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Particle Swarm Optimization for Cooperative Multi-Robot Task

Allocation: A Multi-Objective Approach

Changyun Wei1, Ze Ji2 and Boliang Cai1

Abstract— This paper presents a new Multi-Objective Parti-
cle Swarm Optimization (MOPSO) approach to a Cooperative
Multi-Robot Task Allocation (CMRTA) problem, where the
robots have to minimize the total team cost and, additionally,
balance their workloads. We formulate the CMRTA problem
as a more complex variant of multiple Travelling Salesman
Problems (mTSP) and, in particular, address how to minimize
the total travel distance of the entire robot team, as well as
how to minimize the highest travel distance of an individual
robot. The proposed approach extends the standard single-
objective Particle Swarm Optimization (PSO) to cope with the
multiple objectives, and its novel feature lies in a Pareto front
refinement strategy and a probability-based leader selection
strategy. To validate the proposed approach, we first use three
benchmark functions to evaluate the performance of finding
the true Pareto fronts in comparison with four existing well-
known algorithms in continuous spaces. Afterwards, we use six
datasets to investigate the task allocation mechanisms in dealing
with the CMRTA problem in discrete spaces.

Index Terms— Multi-robot Systems; Optimization and Opti-
mal Control; Cooperating Robots.

I. INTRODUCTION

In many practical applications, robots are seldom stand-

alone systems, but they need to coexist and coordinate with

each other so as to achieve a team goal more efficiently [1].

In order to obtain teamwork benefit, multiple robots require

more variables to be considered in a cohesive manner [2].

Multi-robot task allocation addresses how to assign a set

of tasks to a set of robots with various objectives. This

paper studies a Cooperative Multi-Robot Task Allocation

(CMRTA) problem, where the robots are required to balance

their workloads when completing the overall task as a team

in an efficient manner. To be specific, the robots have to

minimize the total cost over the team and the highest cost

of any individual robot.

In this work, the CMRTA problem is modelled as a more

complex variant of multiple Travelling Salesman Problem

(mTSP), where a team of robots has to collect a set of targets

dispersed in the environment, and then retrieve them back

to a nest base. Such a scenario can be motivated by many

practical applications, e.g., package collection and transport

in intelligent warehouses [3], and search and rescue after an
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earthquake [4]. This paper aims at providing a novel task

allocation approach to the CMRTA problem with multiple

objectives. Thus, we do not focus on low-level of action

execution, e.g., how to navigate to a target or to avoid

collisions among each other in a cluster situation.

The main contributions of this work include:

1) a novel task allocation approach to the CMRTA prob-

lem, taking into account both the overall team cost and

any individual workload,

2) an alternative multi-objective PSO algorithm, with the

feature of Pareto front refinement and probability-

based leader selection strategies, and

3) a competitive and generic solution to Multi-Objective

Optimization problems in finding the true Pareto fronts

in continuous spaces.

We organize the paper as follows. In the next section,

we discuss the state of the art to typical multi-robot task

allocation problems, and Section III formulates the CMRTA

problem as a more complex variant of mTSP. Section IV

details the proposed approach, and Section V evaluates the

proposed approach in both continuous and discrete spaces.

Finally, we conclude this work in Section VI.

II. RELATED WORK

Multi-robot task allocation addresses the problem of find-

ing the optimal task-to-robot assignment so as to achieve a

good team performance [5]. It has been extensively studied

in the agent/robot domain, and usually formulated as an

optimization problem, where a set of robots has to complete

a set of goals in such a way that optimizes the overall team

performance.

A. Multiple Travelling Salesman Problem

If there is only one robot involved in the environment, the

task allocation can be modelled as a Travelling Salesman

Problem (TSP), where the salesman has to visit all the

nodes with minimal travel cost. If there are multiple robots

working in a shared space, the problem can be considered

as a multiple Travelling Salesman Problem (mTSP) [6],

where multiple salesmen have to visit all the nodes and each

node has to be visited exactly once, with the objective of

minimizing the total travel cost. A considerable literature has

studied the mTSP but mainly focused on how to minimize

the total travel distance [7], [8]. Thus, as in [9], [10], [11],

this work seeks to minimize the cost of an individual robot,

additionally.

Recent advances in evolutionary optimization have also

attempted to find the solutions to the mTSP, e.g., genetic



optimizer [12], [13], ant colony and decomposition opti-

mizer [14], [15], ant lion optimizer [16], grey wolf opti-

mizer [17], physarum optimizer [18], and particle swarm

optimizer [19], [20]. In the standard mTSP, the salesmen are

required to visit all the nodes exactly once from a starting

node and return back to it after a round trip. The typical

objective function is to minimize the total travel distance.

As mentioned previously, this work focuses on a cooperative

robot team, where the robots are expected to balance their

workloads as well as to maintain good team performance in

allocating the nodes to be visited.

B. Multi-Objective Optimization

Multi-Objective Optimization (MOO) techniques are pop-

ular for solving the task allocation problems. The work [21]

presents an auction-based approach, in which the robots

calculate the bids for each task by means of MOO. In

order to improve the performance of a scheduling problem,

three aspects (i.e., task execution time, task transferring time

and task execution cost) have been considered in [22]. The

non-dominated sorting genetic algorithm (NSGA-II) [23]

has shown its advantage in solving many MOO tasks, e.g.,

optimizing the beam structures [24] and optimizing the

laser welding process [25]. In NSGA-II, an elitist strategy

is employed in each generation to avoid the loss of non-

dominated solutions. The work [26] introduces four mutation

operations to improve the search ability. To ensure diversity

and convergence, the work [27] presents a strategy to select

the leader for each particle. Several metrics are combined

into a single fuzzy metric to convert multiple objectives into

a single objective in [28].

Among the above evolutionary algorithms, PSO is popular

and can ensure fast convergence, but the standard PSO is

originally designed for handing single objective optimiza-

tion problems. Moreover, existing extensions for multiple

objectives are usually ad hoc, and a few of them can be

used to solve a generic MOO problem in both discrete and

continuous spaces [29].

III. PROBLEM FORMULATION

In this work, we relate the CMRTA problem with multiple

objectives to a more complex variant of the mTSP. We use

a complete graph G(V,E) to define the problem, where

V denotes the set of nodes (e.g., targets dispersed in the

environment), and E represents the set of edges linking the

nodes. Each edge ei,j ∈ E is associated with a weight

di,j ≥ 0 that defines the travel distance from node i to j,

and the travel distance between two nodes is assumed to be

symmetric, i.e., di,j = dj,i.

A. Cooperative Multi-Robot Task Allocation (CMRTA)

In the CMRTA problem, each robot should be allocated

with a set of subtasks to complete. We use m to denote the

number of robots, and Tk to represent the set of subtasks

allocated to the k-th robot, k ∈ [1,m]. Here a subtask

indicates a sequence of nodes that forms a round trip for

a robot to visit. Thus, the robot team needs to complete

the overall task T = [T1,T2 . . . ,Tm]. We use Cost(Tk)
to represent the tour cost of k-th robot to visit its allocated

subtasks,

Cost(Tk) =
∑

ei,j∈E

wijkdi,j , (1)

where the binary variable wijk indicates whether the tour of

the k-th robot includes the edge ei,j or not. To perform such

a task allocation problem, we need to find m Hamiltonian

tours that should satisfy two objectives, i.e., minimizing the

total tour cost for the overall robot team and the longest tour

for any individual robot. In order to find Hamiltonian tours,

each node in the graph has to be visited exactly once by only

one robot. Thus, the goal of the cooperative MRTA problem

is to minimize the following function:

f(T ) = (Σm
k=1Cost(Tk), max

k∈[1,m]
Cost(Tk)), (2)

subject to :










⋂

k∈[1,m]

{Tk\{o}} = φ

⋃

k∈[1,m]

Tk = V,
(3)

where o denotes the nest node. According to the above

objective function, the robots are expected to minimize the

entire team cost and the longest individual travel cost.

B. Multi-Objective Optimization Model

The CMRTA problem formulated above can be abstracted

into a Multi-Objective Optimization (MOO) problem, where

several objectives are required to be achieved, and each

objective depends on a vector of decision variables. Without

loss of generality, a MOO problem can be defined as

minimize f(x) = {f1(x), f2(x), . . . fl(x)}, (4)

subject to:
{

gi(x) ≤ 0, for i ∈ [1, r]
hi(x) = 0, for i ∈ [1, s],

where x is the vector of decision variables, fi(x) represents

the i-th objective function, and gi(x), hi(x) are the con-

straint functions.

In a MOO problem, we can evaluate a solution with

respect to different objectives. Let u and v be two solutions

of the problem defined in Equation 4. We say that v is

dominated by u (denoted by v � u ), if the following

conditions are satisfied

∀i : fi(u) ≤ fi(v) and ∃j : fj(u) < fj(v), (5)

where i, j ∈ [1, l]. If a solution is not dominated by any other

ones, it is called a Pareto optimal solution. The Pareto front

represents the set of all Pareto optimal solutions. Thus, an

algorithm to a MOO problem seeks to search for a set of

non-dominated solutions.

IV. MULTI-OBJECTIVE PSO APPROACH

In this section, we will first discuss the standard PSO

algorithm, and then an extended novel algorithm will be

proposed to address multiple objectives. Afterwards, an

adapted version for discrete spaces is presented to deal with

the CMRTA problem.



A. Standard Particle Swarm Optimization

PSO is originally inspired by collective behaviours of

birds, fishes or insects. With regard to a MOO, a solution to

such a problem can be represented by a vector of particles

xi = (xi1, xi2, . . . , xiD), where D is the dimension of the

search space. Thus, each particle is endowed with a position

in the search space, and it can move around with a velocity

vi = (vi1, vi2, . . . , viD) so as to find the optimal solutions.

We can use the following equation to calculate the coming

location of a particle for the next timestep,

x
t+1
i = x

t
i + v

t+1
i , (6)

where t denotes the t-th timestep of iterations.

To decide the moving direction, each particle should

consider its own trajectory and the behaviours of the oth-

ers. Specifically, two best solutions are used to update the

position of each particle, i.e., the personal best position pbest
and the global best position gbest. Thus, each particle can

update its own position based on the information of pbest
and gbest as follows,

v
t+1
i = ωvt

i + r1φ1(gbest
t −x

t
i) + r2φ2(pbesti −x

t
i), (7)

where ω denotes the inertia weight that controls to what

extent the previous velocity affects the coming velocity.

φ1 and φ2 are constants that control the influences of the

personal and global guides. r1 and r2 are random numbers

uniformly distributed in [0, 1]. The velocity has a range

in [−vmax,vmax], which defines the limit of the velocity.

PSO algorithms will terminate when a good fitness value is

achieved or the maximum number of iterations is reached.

B. Extended Multi-Objective PSO Approach

To cope with multiple objectives, the standard PSO has

been modified for multi-dimensional spaces, such as aggre-

gating and lexicographic ordering [30]. The typical idea of

aggregating is to integrate multiple objectives into a single

objective so that the standard PSO is still applicable to find a

solution. In lexicographic ordering, multiple objectives must

be ranked based on their priorities, so each objective will be

considered as a single PSO problem.

Comparatively, we are interested in a Pareto front-based

approach in this work. To this end, we have to modify Equa-

tion 7, because it is impossible to find the pbest and gbest
in multi-dimensional spaces for MOO problems. Instead, we

need to find the Pareto front, so the gbest will be replaced

by a leader. It is important to maintain the diversity of the

Pareto front and choose the leader for fast convergence.

Several methods have been proposed to address this issue,

e.g., the work [31] selects the leader randomly from all

non-dominated solutions. OMOPSO [32] utilizes an external

archive, based on the crowding distance from NSGA-II, to

filter out leader solutions and divides the particle swarms into

three groups. To accelerate the convergence of the swarm,

it applies uniform, non-uniform and no mutation operators

to those groups, respectively. SMPOS [33], extended from

OMOPSO, employs a construction factor with random social

and cognition learning factors. In our work, we will introduce

a Pareto front refinement strategy and a probability-based

mechanism for selecting the leader.

1) Main Procedure: The main procedure of the proposed

MOPSO approach is summarized as follows:

• Step 1. A group of particles P and a global Pareto front

set Pf are initialized. Each particle pi ∈ P is born with

a random solution xi and a private Pareto front set P i
f .

The solution size of all private/global Pareto fronts is

set to n.

• Step 2. At timestep t, each particle’s solution x
t
i will be

evaluated using f(x) and added into P i
f .

• Step 3. If the solution size of the private Pareto front

set for particle pi exceeds the limit n (i.e., ‖P i
f‖ > n),

it needs to be refined based on the PARETO FRONT

REFINEMENT STRATEGY (see Algorithm 1), which will

delete redundant or inferior solutions.

• Step 4. The global Pareto front set Pf is updated using

Pf ←
⋃

P i
f , and then it also needs to be refined based

on the PARETO FRONT REFINEMENT STRATEGY (see

Algorithm 1).

• Step 5. The refined global Pareto front will be stored

into a Elite Set B (defined to avoid population degra-

dation) using B ← B
⋃

Pf .

• Step 6. A leader will be selected from the global

Pareto front set Pf based on the PROBABILITY-BASED

SELECTION STRATEGY, which will be discussed latter.

• Step 7. The non-dominated solutions in each particle’s

private Pareto front set are updated using the following

equation,
{

v
t+1,k
f,i = v

t
i + r1φ1(leader − x

t
i) + r2φ2(x

t,k
f,i − x

t
i)

x
t+1,k
f,i = x

t
i + v

t+1,k
f,i ,

(8)

where x
t
i denotes the current solution of particle pi at

timestep t, and x
t,k
f,i ∈ P i

f denotes the k-th solution in

the private Pareto front set of particle pi at timestep t.
• Step 8. Each particle pi randomly chooses a new solu-

tion x
t+1,k
f,i from its private Pareto front set P i

f to update

its position x
t+1
i for the next timestep, and the private

Pareto front set will be updated accordingly,

P i
f ← P i

f

⋃

{xt+1,k
f,i }. (9)

• Step 9. If the next timestep t + 1 does not exceed the

limit of iterations, switch to Step 2.

• Step 10. The termination condition is reached, and the

Elite set B will be refined based on the PARETO FRONT

REFINEMENT STRATEGY (see Algorithm 1).

2) Pareto Front Refinement Strategy: As mentioned

above, we have to refine the private Pareto front set, the

global Pareto front set and the Elite set in step 3, 4 and 10,

respectively. Herein, we will introduce a PARETO FRONT

REFINEMENT STRATEGY to delete redundant or inferior

solutions.

It should be noted that the Elite set is used to avoid

population degradation, which is a troublesome issue to



Algorithm 1: Pareto Front Refinement Strategy.

Input: Any unrefined Pareto set Pr.

Output: Refined Pareto front set Pr′ .

1 for xi,xj ∈ Pr,xj 6= xi do

2 if xi � xj then

3 Remove xi from Pr. ⊲ remove inferior

solutions.
4 end

5 end

6 while ‖Pr‖ ≥ n do

7 Calculate CPr
using CROWDED VALUE(Pr);

8 ⊲ see Algorithm 2.

9 Find x such that argmin (CPr
);

10 ⊲ find x with the minimum crowded value.

11 Remove x from Pr.

12 end

MOO problems. This is because when refining the private or

global Pareto front sets, some non-dominated solutions may

be deleted or replaced by others, due to the limit of Pareto

front sets. Such a case can cause premature convergence and

loss of optimal solutions. Thus, in order to cope with this

issue, the Elite set B is employed to store all the global

optimal solutions in each iteration (see Step 5). After the

terminate condition is reached, we can use the refinement

strategy to reduce the size of the Elite set (Step 10). In

such a way, we can make sure that all the non-dominated

solutions are kept during the iterations.The PARETO FRONT

REFINEMENT STRATEGY is described in Algorithm 1.

We can see that when refine a Pareto front set, we first

remove all the inferior solutions (line 1-4). If the size of the

set still exceeds the limit n, we need to remove some of

the non-dominated solutions to compress the set. To decide

which solution to remove, we develop a CROWDED VALUE

function (see Algorithm 2) for evaluation, and then select the

one with the minimum crowed value (line 7, 9).

Algorithm 2: Crowded Value Calculation.

Input: Pareto set Pr.

Output: Set of crowded value CPr
.

1 for x ∈ Pr do

2 Calculate f̂(x) ⊲ normalization using Equation 10.

3 end

4 CPr
= φ ⊲ initialize crowded value set.

5 K[xi,xj ] = ‖f̂(xi)− f̂(xj)‖2,xi,xj ∈ Pr

6 ⊲ adjacency score matrix of each solution in f̂(x).
7 for x ∈ Pr do

8 x
a,xb = argmin{K[x :], 2} ⊲ find two solutions

with the smallest values.

9 cx = min{|f̂i(x
a)− f̂i(x

b)|}, i ∈ [1, l] ⊲ obtain

crowded value.

10 CPr
← CPr

∪ {cx} ⊲ update the crowded value set.

11 end

12 return CPr

In line 2 of Algorithm 2, for each solution of the input

Pareto set Pr, a normalization process is used to standardize

the objective vector f(x) = (f1(x), f2(x) . . . fl(x)) by the

below equation,

f̂i(x) =

fi(x)− min
k∈[1,n]

(fi(x
k
f ))

max
k∈[1,n]

(fi(xk
f ))− min

k∈[1,n]
(fi(xk

f ))
, (10)

where i ∈ [1, l], k ∈ [1, n] and x
k
f denotes the k-th solution

of the input Pareto front set Pr. The normalized objective

vector is denoted by f̂(x) = [f̂1(x) . . . f̂l(x)].
As mentioned above, the global Pareto front set Pf , the

private Pareto set P i
f for each particle pi, and the Elite set B

need to be refined based on the refinement strategy. For the

sake of simplicity and portability, all the input values (e.g.,

Pf , P i
f and B) are denoted as Pr in Algorithm 1.

3) Probability-Based Selection Strategy: In the main pro-

cedure of the proposed MOPSO approach, we have men-

tioned that the leader needs to be found so as to update

a particle’s position according to Equation 8. The leader’

selection is crucial for faster convergence.

In this work, the leader is selected from the global Pareto

front set Pf with a probabilistic distribution calculated by

the CROWDED VALUE in Algorithm 2. Thus, we have to

calculate the probabilities for all the solutions in the global

Pareto set using the following formula,

Prob(xk
f ) =

cxk
f

Σcxk
f

,xk
f ∈ Pf , (11)

where x
k
f denotes the k-th solution in the global Pareto front

set Pf . Afterwards, the solution with better expectation can

be selected as the leader with a high probability to update

all the private Pareto front set of each particle in Equation 8.

C. Adapted Version for Discrete Spaces

So far the presented MOPSO approach can solve the

MOO problems in continuous spaces, and it still needs to be

adapted so as to deal with the CMRTA problem in discrete

spaces. To this end, Equation 8 should be replaced to update

the solutions of each particle’s private Pareto front set by

x
t+1,k
f,i = (xt

i ⊛ leader)⊛ x
t,k
f,i , (12)

where the operator ⊛ is used to merge two discrete solutions,

and Algorithm 3 details the corresponding merge algorithm.

In Algorithm 3, we introduce a new operator ⊕ to swap

two nodes in a discrete sequence. To be specific, Op = {j, q}
(lines 5, 7) means that the node in position j needs to

be exchanged with the node in position q. For example,

if the operator ⊕ acts on the discrete sequence x̂
′

i =
(6, 3, 8, 5, 1) with the exchange pair Op = {2, 4}, after

the operation x̂
′

i ⊕ Op, the discrete sequence will become

x̂
′

i = (6, 5, 8, 3, 1). In lines 4-8, we first record indexes that

differentiate two discrete solutions. Afterwards, some nodes

in one solution will be exchanged according to a probability

function ProbSA (see line 10-15).



Algorithm 3: Updating discrete solutions by merging.

Input: Two discrete solutions x
′

i and x
′′

i , with regard

to particle pi.
Output: updated solution x

∗

i .

1 Ops = φ ⊲ initialize operator sets for storing position

pairs that need to be swapped in a solution.

2 x̂
′

i ← x
′

i ⊲ make a temp copy for recording differences

between x
′

i and x
′′

i .

3 for j ∈ [1 . . . ‖x̂′

i‖] do

4 if x̂′

i[j] 6= x
′′

i [j] then

5 Op← {j, q}, where x
′′

i [q] = x̂
′

i[j])
6 Ops← Ops ∪ {Op} ⊲ record the location.

7 x̂
′

i ← x̂
′

i⊕ Op ⊲ swap the nodes in x̂
′

i.

8 end

9 end

10 for Op ∈ Ops do

11 if rand() ≤ ProbSA(t) then

12 x
′

i ← x
′

i⊕ Op ⊲ swap the nodes in x
′

i.

13 end

14 x
∗

i ← x
′

i

15 end

16 return x
∗

i

In order to improve the search performance and guarantee

convergence, we apply a Simulated Anneal strategy to define

the probability function as follows,






ProbSA(t) = N (µ(t), σ)
σ = (max{γ1 − µ(t), µ(t)− γ2})/3
µ(t) = α+ β cos(π × t

tmax
),

(13)

where α and β control the shapes of the centre curve, and

they must obey α+β ≤ 1, and α−β ≥ 0. γ1 and γ2 are used

to control the size of the probability interval by changing the

σ in normal distribution N .

With regard to the CMRTA problem, each robot needs

to be allocated with a tour to visit. Thus, we need to find

m Hamiltonian tours or cycles, where each node has to be

visited only once. In order to minimize the tour cost for

Algorithm 4: Hamiltonian Tour Improvement.

Input: Subtask of k-th robot Tk, k ∈ [1 . . .m].
Output: Improved subtask T

′

k of k-th robot.

1 for i ∈ [1 . . . ‖Tk‖] do

2 for j ∈ [i . . . ‖Tk‖] do

3 if dTk[i],Tk[j] + dTk[i+1],Tk[j+1] ≤
dTk[i],Tk[i+1] + dTk[j],Tk[j+1] then

4 Op← {i+ 1, j} ⊲ recode the nodes.

5 Tk ← Tk⊕ Op ⊲ swap the nodes in Tk.

6 end

7 end

8 end

9 T ′

k ← Tk;

10 return T ′

k

each robot, a Hamiltonian Tour improvement algorithm is

presented in Algorithm 4, which will be called after a new

solution is generated by Algorithm 3. Here we also apply the

operator ⊕ to exchange two nodes in a tour, with the aim of

minimizing the cost for each tour.

V. EXPERIMENTS AND RESULTS

In this section, in order to evaluate the proposed approach,

we first employ three benchmark functions to assess the

performance of finding the true Pareto fronts in continuous

spaces. Then, we use six datasets to investigate the task

allocation mechanism in dealing with the CMRTA problem

in discrete spaces.

A. Results of Finding True Pareto Front

As in [23], [27], the benchmark ZDT functions have

been used to evaluate the performance of finding the true

Pareto fronts. The definition of ZDT functions is described

in Table I. We can see that ZDT1 and ZDT3 have convex

Pareto fronts, but the convex Pareto front of ZDT3 is not

contiguous, and ZDT2 has nonconvex Pareto front.

To evaluate the performance of finding the Pareto fronts,

several MOO algorithms are available to test the ZDT

functions, but the work [34] found that OMOPSO [32],

SPEA2 [35], NSGA-II [23], and SMPSO [33] can yield the

best results. Thus, in this work we will compare the proposed

approach with those four well-known algorithms.

Although many metrics are available to evaluate two

Pareto fronts, we cannot find one that is absolutely reliable.

Thus, as introduced in [36], [27], we also employ two quality

indicators IH and Iǫ+ to comparing the performance of

algorithms, and the values of these two indicators express the

closeness to the true Pareto fronts. The values can be between

zero and one, and the higher is the value of IH (or the smaller

is the value of Iǫ+), the closer it is to the true Pareto front.

Table II shows the means and standard deviations for the

ZDT functions, and the bold values represent the best results

among the four well-known algorithms and our proposed

approach. Moreover, Figure 1 can demonstrate that the our

proposed approach can outperforms the other four algorithms

.

B. Results of CMRTA in Discrete Spaces

To validate the proposed approach to the CMRTA prob-

lem, six datasets from TSPLIB1 are used to compare the

performance between NSGA-II and our proposed approach.

The reason why we choose TSPLIB as the test benchmark is

because the CMRTA problem is modelled as a more complex

variant of mTSP. In the environment of TSPLIB, each robot

needs to be allocated with a set of nodes to visit, with the goal

of minimizing the overall team cost and any individual cost.

With regard to the parameter configurations, the population

of two approaches is set to 100, and the Pareto front size is

15. The number of iterations is 200, and the mutation rate

is set to 10 in NSGA-II.

In this experiment, we evaluate two algorithms in two

maps (labelled KroA and KroB), scaled nodes/cities (i.e.,

1http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/.



TABLE I

DEFINITION OF THE BENCHMARK ZDT FUNCTIONS.

Problem Objective Functions Optimal Solutions comments

ZDT1

f1(x) = x1

f2(x) = g(x)
[

1−

√

x1/g(x)
]

g(x) = 1 + 9
(
∑n

i=2 xi

)

/(n− 1)

x1 ∈ [0, 1]
xi = 0

i = 2, . . . , n
convex

ZDT2

f1(x) = x1

f2(x) = g(x)
[

1− (x1/g(x))
2
]

g(x) = 1 + 9
(
∑n

i=2 xi

)

/(n− 1)

x1 ∈ [0, 1]
xi = 0

i = 2, . . . , n
non-convex

ZDT3

f1(x) = x1

f2(x) = g(x)
[

1−

√

x1/g(x)−
x1

g(x)
sin (10πx1)

]

g(x) = 1 + 9
(
∑n

i=2 xi

)

/(n− 1)

x1 ∈ [0, 1]
xi = 0

i = 2, . . . , n

convex
disconnected

TABLE II

RESULTS OF BENCHMARK ZDT FUNCTIONS AFTER 30 RUNS.

Problem
OMOPSO SPEA2 NSGA-II SMPSO Our Approach

IH Iǫ+ IH Iǫ+ IH Iǫ+ IH Iǫ+ IH Iǫ+

ZDT1
Mean 0.739 0.480 0.610 0.511 0.856 0.531 0.554 0.506 0.883 0.484
Std. 0.140 0.065 0.121 0.070 0.150 0.074 0.164 0.058 0.086 0.027

ZDT2
Mean 0.739 0.898 0.473 0.796 0.583 0.949 0.527 0.894 0.602 0.613

Std. 0.268 0.101 0.202 0.088 0.222 0.039 0.290 0.141 0.044 0.062

ZDT3
Mean 0.843 0.552 0.711 0.499 0.851 0.461 0.693 0.543 0.858 0.384

Std. 0.126 0.077 0.144 0.068 0.107 0.061 0.136 0.093 0.022 0.025
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(a) Pareto fronts for ZDT1.
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(b) Pareto fronts for ZDT2.
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(c) Pareto fronts for ZDT3.

Fig. 1. Comparison of the performance with regard to the ZDT functions.

100, 150, and 200), and scaled robot teams (i.e., 3, 4, 5, and

6 robots), as shown in the results in Figure 2. In the figure,

Total Cost represents the overall travel distances among the

robot team, and Max Sub Cost indicates the maximum travel

distance of any individual robot. For a cooperative robot

team, we seek to minimize both of them. As can be seen from

the results, in comparison with the NSGA-II, our proposed

approach can reduce the Total Cost at least 26%, and reduce

the Max Sub Cost at least 21%. Moreover, the Max Sub Cost

is close to 1/m of the Total Cost according to our proposed

approach. It means that the tour cost for each robot is almost

the same, which also implies that the robots can balance their

workloads in a cooperative manner.

Figure 3 depicts the allocated tours in the map of KroB

by the proposed approach. Here, TC means the total cost of

all the tours, and MSC represents the maximum cost of an

individual tour. We can also directly observe that multiple

robots indeed can improve their team performance. In other

words, the individual cost reduces along with the increase of

the robot size. However, the total travel cost will be increased

if more robots engage in the teamwork.

VI. CONCLUSIONS AND FUTURE WORK

In this work, a novel Multi-Objective Particle Swarm

Optimization approach has been proposed to solve the CM-

RTA problem. As the problem involves multiple objectives,

the standard single particle swarm optimization cannot be

directly applied to resolve this problem. We present a new

Pareto front-based approach, which features a Pareto front

refinement strategy and a probability-based leader selection

strategy. In comparison with other well-known algorithms,

the experimental results show that the proposed approach can

provide a competitive solution to multi-objective optimiza-

tion problems in continuous spaces. Moreover, it can take

into account both the overall team cost and any individual

workload when resolving the CMRTA problem. In future

work, we are interested in modelling the interferences among

the robots and capability of continuously completing a set of
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Fig. 2. Performance comparison using the map KroA and KroB(30 runs).

allocated subtasks in real robots. This is because adding more

robots cannot always yield good team performance due to

potential interferences between each other in physical robot

teams. The subtasks might be distinguished with various

types that need different capabilities to complete. Thus,

multiple constraints should be considered in order to achieve

multiple objectives in a specific task.
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[36] A. Liefooghe, M. López-Ibáñez, L. Paquete, and S. Verel, “Domi-
nance, epsilon, and hypervolume local optimal sets in multi-objective
optimization, and how to tell the difference,” in Proceedings of the

Genetic and Evolutionary Computation Conference, pp. 324–331,
ACM, 2018.


