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Abstract 40 

Age-related macular degeneration (AMD) is a leading cause of blindness. Genetic variants at the 41 

chromosome 1q31.3 encompassing the complement factor H (CFH, FH) and CFH related genes 42 

(CFHR1-5) are major determinants of AMD susceptibility, but their molecular consequences 43 

remain unclear. We demonstrate that FHR-4 plays a prominent role in AMD pathogenesis. We 44 

show that systemic FHR-4 levels are elevated in AMD (P-value=7.1x10-6), whereas no difference 45 

is seen for FH. Furthermore, FHR-4 accumulates in the choriocapillaris, Bruch’s membrane and 46 

drusen, and can compete with FH/FHL-1 for C3b binding, preventing FI-mediated C3b cleavage. 47 

Critically, the protective allele of the strongest AMD-associated CFH locus variant rs10922109 48 

has the highest association with reduced FHR-4 levels (P-value=2.2x10-56), independently of the 49 

AMD-protective CFHR1–3 deletion, and even in those individuals that carry the high-risk allele 50 

of rs1061170 (Y402H). Our findings identify FHR-4 as a new molecular player contributing to 51 

complement dysregulation in AMD. 52 
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Introduction 53 

Age-related macular degeneration (AMD) is the most common cause of vision loss in Western 54 

societies1. Soft drusen are an early sign of AMD. These deposits form within Bruch’s membrane 55 

(BrM) underneath the retinal pigment epithelium (RPE) basement membrane and contain 56 

apolipoprotein B and E, cholesterol-rich lipoproteins that are thought to be derived from the RPE2. 57 

In addition, they contain a variety of other proteins, with complement proteins being a prominent 58 

component3. This early stage of disease can then progress to late AMD, manifesting as either 59 

geographic atrophy (‘dry’ AMD) or choroidal neovascularisation (‘wet’ AMD)4.  60 

AMD has a strong genetic basis; associations with 45 common single nucleotide 61 

polymorphisms (SNPs) and 7 rare variants across 34 genetic loci have been reported in the largest 62 

genome-wide association study (GWAS) to date, explaining ~34% of AMD risk5. Many of these 63 

variants reside in genes encoding complement system components, particularly those encoded at 64 

the Regulators of Complement Activation (RCA) locus on chromosome 1q31.3, including factor 65 

H (FH; CFH) and FH related 1-5 (CFHR1-5)6,7. Common SNPs within CFH, including rs1061170 66 

encoding a tyrosine to histidine substitution at position 402 (Y402H), were first identified as major 67 

susceptibility variants for AMD8-11. The recent largest GWAS established 8 independent signals 68 

(4 common variants, 4 rare) over 578 Mb of the RCA locus5. Except for the highly penetrant CFH 69 

missense variant R1210C12 and synonymous variant rs35392876 in CFH, all variants are non-70 

coding: 4 intronic in CFH (2), CFHR5 (1) and KCNT2 (1) and 2 intergenic (8kb upstream 71 

CFH/35kb downstream KCNT2; 14kb downstream CFHR1/156kb upstream CFHR4). The role of 72 

these genes in the pathogenesis of AMD is unclear.  73 

The CFH gene encodes FH and its smaller splice variant, FH-like 1 (FHL-1)13,14. FH is the 74 

main plasma complement regulator, but FHL-1 predominates in BrM and choriocapillaris6,15. 75 
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Whilst FH/FHL-1 downregulate complement activation in plasma and on surfaces, the FHR 76 

proteins can compete with FH/FHL-1 for surface and ligand binding, thus disrupting their negative 77 

regulatory function and facilitate local activation16,17 (see Figure 3 of reference 17 for an 78 

explanatory diagram of CFH and CFHR genes and the structures of FH, FHL-1 and FHR proteins). 79 

However, due to the extremely high level of sequence homology shared by all of the FHR 80 

proteins17 it has thus far remained difficult to investigate their individual tissue expression patterns. 81 

Rare AMD-associated coding variants in CFH and their functional consequences directly implicate 82 

FH in the pathogenesis of AMD5,12,18-22. The molecular basis of the association of FH/FHL-1 402H 83 

variant to AMD pathology has been reported to involve altered binding to heparan sulfate, C-84 

reactive protein or malondialdehyde, impacting local complement activation and subretinal 85 

inflammation23-26. Downstream of CFH, a common ∼84 kb deletion of CFHR3 and CFHR1 and a 86 

rare ∼120 kb deletion encompassing CFHR1 and CFHR4 are associated with reduced AMD risk, 87 

supporting the hypothesis that multiple genes at the locus may be involved in AMD27-34. In line 88 

with the genetic findings, dysregulation of the complement system in the eye and blood has been 89 

reported in the early stages of AMD predominating in the extracellular matrix surrounding the 90 

fenestrated capillaries of the choriocapillaris that underlies Bruch’s membrane35-38. 91 

A recent GWAS identified an intronic variant in CFHR4 that associated with increased 92 

systemic complement activation and AMD risk39. Furthermore, it has recently been reported that 93 

the top AMD-associated CFH variant rs109221095 is associated with altered CFHR4 expression 94 

in liver40. Taken together these studies propose that, as well as FH, FHR-4 may also be involved 95 

in AMD. Having recently generated a novel, specific monoclonal antibody against FHR-4, we 96 

investigated, using a combination of biochemical, immunohistochemical and genetic approaches, 97 

whether FHR-4 directly impacts AMD pathogenesis. We show, in two large, independent cohorts, 98 
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that blood FHR-4 levels are elevated in AMD patients compared to controls. FHR-4 is present in 99 

areas of pathology in AMD retina, co-localising with complement activation products. In vitro 100 

functional analyses show that FHR-4 binds C3 fragments and competes out the binding of the 101 

regulatory proteins FH and FHL-1. Genetic association analyses show that several of the 102 

established AMD risk variants at the CFH locus are associated with FHR-4 levels in blood, a 103 

finding strongly supported by haplotype association analyses. Taken together, our findings 104 

implicate FHR-4 as a key driver of complement dysregulation in the AMD retina and identify 105 

FHR-4 as a new potential therapeutic target in AMD.  106 

 107 
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Results 108 

Systemic FHR-4 levels are elevated in advanced AMD cases 109 

Systemic FHR-4 concentrations were measured in plasma and serum samples of 484 late AMD 110 

patients (geographic atrophy and/or choroidal neovascularization) and 522 phenotyped controls, 111 

collected within two independent AMD studies (Cambridge and EUGENDA; Table 1). AMD 112 

patients had significantly elevated FHR-4 levels compared to controls, in each study separately 113 

(β=0.18 and P-value=0.016 for Cambridge and β=0.19 and P-value=1.7x10-4 for EUGENDA) and 114 

in the two-cohort meta-analysis (β=0.19, 95% confidence interval (CI) 0.11 – 0.27 and P-115 

value=7.1x10-6) (Table 1 and Fig. 1A). Association of FHR-4 levels stratified by type of end-stage 116 

disease, i.e., CNV only and GA only, were additionally performed. These analysis showed 117 

comparable estimates in both cohorts (CNV only: β=0.15 and P-value=0.068 for Cambridge and 118 

β=0.18 and P-value=0.001 for EUGENDA; GA only: β=0.20 and P-value=0.099 for Cambridge 119 

and β=0.45 and P-value=0.008 for EUGENDA) and in the meta-analysis (CNV only: β=0.17, CI 120 

0.09 – 0.26 and P-value=9.3x10-5; GA only: β=0.28, CI 0.09 – 0.47 and P-value=0.004), with 121 

wider CIs for the GA only group reflecting the smaller sample size (62 GA only cases in 122 

Cambridge and 10 GA only cases in EUGENDA). The overall adjusted odds ratio (OR) of 123 

advanced disease for an FHR-4 increase of 1 standard deviation was 1.37 (CI =1.19–1.58; P-124 

value=1.8x10-5) (Supplementary Fig. 1A). We also measured systemic FH levels and found no 125 

significant difference between patients and controls (P-values 0.959, 0.535 and 0.704 for 126 

Cambridge, EUGENDA and meta-analysis, respectively; Table 1, Fig. 1B and Supplementary Fig. 127 

1B).  128 

 129 



   
 

 8  
 

CFHR4 is expressed in liver but not the eye 130 

We found no evidence of transcription of the CFHR4 gene in primary human RPE cells by rtPCR 131 

(Supplementary Fig. 2A). Analysis of the Gene Expression Omnibus datasets 132 

(https://www.ncbi.nlm.nih.gov/geo) confirmed absence of CFHR4 transcription in the 133 

neurosensory retina, RPE and choroid using Affymetrix U133plus2 human genome arrays,41 134 

Affymetrix Human Exon 1.0 ST arrays,42,43 or RNA sequencing44,45 (Supplementary Fig. 2B-F). 135 

Analysis of gene expression across 53 human tissues from the Genotype-Tissue Expression project 136 

(https://www.ebi.ac.uk/gxa/home)46 demonstrated that CFHR4 expression was restricted to the 137 

liver (Supplementary Fig. 2G). 138 

 139 

FHR-4 in the choriocapillaris is associated with complement activation 140 

Immunostaining demonstrated that FHR-4 accumulates in the intercapillary septa, the extracellular 141 

matrix (ECM) between the fenestrated capillaries of the choriocapillaris (Fig. 2A-C), and within 142 

BrM (Fig. 2C). Diffusion experiments demonstrated that FHR-4 does not completely transit this 143 

ECM (Supplementary Fig. 3). Drusen, a hallmark of AMD, were strongly positive for FHR-4 144 

antibody labeling (Fig. 2D). C3b also localized to the choriocapillaris intercapillary septa and 145 

appeared to co-localise with FHR-4 (Fig. 2E). FHR-4 is reported to bind C3b and stabilize the C3 146 

convertase47,48. We confirmed that FHR-4 binds immobilized C3b (Fig. 2F) and demonstrated that 147 

FHR-4 competes with the negative regulators, FH and FHL-1, for binding immobilized C3b (Fig. 148 

2G). The consequences of this were modelled in vitro employing C3b α-chain cleavage assays 149 

(Fig. 2H and Supplementary Fig. 4). C3b was incubated with FHL-1 and factor I (FI) titrated to 150 

give ~80% C3b α-chain cleavage; FHR-4 inhibited α-chain cleavage in a dose-dependent manner; 151 

a 2.5-fold molar excess of FHR-4 over FHL-1 caused 50% reduction in cleavage (Fig. 2I).  152 

https://www.ncbi.nlm.nih.gov/geo
https://www.ebi.ac.uk/gxa/home
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 153 

CFH locus AMD risk variants associate with systemic FHR-4 levels  154 

The International AMD Genomics Consortium (IAMDGC) GWAS5 reported 8 independently 155 

associated variants at the CFH locus (Fig. 3A and Supplementary Data 1). We repeated single-156 

variant association analyses with AMD in the Cambridge and EUGENDA samples (originally part 157 

of the IAMDGC dataset) and observed all ORs with the same direction and similar magnitude as 158 

in IAMDGC at all variants, except for rare variant rs191281603 (Supplementary Data 1).   159 

We hypothesised that one or several of the established AMD risk variants at the CFH locus 160 

are associated with increased systemic FHR-4 levels. The rare CFH variant R1210C,12 present 161 

heterozygously in a single case from the Cambridge cohort (with corresponding values of FHR-4 162 

and FH levels equal to 5.7 and 296.4, respectively), was excluded from this analysis. The top 163 

(rs10922109, 1.1), second (rs570618, 1.2; proxy for Y402H), fifth (rs187328863, 1.5) and sixth 164 

(rs61818925, 1.6) IAMDGC hits at the CFH locus showed strong associations with FHR-4 levels 165 

(after Bonferroni correction for multiple testing), with direction of allelic effect on levels 166 

concordant with that on disease for all variants (Table 2, Fig. 3B, Supplementary Data 2 and 167 

Supplementary Fig. 5). The strongest allelic effect on FHR-4 levels was seen at the top IAMDGC 168 

variant rs10922109, with β=-0.42 and P-value=2.2x10-56 for the minor allele A associated with 169 

decreased disease risk. In the Cambridge and EUGENDA cohorts, respectively, this finding 170 

translates into (back-log transformed) FHR-4 levels expressed as geometric mean values [95% 171 

CIs] equal to 7.7 ug/ml [7.0-8.5] and 8.5 ug/ml [7.9-9.1] in CC genotype individuals, 5.5 ug/ml 172 

[5.0-6.1] and 6.0 ug/ml [5.7-6.4] in AC genotype individuals and 3.2 ug/ml [2.5-4.0] and 3.6 ug/ml 173 

[3.3-3.9] in AA genotype individuals. Analogous single-variant association analyses with FH levels 174 

revealed a significant association only at rs10922109 and rs61818925 with much smaller effect 175 
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size (β=0.03 and β=-0.03, respectively) (Table 2, Supplementary Data 2 and Supplementary Fig. 176 

5). 177 

To assess whether genetic variants at loci other than CFH associated with systemic FHR-178 

4 levels, we performed a subsidiary (hypothesis-free) GWAS meta-analysis of FHR-4 levels. A 179 

single ~1 Mb region spanning the extended CFH locus (chr1q31.3:196,240,335–197,281,307) 180 

showed genome-wide significant (P ≤ 5x10-8) associations with FHR-4 levels (Fig. 4A, 181 

Supplementary Fig. 6A and Supplementary Data 3 and Supplementary Data 4). The top signal 182 

rs7535263 is in tight linkage disequilibrium (LD) (R2=0.98, D’=1.00) with the top IAMDGC 183 

variant rs10922109 (1.1) (regional plot in Fig. 4A, Supplementary Data 5; OR=0.11, P-184 

value=1.7x10-612 in IAMDGC). Analogous GWAS meta-analysis of FH levels also revealed a 185 

single genome-wide significant association confined to variants in tight LD in a ~150 kb region at 186 

the CFH locus (chr1q31.3:196,674,714-196,825,287; including rs6677604, a proxy for the 187 

previously reported AMD protective CFHR1-3 deletion29) (Fig. 4B, Supplementary Fig. 6B, 188 

Supplementary Data 6, Supplementary Data 7 and Supplementary Data 8), but effect on FH levels 189 

was limited (β=-0.10, P-value=2.4x10-11 at the top variant rs74696321). Notably, the intronic 190 

AMD risk variant rs6685931 in CFHR4 (LD with rs10922109: R2=0.43, D’=0.96), associated with 191 

complement activation in the recent GWAS,39 was strongly associated with levels of FHR-4 192 

(β=0.28, P-value=2.3x10-25), but not FH (β=0.005, P-value=0.607). 193 

 194 

CFH locus haplotypes strongly associate with AMD and FHR-4 levels 195 

To assess the combined effect of variants at the CFH locus, we carried out association analyses of 196 

the haplotypes formed by the 7 CFH variants considered in our study with AMD and FHR-4/FH 197 

levels; we included rs6677604 as proxy for the CFHR1-3 deletion29 to assess its influence on FHR-198 
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4/FH levels. The rare CFHR1-4 deletion33,34 was present heterozygously in 3 controls and 1 199 

advanced AMD patient and was not included in this analysis. Haplotype associations with AMD 200 

were also assessed in the whole IAMDGC dataset.5  201 

We observed 9 common haplotypes with overall frequency ≥ 1% (Fig. 5B and 202 

Supplementary Data 9). The most frequent haplotype CTTGCCGC (H1; controls 32%, cases 49% 203 

in IAMDGC) that carries the disease risk allele of the proxy for Y402H (1.2) was used as reference. 204 

Common H2-H5 and rarer H7 haplotypes carried significantly lower AMD risk than H1, while 205 

rarer H6 (TTTGCCGC) and H9 (CTTGCTGC) carried higher risk than H1; H8 (CTTGCCTC) did 206 

not show a significantly different risk from H1 (Fig. 5A and Supplementary Data 9). Similar OR 207 

estimates were observed in our two-cohort meta-analysis (Fig. 5A and Supplementary Data 9).  208 

Haplotypes H2 (CTGGACTC) and H3 (CTGAACGC) strongly associated with decreased 209 

FHR-4 levels and carry independent effects with no overlapping CIs (β=-0.49, P-value=1.7x10-44 210 

and β=-0.25, P-value=4.4x10-10, respectively) (Fig. 5A and Supplementary Data 9). While both 211 

haplotypes carry the FHR-4 lowering/AMD protective alleles A of rs10922109 (1.1) and G of 212 

rs570618 (1.2), H2 carries the FHR-4 lowering/AMD protective allele T of rs61818925 (1.6) and 213 

H3 carries the FHR-4 lowering/AMD protective allele A of rs6677604, tag for the AMD protective 214 

CFHR1-3 deletion. Neither of the haplotypes showed a more significant association with FHR-4 215 

levels than the meta-analysis single-variant associations (Table 2). Analogous haplotype 216 

association analyses with FH levels revealed a significant association only at H2 (after Bonferroni 217 

correction) with small effect (β=0.07, P-value=3.3x10-6). Results for the diplotype (haplotype pair) 218 

association analyses are shown in Supplementary Data 10 and Supplementary Fig. 7. Remarkably, 219 

among the genotypes that contain one copy of H1 (Y402H), diplotypes H1:H2, H1:H3 and H1:H7 220 

showed a significantly lower AMD risk (OR=0.33, P-value=5.3x10-152, OR=0.29, P-value=1.0x10-221 
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161 and OR=0.42, P-value=2.2x10-24, respectively, in IAMDGC) and decreased levels of FHR-4 222 

(β=-0.54, P-value=2.0x10-16, β=-0.31, P-value=8.0x10-6 and β=-0.54, P-value=0.001, respectively, 223 

in our two-cohort meta-analysis), compared to reference H1:H1 genotype.   224 

 Using a sequential forward approach, we tested the association of the haplotypes formed 225 

by rs10922109 (1.1) and rs61818925 (1.6), the best two single-variant association signals with 226 

FHR-4 levels in our meta-analysis (Table 2). The most frequent haplotype CG (H1*; controls 44%, 227 

cases 64% in IAMDGC) was used as reference. We observed three other haplotypes (H2*-H4*) 228 

carrying both distinct AMD lower risk (in IAMDGC; with similar OR estimates in our two-cohort 229 

meta-analysis) and distinct lowering effects on FHR-4 levels (Fig. 6A-C and Supplementary Data 230 

11). Haplotype H2* (AT) showed the strongest association with FHR-4 levels (β=-0.52, P-231 

value=2.4x10-58) with a larger effect size and more significant P-value than any of the single-232 

variant signals (Table 2). Haplotype H4* (AG) was the only haplotype also associated with FH 233 

levels (β=0.08, P-value=7.7x10-7). Adding SNP rs570618 (1.2), the third meta-analysis single-234 

variant association signal with FHR-4 levels (Table 2), to the inferred haplotypes did not 235 

significantly improve the dissection of the genetic effects on FHR-4 levels at the CFH locus 236 

(lowest P-value=2.0x10-53 at haplotype GAT, β=-0.50). 237 

  238 
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Discussion  239 

Here we provide compelling evidence to show that AMD is associated with genetically-driven 240 

elevated circulating levels of FHR-4 and not associated with circulating FH levels. FHR-4 likely 241 

predisposes to disease by penetrating the ECM of the choriocapillaris and Bruch’s membrane and 242 

acting locally by facilitating complement activation. FHL-1 is the complement regulator primarily 243 

responsible for protecting intercapillary septa ECM from complement activation,6,15 but this 244 

protective function may be inhibited by FHR-4. FHR-4 accumulates in the intercapillary septa of 245 

the choriocapillaris, the ECM surrounding the fenestrated capillaries and a major site of AMD 246 

pathogenesis (Fig. 2A-E). CFHR4 gene transcription was absent in the RPE and choroid, 247 

demonstrating that the systemic circulation is the source of FHR-4 in the eye. Deposition of C3b 248 

in the intercapillary septa will result in C3 convertase formation, complement activation and 249 

inflammation unless sufficiently regulated by FI-mediated C3b breakdown in the presence of FHL-250 

1.15 Based on our in vitro competition assays (Fig. 2J), we propose that in AMD, the accumulation 251 

of FHR-4 in the ECM out-competes FHL-1 for C3b binding, thereby preventing FI-mediated C3b 252 

breakdown and driving complement activation. FHR-4 bound to deposited C3b may also directly 253 

facilitate C3 convertase formation.47,48 Excessive complement turnover, driven by FHR-4 254 

accumulation, will continue to recruit and activate circulating immune cells,49 another key feature 255 

of early AMD. Quite how complement over-activation leads to drusen formation remains unclear, 256 

although studies have demonstrated that a combination of both complement over activation and 257 

oxidative stress can result in lipid accumulation in RPE cells and Bruch’s membrane.50 258 

Furthermore, non-canonical roles of complement have also been shown to influence the ability to 259 

clear apolipoproteins from RPE cells and Bruch’s membranes in various animal models.51 260 
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Remarkably, the CFH locus was the only genome-wide significant locus in our GWAS 261 

meta-analysis of FHR-4 levels. The top signal is in tight LD with the strongest published AMD 262 

association signal at the CFH locus5 (Fig. 4A, Supplementary Fig. 6A and Supplementary Data 3, 263 

Supplementary Data 4 and Supplementary Data 5). The triangular relationship between established 264 

susceptibility CFH locus variants, FHR-4 levels and AMD provides strong support for the 265 

association we observe between FHR-4 levels and increased AMD risk (Table 1, Fig. 1A and 266 

Supplementary Fig. 1A) to be causal. Our haplotype-based association analyses allowed the 267 

individual effects of FHR-4 levels, the CFHR1-3 deletion and the Y402H variant of FH/FHL-1 to 268 

be dissected. Using the most frequent haplotype H1 (carrying the risk allele of Y402H) as 269 

reference, the two most protective haplotypes, H2 and H3, were associated with the lowest levels 270 

of FHR-4 (Fig. 5A-B and Supplementary Data 9). The H2 haplotype (carrying the FHR-4 271 

lowering/AMD protective alleles A of rs10922109 (1.1) and T of rs61818925 (1.6)) does not 272 

contain the CFHR1-3 deletion, suggesting that lower FHR-4 levels confer the disease-protective 273 

effect. Furthermore, the diplotype analysis demonstrates that the H1:H2 genotype is associated 274 

with disease protection relative to H1:H1, suggesting a dominant decreased disease risk effect of 275 

lower FHR-4 levels even in the presence of the Y402H risk variant on the other allele 276 

(Supplementary Data 10 and Supplementary Fig. 7). Finally, we showed that the two 277 

independently AMD-associated variants rs10922109 (1.1) and rs61818925 (1.6) are a minimal set 278 

of variants that explain the genetic effect on FHR-4 levels at the CFH locus (Fig. 6A-C).    279 

FH levels were not different between cases and controls in our two independent cohorts 280 

(Fig. 1B and Supplementary Fig. 1B). Previous studies have measured systemic levels of FH in 281 

AMD and reported inconsistent results.52-60 The sample size of our analysis (484 cases and 522 282 

controls) exceeds all previous investigations. Our GWAS meta-analysis of FH levels reveals a 283 
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similar genetic structure to that previously reported,52 with the top signal in high LD with variants 284 

that tag the common CFHR1-3 deletion (Fig. 4B, Supplementary Fig. 6B, Supplementary Data 6, 285 

Supplementary Data 7 and Supplementary Data 8). The data also show that systemic FH and FHR-286 

4 levels are dictated by a different genetic architecture (Supplementary Fig. 8). The top signal for 287 

FH levels, rs74696321 (β =-0.10, P-value=2.4x10-11), is only among the genome-wide significant 288 

association tail for FHR-4 levels (653th hit, P-value=7.4x10-9) with opposite direction of allelic 289 

effect (β=0.23), while the top signal for FHR-4 levels, rs7535263 (β=-0.42, P-value=9.0 x 10-57), 290 

tagging the top AMD-associated variant rs10922109, does not pass the genome-wide significance 291 

threshold in the GWAS meta-analysis of FH levels (β=0.03, P-value=0.005). It should be noted 292 

that the circulating levels of FHR-4 are clearly associated with AMD risk, but the molar ratios of 293 

FHR-4 and FH/FHL-1 in blood are not representative of the ratios of the accumulated proteins in 294 

the ECM of the choriocapillaris and Bruch’s membrane. This can be attributed to the relatively 295 

large hydrodynamic size of FH compared to FHR-4 and FHL-1; we have previously shown that 296 

there is more FHL-1 in the tissue than FH, and that FH, unlike FHL-1, cannot diffuse across 297 

Bruch’s membrane.15,61 Furthermore, the absence of local FHR-4 expression in the eye emphasizes 298 

the relevance of systemic levels of this protein for its accumulation in the choriocapillaris, whereas 299 

FHL-1, and any FH that is present, may be derived locally or systemically. 300 

Genetically driven variations in the levels and functions of alternative pathway 301 

complement proteins play a central role in AMD pathogenesis.  Common and rare coding variants 302 

in CFH are important: the common Y402H variant and a majority of the rare variants in CFH 303 

identified to date (that generally result in a familial, early-onset condition) affect the function of 304 

both FHL-1 and FH, suggesting a particular role for FHL-1 in AMD pathogenesis62,63.  However, 305 

there are rare variants affecting only FH, including the R1210C mutation, strongly associated with 306 
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early onset AMD, showing that full-length FH also has an important role12.  In addition, mutations 307 

in CFI and common variants in C3 and CFB modify AMD risk5,64.  Therefore, it can be concluded 308 

that a balance between the actions of proteins that inhibit the alternative pathway (FH/FHL-1, FI) 309 

and those that activate the alternative pathway (C3, FB) influence AMD risk.  Here we provide 310 

compelling data suggesting another regulator of the alternative pathway, FHR-4, is likely to have 311 

an important role in regulating this balance and thereby modifying AMD risk. This research 312 

implies that targeting FHR-4 may represent a future therapeutic avenue to explore in the treatment 313 

of AMD. Our demonstration that high systemic FHR-4 levels are associated with AMD risk makes 314 

the case for a therapy that lowers systemic FHR-4 levels; this could be achieved using antibodies 315 

or other agents that block or sequester the protein or by anti-sense targeting of hepatic FHR-4 316 

synthesis. The efficacy of clinical trials evaluating FHR-4 inhibiting treatments could be enhanced 317 

by patient selection based on FHR-4 levels and the genetic markers identified here. 318 

 319 
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Methods 320 

 321 

Study samples 322 

The Cambridge AMD study is a case-control study with subjects recruited from the southeast and 323 

northwest of England between 2002-200665. All affected subjects had choroidal 324 

neovascularization (CNV) and/or geographic atrophy (GA). Controls were spouses, partners or 325 

friends of index patients. Blood samples were obtained at the time of interview; EDTA and lithium-326 

heparin plasma samples were used for DNA extraction and FHR-4/FH measurements respectively. 327 

The European Genetic Database (EUGENDA) created for clinical and molecular analysis of AMD 328 

comprises late AMD cases and controls recruited at Radboud University Medical Center, the 329 

Netherlands, and University of Cologne, Germany. Details on exclusion criteria and grading are 330 

provided in the Supplementary Methods. All participants provided written informed consent for 331 

clinical examination, epidemiological data collection, and blood sampling for biochemical and 332 

genetic analyses. Serum samples were used for FHR-4/FH measurements. Donor eye tissue was 333 

obtained from Manchester Eye Tissue Repository (ethically approved Research Tissue Bank, UK 334 

NHS Health Research Authority ref 15/NW/0932). The banked tissue was collected and stored 335 

within 48 hours of death; there was prior informed consent for research use. Human Tissue Act 336 

2004 (UK) guidelines were followed. For all studies, ethical approval was obtained from either 337 

national or local ethics committees and adhered to the tenets of the Declaration of Helsinki.  338 

 339 

Proteins and antibodies 340 

Recombinant FHR-4 was made through the GenScript gene synthesis and protein expression 341 

service (Piscataway, NJ 08854 USA) using their baculovirus-insect cell expression system and 342 
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was based on the published sequence for the FHR-4B variant of the CFHR gene (UniProt identifier 343 

Q92496-3): the protein was designed to include a N-terminal 6x His tag and TEV cleavage site 344 

(Supplementary Fig. 9).  345 

For the generation of specific FHR-4 monoclonal antibodies, mice were immunised 346 

subcutaneously (sc) with recombinant FHR-4 (~30µg/mouse) in complete Freund’s adjuvant; 347 

boosted 4 and 6 weeks later with FHR-4 (dose as above) in incomplete Freund’s adjuvant and test 348 

bled at 8 weeks. Mice with the highest titre in a screening assay on immobilized FHR-4 protein 349 

were selected and boosted intraperitoneally with FHR-4 (30µg in PBS), sacrificed 48 hours later 350 

and the spleen harvested aseptically. Spleen cells, obtained by perfusion with RPMI in a sterile 351 

cabinet, were fused with SP2 myeloma cells to generate hybridomas using standard protocols. 352 

Cells were plated at limiting dilution in 96-well plates and left undisturbed for 14 days. Supernatant 353 

(50µl) was removed from each well and screened for anti-FHR-4 titre as above. Positive clones 354 

were subjected to three rounds of re-cloning prior to expansion and large-scale culture. Antibodies 355 

were purified on protein G and tested in Western blotting against recombinant FHR-4 and human 356 

serum. Non-competitive pairs of antibodies were identified for ELISA development. 357 

Recombinant FHL-1 was expressed in HEK293 cells as described previously15. 358 

Commercially available purified complement proteins used include C3b (VWR International, 359 

Lutterworth, UK, catalogue no. 204860), FH (Sigma-Aldrich, catalogue no. C5813), and FI (VWR 360 

International, catalogue no. 341280). Commercially available antibody against collagen IV was 361 

used (catalogue no: 600-401-106S, 2B Scientific Ltd., Oxford, UK). 362 

  363 
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FHR-4 and FH systemic level measurements 364 

The levels of FHR-4 were measured using an optimised in-house sandwich ELISA. Nunc-365 

Immuno™ MaxiSorp™ 96-well plates were coated with 50µl/well of monoclonal anti-FHR-4 366 

antibody 4E9 at 5µg/ml (in 0.1M carbonate buffer pH9.6). After blocking in 2% BSA in PBS + 367 

0.1%Tween-20 (PBST), plates were washed in PBST and a dilution series of purified FHR-4 368 

protein diluted in 0.1% PBST added to wells in duplicate to generate a standard curve. Test samples 369 

were added (50µl/well) in duplicate at a 1:40 dilution to the remaining wells, and plates were 370 

incubated at 37°C for 1.5 hours. Plates were washed in PBST, 50µl/well of 1µg/ml of HRP-labelled 371 

anti-FHR-4 monoclonal antibody clone 17 was added and the plates were incubated for 1 hour at 372 

room temperature. After washing, 50µl/well of orthophenylenediamine (SIGMAFAST™ OPD, 373 

Sigma-Aldrich, UK) was added to develop the plates and the reaction was stopped after 5 minutes 374 

by adding an equal volume of 10% sulphuric acid. Absorbance was measured in a plate reader at 375 

492 nm and protein concentrations were interpolated from the standard curve plotted using 376 

GraphPadPrism5.  377 

FH levels were measured in a similar manner using monoclonal anti-FH antibody OX24 at 378 

5µg/ml as capture, purified FH protein diluted in 0.1% PBST as standard, test samples at a 1:4000 379 

dilution, HRP-labelled monoclonal anti-FH antibody 35H9 (1µg/ml) as detect, developed with 380 

OPD and read as above. 381 

 382 

Immunohistochemistry 383 

Human donor eye tissue sections were obtained from the Manchester Eye Tissue repository where 384 

5 mm biopsies of the macula region from donor eyes were frozen in OCT and undergone cryo-385 

sectioning (10 m) that were subsequently stored at -80°C. Frozen tissue section slides were 386 
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stained for the presence of FHR-4, collagen IV or C3/C3b using methods described previously15. 387 

Briefly, tissue sections were incubated with chilled (-20 °C) histological grade acetone:methanol 388 

(1:1, v/v; Sigma-Aldrich) for 20 seconds before thorough washing with PBS. Tissue sections were 389 

blocked with 0.1% (w/v) BSA, 1% (v/v) goat serum, and 0.1% (v/v) Triton X-100 in PBS for 1 h 390 

at room temperature. After washing, tissue sections were incubated with Ab combinations of either 391 

10 μg/ml of anti-FHR-4 monoclonal antibody (clone 150) mixed with either 1 μg/ml anti-Collagen 392 

IV rabbit polyclonal antibody, or  1 μg/ml anti-C3/C3b rabbit polyclonal antibody (catalogue no: 393 

21337-1-AP, Proteintech Group, Inc, United States), for 16 h at 4 °C. Sections were washed and 394 

biotinylated anti-mouse IgG (Catalogue No. BA_9200, Vector laboratories, Inc) diluted 1:250 in 395 

PBS was applied for 1 hour to amplify the FHR-4 signal. Slides were subsequently washed and 396 

Alexa Fluor® 647 streptavidin (catalogue no: S32357, Invitrogen) diluted 1:250 in PBS and Alexa 397 

Fluor®488-conjugated goat anti-rabbit Ab (Invitrogen, USA) diluted 1:500 in PBS were added for 398 

2 h at room temperature. After washing, DAPI was applied as a nuclear counterstain (at 0.3 mM 399 

for 5 min) prior to mounting with medium (Vectashield; H-1400, Vector Laboratories, 400 

Peterborough, UK) and application of a coverslip.  401 

In the case of blank control sections, an identical protocol was followed but PBS replaced 402 

the primary antibody. To test antibody specificity in immunohistochemistry pre-adsorption 403 

experiments were performed whereby 10-fold molar excess of recombinant FHR-4 is premixed 404 

with the anti-FHR-4 mAb prior to application to the tissue sections (Supplementary Fig. 10). 405 

Further testing was performed by pre-absorbing with excess purified FHL-1 protein to ensure the 406 

anti-FHR-4 antibody did not cross-react (Supplementary Fig. 10). Furthermore, competition 407 

ELISAs were performed demonstrating the specificity of clone 150 for FHR-4 and not FH 408 

(Supplementary Fig. 11). In all cases images were collected on a Zeiss Axioimager.D2 upright 409 
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microscope using a 40x / 0.5 EC Plan-neofluar and 100x / 0.5 EC Plan-neofluar objective and 410 

captured using a Coolsnap HQ2 camera (Photometrics) through Micromanager software v1.4.23. 411 

Specific band pass filter sets for DAPI, FITC and Cy5 were used to prevent bleed through from 412 

one channel to the next. Images were then processed and analysed using Fiji ImageJ 413 

(http://imagej.net/Fiji/Download).  414 

  415 

Surface plasmon resonance 416 

The binding of FHR-4 to immobilised C3b was measured by surface plasmon resonance (SPR) 417 

using a Biacore 3000 (GE Healthcare). The sensor surfaces were prepared by immobilizing human 418 

C3b onto the flow cells of a Biacore series S carboxymethylated dextran (CM5) sensor chip (GE 419 

Healthcare) using standard amine coupling and included blank flow cells where no C3b protein 420 

was present. Experiments were performed at 25°C and a flow rate of 15 μl/min in PBS with 0.05% 421 

surfactant P20. FHR-4 was injected in triplicate at concentrations ranging from 1 to 100μg/ml. 422 

Samples were injected for 150 seconds and dissociated for another 200 seconds; the chip was 423 

regenerated with 1M NaCl for 1 min and re-equilibrated into PBS with 0.05% surfactant P20 prior 424 

to the next injection. After subtraction of the blank cell value from each response value, association 425 

and dissociation rate constants were determined by global data analysis. All curves were fitted 426 

using a 1:1 Langmuir association/dissociation model (BIAevaluation 4.1; GE Healthcare).  427 

  428 

Solid phase binding assays 429 

Purified C3b was adsorbed onto the wells of microtiter plates (Nunc Maxisorb, Kastrup, Denmark) 430 

at 1μg/well in 100μl/well PBS for 16 h at room temperature. Plates were blocked for 90 minutes 431 

http://imagej.net/Fiji/Download
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at 37°C with 300μl/well 1% (w/v) BSA in standard assay buffer (SAB; 20mM HEPES, 130mM 432 

NaCl, 0.05% (v/v) Tween-20, pH 7.3). SAB was used for all subsequent incubations, dilutions and 433 

washes and all steps were performed at room temperature. A constant concentration of 100nM was 434 

made for either FH or FHL-1 in SAB and increasing concentrations of FHR-4 are used as 435 

competitor, up to 500nM. FH/FHR-4 and FHL-1/FHR-4 mixes were incubated with the 436 

immobilized C3b for 4 hours. After washing, bound FH or FHL-1 protein was detected by the 437 

addition of 100μl/well of 0.5μg/ml OX23 antibody and incubated for 30 minutes followed by 438 

washing and a 30-minute incubation in 100μl of a 1:1000 dilution of AP-conjugated anti- mouse 439 

IgG (Sigma-Aldrich). Plates were developed using 100μl/well of a 1mg/ml disodium p-440 

nitrophenylphosphate solution (Sigma-Aldrich) in 0.05 M Tris-HCl, 0.1 M NaCl, pH 9.3. The 441 

absorbance values at 405 nm were determined after 10 minutes of development at room 442 

temperature and corrected against blank wells (i.e., those with no immobilized C3b).  443 

  444 

Fluid phase C3b breakdown assays 445 

The fluid phase cofactor activity of FHL-1 was measured by incubating purified FHL-1, C3b and 446 

FI together in a total volume of 20μl PBS for 15 minutes at 37°C. For each reaction 2μg C3b and 447 

0.04μg FI were used with varying concentrations of FHL-1 ranging from 0.015μg to 1μg per 448 

reaction. The assay was stopped by addition of 5μl 5× SDS reducing sample buffer and boiling for 449 

10 minutes at 100°C. Samples were run on a 4-12% NuPAGE Bis Tris gel at 200V for 60 minutes 450 

in order to maximise the separation of the C3b breakdown product bands (Supplementary Fig. 4). 451 

Molecular weight markers used were Novex Sharp pre-stained protein standards (3.5-260kDa, Cat. 452 

No. LC5800, Life Technologies, Paisley, UK). The density of the 68kDa iC3b product band was 453 

measured using ImageJ64 (version 1.40g; rsb.info.nih.gov/ij) and used to track C3b breakdown 454 
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efficiency of the FHL-1 proteins. For FHR-4 inhibition assays, the amount of FHL-1 used in the 455 

reaction is fixed at 1μg and increasing amounts of FHR-4 were added to create up to a 5-fold molar 456 

excess of FHR-4 over FHL-1. Otherwise the reactions were performed under the same condition 457 

as previously. In all cases averaged data from three separate experiments were used.  458 

 459 

Ussing chamber diffusion experiments  460 

The macular region of enriched Bruch’s membrane isolated from donor eyes was mounted in an 461 

Ussing chamber (Harvard Apparatus, Hamden, CT)61. Once mounted, the 5-mm-diameter macular 462 

area was the only barrier between two identical compartments (Supplementary Fig. 3). Both sides 463 

of Bruch’s membrane were washed with 2 ml PBS for 5 min at room temperature. Fresh PBS was 464 

placed in both the sample and diffusate chambers. To the sample chamber, pure recombinant FHR-465 

4, final concentration of 100μg/ml, was added and the Ussing chamber was left at room 466 

temperature for 24 hours with gentle stirring in each compartment to avoid generating gradients of 467 

diffusing protein. Samples from each chamber were analyzed on 4-12% NuPAGE Bis-Tris gels, 468 

run at 200V for 60 minutes. Either 20μl samples straight from each chamber were mixed with 5μl 469 

5x SDS loading buffer and run or 100μl samples were taken and concentrated using StrataClean 470 

beads (hydroxylated silica; Agilent Technologies, Cheadle, U.K) for 5 minutes at room 471 

temperature before centrifugation. Beads were then re-suspended in 20μl neat 5x SDS loading 472 

buffer and loaded directly to the gel. Gels were stained with Instant Blue stain (Expedeon, Harston, 473 

U.K.) for 60 min at room temperature, before washing and storage in MiliQ water. Molecular 474 

weight markers used were Blue Prestained Protein Standards, Broad Range (11-190kDa, New 475 

England BioLabs, Hitchin, UK, catalogue no. P7706S). Diffusion experiments were performed on 476 

three separate donor BrM. 477 
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 478 

Genotype data and association analysis 479 

All individuals included in this study had been previously genotyped with a custom-480 

modified Illumina HumanCoreExome array at the Center for Inherited Disease Research (CIDR) 481 

and analysed within the IAMDGC GWAS (43,566 subjects; 16,144 advanced AMD cases and 482 

17,832 controls of European ancestry)5. Quality control and genotype imputation using the 1000 483 

Genomes Project66 reference panel were performed by the IAMDGC as described previously5. A 484 

total of 9,618,989 quality-controlled common (Minor Allele Frequency, MAF ≥ 1%) variants 485 

(289,971 genotyped; 9,329,018 imputed) were available for the 1,006 individuals included in this 486 

study. Phased genotype data as inferred within the IAMDGC study5 were also available and used 487 

in the haplotype-based association analyses. All statistical association analyses were conducted on 488 

each cohort separately (Cambridge and EUGENDA), and combined as 2-stage, fixed-effects meta-489 

analyses of the available individual participant data from the two cohorts. Heterogeneity across 490 

studies was assessed using the I2 statistic. FHR-4 and FH levels were natural logarithmically 491 

transformed to ensure normality of the distribution when using linear regression models. We 492 

assessed the association of late AMD with natural logarithmically transformed FHR-4/FH levels 493 

via Wald tests using linear regression models adjusted for sex, age, batch effects and the first two 494 

genetic principal components (as estimated within the IAMDGC study5). We also reported the 495 

association of FHR-4/FH levels with late AMD via OR expressed as per standard deviation (SD) 496 

change of log-levels using logistic regression models adjusted for sex, age, batch effects and the 497 

first two genetic principal components. We assessed the association of the 8 independently AMD-498 

associated variants at the CFH locus reported by the IAMDGC study5 (i.e., rs10922109 [1.1], 499 

rs570618 [1.2], rs121913059 [1.3], rs148553336 [1.4], rs187328863 [1.5], rs61818925 [1.6], 500 

rs35292876 [1.7], rs191281603 [1.8]; Supplementary Data 1) with natural logarithmically 501 
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transformed FHR-4/FH levels via Wald tests on the variant genotypes coded as 0, 1 and 2 502 

according to the number of minor alleles for the directly typed variants or allele dosages for the 503 

imputed variants, using linear regression models adjusted for sex, age, batch effects and the first 504 

two genetic principal components in controls and in all samples further adjusting for AMD status. 505 

The single-SNP association with AMD was assessed with ORs expressed as per 1 minor allele, 506 

using logistic regression models adjusted for the first two genetic principal components. Finally, 507 

we extracted the best-guess (i.e., most likely) haplotypes formed by the AMD-associated variants 508 

at the CFH locus considered in our analysis and additionally included rs6677604 as proxy for the 509 

AMD-protective CFHR1-3 deletion29, using the phased genotype data produced within the 510 

IAMDGC study5. The association of the observed haplotypes with AMD was assessed using 511 

logistic regression models adjusted for the first two genetic principal components, and with FHR-512 

4/FH levels using linear regression models adjusted for AMD status, sex, age, batch effects, and 513 

the first two genetic principal components. The haplotype-based association with AMD was also 514 

performed on the whole IAMDGC primary analysis dataset of 16,144 patients with advanced 515 

AMD and 17,832 control subjects of European ancestry using logistic regression models adjusted 516 

for whole-genome amplification and the first two genetic principal components as per the 517 

IAMDGC study5. All the statistical analyses above were conducted using Stata software, version 518 

13.1 (StataCorp); tobit command was used for censored regression models to take into account 519 

any ‘below of detection’ FHR-4 levels (n=16 data points equal to baseline 0.504116; with virtually 520 

identical results as per regress command for linear regression models), ipdmetan and mvmeta 521 

commands were used for conducting meta-analyses of individual participant data. 522 

We also carried out GWASs of natural logarithmically transformed FHR-4 and FH levels in 523 

controls from each cohort (Cambridge and EUGENDA) using linear regression models adjusted 524 
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for sex, age, batch effects and the first two genetic principal components, and in all samples further 525 

adjusting for AMD status. The GWASs were carried out using EPACTS software 526 

(http://genome.sph.umich.edu/wiki/EPACTS) and Wald tests were performed on the variant 527 

genotypes coded as 0, 1 and 2 according to the number of minor alleles for the directly typed 528 

variants or allele dosages for the imputed variants. Genomic control correction67 was applied if 529 

lambda was greater than 1. Effect size estimates and standard errors of single variants seen in both 530 

cohorts were subsequently combined in a fixed-effect meta-analysis using METAL68. This meta-531 

analysis had a statistical power of over 80% to detect associations of genetic variants with a MAF 532 

≥ 1% explaining ≥ 3.9% of the variance in FHR-4 levels (Genetic Power Calculator: 533 

http://zzz.bwh.harvard.edu/gpc/). Manhattan and Q-Q plots were generated using the qqman R 534 

package (version 0.1.2). Regional plots of association were generated using LocusZoom (version 535 

v0.4.8)69. Finally, linkage disequilibrium measures (R2 and D’) were calculated using LDlink 536 

(https://ldlink.nci.nih.gov/), based on the European (EUR) population genotype data originates 537 

from Phase 3 (Version 5) of the 1000 Genomes Project66. 538 

 539 

http://genome.sph.umich.edu/wiki/EPACTS
http://zzz.bwh.harvard.edu/gpc/
https://ldlink.nci.nih.gov/
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Data availability 540 

The summary statistics for the GWAS meta-analyses of FHR-4 and FH levels are available through 541 

the GWAS Catalog, https://www.ebi.ac.uk/gwas/,  [accession codes will be available before 542 

publication].  543 

The Gene Expression Omnibus datasets used for the gene expression analyses are available at: 544 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE18811, dataset name: GSE18811; 545 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE41102, dataset name: GSE41102; 546 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE50195, dataset name: GSE50195;  547 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE94437, dataset name: GSE94437;  548 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE99248, dataset name: GSE:99248.  549 

The Genotype-Tissue Expression (GTEx) Project datasets used for the gene expression analyses 550 

were obtained from the GTEx Portal,  https://gtexportal.org/home/multiGeneQueryPage 551 

(4/4/2018), dataset dbGaP accession number phs000424.v8.p2; the GTEx Project was supported 552 

by the Common Fund of the Office of the Director of the National Institutes of Health, and by 553 

NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS.  554 

The source data underlying Figs. 1, 2B-I, 3B, 4, 5A, 6A-B and Supplementary Figs. 2A, 5, 6, 7A-555 

D, 8, 10A, 11 are provided as a Source Data file.  556 

All other datasets and reagents generated/used in the current study are available from the 557 

corresponding authors upon reasonable request. 558 

  559 

https://www.ebi.ac.uk/gwas/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE18811
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE41102
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE50195
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE94437
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE99248
https://eur01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgtexportal.org%2Fhome%2FmultiGeneQueryPage&data=02%7C01%7Cv.cipriani%40qmul.ac.uk%7C4a87a664272846f6563b08d715db3b23%7C569df091b01340e386eebd9cb9e25814%7C0%7C0%7C637001903656156690&sdata=LL2DxHqGh9iVZPQq7hfWqUrEXBpPIlJBewshkkwuzeY%3D&reserved=0
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Figure legends 776 

 777 

Figure 1. Systemic FHR-4 levels are elevated in AMD patients. 778 

Panel A shows box plots of FHR-4 levels measured in two separate AMD cohorts: Cambridge 779 

(plasma from 214 controls and 304 late AMD cases) and EUGENDA (serum from 308 controls 780 

and 180 late AMD cases). AMD patients show statistically significant elevated FHR-4 levels 781 

compared to controls. Geometric mean FHR-4 levels were: Cambridge, 5.5µg/ml in controls vs 782 

6.6µg/ml in cases; EUGENDA, 6.0µg/ml in controls vs 7.2µg/ml in cases. These differences 783 

remained significant after adjustment for sex, age and batch effects (P-value=0.017 and P-784 

value=9.6x10-5 for Cambridge and EUGENDA, respectively). Panel B shows box plots of FH 785 

levels measured in the same samples, where no statistically significant difference between cases 786 

and controls was observed: Cambridge, 349.0µg/ml in controls vs 348.6µg/ml in cases; 787 

EUGENDA, 304.7µg/ml in controls vs 308.7µg/ml in cases. Source data are provided as a Source 788 

Data file.  789 

 790 

Figure 2. Accumulation of FHR-4 in the choriocapillaris inhibits C3b breakdown.  791 

Panel A shows a schematic diagram illustrating anatomical structures in the macula including the 792 

retinal pigment epithelium (RPE), the underlying Bruch’s membrane (BrM) and the intercapillary 793 

septa within the choriocapillaris; basement membranes are represented as black lines. Drusen, 794 

hallmark lesions of early AMD, form within BrM underneath the RPE basement membrane. Panels 795 

B-C: immunohistochemistry showing the localisation of FHR-4 (yellow) predominantly in the 796 

intercapillary septa: weak labeling is also seen within BrM. Collagen IV staining is used to 797 

delineate basement membranes which define the inner and outer borders of BrM (red), DAPI 798 
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labeling is in blue. FHR-4 is also localized in drusen (panel D); the RPE is absent from these tissue 799 

sections. Panel E: both FHR-4 and C3/C3b localize in the intercapillary septa of the 800 

choriocapillaris (white arrow): scale bars 20μm. SPR analysis showing the binding of FHR-4 to 801 

immobilized C3b (panel F). Solid phase binding assays demonstrate that FHR-4 can compete off 802 

fluid phase FH or FHL-1 binding to immobilized C3b (panel G). Measurement of FHL-1 mediated 803 

breakdown of C3b by factor I (panel H); in the presence of fixed concentrations of C3b and factor 804 

I, increasing concentrations of FHL-1 result in increased breakdown of the C3b α-chain (see 805 

Supplementary Fig. 4 for full gel image). Panel I: optimal C3b breakdown conditions from panel 806 

H are repeated but now include increased concentrations of fluid-phase FHR-4, where an inhibition 807 

of FHL-1/FI-mediated C3b α-chain breakdown is observed (see Supplementary Fig. 4 for full gel 808 

image). Panel J: FHR-4 prevents FHL-1 acting as a cofactor for factor I, this results in the 809 

formation of a C3 convertase and the activation of the amplification loop of complement and 810 

subsequent inflammation. Source data are provided as a Source Data file.   811 

 812 

Figure 3. Four established AMD risk variants at the CFH locus are strongly associated with 813 

FHR-4 levels. 814 

Schematic diagram of chromosome 1 showing the genes in the CFH locus and the genomic 815 

location of the 8 established AMD risk variants from the large IAMDGC GWAS of AMD5 and 816 

rs6677604, a proxy for the previously reported AMD protective CFHR1-3 deletion29 (panel A). 817 

Variant annotations are in red or blue depending on whether the corresponding minor allele is 818 

AMD deleterious or protective. The rare missense variant rs121913059 (1.3; R1210C) was only 819 

present heterozygously in a case individual from the Cambridge cohort, and therefore was not 820 

included in the genetic association analyses with the FHR-4/FH levels. Panel B shows box plots 821 
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of FHR-4 levels by AMD status and SNP genotype for the four variants that showed significant 822 

associations (after Bonferroni correction) with FHR-4 levels (Table 2), in the Cambridge and 823 

EUGENDA cohorts combined. Source data are provided as a Source Data file. 824 

 825 

Figure 4. GWAS meta-analysis of FHR-4 levels reveals a strong genome-wide significant 826 

signal spanning the CFH locus.  827 

Each panel shows a Manhattan plot, a regional plot (upper left-hand side) and a quantile-quantile 828 

(QQ) plot (upper right-hand side) for the results of the GWAS meta-analysis of FHR-4 levels 829 

(panel A) and FH levels (panel B). Manhattan plots illustrate P-values for each single variant tested 830 

for association with log(levels). Observed -log10(P-values) are plotted against the genomic position 831 

of each variant on chromosomes 1–22 plus the X chromosome. The horizontal red line indicates 832 

the threshold considered for genome-wide significance (P-value ≤ 5 x 10−8). Regional plots show 833 

the only genome-wide association signal observed, i.e., at the CFH locus (on chromosome 1q31.3). 834 

The most associated variant is denoted by a purple circle and is labelled by its rsID. The other 835 

surrounding variants are shown by circles coloured to reflect the extent of LD with the most 836 

associated variant (based on 1000 Genomes data, November 2014). A diagram of the genes within 837 

the relevant regions is depicted below each plot. Physical positions are based on NCBI RefSeq 838 

hg19 human genome reference assembly. QQ plots compare the distribution of the observed test 839 

statistics with its expected distribution under the null hypothesis of no association. A marked 840 

departure from the null hypothesis (red line) is seen in the meta-analysis of FHR4 levels. Genomic 841 

inflation values (λ) were equal to 1.008 and 1.005 from the GWASs of FHR-4 levels and 1.002 842 

and 1.014 from the GWASs of FH levels, in the Cambridge and EUGENDA studies, respectively.843 
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 844 

Figure 5. Haplotype association analysis using established AMD risk variants at the CFH 845 

locus identifies haplotypes strongly associated with both AMD and FHR-4 levels. 846 

Panel A illustrates the association of the observed common 9 haplotypes formed by the 7 AMD-847 

associated CFH locus variants considered in our genetic association analyses and rs6677604 848 

(overall haplotype frequency ≥ 1% in the Cambridge and EUGENDA cohorts combined, 849 

accounting for 98.5% of 2,012 chromosomes) with AMD and with FHR-4/FH levels. Details of 850 

the alleles forming the haplotypes together with the frequency distribution in the two cohorts 851 

combined, and as estimated in the whole IAMDGC dataset5 (16,144 patients with advanced AMD 852 

and 17,832 control subjects of European ancestry), are shown in panel B: haplotype CTTGCCGC 853 

(H1) that carries the AMD increasing-risk allele T of the proxy for Y402H (1.2) is used as reference 854 

(colored in red); alleles that are different from the reference are colored in blue; the direction of 855 

association with AMD for the minor allele of each single variant as estimated in the IAMDGC 856 

study5 is indicated in parentheses. Four association plots are displayed in panel A: the first two 857 

(top) plots show the OR (with CI) estimates for the CFH haplotype association with AMD in the 858 

IAMDGC dataset and our two-cohort meta-analysis, respectively; the third and fourth (bottom) 859 

plots show the Beta (with CI) estimates for the CFH haplotype association with FHR-4 and FH 860 

levels, respectively, in our two-cohort meta-analysis; haplotype H1 is used as reference. The 861 

estimates shown in each plot are labelled further to indicate the presence of alleles that differ from 862 

the referent haplotype; those alleles are indicated with the IAMDGC association signal numbers 863 

of the corresponding variants (1.1, 1.5-1.7), in red to indicate that the allele different from the 864 

reference is AMD risk-increasing, in blue if protective; the Y402H label is blue to indicate the 865 

presence of the protective allele G of variant 1.2, red for the AMD risk-increasing allele T; finally, 866 
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the label DEL indicates the presence of the protective allele A of the proxy for the CFHR1-3 867 

deletion (rs6677604). See Supplementary Data 9 for full details of the haplotype association 868 

estimates. Source data are provided as a Source Data file.  869 

 870 

Figure 6. The two independently AMD-associated variants rs10922109 (1.1) and rs61818925 871 

(1.6) are a minimal set of variants that explain the genetic effect on FHR-4 levels at the CFH 872 

locus in the Cambridge and EUGENDA meta-analysis.  873 

Panel A illustrates the association of the observed 4 haplotypes formed by the 2 independently 874 

AMD-associated variants rs10922109 (1.1) and rs61818925 (1.6) at the CFH locus with AMD and 875 

with FHR-4/FH levels. Variants 1.1 and 1.6 represent the best two single-variant association 876 

signals with FHR-4 levels in the Cambridge and EUGENDA meta-analysis (Table 2). Details of 877 

the alleles forming the haplotypes together with the frequency distribution in the two cohorts 878 

combined (484 patients with advanced AMD and 522 controls) and as estimated in the whole 879 

IAMDGC dataset5 (16,144 patients with advanced AMD and 17,832 control subjects of European 880 

ancestry) are shown in panel C: most common haplotype CG (H1*) is used as reference (colored 881 

in red); alleles that are different from the reference are colored in blue; the direction of association 882 

with AMD for the minor allele of each single variant as estimated in the IAMDGC study5 is 883 

indicated in parentheses. Four association plots are displayed in panel A: the first two (top) plots 884 

show the OR (with CI) estimates for the CFH haplotype association with AMD in the IAMDGC 885 

dataset and our two-cohort meta-analysis, respectively; the third and fourth (bottom) plots show 886 

the Beta (with CI) estimates for the CFH haplotype association with FHR-4 and FH levels, 887 

respectively, in our two-cohort meta-analysis; haplotype H1* is used as reference. The estimates 888 

shown in each plot are labelled further to indicate the presence of alleles that differ from the 889 
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referent haplotype; those alleles are indicated with the IAMDGC association signal numbers of the 890 

corresponding variants (1.1 and 1.6), in blue to indicate that the allele different from the reference 891 

is AMD protective. See Supplementary Data 11 for full details of the rs10922109-rs61818925 892 

haplotype association estimates. Finally, panel B shows box plots of FHR-4 levels (top) and FH 893 

levels (bottom) by rs10922109-rs61818925 haplotype for each study cohort (Cambridge and 894 

EUGENDA). Source data are provided as a Source Data file. 895 
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Table 1. Demographics of study cohorts and association analyses between AMD and 896 

systemic FHR-4/FH levels   897 

 Cambridge EUGENDA  

 Controls Cases Controls Cases  

N 214 304 308 180  

Age, ys (SD) 75.2 (8.0) 74.1 (8.3) 70.0 (6.5) 79.3 (8.6)  

Male (%) 36.5 47.0 42.9 42.2  

AMD phenotype    

CNV only  191  156  

GA only  62  10  

Mixed  51  14  

     
Meta-analysis,  

Beta, 95% CI, Pb 

FHR-4 levels, ug/ml (95% CI)a 

5.5 (4.9-6.2) 6.6 (6.0-7.2) 

6.0 (5.6-6.3) 7.2 (6.6-7.8) 

0.19, 0.11 - 0.27, 7.1 

x 10-6 (0.21, 0.12 – 

0.30, 4.8 x 10-6) 

Single-cohort association,  

Beta, SE, Pb 
0.18, 0.07, 0.016 (0.17, 0.07, 0.018) 0.19, 0.05, 1.7 x 10-4 (0.24, 0.06, 8.4 x 10-5)  

FH levels, ug/ml (95% CI)a 

349.0 (338.9-359.4) 348.6 (340.2-357.2) 

304.7 (297.3-312.2) 308.7 (298.0- 319.8) 

0.01, -0.02 – 0.03, 

0.704 (0.01, -0.02 – 

0.04, 0.466) 

Single-cohort association,  

Beta, SE, Pb 
-0.001, 0.2, 0.959 (0.006, 0.02, 0.752) 0.01, 0.02, 0.535 (0.02, 0.02, 0.433)  

 898 

aFHR-4 and FH levels are expressed as geometric mean values (back-log transformed); bWald 899 

tests using linear regression models; adjusted P-values for sex, age, batch effects and first two 900 

genetic principal components are displayed in parentheses 901 

  902 
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Table 2. Single-variant association analyses with FHR-4 and FH levels for the 8 AMD 903 

independently associated variants at the CFH locus from the IAMDGC study5. 904 

 Cambridge EUGENDA Meta-analysis 

 MAF 

Association 

with  

FHR-4 

levelsa 

Association 

with 

FH levelsa 

MAF 

Association 

with  

FHR-4 

levelsa 

Association 

with 

FH levelsa 

Association 

with  

FHR-4 

levels 

dbSNP ID 

Chr:Positionc 

Major/Minor  

allele 

(Imputation R2)d 

Controls Cases 

Beta  

(SE) 

P 

Beta  

(SE) 

P 

Controls Cases 

Beta  

(SE) 

P 

Beta  

(SE) 

P 

Beta  

(SE) 

P 

rs10922109 

1:196704632 

C/A 

(1.00) 

0.415 0.208 

-0.43 

(0.05) 

5.8 x 10-16 

0.04 

(0.01) 

0.003 

0.437 0.219 

-0.42 

(0.03) 

3.3 x 10-35 

0.02 

(0.02) 

0.318 

-0.42 

(0.03) 

2.2 x 10-56 

rs570618 

1:196657064 

G/T 

(1.00) 

0.367 0.599 

0.20 

(0.05) 

3.8 x 10-5 

-0.004 

(0.01) 

0.783 

0.354 0.572 

0.24 

(0.03) 

3.0 x 10-12 

0.01 

(0.01) 

0.669 

0.23 

(0.03) 

1.6 x 10-16 

rs121913059 

1:196716375 

C/T 

(Genotyped) 

Only 1 case heterozygote carrier No T allele carriers Not meta-analysed 

rs148553336 

1:196613173 

T/C 

(Genotyped) 

0.020 0.002 

0.28 

(0.27) 

0.287 

-0.17 

(0.07) 

0.019 

0.004 

No C 

allele 

carriers 

Not analysed Not analysed Not meta-analysed 

rs187328863 

1:196380158 

C/T 

(0.83) 

0.010 0.047 

0.31 

(0.15) 

0.038 

-0.07 

(0.04) 

0.107 

0.038 0.040 

0.35 

(0.10) 

2.9 x 10-4 

-0.07 

(0.04) 

0.089 

0.34 

(0.08) 

2.8 x 10-5 

rs61818925 
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aWald tests using linear regression models adjusted for AMD status, sex, age, batch effects and 908 

the first two ancestry principal components (as estimated within the IAMDGC study5); 909 

bdirection of association with AMD for the minor allele, as estimated in the IAMDGC study5; 910 

cChromosomal position is given according to the NCBI RefSeq hg19 human genome reference 911 

assembly. Bonferroni correction for multiple testing of 8 variants = 0.00625 (0.05/8). 912 

dImputation quality metric R2 as estimated in the IAMDGC study5. 913 
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Supplementary Methods 

 

Study samples 

 

Cambridge AMD study patients were excluded if they had greater than 6 diopters of myopic 

refractive error or evidence of other inflammatory or retinovascular disease (such as retinal 

vessel occlusion, diabetic retinopathy, or chorioretinitis) that could contribute to the 

development of or confound the diagnosis of maculopathy. All participants described their 

race/ethnicity as white on a recruitment questionnaire and were confirmed to be of European 

descent in the genetic analyses. Participants were examined by an ophthalmologist and 

underwent color stereoscopic fundus photography of the macular region. Images were graded 

at the Reading Centre, Moorfields Eye Hospital, London, using the International Classification 

of Age-related Maculopathy and Macular Degeneration.1  

For the European Genetic Database (EUGENDA) cohort, all the individuals were 

graded by classification of retinal images according to the standard protocol of the Cologne 

Image Reading Center by certified graders.2 Only patients graded as late AMD were included 

in the study. Serum was obtained by a standard coagulation/centrifugation protocol, and within 

1 hour after collection serum samples were stored at –80°C.   
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Supplementary Figure 1. Two-stage, fixed-effects meta-analysis of individual participant 

data from Cambridge and EUGENDA studies shows significant association of FHR-4 

levels and late AMD.  

Panels A and B show forest plots of odds ratios (ORs) (with 95% Confidence Intervals, CIs) 

of late AMD per standard deviation (SD) change in natural logarithmically transformed FHR-

4 (A) and FH (B) levels using logistic regression models adjusted for sex, age, batch effects 

and the first two genetic principal components. The overall OR estimate is obtained from a 

two-stage, fixed-effects meta-analysis of the two study-specific estimates. I2 statistic is used to 

assess heterogeneity across studies.  
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Supplementary Figure 2. CFHR4 gene transcription was not detected in eye tissues. 

rtPCR analysis on cultured primary human RPE cells from 42 individual donors detects 

expression of FH and FHL-1, but not FHR-4 (panel A). Panels B-F show data reanalyzed from 

the NCBI Gene Expression Omnibus public data repository: where B is from an Affymetrix 

Human Exon 1.0 ST microarray9; C, RNAseq (Illumina)10; D, RNAseq (Illumina) HiSeq 

200011; E, Affymetrix Human Exon 1.0 ST microarray12; and F, Affymetrix U133plus2 human 

genome array13. Panel G: RNAseq of 53 human tissue samples from the Genotype-Tissue 

Expression (GTEx) project14 detects CFHR4 expression only in the liver. Error bars in panels 

A-F represent standard deviation. Source data are provided as a Source Data file. 
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Supplementary Figure 3. FHR-4 does not diffuse freely across Bruch’s membrane. 

Enriched Bruch’s membrane from donor eyes were placed inside a modified Ussing chamber, 

where: a, is the enriched BrM; b, are the sampling access points; and c, are magnetic stirrer 

bars to maintain flow around each chamber (panel A). Panel B: samples from either the sample 

chamber or diffusate chamber were run on a 4-12% NuPage gel Bis-Tris gel and compared to 

a pure protein control (FHR-4); the protein in the gel was stained with Instant Blue. The gel 

shows 20μl samples taken and run directly from each chamber, as well as 100μl samples that 

have been concentrated prior to running on the gel. Gel is representative of three independent 

experiments.  
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Supplementary Figure 4. FHL-1 mediated C3b breakdown assay.  

Panel A: protein stained SDS-PAGE gel demonstrating FI cleavage of C3b in the fluid phase 

in the presence of a co-factor (FHL-1) is shown, with pure C3b (2μg), FI (0.04μg), and FHL-1 

(0.5μg) controls included. FI cannot cleave the α-chain of C3b without a co-factor (lane ‘0’), 

but with increasing concentration of FHL-1 the breakdown of the C3b α-chain into iC3b (seen 

as two bands at 68kDa and 43kDa) was observed. Gel is representative of three independent 

experiments. Panel B: a repeat of the C3b breakdown assay as shown previously (panel A) but 

the amount of FHL-1 remains a constant 1μg and increasing amounts of FHR-4B purified 

protein is supplemented into the reaction. The 43kDa iC3b band is masked by the presence of 

FHR-4B. This competition assay gel is representative of three independent experiments.  
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Supplementary Figure 5. Box plots of FHR-4 and FH levels measured in Cambridge and 

EUGENDA samples, by AMD status and genotype of 8 independently associated variants 

at the CFH locus from the IAMDGC study.4 

 

Note: the CFH variant rs121913059 (R1210C,15 IAMDGC association signal number 1.3) was 

present heterozygously only in a single case from the Cambridge cohort and no corresponding 

box plot of FHR-4/FH levels is shown. 

Source data are provided as a Source Data file.  

 

 

 

(continued on the next page) 
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(continued on the next page) 



   
 

54 
 

 

(continued on the next page) 



   
 

55 
 

 

 



   
 

56 
 

 

Supplementary Figure 6. GWAS meta-analysis of FHR-4 levels in controls reveals a 

strong genome-wide significant signal spanning the CFH locus.  

Each panel shows a Manhattan plot, a regional plot (upper left-hand side) and a quantile-

quantile (QQ) plot (upper right-hand side) for the results of the GWAS meta-analysis of FHR-

4 levels (Panel A) and FH levels (Panel B). Manhattan plots illustrate P-values for each single 

variant tested for association with log(levels). Observed -log10(P-values) are plotted against the 
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genomic position of each variant on chromosomes 1–22 plus the X chromosome. The 

horizontal red line indicates the threshold considered for genome-wide significance (P-value ≤ 

5 x 10−8). Regional plots show the only genome-wide association signal observed, i.e., at the 

CFH locus (on chromosome 1q31.3). The most associated variant is denoted by a purple circle 

and is labelled by its rsID. The other surrounding variants are shown by circles coloured to 

reflect the extent of LD with the most associated variant (based on 1000 Genomes data, 

November 2014). A diagram of the genes within the relevant regions is depicted below each 

plot. Physical positions are based on NCBI RefSeq hg19 human genome reference assembly. 

QQ plots compare the distribution of the observed test statistics with its expected distribution 

under the null hypothesis of no association. A marked departure from the null hypothesis (red 

line) is seen in the meta-analysis of FHR-4 levels (corresponding to the CFH locus). Genomic 

inflation values (λ) were equal to 1.005 and 0.998 from the GWASs of FHR-4 levels and 0.998 

and 0.999 from the GWASs of FH levels, in the Cambridge and EUGENDA studies, 

respectively.  
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Supplementary Figure 7. Association analyses of the common diplotypes (haplotype pairs, with overall frequency ≥ 1%) formed by the 7 



   
 

59 
 

AMD independently associated variants at the CFH locus considered in our study and rs6677604 (proxy for the previously reported AMD 

protective CFHR1-3 deletion5) with AMD, FHR-4 and FH levels. 

Panels A and B show the OR (with 95% CI) estimates for the CFH diplotype (haplotype-pair) association with AMD in the IAMDGC dataset and 

the Cambridge and EUGENDA meta-analysis, respectively; panels C and D show the Beta (with 95% CI) estimates for the CFH diplotype 

(haplotype-pair) association with FHR-4 and FH levels, respectively, in the Cambridge and EUGENDA meta-analysis; the haplotype-pair H1:H1 

is used as reference. Numerical details together with haplotype-pair frequencies and P-values are given in Supplementary Data 10. The estimates 

shown in each plot are labelled further according to the presence of the alleles that make each haplotype different from the reference H1, that is 

indicated with the corresponding IAMDGC association signal numbers (1.1, 1.5-1.7), in red if the allele different from the reference is AMD risk-

increasing, in blue if protective; the Y402H label is blue to indicate the presence of the protective allele G of variant 1.2 (rs570618, proxy of 

Y402H), red for the AMD risk-increasing allele T; finally, the label DEL indicates the presence of the protective allele A of the proxy for the 

CFHR1-3 deletion (rs6677604). Source data are provided as a Source Data file.  
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Supplementary Figure 8. FHR-4 and FH levels are dictated by a different genetic 

architecture. 

Regional plots show results from two-cohort (Cambridge and EUGENDA) GWAS meta-

analysis of FHR-4 and FH levels only for those variants that showed genome-wide significant 

(P-value ≤ 5 x 10-8) associations with levels of FHR-4 (Panel A) and FH (Panel B). The most 

associated variant (rs7535263 and rs74696321 for levels of FHR-4 and FH, respectively) is 

denoted by a purple circle and is labelled by its rsID. The other surrounding variants (811 and 

28 for Panel A and B, respectively) are shown by circles coloured to reflect the extent of D 

with the most associated variant (based on 1000 Genomes data, November 2014). A diagram 

of the genes within the relevant regions is depicted below each plot. Physical positions are 

based on NCBI RefSeq hg19 human genome reference assembly. 

 

FH levels 

FHR-4 levels FH levels 

FHR-4 levels A 
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HHHHHHGSSENLYFQGSSGQEVKPCDFPEIQHGGLYYKSLRRLYFPAAAGQSYSYYCDQNF

VTPSGSYWDYIHCTQDGWSPTVPCLRTCSKSDIEIENGFISESSSIYILNKEIQYKCKPGYATAD

GNSSGSITCLQNGWSAQPICIKFCDMPVFENSRAKSNGMRFKLHDTLDYECYDGYEISYGNT

TGSIVCGEDGWSHFPTCYNSSEKCGPPPPISNGDTTSFLLKVYVPQSRVEYQCQSYYELQGSN

YVTCSNGEWSEPPRCIHPCIITEENMNKNNIQLKGKSDIKYYAKTGDTIEFMCKLGYNANTSV

LSFQAVCREGIVEYPRCE 

 

Supplementary Figure 9. Sequence of FHR-4 recombinant protein.  

Recombinant FHR-4 gene synthesis was carried out by GenScript using their gene synthesis 

and protein expression service and is based on the published sequence for the FHR-4B variant 

of the CFHR4 gene (UniProt identifier Q92496-3). The original recombinant protein included 

an N-terminal 6xHis tag (*) followed by, a linker region (**), and a TEV protease cleavage 

site (***). Removal of the N-terminal His tag results in two non-authentic N-terminal residues 

(****).  

 

* ** *** **** 
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Supplementary Figure 10. Specificity of anti-FHR-4 antibody.  

Panel A: the tissue staining specificity of anti-FHR-4 used in our IHC experiments (clone 150) 

was tested, where the normal 10μg/ml Ab mix used throughout the study was pre-incubated 

with pure recombinant FHR-4 at a final concentration of 100μg/ml (i.e. 10-fold excess). 

Staining from the pre-absorption experiments was strikingly similar to the blank controls, 

where no primary antibody is included. This was repeated with pure FHL-1 protein to 

demonstrate no cross-reactivity with the antibody existed. The specificity of FHL-1 staining 

itself with an in-house anti-FHL-1 antibody was also tested, as originally published 

previously.16 Panel B: Western blots of non-reduced whole human serum showing three 

separate clones of anti-FHR-4 antibody with strong reactivity for a band corresponding to FHR-

4A, and a faint band corresponding to FHR-4B: the larger FHR-4A has been reported to be the 

predominant form of FHR-4 in blood.17 The lanes designated ‘FH’ had pure factor H protein 
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loaded to investigate any potential cross-reactivity with the anti-FHR-4 Abs and the full length 

protein. Source data are provided as a Source Data file. 
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Supplementary Figure 11. Competition ELISA demonstrating specificity of anti-FHR4 

antibody clone 150 for FHR-4 over FH. 

Immobilised FHR-4 protein was detected by the addition of a saturating dose of the anti-FHR-

4 monoclonal antibody used in IHC experiments and ELISA (clone 150). Serial dilutions of 

either FH (black line) or FHR-4 (blue line) were added in solution together with the anti-FHR-

4 antibody. Bound anti-FHR-4 was detected by the addition of anti-mouse IgG HRP-

conjugated secondary antibody. Bound secondary antibody detected by addition of OPD 

substrate and measurement of absorbance at OD492nm. For each data point n=3 and error bars 

shown are standard error of the mean of the triplicates. Source data are provided as a Source 

Data file. 
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List of the IAMDGC members  
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