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Abstract 

Prospection (mentally simulating future events) generates emotionally charged mental images that guide social 

decision-making.  Positive and negative social expectancies – imagining new social interactions to be rewarding 

vs. threatening – are core components of social approach and avoidance motivation, respectively.  Stable 

individual differences in such positive and negative future-related cognitions may be underpinned by distinct 

neuroanatomical substrates. Here, we asked 100 healthy adults to vividly imagine themselves in a novel self-

relevant social scenario that was ambiguous with regards to possible social acceptance or rejection. During this 

task we measured their expectancies for social reward (e.g. anticipated feelings of social connection) or threat 

(e.g. anticipated feelings of rejection). On a separate day they underwent structural MRI; voxel-based 

morphometry (VBM) was used to explore the relation between their social reward and threat expectancies and 

regional grey matter volumes (rGMV). Increased rGMV in key regions involved in prospection, subjective 

valuation and emotion regulation (including ventromedial prefrontal cortex), correlated with both higher social 

reward and lower social threat expectancies. In contrast, social threat expectancies were uniquely linked with 

rGMV of regions involved in social attention (posterior superior temporal sulcus) and interoception 

(somatosensory cortex). These findings provide novel insight into the neurobiology of future-oriented cognitive-

affective processes critical to adaptive social functioning.  

Keywords: Emotional future thinking; Emotion regulation; Social connection and rejection; Ventromedial 

prefrontal cortex; Voxel-based morphometry 
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Introduction 

Making friends - and/or forming romantic partnerships – is of critical importance for adults' adjustment to new 

environments, for instance, starting university.1 Friendship bonds are consistently shown to have equal, or 

even greater, importance than family ties in predicting psychological well-being and physical health in 

adulthood.1–8 Research that has looked at not just the quantity, but also the quality, of social bonds has 

demonstrated that the mere existence of social relationships does not necessarily contribute positively to 

health.4,9–11 Supportive and rewarding social connections exert powerful effects on health and wellbeing, but 

relationship strain and social distress – the extent to which an individual perceives their daily social interactions 

as negative or   distressing – can have equally strong, deleterious effects on health and wellbeing.12,13 Thus, 

social interactions and relationships are strongly linked to health and well-being because they present the 

potential for powerful (emotional) rewards as well as the potential for potent threats.14,15 

Chosen relationships typically emerge from interactions among people. Humans are therefore intrinsically 

motivated to actively seek out and affiliate with others, with the aim of fostering new social connections.16 By 

their nature, however, social interactions with unfamiliar others simultaneously offer the prospect of both 

rewards (e.g. having a pleasant conversation, feeling a sense of belonging)17 and threats (e.g., feeling 

embarrassed, being socially rejected).18,19 

Frameworks describing general motivation posit two basic systems that mediate actions geared towards 

desirable and undesirable outcomes – an approach (or behavioural activation) system (BAS) and an avoidance 

(or behavioural inhibition) system (BIS), respectively.20–22 These are suggested to be independent, but jointly 

operating, neurobehavioral systems. Models of social motivation connect these basic approach/avoidance 

motivational processes with social cognition, including attentional focus and beliefs about other people's 

behaviour in social interactions.2,14,15,23,24  

General approach and avoidance motivation are stable dispositions, albeit with some variation in adolescence 

and young adulthood.25–27 Sensitivity to social reward and threat are similarly stable,28 although both appear 

to be heightened during adolescence.29 These stable traits are associated with the likelihood of being socially 

connected or, conversely, isolated.3 It has been suggested that sophisticated neural-cognitive systems for 

calibrating social approach/avoidance motivation (and behaviour) evolved as a means of regulating hierarchies 

in complex primate societies.30 It seems plausible that individual differences in these neurocognitive systems 

might exist on continua of shyness and sociability, respectively, with the extreme ends of these continua being 

clinically relevant.31,32 For instance, maladaptations of these systems could result in social anxiety (excessively 

high BIS31), social anhedonia (excessively low BAS33), or hypersociability.34,35 All of these conditions are 

associated with loneliness32,36–40 and with poorer health and wellbeing more generally.37,38,41 

An emerging literature details neural responses to rejection or connection experiences and visual cues of social 

reward or threat.42–45 However, there is good reason to think that prospective cognitive-affect representations 

are at the heart of these putatively distinct social reward and threat motivational systems. BAS or BIS have 
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been theorized to be primarily future-oriented (e.g. mediating hopes and fears about future desirable or 

undesirable outcomes46–48). Similarly, MacLeod46,47 argues that affect is directly related to cognition and that 

positive and negative future-related cognitions may best be perceived as two separate dimensions of 

experience. Such future-oriented emotion systems depend on the capacity for “mental time travel” inherent 

in episodic memory.49,50 Mental time travel enables vivid, detail-rich simulations of future events based on the 

flexible re-combination of episodic memories and newly generated images constructed by drawing on both 

episodic and semantic memory (e.g. beliefs, goals). Through the vivid imagination of future events, humans 

generate embodied predictions of events’ emotional impacts before their occurrence, which act as powerful 

motivators of goal-directed behaviour.50,51   

While some recent research has studied individual differences in anticipated social reward and threat 

separately (e.g.45,52,53), to our knowledge, no neuroimaging research has directly examined both individual 

differences in future-oriented social reward and threat expectancies in the context of fostering new social 

connections. Building on work in the domain of close relationships54–57 we developed a new instrument to 

examine inter-individual differences in reward and threat expectancies in the context of a social interaction 

with unfamiliar peers. This novel measure, the levels of dispositional expectancies for social threat and reward 

scale (LODESTARS), asks participants to vividly imagine that they have joined a new group, club, or society, and 

that later that evening, they will be meeting other people in this group/club/society for the first time. 

Participants then make predictions about the probable emotional consequences of interactions and report 

their anticipatory and anticipated emotions, by responding to items such as “I will probably meet one or more 

people who I will like a lot”.  The imagined scenario is ambiguous, in that it simultaneously holds the possibility 

for social reward and social threat, thus maximizing opportunities for individual differences to emerge.58,59 

Individuals’ social reward and threat expectancies as measured by the LODESTARS are stable over time,  are 

associated with other stable affective traits such as self-esteem, and may be grounded in temperament and 

attachment experiences.60,61 Given this trait-like stability, we predicted that individual differences in 

expectancies for social threat and reward would be associated with stable, structural aspects of the brain. 

Recent structural magnetic resonance imaging (sMRI) studies indicate that a number of social traits are 

reflected in brain macrostructure (regional grey matter volume, rGMV) as assessed by voxel-based 

morphometry (VBM).62  Here, we utilized VBM and an unbiased, whole brain analysis, to investigate the 

possibility of unique and overlapping rGMV correlates of inter-individual differences in social threat and reward 

expectancies (STE and SRE, respectively)  as measured by the LODESTARS.  

This was primarily an exploratory study. However, we made two tentative predictions, based on previous 

research. First, we predicted that ventromedial prefrontal cortex (vmPFC) would correlate positively with SRE 

and negatively with STE. vmPFC is involved in the construction of episodic memories and imagined future 

events, as well as their valuation based on current needs and goals.63 vmPFC activity scales with anticipated 

positive value.64 Given that specific functional tasks correlate with volumes of regions subserving those tasks, 

we predicted increased vmPFC volume linked to increased SRE.  
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Another well-established role of vmPFC is in the regulation of negative affect.65,66 Previous work has found that 

more successful emotion regulation is associated with greater rGMV in vmPFC,67 so we expected increased 

vmPFC volume to also relate to lower STE.  

Secondly, we expected that rGMV of the amygdala and posterior superior temporal sulcus (pSTS) would be 

positively correlated with STE. An abundance of research implicates the amygdala in threat processing and, of 

particular relevance here, increased amygdala volume has been linked to behavioural inhibition and social 

anxiety.68,69 The amygdala works in concert with pSTS in mediating vigilance for social threat in the external 

environment.70 The pSTS and amygdala are also active during the simulation of social evaluative threat and 

embarrassment.71,72  

Here, we used VBM to identify correlations between SRE and/or STE and rGMV across the whole brain. We 

dissected and quantified the unique and overlapping rGMV correlates of SRE and STE using a combination of 

raw LODESTARS scores and LODESTARS scores that were orthogonalised (residualised) with respect to one 

another.  

Methods 

Participants and procedure 

A power analysis73 indicated a sample size of n = 82 was required to detect a medium sized correlation (r = 0.3, 

alpha = 0.05, power = 0.8).  One hundred right-handed healthy volunteers participated (74 female, 26 male, 

mean age 24 years, range: 18–54). Participants completed a battery of measures including the LODESTARS, 

administered using Qualtrics (Provo, UT, http://www.qualtrics.com). Participants attended the imaging centre 

on a separate occasion for MRI scanning.  

Measuring dispositional social expectancies: The LODESTARS 

The LODESTARS is a 10-item inventory examining the extent to which respondents expect to experience social 

reward (pleasure) and threat (distress) during an imminent vividly imagined social encounter with a group of 

unfamiliar peers.  Participants are asked to imagine that they have joined a new group, club or society and that 

this evening they will be going to a social event organized by this group/club/society. Participants imagine that 

this will be the first time they will meet other people who are in the group/club/society. After noting down the 

name of the group/club/society they have chosen, participants indicate their anticipated and anticipatory 

cognitions and emotions about the upcoming imagined event, by responding to 10 items on a 5-point Likert 

scale (see https://osf.io/hq5sg/ for the full measure). Approaching unfamiliar others and establishing initial 

social connections are core tasks when transitioning into novel social environments (e.g. entering university), 

and a prerequisite for integrating new people into one’s social network.1   

Expectancies about social interactions are partly situation-specific;74 however, there is a component of them 

that is influenced by individuals' temperament and stable working models (schemas) of self and others.75,76  The 

LODESTARS was designed to tap the stable component, by probing participants’ expectancies for interactions 

with peers (with whom the participant is motivated to interact) in a generic social event context. The scenario 
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described in the LODESTARS is emotionally ambiguous, and thus in line with existing measures in which 

participants imagine themselves in an emotionally ambiguous (future) scenario.58,77 These measures are 

sensitive to individual differences in affective style.46,78 We used an imminent, self-relevant imaginary scenario, 

since short-term predictions enhance the tendency to rely on episodic, experiential emotional information, 

relative to personal semantic knowledge (beliefs, traits, etc.).46,78,79 

Data from more than 1,300 participants demonstrate that the LODESTARS has a two-factor (reward, threat) 

structure and excellent psychometric properties, including high test-retest reliability.60,61 The LODESTARS yields 

two scores for each participant: a social reward expectancy (SRE) score and a social threat expectancy (STE) 

score, both of which can range from 1 (low) to 5 (high). The LODESTARS has excellent construct validity and 

appears to be sensitive in distinguishing different social cognitive-affective processing styles. For example, 

attachment anxiety is associated with heightened STE, while avoidant attachment is associated with reduced 

social SRE.60 Qualitative data from a community sample confirmed that people find the LODESTARS to be highly 

naturalistic,61 consistent with findings that people devote considerable time in daily life to imagining and 

evaluating social encounters.80 

Image acquisition 

T1-weighted anatomical images for each participant were acquired using a 3-T GE HDx MRI scanner at Cardiff 

University Brain Research Imaging Centre (CUBRIC). The 3-D T1-weighted whole-brain images were acquired 

using a fast spoiled gradient echo sequence (FSPGR) with 1 × 1 × 1 mm voxel size and between 168 and 182 

contiguous slices. Image acquisition parameters were as follows: repetition time (TR) = 7.8 ms echo time 

(TE) = 2.984 ms; inversion time = 450 ms; flip angle = 15°; data matrix = 256 × 192. These data were usually 

acquired within one week of the participant completing the LODESTARS (mode = 3 days).   

Image analysis 

VBM was performed using SPM12 (Wellcome Trust Centre for Neuroimaging, http://www.fil.ion.ucl.ac.uk/spm/software/spm12) 

implemented in MATLAB v. R2012b (The MathWorks).  First each participant’s structural image was segmented 

into grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF) using the ‘unified segmentation’ set 

of algorithms in SPM12. The image segments of interest (the GM segments) were then normalised to MNI 

space using the diffeomorphic anatomical registration through exponentiated lie-algebra (DARTEL) registration 

method in SPM12.81 The GM images were smoothed using a Gaussian kernel of 8 mm full width at half 

maximum. An 8mm smoothing kernel is optimal for detecting morpho-metric differences in both large and 

small neural structures82. 

Statistical analysis 1: LODESTARS VBM 

We examined correlations between regional grey matter volume (rGMV) and social reward expectancy and 

social threat expectancies from the LODESTARS. We accounted for the potentially confounding variables of age 

and gender83 by entering them into the general linear models as ‘regressors of no interest’. Participants’ overall 

brain volumes were also accounted for, by means of proportional scaling in SPM1284. A binary MNI brain mask 

(SPM8 brainmask.nii) was used to restrict the analysed volume to voxels within the brain. 
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Model specification 

Inference as to whether regional rGMV significantly correlates with one or both regressors of interest requires 

that both LODESTARS-reward and threat scores be included within the same model.85 

We would not expect reward and threat expectancies to be orthogonal either behaviourally nor necessarily in 

the brain.86 However, it is informative to clarify the effects on rGMV that are uniquely attributable to each of 

these two regressors. Entering both into a GLM will automatically achieve this: an essential property of the 

GLM is that only the variability unique to each regressor drives the parameter estimate for it, so that each 

effect is adjusted for all others.87,88 Only assessing the rGMV associations of variance that is unique to threat 

and to reward carries its own problems however. These are due to the fact that the standard process of GLM 

parameter estimation removes the effects of shared variability.87 When two regressors are highly correlated, 

their shared variability is large and the unique component for each is correspondingly small. This results in a 

loss of statistical power. Further, in this case, it is interesting to explore not only the regional rGMV differences 

uniquely associated with threat or reward expectancies, but also those present when the shared variance is 

included within the model.  

The correlation between LODESTARS-threat and -reward scores in the present study was -.36, p = 0.0002 (95% 

CI = -.56 to -.137), indicating significant shared variance between these two regressors. In order to construct 

GLMs that incorporate the shared variance component, two new variables were created: LODESTARS-threat 

orthogonalised with respect to reward (LODESTARS_threat_orth) and LODESTARS-reward orthogonalised with 

respect to threat (LODESTARS_reward_orth). These variables are the residuals that result from regressing 

threat on reward and vice versa. By definition, these constitute the portions of each LODESTARS score that are 

not predicted by the other LODESTARS score. 

Using the orthogonalised LODESTARS variables in combination with the ‘raw’ (non-orthogonalised) scores, it 

was possible to run two GLMs, which between them allowed assessment of individual differences in rGMV 

uniquely attributable to variance in LODESTARS-threat or reward, as well as rGMV associations present when 

the shared variance was included but attributed exclusively to threat or reward. I.e., the effects of reward 

expectancies adjusted for threat and unadjusted for threat, plus the effects of threat adjusted and unadjusted 

for reward. The two models are specified below. See Figure 1 for a diagrammatic representation of the 

assignation of (shared) variance that results from orthogonalisation.  

Model = Threat orthogonalised with respect to reward. All shared variance assigned to reward. 

rGMV = α + b0 LODESTARS_reward + b1 LODESTARS_threat_orth + b2 age + b3 gender 

Model = Reward orthogonalised with respect to threat. All shared variance assigned to threat. 

rGMV = α + b0 LODESTARS_reward_orth + b1 LODESTARS_threat + b2 age + b3 gender 
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Correction for multiple comparisons 

To correct for multiple comparisons across the whole brain, we applied non-stationary cluster extent correction 

as implemented in the VBM8 toolbox (http://dbm.neuro.uni-jena.de/vbm/) running in SPM12. We used 

3DClustSim (AFNI) to calculate the overall expected voxels-per-cluster threshold for our data, for α = 0.05, p ≤ 

0.001, based on the brain mask we used (SPM8 brainmask.nii). This gave an expected cluster size of ≥ 86 voxels. 

Statistical analysis 2: Overlap analysis 

To test for brain voxels in which rGMV is significantly correlated (positively or negatively) with threat and 

reward expectancies, two further GLMs were applied. These models each contained only one LODESTARS 

variable as the regressor of interest. The same thresholding was applied as in statistical analysis 1: p < 0.005, 

with an 86-voxel cluster extent threshold. 

These models yielded statistical parametric maps (SPMs) of brain regions in which rGMV correlated positively 

with reward, positively with threat, and negatively with threat. (No clusters survive threshold for negative 

correlation with reward). These gave rise to two overlap analyses: 1, {reward-positive and threat-negative} and 

2, {reward-positive and threat-positive}.   

The combinations of SPMs were inspected for overlap by means of masking in SPM12.  

Statistical analysis 3: Structural covariance analyses 

To further characterize the network affinities of regions linked with SRE and STE, we examined grey matter 

structural covariance (SC)89 between dmPFC and vmPFC, between vmPFC and amygdala, and between pSTS 

and amygdala.  

Figure 1: Venn diagrams illustrating how the 

variability is distributed across the 2 LODESTARS 

regressors where red is unique to reward, blue is 

unique to threat and purple is shared. A depicts 

‘raw’ LODESTARS-threat and reward scores, which 

exhibit some overlapping variance. B and C depict 

the two regression models run, demonstrating the 

effects of variable orthogonalisation. In B, all the 

shared variance is assigned to LODESTARS-threat 

while in C, all shared variance is assigned to 

LODESTARS-reward. 
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We extracted GMVs for the peak voxels of the dmPFC, vmPFC and pSTS clusters that survived cluster-extent 

correction in the LODESTARS VBM. These voxels were used as seeds in the subsequent analysis.  

Our target regions of interest (ROIs) were specified by masks created from the Neuromorphometrics atlas.90 

Two masks were created: a bilateral amygdala mask and a bilateral vmPFC mask.  

We used seed-based SC analyses,91 conducted in SPM12, to identify voxels within our target ROIs in which GMV 

covaried with GMV in the seed voxel. Our analyses identified voxels in which target region GMV covaried 

positively with seed GMV, and (separately) voxels in which target region GMV covaried negatively with seed 

GMV. The effects of gender, age, and total brain volume were accounted for in these models. As this was a 

hypothesis-driven, rather than exploratory analysis, we employed more stringent correction for multiple 

comparisons than in analyses 1 and 2. Specifically,  threshold-free cluster enhancement (TFCE), which controls 

the family-wise error rate at p < .05.92 

 

Results 

The mean LODESTARS-reward score in this sample was 3.7 (from a max. possible score of 5; range = 2.0–4.8); 

std. dev. = .49) and the mean LODESTARS-threat score was 3.3 (range = 1.0–5.0, std. dev. = .92). Cronbach’s 

alpha was .65 for LODESTARS-reward and .87 for LODESTARS-threat. There were no significant gender 

differences in the LODESTARS scores. LODESTARS-reward scores did not correlate with age, however 

LODESTARS-threat scores decreased with increasing age (r = -.30, p = .003, 95% CI = -.49 to -.103). This is 

consistent with findings in a larger sample (n > 1,300).61 

Both LODESTARS reward and threat scores were significantly higher than the scale midpoint in this sample: for 

reward, t = 14.67, p < .001; for threat, t = 4.02, p < .001. A paired-samples t-test indicated that the mean 

LODESTARS SRE score was significantly higher than mean LODESTARS STE score, t = 3.05, p = .003, dav = 0.5.   

Statistical analysis 1: LODESTARS VBM results 

First, correlations between rGMV and LODESTARS-threat/reward were examined in the SPM T-maps in which 

shared variance was included. That is, the outputs of the threat orthogonalised with respect to reward model 

were inspected for correlations between rGMV and LODESTARS-reward scores. The outputs of the reward 

orthogonalised with respect to threat model were inspected for correlations between rGMV and LODESTARS-

threat scores. Details of the clusters that survived non-stationary cluster extent correction are given in Table 

1. The extent to which the correlations within each cluster reflect unique variance of threat or reward was then 

assessed by checking whether the clusters survived cluster-extent correction thresholding for the equivalent 

contrasts in the opposite model (i.e. reward correlation contrasts in the reward orthogonalised with respect to 

threat model). These results are reported in the right-most column of Table 1. 

A positive correlation between SRE and rGMV was found in a dorsomedial region of left prefrontal cortex 

(dmPFC, see Figure 2; Figure S1A). This result was significant only in the model in which the shared variance 

was allocated to reward however; it did not remain significant (at the cluster-size-corrected level) in the model 
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in which the shared variance is allocated to LODESTARS-threat, indicating that this rGMV-expectancy 

association is partially attributable to shared variance between reward and threat expectancies. No other 

correlations (positive or negative) of rGMV with LODESTARS-reward survived cluster extent correction. 

Greater rGMV in right posterior superior temporal sulcus (pSTS) was associated with higher STE (Figure 2; 

Figure S1B), whereas individuals who reported lower expectancies of social threat had greater GM volumes in 

right ventromedial PFC (vmPFC, see Figure 2; Figure S2A), left lateral occipital lobe (lOCC, see Figure 2; Figure 

S2B), and right postcentral gyrus (somatosensory cortex, Figure 2; Figure S2C).  

The extent and location of each of the clusters that survived non-stationary extent correction are summarised 

in Figure 2.  

 

Figure 2: Brain regions in which there were significant associations between self-reported social expectancies 
and rGMV. For display purposes the clusters are shown at a threshold of p < .001, uncorrected. 
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Table 1 Clusters that survived nonstationary cluster extent correction: shared variance between threat and reward included.
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Statistical analysis 2: Brain regions in which rGMV is correlated with both reward and threat 

expectancies 

The results of these overlap analyses are given in Table 3 and Figure 4. The only pairing for which there were 

overlapping clusters (at p < 0.005, with 86 voxel extent threshold) was {reward-positive and threat-negative}. 

There was overlap between clusters in the vmPFC (Fig. 4A), in the right lateral inferior temporal gyrus (Fig. 4B) 

and in right parahippocampal gyrus. 

Table 3 Overlap of clusters reflecting motivational salience that survived p <0.005, 86-voxel extent threshold. 

 
 

 

Figure 4: Overlay of regions in which rGMV correlates positively with social reward expectancy and negatively 
with social threat expectancy. Red = reward_positive; green = threat_negative; yellow = overlap. The SPMs 
were thresholded at p < 0.005 with 10 voxel minimum cluster extent.  
A (upper panel) shows the extent of overlap in right orbitofrontal/ventromedial prefrontal cortex.  
B (lower panel) shows the overlap in right lateral inferior temporal gyrus. 
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Statistical analysis 3: Structural covariance analyses 

Seed-based SC revealed that pSTS rGMV covaried positively with right amygdala rGMV, while vmPFC rGMV 

covaried negatively with right amygdala rGMV (Figure 3A). rGMV in the dmPFC seed covaried positively with 

rGMV in vmPFC (Figure 3B). 

 

Figure 3: Structural covariance results. [A] rGMV in the vmPFC and pSTS seed regions covaried with rGMV in 
the right amygdala. vmPFC and amygdala rGMV were negatively correlated, while pSTS and amygdala rGMV 
were positively correlated. [B] rGMV in the dmPFC seed region covaried positively with rGMV in the vmPFC.  

 

Discussion 

We report a set of focal brain regions in which regional grey matter volume (rGMV) is associated with individual 

differences in dispositional expectancies of social reward or threat. The results were consistent with previous 

functional studies revealing that individual differences in future-oriented emotions are underpinned by a 

network centred on vmPFC.93 Further, seed-based structural covariance analyses were consistent with the 

suggestion that networks anchored in the amygdala support unique dispositions for fostering and maintaining 

social relationships.94   

Our novel scenario-based measure generated considerable individual differences in both reward and threat 

expectancies for the imagined social event.  Social reward expectancies (SRE) were significantly higher than 

social threat expectancies (STE). This finding is robust (n > 1,30061) and in line with previous research showing 

that healthy young adults typically anticipate social acceptance and positive social evaluation from novel 

interpersonal interactions (e.g.53,95–97) as part of a more general optimistic view of their personal future.46 This 

optimism bias is considered to be adaptive,98,99 beneficial for physical health and vital for mental 

health.100,101SRE were largely independent of STE, although the two were modestly inversely correlated (see 

also 102).
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Several prominent models posit that two neurobehavioral systems underlie individual differences in affect and 

motivation.103,104 Prospection is at the heart of these models. The appetitive (or approach) system underlies 

reward pursuit, in part by generating anticipatory and/or anticipated positive emotions. The aversive system 

underlies anxiety, vigilance, and withdrawal (behavioural inhibition) at the prospect of threat.  Our findings 

align with these models and are broadly consistent with other research showing that social approach and 

avoidance motives – characterized as the ‘hope for affiliation’ and ‘fear of rejection’ respectively – are distinct 

dispositions.15,24 Further, our work and others’ indicates that positive and negative future-related cognitions 

are best conceived as separate dimensions of experience, differentially associated with anhedonia and anxiety, 

respectively.46,105 

VBM findings – correlations with social reward expectancies 

Previous research shows that anticipated pleasure from imagined social interactions correlates with enhanced 

vividness of imagined people and places,106 and that the spatio-temporal clarity of imagined events is greater 

for events evoking anticipated positive vs. negative affect.107,108 Further, optimism is associated with the 

tendency to vividly imagine positive events in one's future (e.g.109,110); whereas anhedonia is associated with 

reduced capacity to simulate detailed future positive events (e.g.111–114) as well as reduced accessibility of such 

images.46 Positive episodic expectancy (‘anticipatory savouring’) requires a vivid, contextually detailed mental 

representation of future reward.  

Here, overlap analysis revealed that rGMVs in vmPFC, parahippocampal cortex (PHC) and ventral anterior 

temporal lobe (vATL) were positively correlated with social reward expectancies and negatively correlated with 

social threat expectancies. These are all regions of a core remembering-imagining network (e.g.49). Consistent 

with our VBM results, these regions are more activated during the simulation of positive, rather than negative, 

future events.115 As part of this network, vmPFC tracks the anticipated positive affective quality of future 

scenarios,93,116–119 consistent with a broader role in subjective valuation of both actually experienced and 

mental simulated events.120,121 

vmPFC tracks subjective value as a function of one’s needs and chronic goals122,123 and is sensitive to individuals’ 

optimism bias in their expectancies about the hedonic rewards or other benefits that the participant hopes to 

obtain from such events.124 For example, the level of vmPFC activity when imagining positive vs. negative future 

scenarios is positively correlated with trait optimism.118 Of particular relevance to our findings, vmPFC activity 

to anticipated social feedback is enhanced when participants have positive expectancies about social 

outcomes96,125,126 (see also 115). 

Functionally, vmPFC interacts with PHC and vATL to produce structured positively-valenced mental 

representations replete with detailed spatiotemporal context and vivid (personal) semantic and sensory 

details.93  Our findings that rGMV not only in vmPFC, but also PHC and ATL, is higher in individuals with higher 
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social reward expectancies is congruent with the behavioural work cited above and further relates to the 

finding of reduced engagement of these regions during prospection in patients with depression.127  

Positively biased simulations are partly grounded in biased encoding, consolidation and/or retrieval of 

autobiographical memories.128,129 Speer et al.130  found increased dmPFC activity linked to recall of positive 

autobiographical memories (‘savouring’). Our finding of greater dmPFC rGMV in people with more positive 

expectancies further corroborates the neural entwining of expectancies and memories.131 Our finding of 

positive structural covariance between dmPFC and vmPFC – which likely reflects long term increased functional 

connectivity89 – may be because the social context inherent in positive mental constructions enhances their 

value.126 It is also possible that the reward value of a simulated event may motivate the degree to which 

participants engage in mentalizing processes subserved by dmPFC.132 

rGMV in vmPFC and PHC were also correlated with lower STE. Reduced vividness of positive future thinking is 

characteristic of anxious individuals, in addition to anxious expectancies about future social interactions.113,133 

Social anxiety can be regarded as a position along a continuum ranging from a lack of anxiety, to mild shyness 

and then social anxiety disorder (SAD),134,135 so our findings can meaningfully be compared with studies of SAD, 

which  show reduced vmPFC volume.62,136 

The correlation of vmPFC rGMV with lower STE and greater SRE concurs with the well-established role of vmPFC 

in emotion regulation. A large-scale neuroimaging meta-analysis of affect regulation across 3 distinct domains 

(fear extinction, placebo effects, cognitive reappraisal) identified vmPFC activation as the only ‘common neural 

regulator’ dampening current and anticipated negative affect66 (see also 137).  

These results support the hypothesis that vmPFC plays a ubiquitous role in dampening current and anticipated 

negative affect.66 Our data extend previous work by indicating that the minimisation of STE – and/or the 

maintenance low threat expectancies – may be implemented in the brain by similar means as the reduction of 

fear or negative affect in other emotion regulation scenarios.  

In healthy adults, successful down-regulation of negative affect is consistently associated not only with 

increased BOLD activity in the vmPFC, but also with concordant reduction of activity in the amygdala.66,138–141 

Structural connectivity strength (via white-matter pathways) between vmPFC and amygdala has also been 

found to be inversely correlated with trait anxiety.142,143 Our structural covariance findings add further 

convergent evidence of the regulatory link between these regions by demonstrating a negative correlation 

between amygdala rGMV and vmPFC rGMV. 

VBM findings – correlations with social threat expectancies 

There were several unique rGMV correlates of individual differences in STE. Heightened anxious (threat) 

expectancies (fears of potential embarrassment and social rejection) were associated with increased rGMV in 

right pSTS, alongside decreased rGMV in somatosensory-related cortex (SRC) and lateral occipital cortex (OCC).  
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Cognitive theories posit that heightened social anxiety results from biased information processing144. Alongside 

regulatory deficits, a processing style marked by hypervigilance and an attentional bias to the social 

environment for signals of social evaluation is considered a causal and maintaining factor in social anxiety.145 

Our results are in line with studies suggesting that pSTS serves as an interface between perception of social 

information and social cognition.146–148 pSTS plays a role in analysing socially relevant perceptual information 

(eye gaze, tone of voice, facial and bodily threat signals), evaluating its implications and orienting attention 

accordingly, in line with the individual’s present affective state and social goals.149–151 pSTS rGMV is increased 

in SAD and shyness (e.g. 152,153), and increased pSTS activity to social perceptual cues (eye gaze etc.) has been 

consistently demonstrated in individuals who are social inhibited, shy, and socially anxious.154–159 Further, 

resting amygdala–pSTS functional connectivity has been linked to biased social attention and perception in 

social anxiety.146,160 Collectively, this work suggests that chronic hypervigilance for threat may result from, or 

result in, increased rGMV in right pSTS. Increased expectancies of threat when anticipating future situations 

may be fundamentally underpinned by these attentional biases.144,161,162 

Heightened attention to threat may lead to enhanced encoding, elaboration, consolidation and retrieval of 

negatively biased memories,163 resulting in an increased tendency to construct negatively biased expectancies. 

Further, increased internal attention to threat may maintain attention to negatively constructed future 

simulations in spontaneous thought, leading to heightened subjective expectancies of their occurrence and 

increased anticipatory worry.164 In turn, this may lead to repercussive effects with increased expectancies 

further increasing biased attention.162 

Our findings support cognitive models such as the constructive episodic simulation hypothesis,165,166 as we 

show that the neural structures underpinning attentional biases also underpin prospective ones. Other 

research has found that pSTS activity is related to remembering and imagining socially threatening 

situations;71,72 and  is increased during such simulations in individuals with SAD.167 

Surprisingly, we did not find that amygdala volume directly correlates with individuals’ STE, despite its well-

established role in threat processing, including anticipation of social evaluation168 and a proposed role in 

mediating temperamental shyness.169 However, we did find positive structural co-variation of pSTS with 

amygdala, and negative structural covariance of vmPFC and amygdala, consistent with their bidirectional 

anatomical connectivity.142,170 

We also found reduced rGMV in left lateral OCC, a region that, together with fusiform gyrus, pSTS and 

amygdala, forms a face perception network.171,172 This may link to fMRI work showing increased pSTS activity 

to face emotion, but decreased OCC activity (alongside poor face identity recognition) in socially inhibited 

individuals.155,173 
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Somatosensory-related cortex (SRC) plays a key role in interoception.174 Our finding of greater SRC rGMV 

associated with lower STE thus align closely with findings that individuals with reduced interoceptive sensitivity 

report significantly greater uncertainty and worry in anticipation of public speaking.175  Increased uncertainty 

in social situations may arise not just because of reduced ability to represent/regulate one’s own interoceptive 

signals, but also because SRC plays a role in automatic affective empathy via simulation of others’ bodily states. 

Personal distress (a dysfunctional form of empathy linked with maladaptive emotion regulation and social 

avoidance176) has been shown to be linked to lower rGMV in SRC.177   

Together, the rGMV correlates of STE we find concur with cognitive models of anxiety, in particular, the 

combined model,178 which contends that socially anxious persons simultaneously exhibit altered processing of 

internal (distress) cues and external stimuli potentially indicative of negative evaluation.  

Limitations 

There are some limitations that should be considered when interpreting our results.  

Our study was cross-sectional and so cannot determine whether the relationships between rGMV, SRE and STE 

arise over time through experience-dependent brain plasticity, or alternatively whether individuals with a 

specific brain structure are predisposed to acquire different expectancies. Most likely, our findings reflect 

complex gene-environment interactions over development. In future, training studies such as 179 could address 

this. 

The cellular basis of rGMV differences identified by VBM is still poorly understood.180 Any tissue property (e.g. 

cell density, cell size, myelination) that affects relaxation times, and hence voxel images on T1-weighted MRI, 

will influence VBM measures.  

Finally, the generalizability of our results is unknown. We deliberately chose to study a population of university 

students, because of the ecological relevance of joining new social groups.1 Additionally, each participant 

imagined just one scenario. The scenario was designed to be both sufficiently specific to allow episodic 

simulation whilst sufficiently generic, such that generalized expectancies (e.g. beliefs) could be tapped. 

Previous studies (e.g. 102), however, suggest a marked degree of consistency across social situations in 

reward/threat expectancies.  

Conclusions 

We found that individual differences in future-oriented thinking in the social domain are reflected in brain 

macrostructure. In particular, the extent to which individuals hold optimistic vs. pessimistic expectancies for 

the hedonic outcomes of an imagined social interaction is reflected in rGMV of key regulatory regions, most 

notably vmPFC. Our findings concur with the idea that vmPFC may integrate various sources of information to 

conceive the meaning of events for one’s well-being and future prospects.63 Our results may reflect a neural 

embedding of such self-related affective valuation, perhaps accounting for the link between vmPFC 

macrostructure and adaptive social functioning and well-being.181,182
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