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This  ve r sion  is b eing  m a d e  av ailabl e  in a cco r d a nc e  wi th  p u blish e r  policies.  S e e  
h t t p://o rc a .cf.ac.uk/policies.h t ml for  u s a g e  policies.  Copyrigh t  a n d  m o r al  r i gh t s  for

p u blica tions  m a d e  av ailabl e  in  ORCA a r e  r e t ain e d  by t h e  copyrigh t  hold e r s .
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SUMMARY

Genetic influences on psychiatric disorders tran-
scend diagnostic boundaries, suggesting substan-
tial pleiotropy of contributing loci. However, the na-
ture and mechanisms of these pleiotropic effects
remain unclear. We performed analyses of 232,964
cases and 494,162 controls from genome-wide

studies of anorexia nervosa, attention-deficit/hyper-
activity disorder, autism spectrum disorder, bipolar
disorder, major depression, obsessive-compulsive

disorder, schizophrenia, and Tourette syndrome. Ge-

netic correlation analyses revealed a meaningful

structure within the eight disorders, identifying three
groups of inter-related disorders. Meta-analysis

across these eight disorders detected 109 loci asso-
ciated with at least two psychiatric disorders,

including 23 loci with pleiotropic effects on four or
more disorders and 11 loci with antagonistic effects
on multiple disorders. The pleiotropic loci are located
within genes that show heightened expression in
the brain throughout the lifespan, beginning prena-
tally in the second trimester, and play prominent

roles in neurodevelopmental processes. These find-
ings have important implications for psychiatric

nosology, drug development, and risk prediction.

INTRODUCTION

Psychiatric disorders affect more than 25% of the population in 
any given year and are a leading cause of worldwide disability 
(GBD 2016 Disease Injury Incidence Prevalence Collaborators, 
2017; Kessler and Wang, 2008). The substantial influence of 
genetic variation on risk for a broad range of psychiatric disor-
ders has been established by both twin and, more recently, 
large-scale genomic studies (Smoller et al., 2019). Psychiatric 
disorders are highly polygenic, with a large proportion of herita-
bility contributed by common variation. Many risk loci have 
emerged from genome-wide association studies (GWAS) of, 
among others, schizophrenia (SCZ), bipolar disorder (BIP), major 
depression (MD), and attention-deficit/hyperactivity disorder 
(ADHD) from the Psychiatric Genomics Consortium (PGC) and

other efforts (Sullivan et al., 2018). These studies have revealed

a surprising degree of genetic overlap among psychiatric disor-

ders (Brainstorm Consortium et al., 2018; Cross-Disorder Group

of the Psychiatric Genomics Consortium, 2013). Elucidating the

extent and biological significance of cross-disorder genetic influ-

ences has implications for psychiatric nosology, drug develop-

ment, and risk prediction. In addition, characterizing the func-

tional genomics of cross-phenotype genetic effects may reveal

fundamental properties of pleiotropic loci that differentiate

them from disorder-specific loci and help identify targets for di-

agnostics and therapeutics.

In 2013, analyses by the PGC’s Cross-Disorder Group identi-

fied loci with pleiotropic effects across five disorders: autism

spectrum disorder (ASD), ADHD, SCZ, BIP, and MD in a

sample comprising 33,332 cases and 27,888 controls (Cross-

Disorder Group of the Psychiatric Genomics Consortium,

2013). In the current study, we examined pleiotropic effects in

a greatly expanded dataset, encompassing 232,964 cases and

494,162 controls, that included three additional psychiatric dis-

orders: Tourette syndrome (TS), obsessive-compulsive disorder

(OCD), and anorexia nervosa (AN). We address four major ques-

tions regarding the shared genetic basis of these eight disorders:

(1) Can we identify a shared genetic structure within the broad

range of these clinically distinct psychiatric disorders? (2) Can

we detect additional loci associated with risk for multiple disor-

ders (pleiotropic loci)? (3) Do some of these risk loci have

opposite allelic effects across disorders? and (4) Can we identify

functional features of the pleiotropic loci that could account for

their broad effects on psychopathology?

RESULTS

We analyzed genome-wide single nucleotide polymorphism

(SNP) data for eight neuropsychiatric disorders using a com-

bined sample of 232,964 cases and 494,162 controls (Table 1;

Table S1). The eight disorders included AN (Duncan et al.,

2017) ASD (Grove et al., 2019), ADHD (Demontis et al., 2019),

BIP (Stahl et al., 2019), MD (Wray et al., 2018), OCD (International

Obsessive Compulsive Disorder Foundation Genetics Collabo-

rative [IOCDF-GC] and OCD Collaborative Genetics Association

Studies [OCGAS], 2018), TS (Yu et al., 2019), and SCZ (Schizo-

phrenia Working Group of the Psychiatric Genomics Con-

sortium, 2014). All study participants were of self-identified Euro-

pean ancestry, which was supported by principal component

analysis of genome-wide data.



overlap or sample size differences among the eight disorders

(Data S1.2-1.4).

Cross-Disorder Meta-Analysis Identifies 109

Pleiotropic Loci

The factor structure described above is based on average ef-

fects across the genome, but does not address more fine-

grained cross-disorder effects at the level of genomic regions

or individual loci. To identify genetic loci with shared risk, we per-

formed a meta-analysis of the eight neuropsychiatric disorders

using a fixed-effects-based method (Bhattacharjee et al., 2012)

that accounts for the differences in sample sizes, existence of

subset-specific effects, and overlapping subjects across data-

sets (STAR Methods). The standardized genomic inflation factor

was close to one, suggesting no inflation of test statistics due to

confounding (l1000 = 1.005; Figure 2A). We identified 136 LD-in-

dependent regions with genome-wide significant association

(Pmeta% 5 3 10�8). Due to the extensive LD at the major histo-

compatibility complex (MHC) region (chromosome 6 region at

25–35 Mb), we considered multiple signals present there as

one locus. 101 of the 136 (74.3%) significantly associated re-

gions overlapped with previously reported genome-wide signifi-

cant regions from at least one individual disorder, while 35 loci

(25.7%) represented novel genome-wide significant associa-

tions. Simulation analyses confirmed that the number of pleio-

tropic loci we identified exceeds chance expectation given the

sample size and genetic correlations among the eight disorders

(p < 9.9 3 10�3; Data S1.5; for further details, see STAR

Methods).

Within these 136 loci, multi-SNP-based conditional analysis

(Yang et al., 2012) identified 10 additional SNPs with indepen-

dent associations, resulting in a total of 146 independent lead

SNPs (Table S3.1). To provide a quantitative estimate of the

best fit configuration of cross-disorder genotype-phenotype re-

lationships, we estimated the posterior probability of association

(referred to as the m-value) with each disorder using a Bayesian

statistical framework (Han and Eskin, 2012) (STAR Methods;

Table S3.2) As recommended (Han and Eskin, 2012), an m value

Table 1. Summary of Eight Neuropsychiatric Disorder Datasets

Disorder #Cases #Controls

Total

Samples

# of GWAS

Loci

Population

Prevalence (k)

Liability-based SNP

heritability (SE) References

ADHD 19,099 34,194 53,293 9 0.05 0.222 (0.014) Demontis et al., 2019

AN 3,495 10,983 14,478 0 0.01 0.195 (0.029) Duncan et al., 2017

ASD 18,381 27,969 46,350 5 0.01 0.113 (0.010) Grove et al., 2019

BIP 20,352 31,358 51,710 17 0.01 0.182 (0.011) Stahl et al., 2019

MD 130,664 330,470 461,134 44 0.15 0.085 (0.004) Wray et al., 2018

OCD 2,688 7,037 9,725 0 0.025 0.280 (0.041) IOCDF-GC and OCGAS 2018

SCZ 33,640 43,456 77,096 108 0.01 0.222 (0.012) Schizophrenia Working Group

of the Psychiatric Genomics

Consortium, 2014

TS 4,645 8,695 13,340 0 0.008 0.200 (0.026) Yu et al., 2019

Total 232,964 494,162 727,126

The number of cases and controls used in the meta-analysis of the present study. The numbers may differ from those reported in the original publi-

cations because our study included only European ancestry subjects to avoid potential confounding due to ancestral heterogeneity across distinct

disorder studies. SNP heritability was estimated from the GWAS summary statistics using LD score regression.

Genetic Correlations among Eight Neuropsychiatric 
Disorders Indicate Three Genetic Factors
After standardized and uniform quality control, additive logis-
tic regression analyses were performed on individual disor-
ders (STAR Methods). 6,786,993 SNPs were common across 
all datasets and were retained for further study. Using the 
summary statistics of these SNPs, we first estimated pairwise 
genetic correlations among the eight disorders using linkage 
disequilibrium (LD) score regression analyses (Bulik-Sullivan 
et al., 2015) (STAR Methods; Figure 1A; Table S2.1). The 
results were broadly concordant with previous estimates 
(Brainstorm Consortium et al., 2018; Cross-Disorder Group 
of the Psychiatric Genomics Consortium, 2013). The genetic 
correlation was highest between SCZ and BIP (rg = 0.70  ± 
0.02), followed by OCD and AN (rg = 0.50  ± 0.12). Interest-
ingly, based on genome-wide genetic correlations, MD was 
closely correlated with ASD (rg = 0.45  ± 0.04) and ADHD 
(rg = 0.44  ± 0.03), two childhood-onset disorders. Despite 
variation in magnitude, significant genetic correlations were 
apparent for most pairs of disorders, suggesting a complex, 
higher-order genetic structure underlying psychopathology 
(Figure 1B).

We modeled the genome-wide joint architecture of the eight 
neuropsychiatric disorders using an exploratory factor analysis 
(EFA) (Gorsuch, 1988), followed by genomic structural equation 
modeling (SEM) (Grotzinger et al., 2019) (STAR Methods; Fig-
ure 1C). EFA identified three correlated factors, which together 
explained 51% of the genetic variation in the eight neuropsychi-
atric disorders (Table S2.2). The first factor consisted primarily of 
disorders characterized by compulsive/perfectionistic behav-
iors, specifically AN, OCD, and, more weakly, TS. The second 
factor was characterized by mood and psychotic disorders 
(MD, BIP, and SCZ), and the third factor by three early-onset 
neurodevelopmental disorders (ASD, ADHD, TS) as well as 
MD. Similar to our EFA results, hierarchical clustering analyses 
also identified three sub-groups among the eight disorders 
(Data S1.1). Based on extensive follow-up analyses, this genetic 
correlational structure does not appear to be biased by sample



threshold of 0.9 was used to predict with high confidence that a

particular SNP was associated with a given disorder. Also, m

values of < 0.1 were taken as strong evidence against associa-

tion. Plots of the SNP p value versus m value for all 146 lead

SNPs are shown in Data S2. Nearly 75% (109/146) of the

genome-wide significant SNPs were pleiotropic (i.e., associated

withmore than one disorder). As expected, configurations of dis-

ease association reflected the differences in the statistical power

and genetic correlations between the samples (Figure S1). Of the

109 pleiotropic loci, 83% and 72% involved SCZ and BIP,

respectively. MD, which had the largest case-control sample,

was associated with 48% of the pleiotropic loci (N = 52/109).

Despite the relatively small sample size, ASD was implicated in

36% of the pleiotropic loci. Most of the ASD associations co-

occurred with SCZ and BIP. The other disorders, ADHD, TS,

OCD, and AN featured associations in 16%, 14%, 11%, and

7% of the pleiotropic loci, respectively. Of the single-disorder-

specific loci, 81% and 16% were associated with SCZ and

MD, respectively.

Table 2 summarizes 23 pleiotropic loci associated with at least

four of the disorders. Among these loci, heterogeneity of effect

sizes was minimal (p value of Q > 0.1). Eleven of the 23 lead

SNPs map to the intron of a protein-coding gene, and seven

additional lead SNPs had at least one protein-coding gene within

100 kb. We used an array of functional genomics resources,

including brain eQTL and Hi-C data (Wang et al., 2018; Won

et al., 2016) to prioritize potential candidate genes to the identi-

fied regions (STAR Methods; Figure 2B). The Manhattan plot in

Figure 2C highlights some of the prioritized candidate genes.

Of the 109 risk loci with shared effects, the 18q21.2 region sur-

rounding SNP rs8084351 at the netrin 1 receptor gene DCC

featured the most pleiotropic association (Pmeta = 4.26 3

10�12; Figure 3A). This region showed association with all eight

psychiatric disorders, and has been previously associated with

both MD and neuroticism (Turley et al., 2018; Wray et al.,

2018). The signal in our meta-analysis colocalizes with brain

eQTLs for DCC (eQTL association FDR q = 2.27 3 10�5), sup-

porting DCC as a plausible candidate gene (Figure S2). The

product of DCC plays a key role in guiding axonal growth during

neurodevelopment and serves as a master regulator of midline

crossing and white matter projections (Bendriem and Ross,

2017). Gene expression data indicate that DCC expression

peaks during early prenatal development (Figure S3).

The second most pleiotropic locus in our analysis was identi-

fied in an intron of RBFOX1 (RNA Binding Fox-1 Homolog 1) on

16p13.3 (lead SNP rs7193263; Pmeta = 5.59 3 10�11). The lead

Figure 1. Genetic Relationships between Eight Psychiatric

Disorders

(A) SNP-based genetic correlations (rg) were estimated between eight neuro-

psychiatric disorders using LDSC. The size of the circles scales with the sig-

nificance of the p values. The darker the color, the larger the magnitude of rg.

Star sign (*) indicates statistical significance after Bonferroni correction.

(B) SNP-based genetic correlations between eight disorders were depicted

using an in-directed graph to reveal complex genetic relationships. Only sig-

nificant genetic correlations after Bonferroni correction in (A) were displayed.

Each node represents a disorder, with edges indicating the strength of the

pairwise correlations. The width of the edges increases, while the length de-

creases, with the absolute values of rg.

(C) Based on the results of an exploratory factor analysis of the genetic cor-

relation matrix produced from multivariable LD-score regression, a confir-

matory factor model with three correlated genetic factors was specified using

Genomic SEM and estimated with the weighted least-squares algorithm. In

this solution, each common genetic factor (i.e., F1g, F2g, F3g) represents

variation in genetic liability that is shared across the disorders that load on it.

These common factors are specified so as to account for the genetic covari-

ation among the psychiatric disorders. For example, F1g represents shared

genetic liability among disorders characterized by compulsive behaviors (AN,

OCD and TS). One-headed arrows connecting the common genetic factors to

the individual disorders represent standardized loadings, which can be in-

terpreted as coefficients from a regression of the true genetic liability for the

disorder on the common factor. Two-headed arrows connecting the three

factors to one another represent their correlations. Two-headed arrows con-

necting the genetic components of the individual psychiatric disorders to

themselves represent residual genetic variances and correspond to the pro-

portion of heritable variation in liability to each individual psychiatric disorder

that is unexplained by the three factors. Standardized parameters are depicted

with their standard errors in parentheses. Paths labeled 1 with no standard

errors reported are fixed parameters, which are used for scaling.



Serine/Threonine Kinase) on 7q34. The brain Hi-C data indicated

interaction of the associated region with the promoters of two

nearby genes:BRAF, which contributes to theMAP kinase signal

transduction pathway and plays a role in postsynaptic responses

of hippocampal neurons (Grantyn and Grantyn, 1973), and

KDM7A (encoding Lysine Demethylase 7A), which plays a cen-

tral role in the nervous system and midbrain development (Hor-

ton et al., 2010; Qi et al., 2010; Tsukada et al., 2010).

Our prior cross-disorder meta-analysis of five psychiatric dis-

orders (Cross-Disorder Group of the Psychiatric Genomics Con-

sortium, 2013) found no evidence of SNPs with antagonistic

effects on two or more disorders. Here, we examined whether

any variants with meta-analysis p % 1 3 10�6 had opposite

directional effects between disorders (STAR Methods). After

adjusting for having examined 206 loci across eight disorders

(q < 0.001), we identified 11 loci with evidence of opposite direc-

tional effects on two ormore disorders (Figure 4; Table S3.3). The

disorder configuration of opposite directional effects varied for

the 11 loci, including three loci with opposite directional effects

on SCZ and MD (rs301805, rs1933802, rs3806843), two loci be-

tween SCZ and ASD (rs9329221, rs2921036), and one locus with

opposite directional effects on the two mood disorders, BIP and

MD (rs75595651). Notably, all of the six loci involving SCZ and

BIP exhibited the same directional effect on the two disorders

(Pbinom < 0.05), in line with their strong genome-wide genetic

correlation.

Functional Characterization of Pleiotropic Risk Loci

We conducted a series of bioinformatic analyses that examined

whether loci with shared risk effects onmultiple neuropsychiatric

disorders had characteristic features that distinguished them

from non-pleiotropic risk loci. First, we annotated the functional

Figure 2. Results of Cross-Disorder Meta-

Analysis and Candidate Gene Mapping

(A) Quantile-quantile (QQ) plot displaying the

observed meta-analysis statistics versus the ex-

pected statistics under the null model of no asso-

ciations in the -log10(p value) scale. Although a

marked departure is notable between the two

statistics, the estimated lambda1000 and the esti-

mated LD Score regression intercept indicate that

the observed inflation is mainly due to polygenic

signals rather than major confounding factors

including population stratification.

(B) Gene prioritization strategies for significantly

associated loci. Candidate genes were mapped on

each locus if the index SNP and credible SNPs

reside within a protein-coding gene, are eQTL

markers of the gene in the brain tissue, or interact

with promoter regions of the gene based on brain

Hi-C data. (C) Manhattan plot displaying the cross-

disorder meta-analysis results highlighting candi-

date genes mapped to top pleiotropic regions.

When multiple genes were mapped to the same

locus, genes encompassing the index SNP or

genes with the largest number of evidences were

displayed for clarity. Candidate genes that have

not previously implicated in individual disorder

GWAS are marked with an asterisk.

SNP showed association with all of the disorders except AN (Fig-
ure 3B). RBFOX1 (also called A2BP1) encodes a splicing regu-
lator mainly expressed in neurons and known to target several 
genes important to neuronal development, including NMDA re-
ceptor 1 and voltage-gated calcium channels (Gandal et al., 
2018; Gehman et al., 2011; Hamada et al., 2015). Knockdown 
and silencing of RBFOX1 during mouse corticogenesis impairs 
neuronal migration and synapse formation (Hamada et al., 
2015; Hamada et al., 2016), implying its pivotal role in early 
cortical maturation. In contrast to DCC, however, developmental 
gene-expression of RBFOX1 showed gradually increasing gene 
expression throughout the prenatal period (Figure S3). Animal 
models and association studies have implicated RBFOX1 in 
aggressive behaviors, a trait observed in several of the disorders 
in our analysis (Fernà ndez-Castillo et al., 2017).

Of the 109 pleiotropic loci, 76 were identified in the GWAS of 
individual disorders, while the remaining 33 are novel. The 
most pleiotropic among these novel loci was a region down-

stream of NOX4 (NADPH Oxidase 4) that was associated with 
SCZ, BIP, MD, ASD, and AN (rs117956829; Pmeta = 1.82 3 
10�9; Figure 3C). Brain Hi-C data (Wang et al., 2018; Won 
et al., 2016) detected a direct interaction of the cross-disorder 
association region with NOX4 in both adult and fetal brain (inter-
action p = 3.2 3 10�16 and 9.3 3 10�6, respectively). As a mem-

ber of the NOX family genes that encode subunits of NADPH ox-
idase, NOX4 is a major source of superoxide production in 
human brain and a promoter of neural stem cell growth (Kuroda 
et al., 2014; Topchiy et al., 2013).

Figure 3D illustrates another novel psychiatric risk locus asso-
ciated with SCZ, BIP, ASD, and OCD (Pmeta = 3.58 3 10�8). The 
lead SNP rs10265001 resides between MRPS33 (Mitochondrial 
Ribosomal Protein S33) and BRAF (B-Raf Proto-Oncogene,



characteristics of 146 lead SNPs using various public data

sources (STAR Methods; Table S4). Overall, they showed signif-

icant enrichment of genes expressed in the brain (beta = 0.123,

SE = 0.0109, enrichment p = 1.22 3 10�29) and pituitary

(beta = 0.0916, SE = 0.0136, p = 8.74 3 10�12), but not in the

other Genotype-Tissue Expression (GTEx) tissues. (Table S5.1;

Figure 5A). A separate analysis of 109 pleiotropic risk loci also

showed specific enrichment of genes expressed inmultiple brain

tissues (p = 1.553 10�5; Table S5.2), while disorder-specific loci

showed nominally enriched brain gene expression in the cortex

(p = 2.14 3 10�2; Table S5.3).

Gene-set enrichment analyses using GeneOntology data sug-

gested involvement of pleiotropic risk loci in neurodevelopmen-

tal processes (Table S6.1). The 109 pleiotropic risk loci were

enriched for genes involved in neurogenesis (gene-set enrich-

ment p = 9.67 3 10�6), regulation of nervous system develop-

ment (p = 3.41 3 10�5), and neuron differentiation (p = 3.30 3

10�5), while enrichment of these gene-sets was not seen for

the 37 disorder-specific risk loci (adjusted enrichment p > 0.05;

Table S6.2). Pleiotropic risk loci also showed enrichment of

genes involved in specific neurotransmitter-related pathways–

glutamate receptor signaling (p = 2.45 3 10�6) and voltage-

gated calcium channel complex (p = 5.72 3 10�4)–while non-

pleiotropic risk loci, which were predominantly SCZ-associated,

were over-represented among acetylcholine receptor genes

(p = 7.25 3 10�8). Analysis of cortical gene expression data

also suggested enrichment of pleiotropic risk genes in cortical

glutamatergic neurons through layers 2-6 (Table S6.3), further

supporting the shared role of glutamate receptor signaling in

the pathogenesis of diverse neuropsychiatric disorders.

In contrast to the differences in neuronal development and

neuronal signaling pathways, pleiotropic and non-pleiotropic

risk loci shared several characteristics related to genomic func-

tion. For instance, gene-set enrichment analyses indicated that

both pleiotropic and non-pleiotropic risk loci were enriched for

genes involved in the regulation of synaptic plasticity, neuro-

transmission, and synaptic cellular components. More than

41% of the genes associated with our genome-wide significant

loci, both pleiotropic and non-pleiotropic, were intolerant of

loss of function mutations (pLI score R 0.9); this is highly un-

likely to occur by chance (Fisher’s exact p = 4.90 3 10�8).

This finding was consistent when examining pleiotropic (p =

2.85 3 10�11) and non-pleiotropic risk loci (p = 1.56 3 10�3)

separately.

Next, we compared spatio-temporal gene-expression pat-

terns for the 109 pleiotropic risk loci and the 37 disorder-specific

Table 2. Summary of 23 Loci with the Broadest Cross-Disorder Association

SNP CHR BP Candidate Gene (evidence) ADHD ANO ASD BIP MD OCD SCZ TS m

rs8084351 18 50726559 DCC(g,q) 0.961 0.905 0.97 0.965 1 0.951 1 0.984 8

rs7193263 16 6315880 RBFOX1(g) 0.924 0.802 0.984 0.995 1 0.902 0.901 0.932 7

rs12658451 5 103904037 - 0.963 0.165 0.999 0.972 1 0.574 1 0.963 6

rs34215985 4 42047778 SLC30A9(g,q) DCAF4L1(tss) 0.908 0.926 0.992 0.843 1 0.88 0.929 0.913 6

rs61867293 10 106563924 SORCS3(g,ha,hf) 0.987 0.954 0.992 0.985 1 0.854 1 0.886 6

rs9360557 6 73132745 KCNQ5(ha,hf) KCNQ5-IT1(hf) 0.905 0.938 0.976 0.984 0.993 0.897 1 0.892 6

rs10149470 14 104017953 APOPT1(fg) C14orf2(ha) 0.844 0.833 0.998 0.979 1 0.868 0.997 0.97 5

rs11570190 11 57560452 CTNND1(g,tss) OR5AK2(q) 0.927 0.79 0.97 0.58 1 0.916 1 0.832 5

rs117956829 11 89339666 GRM5(hf) NOX4(ha,hf) 0.723 0.929 0.972 0.906 1 0.66 0.997 0.789 5

rs1484144 4 80217597 NAA11(fg) 0.97 0.884 0.973 0.98 1 0.84 0.998 0.85 5

rs6969410 7 110069015 - 0.836 0.827 0.987 0.93 0.999 0.917 1 0.729 5

rs7531118 1 72837239 NEGR1(hf) 0.74 0.949 0.963 0.785 1 0.858 0.973 0.921 5

rs9787523 10 106460460 SORCS3(g) 0.944 0.855 0.972 0.877 1 0.853 0.999 0.963 5

rs10265001 7 140665521 MRPS33(tss) KDM7A(ha) 0.716 0.772 0.986 0.999 0.783 0.921 0.988 0.692 4

rs11688767 2 57988194 BCL11A(h) LINC01122(ha,hf) 0.845 0.899 0.929 0.983 1 0.849 1 0.698 4

rs12129573 1 73768366 - 0.929 0.835 0.894 0.948 1 0.85 1 0.539 4

rs1518367 2 198807015 PLCL1(g) SF3B1(ha,q) 0.897 0.783 0.913 0.991 1 0.674 1 0.865 4

rs2332700 14 72417326 RGS6(g) 0.755 0.884 0.951 0.948 0.999 0.885 1 0.817 4

rs5758265 22 41617897 CHADL(g,ha,hf) L3MBTL2(g,ha) 0.735 0.885 0.89 0.885 1 0.913 1 0.978 4

rs6125656 20 48090779 KCNB1(g) SPATA2(hf) 0.768 0.885 0.986 0.995 0.985 0.731 0.999 0.707 4

rs7405404 16 13749859 - 0.763 0.765 0.99 0.939 1 0.726 1 0.562 4

rs78337797 12 23987925 SOX5(g) 0.849 0.797 0.97 0.954 1 0.831 0.996 0.885 4

rs79879286 7 24826589 DFNA5(fg,tss) MPP6(fg) 0.865 0.854 0.966 0.999 1 0.734 0.999 0.798 4

SNP ID, location, prioritized candidate gene, disorder-specific m-values for 23 most pleiotropic loci. The number of disorders with high confidence

association (m-valuesR 0.9) is shown in the last column. Evidence for candidate gene mapping include: g (gene containing index SNP); fg (credible

SNP gene); q (brain cis-eQTLs); h (hi-C interacting gene based on FUMA); hf (hi-C-based interaction between associated SNP and target gene in the

fetal brain from Won et al., 2016); ha (hi-C-based interaction in the adult brain from Wang et al., 2018); and tss (transcription start sites). At most two

candidate genes are listed here. Full list of associated gene information is available in Table S3.1.



loci using post-mortem brain data. On average, disorder-spe-

cific and pleiotropic risk loci showed a similar level of gene

expression in both prenatal and postnatal development after

multiple testing correction (t test p > 0.025 x10�2; Figure S4).

During prenatal development, non-pleiotropic loci (mainly SCZ-

associated) showed peak expression in the first trimester, after

which expression rapidly decreased, while pleiotropic genes

associated with only 2 disorders (‘‘pleiotropy=2’’; 60 loci) and

those associated with more than 2 (‘‘pleiotropy>2,’’ 49 loci)

showed peak expression around the second trimester (Figure 5).

After birth, all three groups showed gradually increasing gene

expression until adulthood. Expression levels were associated

with the degree of pleiotropy, with the pleiotropy > 2 group

showing higher gene expression than either the pleiotropy = 2

group (t test p < 2.10 3 10�4) or non-pleiotropic risk loci (t test

p < 2.2 3 10�16).

Enrichment analyses using the genes preferentially expressed

in specific cortical regions suggested that pleiotropic loci were

over-represented among genes expressed in the frontal cortex,

while non-pleiotropic loci were enriched in the occipital cortex

(FDR q<0.05; Figure 5C). Cell-type-specific analysis indicated

that genes implicated in pleiotropic loci were mainly expressed

in neurons (FDR q<0.05) but not in glial cell types. Further,

enrichment of pleiotropic loci in neuronal cells was also associ-

ated with the degree of pleiotropy, as highlighted in Figure 5D.

Previous studies of model organisms using gene knock-out

experiments suggested that pleiotropic risk loci may undergo

stronger selection than non-pleiotropic loci (Hill and Zhang,

2012). However, we found no evidence that pleiotropic risk var-

iants are under stronger evolutionary constraints (Table S6.4).

Various comparative genomics resources, including PhyloP

(Pollard et al., 2010), PhastCons (Siepel et al., 2005), and

GERP++ (Davydov et al., 2010), showed our top loci to have

similar properties regardless of the extent of pleiotropy. Neither

did we find differences between disorder-specific lead SNPs

and pleiotropic SNPs with respect to their minor allele fre-

quencies, average heterozygosity, or predicted allele ages (Kie-

zun et al., 2013). Pleiotropic and non-pleiotropic SNPs also did

not differ in terms of the distance to nearest genes, distance to

splicing sites, chromosome compositions, and predicted func-

tional consequences of non-coding regulatory elements.

Relationship between Cross-Disorder Genetic Risk and

Other Brain-Related Traits and Diseases

To explore the genetic relationship of cross-disorder genetic risk

with other traits, we treated this 8-disorder GWASmeta-analysis

as a single ‘‘cross-disorder phenotype.’’ We applied LDSC to es-

timate SNP heritability (h2SNP) and genetic correlations with other

phenotypes, using block jackknife-based standard errors to

estimate statistical significance. The estimated h2SNP of the

cross-disorder phenotype was 0.146 (SE 0.0058; observed

scale). Using data for 25 brain-related traits selected from

LDHub (Zheng et al., 2017), we found significant genetic correla-

tions of the cross-disorder phenotypewith seven traits (at a FDR-

corrected p value threshold 0.002): never/ever smoking status,

years of education, neuroticism, subjective well-being, and three

sleep-related phenotypes (chronotype, insomnia, and excessive

daytime sleepiness) (Table S7.1).

Figure 3. Profile of Disorder Associations for Illustrative Pleio-

tropic Loci

(A) rs8084351 on 18q21.2.

(B) rs7193263 on 16p13.3.

(C) rs117956829 on 11q14.3; and (D) rs10265001 on 7q34.

For each locus, disorder-specific effects of the index SNP are shown using

ForestPMPlot. The first panel is the forest plot, displaying disorder-specific

association p value, log odds ratios (ORs), and standard errors of the SNP. The

meta-analysis p value and the corresponding summary statistic are displayed

on the top and the bottom of the forest plot, respectively. The second panel is

the PM-plot in which x axis represents the m-value, the posterior probability

that the effect exists in each disorder, and the y axis represents the disorder-

specific association p value as -log10(p value). Disorders are depicted as a dot

whose size represents the sample size of individual GWAS. Disorders with

estimatedm-values of at least 0.9 are colored in red, while those with m-values

less than 0.9 are marked in green.



GWAS catalog data for the 109 pleiotropic risk loci showed

enrichment of implicated genes in a range of brain-related traits

(Table S7.2). As expected, the associated traits included SCZ,

BIP, and ASD. In addition, the pleiotropic risk loci were enriched

among genes previously associated with neuroticism (corrected

enrichment p = 5.28 3 10�6; GRIK3, CTNND1, DRD2, RGS6,

RBFOX1, ZNF804A, L3MBTL2, CHADL, RANGAP1, RSRC1,

GRM3), cognitive ability (corrected p = 7.15 3 10�5; PTPRF,

NEGR1, ELOVL3, SORCS3, DCC, CACNA1I), and night

sleep phenotypes (corrected p = 1.86 3 10�2; PBX1, NPAS3,

RGS6, GRIN2A, MYO18A, TIAF1, CNTN4, PPP2R2B, TENM2,

CSMD1). We also found significant enrichment of pleiotropic

risk genes in multiple measures of body mass index (BMI), sup-

porting previous studies suggesting a shared etiologic basis be-

Figure 4. Eleven Loci with Opposite Direc-

tional Effects

The radius of each wedge corresponds to the

absolute values of the Z-scores (log(Odds ratios)/

SE) obtained from association tests of the SNP for

eight disorders. The color indicates whether the

examined SNP carries risk (red) or protective ef-

fects (green) for each disorder. The dotted line

around the center indicates statistically significant

SNP effects that account for multiple testing of

206 SNPs at the q-value of 0.001.

tween a range of neuropsychiatric disor-

ders and obesity (Hartwig et al., 2016;

Lopresti and Drummond, 2013; Milane-

schi et al., 2019).

DISCUSSION

In the largest cross-disorder GWAS

meta-analysis of neuropsychiatric disor-

ders to date, comprising more than

725,000 cases and controls across eight

disorders, we identified 146 LD-indepen-

dent lead SNPs associated with at least

one disorder, including 35 novel loci. Of

these, 109 loci were found to affect two

ormore disorders, although characteriza-

tion of this pleiotropy is partly dependent

on per-disorder sample size. Our results

provide fivemajor insights into the shared

genetic basis of psychiatric disorders.

First, modeling of genetic correlations

among the eight disorders using two

different methods (EFA and hierarchical

clustering) identified three groups of dis-

orders based on shared genomics: one

comprising disorders characterized by

compulsive behaviors (AN, OCD and

TS), a second comprising mood and psy-

chotic disorders (MD, BIP and SCZ), and

a third comprising two early-onset neuro-

developmental disorders (ASD and

ADHD) and one disorder each from the first two factors (TS and

MD). The loading of MD on two factors may reflect biological het-

erogeneity within MD, consistent with recent evidence showing

that early-onset depression is associated with genetic risk for

ADHD and with neurodevelopmental phenotypes (Rice et al.,

2019). Overall, these results indicate a substantial pairwise ge-

netic correlation between multiple disorders along with a

higher-level genetic structure that point to broader domains un-

derlying genetic risk to psychopathology. These findings are at

odds with the classical, categorical classification of mental

illness.

Second, variant-level analyses support the existence of sub-

stantial pleiotropy, with nearly 75% of the 146 genome-wide sig-

nificant SNPs influencing more than one of the eight examined



lated and have common clinical features. For example, a SNP

withinMRSA was associated with opposing effects on two neu-

rodevelopmental disorders (ASD and SCZ), and a variant within

KIAA1109 had opposite directional effects on major mood disor-

ders (BIP and MD) (Table S3.3). These results underscore the

complexity of genetic relationships among related disorders

and suggest that overall genetic correlations may obscure a

more complex set of genetic relationships at the level of specific

loci and pathways, as seen in immune-mediated diseases (Baur-

echt et al., 2015; Lettre and Rioux, 2008; Schmitt et al., 2016).

This heterogeneity of effects between genetically correlated dis-

orders is also consistent with a recent analysis that revealed loci

contributing to biological differences between BIP and SCZ and

found polygenic risk score associations with specific symptom

dimensions (Bipolar Disorder and Schizophrenia Working Group

of the Psychiatric Genomics Consortium, 2018). A complete pic-

ture of cross-phenotype genetic relationships will require under-

standing both same and opposite directional effects. In addition,

to the extent that pleiotropic loci may reveal targets for drug dis-

covery, opposite directional effects on psychiatric disorders

could help anticipate problematic off-target effects.

Figure 5. Results of Functional Genomics Data Analysis for Pleiotropic versus Disorder-Specific Loci

(A) GTEX tissue-specific enrichment results for 146 risk loci associated with at least one of eight neuropsychiatric disorders. GTEX tissues were classified as 9

distinct categories, of which the brain tissues were colored in blue. The dotted red line indicates a statistically significant p value after conducting Bonferroni

correction for multiple testing. Psychiatric disorder-associated loci show significant enrichment in genes expressed in pituitary and all brain tissues.

(B) Brain developmental expression trajectory displayed for the three groups of genes based on (Kang et al., 2011) The 146 genome-wide significant loci from the

cross-disorder meta analysis were clustered into three groups based on predicted disorder-specific associations: (1) no-pleiotopy; (2) pleiotropy = 2; and (3)

pleiotropy > 2. The ‘‘no-pleiotropy’’ group included 37 loci that showed a single-disorder-specific association, while the ‘‘pleiotropy=2’’ and ‘‘pleiotropy>2’’

groups included 60 and 49 loci that were associated with two and more than two disorders, respectively.

(C) In the adult cortex, genes mapped to pleiotropic loci were enriched for frontal cortex specific genes, while genes mapped to non-pleiotropic loci are enriched

for occipical cortex specific genes.

(D) Genes mapped to 146 risk loci show higher expression values in neurons and oligodendrocytes, with much higher neuronal specificity for pleiotropic loci.

Single cell-type specific expression profiles (Darmanis et al., 2015) were used to measure scaled expression of risk loci associatd with three distinct pleiotropy

groups.

disorders. We also identified a set of 23 loci with particularly 
extensive pleiotropic profiles, affecting four or more disorders. 
The most highly pleiotropic locus in our analyses, with evidence 
of association with all eight disorders, maps within DCC, a gene 
fundamental to the early development of white matter connec-
tions in the brain (Bendriem and Ross, 2017). Prior studies 
showed that DCC is a master regulator of axon guidance 
(through its interactions with netrin-1 and draxin (Liu et al., 
2018). Loss-of-function mutations in DCC cause severe neuro-
developmental syndromes involving loss of midline commissural 
tracts and diffuse disorganization of white matter tracts (Bend-
riem and Ross, 2017; Jamuar et al., 2017; Marsh et al., 2017). 
A highly pleiotropic effect of variation in DCC on diverse psychi-
atric disorders with childhood and adolescent onset would be 
consistent with its role in both early organization of neuronal cir-
cuits and the maturation of mesolimbic dopaminergic connec-
tions to the prefrontal cortex during adolescence (Hoops and 
Flores, 2017; Reynolds et al., 2018; Vosberg et al., 2018).

Third, we identified a set of loci that have opposite effects on 
risk of psychiatric disorders. Notably, these included loci with 
opposing effects on pairs of disorders that are genetically corre-



Fourth, we found extensive evidence that neurodevelopmen-

tal effects underlie the cross-disorder genetics of mental illness.

In addition to DCC, a link between pleiotropy and genetic effects

on neurodevelopment was also seen for other top loci in our

analysis, including RBFOX1, BRAF, and KDM7A, all of which

have been shown in prior research to influence aspects of ner-

vous system development. Gene enrichment analyses showed

that pleiotropic loci were distinguished from disorder-specific

loci by their involvement in neurodevelopmental pathways

including neurogenesis, regulation of nervous system develop-

ment, and neuron differentiation. These results are consistent

with those of a smaller recent analysis in the population-based

Danish iPSYCH cohort (comprising 46,008 cases and 19,526

controls across six neuropsychiatric disorders) (Schork et al.,

2019). In that analysis, consistent with the present findings,

functional genomic characterization of cross-disorder loci impli-

cated fetal neurodevelopmental processes, with greater prenatal

than postnatal expression. In addition, SORCS3 emerged as a

genome-wide significant cross-disorder locus in both studies.

However, other specific loci, cell types, and pathways implicated

in the iPSYCH analysis differed from those identified in our study.

In supplementary analyses, we did not find evidence of signifi-

cant overrepresentation of genes related to pleiotropic SNPs

identified here among previously defined genomic disorder re-

gions or genes associated with neurodevelopmental disorders

from rare variant studies (including ASD, intellectual disability,

and developmental delay) (Samocha et al., 2017; Satterstrom

et al., 2019) (Data S3.1–3.3).

Fifth, our analyses of spatiotemporal gene expression profiles

revealed that pleiotropic loci are enriched among genes ex-

pressed in neuronal cell types, particularly in frontal or prefrontal

regions. They also demonstrated a distinctive feature of genes

related to pleiotropic loci: compared with disorder-specific

loci, they are on average expressed at higher levels both prena-

tally and postnatally (Figure 5). More specifically, single-disorder

(mainly SCZ) loci were related to genes that were preferentially

expressed in the first fetal trimester followed by a decline over

the prenatal period and then relatively stable levels postnatally.

In contrast, average expression of genes related to pleiotropic

loci peaked in the second trimester and remained overex-

pressed throughout the lifespan. When dividing the pleiotropic

loci into bins of those associated with two disorders (mainly

SCZ and BIP) versus three or more disorders, we observed a

consistent gradient of greater expression associated with

broader pleiotropy. These results are based on average expres-

sion profiles, and not all individual gene expression patterns

follow this pattern.

Overall, our results identify a range of pleiotropic effects

among loci associated with psychiatric disorders. Consistent

with prior research (Brainstorm Consortium et al., 2018; Cross-

Disorder Group of the Psychiatric Genomics Consortium,

2013), we found substantial pairwise genetic correlations across

child- and adult-onset disorders and extended these findings by

demonstrating clusters of genetically-related disorders. These

results augment a substantial body of research demonstrating

that genetic influences on psychopathology do not map cleanly

onto the clinical nosology instantiated in the DSMor ICD (Gesch-

wind and Flint, 2015; Smoller et al., 2019) Using a range of bio-

informatic and functional genomic analyses, we find that loci

with pleiotropic effects are distinguished by their involvement

in early neurodevelopment and increased expression beginning

in the second trimester of fetal development and persisting

throughout adulthood. Apart from this, however, pleiotropic

loci were similar to non-pleiotropic loci across a range of other

functional features, including intolerance to loss-of-function mu-

tations, evidence of selection, minor allele frequencies, and

genomic position relative to functional elements.

Taken together, the analyses presented here suggest that ge-

netic influences on psychiatric disorders comprise at least two

general classes of loci. The first comprises a set of genes that

confer relatively broad liability to psychiatric disorders by acting

on early neurodevelopment and the establishment of brain cir-

cuitry. These pleiotropic genes, on average, begin to come on-

line by the second trimester of fetal development and exhibit

differentially high expression thereafter. The expression and dif-

ferentiation of this generalized genetic risk into discrete psychi-

atric syndromes (e.g., ASD, BIP, AN) may then involve direct

and/or interactive effects of additional sets of common and

rare loci and environmental factors, possibly mediated by epige-

netic effects, that shape phenotypic expression via effects on

brain structure/function and behavior. Further research will be

needed to clarify the nature of such effects.

Our results should be interpreted in light of several limitations.

First, while our dataset is the largest genome-wide cross-disor-

der analysis to date, data available for individual disorders varied

substantially—from a minimum of 9,725 cases and controls for

OCD to 461,134 cases and controls for MD. This imbalance of

sample size may have limited our power to detect pleiotropic ef-

fects on underrepresented disorders. The future availability of

larger samples will improve power for detection of cross-disor-

der effects. Second, it is possible that comorbidity among disor-

ders contributed to apparent pleiotropy; we found, however, that

fewer than 2% of cases overlapped between disorder datasets

(excluding 23andMe data) and we adjusted for sample overlap

in meta-analysis. Third, the method we applied to detect

cross-phenotype association, which combines an all-subsets

fixed-effects GWAS meta-analysis with a Bayesian method for

evaluating the best-fit configuration of genotype-phenotype as-

sociations, is one of several approaches (Solovieff et al., 2013).

However, we have previously shown that this method outper-

forms a range of alternatives for detecting pleiotropy under

various settings (Zhu et al., 2018). Fourth, our designation of

loci as pleiotropic versus non-pleiotropic loci refers only to their

observed effects on the eight target brain disorders. Thus, some

of the ‘‘non-pleiotropic’’ loci may have additional effects on psy-

chiatric phenotypes that were not included in our meta-analysis

and/or on non-psychiatric phenotypes. Fifth, our functional

genomic analyses were constrained by the limitations of existing

resources (e.g., spatiotemporal gene expression data re-

sources). Our work underscores the need for more comprehen-

sive functional data including single cell transcriptomic and

epigenomic profiles across development and brain tissues.

Lastly, we included only individuals of European ancestry to

avoid potential confounding due to ancestral heterogeneity

across distinct disorder studies. Similar efforts are needed to

examine these questions in other populations.



In sum, in a large-scale cross-disorder genome-wide meta-

analysis, we identified three genetic factors underlying the

genetic basis of eight psychiatric disorders. We also identified

109 genomic loci with pleiotropic effects, of which 33 had not

previously been associated with any of the individual

disorders. In addition, we identified 11 loci with opposing direc-

tional effects on two or more psychiatric disorders. These results

highlight disparities between our clinically-defined classification

of psychiatric disorders and underlying biology. Future research

is warranted to determine whether more genetically-defined in-

fluences on cross-diagnostic traits or subtypesmay inform a bio-

logically-informed reconceptualization of psychiatric nosology.

Finally, we found that genes associated with multiple psychiatric

disorders are disproportionately associated with biological path-

ways related to neurodevelopment and exhibit distinctive gene

expression patterns, with enhanced expression beginning in

the second prenatal trimester and persistently elevated expres-

sion relative to less pleiotropic genes. Therapeutic modulation of

pleiotropic gene products could have broad-spectrum effects on

psychopathology.
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Grigoroiu-Serba-nescu, José Guzman-Parra, Joanna Hauser, Martin 
Hautzinger, Urs Heilbron-ner, Stefan Herms, Per Hoffmann, Dominic Holland, 
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Genotyped sample description
Genotype data from eight studies of genetic associations with psychiatric disorders conducted by the Psychiatric Genomics Con-
sortium were included in this report. A summary of each study is provided below, however, detailed sample descriptions are available 
in the primary publication. The lead PI of every cohort included across studies certified that their protocol was approved by their local 
Ethical Committee. Table S1 lists for each disorder the number of cases and controls, the number of loci identified in the single dis-
order genome-wide association study, and SNP-based heritability.

Schizophrenia j Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014
108 loci were identified as associated with schizophrenia in a case-control meta-analysis including 150,064 individuals. For the cur-
rent study, the 46 case-control cohorts of European ancestry were retained, totaling 33,640 cases and 43,546 controls. Cases were 
defined as individuals diagnosed with schizophrenia or schizoaffective disorder, which was determined by research-based assess-
ment or clinician diagnosis depending on the sample.

Bipolar disorder j Stahl et al., 2019
Thirty-two case-control cohorts from Europe, North America, and Australia including 20,352 cases and 31,358 controls of European 
ancestry were meta-analyzed to identify 30 loci associated with bipolar disorder. Cases met criteria for lifetime diagnosis of bipolar 
disorder as defined by DSM-IV, ICD-9, or ICD-10, which was established using interview-based structured assessment, clinician-
administered checklists, or review of medical records. All subjects in the meta-analysis were included in the current study.

Major depression j Wray et al., 2018
Seven case-control cohorts were combined to identify 44 loci associated with major depression. The first cohort included 29 case-
control samples of European descent where lifetime diagnosis of major depressive disorder was ascertained using structured clinical 
interviews (DSM-V, ICD-9, ICD-10), clinician-administered checklists, or review of medical records. Six additional cohorts of Euro-
pean ancestry, including the Hyde et al. study (23andMe, Inc), determined case status using other methods including national or hos-
pital treatment registers, self-reported symptoms or treatment by a medical professional, or direct interviews. Analyses comparing 
the original cohort with the additional ones indicated strong correlation of common genetic variants and little evidence of heteroge-
neity. 130,664 cases and 330,470 controls from these cohorts were included in the current analyses.

Attention deficit hyperactive disorder j Demontis et al., 2019
Twelve cohorts of European, North American, and Chinese descent were aggregated in a meta-analysis of attention deficit and hy-
peractive disorder, revealing 12 associated loci. For the first cohort, cases were ascertained using the Danish Psychiatric Central 
Research Registrar and diagnoses were confirmed by psychiatrists according to ICD-10. The remaining studies included four 
parent-offspring trio cohorts and seven case-control cohorts. Cases were recruited from clinics, hospitals or through medical reg-
istries and diagnosed using research-based assessments administered by clinicians or trained staff. 19,099 cases and 34,194 con-
trols of European ancestry were included in the current study.

Autism spectrum disorder j Grove et al., 2019
Five family-based cohorts of European descent and a population-based case-control sample from Denmark were combined to 
discover five loci associated with autism spectrum disorder. In each family study, diagnosis was confirmed for all affected individuals 
using standard research tools and expert clinical consensus diagnosis. In the population-based cohort, cases were identified using 
the Danish Psychiatric Central Research Register and were diagnosed with ASD before 2013 by a psychiatrist according to ICD-10. 
All subjects in this sample were included here (18,381 cases; 27,969 controls).

Obsessive compulsive disorder j IOCDF-GC and OCGAS, 2018
Individuals of European descent from two cohorts were combined in this meta-analysis including 2,688 cases and 7,037 controls; no 
loci reached genome-wide significance. Case diagnoses were established using DSM-IV criteria and controls were unscreened. All 
cases and controls were included in the current analyses.

Anorexia nervosa j Duncan et al., 2017
3,495 cases from two consortia and 10,982 matched controls from the Psychiatric Genomics Consortium, all of European descent, 
were meta-analyzed to identify one locus associated with anorexia nervosa. Cases met criteria as defined by DSM-IV for lifetime 
diagnosis of anorexia nervosa (restricting or binge-purging subtype), bulimia nervosa, or anorexia nervosa – not otherwise specified, 
anorexia nervosa subtype. All individuals included in the primary study were included in the current analyses.



Tourette Syndrome j Yu et al., 2019

Three case-control cohorts and one family-based cohort from Europe andNorth America including 4,819 cases and 9,488 controls of

European ancestry were meta-analyzed to identify one locus associated with Tourette Syndrome. All cases met DSM-IV-TR or

DSM-5 criteria for Tourette syndrome, except for 12 cases who met DSM-5 criteria for chronic motor or vocal tic disorder. All cases

were recruited by Tourette syndrome specialty clinics or by email/online recruitment combined with validated, web-based pheno-

typic assessments.

Genotype quality control, imputation, and association analysis

All primary studies used the standardized PGC ricopili pipeline for quality control, imputation and association testing. Briefly, for each

dataset, poor quality SNPs and samples missing > 5% SNPs were removed. Next, pre-phasing and imputation were implemented

using IMPUTE2 (Howie et al., 2011) and the 1000 Genomes reference panel. High quality SNPs (INFO > 0.8) with low missingness

(< 1%) were retained. A subset of these markers (MAF > 0.05; pruned for linkage disequilibrium, r2 > 0.02) were used to assess relat-

edness and population stratification. Only one of any pair of related individuals was retained. Each imputed dataset was tested for

association with the disease outcome of interest using an additive logistic regression model in PLINK (Purcell et al., 2007) with age,

sex, and 10 principal components included as covariates. Finally, a meta-analysis within each disease category was done using an

inverse-weighted fixed effects model. After extracting SNPs commonly exist in all eight disorder studies, we removed 3,591 SNPs

whose alleles were incompatible. For palindromic SNPs, we compared allele frequencies between eight studies to check strand am-

biguity. 50 SNPswith frequency difference greater than 15% from the 1KG reference was excluded. As a result, 6,786,993 autosomal

SNPs remained for further analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

Genome-wide SNP-heritability estimation

For each of the eight GWAS disorders, LD Score regression was performed on the summary statistics of individual disease using

LDSC to estimate SNP-based heritability in the liability scale and genetic correlation between pairs of disorders (Bulik-Sullivan

et al., 2015). LD scores and weights for European populations were downloaded from the LDSC website (http://www.

broadinstitute.org/�bulik/eur_ldscores/). SNPswere removed if theminor allele frequency is smaller than 5%or an imputation quality

score is less than 0.9; MHC region was excluded from the analysis. For single-trait LDSC, the slope of the regression estimates the

SNP-based heritability, and the intercept greater than one captures the inflation in the summary statistics due to population strati-

fication or other confounding factors. We confirmed that the heritability Z-scores (i.e., a measure of the polygenic signals) are greater

than four, and the LDSC intercepts are approximately one and less than. suggesting that the increase in mean c2 statistics is due to

polygenicity and not due to stratification.

Factor analysis and genomic SEM

Genomic SEM’s Multivariable LD score regression method (Grotzinger et al., 2019) was first used to estimate the genetic covariance

matrix (S) and sampling covariancematrix (V) for the eight psychiatric traits. Quality control for this step included removing SNPs with

an MAF < 1%, information scores < 0.9, SNPs from the MHC region, and filtering SNPs to HapMap3. All SNP effects were standard-

ized using the sumstats function in Genomic SEM. To examine genome-wide factor structure, models using only the genetic covari-

ance and sampling covariance matrix were fit. Genomic SEM provides indices of model fit—standardized root mean square residual

(SRMR), model X2, Akaike Information Criteria (AIC), and Comparative Fit Index (CFI)—that can be used to determine how well the

proposedmodel captures the observed data. Model fit for the common factor model in which the loadings were freely estimated was

only fair, X2 (20) = 313.94, AIC = 345.9, CFI = 0.786, SRMR = 0.149), suggesting that there were nuances in the genetic architecture

not fully captured by a single cross-trait index of genetic risk. An exploratory factor analysis (EFA) of the S matrix with three-factors

using the promax rotation in the R package factanal was then used to guide construction of a follow-up model (Table S2.2). A follow-

up confirmatory model with three correlated factors was specified in Genomic SEM based on the EFA parameter estimates (positive

standardized loadings > 0.2 were retained; Figure 2B). This model provided good fit to the data X2 (15) = 85.35, AIC = 127.36, CFI =

0.945, SRMR = 0.079). Results indicated there was a moderate genetic correlation between the compulsive and mood/psychotic

disorders factors (rg = 0.43, SE = 0.08), a smaller genetic correlation between the mood/psychotic and early onset factors (rg =

0.25, SE = 0.05), and next to no correlation between the compulsive and early onset factors (rg = < 0.01, SE = 0.07). A model that

included additional negative cross-loadings provided similar fit to the data and highly similar correlations across the genetic factors.

Given this consistency in results, the correlated factors model with SNP effects only included positive loadings.

Summary-data-based meta-analysis

To identify genomic loci shared across multiple neuropsychiatric disorders, we performed primary meta-analysis using the subset-

based fixed-effects method ASSET (Bhattacharjee et al., 2012). Standard meta-analysis pools the effect of a given SNP across K



studies, weighting the effects by the size of the study. By exhaustive investigation of all subset-based effects, the maximum SNP

effect was identified as:

Zmax�meta = maxS˛SjZðSÞ j ;

where the absolute value of the subset-specific effect [Z(S)] over class S of all possible subsets of K studies is highest. The numbers of

shared subjects across eight disorder studieswere identified using the PGC checksum algorithm, andZmetawas standardized so that

covariance between the statistics can be accounted for as previously described (Bhattacharjee et al., 2012; Lin and Sullivan, 2009).

Tail probabilities for the distribution of the maximum, adjusting for multiple testing of all combination of subsets, were then estimated

with the discrete local maxima method, which uses the correlation structure of test statistics across subsets. Based on the derived

p value, standard deviation of the SNP effect was adjusted to reflect themultiple-testing correction. Even when correcting for all sub-

set tests (2K-1), simulations suggest there is a substantial gain in power using this test relative to traditional meta-analysis (Bhatta-

charjee et al., 2012. Standardized genomic inflation factor (l1000) for the meta-analysis result was close to one. LDSC intercept was

substantially less than lGC (0.79 versus 1.55), suggesting that the increase inmean c2 statistics in the cross-disorder meta-analysis is

mainly due to polygenicity and not due to stratification or other confounding biases.

Once SNPs with genome-wide significant association were identified, we identified LD-independent genomic regions using PLINK

clumping (–clump-r2 = 0.4,–clump-kb = 500,–clump-p1 = 5e-08,–clump-p2 = 5e-02). Genomic regions were merged if they

physically overlap using bedtools. Due to extensive LD, the MHC region was considered as one region (chr6:25-35Mb). To detect

secondary signals independent of index SNP in each of the candidate cross-disorder loci, conditional analysis was performed

with GCTA-COJO (Yang et al., 2012) using meta-analysis summary statistics from ASSET. 1KG EUR population was used as the

reference panel for estimating LD. For each genomic region harboring a cross-disorder signal, we tested the presence of any addi-

tional associated SNPs using a stepwise procedure (–cojo-slct), conditioning on the primary significant SNP for model initiation. A

conditional p value for each variant was reported, adjusted for genomic control and collinearity. In each region, additional SNPs

were selected as a distinct association signal if having a conditional p value < 1e-06.

Disease-association modeling

We estimated posterior probabilities for each of the top loci identified from the meta-analysis to quantify disorder-specific effects

(Han and Eskin, 2012). This estimation, known as the m-value, relies on two assumptions, 1) effects are either present or absent

in studies, and 2) if they are present, they are similarly sized across studies. Assume Xi is the observed effect size of study i, and

Ti is a random variable with value 1 if study i has an effect and 0 if not, then the m-value can be estimated using Bayes’ theorem:

mi = PðTi = 1jXÞ=
PðX jTi = 1ÞPðTi = 1Þ

PðXjTi = 0ÞPðTi = 0Þ+PðX j Ti = 1ÞPðTi = 1Þ

which can then be used to predict whether an effect exists in a given study (> .9) or not (< .1) under the binary effects assumption.

Examination of the Impact of Sample Size Imbalance on Genetic Correlations and Genomic SEM. Results
We conducted several analyses to examine whether differences in sample size among the 8 disorders influenced the pattern of cross-
disorder genomic relationships we observed. First, we note that while sample size will affect the precision of a genetic correlation 
estimate (ie standard error) it should not affect the magnitude of the estimate itself (Bulik-Sullivan et al., 2015). As shown in Data 
S1.2, there is no substantial relationship between the estimated genetic correlations and the effective sample sizes of the corre-
sponding disorder pairs (p value for the slope = 0.055). The slightly positive linear relationship appears to be driven by MD and its 
genetic correlation with the other four major psychiatric disorders (SCZ, BIP, ASD, ADHD), however, these estimates are generally 
consistent with previously reported ones when sample sizes are much smaller (except for ASD) (Brainstorm Consortium et al., 2018)
(Cross-Disorder Group of the Psychiatric Genomics et al., 2013) (Data S1.3). Furthermore, the largest among all pairwise compari-

sons, such as those between SCZ-BIP, AN-OCD, and ADHD-AN, do not scale with sample size.
Next, we investigated the impact of variable sample sizes on the Genomic SEM analysis results by re-running Genomic SEM anal-

ysis using a Maximum Likelihood (ML) estimator that does not take into account the differing precisions of the genetic covariance 
estimates (resulting from, for example, uneven sample sizes across traits) when optimizing parameters. As shown in Data S1.4, 
the results were consistent with those from the primary analysis reported in the main text that is based on a Weighted Least-squares 
(WLS) estimator, which does take into account the differing precisions of the genetic covariance estimates. Specifically, the nontrivial 
standardized factor loadings of MD on two of the three factors is evident in both the WLS and ML solutions and is therefore unlikely to 
be an artifact of its large N. Note that, in both the WLS and the ML solution, the standard errors are smaller for the loadings involving 
the better-powered GWAS phenotypes, as we would expect.

To further evaluate whether sample size imbalance across the eight disorders biased the number of pleiotropic signals we 
observed, we conducted simulation studies of UK Biobank data. In particular, we examine whether the number of pleiotropic loci 
we identified exceeds chance expectation given the sample size and genetic correlations among the eight disorders. We used 
the full release of 488,377 UK Biobank (UKBB; (Sudlow et al., 2015)) individual data, imputed with the Haplotype Reference Con-
sortium (HRC), UK 10K, and 1000 Genomes reference panels (under the application number 31063). Data were QC’ed as described



in the Neale Lab UK BIOBANK GWAS webpage (http://www.nealelab.is/uk-biobank/), including 361,194 unrelated individuals of

Caucasian ancestry and 13.7 million genetic variants (MAF > 0.0001, INFO > 0.8). For the purpose of the simulation, we removed

individuals who were in the UKBB interim release to avoid sample overlap with the MD GWAS where these subjects were included

(Wray et al., 2018) and restricted the analysis to variants present in both the current study (PGC-CDG2) and the UKBB datasets, re-

sulting in 6,691,733 SNPs.

Because SCZ and MD accounted for the majority of the total sample size in our study as well as the two most statistically powerful

studies (estimated by calculating their effective sample size and multiplying that by heritability), we generated simulated datasets

similar in size and heritability, as well as cross-correlation to the other datasets, for each of the six smaller studies (BIP, ADHD,

ASD, TS, ANO, and OCD); In brief, simulated genetic data was created from the post-QC UKBB imputed data for each of the six

disorders by randomly selecting subjects without any overlap given their original sample sizes. In each simulation replicate, we

then simulated quantitative phenotypes (Y = ) given true effect sizes, the standardized genotype matrix X, and a non-genetic error

term. The true effect sizes of each SNP were drawn from a multivariate normal distribution, where M is the total number of SNPs

in the genome, m is a zero vector of length 6, and
P

is the covariance matrix that accounts for the genetic correlations (rg) among

the six disorders (with disease-specific SNP-heritabilities on the diagonal and hihjrg,ij on the off-diagonals). Individual phenotypes

were then generated by calculating the sum of betas weighted by the standardized allele dosages (mean 0 and variance 1) with

the–score variance-standardize option in PLINK2 v2.00a2LM (Chang et al., 2015) and a noise term drawn from N(0,) for each disor-

der. Case-control phenotypes were generated by sorting Y in descending order and assigning the top fcase to be cases, where fcase
corresponds to the fraction of cases of each disorder in the original GWAS. Association statistics were estimated using logistic

regression, assuming an additive effect of alleles. We then matched the reference and the alternate alleles in UKBB to those in

the current study and reversed the sign of the effect sizes when necessary. We then performed meta-analysis using ASSET (Bhat-

tacharjee et al., 2012) and estimated m-values as was done in the original analysis. Finally, we compared the distribution of the num-

ber of pleiotropic loci across the 100 simulation replicates against the observed value in the actual study. For this analysis, we

focused on chromosome 1 where the largest number of cross-disorder associations were identified in the actual analysis. Data

S1.5 displays the distribution of the number of cross-disorder loci identified in meta-analysis of chromosome 1 across 100 simulation

replicates. We compared this to the number of pleiotropic loci found in our meta-analysis compared to those seen in the simulations,

given the sample size and genetic correlations among the eight disorders to determine whether the observed number of pleiotropic

loci exceeds chance expectation.

Functional annotation and gene-mapping of genome-wide significant variants

For the 146 genome-wide significant variants, gene mapping and functional annotation was conducted using various resources,

including SNPNexus (Dayem et al., 2018) and FUMA (Watanabe et al., 2017). Nearest genes and functional consequence of each

SNP on gene functions were annotated based on ANNOVAR (Wang et al., 2010). Combined Annotation Dependent Depletion

(CADD) score (Kircher et al., 2014) indexes the deleteriousness of variants computed based on 67 annotation resources. SNPs

with the CADD score higher than 12 were considered to confer deleterious effects. The RegulomeDB (Boyle et al., 2012) provides

a categorical score that describes how likely a SNP to play a regulatory role based on the integration of high-throughput datasets.

The RDB score of 1a suggests the strongest evidence, while the score 7 represents the least support for a regulatory potential. The

minChrState and the commonChrState represent theminimum and themost common 15-core chromatin state across 127 tissue/cell

type predicted by ChrHMM. The chromatin state of less than 8 suggests an open chromatin state. eQTLmapping provides significant

cis-SNP-gene pairs (up to 1Mb apart) in brain tissue types from GTEx and BRAINEAC.

For chromatin interaction mapping, we first refined the localization of potential causal variants for the top 146 lead SNPs using

FINEMAP (Benner et al., 2016). For each region, we considered only SNPs located in the LD region with the lead SNP (r2 > 0.6).

We then applied the method to calculate the posterior probability of being causal for each of the remaining SNPs. A 95% credible

set of SNPs for each region was constructed by ordering the posterior probability from largest to smallest and selecting in the

corresponding SNPs up to a cumulative probability of 95%. Credible SNPs were then grouped into those that are located within

the promoter or exons and those that are non-coding/intronic. Promoter/exonal SNPs were directly assigned to their target genes

using positional mapping, while non-coding/intronic SNPs were assigned to their target genes based on long range interactions

(Hi-C) or expression quantitative trait loci (eQTLs). Two Hi-C datasets originated from the human brain (fetal brain Hi-C (Won

et al., 2016) and adult brain Hi-C (Wang et al., 2018)) were used to map credible SNPs to remotely interacting genes as previously

described (Wang et al., 2018). A colocalization analysis with the recent eQTL dataset from adult prefrontal cortices (PFC) was

also used to map 146 GWS loci into their target genes (Wang et al., 2018). In the end, we obtained two sets of candidate genes,

one from fetal brain (positional mapping, fetal brain Hi-C), the other from adult brain (positional mapping, adult brain Hi-C, adult brain

eQTLs).

GTEx gene expression enrichment analysis

MAGMA gene-property analysis (de Leeuw et al., 2015) was performed using gene expression data from 83 tissues based on GTEx

RNA-seq data (v7). Expression values (RPKM) were log2 transformed with pseudo-count one after winsorization at 50, and average

expression values were taken per tissue. Analysis was performed separately for 30 general tissue types and 53 specific tissue types,

and Bonferroni-based multiple testing correction was done for the examined tissue types.



Pathway analysis using Gene Ontology

We used FUMA (Watanabe et al., 2017) to map SNPs to genes and then test for enrichment of specific Gene Ontology functions and 
pathways among genome-wide significant pleiotropic and disorder-specific SNPs separately. Hypergeometric tests identify any sta-
tistical over-representation of genes from the input list (mapped from SNPs) in predefined MSigDB Gene Ontology gene sets which 
describe biological processes, molecular functions, and cellular components. Multiple test correction was applied by category.

Enrichment analysis using brain developmental, regional, and cell-type-specific data
Developmental expression trajectories for candidate genes were plotted using a published transcriptome atlas constructed from 
post-mortem brain data (Kang et al., 2011). As this dataset contains expression values from multiple brain regions, we selected 
transcriptomic profiles of cerebral cortex with developmental epochs that span prenatal (6-37 post-conception weeks, PCW) and 
postnatal (4 months-42 years) periods. Expression values were log-transformed and centered to the mean expression level for 
each sample using a scale(center = T, scale = F)+1 function in R. This normalization method has been frequently used in other papers 
to plot developmental expression trajectories (e.g., (Grove et al., 2019; Li et al., 2018; Mah and Won, 2019; Satterstrom et al., 2019). 
Instead of measuring the expression values of individual disease associated gene, we measured the average expression values of the 
entire gene set. To do this, disease risk genes were selected for each sample and their average centered expression values were 
calculated and plotted (individual dots in the plot denote different samples or individuals, not different genes). It should be noted 
that the average expression values of each gene set correspond to representative expression patterns of the disease risk genes, 
so individual genes may behave differently.

We used candidate genes identified in fetal brain and adult brain to plot prenatal and postnatal gene expression profiles, 
respectively.

To obtain genes that show cortical regional enrichment (e.g., frontal cortical enrichment), we computed t-statistics for each gene 
for a specific cortical region (e.g., frontal cortex) versus all other cortical regions (e.g., parietal cortex, temporal cortex, and occipital 
cortex, Kang et al., 2011). The top 5% of genes that show heightened expression patterns for each cortical region were selected as 
region-specific genes. These genes were then overlapped with candidate genes by Fisher’s exact test to measure cortex regional 
enrichment.

Single cell expression profiles from the adult brain (Darmanis et al., 2015) were used to identify cell-type specificity of candidate 
genes. Single cell expression values were log-transformed and centered using the mean expression values. Average centered 
expression values for candidate genes were calculated in each cell. Cells were then grouped into cell clusters (neurons, astrocytes, 
microglia, oligodendrocytes, OPC, and endothelial cells), and a relative expression level for a given cell cluster was calculated by a 
scale function in R.

Comparison with other brain-related traits and diseases
To explore the genome-wide relationship of our cross-disorder phenotype with other traits and diseases, we estimated pairwise ge-
netic correlations using LD Hub (Zheng et al., 2017). We selected 25 brain-related traits from LD Hub, including phenotypes related to 
smoking behavior, education, personality, neurological disorders, sleeping, cognitive function, and brain volume (Table S7.1). Sum-

mary statistics for different phenotypes were harmonized via the default options provided by LD Hub, and SNPs in the MHC regions 
were removed before the analysis. For each of the selected traits, a bivariate LDSC analysis was performed to estimate its genetic 
correlation with our meta-analyzed cross-disorder phenotype. We then applied FDR correction to control for multiple testing and 
identify significant associations.

For GWAS catalog data, FUMA (Watanabe et al., 2017) GENE2FUNC module was used to test for enrichment of specific GWAS 
catalog-associated gene sets for genome-wide significant pleiotropic risk loci. Hypergeometric tests identified any statistical over-
representation of genes from the input list in predefined GWAS catalog data. Human protein-coding genes were used as background 
genes. All identified traits with multiple-testing adjusted p < 0.05 were included as results.

Relationship of Lead SNPs from Meta-analysis to Rare CNVs and Mutations Previously Associated with 
Neurodevelopmental Genomic Disorders

We conducted additional analyses to determine whether our 146 genome-wide significant loci are enriched in CNVs spanning 
defined genomic disorder (GD) regions or damaging mutations previously shown to be associated with neurodevelopmental disor-
ders (including autism spectrum disorder, intellectual disability, and developmental delay), also known as genomic disorders (GDs). 
The reference data comprise a curated set of 51 GD loci (encompassing 823 protein-coding genes) with multiple reports of ASD/ID/
DD-associated CNVs (Satterstrom et al., 2019). The GD curation process is described in the original publication. Each of our 146 lead 
SNPs were assigned to its candidate genes using various functional genomics datasets including Hi-C data, overlap with gene and 
regulatory elements. We examined all SNPs as well as dividing SNPs into groups based on their degree of pleiotropic association and 
conducted permutation testing to assess significant enrichment. Permutation testing was performed by first assigning each lead 
(sentinel) SNP to the nearest gene, then randomly sampling 1,000 new genes from the genome with replacement while matching 
on chromosome and gene length. P values were derived by comparing the empirically observed number of overlaps to the distribu-
tion of expected overlaps based on 1,000 matched permutations (Data S3.1).



We also examined overlap of our 146 genomewide significant loci with genes containing damaging de novo (truncating, highly

damagingmissense and damagingmissense)mutations among childrenwith ASD (data from (Satterstrom et al., 2019)). In this autism

dataset, 102 genes had higher frequencies of damaging de novomutations (DNMs) in cases than controls (FDR q% 0.1) (Satterstrom

et al., 2019). Each permutation test consisted of randomly sampling 1,000 new sets of genes with replacement from the genome,

where each new set of genes contained the same total number of genes as the observed set of candidate genes for each set of

loci. Sampling was also performed while controlling for per-gene mutation rates and brain expression levels using a quantile-based

binning approach, as has been described in detail in a recent study (Satterstrom, et al., 2019). P values were derived by comparing

the empirically observed number of genes present in the list of 102 dominant-acting ASD risk genes to the distribution of expected

count of dominant-acting ASD risk genes based on 1,000 matched permutations (Data S3.2).

Finally, we examined whether genes linked to our SNPs were enriched for DNMs associated with ASD using the same reference

dataset. Each permutation test consisted of randomly sampling 1,000 new sets of genes with replacement from the genome, where

each new set of genes contained the same total number of genes as the observed set of candidate genes for each set of loci. Sam-

pling was also performed while controlling for per-gene mutation rates and brain expression levels using a quantile-based binning

approach, as has been described in detail in a recent study (Satterstrom, et al., 2019). P values were derived by comparing the empir-

ically observed number of genes present in the list of 102 dominant-acting ASD risk genes to the distribution of expected count of

dominant-acting ASD risk genes based on 1,000 matched permutations (Data S3.3).

DATA AND SOFTWARE AVAILABILITY

The Psychiatric Genetics Consortium (PGC)’s policy is tomake genome-wide summary results publicly available. Summary statistics

for a combined meta-analysis of eight psychiatric disorders without 23andMe data are available on the PGC web site (https://www.

med.unc.edu/pgc/results-and-downloads). Results for 10,000 SNPs for eight disorders including 23andMe are also available on the

PGC web site. The summary-level GWAS association statistics for PGC individual disorders are available at the website (https://

www.med.unc.edu/pgc/results-and-downloads).

GWAS summary statistics for the 23andMe cohort (Hyde et al., 2016) must be obtained separately. These can be obtained by in-

dividual researchers under an agreement with 23andMe that protects the privacy of the 23andMe participants. Contact Aaron Pet-

rakovitz (apetrakovitz@23andme.com) to apply for access to the data.
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Statistical Power and Numbers of Cross-Disorder Associations

Figure S1. Statistical Power and Number of Cross-Disorder Associations, Related to Tables 2 and S3.1

Power to detect associations across pairs of disorders was plotted with the number of cross-disorder associations identified in the current meta-analysis. For

each pair of disorders, power was estimated using the number of cases and heritability for each disorder, as well as the genetic correlation between the disorders.

In general, as power increased, so did the number of identified SNPs.



Figure S2. Cross-disorder GWAS SNPs in the DCC Locus Colocalize with eQTLs for DCC, Related to Table 2, Table S4.2, and Figure 3

Dark blue dots refer to SNPs that overlap between brain eQTLs and GWAS plots. LD region for the GWAS locus and TAD boundaries are depicted.



Figure S3. Gene Expression of Top Loci across Development, Related to Figure 3

Gene expression trajectories from a transcriptome atlas of post-mortem brain tissue across development are plotted for four top loci, DCC, RBFOX1, NOX4 and

BRAF in six different brain tissue types. AMY = amygdala; MD = mediodorsal nucleus of the thalamus; CBC = cerebellar cortex; NCX = neocortex; HIP = hip-

pocampus; STR = striatum.



Figure S4. Gene Expression in the Brain for Pleiotropic and Non-Pleiotropic Loci, Related to Figure 5

Average normalized gene expression in fetal and adult post-mortem brain tissue for pleiotropic (109) and non-pleiotropic (37) loci were plotted. Disorder-specific

and pleiotropic risk loci showed a similar level of gene expression in prenatal and postnatal development after multiple testing correction (t test p > 0.025).
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