hypothesis. Later in the

next subsection, cumulant properties are used to explain the paradoxical evidence of higher

skewness-kurtosis test statistics as well as larger magnitudes of k3 and k4 for the AR resid-

uals.

Consistent with the literature, the standardized residuals of GARCH-g pass both Li-

Mak and Ljung-Box tests. Also, the magnitudes of the k3 and k4 statistics as well as

the skewness-kurtosis test statistics are now considerably smaller. Signi�cant higher-order

dependence, however, is still present in the residuals, for both skewness and joint ratio tests

remain statistically signi�cant. There is improvement when AGARCH-skst is �tted to the

returns, as is evidenced from smaller ratio test statistics and lower variation in k3 and k4

values. Nevertheless, the skewness ratio relation breaks down for weekly residuals whereas

the joint ratio test is signi�cant for both weekly and fortnightly periods.

Also reported in Table 4 are the p-values of test statistics. The p-values and the empir-

ical test sizes in Table 2 would ascertain the signi�cance level of the higher-ratio tests. For

example, the joint ratio test on weekly residuals of AGARCH-skst is more likely to be signif-

icant at 5% level since the p-value of 0.0097 is marginally below 0.01 and the corresponding

empirical size in Table 2 is 2.1%.

5.2.1 Autocorrelation and intervalling e¤ect

To explain why removing linear autocorrelation could result in larger variation in k3 and k4,

consider the AR(1) process in (6) with parameters as shown in Panel A of Table 4. Suppose

its innovations et have a �nite nonzero k-th order cumulant denoted as �e;k. First note that

a < 0 is consistent with declining scaled standard deviation (sd) with respect to h. Now,

the k-th order cumulant of rt can be written as

�k =
�
1� ak

��1 � �e;k
For the weekly returns, the third order cumulant is

cum (ert; ert; ert) = 5X
i=1

cum (ri; ri; ri) + 3
X
j 6=i

cum (ri; ri; rj) +
X
i6=j 6=k

cum (ri; rj; rk) : (34)

By virtue of Lemma 1, the summand in the second term on the right of (34) is either zero, a�3
or a2�3. For small a = �0:1, a2 is negligible and similar analyses show that cum(ri; rj; rk)
is of even smaller value, a3�3 or less. Hence, the third order cumulant of log returns is
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approximately

cum (ert; ert; ert) � 5�3 + 12a�3: (35)

The corresponding third order cumulants of AR residuals are

cum (eet; eet; eet) = 5�e;3 = 5 � �1� a3��3 � 5�3; (36)

since a is small. As �3 < 0, (36) is less than (35), hence the AR residuals have more negative

k3 statistics than those of the weekly returns.

For the standardized kurtosis k4, we can use the same method of analysis and obtain for

the weekly returns

cum (ert; ert; ert; ert) �
5X
i=1

cum (ri; ri; ri; ri) + 4
4X
i=1

cum (ri; ri; ri; ri+1) (37)

� 5�4 + 16a�4

whereas for the residuals, the cumulant is

cum (eet; eet; eet; eet) = 5�e;4 = 5 � �1� a4��4 � 5�4 (38)

Since �4 > 0, a negative a implies that (38) is greater than (37), which is consistent with

the reported k4 statistics in Table 4.

We end the discussion here by remarking that the proofs provided above for weekly

returns can be easily extended to the fortnightly returns when h = 10.

5.2.2 Higher-moment t-tests

It would be interesting to �nd out which higher-moment dependence is responsible for the

breakdown of the ratio relations as reported in Table 4. In particular, a signi�cant GMM

ratio test statistic could be due to one or more non-zero cumulants listed in the �rst column

of Table 5 below. The second and third columns of the table provide the corresponding

moment and variance, respectively, to be used in the test for zero cumulant under the

null hypothesis that rt is IID.7 As an example, given a sample fr1;:::;rTg, �rst obtain the
demeaned sample fx1;:::;xTg. The t-statistic for testing H0 : c011 = 0 can then be calculated
as
p
T � 1

P
xtx

2
t+1=s where s

2 = �2(�4 + 3�
4).

7The cumulants for the calculation of the variance can be estimated using central moments as described
in Appendix A.4.
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Table 5: Higher moments for t-tests
Cumulant Moment Variance

c011 = cum (rt; rt+1; rt+1) E
�
xtx

2
t+1

�
�2 (�4 + 3�

4)

c001 = cum (rt; rt; rt+1) E (x2txt+1) �2 (�4 + 3�
4)

c012 = cum (rt; rt+1; rt+2) E (xtxt+1xt+2) �6

c0111 = cum (rt; rt+1; rt+1; rt+1) E
�
xtx

3
t+1

�
�2 (�6 + 15�4�

2 + 10�23 + 15�
6)

c0001 = cum (rt; rt; rt; rt+1) E (x3txt+1) �2 (�6 + 15�4�
2 + 10�23 + 15�

6)

c0011 = cum (rt; rt; rt+1; rt+1) E
�
x2tx

2
t+1

�
� [E (x2t )]

2
(�4 + 2�

4)
2

To ensure a correct inference of the t-statistics, simulations similar to those conducted in

Section 4 are carried out and the empirical sizes at 5% level are reported in Panel B of Table 6.

With the exception of c0011 on residuals of GARCH-skst, all proposed t-tests have empirical

sizes that are similar to the correct value. Now turning to Panel A which provides the test

results, we can see that all six cumulants of S&P 500 returns are signi�cantly di¤erent from

zero. The t-statistics are reduced in size when the tests are applied to the AR(1) residuals.

In particular, the c0111 is no longer signi�cant. Consistent with the results reported in Table

4, much of the dependence has been removed by the GARCH-g model, except for c011 and

c0011. Finally, the AGARCH-skst makes further but small improvement as the t-statistic of

c011 is now marginally insigni�cant at 5% level.

< Table 6 Tests on higher moment statistics >

To sum up, the signi�cance of higher ratio test may be attributed to two forms of de-

pendence (c011 and c0011) that remain even after taking into account stock market salient

features such as heteroscedasticity, volatility asymmetry and non-normality of distribution.

Negative t-statistics of c011 suggest that volatility tends to rise after negative shocks. As

for c0011, it is interesting to note that after the GARCH �lter, the squares of residuals

are no longer persistent but become negatively autocorrelated. Finally, we remark that the

under-sized issue of the c0011 test does not invalidate the above results as the magnitudes

of the t-statistics concerned are quite large.

5.3 Implications for risk management

In practice, tail risks are often estimated using daily returns; see for example Hsieh (1993),

Wong (2010), Dupuis et al. (2015) and Beckers et al. (2017). However, the Basel Committee

stipulates that the risk capital for a bank�s trading portfolio is to be determined by a tail risk

that is measured over a 10-day horizon; see Basel Committee on Banking Supervision (2016)
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for details. It will be demonstrated here how the proposed ratio tests can help identify an

appropriate risk model for the forecast of multiperiod tail risks.

There are two popular measures of tail risk, namely VaR and expected shortfall (ES).

Although Wong (2008, 2010) have shown that backtests based on the latter are more pow-

erful, for simplicity, the study below is carried out in terms of the former. In particular, a

total of six multiperiod VaR models are constructed from the two estimated GARCH models

(GARCH-g and AGARCH-skst), each with three ways of generating h-day ahead VaR fore-

casts at 99% coverage for downside risk. To serve as a benchmark for comparison, consider

the ex post 1-day ahead VaR forecast on day t

1-day VaR = m (rt�1) + b�t � q0:01 = m (rt�1) + v (�t�1; zt�1) � q0:01
where m and v2 are respectively the estimated mean and variance function of the GARCH

model, �t�1 and zt�1 are respectively the estimated volatility and standardized shock, and

q0:01 is the �rst percentile of the shock distribution based on 5,000 bootstrap samples drawn

from fztgTt=1.8 The �rst way of generating the h-day ahead VaR is to use the scaling law
that assumes IID returns, i.e.,

h-day VaR =
p
h� 1-day VaR.

The second method is by block-bootstrapping from fztgTt=1 with block length h to obtain
the random vector

�
z(�); : : : ; z(�+h�1)

�
. The h-period return brht = brt + � � � + brt+h�1 is then

calculated from brt = m (rt�1) + b�tz(�) where b�t = v (�t�1; zt�1), and brt+j = m (brt+j�1) +b�t+jz(�+j) where b�t+j = v
�b�t+j�1; z(�+j�1)�, j = 1; : : : ; h � 1. The required h-day VaR is

obtained as the �rst percentile of the bootstrap distribution of brht . The third approach di¤ers
from the second method only in its bootstrapping; instead of block-bootstraping, h random

draws with replacement are carried out to form
�
z(�); : : : ; z(�+h�1)

�
.

< Table 7: Backtesing of multiperiod VaR models >

The VaR forecasts are compared with the US stock market returns and the proportions

of VaR exceptions are reported in Table 7 above. Since the 1-day ahead forecasts are ex

post, the empirical proportions of 1-day VaR breaches for both GARCH models are close to

1%, the expected value if the risk model is true. For the h-day VaR forecasts, the number

8Ex post here refers to the fact that the forecasts are constructed from the parameters of GARCH models,
and associated conditional volatilities and standardized residuals that are estimated using the full sample.
In using ex post forecasts, the study focuses on how information from skewness-kurtosis ratio tests could
help explain the performance of h-day VaR forecasts of GARCH models estimated using daily returns.
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of observations reduces by a factor of h if non-overlapping forecasts are considered, in which

case none of observed exception rates fail the Kupiec (1995) test of unconditional coverage.

Although a formal statistical inference cannot be made, the exception rates reported in

Table 7 are consistent with the results of preceding analysis. First, when the 1-day VaR is

multiplied by
p
h to obtain the h-day VaR, the observed coverage of multiperiod tail risk is

larger than 99%. One possible reason is due to a sample-speci�c property that is indicated

by the negative autoregressive coe¢ cient in the mean equation of the estimated models.

Next, since the block bootstrap procedure retains the nonlinear dependence detected by the

skewness-kurtosis ratio tests, the associated observed exception rates are generally higher

than those using the IID bootstrap procedure. Finally, for both block and IID bootstrap h-

day VaRs, the exception rates associated with AGARCH-skst are closer to 1% than those of

GARCH-g. This observation is consistent with the skewness-kurtosis-ratio test results that

the former GARCH model is relatively more successful in removing nonlinear dependence

present in the stock returns.

In short, the empirical analysis in this subsection shows the importance of skewness-

kurtosis ratio relations in constructing multiperiod tail risk forecasts from risk models based

on daily returns. Therefore, the proposed higher-order ratio tests are useful in providing

valuable information for the modelling and forecasting of multiperiod tail risks; see for ex-

ample Mancini and Trojani (2011).

6 Conclusion

Skewness and kurtosis ratio tests are developed using a GMM technique in which overlapping

observations are used so that more information can be utilized in the proposed tests. This

is achieved by explicitly modelling the dependencies in the overlapping data under the IID

assumption. Simulation experiments demonstrate that the proposed tests have relatively

good size properties for residuals of GARCH processes as well as original time series.

Application of the higher ratio tests to the US stock market returns illustrates their com-

plementary role to existing nonlinearity diagnostic tests. For example, the GARCH-�ltered

standardized residuals pass the Li and Mak (1994) test but fail the skewness-kurtosis ratio

tests. The ability of the proposed tests to shed light on the nature of nonlinear dependence

is particularly useful when multiperiod forecasts of tail events are required, for tail risks are

closely associated with both the level of asymmetry and tail fatness of the distribution as

measured by skewness and kurtosis respectively.
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A Appendix

Analytical proofs for the covariance matrices S0 used in the skewness-kurtosis ratio tests are

provided here. The proofs are made simpler using xt and ext instead of rt and ert, for the
former have zero mean; see (15) and (16). The required covariances may be divided into three

categories: covariance between products of single-period random returns (e.g. s3;41;1), between

products of single-period and h-period random returns (e.g. s3;41;h), and between products of

h-period random returns (e.g. s3;4h;h), with increasing level of complexity.

In all three cases, the required covariances can be obtained using the indecomposable

partition method stated in Lemma 2. However, in order to facilitate an understanding (and

cross veri�cation) of the proofs, we �rst consider the results for the covariances between

the products of single-period returns. These are provided in A.1 where relations between

cumulants and moments are introduced. A.2 provides Lemma 2, which is required for the

derivation of the covariances of the products of multiperiod random variables, and A.3 derives

all the required covariances involving multiperiod returns. Finally, A.4 provides the formulae

to estimate the cumulants from central moments in order to obtain the required covariance

matrix S0 for the proposed tests.

A.1 Proofs for Sp;q1;1

First consider the following formulae provided by Kendall and Stuart (1969, p.70) for ex-

pressing higher-order central moments, �j, in terms of cumulants, �j:

�2 = �2 = �
2; (39)

�3 = �3; (40)

�4 = �4 + 3�
4; (41)

�5 = �5 + 10�3�
2; (42)

�6 = �6 + 15�4�
2 + 10�23 + 15�

6; (43)

�7 = �7 + 21�5�
2 + 35�4�3 + 105�3�

4; (44)

�8 = �8 + 28�6�
2 + 56�5�3 + 35�

2
4 + 210�4�

4 + 280�23�
2 + 105�8. (45)

We shall now consider deriving an expression of Sp;q1;1 (1 � p; q � 4) in terms of cumulants

using the above formulae. Under the IID assumption, xt and xt�l are independent for

l 6= 0. Thus, by virtue of Property 3 in Lemma 1, cum(xpt ; x
q
t�l) = 0 for l 6= 0. Using the

above moment formulae, and exploiting the fact that E(xt) = 0, sp;q1;1 =
P
cum(xpt ; x

q
t�l) =
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cov(xpt ; x
q
t ) = �p+q � �p�q, it is straightforward that s

1;1
1;1 = �

2 and s1;21;1 = �3: For s
2;2
1;1,

s2;21;1 = cov(x
2
t ; x

2
t ) = �4 � �22:

Substituting for �4 using (41) and replacing �2 with �
2, we have

s2;21;1 = �4 + 3�
4 � �4 = �4 + 2�4:

Using the same principle, the other more complex covariances are derived as follows.

s1;31;1 = �4 + 3�
4; (46)

s1;41;1 = �5 + 10�3�
2; (47)

s2;31;1 = �5 + 9�3�
2; (48)

s2;41;1 = �6 + 14�4�
2 + 10�23 + 12�

6; (49)

s3;31;1 = �6 + 15�4�
2 + 9�23 + 15�

6; (50)

s3;41;1 = s4;31;1 = �7 + 21�5�
2 + 34�4�3 + 102�3�

4 (51)

s4;41;1 = �8 + 28�6�
2 + 56�5�3 + 34�

2
4 + 204�4�

4 + 280�23�
2 + 96�8: (52)

Letting h = 1 in, for example, (19) and (20) will give rise to the same formula for s3;31;1
in (50) above. One important observation to be made here is that sp;q1;1 contains the basic

structure for sp;q1;h and s
p;q
h;h. Take the case of p = q = 4 as an example; the right hand sides of

(26) and (27) in the kurtosis ratio test share the same cumulant terms with s4;41;1 in (52): �8,

�6�
2, �5�3, �24, �4�

4, �23�
2 and �8. Moreover, when h = 1, Ah = Bh = Ch = 1, yielding the

same coe¢ cients for all cumulant terms in sp;q1;1, s
p;q
1;h and s

p;q
h;h, where 1 � p; q � 4. Therefore,

as can be seen in A.3 below, hp (1 � p � 4), Ah, Bh and Ch re�ect the e¤ects of having

h-period returns in place of single-period returns under the null hypothesis of independent

returns.

A.2 Cumulant of products of random variables

The above shows how sp;q1;1 can be obtained using the formulae provided by Kendall and

Stuart (1969). However, things become complicated when multiperiod returns are involved.

Since the required covariances are essentially the cumulants of products of random variables,

we introduce here the concept of an indecomposable partition provided by Brillinger (1975,

Section 2.3) in order to obtain the cumulants of products of xt.

De�nition Consider a partition P1 [ � � � [ PM of the table of entries (not necessarily
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rectangular) given below
(1; 1) � � � (1; J1)
...

...

(I; 1) � � � (1; JI)

Sets Pm0 and Pm00 are said to hook if there exists (i1; j1) 2 Pm0 and (i2; j2) 2 Pm00 such

that i1 = i2; that is (i1; j1) and (i2; j2) are from the same row. Pm0 and Pm00 are said to

communicate if there exists a sequence of sets Pm1 = Pm0 ; Pm2 ; : : : ; PmN
= Pm00 such that

Pmn and Pmn+1 hook for n = 1; : : : ; N � 1. A partition is said to be indecomposable if all of
its sets communicate.

Each row in the table above corresponds to a product of (random) returns in our paper.

So, I = 2, as we need only covariances that are second order cumulants. Take the case of

cum
�
x3t ; ex4t�l� in s3;41;h for illustration, we can let the �rst row of entries in the above table

correspond to x3t , whereas the second row correspond to ex4t�l, so that J1 = 3 and J2 = 4.

An indecomposable partition as de�ned above is one that contains at least a set in which at

least one element is from x3t and the other from ex4t�l.
The result that can be used to obtain the joint cumulant of products of random variables

may now be presented in Lemma 2 below.

Lemma 2 Consider the (two way) I random variables

Yi =

JiY
j=1

Xij;

where j = 1; : : : ; Ji and i = 1; : : : ; I. The joint cumulant cum(Y1; : : : ; YI) is given byX
P

cum (Xij; ij 2 P1) � � � cum (Xij; ij 2 PM)

where the summation is over all indecomposable partitions P = P1 [ � � � [ PM :
Example 1 Consider the simple case of cum

�
x2t ; x

2
t�l
�
in s2;21;1. Then in the notation of

Lemma 2, Y1 = X11X12 and Y2 = X21X22, which correspond to x2t and x
2
t�l respectively.

Applying Lemma 1 and making use of the fact that E(xt) = E(ext�l) = 0,
cum (Y1; Y2) = cum (X11; X12; X21; X22)

+cum (X11; X21) cum (X12; X22) + cum (X11; X22) cum (X12; X21) ;
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which gives rise to

cum
�
x2t ; x

2
t�l
�
= cum (xt; xt; xt�l; xt�l) + 2cum (xt; xt�l)

2 : (53)

Note that cum(xt; xt)cum(xt�l; xt�l) is not an indecomposable partition because there is no

cumulant term that links the x2t and x
2
t�l together.

A.3 Proofs for Sp;q1;h and S
p;q
h;h

Here, we �rst introduce some preliminary results, a notation to simplify the presentation

of proofs, and then proceed to use Lemma 2 to derive the required covariances involving

multiperiod returns.

A.3.1 Preliminary results

There are two properties of xt which render the derivation of covariance matrices S0 relatively

straightforward. Firstly, E(xt) = 0. Secondly, xt and xt�l are independent except for l = 0.

The �rst property enables us to ignore all indecomposable partitions that result in E(xt) as

a cumulant term. By virtue of Lemma 1, the second property implies that for j random

variable x�s at time t or t� l, we have

cum (xt; : : : ; xt�l) =

(
�j if l = 0;

0 if l 6= 0:
(54)

If the j random variables are a mixture of xt�s and h-period random returns ext�l�s,
cum (xt; : : : ; ext�l) = ( �j for 1� h � l � 0;

0 for l > 0.
(55)

Finally, for j h-period random returns ex�s at time t or t� l,
cum (ext; : : : ; ext�l) = ( (h� jlj)�j for jlj < h;

0 for jlj � h.
(56)

A.3.2 Notation

To derive the required covariances of multiperiod returns, it is helpful to simplify the notation

in the following way. We denote the j-th order joint cumulant of random variables y1; ::; yj
by hy1 � � � yji, that is

cum (y1; ::; yj) = hy1 � � � yji :
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Suppose for example y1 = y2 = u and y3 = � � � = yj = v. Then the cumulant can be simply
written as

cum (y1; ::; yj) =


u2vj�2

�
:

Note that h�i does not represent the cumulant of the products of random variables; for

instance, hx3i = cum(x; x; x) 6= cum(x3).

A.3.3 Covariances for skewness ratio test

The covariances between single-period returns are already provided in A.1. Next, we con-

sider covariances that involve h-period returns. First, consider the simple case of s1;31;h =P
cum

�
xt; ex3t�l�. Applying Lemma 2,

cum
�
xt; ex3t�l� = 
xtex3t�l�+ 3 hxtext�li 
ex2t�l� :

According to (55) and (56), cum
�
xt; ex3t�l� = �4 + 3h�4 for 1� h � l � 0, zero otherwise. So
s1;31;h = h

�
�4 + 3h�

4
�

Similarly, for 1� h � l � 0,

cum
�
x3t ; ex3t�l� =



x3t ex3t�l�+ 3 
x3t ext�l� 
ex2t�l�+ 3 
xtex3t�l� 
x2t�
+9


x2t ex2t�l� hxtext�li+ 9 
x2t ext�l� 
xtex2t�l�

+9


x2t�l

�
hxtext�li 
ex2t�l�+ 6 hxtext�li hxtext�li hxtext�li (57)

= �6 + (3h+ 12)�4�
2 + 9�23 + (9h+ 6)�

6;

which if multiplied by h gives rise to s3;31;h. To see how the number of each type of indecom-

posable partition is obtained in (57), take hx2t ext�li 
xtex2t�l� as an example: there are three
ways of choosing x2t from x

3
t and three ways of choosing ext�l from ex3t�l to yield hx2t ext�li; there

is only one left way for the remaining random variables to form


xtex2t�l�. So, the required

number is 3� 3� 1 = 9.
Now in the case of cum

�ex3t ; ex3t�l� in s3;3h;h, each term in the sum of products of cumulants

will retain the same form as the right hand side of (57), and replacing xt with ext yields the
expression for cum

�ex3t ; ex3t�l�. So, making use of (56),
s3;3h;h =

X
(h� jlj)�6 +

h
6h
X

(h� jlj) + 9
X

(h� jlj)2
i
�4�

2

+9
X

(h� jlj)2 �23 +
h
9h2

X
(h� jlj) + 6

X
(h� jlj)3

i
�6;
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where the summation is from l = �h+1; ::; h�1. Note that
P
(h� jlj) = h2,

P
(h� jlj)2 =

Ah and
P
(h� jlj)3 = Bh, and this completes the proof for the expression of s3;3h;h in (20).

A.3.4 Covariances for kurtosis ratio test

From the above derivations of S1;31;h and S
3;3
1;h, we can see that covariances between products

of single- and h-period returns yield a simple multiple of h, and provide the basic form for

more complex covariances between products of h-period returns. These steps of proof are

similar for covariances in the kurtosis ratio test. So we have

s1;41;h =
X

cum
�
xt; ex4t�l�

=
X�


xtex4t�l�+ 4 hxtext�li 
ex3t�l�+ 6 
xtex2t�l� 
ex2t�l��
= h

�
�5 + 10h�3�

2
�
:

Also, multiplying by h the following cumulant

cum
�
x2t ; ex4t�l� =



x2t ex4t�l�+ 6 
x2t ex2t�l� 
ex2t�l�+ 8 
xtex3t�l� hxtext�li
+4


x2t ext�l� 
ex3t�l�+ 6 
xtex2t�l� 
xtex2t�l�+ 12 hxtext�li hxtext�li 
ex2t�l�

= �6 + (6h+ 8)�4�
2 + (4h+ 6)�23 + 12h�

6

yields s2;41;h. The case for s
4;4
1;h is more complex; the indecomposable partitions of cum

�
x4t ; ex4t�l�

are



x4t ex4t�l�+ 6 
x4t ex2t�l� 
ex2t�l�+ 6 
x2t ex4t�l� 
x2t�+ 16 
x3t ex3t�l� hxtext�li
+4


x4t ext�l� 
ex3t�l�+ 4 
xtex4t�l� 
x3t�+ 24 
x3t ex2t�l� 
xtex2t�l�+ 24 
x2t ex3t�l� 
x2t ext�l�

+18


x2t ex2t�l� 
x2t ex2t�l�+ 16 
x3t ext�l� 
xtex3t�l�

+36


x2t ex2t�l� 
x2t� 
ex2t�l�+ 48 
x3t ext�l� hxtext�li 
ex2t�l�

+48


xtex3t�l� hxtext�li 
x2t�+ 72 
x2t ex2t�l� hxtext�li hxtext�li

+16


x3t
� 
ex3t�l� hxtext�li+ 24 
x3t� 
xtex2t�l� 
ex2t�l�+ 24 
x2t ext�l� 
ex3t�l� 
x2t�

+36


x2t ext�l� 
x2t ext�l� 
ex2t�l�+ 36 
xtex2t�l� 
xtex2t�l� 
x2t�+ 144 
x2t ext�l� 
xtex2t�l� hxtext�li

+72


x2t
�
hxtext�li hxtext�li 
ex2t�l�+ 24 hxtext�li hxtext�li hxtext�li hxtext�li : (58)
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In the above, only

ex2t�l� and 
ex3t�l� yield a factor h. Thus

cum
�
x4t ; ex4t�l� = �8 + (6h+ 22)�6�

2 + (4h+ 52)�5�3 + 34�
2
4

+(84h+ 120)�4�
4 + (100h+ 180)�23�

2 + (72h+ 24)�8;

for l = 1�h; ::; 0. Thus, multiplying the above by h yields s4;41;h. Replacing x4t with ex4t in (58)
gives us cum

�ex4t ; ex4t�l� which, after applying the result of (56), yields
(h� jlj)�8 +

�
12h (h� jlj) + 16 (h� jlj)2

�
�6�

2

+
�
8h (h� jlj) + 48 (h� jlj)2

�
�5�3 + 34 (h� jlj)2 �24

+
�
36h2 (h� jlj) + 96 (h� jlj)2 + 72 (h� jlj)3

�
�4�

4

+
�
64h2 (h� jlj) + 72h (h� jlj)2 + 144 (h� jlj)3

�
�23�

2

+
�
72h2 (h� jlj)2 + 24 (h� jlj)4

�
�8:

Summing the above from l = �h + 1 to h � 1 and noting
Ph�1

l=�h+1 (h� jlj)
4 = C (h), we

have the required covariance.

A.3.5 Covariances for the joint skewness and kurtosis ratio test

The remaining covariances to be derived for the joint skewness and kurtosis ratio test are

s2;31;h, s
4;3
1;h, s

3;4
1;h and s

3;4
h;h. Using the same method as above,

s2;31;h =
X

cum
�
x2t ; ex3t�l�

=
X�


x2t ex3t�l�+ 6 
xtex2t�l� hxtext�li+ 3 
x2t ext�l� 
ex2t�l��
= h

�
�5 + (3h+ 6)�3�

2
�

For s4;31;h, applying the indecomposable partition method for cum
�
x4t ; ex3t�l� yields


x4t ex3t�l�+ 3 
x4t ext�l� 
ex2t�l�+ 6 
x2t ex3t�l� 
x2t�l�+ 12 
x3t ex2t�l� hxtext�li
+4


xtex3t�l� 
x3t�+ 12 
x3t ext�l� 
xtex2t�l�+ 18 
x2t ex2t�l� 
x2t ext�l�

+12


x3t
� 
ex2t�l� hxtext�li+ 18 
x2t ext�l� 
x2t� 
ex2t�l�

+36


xtex2t�l� 
x2t� hxtext�li+ 36 
x2t ext�l� hxtext�li hxtext�li

= �7 + (3h+ 18)�5�
2 + 34�4�3 + (30h+ 72)�3�

4:
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Multiplying the above result by a factor of h gives rise to s4;31;h. s
3;4
1;h is a mirror image of s

4;3
1;h,

so we have

s3;41;h =
X�


x3t ex4t�l�+ 6 
x3t ex2t�l� 
ex2t�l�+ 3 
xtex4t�l� 
x2t�+ 12 
x2t ex3t�l� hxtext�li
+4


x3t ext�l� 
ex3t�l�+ 12 
xtex3t�l� 
x2t ext�l�+ 18 
x2t ex2t�l� 
xtex2t�l�

+12

ex3t�l� 
x2t� hxtext�li+ 18 
xtex2t�l� 
x2t� 
ex2t�l�

+36


x2t ext�l� 
ex2t�l� hxtext�li+ 36 
xtex2t�l� hxtext�li hxtext�li�

= h
�
�7 + (6h+ 15)�5�

2 + (4h+ 30)�4�3 + (66h+ 36)�3�
4
�

Replacing the xt in the above with ext yields the required s3;4h;h :
s3;4h;h =

X�
(h� jlj)�7 +

�
9h (h� jlj) + 12 (h� jlj)2

�
�5�

2

+
�
4h (h� jlj) + 30 (h� jlj)2

�
�4�3

+
�
30h2 (h� jlj) + 36h (h� jlj)2 + 36 (h� jlj)3

�
�3�

4
�

= h2�7 +
�
9h3 + 12Ah

�
�5�

2 +
�
4h3 + 30Ah

�
�4�3

+
�
30h4 + 36hAh + 36Bh

�
�3�

4;

and this completes the proofs.

A.4 Estimation of cumulants

The covariance matrix S0 is expressed in terms of cumulants, which in practice can be

estimated using central moments as shown below; see Kendall and Stuart (1977, p.71). Note

that �2 = �2 and �3 = �3.

�4 = �4 � 3�4; (59)

�5 = �5 � 10�3�2; (60)

�6 = �6 � 15�4�2 � 10�23 + 30�6; (61)

�7 = �7 � 21�5�2 � 35�4�3 + 210�3�4; (62)

�8 = �8 � 28�6�2 � 56�5�3 � 35�24 + 420�4�4 + 560�23�2 � 630�8: (63)
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