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Abstract 

Selective laser melting (SLM) is a promising powder-based additive manufacturing technology due to its 

capability to fabricate metallic components with complex geometries. While most previous investigations 

focus on printing with a single material, recent industry-oriented studies indicate the need for multi-material 

SLM in several high-value manufacturing sectors including medical devices, aerospace and automotive 

industries. However, understanding the underlying physics in multi-material SLM remains challenging due 

to the difficulties of experimental observation. In this paper, an integrated modelling framework for multi-

track, multi-layer and multi-material SLM is developed to advance the in-depth understanding of this process. 

The main novelty is in modelling the molten pool evolvement and track morphology of multiple materials 

deposited on the same and across different layers. Discrete element method (DEM) is employed to reproduce 

the powder deposition process of multiple materials in different deposition patterns, with particle size 

distribution imported from a particle size analyser. Various phenomena including balling effect, keyhole 

depression, and lack of fusion between layers are investigated with different laser energy inputs. As a result 

of the different thermal properties, several process parameters including energy density and hatch spacing 

are optimised for different powder materials to obtain a continuous track profile and improved scanning 

efficiency. The interface between two layers of different materials is visualised by simulation; it was found 

that the phase migration at the interface is related to the convection flow inside the molten pool, which 

contributes to the mixing of the two materials and elemental diffusion. This study significantly contributes 

to the challenging area of multi-material additive manufacturing by providing a greater in-depth 

understanding of the SLM process from multi-material powder deposition to laser interaction with powders 

across multiple scanning tracks and different building layers than can be achieved by experimentation alone. 

Keywords: Selective laser melting (SLM); Multi-material; Heat transfer; Discrete element method (DEM); 

Computational fluid dynamics (CFD); Additive manufacturing
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1.Introduction 

     Selective laser melting (SLM) is a powder-based additive manufacturing process which uses 

a high power-density laser to melt and fuse powders layer-by-layer to form a three-dimensional 

part [1]. SLM has many advantages over other conventional manufacturing methods in terms 

of design flexibility, material usage and manufacturing cycle time [2, 3]. Components of a wide 

variety of materials including metal alloys and metal based composites can be successfully 

produced by SLM [4, 5]. Despite this, attention is currently focused on printing each designed 

part with single material at a time. Recently, there has been growing interest in the investigation 

of multi-material SLM due to its great potential for some specific applications where different 

material properties are required at different locations of the directly manufactured parts.  

     Efforts have been made to develop multi-material SLM systems which enable the printing 

of multiple materials across different layers as well as on the same building layer. A double 

powder spreading SLM system was developed by Demir and Previtali [6] to manufacture multi-

graded components by gradually controlling the construction of two materials (Fe/Al-12Si). 

Liu et al. [7] applied a powder dispensing technique to deliver two powder materials in SLM 

and bimetallic laminates of 316L/C18400 with good metallurgical bonding at the interface 

were produced. Other bimetallic structures of AlSi10Mg/ C18400 [8] and CuSn/18Ni300 [9] 

were also successfully manufactured using multi-material SLM, with multiple materials 

processed across different layers. A big challenge for multi-material SLM lies in realizing the 

powder deposition of different materials on the same building layer with required deposition 

patterns. To achieve this, Wei et al. [10, 11] demonstrated a multi-material SLM system which 

combined conventional powder-bed spreading with point-by-point multiple material selective 

powder removal and point-by-point dry powder delivery techniques. By adopting this system, 

Wei et al. [12] embedded anti-counterfeiting safety features (a QR code made of Cu10Sn) into 

metallic components made of 316L. A functionally graded 316L/Cu10Sn component [13] was 

also manufactured using this system, which can be applied to nuclear power plants and heavy 

electronics where both high stiffness and good thermal/electrical conductivity are required.  

     Considering that all the complex physical phenomena in SLM occur at microsecond and 

micrometer scales, it is challenging to conduct real-time observation during experiments to 

obtain a comprehensive understanding of the process. Alternatively, numerical simulations 

have been employed to help investigate the complicated mechanisms and predict the formation 

of defects in SLM. For single-track/singe-layer SLM processes, the significant effects of recoil 
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pressure and Marangoni convection on the formation of denudation, pores and spatter have 

been studied by developing multi-physics CFD models [14, 15, 16]. Some other phenomena 

including vaporization, balling occurrence and keyhole formation were examined by 

investigating the effect of laser energy density with the help of modelling [17, 18, 19]. The 

microstructure evolution during SLM has been revealed by coupling thermal fluid dynamics 

and microstructure analysis using phase field modelling [20] and cellular automata [21, 22]. 

Apart from single-track/singe-layer SLM, studies have been extended to examine the multi-

track and/or multi-layer powder bed fusion processes. The formation of near-spherical and 

irregularly shaped defects during multi-layer SLM process have been studied by adopting high-

fidelity powder scale models [23, 24]. The influence of layer thickness and surface unevenness 

on solidified tracks were examined [25, 26]. In addition, the formation of balling effect, track 

nonuniformity and inter-track/interlayer voids were also investigated by understanding the 

effects of hatch spacing and scanning strategy [27, 28]. Despite some good understanding of 

multi-track and multi-layer SLM processes has been achieved by modelling, all the mentioned 

studies only focus on simulating SLM with one single powder material. For multi-material 

SLM, Tan et al. [29] made the first attempt to model the multi-material process by adopting 

Molecular Dynamic method. However, many assumptions were made in their model, which 

did not consider most of the physics involved in SLM, including surface tension forces, multi-

phase flow and molten pool formation. Thus, the model does not reveal the complexity of the 

process especially when materials of very different thermal properties are included. Apart from 

CFD modelling of the molten pool development, powder bed simulation for SLM has also been 

extensively investigated by using discrete element method (DEM) [30, 31, 32, 33]. However, 

all the studies are based on modelling the powder deposition with one single material.  

     Despite the rapid development of multi-material SLM systems, there have been no scientific 

publications on investigating the molten pool development and track formation during multi-

material SLM processes, and thus the underlying physics of multi-material SLM remains 

unknown. In addition, no work has been found on simulating powder bed deposition of multiple 

materials on the same building layer and across different layers with different patterns.  

     In this study, an integrated modelling framework including multi-material powder 

deposition and laser-powder interaction is developed to simulate the multi-track, multi-layer 

and multi-material SLM process of 316L and Cu10Sn powders. Process parameters are varied 

to examine the effect of energy density on various phenomena which occur in SLM, including 

balling effect, keyhole depression and lack of fusion. The development of temperature histories 
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and molten pool volumes is used to compare the fluid-dynamics inside the molten pool for two 

powder materials with different thermal properties, on the same building layer and across 

different layers. The simulated interface between two layers of different materials is compared 

with experimental results and the effect of convection flow inside the molten pool on the phase 

migration at the interface is studied. 

2. Modelling framework and methodology 

2.1 Integrated modelling framework 

     Fig. 1 presents the computational framework for multi-physics modelling. As shown, the 

powder size distribution of different powders is first examined using a particle size analyser 

(Malvern Mastersize 3000). Based on these results, DEM is employed to generate a distribution 

of particles and initialise the powder deposition for the first scanning layer. The powder 

information is then transferred to a CFD model to examine the interaction between the laser 

beam and the powder, which includes the calculation of multi-phase flow, surface tension 

forces, melting and solidification, gravitational force, recoil pressure and a self-adaptive 

Gaussian heat source. After obtaining the temperature distribution and profile of the scanned 

track, the geometry of the solidified powder bed is transferred back to DEM to initialise the 

powder deposition of the second layer. These steps are repeated to enable the investigation of 

molten pool development and track formation for multi-material deposition on the same 

building layer and across different layers scanned with multiple tracks.  

 

<Insert Figure 1> 

 

2.2 Modelling of powder deposition process 

    The discrete element method (DEM) is employed to simulate the deposition of the powders. 

Hertz-Mindlin with JKR cohesion model [34] is implemented to calculate the translational and 

rotational motions of the powder. The normal force 𝐹𝑛 and tangential force 𝐹𝑡 are given using 

equations (1) and (2) [34] 

 𝐹𝑛 = 43 𝐸∗√𝑅∗𝛿𝑛3/2 − 2√56 𝑙𝑛𝑒√𝑙𝑛2𝑒+𝜋2 (2𝐸∗√𝑅∗𝛿𝑛𝑚∗)1/2𝑣𝑛𝑟𝑒𝑙⃗⃗⃗⃗ ⃗⃗  (1) 
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 𝐹𝑡 = −8𝐺∗√𝑅∗𝛿𝑛𝛿𝑡 − 2√56 𝑙𝑛𝑒√𝑙𝑛2𝑒+𝜋2 (8𝐺∗√𝑅∗𝛿𝑛𝑚∗)1/2𝑣𝑡𝑟𝑒𝑙⃗⃗⃗⃗ ⃗⃗  (2) 

where 𝐸∗ is the equivalent Young’s Modulus, 𝑅∗ is the equivalent radius, 𝛿𝑛  is the normal 

overlap, 𝑚∗  is the equivalent mass, 𝑒  is the coefficient of restitution, 𝑣𝑛𝑟𝑒𝑙⃗⃗⃗⃗ ⃗⃗ 
 is the normal 

component of the relative velocity, 𝛿𝑡  is the tangential overlap, 𝐺∗  is the equivalent shear 

modulus and 𝑣𝑡𝑟𝑒𝑙⃗⃗⃗⃗ ⃗⃗ 
 is the tangential component of the relative velocity. Rolling friction, 𝜏𝑖, is 

considered by applying a torque to the contacting surfaces, as shown in equation (3) [34]: 

 𝜏𝑖 = −𝜇𝑟𝐹𝑛𝑅𝑖𝜔𝑖  (3) 

where 𝜇𝑟 is the coefficient of rolling friction, 𝑅𝑖 is the distance of the contact point from the 

particle centre and 𝜔𝑖 is the unit angular velocity vector of the particle. The cohesion force 

between the powders is calculated using equation (4) [35] 

 𝐹𝐽𝑅𝐾 = −4√𝜋𝛾𝐸∗𝑎3/2 + 4𝐸∗3𝑅∗ 𝑎3  (4) 

     The commercial software EDEM v2019 [34] is used to perform the multi-material powder 

deposition simulations. The two powder materials used to simulate multi-track, multi-layer and 

multi-material processes are 316L stainless steel and Cu10Sn, which allows a comparison 

between the model and experimental results. The combination of stainless steel and copper 

alloy has been extensively used in many industries, such as power generation, nuclear energy 

and heavy electronics, due to their complementary properties including good corrosion 

resistance of stainless steel and excellent thermal and electrical conductivities of copper alloy 

[36, 37]. The 316L stainless steel powder examined in the particle analysis and used in the 

SLM experiments, was supplied by LPW Technology Ltd. UK. The Cu10Sn powder was 

provided by Makin Metal Powders Ltd. UK. The morphologies of these two powders are shown 

in Fig. 2(a) and Fig. 2(b); the images were taken by a scanning electron microscope (SEM). 

The particle size distributions shown in Fig. 2(c) and Fig. 2(d) were examined by Malvern UK 

Mastersizer 3000 particle size analyser. The powder sizes of D10, D50 and D90 were measured 

as 17.9, 30.3 and 50 µm for 316L, and 9.79, 22.4 and 39.5 µm for Cu10Sn, respectively. The 

obtained powder distributions were imported into EDEM as normal distribution functions. 

After calculation, the simulated powder sizes of D10, D50 and D90 were found to be 16.1, 28.2 

and 48.4 µm for 316L, and 8.5, 20.7 and 36.9 µm for Cu10Sn. Fig. 2(c) and Fig. 2(d) show the 

simulated powder size distributions compared to the measured results for the two powders. To 

simulate the powder deposition process, powders are first generated from a plane above the 
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substrate with required layer thickness and then fall freely under gravity. In order to increase 

the powder packing density after depositing the powders on the substrate, a rigid plane is used 

to compress the powder bed to simulate the pressure implemented by the recoater blade and 

pressing plate during experiments.  

 

<Insert Figure 2> 

 

     To achieve the powder deposition for multiple materials, the powder-generating plane is 

divided into small sections and the generation rate of each specific powder material on each 

section is adjusted to meet the required deposition pattern. Fig. 3 shows the simulated powder 

bed results using powder deposition patterns employed in previous multi-material SLM studies. 

Fig. 3(a) presents the distribution of evenly mixed Cu10Sn and 316L powders, which can be 

used to create easy-to-remove composite material for support structures [10]. Fig. 3(b) and Fig. 

3(c) show a clear boundary between Cu10Sn and 316L powders, where Fig. 3(c) illustrates the 

‘finger-cross’ shaped interfacial design which can help enhance the elemental diffusion 

between the two materials [11]. Fig. 3(d) presents a gradient powder distribution pattern for 

manufacturing functionally graded components [13], which is obtained by gradually 

decreasing the generation rate of Cu10Sn powder from 100% to 0% from left to right, while 

inversely increasing the generation rate of 316L powder from 0% to 100%.  

 

<Insert Figure 3> 

 

     By employing this multi-material powder deposition method, various combination of 

powder materials can be deposited on the same building layer and across different layers with 

required deposition patterns, providing great flexibility for different multi-material additive 

manufacturing systems. 

2.3 Modelling of laser-powder interaction 

     After depositing the powder layer, the calculated powder information is transferred to a 

CFD model to simulate the interaction between the laser beam and powders. The following 
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assumptions were introduced to help develop the continuum CFD model: (i) the fluid flow was 

assumed as a incompressible, Newtonian and laminar flow [38], (ii) the enthalpy-porosity 

technique introduced by Voller et al. [39] was adopted to simulate the material melting and 

solidification process, (iii) mass loss due to vaporization was not included in the model [38] 

and (iv) the Boussinesq approximation was formulated to account for the density change caused 

by temperature variation in the molten pool [22].  

     Based on these assumptions, the three-dimensional mass, momentum and energy 

conservation equations are represented in equations (5)-(7) [40, 41] as follows:  

 
𝜕𝜌∂t + ∇ ∙ (𝜌𝑣 ) = 0  (5) 

 
𝜕𝜕𝑡 (𝜌𝑣 ) + ∇ ∙ (𝜌𝑣 𝑣 ) = −∇𝑝 + ∇ ∙ (𝜏̿) + 𝜌𝑔 + 𝑆𝑚𝑜𝑚  (6) 

 
𝜕(𝜌𝐻)𝜕𝑡 + ∇ ∙ (𝜌𝑣 𝐻) = ∇ ∙ (𝑘∇𝑇) + 𝑆ℎ (7)  

where ρ is the material density, t is the time, 𝑣  is the fluid velocity, 𝑝 is the pressure, 𝜏̿ is the 

stress tensor, 𝜌𝑔  is the gravitational body force, 𝐻 is the enthalpy, 𝑘 is the thermal conductivity, 𝑆𝑚𝑜𝑚 is the momentum source and 𝑆ℎ is a self-adaptive volumetric heat source.  

     Fig.4 illustrates the boundary conditions of the calculation domain, where thermal 

conduction, convection and radiation are applied on the side and bottom surfaces of the 

substrate defined as walls. The energy-balance equation is expressed as shown in equation (8): 

 𝑘 · 𝜕𝑇𝜕𝒏 = −ℎ𝑐(𝑇 − 𝑇𝑒𝑛𝑣) − 𝜎𝜀(𝑇4 − 𝑇𝑒𝑛𝑣4 )  (8) 

where ℎ𝑐  is the heat convection coefficient, σ is the Boltzmann constant, ε is the radiation 

emissivity and 𝑇𝑒𝑛𝑣 is the environmental temperature. The top and side surfaces of the gas 

phase are defined as a pressure outlet, open to the ambient atmosphere with zero gauge-pressure.  

 

<Insert Figure 4> 

 

     Apart from the two powder materials 316L and Cu10Sn, a gas phase is included, so that the 

surface tension forces on the free surface between the gas and molten metal phases can be 

accurately captured. The volume of fluid (VOF) [42] method is employed to track the interface 
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between these three phases. The liquid-gas free surface between the gas phase and metal phases, 

as well as the interface between the two metal phases can be distinguished by comparing the 

volume fractions of these three phases during each time step. Other user-defined momentum 

and energy sources are also added to this liquid-gas interfacial boundary. The conservation 

equation for the volume fraction may be expressed as shown in equation (9) [43]: 

 
𝜕𝐹𝜕𝑡 + ∇ ∙ (𝑣 𝐹) = 0  (9) 

where F is denoted as the volume fraction of a certain phase. The characteristics of the molten 

pool evolve rapidly during SLM process, and thus the conservation of the applied heat source 

is necessary. If the heat source is applied arbitrarily on the free surface, the amount of total heat 

input from the laser beam will vary between two moments. Therefore, a self-adaptive Gaussian 

distributed laser beam is employed as a volumetric heat source on the free interface between 

the gas and metal to meet the conservation of total heat input for the changing molten pool 

profiles. Assuming that a total number of n cells are located on the interface within the effective 

laser beam range, heat source 𝑆ℎ can be expressed as shown in equation (10): 

 𝑆ℎ = 𝑃𝑙𝑎𝑠𝑒𝑟∗𝜂𝑉𝑐𝑒𝑙𝑙∗∑ exp(−𝑁∗𝑟𝑛2𝑟2 )𝑛1 ∗ exp (− 𝑁∗𝑟𝑛2𝑟2 )  (10) 

where 𝑉𝑐𝑒𝑙𝑙 is the cell volume, 𝑃𝑙𝑎𝑠𝑒𝑟 is laser power, 𝜂 is the laser power absorptivity. N is the 

Gaussian coefficient which is related to the percentage of laser power concentrated within the 

laser beam radius [44]. In this study, 95% of the total power was assumed to be contained 

within the laser beam radius 𝑟 [45], and hence N = 3 was applied as the Gaussian coefficient. 𝑟𝑛 is the radial distance from the laser beam centre which is given as equation (11):  

                                   𝑟𝑛 = √[𝑦𝑛 − (𝑣𝑙𝑎𝑠𝑒𝑟 ∗ 𝑡𝑓𝑙𝑜𝑤 + 𝑦0)]2 + (𝑥𝑛 − 𝑥0)2  (11) 

where 𝑣𝑙𝑎𝑠𝑒𝑟 is the laser scanning speed, 𝑡𝑓𝑙𝑜𝑤 is the calculation flowing time, 𝑥0 and 𝑦0 define 

the x and y positions of the starting point on the powder bed. Laser beam absorptivity 𝜂 is 

difficult to measure experimentally because it is dependent on many factors including laser 

wavelength, surface roughness, material of the substrate and process parameters (laser power, 

laser incident angle and laser spot size etc.) [16, 46]. The laser beam absorptivity of 316L was 

adopted as 0.35 in this model, which was a decision informed by previous studies of Khairallah 

et al. [14, 16]. Compared to iron-based alloys, the laser absorptivity of copper alloy was much 

lower and would decrease rapidly with the increase of laser wavelength. Since a continuous 
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fibre laser was used during the process, at 1070 nm wavelength the laser beam absorptivity of 

copper was 0.03 [47, 48]. Due to the lack of reliable material parameters for Cu10Sn, the laser 

beam absorptivity of Cu10Sn was also treated as 0.03 in this study.  

     The recoil pressure 𝑃𝑟  acts normal to the local free surface which is calculated as a function 

of the liquid surface temperature defined as [49]: 

                                           𝑃𝑟 = 0.54𝑃0𝑒𝑥𝑝 (∆𝐻𝑣𝑎𝑝 𝑇−𝑇𝑣𝑎𝑝𝑅𝑇𝑇𝑣𝑎𝑝) (12) 

where 𝑃0  is the atmospheric pressure, 𝑇𝑣𝑎𝑝 is the vaporization temperature, ∆𝐻𝑣𝑎𝑝  is the 

enthalpy of vaporization and 𝑅 is the universal constant of gases.   

     Surface tension plays an important role in the development of the molten pool during SLM 

processes. The continuum surface force (CSF) model [50] is used to calculate the surface 

tension which is added as a source term to the momentum equation. Two surface-tension forces 

are included in this model: (1) surface-tension force, 𝑓𝑠𝑛, normal to the free surface generated 

as a result of the curvature developed by the interface between the metal and gas phase and (2) 

the Marangoni shear force, 𝑓𝑠𝑡, tangential to the free surface generated as a result of surface-

tension difference attributed to the temperature difference on the molten pool surface. The 

surface tension forces can be defined as shown in equation (13) [51] :  

 𝑓𝑆 = 𝑓𝑠𝑛 + 𝑓𝑠𝑡 = 𝜎 ∙ 𝜅 ∙ 𝑛⃗ + ∇𝑡𝜎 (13) 

where 𝜎 is surface tension, 𝜅 is surface curvature and 𝑛⃗  is the vector normal to the surface.  

     Buoyancy force is considered using Boussinesq approximation [52], expressed as given in 

equation (14): 

 𝑆𝑏𝑢𝑜𝑦𝑎𝑛𝑐𝑦 = (𝜌 − 𝜌𝑚)𝑔 ≈ −𝜌𝑚𝛽(𝑇 − 𝑇𝑚)𝑔  (14) 

where 𝜌𝑚  is the material density at melting temperature 𝑇𝑚 and 𝛽 is the thermal expansion 

coefficient. An approximation is made, where 𝜌 = 𝜌𝑚(1 − 𝛽∆𝑇), in order to eliminate the 

variance of material density which is dependent on the temperature. 

     For the implementation of the CFD model, ANSYS Fluent v18.2 is used to solve all the 

transport equations. A three-dimensional model is built and a pressure-based transient solver 

with PISO (Pressure-Implicit with Splitting of Operators) pressure-velocity coupling method 

is applied. The velocity and temperature fields are discretized with a second order upwind 

scheme, and the pressure field is discretized with a PRESTO! (PREssure STaggering Option) 
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scheme which is applicable for the VOF method. The convergence criteria for residuals of 

continuity and momentum equation are satisfied by applying default value as 10-3 and 10-6 for 

the energy equation. The dimensions of the calculation domain were 500 μm ×720 μm × 240 

μm, which contained 691,200 hexahedral cells with uniform grid spacing of 5 μm. The 

calculation time step was 1 × 10-6 s with courant number kept smaller than 1. Table 1 presents 

the thermal properties of 316L and Cu10Sn powders used in this study  [12, 23, 53, 54, 55]. 

Due to the limitation of existing experimental data, the properties of Cu10Sn were regarded as 

constant values not subjected to the temperature change.  

 

<Insert Table 1> 

 

3. Results and discussions 

3.1 Multi-track simulation 

     Before introducing Cu10Sn into the model, process parameters were varied to investigate 

the impact of energy input on the molten pool development and track formation during multi-

track and multi-layer SLM process using 316L as powder material. A laser power of 100 W 

and a scanning velocity of 800 mm/s along positive Y direction were initially employed to 

carry out the simulation, before incrementally increasing the laser power. For these simulations 

the laser spot size was set at 70 μm, and the heating duration of the first single track was set as 

648 μs with a total scanning length of 518 μm. After scanning the first track, the laser scanning 

direction was altered 90° towards positive X, and the laser travelled for 36 μs to achieve a hatch 

spacing of 28.8 μm. Thereafter an adjacent track was scanned in parallel with the first track 

along negative Y direction. A schematic of the scanning path is shown in Fig. 5. After removing 

the laser heat source, 200 μs of cooling time was applied to account for the solidification 

process of the molten material.  

 

<Insert Figure 5> 
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     Fig. 6 and Fig. 7 present the results of simulations for various applied laser powers, ranging 

from 100 W to 200W. Fig. 6 shows the molten pool morphology, while Fig. 7 presents a cross-

section of the molten pool at different stages of the scanning process. Fig. 8 shows the 

temperature and molten pool velocity fields for higher laser powers, 175 W and 200 W.  

 

<Insert Figure 6> 

 

<Insert Figure 7> 

 

     Fig. 6(a) presents the temperature field and molten pool morphology using 100 W laser 

power at 324 µs, in the middle of the first scanning track, while Fig. 6(b) shows the molten 

pool characteristics when changing the scanning direction. It can be observed that a 

discontinuous bead was obtained after the first track and most of the powders on the scanning 

path were only partially melted with limited fusion formed among the powders. After scanning 

the second track more powders were melted as seen in Fig. 6(c). This could be attributed to the 

fact that the temperature of the surrounding powders increased after the first scanning track as 

a result of heat conduction, and during the scanning of the second track some portion of the 

solidified bead was re-melted. Fig. 7(a) shows the molten pool status when the laser was 

passing the middle of the powder bed along the plane of the laser beam centre, while Fig. 7(b) 

presents the cross-section of the track when the laser was approaching the end of the first 

scanning track. Balling effect can be observed with isolated clusters distributed on the substrate. 

This is consistent with the study by Li et al. [56], which reported that when a low laser energy 

density was applied, the balling phenomenon could occur due to the poor wetting characteristic 

of the molten pool, leading to the discontinuity of the bead after solidification. Comparing the 

highlighted regions in Fig. 7(a) and (b), before and after the laser beam interacted with the 

powder, it can be noted that the individual powder particles bonded with neighbouring particles 

as small droplets during melting, as a result of surface tension, which then formed separate 

balls after solidification. 

     When the laser power was increased to 150 W, as shown in Fig. 6(d)-(f), the balling 

phenomenon disappeared, and a better surface finish was achieved, along with continuous bead. 
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However, some waviness can still be observed on the track surface, as shown in Fig. 7(d). This 

finding can be further supported by the theory of Plateau–Rayleigh instability [57], which 

describes the breaking of a long cylindrical fluid jet into droplets or short segments to minimise 

the surface energy. In both Fig. 6 and Fig. 7 the molten pool region is illustrated in red, with 

temperature higher than the melting point 1723 K, and there is a notable increase in molten 

pool size when using a laser power of 150W, compared to when using 100 W. 

     When increasing the laser power to 175 W, as illustrated in Fig. 6(g)-(i), a smooth track 

surface was obtained, with more elongated molten pool. Surface tension arises as a result of 

different attractive forces among molecules on the liquid free surface, and surface tension 

always has the tendency to minimise the area of the liquid surface. With a laser power of 175 

W, the applied energy density was sufficient to melt a larger volume of powder and form a 

stable molten pool. The nearby molten particles were constantly pulled towards the molten 

pool due to surface tension, and thus contributing to a continuous bead without breakage. 

Marangoni stress induced flow is another important factor inside the molten pool which is 

mainly driven by the surface tension difference caused by temperature difference on the molten 

pool surface, leading to a phenomenon that the fluid will flow from low surface tension area to 

high surface tension area. Since surface tension-temperature coefficient was assumed to be 

negative throughout this study, an outward flow would form driving the liquid metal move 

from centre to the edge of the molten pool. When applied with 175 W laser power, a maximum 

velocity of 1.16 m/s was obtained inside the molten pool with an outward pattern bringing the 

liquid to the cooler area, as illustrated in Fig. 8(a).  

     When further increasing the laser power to 200 W a depression region appeared in the 

molten pool front, which could be attributed to the formation of keyholes, as shown in Fig. 

6(j)-(l). When the temperature of the molten material exceeded the boiling point, the recoil 

pressure which was caused by the rapid vaporization of the liquid metal would apply an 

exponentially increased force normal to the local liquid surface. The evaporation temperature 

of 316L is 3090 K and the latent heat of vaporization is 7.45 × 106 J∙kg-1[23]. The resultant 

molten pool velocity near the keyhole region would increase dramatically due to the extra 

momentum imposed from the recoil pressure towards the free surface. Fig. 8(c) shows the 

molten pool morphology and velocity field when 200 W was applied, indicating 6.92 m/s 

maximum velocity inside the keyhole which was much higher than the velocity field in Fig. 

8(a) without the keyhole formation. The balance among the recoil pressure, surface tension 

forces and hydrostatic liquid pressure would determine the development of the molten pool. 
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Keyhole formation during SLM was also investigated by Wu et al. [17]. They reported that 

after removing the heat source, without the impact of recoil pressure the liquid metal near the 

keyhole would start to fill the depression region and form a convex surface after solidification. 

Another study from Tang et al. [23] pointed out that a deep keyhole would appear when applied 

with high laser power, in which case combined with large powder layer thickness the keyhole 

depression would not fully close after solidification. Instead, near-spherical porosities might 

occur as a result of entrapped gas phase and the collapse of deep keyhole. In the current study 

of the first scanning layer, since the keyhole depression was not deep and the powder layer did 

not contain sufficient gas phase, the keyhole depression was recovered, and a convex track 

profile was formed after solidification. By comparing the molten pool characteristics of 

different laser powers presented in Fig. 7, it can be noticed that with low energy input (100 W), 

the energy was only enough to melt limited number of particles  without reaching the substrate, 

and balling effect would occur to minimise the surface energy. With increased energy input, 

more powders were melted, and enough heat was transferred towards the substrate to melt the 

substrate, allowing the molten powder to be fully absorbed by the molten pool, therefore 

contributing to a continuous track surface.  

 

<Insert Figure 8> 

 

     Fig. 7(i) shows the cross-section taken when the laser was approaching the middle of the 

second track with 200 W laser power, and Fig. 7(j) presents the molten pool status at the end 

of this track. The depth of the keyhole depression was noticably deeper in Fig. 7(i) compared 

to both the other moments of the first track shown in Fig. 7(g) and Fig. 7 (h) and the end of the 

second track shown in Fig. 7(j), given that the same laser power condition was applied. The 

maximum velocity inside the keyhole also increased from 6.92 m/s to 9.92 m/s at the same 

adjacent location of the first and second scanning track shown in Fig. 8(c) and (d), respectively.  

 

<Insert Figure 9> 
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   The development history of molten pool volume (Fig. 9) was extracted from the model to 

help explain the phenomenon.  During the first track, the molten pool volume increased at the 

beginning before reaching a stable state, and this stable state continued until the laser beam 

finished changing the scanning direction at 684 µs. A significant increase in molten pool 

volume occurred at the beginning of the second track before reaching a maximum value, after 

which the molten pool volume started to decrease gradually. The cooling process began at 1332 

µs when the heat sourse was removed from the model, and it took the longest for the molten 

pool to fully soildify when using 200 W laser power, due to the highest molten pool volume. 

The rapid volume increase at the beginning of the second track could be related to the fact that 

the adjacent region, which was overlapped by the second track, was recently melted by the 

laser beam, and hence the temperature was still high. The later decrease in molten pool volume 

indicates that the laser beam had started to move to a region of lower temperature, which had 

undergone a longer period of cooling. This also explains the phenomenon that the deepest 

keyhole depression occured towards the middle of the second track when the molten pool 

volume was the highest, which was also discussed by Khairallah et al. [14]. They suggested 

that the energy density should be reduced upon changing the scanning direction along a track 

to avoid deep keyhole depression, which could lead to the formation of pores. Without keyhole 

formation, in the case of 175 W laser power, despite the fact that the volume of the molten pool 

increased during the second scanning track as a result of heat accumulation, little much 

variation was observed in the velocity field, with maximum velocities of 1.16 m/s and 1.2 m/s, 

as seen in Fig. 8(a) and (b). This could be attributed to the fact that, without the effect of recoil 

pressure, the flow was mainly driven by the Marangoni stress, and thus the molten pool 

dynamics were less influenced by the increase of temperature.   

3.2 Multi-layer simulation  

     To allow the simulation of multiple layers, after cooling, the surface geometry of the 

solidified first layer was extracted from the model. The surface geometry which was the 

interface between the gas phase and metal phases was reconstructed using geometric 

reconstruction scheme during the calculation. After solidification, the isosurfaces of the volume 

fractions of the two metal phases were plotted and exported as STL file to DEM. Considering 

that the temperature had increased because of the heating process during the first layer, the 

temperature distribution of the solidified powder bed was also exported. DEM was then 

employed to deposit a second powder layer on the solidified profile, which now was regarded 

as the new substrate during the simulation. The sizes and positions of the newly deposited 
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powder particles were then transferred from DEM back into CFD to carry out the thermo-fluid 

calculation. During the initialization of the second layer simulation, volume fractions of the 

newly added powders, as well as the first layer, were assigned as 316L material. The 

temperature profile of the solidified first layer was used as an input to initialize the temperature 

distribution of the calculation domain. After the initialization of the phase and temperature field, 

two adjacent tracks were scanned with varying laser powers, again ranging from 100 W to 200 

W for the second layer. The simulated temperature distribution and bead morphology are 

presented in Fig. 10, while cross-sections along the plane of the laser beam centre are shown 

in Fig. 11.  

 

<Insert Figure 10> 

 

     Similar to the first layer, a discontinuous track with balling effect was observed when 

applying 100 W laser power, as seen in Fig. 10(a)-(c). Due to insufficient heat input, only the 

surface exposed to the laser beam was melted, and separate clusters were formed to reduce the 

surface energy. Since insufficient heat was transferred to re-melt the first solidified layer, the 

interlayer fusion between the two layers was poor, and a severe lack of fusion could be 

observed, as shown in Fig. 11(a) and (b). A further interesting finding was that the balling 

effect also occurred in the second layer when 150 W laser power was applied (shown in Fig. 

10(d)-(f)), despite the fact that a continuous bead was obtained when the first layer was 

processed (Fig. 6(d)-(f)). Yan et al. [27] stated that the balling effect could be attributed to the 

lack of melting of the substrate underneath the powder. In this case, even though the first 

solidified layer provided some heat to help form a larger molten pool, the balling effect still 

happened. The surface roughness of the previously solidified layer was also found to be an 

important factor in influencing the thickness of the new powder layer, which would determine 

the wettability of the molten pool [23], and hence affect the balling effect and porosity 

formation.  

 

<Insert Figure 11> 
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     As previously discussed, some waviness was observed on the track of the first layer, when 

using 150 W laser power (Fig. 7(d)). This could introduce more gas phase in between the 

powder particles when a new powder layer was deposited. In comparison with the solid 

substrate, the effective thermal conductivity of loose powder is much lower, due to the low 

thermal conductivity of the gas phase [58, 59]. As a result, heat cannot be transferred to the 

solidified layer and the underlying substrate quickly enough without sufficient heat input, 

which can add to the fluctuations of the molten pool. Such instability contributes to the 

formation of a disconnected balling effect, as demonstrated in Fig. 11(c) and (d). When 

increasing the laser power to 175 W and 200 W, the breakage of the long molten pool 

disappeared (shown in Fig. 10(i) and (l)) towards the end of the second scanning track. A 

significant increase of molten pool volume was observed during the second layer of scanning. 

Marangoni stress induced flow, as well as recoil pressure, would drive the liquid metal to the 

rear region of the long molten pool, resulting in a sloped molten pool front, as shown in Fig. 

11(e)-(h).  

3.3 Multi-material simulation 

     For multi-material simulation, the Cu10Sn phase was introduced, and Cu10Sn powders 

were deposited on the scanned track to form a second powder layer. Fig. 12(a) presents the 

morphology of the first scanned track of 316L (as previously shown in Fig. 6(i)), and Fig. 12(b) 

shows the morphology with a second layer of Cu10Sn powder applied. 175 W laser power and 

800 mm/s scanning velocity were first employed to examine the evolution of the molten pool 

characteristics when the same energy density was applied to materials with different thermal 

properties. The resultant temperature field of the powder bed at the end of the first track is 

shown in Fig. 12(c).  

 

<Insert Figure 12> 

 

     Only limited fusion was formed among the Cu10Sn powders, and a much lower temperature 

distribution field was obtained on the powder bed compared to when a second layer of 316L 

was applied (Fig. 10(h)). Since the cooling interval after the first scanned layer was set to be 

200 µs, the temperature of the powder bed along the scanning centreline was still higher than 

the melting point of Cu10Sn when depositing the second Cu10Sn powder layer on top of 316L. 
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Despite this, a continuous melting of the Cu10Sn powders was not obtained. As mentioned in 

Section 2.3, the laser absorptivity of Cu10Sn was adopted as 0.03 in this study, which was less 

than 10% of the laser beam absorptivity of 316L. Furthermore, the thermal conductivity of 

Cu10Sn powder is higher than that of 316L, meaning that the heat is dissipated more efficiently 

by Cu10Sn from the laser beam centre towards the surrounding powders. The combination of 

these two factors meant that the actual energy absorbed and retained by Cu10Sn powders was 

insufficient to develop a molten pool to melt the powder.       

 

<Insert Figure 13> 

 

     A further comparative study was made by initializing the first powder layer with half 316L 

and half Cu10Sn powder, with a clear interface deposited on the same building layer, as 

illustrated in Fig. 13(a). Again, process parameters of 175 W laser power and 800 mm/s 

scanning velocity were employed, with laser scanning on the interface of the two powder 

materials. The morphology of the scanned track after solidification is shown in Fig. 13(c). 

Compared to Fig. 12(c), despite not having the effect of preheating from the previous scanned 

layer, a higher temperature field was achieved with both the 316L and Cu10Sn powders being 

melted, as seen in Fig. 13(b). However, the size of region with temperature greater than 1723 

K decreased significantly compared to when all of the powder was initialised as 316L (Fig. 

6(h)). Fig. 14(a) and (b) present the temperature distribution at the middle and end moments of 

the scanning track. It can be seen that the temperature profile is not symmetric along the 

centreline: higher temperatures are shifted towards the 316L side around the molten pool region, 

while the Cu10Sn side exhibits slightly higher temperatures in the peripheral area further away 

from the centreline. Such asymmetric temperature distribution is found comparable to what 

was reported in dissimilar laser welding of copper to stainless steel, where a higher temperature 

field was obtained on the stainless side inside the fusion zone [37, 60].   

 

<Insert Figure 14> 
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     Six measurement points were allocated on the substrate surface to examine the temperature 

development history of the process, with three on each side, symmetric to the centreline, as 

shown in Fig. 14(a). Comparisons of the temperature development histories are presented in 

Fig. 14 (c-f). For the points located near the centreline (P1 and P4), the temperature on the 

316L side increased faster than Cu10Sn, once the heat affected zone imposed by the moving 

laser beam reached the measurement points. This can be attributed to the fact that 316L has a 

poorer thermal diffusivity when compared to Cu10Sn. Since the heat could not be dissipated 

quickly by 316L, a higher maximum temperature was achieved for 316L (shown in Fig. 14(c)). 

Consequently, the maximum temperature region shifted towards the 316L side, contributing to 

the asymmetric temperature distribution on the powder surface near the centreline. For points 

P2 and P5, which were 50 µm away from the centreline, a lower temperature was obtained on 

the 316L side before the laser beam travelled to the plane, indicating that the heat dissipated 

from the laser beam centre would reach P5 earlier than P2. However, a rapid temperature 

increase was achieved on the 316L side when the laser beam centre arrived at this plane, after 

which the temperature of 316L exceeded that of Cu10Sn, as shown in Fig. 14(d). For points P3 

and P6, which were far away from the centreline, Cu10Sn exhibited higher temperature field 

from the beginning, compared to 316L (seen in Fig. 14(e)). The combined temperature history 

of these six points is presented in Fig. 14(f), and it can be seen that the temperature difference 

between the points becomes less distinct as the laser beam moves towards the end of the 

scanning track.       

     The development histories of the molten pool volume for both Cu10Sn and 316L were 

extracted from the model to help understand the molten pool evolution, and are presented in 

Fig. 15. Despite the fact that the temperature field was higher on the 316L side near the 

centreline, more Cu10Sn particles were melted as a result of its lower melting point. It has been 

noted in Fig. 12(c) that the direct energy obtained from the laser beam failed to develop a 

continuous molten pool to melt the Cu10Sn powders when the powder bed was fully covered 

with Cu10Sn. It can also be observed from Fig. 15 that fewer Cu10Sn particles were melted at 

the beginning of the process, before 50 µs. Since 316L could retain more heat due to its low 

thermal conductivity, the molten pool was firstly formed on the 316L side. As a result of 

convection flow induced by Marangoni stress, the liquid 316L would flow from the centre 

towards the edge of the molten pool, bringing heat to the Cu10Sn side. Apart from the direct 

energy from the laser beam, the combination of heat conducted from the solid 316L powders 

and the heat brought by the convection flow from liquid 316L contributed to the melting of 

Cu10Sn powders.   
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<Insert Figure 15> 

 

<Insert Figure 16>   

 

   In order to melt the powder bed fully covered with Cu10Sn powder, higher laser energy 

density was required to compensate for the low laser absorptivity and high thermal conductivity 

of Cu10Sn. As suggested by the work from Wei et al. [11], process parameters of 125 W laser 

power and 150 mm/s scanning speed were used to scan the second powder layer deposited with 

Cu10Sn, with the results of the simulation shown in Fig. 16. Fig. 16(a) presents the temperature 

distribution of the powder bed at the end of the first scanning track, while Fig. 16(b) shows the 

simulated result when approaching the end of the second track with 28.8 μm hatch spacing 

between two adjacent tracks. Interestingly, no distinct change was noticed on the track profile 

between the first and second track. When applied with the same hatch spacing for 316L, the 

track width was much more widened after scanning the second track compared to the first track 

(seen in Fig. 10(k) and (l)). This can be explained by the fact that during the first scanning track, 

more Cu10Sn particles close to the laser beam centreline would be melted and pulled towards 

the molten pool to form the track as a result of its low melting point and high heat conductivity. 

Consequently, with a small laser beam offset (hatch spacing) during the second track scanning, 

only limited number of particles around the laser beam centreline would be melted to increase 

the width of the scanning track. This was also reported by Wei et al. [11] where a greater hatch 

spacing was used for Cu10Sn during experiments. Fig. 16(c) presents the simulated track with 

an increased hatch spacing of 57.6 μm, and shows that a wider bead was obtained. The hatch 

spacing during real experiments could be further increased to improve the scanning efficiency 

considering that the effect of heat accumulation during multi-layer and multi-track process 

would be prominent. Fig. 16(d-f) show the comparison of track morphology after solidification 

for these three cases.  

     Fig. 17(a) presents a sandwich-layered component produced by a multi-material SLM 

system [11] which was developed in The University of Manchester. 175 W laser power and 

800 mm/s scanning speed were employed to process the two 316L sections of 2 mm thickness, 

while an increased energy density of 125 W laser power and 150 mm/s scanning speed was 

used to fabricate the Cu10Sn sections of 1 mm thickness. Wire EDM was used to cut the sample 
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to get the cross-section, which was then ground and polished on a polishing machine. The 

interface between 316L layer and Cu10Sn layer was inspected using SEM and a clear boundary 

can be observed between the two materials, as shown in Fig. 17(b). It can be noted that some 

316L phase has migrated into the newly processed Cu10Sn layer, which is also observed at the 

simulated interface, shown in Fig. 17(c).  

 

<Insert Figure 17>   

 

<Insert Figure 18>   

 

     Fig. 18 illustrates the development of molten pool cross-section at six moments, where the 

liquid fractions of 316L and Cu10Sn are represented in different colours. During the first 

scanning track, Cu10Sn powders were first melted when the laser beam impacted directly on 

Cu10Sn with lower melting point, shown in Fig. 18(a-c). Only limited melting occurred on the 

previously solidified 316L layer seen in Fig. 18(c) as a result of heat conduction. When 

processing the second scanning track, after offsetting the laser beam centre, the 316L substrate 

was more exposed to the laser beam, and thus 316L started to melt, as seen in Fig. 18(d). As a 

result of surface tension forces and buoyancy force, a convection flow formed inside the molten 

pool, mixing two materials with connected liquid channels, shown in Fig. 18(e). The rapid 

evolution of the molten pool contributed to the breakage of the 316L liquid channel into two 

separate sections, shown in Fig. 18(f). After solidification, some elements of 316L alloys 

appeared in the Cu10Sn layers near the interface resulting in a certain degree of elemental 

diffusion. This explains the phase migration observed in Fig. 17(b).  

4. Conclusion  

     In this study, an integrated modelling framework has been developed to simulate multi-

track, multi-layer and multi-material SLM processes. The molten pool development of multiple 

materials on the same building layer, and across different layers, were examined. The interface 

between two layers of different materials was visualised by simulation, and the formation of 
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phase migration at the interface was investigated. From the analysis of the modelling results 

and comparison with experiments, the following conclusions can be drawn:  

• Despite a continuous track being obtained during the first scanning layer, balling effect 

could still happen in the second layer with the same applied energy. The poor surface 

roughness of the previously scanned track introduced more gas phase during the 

deposition of the second layer, which brought instability to the molten pool formation.  

• The velocity field inside the molten pool and the depth of keyhole depression were 

related to the overall molten pool volume. As a result of heat accumulation, it is 

suggested that the energy density should be adjusted upon changing the scanning 

direction and across different layers to maintain a constant molten pool profile.  

• Due to the different thermal properties of 316L and Cu10Sn, molten pool development 

would appear differently when the same energy input was applied. In order to melt the 

powder bed fully covered with Cu10Sn, higher laser energy density was required to 

compensate for the low laser absorptivity and high thermal conductivity. Greater hatch 

spacing should be adopted for Cu10Sn to obtain the best scanning efficiency. 

• When the two powder materials were placed on the same building layer, the 316L 

powders melted first, and the heat conducted from the solid 316L powder, as well as 

the heat brought by the convection flow from liquid 316L, contributed to the melting 

of Cu10Sn powders. The phase migration at the interface was found to be related to the 

convection flow inside the molten pool, which contributed to the mixing of the two 

materials as well as elemental diffusion.  

     Attributed to the flexibility of this framework, various combination of powder materials for 

multi-material SLM can be explored prior to experiments, which provides valuable insights on 

the design and optimization for multi-material additive manufacturing systems. This modelling 

framework can be further expanded to a multi-scale model in future studies, which will 

incorporate the current temperature history analysis with microstructure evolution and 

local/global residual stresses development for multi-material SLM process.  
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Figures 

 

 

Fig. 1. Framework for multi-track, multi-layer and multi-material SLM modelling  
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Fig. 2. (a) SEM image of 316L stainless steel powders, (b) SEM image of Cu10Sn powders, 

(c) 316L powder size distribution, (d) Cu10Sn powder size distribution 

 

Fig. 3. Simulated powder deposition patterns for multi-material SLM process (a) evenly 

mixed, (b) clear boundary, (c) finger-cross shaped, (d) gradient 

 

 

Fig. 4. Thermal boundary conditions of the calculation domain  
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Fig. 5. Schematics of the scanning pattern  

 



28 

 

  

Fig. 6. Temperature field and molten pool morphology of the first layer 316L with different 

laser powers at different moments     
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Fig. 7. Cross-section on the plane of laser beam center during the first layer of 316L, (a-h) X 

= 222 μm, (i-j) X = 250.8 μm  

 

 

Fig. 8. Temperature and velocity field of 316L (a) 175 W first track at 324 µs, (b) 175 W 

second track at 1008 µs, (c) 200 W first track at 324 µs, (d) 200 W second track at 1008 µs 
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Fig. 9. Molten pool development history of the first layer 316L 
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Fig. 10. Temperature field and molten pool morphology of second layer 316L with different 

laser powers at different moments  
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Fig. 11. Cross-section on the plane of laser beam centre during the second layer of 316L 

 

 

 

Fig. 12. (a) First layer 316L with 175 W and 800 mm/s, (b) second layer Cu10Sn powder 

deposition, (c) second layer Cu10Sn with 175 W and 800 mm/s 
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Fig. 13. (a) 316L and Cu10Sn powders with clear boundary, (b) laser beam applied on the 

boundary with 175 W and 800 mm/s, (c) track morphology after solidification 

 

 

Fig. 14. Temperature distribution of the powder bed at (a) 324 µs, (b) 648 µs, (c-f) 

comparison of temperature development history of the six points  
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Fig. 15. Molten pool development history of Cu10Sn and 316L 

 

 

Fig. 16. (a) first track with 28.8 μm hatch spacing, (b) second track with 28.8 μm hatch 

spacing, (c) second track with 57.6 μm hatch spacing, (d-f) track morphology after 

solidification  
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Fig. 17. (a) A 3D printed component produced by a multi-material SLM system, (b) SEM 

image of the interface between 316L and Cu10Sn, (c) simulated cross-section of the interface 

 

 

     

Fig. 18. Molten pool development and phase migration 
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Table 

 

 

     Table 1 Thermal properties of 316L and Cu10Sn [12, 23, 53, 54, 55] 

Symbol                                                                                   Nomenclature 316L Cu10Sn 𝜌𝑠 Solidus density (kg∙m-3) 7980 8780 𝜌𝑙 Liquidus density (kg∙m-3) 7200 7700 𝑇𝑠 Solidus temperature (K) 1658 1053 𝑇𝑙 Liquidus temperature (K) 1723 1278 

μ Viscosity of liquid metal (kg∙m-1∙s-1) 10(2358.2/T-3.5958) 0.00225 

ks Thermal conductivity of solid (W∙m-1∙K-1) 9.248+0.01571T 46 

kl Thermal conductivity of liquid (W∙m-1∙K-1) 12.41+0.003279T 64 𝐿𝑚 Latent heat of melting (J∙kg-1) 2.7 × 105 1.958 × 105 𝐶𝑝 Specific heat (J∙kg-1∙K-1) 775 505 

σ Surface tension (kg∙s-2) 1.6 1.15 

dσ/dt Temperature of surface tension (kg∙s-2∙K-1) -0.8 × 10-3 −0.2 × 10-3 

σs Stefan-Boltzmann constant (W∙m-2∙K-4) 5.67 × 10-8 5.67 × 10-8 

R Universal gas constant (J ∙mol-1∙K-1) 8.314 8.314 

η Laser beam absorptivity 0.35 0.03 

 

 

 


