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Abstract: Enterprises equipped with IoT (Internet of Things) are the new generation of manufacturing 
industry. There is a need for new optimization models which incorporate the advantages of IoT. In this 
paper, a new mathematical model and heuristic algorithm are developed to minimize the total cost in a 
multiple machine environment which enables the industries to take economically better decisions and 
effectively use their resources. A heuristic algorithm is developed for identical machines which process 
with the same tool. A system in which jobs with stochastic workloads arrive randomly and upon arrival, 
their workload is facilitated by IoT. The proposed algorithm determines the assignment of workload to the 
machine and processing speed. The algorithm works for both online and offline frameworks. Copyright © 
2019 IFAC       
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1. INTRODUCTION 

In the latest era of industrial transformation i.e., Industry 4.0, 
IoT is the crucial aspect and industries are endeavouring new 
technology which is compatible with IoT. Industries equipped 
with IoT will increase consistently (Sutherland et al. 2016). 
IoT enables universal manufacturing resource availability by 
integrating and connecting physical assets into an information 
network (Gao et al. 2015). All the physical entities work 
jointly to increase the productivity and efficiency of the system 
(Takenaka et al. 2016). Hence, there is a need for new 
optimization models and algorithms that include the 
advantages and additional information made available by IoT 
(Xu et al. 2019).  
 
In this paper, a manufacturing system with N machines is 
considered. Every machine is a comprehensive model of a 
machine tool employed for manufacturing operations that can 
perform a wide range of subtractive and additive 
manufacturing operations. The machine is equipped with IoT, 
it can communicate its internal state (e.g., tool condition) and 
can gather status of various IoT-enabled jobs across the 
enterprise (Xu et al. 2019). This work can be extended for 
developing new algorithms for large-scale IoT based smart 
custom manufacturing systems. 
 
The rest of the paper is organized as follows, Section 2 gives 
an overview of the related literature. Section 3 describes the 
problem statement. Mathematical formulation of the problem 
is given in Section 4. We develop a new heuristic algorithm to 
solve the model in Section 5. Section 6 discusses the numerical 
results and Section 7 provides concluding remarks and future 
work. 

 

2. LITERATURE REVIEW 

Literature related to manufacturing control has been discussed 
for decades. Every time there is a technology advancement, 
new literature is developed. The workload controlling problem 
has been addressed by Martinelli (2007), Srivatsan and Dallery 
(1998), Akella and Kumar (1986) and Sharifnia (1988) 
considering continuous workload for minimization of holding 
cost. The problem of discrete workload to minimize the 
processing cost was discussed, but the workload was revealed 
at the end of processing (Song 2006; Cheng et al. 2011; Pang 
2015; Feng and Xiao 2002; Boukas et al. 1995; and Conrad 
and McClamroch 1987). Furthermore, Hall et al. (1997) and 
Chekuri et al. (2001) minimized the average completion time 
with the consideration of deterministic arrival of workload but 
does not include aspects like processing speed, a machine with 
the degrading tool and machine maintenance. In order to 
minimize the makespan, Gans and Van Ryzin (1997) 
controlled the processing speed without consideration of tool 
degradation. Sevastianov and Woeginger (1998) and Hall 
(1998) tackled the offline problem of machine scheduling to 
minimize makespan where the workload revealed 
deterministically at the beginning. However, job arrival is not 
discussed in these two articles. Xu et al. (2019) have taken into 
account the discrete part manufacturing, machine with 
degrading tools and degradation while optimizing the 
completion time. In literature, many authors have not 
considered the following features simultaneously in their 
studies: 1) Discrete part manufacturing, 2) Multiple machine 
system, 3) Each machine with degrading tool and degradation 
as a function processing speed, 4) Jobs with workload revealed 
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upon arrival and 5) Objective of minimizing total cost. Here 
arrival need not be at the machine (Xu et al. 2019).   

 

3. PROBLEM DESCRIPTION 

In enterprises equipped with IoT, job arrives randomly and 
arbitrarily. Upon arrival, their process requirements i.e., 
workloads are revealed (known deterministically). Then a 
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…,wn(L)) are to be performed using the machines. We need to 
determine on which machine wi should be processed and its 
processing speed si. Also, the epoch when the tool should be 
replaced on each machine. The minimization of makespan 
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Z = Min [setup cost + processing cost + tool cost + holding 
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If we consider a single machine system, the setup cost is 
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number of workload for the machine. Hence, it gets 
transformed into a makespan minimization problem described 
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4. MODEL FORMULATION 

In the objective function, consider the setup cost which is 
dependent on the machine, so for a machine, it’s fixed. The 
processing cost depends on the amount of time we process on 
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Where ℎ⋆ is tool level of a new tool, ���  is a binary variable 

defined as follows, 
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D(s) is the tool degrading rate and is defined as follows, 
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Where s is the processing speed, C,v are constants from 
Taylor’s tool life equation (Xu et al. 2019). 
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So in the objective function, tool cost can be defined as 
follows, 
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We assume that a tool cannot be replaced while processing is 
going on,  
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Thus, the two conditions on tool level make sure that we have 
sufficient tool level to process current job and next job (Xu et 
al. 2019). 
Holding cost depends on the inventory level of the system and 
as defined in Feng and Yan (2000), 

Holding cost = � �∫ �(�) × �(�)��
�

�
�                  (7) 

 
�(�) = inventory level at time t 
�(�) = holding cost per unit at time t 
 
If a significant interval is considered for reviewing the 
inventory (say every hour), the integral can be replaced with a 
large operator (Σ). Let us assume that holding cost per unit is 
constant irrespective of the time, so the modified expression is 
as follows, 

Holding cost = ∑ �(�) × ��
���                          (8) 

 
Now for a workload wi, it has arrived at t = 0, and it got 
processed during the interval (t’, t’+1), it will be present in the 
inventory from t=0 to t = t’. So holding cost can be expressed 
as the product of time taken for a workload to start getting 
processed after it has arrived and the holding cost per unit. 
Hence if we consider wi,  

Holding cost of wi = �∑
��

��

���
��� � × �∗                 (9) 

 
If we modify the holding cost per unit into holding cost per 
unit time per unit work load �∗ is replaced with wi×H. Here 
we assume that after a job is processed it will be shipped 
immediately. 

Notations used: 

Parameters: 

� number of machines under use  

� list of workloads to be processed 

n(L) number of workloads in list L 
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���

���

�(��)
���

�
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After a job is processed the tool level (ℎ�,�) gets updated as 

follows (Xu et al. 2019), 
 

ℎ�,��� = ℎ⋆ × ��,��� + �1 − ��,���� × �ℎ�,� −  
�(���)

���
× ���� (2) 
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��� =  �
0, �� ���� ����������� ������ ���������� ���  

1, ���� �� �������� ������ ���������� ���            
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�(�) =  
��

�
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���  jth workload processed on machine i 

�� setup cost of machine i  

��  processing cost on machine i per unit time 

�� tool replacement cost of machine i 

� holding cost per unit time per unit workload 

ℎ�,� remaining tool level on machine i before processing 

job j of machine i 

 ℎ⋆ tool level of an new tool 

�(�) tool degrading rate for processing speed, determined 
using Taylor’s tool life equation  

Decision variables:  

 �� list of workloads assigned to machine i 

���   decision variable for tool replacement on machine i 

before processing job j of machine i 

���  processing speed of jth job on machine i  

Objective function: 

Minimize, 

� � ��� + 
���

���

× �� +  ��� × ��  +   ��
���

���

���

���

� × ��� × ��

�(��)

���

�

���

 

                                                                                           (10) 

Subject to: 

ℎ�,��� = ℎ⋆ × ��,��� + �1 − ��,���� × �ℎ�,� −  
�(���)

���
× ����     

                            ∀ i,j                    (11) 

ℎ�,� − 
������

���
× ���  > 0      ∀ i,j                                        (12) 

∑ �(��) = �(�)�
���                                                             (13) 

��� =  {0,1}                         ∀ i,j                                        (14) 

��� > 0,                               ∀ i,j                                        (15)  

 

Equation (11) updates the remaining tool life after processing 
the current task. Equation (12) makes sure that there is 
sufficient tool life to process current task and Equation (13) 
ensures that each task is assigned to a machine. Equation (14) 
states that ���  is a binary variable and Equation (15) is a non-

negative constraint for ��� .                                                

 

5.  SOLUTION APPROACH  

To solve the above formulation, first, fix the number of 
machines and then we should assign the workloads to 
machines and solve for each machine. 

We assume that all the machines are identical and process with 
the same tool. So setup cost and per unit processing cost, tool 

cost, holding cost are assumed to be the same for each 
machine. This assumption makes the problem less complex so 
that the novelty of the problem can be understood easily.  

In the objective function, there are four parts. 

Z = Min [setup cost + processing cost + tool cost + holding 
cost] 

Minimizing each part minimizes the whole cost, hence we can 
find an optimal solution. 

Setup cost depends on a number of machines. To minimize the 
processing, we should minimize the time taken to process all 
the jobs. In case of tool cost, we should efficiently use each 
and every tool. For holding cost, as it depends on the time 
taken for a workload to get processed i.e., the time taken from 
the arrival of a job to till it gets processed. Thus, to minimize 
the holding cost we should minimize makespan.  

For minimizing the processing and tool cost, we use fixed 
buffer approach. Fixed buffer approach is an online 
algorithm developed by Xu et al. (2019), which minimizes the 
makespan of one individual machine with an optimal number 
of tool replacements. 

Consider the setup and holding cost, setup cost increases as the 
number of machines increase. Holding cost decreases as the 
number of machines increases since the makespan of the total 
workload decreases. Hence, there is a trade-off between setup 
cost and holding cost and we can find a middle ground where 
we can find our optimal solution with minimum cost. 

In the formulation, we basically assign workload for each 
machine and then pack workload for each tool. But we can also 
do that the other way round, first we pack workload into 
minimum possible buffers and then assign buffers to 
machines.  

L = (w1, w2, … , wn(L)) → L = ( b1, b2, ….. , bk) 

Where bi is a buffer with maximum capacity of W. for 
converting the list into buffers we use the following algorithm. 

Fixed buffer approach ( Xu et al. 2019): 

l = current buffer level 

W = maximum buffer level or buffer capacity  

For i = 1:n(L) do 

          If l + ��  ≤ � then put ��  in buffer and l ← l + ��; 

          Else if l + ��  > �  && ��  ≤ � then 

                   Put ��  in a new buffer 

          Else     

                   Allot one complete buffer to ��; 

          End if 

          If  i = n(L) then consider the current level l as  

                      a buffer; 

          End if                           
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To assign the buffers holding cost plays an important role as 
rest of the parts in the objective function are fixed. To 
minimize the total processing time we should minimize the 
number of buffers assigned to each machine, the optimal 
assignment for this will be assign equal number of buffers to 
each machine  

5.1  Algorithm 

For m = 1:N do 

1.   Convert the given list of workloads into a list of buffers 
with a maximum buffer capacity W.  

2.     Break the list ( L ) of buffers into ‘m’ approximately equal 
lists ( L1 , L2, ....... , Lm ). 

3. For each list Li find the processing time, holding time of 
each buffer and calculate the total cost. 

4. If the total cost of m is less than the total cost (m-1), 
continue to next m. Otherwise, (m-1) is the optimal 
number of machines to use to minimize the total cost. 

Pseudo code of the heuristic algorithm is presented below. 

For m = 1:N do 

 Split( L, m ) = ( L1 , L2, ....... , Lm ) 

 Processing time = ∑ ∑ ��[�]�(��)
���

�
���  

 Processing cost = processing time x P 

 For each Li : 

 MSi = Makespan = ∑ [��[�] + �]�(��)
��� , � is 

tool replacement time   

   Find holding time of Li[j] = ∑ ��[�]���
���  ∀i,j 

 Holding cost = holding time x H 

 Tool cost = n(L) x R 

 Setup cost = F x m 

 Makespan of total workload = Max{ MS1, MS2, ... ,MSm}  

 Total cost = setup cost + tool cost + processing cost  +                    
holding cost 

         If total cost[m-1] > total cost[m]: 

                                 Continue; 

         Else: 

                                 Break; 

 

6. NUMERICAL RESULTS AND DISCUSSION 

 
In this section, we analyzed the numerical results obtained. We 
have simulated a system with 16 smart machines in which 
workloads are generated using uniform distribution with an 
upper bound, the buffer capacity is around 1.5�� , where ��  is 
the optimal tool level determined using Taylors’ tool life 
constants (Xu et al. 2019). 

�� =  �(� − 1)��
�

����

���

�

                 (16) 

 
Where v, � are constants in Taylor’s tool life equation and  � 
is the tool replacement time.  
The trade-off between holding cost, setup cost and the 
variation of the total cost is shown in Figure 1.   
 
So we can clearly see that we have a middle ground where we 
can find an optimal solution. Similarly, we have many 
parameters like a number of workloads (in this section ‘n’), 
upper bound etc. Now we show how the total cost varies with 
different values of n, Figure 2. 

 
Figure 1: Plot showing the variation of different types of costs 
 
 

.  
Figure 2: Plot showing variation of total cost with different ‘n’  
 
As we can see that as the n value is increasing the optimal 
solution i.e., the minimum point is moving towards the right, 
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which means we should use more number of machines with 
more workload. In all the cases using one machine is very 
costly and there is a drastic decrease in the cost, this is due to 
fact that the makespan is almost reduced to half if we use 2 
machines instead of 1. Similarly, the makespan reduces to one 
third if we use 3 machines instead of 1. If we go for higher 
values of n, the plots are as shown in Figure 3. 
 

 
Figure 3: Plot showing variation of total cost with large ‘n’ 
 
With an increase in the number of workloads, we should use 
as many machines as possible so that we could reduce our cost 
drastically. The variation of total cost with different upper 
bounds (U) is shown in Figure 4. 

This plot can be understood as different buffer capacities for a 
given upper bound. So with an increase in buffer capacity, we 
can put a lot of workload into a single buffer which decreases 
the makespan as there is less number of tool changes resulting 
in lower tool cost and lower holding cost as tool replacement 
consumes a significant amount of time. 
 

 
Figure 4: Plot showing variation of total cost with U values 

7. CONCLUSION AND FUTURE WORK 

In this paper, we consider a custom-manufacturing framework 
with IoT. The main advantage of IoT is that we can precisely 
determine the workloads given their physical characteristics 

and requirements. Also, we get the information regarding the 
distribution of workloads. The developed new model and 
heuristic algorithm minimizes total cost unlike a single type of 
cost as seen in previous literature. We have simulated a very 
simple system which can address our requirements and we got 
promising results. This algorithm can be extended for more 
complex scenarios with holding cost having a discount factor 
and fixed cost is a function of a number of machines. We have 
considered identical machines with the same type of degrading 
tool, so there are several extension for this research which will 
be useful in developing large-scale IoT-based smart 
manufacturing systems with customized production.   
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