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RECOVERED FINITE ELEMENT METHODS ON POLYGONAL AND
POLYHEDRAL MESHES

Zhaonan Dong1, Emmanuil H. Georgoulis2,3 and Tristan Pryer4,*

Abstract. Recovered Finite Element Methods (R-FEM) have been recently introduced in Georgoulis
and Pryer [Comput. Methods Appl. Mech. Eng. 332 (2018) 303–324]. for meshes consisting of simplicial
and/or box-type elements. Here, utilising the flexibility of the R-FEM framework, we extend their
definition to polygonal and polyhedral meshes in two and three spatial dimensions, respectively. An
attractive feature of this framework is its ability to produce arbitrary order polynomial conforming
discretizations, yet involving only as many degrees of freedom as discontinuous Galerkin methods over
general polygonal/polyhedral meshes with potentially many faces per element. A priori error bounds
are shown for general linear, possibly degenerate, second order advection-diffusion-reaction boundary
value problems. A series of numerical experiments highlight the good practical performance of the
proposed numerical framework.
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1. Introduction

In recent years, we have witnessed considerable interest in the construction of Galerkin-type numerical meth-
ods over meshes consisting of general polygons in two dimensions or general polyhedra in three dimensions,
henceforth termed collectively as polytopic, as opposed to the classical Galerkin methods employing simplicial
and/or box-type meshes. This interest is motivated by the expectation that such generality of meshes can
yield minimally invasive numerical coarse-graining, by representing exactly complicated geometries with fewer
numerical degrees of freedom, compared to standard methods, and also for their potential use within adap-
tive algorithms involving both coarsening and refinement. The latter is particularly pertinent in the context of
adaptive computations for evolution PDE problems, where dynamic mesh modification is widely accepted as
a promising tool for the reduction of computational complexity in both Eulerian and Lagrangian contexts.
Galerkin procedures over polytopic meshes have been also proposed in the context of interface problems
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(porosity profiles, interfaces, etc.), as well as a flexible method for coarse-scale correction computations in
multilevel solvers for elliptic boundary-value problems.

Popular polytopic methods include the virtual element method [3, 14], which is itself an evolution of the
so-called mimetic finite difference methods [4], polygonal finite element methods [41], BEM-based FEMs [39],
composite finite element methods [28, 37] and various discontinuous Galerkin (dG) approaches, ranging from
one-field interior penalty dG methods [10–12, 20], to hybridized formulations [18, 19, 21, 33] and discontinuous
Petrov–Galerkin schemes [1]. Interior penalty DG methods (and related one-field formulations) allow for the
control of the number the global numerical degrees of freedom independently of the mesh topology (i.e., the
connectivity of the nodes/faces/elements), whereas polygonal finite elements, virtual element methods and
hybridized formulations are defined on local approximation spaces whose dimension depends on the number of
faces/vertices for each polytopic element.

In this work, motivated by the recent recovered finite element framework presented in [24], we construct
conforming discretizations over polytopic meshes whose set of degrees of freedom is independent of the number
of vertices/edges/faces of each element. The proposed family of methods, termed collectively as recovered finite
element methods (R-FEMs) depends, instead, on the choice of a sub-triangulation of the polytopic meshes. Cru-
cially, however, the computational complexity of the method is independent of the cardinality of the simplices in
the sub-triangulation: R-FEM on polytopic meshes combines completely discontinuous local polynomial spaces,
resulting, nonetheless, to conforming approximations.

To fix ideas, let us consider an elliptic boundary value problem with homogeneous Dirichlet boundary condi-
tions. Let ℰ : 𝑉ℎ → ̃︀𝑉ℎ ∩𝐻1

0 (Ω) an operator mapping a discontinuous element-wise polynomial space 𝑉ℎ over a
polytopic mesh onto a space of continuous piecewise polynomial space ̃︀𝑉ℎ ∩𝐻1

0 (Ω) over a, generally speaking,
finer simplicial mesh arising from a sub-triangulation of the polytopic mesh; such recovery operators ℰ can
be constructed locally, e.g., by (weighted) averaging of the nodal degrees of freedom [16, 32, 43]. We can now
consider the method: find 𝑢ℎ ∈ 𝑉ℎ, such that∫︁

Ω

∇ℰ (𝑢ℎ) · ∇ℰ (𝑣ℎ) d𝑥 + 𝑠 (𝑢ℎ, 𝑣ℎ) =
∫︁

Ω

𝑓ℰ (𝑣ℎ) d𝑥, for all 𝑣ℎ ∈ 𝑉ℎ,

for 𝑓 ∈ 𝐻−1(Ω) and a suitable stabilization 𝑠(·, ·) : 𝑉ℎ × 𝑉ℎ → R, whose functionality is the treatment of the
kernel {0 ̸= 𝑣ℎ ∈ 𝑉ℎ : ℰ (𝑣ℎ) = 0} to achieve unisolvence. Notice that the method produces both a conforming
approximation ℰ (𝑢ℎ) along with the non-conforming 𝑢ℎ, in spite of using element-wise discontinuous polynomial
trial and test space 𝑉ℎ. In the limit case of the above R-FEM posed on a simplicial mesh (rather than a general
polytopic one), ℰ (𝑢ℎ) corresponds to the classical conforming FEM approximations for certain choices of ℰ ; we
refer to [24] for details. Therefore, in this sense, R-FEM is an extension of classical finite element methods to
polytopic meshes. An interesting property of the proposed method is that the user has access to the computed
approximate solution at every point in the computational domain. This may be of practical interest both in
the context of further post-processing and in the visualisation of the computation on standard widely available
software.

As we shall see below, although sharing the same nominal complexity, R-FEMs introduced in this work
will require more restrictive assumptions on the polytopic meshes for the respective error analysis to hold,
compared to the current level of development of interior penalty DG methods on polytopic meshes [10–12].
Nonetheless, the R-FEM framework is envisaged to allow for a number of potentially attractive attributes
compared to DG methods in designing compatible discretizations, preserving certain properties of the respective
exact solutions at the discrete level. This is, precisely, due to the fact that, in R-FEMs, the conforming discrete
solution ℰ (𝑉ℎ) is subordinate to the variational structure of the original PDE and, therefore, imitate (or even
retain) various properties of the exact problem. Such compatibility considerations are particularly pertinent
in nonlinear PDE problems or systems, requiring, e.g., monotonicity, positivity preservation, etc. At the same
time, since {0 ̸= 𝑣ℎ ∈ 𝑉ℎ : ℰ (𝑣ℎ) = 0} is allowed to be non-trivial by construction, R-FEM offers significant
flexibility by naturally separating the conformity-compatibility requirements of each problem, embedded into
the choice of recovery operators, from the approximation properties of the local finite element spaces, thus
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allowing for optimal approximation in very general numerical degrees of freedom scenarios, e.g., various types
of numerical degrees of freedom (nodal, modal, moments, etc.) for different elements in the same mesh. This
can be, for instance, of interest in the consistent treatment of bulk/interface variational problems. Moreover,
the uncoupling of conformity/compatibility from the local approximation space dimensions, can allow for new
stable pairs for mixed R-FEM formulations; this will be discussed in detail in [2].

As a first step towards this programme, in the present work we restrict the discussion to linear PDEs with
non-negative characteristic form, aiming to study the basic principles of construction of R-FEMs for polytopic
meshes, firstly in an abstract coercive setting and secondly in for an example of an R-FEM requiring the proof
of a discrete inf-sup condition for stability. As such, we leave the design of property/compatibility-preserving
R-FEMs for particular nonlinear problems as a future challenge.

The remainder of this work is structured as follows. In Section 2, we introduce the problem and define a set
of polytopic meshes. In Section 3, we introduce the FEM spaces and the recovery operators. Section 4 presents
the concepts and ideas for designing R-FEM. In Section 5, we define the R-FEM for the model problem. The
a priori error analysis for R-FEM is presented in Section 6. Finally, the practical performance of the proposed
R-FEM is tested through a series of numerical examples in Section 7.

2. Model problem

Throughout this work we denote the standard Lebesgue spaces by 𝐿𝑝(𝜔), 1 ≤ 𝑝 ≤ ∞, 𝜔 ⊂ R𝑑, 𝑑 = 2, 3,
with corresponding norms ‖ · ‖𝐿𝑝(𝜔); the norm of 𝐿2(𝜔) will be denoted by ‖·‖𝜔 for brevity. Let also 𝑊 𝑠,𝑝(𝜔)
and 𝐻𝑠(𝜔) := 𝑊 𝑠,2(Ω), be the Banach and Hilbertian Sobolev space of index 𝑠 ∈ R of real-valued functions
defined on 𝜔 ⊂ R𝑑, respectively, constructed via standard interpolation and/or duality procedures for 𝑠 /∈ N0.
For 𝐻𝑠(𝜔), we denote the corresponding norm and seminorm by ‖·‖𝑠,𝜔 and | · |𝑠,𝜔, respectively. We also denote
by 𝐻1

0 (𝜔) the space of functions in 𝐻1(𝜔) with vanishing trace on 𝜕𝜔.
Let Ω be a bounded open polygonal domain in R𝑑, 𝑑 ∈ N, with 𝜕Ω denoting its boundary. We consider

advection-diffusion-reaction problem

ℒ𝑢 ≡−∇ · (𝑎∇𝑢) + b · ∇𝑢 + 𝑐𝑢 = 𝑓 in Ω, (2.1)

where 𝑓 ∈ 𝐿2(Ω), b ∈
[︀
𝑊 1,∞(Ω)

]︀𝑑, 𝑐 ∈ 𝐿∞(Ω), for some definite diffusion tensor 𝑎 ∈ [𝐿∞(Ω)]𝑑×𝑑 satisfying

𝜁𝑇 𝑎(𝑥)𝜁 ≥ 0, for all 𝜁 ∈ R𝑑, (2.2)

for almost every 𝑥 ∈ Ω̄. This class of problem is often termed PDEs with non-negative characteristic form [35]
and includes elliptic, parabolic, first order hyperbolic as well as other non-standard types of PDEs, such as
ultra-parabolic and various classes of linear degenerate equations. In particular, the important family of linear
Kolmogorov–Fokker–Planck equations are of the form (2.1).

To prescribe suitable boundary conditions, we begin by splitting 𝜕Ω into

Γ0 :=
{︀
𝑥 ∈ 𝜕Ω : n𝑇 (𝑥)𝑎(𝑥)n(𝑥) > 0

}︀
,

and
Γ1 :=

{︀
𝑥 ∈ 𝜕Ω : n𝑇 (𝑥)𝑎(𝑥)n(𝑥) = 0

}︀
,

with n(𝑥) denoting the unit outward normal vector to Ω at 𝑥 ∈ 𝜕Ω; the latter is further subdivided into inflow

Γ− := {𝑥 ∈ Γ1 : b(𝑥) · n(𝑥) < 0} ,

and outflow Γ+ := Γ1∖Γ− parts of the boundary. The “elliptic” part of the boundary Γ0, is subdivided into ΓD

and ΓN, on which we can prescribe Dirichlet and Neumann boundary conditions, respectively. For simplicity,
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we assume that |ΓD| > 0, with | · | denoting the Hausdorff measure with the dimension of its argument, and
that b(𝑥) · n(𝑥) ≥ 0 for almost all 𝑥 ∈ ΓN. To complete the problem, we impose the boundary conditions:

𝑢 = 𝑔D, on ΓD ∪ Γ−,

(𝑎∇𝑢) · n = 𝑔N, on ΓN,
(2.3)

for some known 𝑔D ∈ 𝐿2(𝜕Ω) and 𝑔N ∈ 𝐻1/2(𝜕Ω). For convenience, we also define the set

Γ−D := {𝑥 ∈ 𝜕Ω : b(𝑥) · n(𝑥) < 0} ,

i.e., the inflow part of the boundary including also, possibly, points of ΓD. Similarly, we define Γ+
N = 𝜕Ω∖Γ−D.

Additionally, we assume that the following positivity hypothesis holds: there exists a positive constant 𝛾0 such
that

𝑐0(𝑥) := 𝑐(𝑥)− 1
2
∇ · b(𝑥) ≥ 𝛾0 a.e. 𝑥 ∈ Ω. (2.4)

The well-posedness of the boundary value problem (2.1), (2.3) has been studied in [29].

3. Finite element spaces and recovery operators

Let 𝒯 be a subdivision of Ω into disjoint polygonal elements for 𝑑 = 2 or to disjoint polyhedral elements
for 𝑑 = 3; henceforth, these will be collectively referred to as polytopic elements. For simplicity, we assume
that the subdivision 𝒯 can be further subdivided into a conforming (i.e., no hanging nodes) and shape-regular
simplicial triangulation ̃︀𝒯 (see e.g., [15], p. 124), that Ω̄ = ∪𝑇∈𝒯 𝑇 . Such a setting can be constructed, e.g., by
agglomerating simplicial elements into polytopic ones.

By Γ we shall denote the union of all (𝑑−1)-dimensional faces associated with the subdivision 𝒯 including the
boundary. Further, we set Γint := Γ∖𝜕Ω. Correspondingly, we define ̃︀Γ and ̃︀Γint for ̃︀𝒯 . Note that, by construction,
Γ ⊂ ̃︀Γ and Γint ⊂ ̃︀Γint.

For a nonnegative integer 𝑟, we denote the set of all polynomials of total degree at most 𝑟 by 𝒫𝑟(𝑇 ). For
𝑟 ≥ 1, we consider the finite element space

𝑉 𝑟
ℎ :=

{︀
𝑣 ∈ 𝐿2(Ω) : 𝑣|𝑇 ∈ 𝒫𝑟(𝑇 ), 𝑇 ∈ 𝒯

}︀
. (3.1)

We stress that 𝑉 𝑟
ℎ is element-wise discontinuous polynomial with respect to the polytopic mesh 𝒯 ; in this context,

the dimension of 𝑉 𝑟
ℎ coincides with the dimension of discontinuous Galerkin finite element spaces on polytopic

meshes, cf., [10, 11, 13]. In particular, the dimension of 𝑉 𝑟
ℎ is not dependent on the number of vertices of the

mesh 𝒯 . Correspondingly, we define

̃︀𝑉 𝑟
ℎ :=

{︁
𝑣 ∈ 𝐿2(Ω) : 𝑣|𝑇 ∈ 𝒫𝑟(𝑇 ), 𝑇 ∈ ̃︀𝒯 }︁ ,

the respective discontinuous polynomial space on the sub-triangulation ̃︀𝒯 . Note that 𝑉 𝑟
ℎ ⊂ ̃︀𝑉 𝑟

ℎ . Moreover, we
define the broken Sobolev space 𝐻1(Ω, 𝒯 ) with respect to the subdivision 𝒯 as follows:

𝐻1(Ω, 𝒯 ) :=
{︀
𝑢 ∈ 𝐿2(Ω) : 𝑢|𝑇 ∈ 𝐻1(𝑇 ), 𝑇 ∈ 𝒯

}︀
.

Further, let 𝑇+, 𝑇− ∈ 𝒯 be two (generic) elements sharing a facet 𝑒 := 𝜕𝑇+ ∩ 𝜕𝑇− ⊂ Γint with respective
outward normal unit vectors n+ and n− on 𝑒. For a function 𝑣 : Ω → R that may be discontinuous across Γint,
we set 𝑣+ := 𝑣|𝑒⊂𝜕𝑇+ , 𝑣− := 𝑣|𝑒⊂𝜕𝑇− , and we define the jump and average by

[𝑣] := 𝑣+n+ + 𝑣−n− and {𝑣} :=
1
2
(︀
𝑣+ + 𝑣−

)︀
;
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if 𝑒 ∈ 𝜕𝑇 ∩ 𝜕Ω, we set [𝑣] := 𝑣+n. Also, we define ℎ𝑇 := diam(𝑇 ) and we set h : Ω∖Γ → R, with h|𝑇 = ℎ𝑇 ,
𝑇 ∈ 𝒯 , 𝑒 ⊂ Γint and h|𝑒 = ℎ𝑇 for 𝑒 ⊂ 𝜕𝑇 ∩ 𝜕Ω. Similarly, we set ̃︀h for the meshsize function of ̃︀𝒯 . Throughout
this work, we assume that the families of meshes are locally quasi-uniform and that there exists constant 𝑐Δ > 1,
independent of the meshsizes such that

𝑐−1
Δ h ≤ ̃︀h ≤ 𝑐Δh,

uniformly as h → 0. Moreover, for the restriction of a function 𝑣 on an element 𝑇 ∈ 𝒯 , 𝑣|𝑇 : 𝑇 → R, which may
be discontinuous across 𝜕𝑇 , we shall use the notational convention that 𝑣+|𝜕𝑇 signifies the trace from within
𝑇 while 𝑣−|𝜕𝑇 signifies the trace from within Ω∖𝑇 . Using this convention we also define the signed jump (also
known as upwind jump in the discontinuous Galerkin literature) on each face 𝑒 by

⌊𝑣⌋|𝑒 := 𝑣+|𝑒 − 𝑣−|𝑒;

note that | [𝑣] | = |⌊𝑣⌋|.
Also, we shall denote by 𝜕−𝑇 and by 𝜕+𝑇 the inflow and outflow parts of the boundary of an element 𝑇 ,

defined as
𝜕−𝑇 := {𝑥 ∈ 𝜕𝑇 : b(𝑥) · n(𝑥) < 0} and 𝜕+𝑇 := {𝑥 ∈ 𝜕𝑇 : b(𝑥) · n(𝑥) > 0} ,

respectively.
For the definition of the proposed method, we shall require a recovery operator of the form

ℰ : 𝑉 𝑟
ℎ → 𝑉 ∩ ̃︀𝑉 𝑟

ℎ , (3.2)

for some non-negative integer 𝑟, mapping element-wise discontinuous functions into functions in the solution
space for the boundary value problem 𝑉 , for some 𝑟 ∈ N0. When the diffusion tensor 𝑎 is strictly positive
definite (i.e., when (2.2) holds with strict inequality) we may take 𝑉 = 𝐻1(Ω).

Recovery operators of the form (3.2) have appeared in various settings in the theory of finite element methods,
e.g., [6, 16, 25, 32, 36, 40]. They are typically used to recover a “conforming” function from a “non-conforming”
one, often under minimal regularity requirements.

A popular and very practical example for ℰ is the nodal averaging operator for which the following celebrated
stability result was proven by Karakashian and Pascal in [32].

Lemma 3.1. Let 𝒯 a polytopic mesh and ̃︀𝒯 its related sub-triangulation satisfying the above assumptions.
Denoting by 𝒩 the set of all Lagrange nodes of ̃︀𝑉 𝑟

ℎ ∩𝐻1(Ω), the operator ℰ𝑟 : 𝑉 𝑟
ℎ → ̃︀𝑉 𝑟

ℎ ∩𝐻1(Ω) is defined by:

ℰ𝑟(𝑣)(𝜈) :=
1
|𝜔𝜈 |

∑︁
𝑇∈𝜔𝜈

𝑣|𝑇 (𝜈),

with 𝜔𝜈 :=
⋃︀

𝑇∈𝒯 :𝜈∈𝑇 𝑇, the set of elements sharing the node 𝜈 ∈ 𝒩 and |𝜔𝜈 | their cardinality. Then, the
following bound holds ∑︁

𝑇∈𝒯
|𝑣 − ℰ𝑟(𝑣)|2𝛼,𝑇 ≤ 𝐶𝛼

⃦⃦⃦
h1/2−𝛼 [𝑣]

⃦⃦⃦2

Γint

, (3.3)

with 𝛼 ∈ N0, 𝐶|𝛼| ≡ 𝐶|𝛼|(𝑟) > 0 a constant independent of h, 𝑣 and ̃︀𝒯 , but depending on the shape-regularity of̃︀𝒯 , on 𝑐Δ, and on the polynomial degree 𝑟.

Proof. See Karakashian and Pascal [32]. �

The bound (3.3) shows, in particular, that
⃦⃦⃦
h−1/2 [𝑣]

⃦⃦⃦2

Γint

is a norm on the orthogonal complement 𝑊 𝑟
ℎ of̃︀𝑉 𝑟

ℎ ∩𝐻1(Ω) in 𝑉 𝑟
ℎ with respect to the standard 𝐻1-inner product.
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It is possible to make a number of different choices

ℰ : 𝑉 𝑟
ℎ → 𝑉 ∩ ̂︀𝑉 𝑠

ℎ , (3.4)

for instance, for ̂︀𝑉 𝑠
ℎ say a non-conforming finite element space, e.g., Crouzeix–Raviart elements and 𝑠 may be

in general different to 𝑟. Indeed, various choices of ℰ may give rise to different methods. As the present work
focuses on the development of conforming methods on polytopic meshes, we prefer to keep the presentation
simple and consider recovery operators into conforming element-wise polynomials of the same order (𝑟 = 𝑠)
but, crucially, posed on different meshes. For an investigation of the case 𝑟 ̸= 𝑠 on standard element shapes, we
refer to [24].

Remark 3.2. The proposed R-FEM scheme depends on the recovery operator which maps piecewise discon-
tinuous polynomials defined on the polytopic elements to the conforming piecewise polynomials defined on the
simplicial sub-meshes. The current mesh assumptions on the existence of a shape-regular sub-triangulation are
necessitated to assert the validity of the recovery stability result Lemma 3.1. It would be an important direction
of future research to investigate different stabilization terms, which give rise to norms in the recovery kernel
(other than the standard jump penalty) that, in turn, will allow for small faces to be incorporated in the theory,
to allow for mesh generality in the lines of other polytopic Galerkin methods, e.g., [5, 7, 10–12]. Nevertheless,
R-FEM works for very general polytopic meshes: in Section 7, we test the convergence of R-FEM for a numerical
example (Example 5) on meshes designed by agglomerating much finer triangular meshes, resulting to many
small faces per element.

For the error analysis below, we require an extension of the domain of definition of the recovery operator to

ℰ : ̃︀𝑉 𝑟
ℎ → 𝑉 ∩ ̂︀𝑉 𝑠

ℎ ;

for instance, in the case of the averaging operator of Lemma 3.1 the extension is trivial and is given by the same
formula.

4. Design concepts for recovered finite element methods

Equipped with a finite element space framework and the concept of recovery operators, we can now describe
some general principles in the design of recovered finite element methods on polytopic meshes.

To this end, we consider a generic conforming Galerkin finite element method for the problem (2.1), (2.3),
which is applicable on a simplicial mesh, say ̃︀𝒯 , with respective finite element space ̃︀𝑉ℎ ⊂ 𝑉 , reading: find̃︀𝑢ℎ ∈ ̃︀𝑉ℎ, such that

𝑎ℎ (̃︀𝑢ℎ, ̃︀𝑣ℎ) = ℓℎ (̃︀𝑣ℎ) , for all ̃︀𝑣ℎ ∈ ̃︀𝑉ℎ; (4.1)

an example of a stable such conforming method is the streamline upwind Petrov–Galerkin approach presented
and analysed in [29]. Note that the test and trial spaces for (4.1) are the same for simplicity. This can be
achieved, for instance, by enforcing essential boundary conditions weakly. The abstract analysis below, however,
generalizes immediately also to the case of different trial and test spaces as is often required in the treatment of
non-homogeneous essential boundary conditions. Also, the space 𝑉 of exact solutions is an appropriate subspace
of the graph space 𝐺 :=

{︀
𝑣 ∈ 𝐿2(Ω) : 𝑏 · ∇𝑣 ∈ 𝐿2(Ω) and 𝑎∇𝑣 ∈ 𝐿2(Ω)

}︀
.

Suppose also that the bilinear form 𝑎ℎ is coercive in ̃︀𝑉ℎ with respect to an “energy”-like norm ‖·‖𝑎, i.e., for
all 𝑤 ∈ ̃︀𝑉ℎ, there exists a 𝐶coer > 0, such that

𝐶coer ‖𝑤‖2𝑎 ≤ 𝑎ℎ(𝑤, 𝑤), (4.2)

and that 𝑎 is also continuous in 𝑉 × ̃︀𝑉ℎ, in the sense that for all 𝑧 ∈ 𝑉 and all 𝑤 ∈ ̃︀𝑉ℎ, there exists a constant
𝐶cont > 0, such that

|𝑎ℎ(𝑧, 𝑤)| ≤ 𝐶cont|‖𝑧|‖𝑎 ‖𝑤‖𝑎 , (4.3)
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for some norm |‖·|‖𝑎, possibly different to ‖·‖𝑎. Of course, this is relevant if |‖·|‖𝑎 is stronger than ‖·‖𝑎 for,
otherwise, we can replace |‖·|‖𝑎 by ‖·‖𝑎 throughout this section. Hence, without any loss of generality in this
context, we henceforth assume ‖𝑤‖𝑎 ≤ 𝐶eq|‖𝑤|‖𝑎 for all 𝑤 ∈ 𝑉 with 𝐶 > 0 independent of 𝑤.

A corresponding recovered finite element method (R-FEM) can be, then, defined on a polytopic mesh 𝒯 (with
respective finite element space 𝑉 𝑟

ℎ ), which admits a subtriangulation ̃︀𝒯 (and a respective space ̃︀𝑉 𝑟
ℎ ), as discussed

in detail in Section 3 with the help of a recovery operator ℰ : 𝑉 𝑟
ℎ → 𝑉 ∩ ̃︀𝑉 𝑟

ℎ . To this end, we consider the R-FEM:
find 𝑢ℎ ∈ 𝑉 𝑟

ℎ (and, consequently, also ℰ (𝑢ℎ) ∈ 𝑉 ∩ ̃︀𝑉 𝑟
ℎ ) such that

𝑎ℎ (ℰ (𝑢ℎ) , ℰ (𝑣ℎ)) + 𝑠ℎ (𝑢ℎ, 𝑣ℎ) = ℓℎ (ℰ (𝑣ℎ)) , for all 𝑣ℎ ∈ 𝑉 𝑟
ℎ , (4.4)

for 𝑠ℎ :
(︁̃︀𝑉 𝑟

ℎ ∩𝐻1(Ω, 𝒯 )
)︁
×
(︁̃︀𝑉 𝑟

ℎ ∩𝐻1(Ω, 𝒯 )
)︁
→ R a bilinear form, henceforth referred to as the stabilization,

whose role is to remove the possible rank-deficiency due to the use of a recovery operator. Note that 𝑉 𝑟
ℎ ⊂̃︀𝑉 𝑟

ℎ ∩𝐻1(Ω, 𝒯 ).
An immediate choice for stabilization can be:

𝑠ℎ (𝑤ℎ, 𝑣ℎ) = 𝐶

∫︁
Ω

h𝑚 (𝑤ℎ − ℰ (𝑤ℎ)) (𝑣ℎ − ℰ (𝑣ℎ)) d𝑥, (4.5)

for 𝑣ℎ ∈ 𝑉 𝑟
ℎ , with 𝑚 ∈ R a real number, to be determined by the error analysis in each case. When ℰ is as in

Lemma 3.1, (3.3) allows also to consider the alternative stabilization

𝑠ℎ (𝑤ℎ, 𝑣ℎ) = 𝐶

∫︁
Γint

h𝑚−1 [𝑤ℎ] · [𝑣ℎ] d𝑠. (4.6)

To keep the discussion general at this point, we avoid prescribing a specific stabilization, and we prefer to make
a structural assumption on 𝑠ℎ instead.

Assumption 4.1. The stabilization bilinear form satisfies

𝑠ℎ (𝑤ℎ, 𝑣ℎ) ≤ 𝐶stab (𝑠ℎ (𝑤ℎ, 𝑤ℎ))1/2 (𝑠ℎ (𝑣ℎ, 𝑣ℎ))1/2 for all 𝑤ℎ, 𝑣ℎ ∈ 𝑉 𝑟
ℎ ,

for some constant 𝐶stab > 0 independent of 𝑤ℎ, 𝑣ℎ and of h.

We also make the following stability and consistency assumptions required in the error analysis below.

Assumption 4.2.(A) There exists a “broken” version of ‖·‖𝑎, say ‖·‖𝑎,𝒯 , elementwise with respect to 𝒯 , for
which we have ‖𝑤‖𝑎,𝒯 = ‖𝑤‖𝑎 whenever 𝑤 ∈ ̃︀𝑉 𝑟

ℎ ∩ 𝑉 . Moreover, for 𝐶ker, 𝑐ker > 0 representing constants
independent of h and of 𝑤 the stabilization 𝑠ℎ satisfies

𝑐ker𝑠ℎ(𝑤, 𝑤) ≤ ‖𝑤 − ℰ(𝑤)‖2𝑎,𝒯 ≤ 𝐶ker𝑠ℎ(𝑤, 𝑤) for all 𝑤 ∈ ̃︀𝑉 𝑟
ℎ ∩𝐻1(Ω, 𝒯 ).

That is, this equivalence holds for all elementwise polynomials defined over the simplicial submesh 𝒯 that
are continuous within in each element 𝑇 of the related polytopic mesh.

(B) Assume that there exists a “broken” version of |‖·|‖𝑎, denoted by |‖·|‖𝑎,𝒯 , elementwise with respect to 𝒯 , for
which we have:

(1) |‖𝑤|‖𝑎,𝒯 = |‖𝑤|‖𝑎 whenever 𝑤 ∈ ̃︀𝑉 𝑟
ℎ ∩ 𝑉 and

(2) ‖𝑤‖𝑎,𝒯 ≤ 𝐶|‖𝑤|‖𝑎,𝒯 for all 𝑤 ∈ ̃︀𝑉 𝑟
ℎ ∩𝐻1(Ω, 𝒯 ) for some 𝐶 > 0 independent of 𝑤 and h.

Now given the PDE problem (2.1), (2.3) in weak form, reading: find 𝑢 ∈ 𝑉 such that

𝑎(𝑢, 𝑣) = ℓ(𝑣) for all 𝑣 ∈ 𝑉. (4.7)

The following best approximation result holds.
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Lemma 4.3. Let 𝑢 ∈ 𝑉 ∩𝐻1(Ω, 𝒯 ) satisfy (4.7) and, for 𝑟 ≥ 1, suppose 𝑢ℎ ∈ 𝑉 𝑟
ℎ is the R-FEM approximation

with a stabilisation term satisfying Assumption 4.1 then we have

1
2
‖𝑢− ℰ (𝑢ℎ)‖2𝑎 + 𝐶−1

coer𝑠ℎ (𝑢ℎ, 𝑢ℎ) ≤ inf
𝑣ℎ∈𝑉 𝑟

ℎ

(︂(︂
1 + 2

𝐶2
cont

𝐶2
coer

)︂
|‖𝑢− ℰ (𝑣ℎ)|‖2𝑎 +

𝐶2
stab

𝐶coer
𝑠ℎ (𝑣ℎ, 𝑣ℎ)

)︂
+ INC(𝑢),

(4.8)

where

INC(𝑢) :=
2

𝐶2
coer

sup
0̸= ̃︀𝑤ℎ∈ℰ(𝑉 𝑟

ℎ )

(︃⃒⃒
ℓℎ ( ̃︀𝑤ℎ)− ℓ ( ̃︀𝑤ℎ)

⃒⃒
‖ ̃︀𝑤ℎ‖𝑎

+

⃒⃒
𝑎 (𝑢, ̃︀𝑤ℎ)− 𝑎ℎ (𝑢, ̃︀𝑤ℎ)

⃒⃒
‖ ̃︀𝑤ℎ‖𝑎

)︃2

,

and 𝐶coer, 𝐶cont are the coercivity and continuity constants defined in (4.2), (4.3) independent of 𝑢, 𝑢ℎ, ℎ and
of ℰ.

Proof. With 𝜉 := ℰ (𝑣ℎ − 𝑢ℎ) ∈ ̃︀𝑉 𝑟
ℎ ∩ 𝑉 =: ̃︀𝑉ℎ, coercivity (4.2) implies

𝐶coer ‖𝜉‖2𝑎 + 𝑠ℎ (𝑢ℎ, 𝑢ℎ) ≤ 𝑎ℎ(𝜉, 𝜉) + 𝑠ℎ (𝑢ℎ, 𝑢ℎ) ,

and hence, in view of (4.4), (4.7) adding and subtracting appropriate terms yields

𝐶coer ‖𝜉‖2𝑎 + 𝑠ℎ (𝑢ℎ, 𝑢ℎ) ≤ 𝑎ℎ(ℰ (𝑣ℎ) , 𝜉)− ℓℎ(𝜉) + 𝑠ℎ (𝑢ℎ, 𝑣ℎ)
≤ 𝑎ℎ(ℰ (𝑣ℎ)− 𝑢, 𝜉) + 𝑠ℎ (𝑢ℎ, 𝑣ℎ) + ℓ(𝜉)− ℓℎ(𝜉) + 𝑎ℎ(𝑢, 𝜉)− 𝑎(𝑢, 𝜉).

Making use of the continuity (4.3) of 𝑎ℎ along with Assumption 4.1 we see

‖𝜉‖2𝑎 +
1

𝐶coer
𝑠ℎ (𝑢ℎ, 𝑢ℎ) ≤ 𝐶cont

𝐶coer
|‖𝑢− ℰ (𝑣ℎ)|‖𝑎 ‖𝜉‖𝑎 +

𝐶stab

𝐶coer
(𝑠ℎ (𝑢ℎ, 𝑢ℎ))1/2 (𝑠ℎ (𝑣ℎ, 𝑣ℎ))1/2

+
1

𝐶coer
(ℓ(𝜉)− ℓℎ(𝜉) + 𝑎ℎ(𝑢, 𝜉)− 𝑎(𝑢, 𝜉)) .

Finally, invoking Hölder’s inequality in standard fashion shows the abstract bound

‖𝜉‖2𝑎 +
1

𝐶coer
𝑠ℎ (𝑢ℎ, 𝑢ℎ) ≤ 2

𝐶2
cont

𝐶2
coer

|‖𝑢− ℰ (𝑣ℎ)|‖2𝑎 +
𝐶2

stab

𝐶coer
𝑠ℎ (𝑣ℎ, 𝑣ℎ) + INC(𝑢).

The result follows by the triangle inequality and noticing that 𝑣ℎ was arbitrary, together with ‖𝑤‖𝑎 ≤ 𝐶eq|‖𝑤|‖𝑎

for all 𝑤 ∈ 𝑉 . �

To arrive at an a priori error bound, we make the following (rather mild and immediately satisfiable by all
the scenarios we have in mind) additional set of assumptions.

Theorem 4.4. Assume that the recovery operator ℰ in the definition of R-FEM (4.4) is such that ℰ(𝑣) = 𝑣 for
all 𝑣 ∈ ̃︀𝑉 𝑟

ℎ ∩ 𝑉 and, also, that it is stable with respect to the |‖𝑤|‖𝑎,𝒯 -norm, viz.,

|‖ℰ(𝑤)|‖𝑎 ≤ 𝐶|‖𝑤|‖𝑎,𝒯 ∀𝑤 ∈ 𝑉 𝑟
ℎ .

Assume that the exact solution satisfies 𝑢|𝑇 ∈ 𝐻𝑘(𝑇 ), 𝑇 ∈ 𝒯 , for some 𝑘 ≥ 2, and that any inconsistency of the
Galerkin method posed on simplices (4.1) is of optimal order, viz.,

INC(𝑢) ≤ 𝐶
∑︁
𝑇∈̃︀𝒯

h2𝑠−𝛼|𝑢|2𝑠,𝑇 ,

for 1 ≤ 𝑠 = min {𝑘, 𝑟 + 1}, 𝛼 ∈ {1, 2} depending on the structure of the diffusion tensor 𝑎, with constant 𝐶 > 0,
independent of 𝑢 and h. Then, we have the bound

‖𝑢− ℰ (𝑢ℎ)‖2𝑎 + 𝑠ℎ (𝑢ℎ, 𝑢ℎ) ≤ 𝐶
∑︁
𝑇∈̃︀𝒯

h2𝑠−𝛼|𝑢|2𝑠,𝑇 . (4.9)
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Proof. The triangle inequality, Assumption 4.2 along with the optimality of the inconsistency terms imply

‖𝑢− ℰ (𝑢ℎ)‖2𝑎 + 𝑠ℎ (𝑢ℎ, 𝑢ℎ) ≤ 𝐶|‖𝑢−Π𝑢|‖2𝑎,𝒯 + 𝐶𝑠ℎ (Π𝑢, Π𝑢) + 𝐶
∑︁
𝑇∈̃︀𝒯

h2𝑠−𝛼|𝑢|2𝑠,𝑇 , (4.10)

with Π : 𝐿2(Ω) → 𝑉 𝑟
ℎ denoting the orthogonal 𝐿2-projection operator onto the polytopic finite element space

𝑉 𝑟
ℎ . Let also ̃︀Π : 𝐿2(Ω) → ̃︀𝑉 𝑟

ℎ ∩𝑉 be the respective orthogonal 𝐿2-projection onto the conforming finite element
space of the subtriangulation ̃︀𝒯 . The above mesh assumptions on 𝒯 and on ̃︀𝒯 ensure that Π and ̃︀Π admit
optimal approximation properties.

From hypothesis, we have ℰ(̃︀Π𝑢) = ̃︀Π𝑢. From Assumption 4.2, it then follows 𝑠ℎ

(︁̃︀Π𝑢, ̃︀Π𝑢
)︁

= 0. Now, from
Assumption 4.1, we then also have

𝑠ℎ

(︁̃︀Π𝑢, 𝑣
)︁

= 𝑠ℎ

(︁
𝑣, ̃︀Π𝑢

)︁
= 0 for any 𝑣 ∈ ̃︀𝑉 𝑟

ℎ ∩𝐻1(Ω, 𝒯 ).

Using this, together with Assumption 4.2 and the stability of the recovery operator, we have, respectively,

𝑠ℎ (Π𝑢, Π𝑢) = 𝑠ℎ

(︁̃︀Π𝑢−Π𝑢, ̃︀Π𝑢−Π𝑢
)︁

≤ 𝑐−1
ker

⃦⃦⃦̃︀Π𝑢−Π𝑢− ℰ
(︁̃︀Π𝑢−Π𝑢

)︁⃦⃦⃦2

𝑎,𝒯

≤ 𝐶

(︂⃦⃦⃦̃︀Π𝑢−Π𝑢
⃦⃦⃦2

𝑎,𝒯
+ |‖̃︀Π𝑢−Π𝑢|‖2𝑎,𝒯

)︂
≤ 𝐶|‖̃︀Π𝑢−Π𝑢|‖2𝑎,𝒯

≤ 𝐶
(︁
|‖𝑢− ̃︀Π𝑢|‖𝑎,𝒯 + |‖𝑢−Π𝑢|‖𝑎,𝒯

)︁2

.

The result now follows by appealing to the optimal approximation properties of Π and ̃︀Π. �

The nature of the diffusion tensor 𝑎 determines the strength of the norms ‖·‖𝑎 and |‖·|‖𝑎. For instance, for
the case of the streamline upwinded Petrov Galerkin method of [29], we can take

‖𝑣‖𝑎 = |‖𝑣|‖𝑎 =
(︂

𝛾0 ‖𝑣‖2Ω +
⃦⃦√

𝜏ℒ𝑣
⃦⃦2

Ω
+
⃦⃦⃦√

𝑏 · 𝑛𝑢
⃦⃦⃦2

Γ−∪Γ+

)︂1/2

,

and

|‖𝑣|‖𝑎,𝒯 =

(︃
𝛾0 ‖𝑣‖2Ω +

∑︁
𝑇∈𝒯

⃦⃦√
𝜏ℒ𝑣

⃦⃦2

𝑇
+
⃦⃦⃦√

𝑏 · 𝑛𝑢
⃦⃦⃦2

Γ−∪Γ+

)︃1/2

,

with 𝜏 |𝑇 = 𝑐ℎ𝑇 /𝑝, for some appropriate 𝑐 > 0. When no diffusion is present (𝑎 ≡ 0), Theorem 4.4 holds with
𝛼 = 1, while when 𝑎 ̸= 0, optimal rates are still given for 𝛼 = 2.

Corollary 4.5. With the assumptions of Theorem 4.4, we also have the following bound:

‖𝑢− 𝑢ℎ‖2𝑎,𝒯 + 𝑠ℎ (𝑢ℎ, 𝑢ℎ) ≤ 𝐶
∑︁
𝑇∈̃︀𝒯

h2𝑠−𝛼|𝑢|2𝑠,𝑇 , (4.11)

for 1 ≤ 𝑠 = min {𝑘, 𝑟}, with 𝐶 positive constant, independent of 𝑢 and of h.

Proof. The triangle inequality implies

‖𝑢− 𝑢ℎ‖𝑎,𝒯 ≤ ‖𝑢− ℰ (𝑢ℎ)‖𝑎 + ‖ℰ (𝑢ℎ)− 𝑢ℎ‖𝑎,𝒯 .

Using, now, Assumption 4.2 we have

‖ℰ (𝑢ℎ)− 𝑢ℎ‖𝑎,𝒯 ≤ 𝐶ker𝑠ℎ (𝑢ℎ, 𝑢ℎ) ,

the result then follows. �
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5. An alternative recovered finite element method

To highlight further the potential of the proposed R-FEM framework applied to both standard/simplicial/box
and, in general, polytopic meshes, we present an alternative R-FEM. This method is motivated by the desire
to have a conforming approximation for the second order part of the differential operator and an upwinded
discontinuous Galerkin discretization of the first order terms in (2.1). The developments below also showcase
an R-FEM error analysis using inf-sup stability rather than coercivity results.

For sake of the simplicity of exposition, we assume that each entries of the diffusion tensor 𝑎 are constant on
each element 𝑇 ∈ 𝒯 ,i.e.,

𝑎 ∈
[︀
𝑉 0

ℎ

]︀𝑑×𝑑

sym
. (5.1)

Additionally, we assume the following standard assumption on b:

b · ∇ℎ𝜉 ∈ 𝑉 𝑟
ℎ ∀𝜉 ∈ 𝑉 𝑟

ℎ . (5.2)

cf., [11, 31]. For given operator (3.2), the new recovered finite element method reads: find 𝑢ℎ ∈ 𝑉 𝑟
ℎ such that

𝐵 (𝑢ℎ, 𝑣ℎ) = ℓ (𝑣ℎ) , for all 𝑣ℎ ∈ 𝑉 𝑟
ℎ , (5.3)

where

𝐵 (𝑢ℎ, 𝑣ℎ) :=
∫︁

Ω

(𝑎∇ℰ (𝑢ℎ) · ∇ℰ (𝑣ℎ) + b · ∇ℎ𝑢ℎℰ (𝑣ℎ) + 𝑐ℰ (𝑢ℎ) ℰ (𝑣ℎ)) d𝑥

−
∫︁

ΓD

(𝑎∇ℰ (𝑢ℎ) · n ℰ (𝑣ℎ) + 𝑎∇ℰ (𝑣ℎ) · n ℰ (𝑢ℎ)− 𝜎Dℰ (𝑢ℎ) ℰ (𝑣ℎ)) d𝑠

−
∫︁

Γ−D

(b · n) 𝑢ℎℰ (𝑣ℎ) d𝑠−
∑︁
𝑇∈𝒯

∫︁
𝜕−𝑇∖𝜕Ω

(b · n) ⌊𝑢ℎ⌋ℰ (𝑣ℎ) d𝑠

+ 𝑠𝑎,𝑐
ℎ (𝑢ℎ, 𝑣ℎ) + 𝑠𝑏

ℎ (𝑢ℎ, 𝑣ℎ) ,

(5.4)

and

ℓ (𝑣ℎ) :=
∫︁

Ω

𝑓ℰ (𝑣ℎ) d𝑥−
∫︁

ΓD

𝑔D (𝑎∇ℰ (𝑣ℎ) · n− 𝜎Dℰ (𝑣ℎ)) d𝑠 +
∫︁

ΓN

𝑔N ℰ (𝑣ℎ) d𝑠

−
∫︁

Γ−D

(b · n) 𝑔Dℰ (𝑣ℎ) d𝑠,

with 𝑠𝑚
ℎ (·, ·) : 𝑉 𝑟

ℎ × 𝑉 𝑟
ℎ → R, 𝑚 ∈ {{𝑎, 𝑐} , 𝑏} denoting symmetric bilinear forms, henceforth referred to as

stabilisations, and 𝜎D : ΓD → R a positive penalty function defined precisely below that weakly enforces the
Dirichlet boundary conditions.

This motivates the following choice for the elliptic stabilisation bilinear form:

𝑠𝑎,𝑐
ℎ (𝑢ℎ, 𝑣ℎ) :=

∫︁
Γint

𝜎𝑎,𝑐 [𝑢ℎ] · [𝑣ℎ] d𝑠, (5.5)

for some non-negative function 𝜎𝑎,𝑐 : Γint → R, that will also be defined below.
To ensure that sufficient numerical diffusion is included in the proposed method for the case of small or

vanishing diffusion tensor 𝑎, we select

𝑠𝑏
ℎ (𝑢ℎ, 𝑣ℎ) :=

∫︁
Γint

(𝜎𝑏,1 [𝑢ℎ] · [𝑣ℎ] + 𝜎𝑏,2 [h (b · ∇𝑢ℎ)] · [h (b · ∇𝑣ℎ)]) d𝑠, (5.6)

for non-negative functions 𝜎𝑏,1, 𝜎𝑏,2 : Γint → R, to be selected below. We note that (5.6) follows the spirit of the,
so-called, continuous interior penalty stabilisation procedure due to Douglas and Dupont [22] and to Burman
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and Hansbo [9]. Crucially, however, the trial and test functions 𝑢ℎ and 𝑣ℎ in the present R-FEM context are
discontinuous, cf., [8] also. The inconsistency introduced by the streamline derivative jump term in (5.6) will
be dealt with in the a priori error analysis below.

Some remarks on the method are in order. To accommodate for the potentially locally changing nature of the
differential operator, we have opted for weak imposition of essential boundary conditions, following the classical
ideas from [34, 38]. For the case of elliptic problems, strong imposition of essential boundary conditions in the
spirit of [24] is by all means possible also. We note, however, that since essential boundary values are known
the above is actually a conforming method for ℰ (𝑢ℎ).

Also, we have opted for a, to the best of our knowledge, new method for the discretisation of the first order
term. This is to highlight the flexibility of R-FEM in incorporating different discretisations of various terms of
the differential operator. More importantly, since in the absence of diffusion, the exact solution 𝑢 may exhibit
jump discontinuities across characteristic surfaces, we prefer not to recover 𝑢ℎ in the discretisation of the first
order term. We stress that more classical choices, such as streamline diffusion-type and/or continuous interior
penalty-type treatment of the first order term are by all means possible. Indeed, certain such choices coincide
with the standard/classical conforming finite element versions for ℰ (𝑢ℎ) when applied to standard triangular
meshes (cf., the discussion in Section 3 of [24]).

We also remark on the assumptions on the diffusion tensor (5.1) and convection field (5.2). The above R-FEM
method (5.3) can be easily extended to general positive semi-definite diffusion 𝑎 ∈ [𝐿∞(Ω)]𝑑×𝑑

sym following the
inconsistent formulation introduced in [23]. For the general convection field b, we would need to modify (5.6)
by setting

𝑠𝑏
ℎ (𝑢ℎ, 𝑣ℎ) =

∫︁
Γint

(𝜎𝑏,1 [𝑢ℎ] · [𝑣ℎ] + 𝜎𝑏,2 [hΠ (b · ∇𝑢ℎ)] · [hΠ (b · ∇𝑣ℎ)]) d𝑠, (5.7)

which will make the stability proof and error analysis more complicated. We refrain from doing this here to
focus on the key ideas.

Finally, some comments on the practicality of the R-FEM framework for polytopic meshes, compared to
other approaches is in order. The total number of unknowns for the R-FEM depends only on the number of
polygonal elements and on the local polynomial degree, but is independent of the number of faces per element.
Therefore, R-FEM may be advantageous in when elements with many faces are present in the mesh and, thus,
be a “conforming” alternative to interior penalty discontinuous Galerkin methods (IP-dG) for many-face-per-
element polytopic meshes [12]; see also the numerical experiment in Section 7.5.

At the same time, R-FEM admits a wider stencil than an IP-dG method on the same mesh. To counteract this,
it would certainly be an interesting direction of future research to derive hybridized versions of R-FEM in the
spirit of [19,21]. Nonetheless, R-FEM is primarily envisaged to eventually be able to tackle problems requiring
control of compatibility properties of the approximated state variable (such as positivity, monotonicity and
conservation properties) on meshes which result from simplicial mesh agglomeration, whereby the individual
element shapes are difficult to control. To that end, the proof of R-FEM stability under face and/or edge
degeneration is a very interesting direction of future research.

6. A PRIORI error analysis

We dedicate this section to the analysis of the method introduced in Section 5. The main ingredient to this
is an inf-sup condition over suitable norms. We let 𝛼, 𝛽, 𝛾 : Ω → R such that

𝛼|𝑇 := |
√

𝑎|22|𝑇 , 𝛽|𝑇 := ‖b‖𝐿∞(𝑇 ) , 𝛾|𝑇 := ‖𝑐‖𝐿∞(𝑇 ) , (6.1)

over each element 𝑇 ∈ 𝒯 . We define the stabilisation parameter

𝜎D := 𝐶𝜎𝛼𝑟2/h, ̃︀𝜎D|𝑇 := max
𝑒⊂𝜕𝑇

𝜎D|𝑒. (6.2)
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Now, for 𝑤 ∈ 𝑉 𝑟
ℎ , we define the norms

‖𝑤‖b :=
(︂
‖
√

𝑐0𝑤‖2 +
1
2

(︂⃦⃦⃦√︀
|b · n|⌊𝑤⌋

⃦⃦⃦2

Γint

+
⃦⃦⃦√︀

|b · n|𝑤
⃦⃦⃦2

Γ−D

+
⃦⃦⃦√︀

|b · n|𝑤
⃦⃦⃦2

Γ+
N

)︂)︂1/2

,

and

|‖𝑤|‖ :=
(︁⃦⃦√

𝑎∇ℰ(𝑤)
⃦⃦2 + ‖

√
𝜎Dℰ(𝑤)‖2ΓD

+ ‖𝑤‖2b + 𝑠𝑎,𝑐
ℎ (𝑤, 𝑤) + 𝑠𝑏

ℎ(𝑤, 𝑤)
)︁1/2

.

We also define the “streamline-diffusion” norm

|‖𝑤|‖𝑠 :=
(︂
|‖𝑤|‖2 +

⃦⃦⃦√
𝛿𝜆 (b · ∇ℎ𝑤)

⃦⃦⃦2
)︂1/2

,

where 𝛿 > 0, to be chosen precisely below, and

𝜆 := min
{︀
𝛽−1, ̃︀𝜎−1

D

}︀
h, (6.3)

We are now in a position to show the following inf-sup condition for the R-FEM method (5.3). In the proofs
of the results in this section, we are particularly interested in the dependence of the resulting bounds on the
mesh-Péclet number Peℎ, the mesh-size h and polynomial degree 𝑟. We aim, therefore, to track constants and
their dependence explicitly.

Theorem 6.1 (Inf-Sup Condition). Let 𝑎 ∈ [𝐿∞(Ω)]𝑑×𝑑
sym satisfy assumption (5.1) and b ∈ 𝑊 1,∞(Ω)𝑑 satisfy

assumption (5.2). Assume that the mesh is such that each element face in the mesh is either completely inflow
or outflow or characteristic. Suppose also that the penalisation parameters 𝜎𝑎,𝑐, 𝜎𝑏,1 and 𝜎𝑏,2 are chosen large
enough to satisfy (6.10), 𝛿 is chosen to satisfy (6.11) and the boundary stabilisation constant 𝐶𝜎 > 0 is suffi-
ciently large. Then, we have

inf
0 ̸=𝑤ℎ∈𝑉 𝑟

ℎ

sup
0̸=𝑣ℎ∈𝑉 𝑟

ℎ

𝐵 (𝑤ℎ, 𝑣ℎ)
|‖𝑤ℎ|‖𝑠|‖𝑣ℎ|‖𝑠

≥ Λ, (6.4)

where Λ > 0 is independent of 𝜆, h and of the mesh-Péclet number Peℎ := 𝛽h/𝛼.

Proof. As usual, the proof consists of two steps: (1) for each 𝑤ℎ ∈ 𝑉 𝑟
ℎ , we find a 𝑣ℎ (𝑤ℎ) ≡ 𝑣ℎ ∈ 𝑉 𝑟

ℎ such that
𝐵 (𝑤ℎ, 𝑣ℎ) ≥ 𝐶|‖𝑤ℎ|‖2𝑠, and, (2) we show that this 𝑣ℎ satisfies the bound |‖𝑣ℎ|‖𝑠 ≤ 𝐶|‖𝑤ℎ|‖𝑠, thereby inferring
the result.

To that end, fix 𝑤ℎ ∈ 𝑉 𝑟
ℎ and set 𝑣ℎ = 𝑤ℎ + 𝛿𝑤𝑏

ℎ, where we will use the shorthand 𝑤𝑏
ℎ := 𝜆 (b · ∇ℎ𝑤ℎ) for

brevity for some 𝛿 ∈ R is to be chosen. Then, integration by parts and working as in the proof of Lemma 2.4
from [30], as well as making use of standard inverse estimates, give

𝐵 (𝑤ℎ, 𝑤ℎ) ≥ 1
2
|‖𝑤ℎ|‖2 +

∫︁
Ω

b · ∇ℎ𝑤ℎ (ℰ (𝑤ℎ)− 𝑤ℎ) d𝑥 +
∫︁

Ω

𝑐
(︁
ℰ (𝑤ℎ)2 − 𝑤2

ℎ

)︁
d𝑥

−
∫︁

Γ−D

(b · n) 𝑤ℎ (ℰ (𝑤ℎ)− 𝑤ℎ) d𝑠−
∑︁
𝑇∈𝒯

∫︁
𝜕−𝑇∖𝜕Ω

(b · n) ⌊𝑤ℎ⌋ (ℰ (𝑤ℎ)− 𝑤ℎ) d𝑠

=:
1
2
|‖𝑤ℎ|‖2 + I + II + III + IV.

(6.5)

Using Lemma 3.1, Young’s inequality and (6.3), we have

I ≤ 1
4

⃦⃦⃦√
𝛿𝜆b · ∇ℎ𝑤ℎ

⃦⃦⃦2

+ 𝐶(𝑟)
⃦⃦⃦
𝛿−1/2𝛽1/2 [𝑤ℎ]

⃦⃦⃦2

Γint

.
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and

II =
∫︁

Ω

𝑐 (ℰ (𝑤ℎ)− 𝑤ℎ)2 + 2𝑐𝑤ℎ (ℰ (𝑤ℎ)− 𝑤ℎ) d𝑥

≤ 𝐶(𝑟)
⃦⃦⃦√︀

𝛾h [𝑤ℎ]
⃦⃦⃦2

Γint

+
1
4
‖
√

𝑐0𝑤ℎ‖2 + 𝐶(𝑟)
⃦⃦⃦√︁

𝛾/𝛾
0

√︀
𝛾h [𝑤ℎ]

⃦⃦⃦2

Γint

≤ 1
4
‖
√

𝑐0𝑤ℎ‖2 + 𝐶(𝑟)
⃦⃦⃦(︁

1 +
√︁

𝛾/𝛾
0

)︁√︀
𝛾h [𝑤ℎ]

⃦⃦⃦2

Γint

,

with 𝛾
0

a local min of 𝑐0. Finally, again, using Lemma 3.1 and Young’s inequality, we also have

III + IV ≤ 1
8

⃦⃦⃦√︀
|b · n|𝑤ℎ

⃦⃦⃦2

Γ−D

+
1
8

⃦⃦⃦√︀
|b · n|⌊𝑤ℎ⌋

⃦⃦⃦2

Γint

+ 𝐶(𝑟)
⃦⃦⃦√︀

𝛽 [𝑤ℎ]
⃦⃦⃦2

Γint

.

Substituting the above bounds into (6.5), we arrive at

𝐵 (𝑤ℎ, 𝑤ℎ) ≥ 1
2
|‖𝑤ℎ|‖2 −

1
4
‖
√

𝑐0𝑤ℎ‖2 − 𝐶(𝑟)
⃦⃦⃦(︁

1 +
√︁

𝛾/𝛾
0

)︁√︀
𝛾h [𝑤ℎ]

⃦⃦⃦2

Γint

− 1
8

⃦⃦⃦√︀
|b · n|𝑤ℎ

⃦⃦⃦2

Γ−D

− 1
8

⃦⃦⃦√︀
|b · n|⌊𝑤ℎ⌋

⃦⃦⃦2

Γint

− 1
4

⃦⃦⃦√
𝛿𝜆b · ∇ℎ𝑤ℎ

⃦⃦⃦2

− 𝐶(𝑟)
⃦⃦⃦(︁√︀

𝛽 + 𝛿−1/2
√︀

𝛽
)︁

[𝑤ℎ]
⃦⃦⃦2

Γint

.

(6.6)

Working as before, we also have

𝐵
(︀
𝑤ℎ, 𝛿𝑤𝑏

ℎ

)︀
≥ − 1

4
|‖𝑤ℎ|‖ −

⃦⃦√
𝑎∇ℰ

(︀
𝛿𝑤𝑏

ℎ

)︀⃦⃦2

+
⃦⃦⃦√

𝛿𝜆b · ∇ℎ𝑤ℎ

⃦⃦⃦2

+
∫︁

Ω

b · ∇ℎ𝑤ℎ

(︀
ℰ
(︀
𝛿𝑤𝑏

ℎ

)︀
− 𝛿𝑤𝑏

ℎ

)︀
d𝑥

− 2
⃦⃦√

𝜎Dℰ
(︀
𝛿𝑤𝑏

ℎ

)︀⃦⃦2

ΓD
− 8

⃦⃦⃦
𝜎
−1/2
D 𝑎∇ℰ

(︀
𝛿𝑤𝑏

ℎ

)︀⃦⃦⃦2

ΓD

− 2
⃦⃦⃦√︀

|b · n|ℰ
(︀
𝛿𝑤𝑏

ℎ

)︀⃦⃦⃦2

Γ−D

− 2
⃦⃦⃦√︀

|b · n|ℰ
(︀
𝛿𝑤𝑏

ℎ

)︀⃦⃦⃦2

Γint

−
⃦⃦√

𝜎𝑎,𝑐

[︀
𝛿𝑤𝑏

ℎ

]︀⃦⃦2

Γint
−
⃦⃦√

𝜎𝑏,1

[︀
𝛿𝑤𝑏

ℎ

]︀⃦⃦2

Γint
−
⃦⃦√

𝜎𝑏,2

[︀
h
(︀
b · ∇

(︀
𝛿𝑤𝑏

ℎ

)︀)︀]︀⃦⃦2

Γint
.

(6.7)

We further bound each term in (6.7) not directly appearing in the energy norm. We have⃦⃦√
𝑎∇ℰ

(︀
𝛿𝑤𝑏

ℎ

)︀⃦⃦2 ≤ 𝐶𝑟4
⃦⃦√

𝛼h−1ℰ
(︀
𝛿𝑤𝑏

ℎ

)︀⃦⃦2

≤ 𝐶𝑟4
⃦⃦⃦√

𝛿
(︁√

𝛿𝜆b · ∇ℎ𝑤ℎ

)︁⃦⃦⃦2

+ 𝐶(𝑟) ‖[𝛿h (b · ∇ℎ𝑤ℎ)]‖2Γint
,

(6.8)

using an inverse estimate and Lemma 3.1, respectively. Similarly,∫︁
Ω

b · ∇ℎ𝑤ℎ

(︀
ℰ
(︀
𝛿𝑤𝑏

ℎ

)︀
− 𝛿𝑤𝑏

ℎ

)︀
d𝑥 ≤ 1

4

⃦⃦⃦√
𝛿𝜆b · ∇ℎ𝑤ℎ

⃦⃦⃦2

+ 𝐶(𝑟)
⃦⃦⃦[︁√

𝛿h (b · ∇ℎ𝑤ℎ)
]︁⃦⃦⃦2

Γint

.

Next, using the stability of ℰ , we deduce

2
⃦⃦√

𝜎Dℰ
(︀
𝛿𝑤𝑏

ℎ

)︀⃦⃦2

ΓD
≤ 𝐶𝑟4

⃦⃦⃦√
𝛿
(︁√

𝛿𝜆b · ∇ℎ𝑤ℎ

)︁⃦⃦⃦2

+ 𝐶(𝑟) ‖[𝛿h (b · ∇ℎ𝑤ℎ)]‖2Γint
,
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and, using inverse estimates along with the definition of 𝜎D,

8
⃦⃦⃦
𝜎
−1/2
D 𝑎∇ℰ

(︀
𝛿𝑤𝑏

ℎ

)︀⃦⃦⃦2

ΓD

≤ 𝐶𝑟4
⃦⃦√

𝛼h−1ℰ
(︀
𝛿𝑤𝑏

ℎ

)︀⃦⃦2
,

which can be further estimated as in (6.8). We also have

2
⃦⃦⃦√︀

|b · n|ℰ
(︀
𝛿𝑤𝑏

ℎ

)︀⃦⃦⃦2

Γ−D∪Γint

≤ 𝐶𝑟2
⃦⃦⃦√

𝛿
(︁√

𝛿𝜆b · ∇ℎ𝑤ℎ

)︁⃦⃦⃦2

+ 𝐶(𝑟) ‖[𝛿h (b · ∇ℎ𝑤ℎ)]‖2Γint
,

and ⃦⃦√
𝜎𝑏,2

[︀
h
(︀
b · ∇ℎ

(︀
𝛿𝑤𝑏

ℎ

)︀)︀]︀⃦⃦2

Γint
≤ 𝐶𝑟6

⃦⃦⃦⃦√︁
𝜎𝑏,2/h𝛽𝛿𝑤𝑏

ℎ

⃦⃦⃦⃦2

≤ 𝐶𝑟6
⃦⃦⃦√︀

𝜎𝑏,2𝛽𝛿
(︁√

𝛿𝜆b · ∇ℎ𝑤ℎ

)︁⃦⃦⃦2

.

Combining now the above estimates, we arrive at the bound

𝐵 (𝑤ℎ, 𝑣ℎ (𝑤ℎ)) ≥ 1
4
|‖𝑤ℎ|‖2 +

1
2

⃦⃦⃦√
𝛿hb · ∇ℎ𝑤ℎ

⃦⃦⃦2

− 𝐶(𝑟)
⃦⃦⃦(︁√︀

𝛽 +
√︀

𝛽𝛿−1/2
)︁

[𝑤ℎ]
⃦⃦⃦2

Γint

− 𝐶(𝑟)
⃦⃦⃦(︁

1 +
√︁

𝛾/𝛾
0

)︁√︀
𝛾h [𝑤ℎ]

⃦⃦⃦2

Γint

− 𝐶𝑟4
⃦⃦⃦√

𝛿
(︁

1 + 𝑟−1 + 𝑟
√︀

𝜎𝑏,2𝛽
)︁(︁√

𝛿hb · ∇ℎ𝑤ℎ

)︁⃦⃦⃦2

− 𝐶(𝑟)
⃦⃦⃦(︁√

𝜎𝑏,1 + 1 + 𝛿−1/2
)︁

[𝛿h (b · ∇ℎ𝑤ℎ)]
⃦⃦⃦2

Γint

.

(6.9)

Upon selecting a global constant 𝛿 > 0, small enough, we can have

𝐶𝑟4𝛿
(︁

1 + 𝑟−1 + 𝑟
√︀

𝜎𝑏,2𝛽
)︁2

≤ 1
4

and 𝛿2𝐶(𝑟)
(︁√

𝜎𝑏,1 + 1 + 𝛿−1/2
)︁2

≤ 𝜎𝑏,2

8
·

Now, upon selecting additionally penalty parameters large enough to satisfy

𝜎𝑏,1 ≥ 8𝐶(𝑟)𝛽
(︁

1 + 𝛿−1/2
)︁2

, 𝜎𝑎,𝑐 ≥ 8𝐶(𝑟)𝛾
(︁

1 +
√︁

𝛾/𝛾
0

)︁2

, 𝜎𝑏,2 > 0, (6.10)

we can set

𝛿 := min

⎧⎨⎩
(︂

4𝐶𝑟4
(︁

1 + 𝑟−1 + 𝑟
√︀

𝜎𝑏,2𝛽
)︁2
)︂−1

,

(︃
−1 +

√︂
1 +

√
𝜎𝑏,2

(︁
2
√︀

𝐶(𝑟)𝛽 + 2−1/2
)︁−1

)︃2

/4

⎫⎬⎭ . (6.11)

which, in turn implies,

𝐵 (𝑤ℎ, 𝑣ℎ (𝑤ℎ)) ≥ 1
8
|‖𝑤ℎ|‖2 +

1
4

⃦⃦⃦√
𝛿h (b · ∇ℎ𝑤ℎ)

⃦⃦⃦2

≥ 1
8
|‖𝑤ℎ|‖2𝑠, (6.12)

from (6.9) and the first step of the proof is complete.
For the second step, working as above, standard inverse estimates along with and Lemma 3.1 imply

|‖𝛿𝑤𝑏
ℎ|‖2 ≤ 𝐶(𝑟) ‖[𝛿h (b · ∇ℎ𝑤ℎ)]‖2Γint

+ 𝐶𝑟4
⃦⃦⃦√

𝛿
(︁√

𝛿𝜆b · ∇ℎ𝑤ℎ

)︁⃦⃦⃦2

+
⃦⃦⃦√︀

𝑐0𝛿𝜆
√

𝛿𝜆b · ∇ℎ𝑤ℎ

⃦⃦⃦2

+
⃦⃦√

𝜎𝑎,𝑐

[︀
𝛿𝑤𝑏

ℎ

]︀⃦⃦2

Γint
+ 𝐶𝑟2

⃦⃦⃦√︀
𝛽𝛿
√

𝛿𝜆b · ∇ℎ𝑤ℎ

⃦⃦⃦2

Γint

+
⃦⃦√

𝜎𝑏,1

[︀
𝛿𝑤𝑏

ℎ

]︀⃦⃦2

Γint

+ 𝐶𝑟6
⃦⃦⃦√︀

𝜎𝑏,2𝛿𝛽
√

𝛿𝜆b · ∇ℎ𝑤ℎ

⃦⃦⃦2
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and
⃦⃦⃦√

𝛿𝜆b · ∇ℎ𝛿𝑤𝑏
ℎ

⃦⃦⃦2

≤ 𝐶𝑟4
⃦⃦⃦
𝛿
√

𝛿𝜆b · ∇ℎ𝑤ℎ

⃦⃦⃦2

. The above assumptions on 𝛿, 𝜎𝑎,𝑐, 𝜎𝑏,1, 𝜎𝑏,2, finally imply

|‖𝑣ℎ|‖𝑠 ≤ |‖𝑤ℎ|‖𝑠 + |‖𝛿𝑤𝑏
ℎ|‖𝑠 ≤ 𝐶(𝑟)

(︁
|‖𝑤ℎ|‖+

⃦⃦⃦√
𝛿hb · ∇ℎ𝑤ℎ

⃦⃦⃦)︁
= 𝐶(𝑟)|‖𝑤ℎ|‖𝑠, (6.13)

thereby completing the proof of the second step also. �

Remark 6.2. It is possible to modify the above proof by introducing a locally variable 𝛿 aiming to achieve
stronger streamline-diffusion stabilization effect at the expense of mild assumptions on the local variation of
𝛿 in the computational domain, see [26] for a similar argument in a completely different context. In partic-
ular, using the elementary identity

[︀
𝛿𝑤𝑏

ℎ

]︀
= [𝛿]

{︀
𝑤𝑏

ℎ

}︀
+ {𝛿}

[︀
𝑤𝑏

ℎ

]︀
valid on every face 𝑒 ⊂ Γint, provided that

‖[𝛿]‖𝐿∞(𝑒) / ‖𝛿‖𝐿∞(𝑒) ≪ 1, one can incorporate
{︀
𝑤𝑏

ℎ

}︀
into the stabilization term

⃦⃦⃦√
𝛿𝜆b · ∇ℎ𝑤ℎ

⃦⃦⃦
.

Proposition 6.3 (Galerkin orthogonality). Let 𝑢 ∈ 𝑉 be the solution of (2.1), (2.3). Suppose also that 𝑢ℎ ∈ 𝑉 𝑟
ℎ

is the R-FEM solution of (5.3) and set 𝑒 := 𝑢− ℰ (𝑢ℎ) for brevity. Then, for all 𝑣ℎ ∈ 𝑉 𝑟
ℎ we have:

∫︁
Ω

(𝑎∇𝑒 · ∇ℰ (𝑣ℎ) + b · ∇ℎ (𝑢− 𝑢ℎ) ℰ (𝑣ℎ) + 𝑐𝑒ℰ (𝑣ℎ)) d𝑥

−
∫︁

ΓD

(𝑎∇𝑒 · n ℰ (𝑣ℎ) + 𝑎∇ℰ (𝑣ℎ) · n 𝑒− 𝜎D𝑒ℰ (𝑣ℎ)) d𝑠

−
∫︁

Γ−D

(b · n) (𝑢− 𝑢ℎ) ℰ (𝑣ℎ) d𝑠−
∑︁
𝑇∈𝒯

∫︁
𝜕−𝑇∖𝜕Ω

(b · n) ⌊𝑢− 𝑢ℎ⌋ℰ (𝑣ℎ) d𝑠

+ 𝑠𝑎,𝑐
ℎ (𝑢− 𝑢ℎ, 𝑣ℎ) + 𝑠𝑏

ℎ (𝑢− 𝑢ℎ, 𝑣ℎ) = 0.

(6.14)

Proof. To begin, from (2.1), (2.3), the consistency of the method yields

∫︁
Ω

𝑎∇𝑢 · ∇ℰ (𝑣ℎ) + b · ∇𝑢 ℰ (𝑣ℎ) + 𝑐𝑢 ℰ (𝑣ℎ) d𝑥−
∫︁

ΓD

𝑎∇𝑢 · n ℰ (𝑣ℎ) d𝑠

=
∫︁

Ω

𝑓ℰ (𝑣ℎ) d𝑥 +
∫︁

ΓN

𝑔Nℰ (𝑣ℎ) d𝑠 ∀𝑣ℎ ∈ 𝑉 𝑟
ℎ .

(6.15)

Noting that n𝑇 𝑎n = 0 implies n𝑇 𝑎 = 0𝑇 for 𝑎 satisfying (2.2). Moreover, the regularity of 𝑢 [35] allows to also
conclude

𝑠𝑎,𝑐
ℎ (𝑢, 𝑣ℎ) = 𝑠𝑏

ℎ (𝑢, 𝑣ℎ) = 0 for 𝑣ℎ ∈ 𝑉 𝑟
ℎ ,

Subtracting now (5.3) from (6.15) already yields the result. �

Lemma 6.4. Suppose the assumptions of Theorem 6.1 hold and let 𝑢 and 𝑢ℎ satisfy the assumptions of Propo-
sition 6.3. In addition, let Π : 𝐿2(Ω) → 𝑉 𝑟

ℎ denote the orthogonal 𝐿2-projection operator onto the polytopic
finite element space 𝑉 𝑟

ℎ . Upon considering the splitting 𝑢− 𝑢ℎ = (𝑢−Π𝑢)− (𝑢ℎ −Π𝑢) =: 𝜂 − 𝜉, we have

|𝐵 (𝜉, 𝑣ℎ) | ≤ 𝐹 (𝜂)|‖𝑣ℎ|‖𝑠, (6.16)
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where

𝐹 (𝜂)2 = 2
⃦⃦√

𝑎∇ (𝑢− ℰ (Π𝑢))
⃦⃦2 + 8𝐶(𝑟)/𝜎𝑏,1

⃦⃦⃦√
hb · ∇ℎ𝜂

⃦⃦⃦2

+ 8𝐶(𝑟)𝛽/𝜎𝑏,1

⃦⃦⃦√︀
|b · n|𝜂

⃦⃦⃦2

Γ−D

+ 8𝐶(𝑟)𝛽/𝜎𝑏,1

⃦⃦⃦√︀
|b · n|⌊𝜂⌋

⃦⃦⃦2

Γint

+ 2
⃦⃦⃦√︀

|b · n|𝜂
⃦⃦⃦2

Γ+
N

+ 2
⃦⃦⃦√︀

|b · n|𝜂−
⃦⃦⃦2

Γint

+
(︁

2 ‖b‖2𝑊 1,∞(Ω) /𝛾2
0

)︁
‖
√

𝑐0𝜂‖2 +
(︀
1 + 2𝛾2/𝛾0 + 8𝛾2𝐶(𝑟)h/𝜎𝑏,1

)︀
‖𝑢− ℰ (Π𝑢)‖2

+ 2
⃦⃦⃦
𝑎∇ (𝑢− ℰ (Π𝑢)) · n𝜎

−1/2
D

⃦⃦⃦2

ΓD

+ 2𝐶(𝑟) ‖
√

𝜎D (𝑢− ℰ (Π𝑢))‖2ΓD

+ 2𝑠𝑎,𝑐
ℎ (𝜂, 𝜂) + 2𝑠𝑏

ℎ(𝜂, 𝜂).

Proof. Galerkin orthogonality (6.14), for any 𝑣ℎ ∈ 𝑉 𝑟
ℎ , gives∫︁

Ω

(𝑎∇ (𝑢− ℰ (Π𝑢)) · ∇ℰ (𝑣ℎ) + b · ∇ℎ𝜂ℰ (𝑣ℎ) + 𝑐 (𝑢− ℰ (Π𝑢)) ℰ (𝑣ℎ)) d𝑥

−
∫︁

ΓD

(𝑎∇ (𝑢− ℰ (Π𝑢)) · n ℰ (𝑣ℎ) + 𝑎∇ℰ (𝑣ℎ) · n (𝑢− ℰ (Π𝑢))− 𝜎D (𝑢− ℰ (Π𝑢)) ℰ (𝑣ℎ)) d𝑠

−
∫︁

Γ−D

(b · n) 𝜂ℰ (𝑣ℎ) d𝑠−
∑︁
𝑇∈𝒯

∫︁
𝜕−𝑇∖𝜕Ω

(b · n) ⌊𝜂⌋ℰ (𝑣ℎ) d𝑠 + 𝑠𝑎,𝑐
ℎ (𝜂, 𝑣ℎ) + 𝑠𝑏

ℎ (𝜂, 𝑣ℎ)

=
∫︁

Ω

(𝑎∇ℰ(𝜉) · ∇ℰ (𝑣ℎ) + b · ∇ℎ𝜉ℰ (𝑣ℎ) + 𝑐ℰ(𝜉)ℰ (𝑣ℎ)) d𝑥

−
∫︁

ΓD

(𝑎∇ℰ(𝜉) · n ℰ (𝑣ℎ) + 𝑎∇ℰ (𝑣ℎ) · n ℰ(𝜉)− 𝜎Dℰ(𝜉)ℰ (𝑣ℎ)) d𝑠

−
∫︁

Γ−D

(b · n) 𝜉ℰ (𝑣ℎ) d𝑠−
∑︁
𝑇∈𝒯

∫︁
𝜕−𝑇∖𝜕Ω

(b · n) ⌊𝜉⌋ℰ (𝑣ℎ) d𝑠 + 𝑠𝑎,𝑐
ℎ (𝜉, 𝑣ℎ) + 𝑠𝑏

ℎ (𝜉, 𝑣ℎ) .

(6.17)

Now examining the terms appearing on the left hand side of (6.17) involving b we see that∫︁
Ω

b · ∇ℎ𝜂ℰ (𝑣ℎ) d𝑥−
∫︁

Γ−D

(b · n) 𝜂ℰ (𝑣ℎ) d𝑠−
∑︁
𝑇∈𝒯

∫︁
𝜕−𝑇∖𝜕Ω

(b · n) ⌊𝜂⌋ℰ (𝑣ℎ) d𝑠

=
∫︁

Ω

b · ∇ℎ𝜂 (ℰ (𝑣ℎ)− 𝑣ℎ) d𝑥−
∫︁

Γ−D

(b · n) 𝜂 (ℰ (𝑣ℎ)− 𝑣ℎ) d𝑠

−
∑︁
𝑇∈𝒯

∫︁
𝜕−𝑇∖𝜕Ω

(b · n) ⌊𝜂⌋ (ℰ (𝑣ℎ)− 𝑣ℎ)+ d𝑠−
∫︁

Ω

(b · ∇ℎ𝑣ℎ + (∇ · b)𝑣ℎ) 𝜂 d𝑥

+
∫︁

Γ+
N

(b · n) 𝜂𝑣ℎd𝑠 +
∑︁
𝑇∈𝒯

∫︁
𝜕−𝑇∖𝜕Ω

(b · n) ⌊𝑣ℎ⌋𝜂− d𝑠.

(6.18)

Recalling that b satisfies assumption (5.2), by using the orthogonality of Π, we immediately have
∫︀
Ω

b ·
∇ℎ𝑣ℎ𝜂 d𝑥 = 0. Using Lemma 3.1 and the Cauchy–Schwarz inequality, we have from (6.18)
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∫︁
Ω

b · ∇ℎ𝜂ℰ (𝑣ℎ) d𝑥−
∫︁

Γ−D

(b · n) 𝜂ℰ (𝑣ℎ) d𝑠−
∑︁
𝑇∈𝒯

∫︁
𝜕−𝑇∖𝜕Ω

(b · n) ⌊𝜂⌋ℰ (𝑣ℎ) d𝑠

≤ 𝐶(𝑟)
⃦⃦⃦√

hb · ∇ℎ𝜂
⃦⃦⃦
‖[𝑣ℎ]‖Γint

+ 𝐶(𝑟)
√︀

𝛽
⃦⃦⃦√︀

|b · n|𝜂
⃦⃦⃦

Γ−D

‖[𝑣ℎ]‖Γint

+ 𝐶(𝑟)
√︀

𝛽
⃦⃦⃦√︀

|b · n|⌊𝜂⌋
⃦⃦⃦

Γint

‖[𝑣ℎ]‖Γint
+ ‖b‖𝑊 1,∞(Ω) 𝛾−1

0 ‖
√

𝑐0𝑣ℎ‖ ‖
√

𝑐0𝜂‖

+
⃦⃦⃦√︀

|b · n|𝜂
⃦⃦⃦

Γ+
N

⃦⃦⃦√︀
|b · n|𝑣ℎ

⃦⃦⃦
Γ+

N

+
⃦⃦⃦√︀

|b · n|𝜂−
⃦⃦⃦

Γint

⃦⃦⃦√︀
|b · n|⌊𝑣ℎ⌋

⃦⃦⃦
Γint

.

(6.19)

Now making use of analogous arguments for the reaction term, the triangle inequality and Lemma 3.1, we
have∫︁

Ω

𝑐 (𝑢− ℰ (Π𝑢)) ℰ (𝑣ℎ) d𝑥 ≤ 𝛾 ‖𝑢− ℰ (Π𝑢)‖ (‖𝑣ℎ‖ + ‖ℰ (𝑣ℎ)− 𝑣ℎ‖)

≤ 𝛾𝛾
−1/2
0 ‖𝑢− ℰ (Π𝑢)‖ ‖

√
𝑐0𝑣ℎ‖ + 𝛾𝐶(𝑟)h1/2 ‖𝑢− ℰ (Π𝑢)‖ ‖[𝑣ℎ]‖Γint

.

(6.20)

As for the Dirichlet boundary, assumption (5.1) together with an inverse inequality, result to∫︁
ΓD

𝑎∇ℰ (𝑣ℎ) · n (𝑢− ℰ (Π𝑢)) d𝑠 ≤
⃦⃦⃦
𝜎
−1/2
D 𝑎∇ℰ (𝑣ℎ) · n

⃦⃦⃦
ΓD

⃦⃦⃦
𝜎

1/2
D (𝑢− ℰ (Π𝑢))

⃦⃦⃦
ΓD

≤ 𝐶(𝑟)
⃦⃦⃦
𝜎

1/2
D (𝑢− ℰ (Π𝑢))

⃦⃦⃦
ΓD

⃦⃦√
𝑎∇ℰ (𝑣ℎ)

⃦⃦
.

(6.21)

The result then follows by combining (6.17)–(6.21), thereby concluding the proof. �

Theorem 6.5. Suppose that the assumptions of Theorem 6.1 hold and let 𝑢 and 𝑢ℎ satisfy the assumptions of
Proposition 6.3. Suppose further that 𝑢|𝑇 ∈ 𝐻𝑘(𝑇 ), 𝑇 ∈ 𝒯 , for some 𝑘 ≥ 2. Recalling 𝑒 = 𝑢 − 𝑢ℎ, we have the
following a priori error bound:

⃦⃦√
𝑎∇𝑒

⃦⃦2 + ‖
√

𝜎D𝑒‖2ΓD
+ ‖𝑢− 𝑢ℎ‖2b +

⃦⃦⃦√
𝛿h (b · ∇ℎ (𝑢− 𝑢ℎ))

⃦⃦⃦2

+ 𝑠𝑎,𝑐
ℎ (𝑢− 𝑢ℎ, 𝑢− 𝑢ℎ) + 𝑠𝑏

ℎ (𝑢− 𝑢ℎ, 𝑢− 𝑢ℎ) ≤ 𝐶
∑︁
𝑇∈𝒯

(𝒟𝑇 + 𝒞𝑇 ) h2𝑙−2|𝑢|2𝑙,𝑇 ,
(6.22)

where

𝒟𝑇 = 𝛼 + 𝛼2h−1𝜎−1
D + ℎ𝜎D, (6.23)

and

𝒞𝑇 = 𝛽2h/𝜎𝑏,1 + 𝛽h +
(︀
𝛾2/𝛾0

)︀
h2 +

(︁
‖b‖2𝑊 1,∞(Ω) ‖𝑐0‖𝐿∞(Ω) /𝛾2

0

)︁
h2 + ‖𝑐0‖𝐿∞(Ω) h

2

+ 𝛾2𝐶(𝑟)h3/𝜎𝑏,1 + 𝛿𝛽2h + 𝜎𝑎,𝑐h + 𝜎𝑏,1h + 𝜎𝑏,2𝛽
2h,

(6.24)

for 𝑙 = min {𝑘, 𝑟 + 1}, with 𝐶 positive constant, independent of 𝑢 and of h.
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Proof. Using the notation of the proof of Lemma 6.4, triangle inequality implies⃦⃦√
𝑎∇𝑒

⃦⃦2 + ‖
√

𝑐0 (𝑢− 𝑢ℎ)‖2 + ‖
√

𝜎D𝑒‖2ΓD
+

1
2

⃦⃦⃦√︀
|b · n| (𝑢− 𝑢ℎ)

⃦⃦⃦2

Γ−D

+
1
2

⃦⃦⃦√︀
|b · n|⌊𝑢− 𝑢ℎ⌋

⃦⃦⃦2

Γint

+
1
2

⃦⃦⃦√︀
|b · n| (𝑢− 𝑢ℎ)

⃦⃦⃦2

Γ+
N

+
⃦⃦⃦√

𝛿h (b · ∇ℎ (𝑢− 𝑢ℎ))
⃦⃦⃦2

+ 𝑠𝑎,𝑐
ℎ (𝑢− 𝑢ℎ, 𝑢− 𝑢ℎ) + 𝑠𝑏

ℎ (𝑢− 𝑢ℎ, 𝑢− 𝑢ℎ)

≤
(︁

2
⃦⃦√

𝑎∇ (𝑢− ℰ (Π𝑢))
⃦⃦2 + 2 ‖

√
𝑐0𝜂‖2 + 2 ‖

√
𝜎D (𝑢− ℰ (Π𝑢))‖2ΓD

+
⃦⃦⃦√︀

|b · n|𝜂
⃦⃦⃦2

Γ−D

+
⃦⃦⃦√︀

|b · n|⌊𝜂⌋
⃦⃦⃦2

Γint

+
⃦⃦⃦√︀

|b · n|𝜂
⃦⃦⃦2

Γ+
N

+ 2
⃦⃦⃦√

𝛿h (b · ∇ℎ𝜂)
⃦⃦⃦2

+ 2𝑠𝑎,𝑐
ℎ (𝜂, 𝜂) + 2𝑠𝑏

ℎ(𝜂, 𝜂)
)︁

+
(︀
2|‖𝜉|‖2𝑠

)︀
=: I + II.

(6.25)

The optimal approximation properties of 𝐿2-orthogonal projection operator, combined with lemma (3.1), yield

I ≤ 𝐶
∑︁
𝑇∈𝒯

(︁
𝛼 + 𝜎Dh + h

(︁
h ‖𝑐0‖𝐿∞(Ω) + 𝛽 + 𝛿𝛽2 + 𝜎𝑎,𝑐 + 𝜎𝑏,1 + 𝜎𝑏,2𝛽

2
)︁)︁

h2𝑙−2|𝑢|2𝑙,𝑇 . (6.26)

Next, the inf-sup condition given in Theorem 6.1 along with Lemma 6.4 give

II ≤ 4
Λ2

(︁
2
⃦⃦√

𝑎∇ (𝑢− ℰ (Π𝑢))
⃦⃦2 + 𝐶(𝑟)/𝜎𝑏,1

⃦⃦⃦√
hb · ∇ℎ𝜂

⃦⃦⃦2

+ 𝐶(𝑟)𝛽/𝜎𝑏,1

⃦⃦⃦√︀
|b · n|𝜂

⃦⃦⃦2

Γ−D

+ 𝐶(𝑟)𝛽/𝜎𝑏,1

⃦⃦⃦√︀
|b · n|⌊𝜂⌋

⃦⃦⃦2

Γint

+
⃦⃦⃦√︀

|b · n|𝜂
⃦⃦⃦2

Γ+
N

+
⃦⃦⃦√︀

|b · n|𝜂−
⃦⃦⃦2

Γint

+ 𝛾2(𝛾−1
0 + 𝐶(𝑟)h/𝜎𝑏,1) ‖𝑢− ℰ (Π𝑢)‖2 + ‖b‖2𝑊 1,∞(Ω) /𝛾2

0 ‖
√

𝑐0𝜂‖2

+
⃦⃦⃦
𝑎∇ (𝑢− ℰ (Π𝑢)) 𝜎

−1/2
D

⃦⃦⃦2

ΓD

+ 𝐶(𝑟) ‖
√

𝜎D (𝑢− ℰ (Π𝑢))‖2ΓD
+ 𝑠𝑎,𝑐

ℎ (𝜂, 𝜂) + 𝑠𝑏
ℎ(𝜂, 𝜂)

)︁
≤ 𝐶

∑︁
𝑇∈𝒯

(︁
𝛼 + 𝛽2h/𝜎𝑏,1 + 𝛽h +

(︀
𝛾2/𝛾0

)︀
h2 + ‖b‖2𝑊 1,∞(Ω) ‖𝑐0‖𝐿∞(Ω) /𝛾2

0h
2

+ 𝛾2𝐶(𝑟)h3/𝜎𝑏,1 + 𝛼2h−1𝜎−1
D + h𝜎D + 𝜎𝑎,𝑐h + 𝜎𝑏,1h + 𝜎𝑏,2𝛽

2h
)︁
h2𝑙−2|𝑢|2𝑙,𝑇 .

(6.27)

The result then follows by combining the bounds (6.26) and (6.27). �

Remark 6.6. We note that the above a priori error bound for R-FEM (6.22) is optimal with respect to the
mesh-size ℎ. If b = 0, the error bound (6.22) reduces to⃦⃦√

𝑎∇ (𝑢− ℰ (𝑢ℎ))
⃦⃦2 + ‖

√
𝜎D (𝑢− ℰ (𝑢ℎ))‖2ΓD

+ 𝑠𝑎,0
ℎ (𝑢− 𝑢ℎ, 𝑢− 𝑢ℎ) ≤ 𝐶h2𝑙−2|𝑢|2𝑙 .

The above error bound is ℎ-optimal and coincides the error bound from [24] which was shown for standard
meshes consisting of simplices. On the other hand, if in the pure hyperbolic case with diffusion tensor 𝑎 = 0,
we deduce the error bound

‖𝑢− 𝑢ℎ‖2b +
⃦⃦⃦√

𝛿h (b · ∇ℎ (𝑢− 𝑢ℎ))
⃦⃦⃦2

+ 𝑠0,𝑐
ℎ (𝑢− 𝑢ℎ, 𝑢− 𝑢ℎ) + 𝑠𝑏

ℎ (𝑢− 𝑢ℎ, 𝑢− 𝑢ℎ) ≤ 𝐶h2𝑙−1|𝑢|2𝑙 ,

which is also ℎ-optimal.
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Figure 1. Two examples of a polygonal meshes and respective simplicial subdivisions. (a) A
polygonal mesh 𝒯1. (b) A simplicial subdivision ̃︀𝒯1. (c) An example of an agglomerated mesh
with many tiny faces 𝒯2. (d) A simplicial background mesh ̃︀𝒯2.

7. Numerical experiments

We shall now investigate numerically the asymptotic behaviour of the proposed R-FEM method on general
polygonal meshes. We first introduce a sequence of polygonal meshes, indexed by their element size, together
with the simplicial sub-meshes used; see Figure 1a for an example or Figure 2 for a refinement of the latter.
We point out that the sub-triangulations used do not introduce any new points in the interior of the polygonal
mesh to keep the number of degrees of freedom in the triangulated sub-meshes to a minimum. The numerical
quadratures are done over the simplicial sub-meshes, where the recovery operator from Lemma 3.1 is applied.
As expected from the theory, we have numerically observed that, increasing the number of degrees of freedom
in the sub-meshes as a proportion of the polytopic meshes, does not increase the order of the method and only
improves the accuracy marginally. All the polygonal meshes are generated by PolyMesher [42]. Unless clearly
stated, the R-FEM solution 𝑢ℎ is computed by (5.4) with the following choices of stabilisation parameters 𝐶𝜎

appearing in 𝜎D, 𝜎𝑎,𝑐 in (5.5), 𝜎𝑏,1 and 𝜎𝑏,2 in (5.6), all with value equal to 10.
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Figure 2. An example of a polytopic mesh 𝒯 which is a refinement of the mesh from Figure 1.
(a) 𝒯 with 256 polygons. (b) 966-triangle sub-mesh.

7.1. Example 1: A first order hyperbolic problem

Let Ω := (0, 1)2, and choose

𝑎 ≡ 0, b =
(︀
2− 𝑦2, 2− 𝑥

)︀
, 𝑐 = 1 + (1 + 𝑥)(1 + 𝑦)2; (7.1)

the forcing function 𝑓 is selected so that the analytical solution to (2.1) is given by

𝑢(𝑥, 𝑦) = 1 + sin
(︀
𝜋(1 + 𝑥)(1 + 𝑦)2/8

)︀
, (7.2)

cf., [11, 31].
We examine the convergence behaviour of the R-FEM with respect to ℎ-refinement, with fixed polynomial 𝑟,

for 𝑟 = 1, . . . , 4. In Figure 3 the error in two different norms, against the square root of the number of degrees
of freedom in the underlying finite element space 𝑉 𝑟

ℎ is given. The slope of the convergence rate shown is the
slope of the last line segment for each convergence line. We observe that ‖𝑢− 𝑢ℎ‖Ω and ‖𝑢− 𝑢ℎ‖b converge

to zero at the optimal rates 𝒪(ℎ𝑟+1) and at least 𝒪
(︁
ℎ𝑟+ 1

2

)︁
, respectively, as the mesh size ℎ tends to zero for

each fixed 𝑟. The latter results agree with the result (6.22) in Theorem 6.5. Notice that the ‖𝑢− 𝑢ℎ‖b appears
to superconverge for 𝑟 even. It has been observed in the literature of hyperbolic conservation laws that often,
numerically, one may observe super optimal convergence rates, higher than the provable 𝑂

(︀
ℎ𝑟+1/2

)︀
, for even

polynomial degree discontinuous Galerkin methods [17,27].

7.2. Example 2: A nonsymmetric elliptic problem

Let Ω := (0, 1)2, and choose
𝑎 ≡ 1, b = (1− 𝑦, 1− 𝑥), 𝑐 ≡ 2; (7.3)

the forcing function 𝑓 is selected so that the analytical solution to (2.1) is given by

𝑢(𝑥, 𝑦) = sin(𝜋𝑥) sin(𝜋𝑦). (7.4)

We examine the convergence behaviour of the R-FEM with respect to ℎ-refinement on quasiuniform polygonal
meshes, with fixed polynomial 𝑟, for 𝑟 = 1, . . . , 4. In Figure 4 we plot the error, in terms of the 𝐿2-norm
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Figure 3. Example 1. Error against numerical degrees of freedom (Dof). Here we examine the
convergence of the R-FEM under ℎ-refinement for polynomial degrees 𝑟 = 1, 2, 3, 4. Notice that
‖𝑢− 𝑢ℎ‖𝐿2(Ω) = 𝑂

(︀
ℎ𝑟+1

)︀
, which is optimal. In addition, ‖𝑢− 𝑢ℎ‖b appears to converge faster

than the analysis of Theorem 6.5 suggests for even polynomial degrees.

and the (broken) 𝐻1-seminorm for both discontinuous R-FEM approximation 𝑢ℎ and the conforming R-FEM
approximation ℰ (𝑢ℎ), against the square root of the number of degrees of freedom in the underlying finite
element space 𝑉 𝑟

ℎ . We observe that ‖𝑢−𝑢ℎ‖ and |𝑢−𝑢ℎ|𝐻1(Ω,𝒯 ) converge to zero at the optimal rates 𝒪
(︀
ℎ𝑟+1

)︀
and 𝒪 (ℎ𝑟), respectively, as the mesh size ℎ tends to zero for each fixed 𝑟. Moreover, the difference between the
R-FEM solutions 𝑢ℎ and ℰ (𝑢ℎ) is marginal. The results are in accordance with Theorem 6.5.

7.3. Example 3: A advection-dominated elliptic problem

We now investigate the numerical stability of the R-FEM through a series of advection-dominated elliptic
problems. Let Ω := (0, 1)2, and choose

𝑎 ≡ 𝜖, b = (1, 1), 𝑐 ≡ 0; (7.5)

together with a forcing function 𝑓 = 1 and homogeneous Dirichlet boundary conditions. This example is known
to admit boundary layers in the vicinity of the right and top boundaries 𝑥 = 1 and 𝑦 = 1 when 𝜖 ≪ 1. We
investigate the stability of R-FEM as 𝜖 → 0 on a fixed, relatively coarse mesh which is insufficient to resolve the
layer. More specifically, we consider a fixed mesh consisting of 1024 polygons over the domain, we choose 𝑟 = 1
and take 𝜖 = 10−2, 10−4, 10−6. In Figure 5 we plot the numerical solutions 𝑢ℎ and ℰ (𝑢ℎ). We observe that for
𝜖 = 10−2, the mesh is fine enough to resolve the layer and, hence, both 𝑢ℎ and ℰ (𝑢ℎ) are stable. For 𝜖 = 10−4,
the mesh is no longer fine enough to resolve the layer. However, the solutions are still stable in the sense that
neither solution admits non-physical oscillations near the boundary. In the case 𝜖 = 10−6, the mesh is too coarse
to resolve the layer. Both 𝑢ℎ and ℰ (𝑢ℎ) appear to be stable in this case. Moreover, the solutions are very close
to the solution for the pure hyperbolic problem with inflow boundary satisfying Dirichlet boundary conditions.
This is expected as the boundary conditions have been imposed in a weak fashion for the numerical method to
be valid in the hyperbolic limit 𝜖 = 0 also, in the spirit of the classical discontinuous Galerkin methods.

Finally, we make a comparison between the proposed R-FEM and a post-processed solution ℰ (𝑢𝐷𝐺) of an
interior penalty dG solution 𝑢𝐷𝐺 from [10] over the same 1024-polygon mesh. In Figure 6, we provide the
numerical solution with the same 𝜖 = 10−4 and linear elements. As it can been seen, the two solutions have
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Figure 4. Example 2. Convergence of the R-FEM under ℎ-refinement for 𝑟 = 1, 2, 3, 4.

different qualitative properties, with R-FEM appearing to be giving qualitatively similar stabilisation with
conforming-type stabilization methods (which may not be directly generalizable to polytopic meshes), rather
than the typical DG profile of exponentially diminished oscillations away from the layer and strongly oscillatory
layer behaviour.

7.4. Example 4: A mixed-type problem

We now consider a partial differential equation with nonnegative characteristic form of mixed type. To this
end, we let Ω = (−1, 1)2, and consider the PDE problem:{︃

−𝑥2𝑢𝑦𝑦 + 𝑢𝑥 + 𝑢 = 0, for − 1 ≤ 𝑥 ≤ 1, 𝑦 > 0,

𝑢𝑥 + 𝑢 = 0, for − 1 ≤ 𝑥 ≤ 1, 𝑦 ≤ 0,
(7.6)

with analytical solution:

𝑢(𝑥, 𝑦) =

{︃
sin
(︀

1
2𝜋(1 + 𝑦)

)︀
exp

(︁
−
(︁
𝑥 + 𝜋2𝑥3

12

)︁)︁
, for − 1 ≤ 𝑥 ≤ 1, 𝑦 > 0,

sin
(︀

1
2𝜋(1 + 𝑦)

)︀
exp(−𝑥), for − 1 ≤ 𝑥 ≤ 1, 𝑦 ≤ 0,

(7.7)
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Figure 5. Example 3. R-FEM solutions for a mesh consisting of 1024 polygonal elements and
𝑟 = 1. (a) 𝑢ℎ with 𝜖 = 10−2. (b) ℰ (𝑢ℎ) with 𝜖 = 10−2. (c) 𝑢ℎ with 𝜖 = 10−4. (d) ℰ (𝑢ℎ) with
𝜖 = 10−4. (e) 𝑢ℎ with 𝜖 = 10−6. (f) ℰ (𝑢ℎ) with 𝜖 = 10−6.
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Figure 6. Example 3. R-FEM solutions and DG solutions for a mesh consisting of 1024
polygonal elements and 𝑟 = 1. (a) 𝑢ℎ with 𝜖 = 10−4. (b) ℰ (𝑢ℎ) with 𝜖 = 10−4. (c) 𝑢DG with
𝜖 = 10−4. (d) ℰ (𝑢DG) with 𝜖 = 10−4.

cf., [11]. This problem is hyperbolic in the region 𝑦 ≤ 0 and parabolic for 𝑦 > 0. Notice that, in order to ensure
continuity of the normal flux across 𝑦 = 0 where the partial differential equation changes type, the analytical
solution has a discontinuity across the line 𝑦 = 0, cf., [31].

We examine the convergence behaviour of the R-FEM with respect to ℎ-refinement, with fixed polynomial 𝑟,
for 𝑟 = 1, . . . , 4. To have the opportunity to possibly observe optimal convergence rates, we align the polygonal
mesh with the solution’s discontinuity; a typical mesh is shown in Figure 7. Also, for this example the recovery
operator is constructed in piecewise fashion over the two subdomains. This ensures the conforming R-FEM
solution ℰ (𝑢ℎ) is able to have a jump discontinuity over the interface where the problem changes type.

In Figure 8 we plot the 𝐿2-norm error, as well as the error in the norm on the left hand-side of (6.22) for
R-FEM approximation 𝑢ℎ, against the square root of the number of degrees of freedom in the underlying finite
element space 𝑉 𝑟

ℎ . Abusing the notation, we use again |‖·|‖𝑠 to denote the norm on the left hand-side of (6.22).
We observe that |‖𝑢− 𝑢ℎ|‖𝑠 converges to zero at the optimal rates 𝒪 (ℎ𝑟), as the mesh size ℎ tends to zero
for each fixed 𝑟. These results agree with the result (6.22) in Theorem 6.5. However, the convergence rate for
‖𝑢 − 𝑢ℎ‖ seems to be slightly suboptimal in ℎ. Additionally, we also plot the error in terms of 𝐿2-norm and



RECOVERED FINITE ELEMENT METHODS 1333

Figure 7. An aligned polytopic mesh, 𝒯 , with 64 polygons and 208 triangle sub-mesh ̃︀𝒯 . (a)
An aligned mesh with 64 polygons. (b) A 208 triangle sub-mesh.

Figure 8. Example 4. Convergence of the R-FEM under ℎ-refinement for 𝑟 = 1, 2, 3, 4.
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Figure 9. An example of agglomerated meshes 𝒯 with a lot of tiny faces. (a) 𝒯 with 35
polygons. (b) 𝒯 with 548 polygons.

Figure 10. Example 5. Convergence of the R-FEM under ℎ-refinement for 𝑟 = 1, 2, 3, 4.
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𝐻1-seminorm for ℰ (𝑢ℎ), against the square root of the number of degrees of freedom in the underlying finite
element space 𝑉 𝑟

ℎ . Here, again, observe that ‖𝑢 − ℰ (𝑢ℎ) ‖ and |𝑢 − ℰ (𝑢ℎ) |𝐻1Ω converge to zero at a slightly
suboptimal rate.

7.5. Example 5: An elliptic problem over agglomerated meshes with many faces per
element

Let Ω := (0, 1)2, and choose
𝑎 ≡ 1, b = (0, 0), 𝑐 = 0; (7.8)

the forcing function 𝑓 is selected so that the analytical solution to (2.1) is given by

𝑢(𝑥, 𝑦) = sin(𝜋𝑥) sin(𝜋𝑦). (7.9)

In this example, we investigate the convergence behaviour of the R-FEM with respect to ℎ-refinement on
agglomerated meshes, with fixed polynomial 𝑟, for 𝑟 = 1, . . . , 4. Here the successive fine agglomerated meshes
are constructed based on about half a million uniform triangles. In the coarsest level of the agglomerated meshes,
each polygon has approximately 300 tiny faces; a typical mesh is shown in Figure 9. In Figure 4 we plot the
error, in terms of the 𝐿2-norm and the (broken) 𝐻1-seminorm for both discontinuous R-FEM approximation 𝑢ℎ

and the conforming R-FEM approximation ℰ (𝑢ℎ), against the square root of the number of degrees of freedom
in the underlying finite element space 𝑉 𝑟

ℎ . We observe that ‖𝑢 − 𝑢ℎ‖ and |𝑢 − 𝑢ℎ|𝐻1(Ω,𝒯 ) converge to zero at
the optimal rates 𝒪

(︀
ℎ𝑟+1

)︀
and 𝒪 (ℎ𝑟), respectively, as the mesh size ℎ tends to zero for each fixed 𝑟. Moreover,

the convergence rate seems to be better than the optimal rate possibly because the large number of background
meshes take more information to the R-FEM solution. We emphasize that the theoretically analysis in this
work does not hold for R-FEM over these agglomerated meshes because of the presence of small edges, but the
numerical results are in accordance with Theorem 6.5 (Fig. 10).

8. Conclusion

In this work, we extended the recently developed R-FEM and applied it to PDEs with nonnegative charac-
teristic form. We have defined our scheme over general meshes, consisting of polytopic elements showing that
the total degrees of freedom of the R-FEM solution only depends on the number of elements in the polytopic
mesh. We have shown the R-FEM is stable for convection-dominated problems, pure hyperbolic problems and
problems of mixed classification when the interface is aligned with the polytopic mesh. Numerical experiments
have been presented to confirm the theoretical results derived in this paper. As a byproduct of the solution
process, we obtain a conforming counterpart of the solution, defined over a subtriangulation of the polytopic
mesh. This conforming approximation plays a key role in deriving a-posteriori error control for the R-FEM
which will be considered in the future work.
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