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Abstract: We associate to each Temperley–Lieb–Jones C*-tensor category TLJ (δ)

with parameter δ in the discrete range {2 cos(π/(k + 2)) : k = 1, 2, . . .} ∪ {2} a certain
C*-algebraB of compact operators. We use the unitary braiding on TLJ (δ) to equip the
category ModB of (right) Hilbert B-modules with the structure of a braided C*-tensor
category. We show that TLJ (δ) is equivalent, as a braided C*-tensor category, to the
full subcategory Mod f

B of ModB whose objects are those modules which admit a finite
orthonormal basis. Finally, we indicate how these considerations generalize to arbitrary
finitely generated rigid braided C*-tensor categories.

1. Introduction

In the present paper, the authors recast the Temperley–Lieb–Jones C*-tensor category
TLJ (δ)with parameter δ in Jones’ discrete range {2 cos(π/(k+2)) : k = 1, 2, . . .}∪{2}
(cf. [30]) as aC*-tensor category of (right)Hilbert C*-modules, drawing inspiration from
the work of Erlijman–Wenzl [11], Hartglass–Penneys [25] and Yuan [57], among others.

1.1. Background. Temperley–Lieb algebras first appeared in the work of Temperley
and Lieb [50] on Potts and ice-type models in statistical mechanics, in which they were
defined in terms of generators and relations. These relations reappeared in the work
of Jones [30], in which (quotients of) Temperley–Lieb algebras manifested as subal-
gebras of higher relative commutants of (von Neumann) subfactors (see also [22]).
A description of the Temperley–Lieb algebras in terms of what are now known as
Temperley–Lieb diagrams first appeared in the work of Kauffman [36] (see also [34]),
who was studying a knot invariant introduced by Jones [31]. Later, it was realized
that a diagrammatic description could be given for tensor categories (cf. e.g. [51]) and
standard invariants of subfactors (cf. Jones’ introduction of subfactor planar algebras
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[32] based on the work of Popa [43]). In particular, diagrammatic Temperley–Lieb–
Jones C*-tensor categories were considered (cf. e.g. [9,13,56]), which can be viewed
as arising from the Temperley–Lieb–Jones factor planar algebras (cf. [32]; see also
[7,39]). When the parameter δ is confined to {2 cos(π/(k + 2)) : k = 1, 2, . . .},
the associated Temperley–Lieb–Jones C*-tensor categories TLJ (δ) are known to
describe (up to equivalence) categories that have appeared in various contexts, includ-
ing

• representations of affine Lie algebras and vertex operator algebras arising from
SU(2) Wess–Zumino–Witten models at finite levels k = 1, 2, . . . in 2D conformal
field theory (cf. e.g. [28] and the references therein);

• representations of the loop group LSU(2) at finite levels k = 1, 2, . . . (cf. [46,
52]);

• representations of quantum SU(2) at certain roots of unity (cf. [54]).

We refer the reader to [26] for an overview and further references. It should also be men-
tioned that TLJ (δ) can be recovered as the C*-tensor category of M-bimodules arising
from certain subfactors (N ⊂ M) (cf. [55]; see also Remark 8.2 in [44]). A special fea-
ture of theC*-tensor categoriesTLJ (δ)with δ ∈ {2 cos(π/(k+2)) : k = 1, 2, . . .}∪{2}
is the presence of a unitary braiding (cf. e.g. [39]), which we will use extensively in the
present paper.

1.2. Motivation. Ultimately, our goal of describing TLJ (δ) in terms of Hilbert C*-
modules is motivated by a connection with K -theory (cf. e.g. [6,27,49]), namely
the theorem of Freed, Hopkins and Teleman (cf. [15–17]) describing the fusion
ring of the category of level k representations of the loop group LSU(2) in terms
of twisted equivariant K -theory. Related to this, we observed in [1] that the K0-
group of certain approximately finite-dimensional (AF) C*-algebras has a ring struc-
ture that is closely related to the fusion ring of TLJ (δ). For example, the K0-
group of the inductive limit TLJ∞(δ) = limn TLJn(δ) of Temperley–Lieb–Jones C*-
algebras, whose Bratteli diagram is given in [30], is a localization of the fusion ring
of TLJ (δ). The present paper is a result of our efforts to lift such a ring struc-
ture in K0-theory to a tensor product structure on an underlying category of mod-
ules. We found it natural to use the framework of Hilbert C*-modules, which gener-
alize both Hilbert spaces and vector bundles and find uses in diverse areas of math-
ematics, including K -theory, Kasparov’s KK -theory, and quantum groups (cf. e.g.
[6,37]).

1.3. Related work. Given a (small) rigid C*-tensor category C, Yuan in [57] con-
structed a unital C*-algebra A and a fully faithful monoidal *-functor from C into
the category AModA of finite type Hilbert C*-bimodules over A, the tensor product in
AModA being given by interior tensor product. A variant of Yuan’s construction yields
a fully faithful monoidal *-functor from TLJ (δ) into AModA, where A is the uni-
tal AF-algebra whose Bratteli diagram arises from the fusion graph of f (0) ⊕ f (1)

(in the notation of Sect. 2.4.3). For example, when δ = 2 cos(π/5), this diagram
is
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In the present paper, we make use of Yuan’s formalism in defining certain Hilbert spaces
and bounded operators. In turn, Yuan was influenced by earlier realizations of C*-tensor
categories in terms of bimodules over von Neumann algebras (for which we refer to the
citations in [57]).

On the other hand, based on the work of Guionnet, Jones and Shlyakhtenko [24],
Hartglass and Penneys in [25] associated a C*-algebra B along with a Hilbert C*-
bimoduleX over B to an arbitrary factor planar algebraP•. They then fed this bimodule
into a construction due to Pimsner (cf. [42]) in order to associate Cuntz and Toeplitz type
algebras to planar algebras. When P• is the Temperley–Lieb–Jones planar algebra with
parameter δ, K0(B) is isomorphic to the fusion ring of TLJ (δ). This led us to consider
modules over a variant of the C*-algebra B.

It should also be mentioned that the tensor product that is defined in the present paper
is related to a tensor product of modules over Temperley–Lieb algebras with varying
numbers of strands that was introduced in [47,48] and studied further in [19], [3,18].
Moreover, the definition of the modified version of the C*-algebra B of Hartglass and
Penneys that we use is influenced by the notion of dilute Temperley–Lieb algebras,
which originated in [5,23].

1.4. Structure of the paper. Section 1 is this introduction. In Sect. 2, we cover well-
known preliminary material on Hilbert space operators, Hilbert C*-modules, C*-tensor
categories and the Temperley–Lieb–Jones C*-tensor categories TLJ (δ) with

δ ∈ {2 cos(π/(k + 2)) : k = 1, 2, . . .} ∪ {2}.
Our contribution starts in Sect. 3. Using the formalism of Yuan and the notion of

dilute Temperley–Lieb diagrams (as presented in [5]), we construct a variant of the C*-
algebra B of Hartglass and Penneys (Sect. 3.1). Next, we explain a way to associate
operators in B and its strong closure to certain infinite diagrams (Sect. 3.2). Using an
idea of Erlijman and Wenzl (cf. [11]), we then harness the unitary braiding on TLJ (δ)

to define a *-homomorphism � : B ⊗ B → B by superposition of diagrams (Sect. 3.3)
and observe that the product on K0(B) induced by� recaptures the product in the fusion
ring of TLJ (δ) (Remark 3.4).

In Sect. 4, we first use � as well as interior and exterior tensor products of Hilbert
C*-modules to define a tensor product of Hilbert B-modules (Sect. 4.1). We next use
this tensor product to equip the category ModB of Hilbert B-modules with the structure
of a C*-tensor category (Sect. 4.2) and supply it with a unitary braiding (Sect. 4.3).

In Sect. 5, we first define a *-functor F from TLJ (δ) into ModB and show that it
is monoidal and braided (Sect. 5.1). In Sect. 5.2, we then use F to prove Theorem 5.3,
which states that TLJ (δ) is equivalent, as a braided C*-tensor category, to the full



A. N. Aaserud, D. E. Evans

subcategory Mod f
B of ModB whose objects are those modules which admit a finite

orthonormal basis (and which is introduced in Sect. 4.4). Thereafter, we note that the
tensor category ModB “categorifies” the ring K0(B) (Remark 5.5) and indicate how
one can prove a version of Theorem 5.3 for arbitrary finitely generated rigid braided
C*-tensor categories (Remark 5.6).

Finally, in Sect. 6, we pose some questions concerning representability of C*-tensor
categories on Hilbert C*-modules and realizability of the representation category of the
Virasoro algebra.

2. Preliminaries

2.1. Operators on Hilbert space. In this paper, we consider operators on a complex
Hilbert space H . We denote by B(H) the space of all bounded linear operators on H ,
which comes equipped with a plethora of topologies. In this paper, we will restrict
attention to the norm topology, which is induced by the operator norm, and the strong
operator topology, which is the topology of pointwise convergence in the norm on H ,
that is, an → a strongly if and only if ‖an(ξ) − a(ξ)‖ → 0 for all ξ ∈ H . We will need
the following standard fact.

Fact 2.1. Let (an)∞n=0 be a bounded sequence in B(H) such that ana∗
m = a∗

nam = 0
whenever n �= m. Then

∑
n≥0 an and

∑
n≥0 a

∗
n converge strongly in B(H).

The normed spaceB(H) is a C*-algebra. It contains theC*-subalgebraK(H) of com-
pact operators, which is the smallest C*-subalgebra of B(H) that contains all operators
of finite rank. The following standard fact will be useful to us.

Fact 2.2. Let (an)∞n=0 be a sequence in B(H) that converges strongly to some operator
a. For any compact operator x ∈ K(H), we have that ‖anx − ax‖ → 0.

2.2. Hilbert C*-modules. A (right) Hilbert C*-module over a C*-algebra B is a (right)
B-module M equipped with a B-valued inner product 〈·, ·〉 : M × M → B such that
ξ �→ ‖〈ξ, ξ 〉‖1/2 is a complete norm. The general theory of such modules is laid out
very carefully in [37], to which we refer for precise definitions and all the information
that the reader will need.

Let us comment on the notation and terminology used in the present paper. We use
the symbol � for the exterior tensor product of Hilbert C*-modules (so that if M is a
Hilbert A-module and N is a Hilbert B-module thenM�N is a Hilbert (A⊗B)-module)
and the symbol ⊗φ for the interior tensor product with respect to a *-homomorphism φ.
By an orthonormal basis for a Hilbert B-module M , we shall mean a (possibly infinite)
family (ξ j ) j∈J of elements in M such that

(i) 〈ξi , ξ j 〉 = 0 whenever i �= j ;
(ii) 〈ξ j , ξ j 〉 is a projection in B for all j ∈ J ;
(iii) the Fourier expansion η = ∑

j∈J ξ j 〈ξ j , η〉 is valid for all η ∈ M .

2.3. C*-tensor categories. Below, we recall the notions of C*-tensor categories,
semisimplicity, unitary braidings and monoidal *-functors. We refer to [10,11,20,38]
and [40] for more information.
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2.3.1. Definition of a C*-tensor category A category C is called a C*-tensor category if
the following conditions are satisfied (where π , ρ and ν denote arbitrary objects in C):
(1) Each morphism set Hom(π, ρ) is a complex Banach space. Moreover, composition

is bilinear and ‖ f g‖ ≤ ‖ f ‖‖g‖ for any pair ( f, g) of composable morphisms.
(2) There is an antilinear contravariant functor * : C → C such that π∗ = π for all

objects π , f ∗∗ = f for all morphisms f , and the C*-identity ‖ f ∗ f ‖ = ‖ f ‖2
holds for all morphisms f . In particular, each endomorphism space End(π) :=
Hom(π, π) is a unital C*-algebra.

(3) For any f ∈ Hom(π, ρ), the morphism f ∗ f is a positive element of End(π).
(4) There is a bilinear bifunctor ⊗: C × C → C and natural unitary isomorphisms

απ,ρ,ν : (π ⊗ρ)⊗ν → π ⊗ (ρ ⊗ν) (called associators or associativity constraints)
satisfying the pentagon identity (see Definition 2.1.1(iii) of [40] or Eq. (4.2) below).
[By definition, a (unitary) isomorphism in C is a morphism u such that u∗u = id
and uu∗ = id.]

(5) There is a distinguished object 1 in C (called the tensor unit) and natural unitary
isomorphisms ��

π : 1 ⊗ π → π and �r
π : π ⊗ 1 → π (called left and right

unit constraints) satisfying the triangle identity (see Definition 2.1.1(iv) of [40] or
Eq. (4.4) below).

(6) ( f ⊗ g)∗ = f ∗ ⊗ g∗ for all morphisms f and g.
(7) The category C has subobjects and finite direct sums (see Definition 2.1.1(vi), (vii)

of [40]).
(8) The tensor unit is simple. [An object π in C is said to be simple if End(π) = Cidπ .]

A C*-tensor category is said to be strict if the associators and unit constraints are
identity morphisms.

2.3.2. Semisimplicity Briefly speaking, a C*-tensor category C is said to be semisimple
if every object in C is isomorphic to a finite direct sum of simple objects.We next explain
what this means in detail. Pick a set S of mutually non-isomorphic simple objects such
that every simple object in C is isomorphic to some s ∈ S. Given an object ρ in C,
there exist non-negative integers Ns (with Ns = 0 for all but finitely many s) such that
ρ ∼= ⊕

s∈S s⊕Ns
, where s⊕Ns

denotes a direct sum of Ns copies of s. This means that,
for each s with Ns > 0, there exist Ns morphisms vs,1, . . . , vs,Ns ∈ Hom(s, ρ) such
that v∗

s, jvs, j = ids for all j and idρ = ∑
s∈S

∑Ns

j=1 vs, jv
∗
s, j . In fact, vs,1, . . . , vs,Ns

form an orthonormal basis for Hom(s, ρ) equipped with the inner product 〈·, ·〉 given by
〈ξ, η〉 ids = ξ∗η for ξ, η ∈ Hom(s, ρ). The number Ns is called the multiplicity of s in
ρ and is sometimes denoted by (s, ρ). We write s ≺ ρ if (s, ρ) > 0. Since we mention
it in a few places, we also recall that the fusion ring Z[S] of C is the free abelian group
generated by S and equipped with the product s · t = ∑

r∈S(r, s ⊗ t)r .

2.3.3. Unitary braidings A unitary braiding σ on a C*-tensor category C is an assign-
ment of a unitary isomorphism σπ,ρ : π ⊗ ρ → ρ ⊗ π to every pair (π, ρ) of objects
in C, natural in π and ρ, satisfying the hexagon identities (see [35] or Eqs. (4.6) and
(4.7) below). As in [11], we call a C*-tensor category with a choice of unitary braiding
a braided C*-tensor category.

2.3.4. Monoidal functors A functor F : C → D between C*-tensor categories C and D
is called a *-functor if F is linear and satisfies F( f ∗) = F( f )∗ for all morphisms f . It is
said to be monoidal (or to be a tensor functor) if there are natural unitary isomorphisms
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Jπ,ρ : F(π) ⊗ F(ρ) → F(π ⊗ ρ) that are compatible with the associators and unit
constraints (see Definition 2.1.3 of [40] or Eqs. (5.1)–(5.3) below). If F is a monoidal
*-functor and C andD are both braided then we say that F is braided if the isomorphisms
J are compatible with the braiding (see Eq. (5.4) below).

2.4. The Temperley–Lieb–Jones categories. In this section, we recall the notion of
Temperley–Lieb diagrams and of certain vector spaces, algebras and categories that
one can associate to them.

2.4.1. Temperley–Lieb–Jones algebras We recall first the notion of an (m, n)-
Temperley–Lieb diagram (for m, n ≥ 0 of equal parity), which first appeared in [36].
Such a diagram consists of (m+n)/2 non-crossing smooth strands inside a rectangle with
m nodes (or marked points) on the left side and n nodes on the right side, each node being
connected to a unique strand. (Some examples are shown in the next figure.)Given δ ∈ C,
denote by TL0

m,n(δ) the formal complex linear span of all isotopy classes of (m, n)-
Temperley–Lieb diagrams and define a product TL0

m,n(δ) × TL0
n,k(δ) → TL0

m,k(δ)

as follows. In order to multiply an (m, n)-Temperley–Lieb diagram by an (n, k)-
Temperley–Lieb diagram, start by juxtaposing them, matching up the nodes to form
a new diagram. Next, remove each closed loop at the cost of multiplying by the scalar
δ. The following figure gives an example of the product of a (2, 4)-Temperley–Lieb
diagram and a (4, 0)-Temperley–Lieb diagram.

In particular, TL0
n,n(δ) is an associative algebra, which is known as the n’th Temperley–

Lieb algebra. One can define a linear trace TrTLn on TL0
n,n(δ) as follows. If D is an

(n, n)-Temperley–Lieb diagram then TrTLn (D) is defined by a picture such as the one
below (in which n = 3), which is turned into a scalar by removing closed loops as
explained above. (This trace is usually called a Markov trace.)

D
Moreover, one can define an antilinear *-operation TL0

m,n(δ) → TL0
n,m(δ) by reflect-

ing diagrams about a vertical axis.
Jones famously proved (cf. [30]) that the linear trace TrTLn is positive for all n if

and only if δ ∈ {2 cos(π/(k + 2)) : k = 1, 2, . . .} ∪ [2,∞). Given δ in this range,
put TLJm,n(δ) = TL0

m,n(δ)/{x ∈ TL0
m,n(δ) : Trn(x∗x) = 0}. Then the product above

descends to a product TLJm,n(δ) × TLJn,k(δ) → TLJm,k(δ), the above *-operation
descends to a *-operation TLJm,n(δ) → TLJn,m(δ), and the trace TrTLn descends to a
positive faithful trace on TLJn,n(δ). Thus, TLJn(δ) := TLJn,n(δ) is a finite-dimensional
C*-algebra, which is known as the n’th Temperley–Lieb–Jones C*-algebra.
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2.4.2. Temperley–Lieb–Jones C*-tensor categories Let δ ∈ {2 cos(π/(k + 2)) : k =
1, 2, . . .} ∪ [2,∞) be given. The Temperley–Lieb–Jones (or reduced Temperley–Lieb)
C*-tensor category TLJ (δ) with parameter δ is defined as follows. Its objects are all
formal finite sums P1 ⊕ · · · ⊕ Pk , where Pj is a projection in the C*-algebra TLJn j (δ)

for each j . Given projections P ∈ TLJn(δ) and Q ∈ TLJm(δ), the morphism set
Hom(P, Q) is QTLJm,n(δ)P . More generally, given objects ⊕k

j=1Pj and ⊕r
i=1Qi , the

morphism setHom(⊕k
j=1Pj ,⊕r

i=1Qi ) consists of all r×k-matriceswhose (i, j)’th entry
is in Hom(Pj , Qi ). Composition of morphisms is given bymultiplication of Temperley–
Lieb diagrams combined with matrix multiplication. The tensor product in TLJ (δ) is
defined as follows. Given projections P ∈ TLJn(δ) and Q ∈ TLJm(δ), the tensor product
P ⊗ Q is formed by stacking P on top of Q (or rather by the bilinear extension of this
procedure applied to pairs of diagrams) to obtain a projection in TLJn+m(δ). The tensor
product of two objects ⊕k

i=1Pi and ⊕r
j=1Q j is simply ⊕(i, j)(Pi ⊗ Q j ). The tensor

product of morphisms is given by vertical stacking combined with tensor multiplication
of matrices, i.e., (ai j )i, j ⊗ (bkl)k,l = (ai j ⊗ bkl)(i,k),( j,l). One can show that TLJ (δ) is
a strict C*-tensor category, whose tensor unit is the empty Temperley–Lieb diagram.

2.4.3. Jones–Wenzl projections For any δ ∈ {2 cos(π/(k+2)) : k = 1, 2, . . .}∪[2,∞),
the C*-tensor category TLJ (δ) is semisimple. Up to unitary isomorphism, the simple
objects are the so-called Jones–Wenzl projections (cf. [53]). If δ ≥ 2 then the Jones–
Wenzl projections form an infinite sequence ( f (n))∞n=0 with f (n) ∈ TLJn(δ) for all n,
where f (0) is the empty diagram and f (1) is a single strand. The remaining Jones–Wenzl
projections are defined via Wenzl’s recursive formula (see e.g. equation (2.1) in [39], in
which δ is equal to q+q−1 in their notation). It is a fact that f (1)⊗ f (n) ∼= f (n−1)⊕ f (n+1)

in TLJ (δ) for all n ≥ 1. If δ = 2 cos(π/(k + 2)) with k ≥ 1 then the Jones–Wenzl
projections form a finite sequence f (0), f (1), . . . , f (k), defined recursively as above.
In this case, f (1) ⊗ f (n) ∼= f (n−1) ⊕ f (n+1) in TLJ (δ) for 1 ≤ n ≤ k − 1 while
f (1) ⊗ f (k) ∼= f (k−1).

In either case, the category TLJ (δ) is generated by the object π = f (1) in the sense
that every simple object occurs as a direct summand of some tensor power π⊗n of π .
Note in this connection that Hom(π⊗n, π⊗m) = TLJm,n(δ) for all n,m ≥ 0.

2.4.4. The unitary braiding If δ ∈ {2 cos(π/(k+2)) : k = 1, 2, . . .}∪{2} then TLJ (δ)

is a braided C*-tensor category. Specifically, one defines a unitary braiding σTL as
follows. Consider the unitary Kauffman element

σTL
π,π = z−1 + z

of TLJ2(δ), where z = ieπ i/[2(k+2)] if δ = 2 cos(π/(k + 2)) while z = i if δ = 2. We
will use the following conventional graphical representation of the Kauffman element
as a crossing.

σTL
π,π = (

σTL
π,π

)−1 =

Using it, one can define a unitary element σTL
π⊗n ,π⊗m of End(π⊗(n+m)) = TLJn+m(δ) by

a braid diagram like the one below (which corresponds to the case n = 2 and m = 3).
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Given projections P ∈ End(π⊗n) = TLJn(δ) and Q ∈ End(π⊗m) = TLJm(δ), one
defines a unitary isomorphism σTL

P,Q in Hom(P ⊗ Q, Q ⊗ P) by σTL
P,Q = σTL

π⊗n ,π⊗m ◦
(P ⊗ Q). To see that σTL

P,Q is indeed an element of Hom(P ⊗ Q, Q ⊗ P) = (Q ⊗
P)TLJn+m(δ)(P ⊗Q), one uses the isotopy invariance of the Temperley–Lieb diagrams
along with the following two identities, which follow easily from the definition of the
crossing.

= =

Finally, the unitary braiding σTL is given by the unitary isomorphisms σTL⊕i Pi ,⊕ j Q j
in

Hom
(
(⊕i Pi ) ⊗ (⊕ j Q j ), (⊕ j Q j ) ⊗ (⊕i Pi )

)
defined as direct sums of the σTL

Pi ,Q j
.

3. On a C*-Algebra B and a *-Homomorphism B ⊗ B → B
In this section, we define a Hilbert space H , a C*-algebra B ⊂ B(H) and a
*-homomorphism � : B ⊗ B → B, drawing inspiration from [5,25,57] and [11]. Our
starting point is the braidedC*-tensor categoryC = TLJ (δ)with δ ∈ {2 cos(π/(k+2)) :
k = 1, 2, . . .} ∪ {2}, its tensor unit 1, the generating object π , and a set S of simple
objects in C chosen as in Sect. 2.3.2. Put G = {1, π} and denote by G∞ the set of infinite
sequences �μ = (μ1, μ2, . . .) of elements in G for which there exists n = n �μ ≥ 0 such
that μk = 1 for k > n. Given such a sequence �μ, we put o( �μ) = μ1 ⊗ μ2 ⊗ · · · . As C
is a strict C*-tensor category, this infinite tensor product makes sense.

3.1. Definition of B. For each s ∈ S and �μ ∈ G∞, the morphism space Hom(s, o( �μ))

is equipped with the inner product 〈·, ·〉 given by 〈ξ, η〉 ids = ξ∗η. We denote by Hs the
orthogonal direct sum of the Hilbert spaces Hom(s, o( �μ)) as �μ varies through G∞. In
symbols,

Hs =
⊕

�μ∈G∞
Hom(s, o( �μ)).

Next, we put

H =
⊕

s∈S
Hs .

Given �x, �y ∈ G∞ and a ∈ Hom(o(�y), o(�x)), define a linear operator L �x,�y(a) : H → H
by the formula

L �x,�y(a)ξ = δ�y, �μ(a ◦ ξ) ∈ Hom(s, o(�x))
for ξ ∈ Hom(s, o( �μ)). It is a bounded operator whose adjoint operator is

(
L �x,�y(a)

)∗ = L �y,�x (a∗).
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Moreover,

L �x,�y(a) ◦ L �v, �w(b) = δ�y,�vL �x, �w(a ◦ b).

In particular, p�x := L �x,�x (ido(�x)) is a projection in B(H) for each �x ∈ G∞. Clearly,
idH = ∑

�x∈G∞ p�x .

Lemma 3.1. We have that ‖L �x,�y(a)‖ = ‖a‖ for all a ∈ Hom(o(�y), o(�x)).
Proof. Consider the *-homomorphism φ : End(o(�y)) → B(H) given by φ(a) =
L �y,�y(a). The semisimplicity of C implies that φ is injective. Since every injective *-
homomorphism between C*-algebras is isometric, it follows that

‖L �x,�y(a)‖2 = ‖L �x,�y(a)∗L �x,�y(a)‖ = ‖L �y,�y(a∗a)‖ = ‖φ(a∗a)‖ = ‖a∗a‖ = ‖a‖2

for all a ∈ Hom(o(�y), o(�x)). ��
For each n ≥ 0, denote by Bn the finite-dimensional C*-algebra spanned by the

operators of the form L �x,�y(a), where xk = yk = 1 for all k > n. Each Bn admits
a positive faithful trace Trn defined by Trn(L �x,�y(a)) = δ�x,�yTrTLk (a), where k is the
number of entries in �x that equal π . Moreover, Bn ⊆ Bn+1 for all n. Denote by B the
smallest C*-subalgebra of B(H) that contains every Bn , i.e.,

B =
⋃

n≥0

Bn .

The following result describes the structure of B.

Lemma 3.2. We have that

B ∼=
⊕

s∈S
K(Hs).

Proof. Note first that B ⊂ K(H). Indeed, each operator L �x,�y(a) is compact because
it can be written as L �x,�y(a)P , where P is the orthogonal projection onto the finite-
dimensional subspace

⊕
s≺o(�y) Hom(s, o(�y)). Conversely, if ξ is a unit vector in

Hom(s, o(�y)) and η is a unit vector in Hom(s, o(�x)) then B contains the rank one
operator L �x,�y(ηξ∗) ∈ K(Hs), which maps ξ onto η. Thus, for each s ∈ S, B contains a
complete set of matrix units for K(Hs). The result follows. ��

The next lemma will be used to define certain morphisms between tensor products
of B-modules.

Lemma 3.3. Assume that
∑

n≥0 vn and
∑

n≥0 v∗
n converge strongly in B(H), where

vn ∈ B for all n. Put v = ∑
n≥0 vn. Then vb ∈ B and bv ∈ B for all b ∈ B.

Proof. Note that v∗ = ∑
n≥0 v∗

n , where the sum converges in the strong operator topol-
ogy. Let b ∈ B be given. By Fact 2.2,

∑
n≥0 vnb converges to vb in norm because

b ∈ K(H). Similarly,
∑

n≥0 v∗
nb

∗ converges to v∗b∗ in norm. SinceB is a C*-subalgebra
of B(H), the lemma follows. ��
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3.2. Diagrammatic operators. In effect, the above construction allows us to associate
operators to certain kinds of diagrams. These diagrams all consist of strands inside
a rectangle with an infinite sequence of nodes, some empty and some non-empty (or
filled-in), attached to each of its (left and right) sides such that every strand connects
two distinct non-empty nodes and every non-empty node is the end point of a unique
strand. The simplest such diagram is a dilute Temperley–Lieb diagram (cf. e.g. [5]). It
has only finitely many non-empty nodes, which are connected by non-crossing strands.
The top of such a diagram is depicted below.

1
2
3
4
5

1
2
3
4
5

Thediagram in thefigure gives rise to theoperator L �x,�y(a),where �x = (π,1,1, π,1, . . .),
�y = (π, π, π,1, π, . . .), and a is the morphism given by the pictured Temperley–Lieb
diagram. By definition, the C*-algebra B is generated by operators arising from dilute
Temperley–Lieb diagrams.

The following figure illustrates the product of two diagrammatic operators. Note that
the patterns of empty and non-empty nodes have to match in the middle for the product
to be non-zero.

The unitary braiding on C allows us to also associate operators to certain diagrams
that involve crossings. For instance, we can associate operators to what one might call
“finite dilute braid diagrams”. Such a diagram has only finitely many non-empty nodes
(which is what the term “finite” in the name of the diagrams refers to). Moreover, every
strand connects a node on the left side to one on the right side, and any two given strands
are only allowed to cross a finite number of times. The top of a sample diagram of this
type is shown below.

8

4

2

4

6

8

1

3

5

7

1

5

2

6

3

7

If one such diagram can be obtained from another by a finite sequence of Reidemeister
moves of types 2 and 3 then these two diagrams give rise to the same operator. Indeed,
the unitary braiding engenders, in a natural way, a group homomorphism from Artin’s
braid group on n strands into the unitary group of End(π⊗n) for every n (see e.g. page
374 in [11]). In particular, every finite dilute braid diagram gives rise to a partial isometry
in B.

We will also in a slightly different way associate operators to what might be termed
“(possibly) infinite dilute braid diagrams”. These diagrams are defined in the same way
as their finite cousins, except that they are allowed to have infinitely many non-empty
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nodes and hence infinitely many strands. Let D be such a diagram and denote by �(D)

the pattern of empty and non-empty nodes on its left side. Denote by supp(D) the set
of patterns that can be obtained from �(D) by replacing all but finitely many non-empty
nodes by empty ones. Given �x ∈ supp(D), we get a finite dilute braid diagram D�x by
removing from D every strand whose left end point corresponds to an empty node in �x
and replacing both end points of each removed strand by empty nodes. As mentioned
above, this newdiagramgives rise to a partial isometry inB, whichwe denote by v(D, �x).
Since

v(D, �x)∗v(D, �y) = v(D, �x)v(D, �y)∗ = 0

whenever �x �= �y, Fact 2.1 implies that
∑

�x∈supp(D) v(D, �x) is strongly convergent in
B(H). We put

v(D) =
∑

�x∈supp(D)

v(D, �x).

Although v(D) need not belong to B, Fact 2.1 and Lemma 3.3 imply that

v(D) · b ∈ B, b · v(D) ∈ B

for all b ∈ B. If D has no empty nodes then v(D) is a unitary operator in B(H).
This follows from the fact that multiplication in B(H) is jointly strongly continuous on
bounded sets. In general, v(D) is a partial isometry in B(H) whose range projection is∑

�x∈supp(D) p�x . (Recall that p�x was defined on page 8.)

3.3. Definition of � : B ⊗B → B. Define, for each n ≥ 0, a unitary elementUn ∈ B2n
in terms of the unitary braiding σTL on C in the same way as on page 374 in [11] (when
s there is 2), except that we sum over all patterns �x ∈ G2n . As an example, the following
figure shows two of the terms in the definition of U3.

+ + · · ·
We can think of U3 as v(D), where D is the diagram on the left, all nodes below the
displayed part of the diagram being empty. However, in this case it is just a finite sum.

We can now define a *-homomorphism �n : Bn ⊗ Bn → B2n by

L �x,�y(a) ⊗ L �v, �w(b) �−→ Un ◦ L �x �v,�y �w(a ⊗ b) ◦U∗
n ,

where �x �v = (x1, . . . , xn, v1, . . . , vn, . . .) (and similarly for �y �w). The faithfulness of the
traces Trn and the fact that Tr2n ◦ �n = Trn ⊗ Trn on elements of the form L �x,�y(a) ⊗
L �v, �w(b) imply that �n is a well-defined isometric *-homomorphism. The purpose of
the unitaries Un is to ensure that

�n+1 ◦ (ιn ⊗ ιn) = ι2n+1 ◦ ι2n ◦ �n
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for all n ≥ 0, where ιn is the inclusion map Bn → Bn+1. This allows us to extend the
*-homomorphisms �n to an isometric *-homomorphism

� : B ⊗ B −→ B.

Diagrammatically, the effect of applying � to a tensor product L �x,�y(a) ⊗ L �v, �w(b) of
operators arising from dilute Temperley–Lieb or braid diagrams is to superimpose the
one on the left on top of the one on the right in such a way that the nodes are interleaved.

Remark 3.4. By Lemma 3.2, K0(B) is isomorphic to the fusion ring Z[S] as an abelian
group. It is also easy to check that the induced product map

K0(�) : K0(B) ⊗Z K0(B) −→ K0(B)

on K0(B) agrees with the product on the fusion ring. (This boils down to the fact that
L �μ, �μ(vv∗) is a rank one projection in K(Hs) for any �μ ∈ G∞ and any unit vector
v ∈ Hom(s, o( �μ)).) Below, we will “categorify” this statement, by using � to define a
tensor product of right Hilbert B-modules that recaptures the tensor product in C (see
also Remark 5.5).

4. On the Braided C*-Tensor Categories ModB and Mod f
B

In this section, we use the *-homomorphism � from the previous section to endow the
category ModB of (right) Hilbert B-modules with the structure of a braided C*-tensor
category. We also introduce the full subcategory Mod f

B of modules admitting a finite
orthonormal basis.

4.1. A tensor product of right Hilbert B-modules. Given two right Hilbert B-modules
M1 and M2, we define their tensor product by

M1 ⊗ M2 = (M1 � M2) ⊗� B,

where � : B ⊗ B → B is the *-homomorphism from the previous section. (See
Sect. 2.2 for an explanation of the notation.) Given adjointable maps f1 : M1 → N1 and
f2 : M2 → N2 between right Hilbert B-modules, we denote by f1 ⊗ f2 the adjointable
map M1 ⊗ M2 → N1 ⊗ N2 given by

( f1 ⊗ f2)(ξ1 ⊗ ξ2 ⊗ b) = f1(ξ1) ⊗ f2(ξ2) ⊗ b

for ξ1 ∈ M1, ξ2 ∈ M2 and b ∈ B.
As a simple example, let p andq be projections inB. Then pB andqB are rightHilbert

B-modules (with inner product given by (a, b) �→ a∗b) and there exists a surjective B-
linear isometry pB ⊗ qB → �(p ⊗ q)B defined by pa ⊗ qb ⊗ c �→ �(pa ⊗ qb)c for
a, b, c ∈ B.

We next relate the above tensor product to the standard direct sum of Hilbert B-
modules. Given finite families (Mi )i∈I and (N j ) j∈J of right Hilbert B-modules, we
have a surjective B-linear isometry

φ : (⊕i Mi ) ⊗ (⊕ j N j ) −→ ⊕(i, j)(Mi ⊗ N j )

defined by (ξi )i ⊗ (η j ) j ⊗ b �→ (ξi ⊗ η j ⊗ b)(i, j) for ξi ∈ Mi , η j ∈ N j and b ∈ B.
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4.2. The C*-tensor category ModB. We denote by ModB the category whose objects
are all right Hilbert B-modules and whose morphism sets Hom(M, N ) consist of all
adjointable (or, equivalently, all bounded B-linear, cf. [14]) maps M → N . Below,
we will endow this category with the structure of a C*-tensor category. Note first that
conditions (1), (2), (3), (6) and (7) in Sect. 2.3.1 follow from the general theory of Hilbert
C*-modules. Thus, our goal in the present section is to define associators, a tensor unit,
and unit constraints satisfying conditions (4), (5) and (8).

4.2.1. Associators We begin by defining associators in ModB. To do so, we first define
a unitary operator V ∈ B(H) as the operator associated to the following infinite braid
diagram Dα . (Note that, in notation introduced on page 10, the multi-colored figure on
page 10 depicts Dα

�x (= (Dα)�x ), where �x = (π, π, π, π,1, π,1, π, . . .).) First connect
the nodes numbered 4, 8, 12, . . . on the left side to those numbered 2, 4, 6, . . . on the right
side by strands in order. (These nodes and strands are colored red in the aforementioned
figure.) Next connect, by (green) strands that cross over the ones already drawn, the
nodes on the left side numbered 2, 6, 10, . . . to those numbered 3, 7, 11, . . . on the right
side. Finally, connect, by (blue) strands that cross over the ones already drawn, the nodes
on the left side numbered 1, 3, 5, . . . to those numbered 1, 5, 9, . . . on the right side.

We next observe that

V�(�(b1 ⊗ b2) ⊗ b3)V
∗ = �(b1 ⊗ �(b2 ⊗ b3)) (4.1)

for all b1, b2, b3 ∈ B. The following figures illustrate the case when b1, b2, b3 ∈ B2. In
that case, the left hand side of Eq. (4.1) arises from the diagram

b3

b2

b1

Note that, in the above figure and the one below, the dotted lines do not represent strands,
but only serve to keep track of the positions of empty nodes. Also, depending on which
of the four nodes attached to each bi are empty and non-empty, the solid lines may or
may not represent strands. For comparison, the right hand side of Eq. (4.1) arises from
the diagram

b3

b2

b1

In general, one of these diagrams can be obtained from the other by a finite sequence of
Reidemeister moves of types 2 and 3. Thus, the associated operators are equal.
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We can now define associators as follows. Given right Hilbert B-modules M1, M2
and M3, consider the formula

αM1,M2,M3

(
ξ1 ⊗ ξ2a ⊗ b ⊗ ξ3cd ⊗ e

) = ξ1 ⊗ ξ2 ⊗ ξ3 ⊗ �(a ⊗ c) ⊗ V�(b ⊗ d)e,

where ξ1 ∈ M1, ξ2 ∈ M2, ξ3 ∈ M3 and a, b, c, d, e ∈ B. Here, ξ1 ⊗ ξ2a ⊗ b⊗ ξ3cd ⊗ e
on the left hand side is viewed as an element of

(M1 ⊗ M2) ⊗ M3 =
(

(
(M1 � M2) ⊗� B

)
� M3

)

⊗� B

while ξ1 ⊗ ξ2 ⊗ ξ3 ⊗ �(a ⊗ c) ⊗ V�(b ⊗ d)e on the right hand side is viewed as an
element of

M1 ⊗ (M2 ⊗ M3) =
(

M1 �
(
(M2 � M3) ⊗� B

)
)

⊗� B.

On the one hand, we get that

〈[ξ1 ⊗ (ξ2 ⊗ ξ3 ⊗ �(a ⊗ c))] ⊗ V�(b ⊗ d)e,

[η1 ⊗ (η2 ⊗ η3 ⊗ �(a1 ⊗ c1))] ⊗ V�(b1 ⊗ d1)e1〉
= [V�(b ⊗ d)e]∗� (〈ξ1, η1〉 ⊗ 〈(ξ2 ⊗ ξ3) ⊗ �(a ⊗ c), (η2 ⊗ η3) ⊗ �(a1 ⊗ c1)〉)
[V�(b1 ⊗ d1)e1]

= [V�(b ⊗ d)e]∗�
(〈ξ1, η1〉 ⊗ [

�(a ⊗ c)∗�(〈ξ2, η2〉 ⊗ 〈ξ3, η3〉)�(a1 ⊗ c1)
]) [V�(b1 ⊗ d1)e1]

= [V�(b ⊗ d)e]∗�
(〈ξ1, η1〉 ⊗ �

(
a∗〈ξ2, η2〉a1 ⊗ c∗〈ξ3, η3〉c1

)) [V�(b1 ⊗ d1)e1]
= [e∗�(b ⊗ d)∗]V ∗�

(〈ξ1, η1〉 ⊗ �
(〈ξ2a, η2a1〉 ⊗ 〈ξ3c, η3c1〉

))
V [�(b1 ⊗ d1)e1].

On the other hand, we have that

〈[((ξ1 ⊗ ξ2a) ⊗ b) ⊗ ξ3cd] ⊗ e, [((η1 ⊗ η2a1) ⊗ b1) ⊗ η3c1d1] ⊗ e1〉
= e∗�(〈(ξ1 ⊗ ξ2a) ⊗ b, (η1 ⊗ η2a1) ⊗ b1〉 ⊗ 〈ξ3cd, η3c1d1〉)e1
= e∗�([b∗�(〈ξ1, η1〉 ⊗ 〈ξ2a, η2a1〉)b1] ⊗ d∗〈ξ3c, η3c1〉d1)e1
= e∗�(b∗ ⊗ d∗)� (�(〈ξ1, η1〉 ⊗ 〈ξ2a, η2a1〉) ⊗ 〈ξ3c, η3c1〉) �(b1 ⊗ d1)e1.

Since these two expressions coincide by Eq. (4.1), the above formula defines a B-linear
isometry

αM1,M2,M3 : (M1 ⊗ M2) ⊗ M3 −→ M1 ⊗ (M2 ⊗ M3).

Similarly, we can define a B-linear isometry

βM1,M2,M3 : M1 ⊗ (M2 ⊗ M3) −→ (M1 ⊗ M2) ⊗ M3

by the formula

βM1,M2,M3(ξ1ab ⊗ ξ2c ⊗ ξ3 ⊗ d ⊗ e) = ξ1 ⊗ ξ2 ⊗ �(a ⊗ c) ⊗ ξ3 ⊗ V ∗�(b ⊗ d)e.

As this is the inverse of αM1,M2,M3 , we get that αM1,M2,M3 is a unitary isomorphism in
ModB. The assignment (M1, M2, M2) �→ αM1,M2,M3 is clearly natural in M1, M2 and
M3.
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4.2.2. Pentagon identity In order to show that ModB along with the associators
αM1,M2,M3 and the unit constraints that we define below is a C*-tensor category, we
must verify the pentagon identity, which in the present context is the identity

(idM1 ⊗ αM2,M3,M4) ◦ αM1,M2⊗M3,M4 ◦ (αM1,M2,M3 ⊗ idM4)

= αM1,M2,M3⊗M4 ◦ αM1⊗M2,M3,M4

(4.2)

for any objects M1, M2, M3 and M4 in ModB. We verify it by applying both sides to an
element of the form

ξ1a ⊗ ξ2bb
′b′′ ⊗ c ⊗ ξ3dd

′d ′′d ′′′ ⊗ e ⊗ ξ4 f0 f f
′ f ′′ f ′′′ ⊗ g (4.3)

in the quadruple tensor product
(
(M1 ⊗ M2) ⊗ M3

) ⊗ M4. Let us first consider the left
hand side. First, αM1,M2,M3 ⊗ idM4 maps the given element to

ξ1a ⊗ [
ξ2b ⊗ ξ3d ⊗ �(b′b′′ ⊗ d ′d ′′)

] ⊗ V�(c ⊗ d ′′′)e ⊗ ξ4 f0 f f
′ f ′′ f ′′′ ⊗ g.

Next, αM1,M2⊗M3,M4 maps the above element to

ξ1a ⊗ [
ξ2b ⊗ ξ3d ⊗ �(b′ ⊗ d ′)

] ⊗ ξ4 f0 f ⊗ �(�(b′′ ⊗ d ′′) ⊗ f ′) ⊗ V�(V�(c ⊗ d ′′′)e ⊗ f ′′ f ′′′)g.

Finally, idM1 ⊗ αM2,M3,M4 maps this element to

ξ1a ⊗ (
ξ2b ⊗ [

ξ3 ⊗ ξ4 ⊗ �(d ⊗ f0)
] ⊗ V�(�(b′b′′ ⊗ d ′d ′′) ⊗ f f ′)

)

⊗V�(V�(c ⊗ d ′′′)e ⊗ f ′′ f ′′′)g.

We now consider the right hand side. First, αM1⊗M2,M3,M4 maps the element in Eq. (4.3)
to

ξ1a ⊗ ξ2bb
′b′′ ⊗ c ⊗ [

ξ3 ⊗ ξ4 ⊗ �(dd ′d ′′d ′′′ ⊗ f0 f f
′ f ′′)

] ⊗ V�(e ⊗ f ′′′)g.

Next, αM1,M2,M3⊗M4 maps the above element to

ξ1a ⊗ (
ξ2bb

′ ⊗ [
ξ3 ⊗ ξ4 ⊗ �(dd ′ ⊗ f0 f )

] ⊗ �(b′′ ⊗ �(d ′′ ⊗ f ′))
)

⊗V�(c ⊗ �(d ′′′ ⊗ f ′′))V�(e ⊗ f ′′′)g,

which is equal to

ξ1a ⊗ (
ξ2b ⊗ [ξ3 ⊗ ξ4 ⊗ �(d ⊗ f0)] ⊗ �(b′b′′ ⊗ �(d ′d ′′ ⊗ f f ′))

)

⊗V�(c ⊗ �(d ′′′ ⊗ f ′′))V�(e ⊗ f ′′′)g,

and, in turn, to

ξ1a ⊗ (
ξ2b ⊗ [ξ3 ⊗ ξ4 ⊗ �(d ⊗ f0)] ⊗ V�(�(b′b′′ ⊗ d ′d ′′) ⊗ f f ′)V ∗)

⊗V�(c ⊗ �(d ′′′ ⊗ f ′′))V�(e ⊗ f ′′′)g.

We now see that the pentagon identity reduces to the identity

�(a ⊗ �(�(b′′ ⊗ d ′′) ⊗ f ′))V�(V�(c ⊗ d ′′′) ⊗ f ′′)
= �(a ⊗ �(�(b′′ ⊗ d ′′) ⊗ f ′)V ∗)V 2�(�(c ⊗ d ′′′) ⊗ f ′′).
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Since B is generated by operators arising from dilute Temperley–Lieb diagrams, and
because V = ∑

�x v(Dα, �x) for a certain infinite braid diagram Dα (see page 10), it
suffices to prove that

v(Dα, �x)�(v(Dα, �y) ⊗ p�z) = �(p �μ ⊗ v(Dα, �ν)∗)v(Dα, �β)v(Dα, �γ )

whenever �x, �y, �z, �μ, �ν, �β, �γ ∈ G∞ are such that the patterns agree. (Recall that p�z was
defined on page 8.) In this identity, each side is the operator associated to some finite
dilute braid diagram. One can easily check that both of these diagrams consist of strands
that live on four separate layers, as we next explain. The bottom layer L1 consists of
those strands whose left end point is at one of the non-empty nodes numbered 4, 8,
12, . . ., the next layer L2 at those numbered 6, 14, 22, . . ., the next layer L3 at those
numbered 2, 10, 18, . . ., and the top layer L4 at those numbered 1, 3, 5, . . .. This means
that, in both diagrams, every crossing is of the following sort: A strand from L j crosses
over a strand from Li with j > i . It is easily deduced from this that one of the diagrams
can be obtained from the other by a finite sequence of Reidemeister moves of types 2
and 3, from which the identity follows.

4.2.3. Tensor unit and unit constraints Denote by p∗ the operator in B that is associated
to the empty diagram. We will exhibit p∗B as a tensor unit in ModB by defining explicit
unit constraints

��
M : p∗B ⊗ M −→ M, �r

M : M ⊗ p∗B −→ M

for each object M in ModB. First, we define two partial isometriesW � andWr in B(H).
Namely, Wr is the operator associated to the infinite dilute braid diagram

which we will call Dr , while W � is the operator associated to the diagram

which we call D�. We have that

Wr�(b ⊗ p∗)(Wr )∗ = b, (Wr )∗Wr�(b ⊗ p∗) = �(b ⊗ p∗) = �(b ⊗ p∗)(Wr )∗Wr

for all b ∈ B. It follows from this that we may define a unitary isomorphism

�r
M : M ⊗ p∗B −→ M
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by the formula

�r
M

(
(ξb0 ⊗ p∗b1) ⊗ a

) = ξWr�(b0 ⊗ p∗b1)a
for ξ ∈ M and b0, b1, a ∈ B. Note that the adjoint (and inverse) of �r

M is given by the
formula

(�r
M )∗(ηc) = (η ⊗ p∗) ⊗ (Wr )∗c

for η ∈ M and c ∈ B. Clearly, the assignment M �→ �r
M is natural in M .

Similarly, we can define a unitary isomorphism

��
M : p∗B ⊗ M −→ M

in ModB by the formula

��
M

(
(p∗b0 ⊗ ξb1) ⊗ a

) = ξW ��(p∗b0 ⊗ b1)a

for ξ ∈ M and b0, b1, a ∈ B. Again, the assignment M �→ ��
M is natural in M .

4.2.4. Triangle identity In the present context, the triangle identity states that

(idM1 ⊗ ��
M2

) ◦ αM1,p∗B,M2 = �r
M1

⊗ idM2 (4.4)

for any objects M1 and M2 in ModB. By applying both sides to an element of the form
ξb0 ⊗ b1b′

1 ⊗ b2 ⊗ ηb3b′
3b

′′
3 ⊗ b4, we see that the verification reduces to proving the

identity

�(b ⊗ W ��(p∗c ⊗ d))V = �(Wr�(b ⊗ p∗c) ⊗ d)

for b, c, d ∈ B. Similarly to the case of the pentagon identity, it suffices to prove that

�(p�x ⊗ v(D�, �y))v(Dα, �z) = �(v(Dr , �β) ⊗ p �γ )

whenever �x, �y, �z, �β, �γ ∈ G∞ are such that the patterns agree. Note that the operator on
the left hand side arises from a finite dilute braid diagram such as

while the operator on the right hand side arises from

which can be obtained from the top diagram by a finite sequence of Reidemeister moves
of type 2.
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4.2.5. Simplicity of the tensor unit Tofinish the proof thatModB is a C*-tensor category,
we note that p∗B is a simple object in ModB. Indeed, one easily checks that

End(p∗B) ∼= p∗Bp∗ = p∗B0 p∗ = Cp∗

(see also the proof of Lemma 5.1 below).

4.3. A unitary braiding onModB. Wenext define a unitary braiding onModB and verify
the hexagon identities.

4.3.1. Definition of the braiding Denote by U the unitary operator in B(H) that is
associated to the infinite braid diagram Dσ that is formed as follows. First connect the
nodes on the left side numbered 2, 4, . . . to those on the right side numbered 1, 3, . . .

by red strands (as in the following figure). Next, for each of the remaining nodes on the
left numbered 2k − 1, say, draw a blue strand from it to the top of the diagram, crossing
over the red strands whose left end point is above it, and then continue this strand to the
node numbered 2k on the right side, now crossing under the red strands whose right end
point is above that node. The following figure shows one of the associated finite dilute
braid diagrams Dσ

�x (= (Dσ )�x ).

Note that

U�(b1 ⊗ b2)U
∗ = �(b2 ⊗ b1) (4.5)

for all b1, b2 ∈ B.
Equation (4.5) allows us, given two objects M1 and M2 in ModB, to define a unitary

isomorphism

σM1,M2 : M1 ⊗ M2 −→ M2 ⊗ M1

by the formula

σM1,M2((ξ1 ⊗ ξ2) ⊗ a) = (ξ2 ⊗ ξ1) ⊗Ua,

for ξ1 ∈ M1, ξ2 ∈ M2 and a ∈ B. The assignment (M1, M2) �→ σM1,M2 is clearly
natural in M1 and M2 and will turn out to be a unitary braiding on ModB.
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4.3.2. Hexagon identities In the present context, the two hexagon identities are

αM2,M3,M1 ◦ σM1,M2⊗M3 ◦ αM1,M2,M3

= (idM2 ⊗ σM1,M3) ◦ αM2,M1,M3 ◦ (σM1,M2 ⊗ idM3), (4.6)

αM2,M3,M1 ◦ σ ∗
M2⊗M3,M1

◦ αM1,M2,M3

= (idM2 ⊗ σ ∗
M3,M1

) ◦ αM2,M1,M3 ◦ (σ ∗
M2,M1

⊗ idM3) (4.7)

for any objects M1, M2 and M2 in ModB. Let us prove the first identity and leave the
second one to the reader. The left hand side maps an element of the form ξ1aa′ ⊗ ξ2b⊗
c ⊗ ξ3dd ′d ′′ ⊗ e to

ξ2 ⊗ ξ3 ⊗ ξ1 ⊗ �(d ⊗ a) ⊗ V�(�(b ⊗ d ′) ⊗ a′)UV�(c ⊗ d ′′)e

while the right hand side maps it to

ξ2 ⊗ ξ3 ⊗ ξ1 ⊗ �(d ⊗ a) ⊗ �(b ⊗U�(a′ ⊗ d ′))V�(Uc ⊗ d ′′)e.

Thus, the first hexagon identity would follow from the identities

�(a ⊗ �(b ⊗ c))VUV�(d ⊗ e) = �(a ⊗ �(b ⊗ c)U )V�(Ud ⊗ e)

for a, b, c, d, e ∈ B. As in the case of the pentagon identity, this reduces to showing
that

v(Dα, �x)v(Dσ , �y)v(Dα, �z) = �(p �μ ⊗ v(Dσ , �ν))v(Dα, �β)�(v(Dσ , �γ ) ⊗ p�ε)

whenever �x, �y, �z, �μ, �ν, �β, �γ , �ε ∈ G∞ are such that the patterns agree. In this identity,
the operator on each side arises from a certain finite dilute braid diagram. The next figure
shows a sample pair of diagrams that can appear. On the left hand side, we could have

which would be paired with the following diagram on the right hand side.

Note that, in both diagrams, the blue strands always cross over the green strands. Thus,
one can transform both diagrams into the same diagram by pulling the green and blue
strands up and pulling the red strands down. In the case of our sample pair of diagrams,
the common diagram is
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Since this only involves Reidemeister moves of types 2 and 3, the associated operators
are equal.

4.4. The full C*-tensor subcategory Mod f
B. Denote by Mod f

B the full subcategory of
ModB whose objects are those right HilbertB-modules which admit a finite orthonormal
basis in the sense of Sect. 2.2. (Note that, by [2], everymodule inModB admits a possibly
infinite orthonormal basis.) Clearly, Mod f

B contains the tensor unit in ModB. In order

to check that Mod f
B is a C*-tensor subcategory of ModB, we must show that Mod f

B
is closed under tensor products. To do this, let M and N be objects in Mod f

B. Choose
finite orthonormal bases (ξi )i and (η j ) j for M and N , respectively. Using the identities
ξi 〈ξi , ξi 〉 = ξi and η j 〈η j , η j 〉 = η j , one verifies that the elements ξi ⊗η j ⊗�(〈ξi , ξi 〉⊗
〈η j , η j 〉) form a finite orthonormal basis for M ⊗ N , showing that M ⊗ N is an object

in Mod f
B. Note that this could also be deduced from the following easily proved fact.

Fact 4.1. Let {ξ1, . . . , ξk} be a finite orthonormal basis for a right Hilbert B-module M .
Then M is isomorphic to

⊕k
j=1 p jB, where p j = 〈ξ j , ξ j 〉 for all j .

5. Realizing TLJ (δ) as Right Hilbert B-Modules

In this section, we show that TLJ (δ) is equivalent to Mod f
B as a braided C*-tensor

category.

5.1. A braided monoidal *-functor F : TLJ (δ) → ModB. We will now define a func-
tor F : C → ModB (where C = TLJ (δ), as above). The following notation will
be convenient. Setting �xn = (π, . . . , π,1,1, . . .), with n leading copies of π , we
denote L �xn ,�xm (a) by Ln,m(a) for any a ∈ Hom(π⊗m, π⊗n) = TLJn,m(δ). We also
put Ln(a) = Ln,n(a) for any a ∈ End(π⊗n) = TLJn(δ). Finally, we denote by pn the
projection p�xn (as defined on page 8).

We define F on objects as follows. Given a projection P ∈ TLJn(δ), we define F(P)

by the formula

F(P) = Ln(P)B,

on the right hand side of which we view P as a morphism. Given an object ⊕ j Pj in C,
we put

F
(⊕ j Pj

) = ⊕ j F(Pj ).
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On the right hand side, the symbol ⊕ denotes the standard direct sum of right Hilbert
B-modules.

We next define F on morphisms. Given a morphism a ∈ Hom(P, Q), where
P ∈ TLJn(δ) and Q ∈ TLJm(δ) are projections, we define F(a) to be the adjointable
map Ln(P)B → Lm(Q)B given by left-multiplication by Lm,n(a). For any mor-
phism (ai j )i, j ∈ Hom(⊕ j Pj ,⊕i Qi ), we define F((ai j )i, j ) to be the adjointable map
⊕ j F(Pj ) → ⊕i F(Qi ) associated to the matrix (F(ai j ))i, j .

It is clear that F is a *-functor. We will prove that it is in fact a braided monoidal
*-functor. Thus, given any two objects ρ and ν in C, wewill define a unitary isomorphism
Jρ,ν : F(ρ) ⊗ F(ν) → F(ρ ⊗ ν) in such a way that the assignment (ρ, ν) �→ Jρ,ν is
natural in ρ and ν and all four of the following identities hold for all objects ρ, ν and μ

in C:

Jρ,ν⊗μ ◦ (idF(ρ) ⊗ Jν,μ) ◦ αF(ρ),F(ν),F(μ) = Jρ⊗ν,μ ◦ (Jρ,ν ⊗ idF(μ)), (5.1)

Jρ,1 = �r
F(ρ), (5.2)

J1,ρ = ��
F(ρ), (5.3)

F(σTL
ρ,ν) ◦ Jρ,ν = Jν,ρ ◦ σF(ρ),F(ν). (5.4)

(We are using the fact that C is strict.) First, given n,m ≥ 0, we define a unitary
isomorphism

Jn,m : pnB ⊗ pmB −→ pn+mB

by the formula Jn,m(pna ⊗ pmb ⊗ c) = Un,m�(pna ⊗ pmb)c for a, b, c ∈ B, where
Un,m is the partial isometry in B arising from a diagram like the one depicted below (in
the case n = 4 and m = 2).

The fact that Jn,m is a well-defined unitary isomorphism comes down to the easily
verified identities U∗

n,mUn,m = �(pn ⊗ pm) and Un,mU∗
n,m = pn+m .

Given projections P ∈ TLJn(δ) and Q ∈ TLJm(δ), we define JP,Q as the restriction
of Jn,m . More generally, given two objects⊕i Pi and⊕ j Q j in C, we define J⊕i Pi ,⊕ j Q j as
the composition

( ⊕(i, j) JPi ,Q j

) ◦ φ, where φ is the unitary isomorphism
( ⊕i F(Pi )

) ⊗
( ⊕ j F(Q j )

) → ⊕(i, j)(F(Pi ) ⊗ F(Q j )) from Sect. 4.1. Note that the domain of
J⊕i Pi ,⊕ j Q j is F(⊕i Pi ) ⊗ F(⊕ j Q j ) = ( ⊕i F(Pi )

) ⊗ ( ⊕i F(Pi )
)
while its codomain

is F
(
(⊕i Pi ) ⊗ (⊕ j Q j )) = ⊕(i, j)(F(Pi ) ⊗ F(Q j )).

It is easy to reduce the naturality of J as well as the identities in Eq. (5.1)–(5.4) to
the case where ρ, ν and μ are projections in Temperley–Lieb–Jones C*-algebras. Since
JP,Q is defined as the restriction of Jn,m , it is in fact enough to verify these identities in
the case where ρ, ν and μ are identity elements in such algebras. This case can be taken
care of by straightforward diagrammatic arguments. For the convenience of the reader,
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we indicate the proofs of Eqs. (5.1) and (5.4), starting with the latter. In the case under
consideration, Eq. (5.4) is just

F(σTL
π⊗n ,π⊗m ) ◦ Jn,m = Jm,n ◦ σF(π⊗n),F(π⊗m).

The verification of this identity amounts to proving that

Ln+m(σTL
π⊗n ,π⊗m ) ◦Un,m ◦ �(pn ⊗ pm) = Um,n ◦U ◦ �(pn ⊗ pm). (5.5)

In the case when n = m = 3, the left hand side arises from the finite braid diagram

while the right hand side arises from the diagram

As one of these diagrams can in general be obtained from the other by a finite sequence
of Reidemeister moves of type 2, we get Eq. (5.5). Similarly, Eq. (5.1) reduces to the
identity

Un,m+k ◦ �(pn ⊗Um,k) ◦ V = Un+m,k ◦ �(Un,m ⊗ pk). (5.6)

In the case when n = 3 and m = k = 2, the left hand side arises from the diagram

while the right hand side arises from

As in the proof of the pentagon identity, Eq. (5.6) is verified in general by noting that
the strands live on three separate layers (corresponding to the three colors used in the
figures).
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5.2. TLJ (δ) and Mod f
B are equivalent. Finally, we will prove that F is fully faithful

(i.e., restricts to a bijection on each morphism space) and that if we restrict its codomain
to the subcategory Mod f

B then it is essentially surjective (i.e., hits every isomorphism
class of objects).

Lemma 5.1. The functor F is fully faithful.

Proof. It suffices to prove that F restricts to a bijective map

Hom(P, Q) → Hom(F(P), F(Q))

for any given pair of projections P ∈ TLJn(δ) and Q ∈ TLJm(δ).
We first prove injectivity. Let a ∈ Hom(P, Q) be such that F(a) = 0. Since F is

linear on morphisms, we need only show that a = 0. Since F(a) is left-multiplication
by Lm,n(a), we get that 0 = Lm,n(a) ◦ Ln(P) = Lm,n(aP) = Lm,n(a), whereby
‖a‖ = ‖Lm,n(a)‖ = 0 by Lemma 3.1.

We next prove surjectivity. Let f ∈ Hom(F(P), F(Q)) be given. Then f per-
forms left-multiplication by b = f (Ln(P)) ∈ Lm(Q)BLn(P). Set K = max{m, n}
so that Ln(P), Lm(Q) ∈ BK . Since BK is finite-dimensional and Lm(Q)Bk Ln(P) ⊆
Lm(Q)BK Ln(P) for all k ≥ 0, it follows that b ∈ Lm(Q)BK Ln(P). Thus, b = Lm,n(a)

for some morphism a ∈ Hom(P, Q). ��
Lemma 5.2. The (codomain-restricted) functor F : TLJ (δ) → Mod f

B is essentially
surjective.

Proof. Let M be any object in Mod f
B. By Fact 4.1, M is isomorphic to a direct sum of

modules of the form pB, where p is a projection in B. Writing such a projection p as
a finite sum of minimal projections, we get that pB is isomorphic to a direct sum of
modules of the form qB, where q is a minimal projection in B. Thus, we may assume
that M = qB, where q is a rank one projection in, say, the summandK(Hs). Pick n ≥ 0
such that s ≺ π⊗n , and let v be a unit vector in Hom(s, π⊗n). Then Ln(vv∗) is a rank
one projection in the summand K(Hs), and therefore Murray-von Neumann equivalent
to q in B. It follows that qB ∼= Ln(vv∗)B = F(vv∗), which yields the stated result. ��

In conclusion, we have the following theorem.

Theorem 5.3. If δ ∈ {2 cos(π/(k + 2)) : k = 1, 2, . . .} ∪ {2} then the Temperley–Lieb–
Jones C*-tensor category TLJ (δ) and the category Mod f

B are equivalent as braided
C*-tensor categories.

We end this section with a couple of remarks.

Remark 5.4. Although we have not defined the conjugate of an arbitrary object inMod f
B,

we have shown that every such object is isomorphic to F(P) for some object P in
TLJ (δ). Since F is a monoidal *-functor, F(P) has a conjugate (namely F(P̄) =
F(P)). Thus, every object in Mod f

B does have a conjugate and Mod f
B is in fact a rigid

braided C*-tensor category. (See [38] and e.g. section 2.2 of [40] for the concepts of
conjugates and rigidity in C*-tensor categories.)

Remark 5.5. Denote by R the fusion ring of Mod f
B consisting of formal differences

[X ] − [Y ] of isomorphism classes of modules in Mod f
B. Define a group homomor-

phism φ : R → K0(B) by φ([X ]) = [p], where p = diag(p1, . . . , pn) is any
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diagonal projection in Mn(B) for which X ∼= ⊕n
j=1 p jB. Since B-linear maps

⊕n
j=1 p jB → ⊕m

i=1 qiB may be identified with m × n-matrices whose (i, j)’th entry
belongs to qiBp j in such a way that composition corresponds to matrix multiplica-
tion and adjoints correspond to matrix adjoints, we get that φ is well-defined. (In the
module picture of K0(B), [p] corresponds to [X ⊗ B̃], where B̃ is the unitalization of
B.) The map φ is injective because B is an AF-algebra and hence admits cancellation.
Since φ([qsB]) = [qs] for all s ∈ S, where qs is any minimal projection in the sum-
mand K(Hs) of B, and the classes [qs] generate K0(B), it follows that φ is surjective.
If X = ⊕n

i=1 piB and Y = ⊕m
j=1 q jB then X ⊗ Y ∼= ⊕

(i, j) �(pi ⊗ q j )B, and
K0(�)([diag(p1, . . . , pn)]⊗ [diag(q1, . . . , qm)]) is the class of the diagonal mn×mn-
matrix whose (i, j)’th diagonal entry is �(pi ⊗ q j ). Thus, we may now conclude
that φ is an isomorphism of rings. In this sense, the above equivalence of categories
TLJ (δ) ∼= Mod f

B “categorifies” the isomorphism Z[S] ∼= K0(B) of rings that was
exhibited in Remark 3.4.

Remark 5.6. Theorem 5.3 can in fact be proved in greater generality, as we next indicate.
Let C be a finitely generated rigid (see Definition 2.2.1 of [40]) braided C*-tensor cat-
egory. The assumption that C is rigid implies that C is semisimple (see Sect. 2.3.2) and
that each EndC(ρ) is a finite-dimensional C*-algebra equipped with a canonical positive
faithful trace (cf. [38]; see also [40]). The assumption that C is finitely generated means
that there exists a finite set L of objects such that every simple object in C occurs as a
direct summand of a tensor product of objects in L.

By a version of the Mac Lane Coherence Theorem (that can e.g. be deduced from
the proof of Theorem XI.5.3 in [35]), we may assume that C is strict. Denote by π a
direct sum of the objects in L. By Theorem 2.17 in [7], for example, the category C is
equivalent, as a C*-tensor category, to the category D whose objects are formal finite
sums P1 ⊕ · · · ⊕ Pk of projections Pj ∈ EndC(π⊗n j ) and whose morphisms ⊕ j Pj →
⊕i Qi are matrices whose (i, j)’th entry belongs to QiHomC(π⊗n j , π⊗mi )Pj (when
Qi ∈ EndC(π⊗mi )). One can use the unitary braiding σ on C to define a unitary braiding
σ̃ on D by σ̃P,Q = σπ⊗n ,π⊗m ◦ (P ⊗ Q) (when P ∈ End(π⊗n) and Q ∈ End(π⊗m)).
Then C and D are equivalent as braided C*-tensor categories.

Next, put G = {1, π} and choose S as in Sect. 2.3.2. Then, as in Sect. 3.1, we
construct aHilbert space H = ⊕s∈SHs [where Hs = ⊕�x∈G∞HomC(s, o(�x))], operators
L �x,�y(a), and a C*-algebra B that is *-isomorphic to ⊕s∈SK(Hs). We can also define a
*-homomorphism� : B⊗B → B and equipModB with associators, unit constraints and
a unitary braiding as in Sects. 3.3 and 4 by using the well-known graphical calculus for
braided tensor categories (cf. e.g. [51]). Hence, ModB obtains the structure of a braided
C*-tensor category. Finally, we can define a braidedmonoidal *-functor F : D → Mod f

B
as in Sect. 5.1 and show, as in Sect. 5.2, that F is an equivalence of categories. Thus, the
initial category C is equivalent to Mod f

B as a braided C*-tensor category.
Let us finally mention some examples of categories to which this generalization of

Theorem 5.3 applies. Firstly, C could be the representation category of a compact group.
Secondly, and more interestingly for us, C could be a further example of the Verlinde
fusion category in conformal field theory e.g. arising from the finite-level, positive-
energy representation theory of the loop group of a compact, simple, connected, simply-
connected Lie group (cf. [46,52]). (The Temperley–Lieb–Jones category is the Verlinde
fusion category arising from SU(2).) These latter categories can also be constructed
from certain quantum groups at roots of unity (cf. [54]; see also section 6A of [11]).
Thirdly, there are examples arising from the quantum double construction applied to
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not necessarily braided categories, which yields braided C*-tensor categories. The most
prominent of these is the quantum double of the Haagerup subfactor, which has attracted
much attention recently due to evidence that this system should arise from a conformal
field theory (cf. [12]).

6. Concluding Remarks and Outlook

In the present paper, we have shown how to realize certain braided C*-tensor cate-
gories as categories of (right) Hilbert C*-modules with a natural tensor product struc-
ture (see Theorem 5.3 and Remark 5.6) or, phrased differently, how certain braided
C*-tensor categories act faithfully on certain C*-algebras via Hilbert C*-modules. In
light of this, it is natural to ask on which C*-algebras a given C*-tensor category (pos-
sibly without a unitary braiding) can act (faithfully) in this sense. In this context, it
may be noted that, starting from TLJ (δ), for example, one can define a variant of
the Hilbert C*-bimodule X of Hartglass and Penneys (cf. [25]) and use Pimsner’s
construction from [42] to construct from it a Toeplitz type C*-algebra T that is KK -
equivalent (by Theorem 4.4 of [42]) to the C*-algebra B that appeared in the present
paper. Perhaps this allows one to realize TLJ (δ) as a C*-tensor category of Hilbert
T -modules.

It is a long standing open problem to rigorously construct a conformal field theory
(CFT) from a continuum scaling limit of a statistical mechanical model at criticality—or
to construct a CFT from a modular tensor category (cf. e.g. [4,8,12,18,29,33,41,45]).
One aspect of this is to derive the category of representations of the Virasoro algebra
from representations of Temperley–Lieb algebras TL0

N ,N (δ) in the N → ∞ limit in
a mathematically rigorous way. The representation theory of the Virasoro algebra at
central charge c = 1 − 6/(k + 2)(k + 3), where k = 0, 1, 2, . . ., can be realized from
the diagonal embedding su(2)k+1 ⊂ su(2)k ⊕su(2)1 via a coset construction (cf. [21]).
Here, through the Sugawara construction, the affineLie algebra su(2)k has central charge
ck = 3k/(k +2). It is then intriguing to ask whether there is a parallel coset construction
starting from an embedding B(k) ⊗B(1) ⊂ B(k+1), where B(k) is the algebra constructed
as above from the Temperley–Lieb category with parameter δ = 2 cos(π/(k + 2)),
that yields the representation category of the Virasoro algebra at central charge c =
1 − 6/(k + 2)(k + 3).
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