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Abstract 

 

Long-term demographic studies are vital for understanding trends in population size, such 

as the rapid decline of many bird species. Studies of trophic cascades provide a mechanistic 

understanding of how populations respond to climate change. The mis-match between 

timing of food availability and food requirements of nestlings is implicated in the rapid 

declines of woodland-breeding bird populations. I report the decline of the Pied Flycatcher, 

Ficedula hypoleuca, and investigate and model its demographic changes. 

 

I used a long-term citizen-science dataset of Pied Flycatcher population characteristics 

(collected 1990-2016 in south Wales), and conducted studies linking weather conditions, 

invertebrate availability and breeding biology (2016-2018). I used these data to investigate 

the consequences of laying date on adult annual survival and recruitment, and examined 

the consequences of changes in the timing of breeding in consecutive years and 

generations. 

 

The study population has declined by 66%. Temperature and rainfall had interacting and 

non-linear impacts on the breeding cycle. Fledging success was a significant predictor of 

the next year’s population size. Warmer and more variable conditions were associated with 

earlier invertebrate phenology and variation in availability, with a phenological mis-match 

between peak chick food demand and caterpillar availability. Most Pied Flycatcher nesting 

attempts were timed to allow for successful fledging, but later nests tended to be less 

successful. Early-laying birds a had higher fledging success and a higher probability of 

surviving.  

 

A stochastic Integral Projection Model predicts that the ongoing decline in the population 

will continue, leading to extinction within the next 5-15 years. A greater consistency in laying 

dates of early laying individuals leads to higher annual adult survival. Between-year 

consistency in laying date had the greatest impact on population growth, and appears to be 

the strongest mechanism by which this population could avoid extinction. 
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1  General Introduction 

 

1.1 Multi-trophic phenological matching 

Phenological matching, the synchronising of one organisms life events to those at other 

trophic levels, in order to maximise survival and reproductive success, is a key process in 

community ecology (Stenseth and Mysterud 2002; Cole and Sheldon 2017). Breeding 

success in many taxa is dependent on synchronising breeding with the timing of abundant 

food resources. Breeding productivity of insectivorous songbirds, for example, is strongly 

constrained by the availability of insects and other invertebrates in spring and early summer, 

when the parent birds feed their nestlings, and when newly fledged chicks must learn to 

forage independently of their parents (e.g. Seward et al. 2014; Vafidis et al. 2016). Parent 

birds therefore attempt to time their breeding such that the nestling and fledging periods 

coincide with abundant food resources (Stenseth and Mysterud 2002). Synchrony is 

frequently beneficial for one species (e.g. a predator) to the detriment of another (e.g. a 

prey species), the result of which can be the prey attempting to adjust their timing so that 

they are asynchronous with the predator. These concepts allow us to understand the 

mechanisms by which species interact and to predict how a species or group of species 

might change if the ecosystem is perturbed.  

 

Weather variation is a common cause of ecosystem disturbance. As environmental 

conditions do not remain constant, individuals must be behaviourally flexible to respond to 

changes in their environment. The ability to respond to a change in local conditions such 

that the trait expressed (e.g. date of bud burst, egg hatching or bird laying date) is altered, 

is known as phenotypic plasticity (Hollander and Bourdeau 2016). Examples of phenotypic 

plasticity can be found in a wide variety of organisms (Parmesan 2006), including trees 

(MacKenzie et al. 2018), invertebrates (Durant et al. 2007) and birds (Burgess et al. 2018), 

with many of these interannual adaptations arising through direct effects of weather (e.g. 

temperature and rainfall) or indirect effects of weather on food availability. The phenology 

of life cycles in many organisms is driven by environmental cues (e.g. changes in, or 

thresholds of, temperature and rainfall). A variety of specific cues may be involved, as 

different species use different cues to determine life cycle phenology e.g. winter 

temperature and minimum spring temperature for bud burst in trees (Cole and Sheldon 

2017), or minimum temperature for caterpillars, and photoperiod for birds (Gwinner 1996). 

The interconnection of organisms within and between ecosystems means that it is not just 

individual species that are affected by changes in weather but also interspecific 

relationships (Walther 2010).  
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1.2 Climate change effects on phenology 

While the concept of global climate change is not new (Fourier 1827), the intensity with 

which its biological impacts have been studied has accelerated markedly over the past four 

decades, leading to an increased awareness of the nature and extent of its impacts, 

including its effects on ecosystems, species and individual organisms (Parmesan 2006). 

The Intergovernmental Panel on Climate Change (IPCC) report in 2018 stated that global 

surface (air/water) temperatures had increased by approximately 0.5 - 1°C during the 20th 

Century (IPCC 2018). While this provides an estimate of mean global temperature increase, 

the degree of temperature change varies spatially and temporally, such that different 

localities and ecosystems are affected by climate change to differing extents, in different 

ways and over different timescales (Wiens 1989). In temperate zones, for example, 

temperature is predicted to increase by 1 - 2°C between 1990 and 2050 (Tyrrell 2019), and 

the rate of increase is accelerating, as Europe has experienced an increase of 0.2°C per 

decade during the previous 25 years (Jenkins et al. 2008). In addition to the increases in 

mean conditions, there are predicted to be increases in seasonal variability in temperature 

and particularly precipitation (Kahl et al. 2019). For example, increased rainfall in winter, 

and decreased rainfall in summer, result in a more varied annual rainfall but a relatively 

stable annual mean precipitation (Jenkins et al. 2008).  

 

Whilst many studies have focussed on the biological impacts of mean temperature and 

rainfall changes, extreme events can have important impacts upon ecosystems (European 

Environment Agency 2015). For example, heavy rainfall events during summer result in 

leaf-dwelling invertebrates being washed from leaves leading to a subsequent reduction in 

food availability for predators (Whitehouse et al. 2013). The frequency of such extreme 

events has increased and is projected to increase more rapidly in the future, the result of 

which will be larger impacts on ecosystems (IPCC 2018). These impacts will 

disproportionately affect ecosystems at higher altitudes and latitudes, which are already 

under greater pressure from climate change (European Environment Agency 2015). The 

impacts of increased and more variable temperatures, and variability in precipitation, 

cascade across trophic levels; as one species responds so another must also respond. For 

example, increased winter warming and precipitation advance the onset of flowering in 

temperate ecosystems, leading to a mis-match between trophic levels as herbivores are 

less able to adjust (Arfin Khan et al. 2018). The increases in populations of resident and 

short distance migrant birds, but decreases in populations of long-distance migrants 

(Pearce-Higgins et al. 2015) has generally been associated with a temperature increases 

in central England by 0.45°C in the past 25 years (Jenkins et al. 2008). Increased Winter 

temperatures increase the survival of resident species, but increased spring temperatures 

can result in mis-match of predator-prey phenology (Visser et al. 2004).  
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1.3 Spatial and temporal adaptations to climate change 

The rapid changes in climate are leading to breakdowns in phenological matching between 

trophic levels, as species respond to climate changes at different rates (Thackeray et al. 

2010). An ecosystem-level, or even global-level, understanding of the biological effects of 

climate is therefore vital to understand how species succeed or fail in responding to the 

changing conditions (either through phenotypic plasticity or through evolutionary 

adaptation), as well as in understanding what novel ecological and evolutionary pressures 

they may face. These mis-matches can occur across time and space, resulting in species 

altering the timing of certain life history traits, or moving location to coincide with the 

responses at trophic levels. Specifically, responses to warmer Spring temperatures can 

include (i) advancing Spring phenology, (ii) moving to higher latitudes, (iii) moving to higher 

altitudes, or (iv) some combination of each of these responses (European Environment 

Agency 2015).  

 

Up to 6,300 species at risk of extinction after the disappearance of their associated species 

have been reported (Koh et al. 2004). Those species which are not at the extremes of their 

range will have to either undergo non-plastic adaptations such as range shifts (Pateman 

and Hodgson 2015) or respond in some way to the new conditions, either through 

evolutionary adaptation or phenotypic plasticity. It is now considered that phenotypically-

plastic responses are more common than evolutionary responses (at least over decade-

scale timescales), with many of the apparent evolutionary responses previously described 

being more recently reclassified as examples of phenotypic plasticity (Gienapp et al. 2008). 

As one species responds to the new conditions, so each of the species with which it 

interacts will also need to respond. In this way, the response of each species to 

environmental change will have cascading impacts throughout the ecosystem (Post et al. 

1999). 

 

Understanding the cascading impacts of climate change across trophic levels requires 

insight into the responses of individuals to climatic variables, as well as the impacts of these 

responses on demographic traits (e.g. bud burst, laying date, egg hatching) and, ultimately, 

on changes in population size at each trophic level (Bellard et al. 2012). In part, this requires 

an appreciation of the timing of biological events and the consequences of appropriate or 

inappropriate timing on individuals and populations. 

 

A measure of spring phenology recorded historically throughout the UK has been the date 

of bud burst in oak (Quercus spp.) leaves (Parmesan 2006). Bud burst initiation occurs in 
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winter when trees experience frost, with the subsequent temperature increase in spring 

resulting in the bud formation and opening. Bud burst has been shown to influence the 

timing of caterpillar hatching; this is believed to have evolved to maximise the fitness of 

caterpillars (Feeny 1970; Coyle et al. 2010). Early emerging caterpillars feed on fresh leaves 

that are low in tannin levels and grow rapidly, obtaining higher body mass and better survival 

(Tikkanen and Julkunen-Tiitto 2003). As individual oak trees are highly synchronised 

between years (early trees are always early), caterpillars must match their hatching to the 

phenology of that particular tree (Tikkanen et al. 2000). Mis-match can happen when moths 

or butterflies from two different trees, with different phonologies, mate and produce 

offspring. These caterpillars are likely to exhibit an intermediate hatching date and, as a 

result, be mis-matched with the host tree (Tikkanen and Julkunen-Tiitto 2003).  

 

Woodland insectivorous passerines need to match the timing of their egg laying to result in 

peak chick demand (8-10 days post hatching) coinciding with peak availability of caterpillar 

prey (Visser et al. 2006). Chicks of parents which achieve this matching experience higher 

post fledging survival and recruitment into the breeding population (Visser et al. 2006). The 

ability of a breeding bird to time the initiation of its egg-laying to match the phenology of 

their prey, depends upon their migratory strategy. Resident birds are able to use cues from 

the local environment to decide when to lay (Durant et al. 2007) but migrants are 

constrained in their timing of departure from the wintering grounds (Knudsen et al. 2011). 

As a result, the degree of mis-match between migrants and food resources is greater than 

between residents and food, particularly in years where spring temperatures increase 

earlier in the year. 

 

1.4 Differing bird migration strategies and their sensitivities to climate 

The phenological matching of breeding with abundant trophic resources may be disrupted 

if organisms at different trophic levels are differentially affected by climate change (Walther 

2010). In the case of many long-distance migratory birds, warming spring temperatures 

have led to substantially earlier growth of vegetation on the breeding grounds, and an earlier 

spring emergence of invertebrates, which the birds use to provision their chicks (Visser and 

Both 2005). Unfortunately, for many migrants, the timing of their arrival to the breeding 

grounds, and the onset of breeding, is constrained by the timing of departure from their 

wintering grounds, which, in turn, is primarily determined by day-length cues rather than 

climate (Pulido 2007). As a result, as spring temperatures have increased over recent 

decades, many long-distance migrants now arrive in their breeding habitat too late to exploit 

the much earlier invertebrate availability for provisioning their chicks – leading to a trophic 

mis-match. This has been implicated in the declines of many long-distance migrant species’ 
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populations (Wright et al. 2004). The pattern of these declines has not been the same for 

all such songbird species (Marchant 1992; Morrison et al. 2013), because of their differing 

behaviours, ecologies and demographic processes including differing wintering areas and 

propensity to double brood. To understand the roles of these factors, we need to model the 

demographic processes by which climate variations lead to population change. 

 

Long distance migratory birds cannot always adapt to conditions during specific periods of 

their life cycle (e.g. breeding) if it reduces their fitness at another part of the life cycle (Visser 

et al. 2003). Migrants also cannot advance their arrival / breeding dates if the conditions 

during migration are unsuitable (i.e. there is a temporal mis-match between conditions on 

stop-over sites and those on breeding grounds). Arriving early relative to the onset of spring 

in any given year could result in a paucity of available prey for the parents after a long and 

potentially swift migration; this would be likely to result in a lower body condition prior to 

breeding. 

 

Of the 18,043 bird species globally (Barrowclough et al. 2016), approximately one in five 

are migratory (Birdlife International 2019). Of these, approximately 50 species migrate from 

northern Europe to sub-Saharan Africa to spend the Palearctic winter (Moreau 1972; 

Berthold et al. 1992), many of which have suffered population declines in the past three 

decades (Jones et al. 1996). As 32% of European species are threatened, near threatened, 

declining or depleted on a Europe wide scale (European Commission 2015), their continued 

survival and abundance is an important conservation issue. The general decline in Northern 

hemisphere long distance migrant birds compared to short distance and resident birds is 

well documented (Morrison et al. 2013). For example, the longest-running systematic study 

of migrant birds in the world (Heligoland, Germany), running from 1909 to the present, has 

shown population declines in many long distance migrant bird species (Hüppop and Hüppop 

2011). Such declines are not necessarily uniform; for some such species showing overall 

declines there have been shorter-term population increases during this time-frame 

(Marchant 1992). This is important as it means that we cannot just calculate a linear rate of 

decline for a species and extrapolate indefinitely into the future. Instead, more detailed 

investigations of the underlying causes are needed to understand the drivers, predict future 

trends and develop conservation interventions  

 

1.5 Tri-trophic woodland ecosystem (Oaks, Caterpillars and Pied 

Flycatchers) 

The majority of temperate ecosystems, but not all (see Vafidis et al. 2016), are strongly 

seasonal (Both and Visser 2001). One particularly well studied example of phenological 
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matching in a strongly seasonal ecosystem is the “tri-trophic” (3-trophic levels) system of 

Oak trees, Lepidopteran caterpillars, and woodland birds (Burgess et al. 2018). Acidic, free-

draining soils in south-west England, northern England and throughout Wales support 

upland Oak woodlands. In these habitats, Sessile Oak (Quercus petraea) dominates, 

although there are sporadic occurrences of Pedunculate Oaks (Quercus robur) and hybrids 

of the two species (Rackham 2012). The post-glacial landscape of what is now Wales was 

primarily an Oak-dominated mix of broadleaved tree species, but by 2010, only 13% of 

Wales was covered in broadleaf and coniferous woodland. Furthermore, much of this 

woodland cover is now greatly fragmented; approximately 70 % of upland woods are less 

than 10 ha in area (Mitchell and Kirby 1990). The decline in land-cover of Oak woodlands 

is expected to continue, and increase in their ecological impact, as other pressures, such 

as warmer springs and increased variability in precipitation, are exerted on species 

populations (Northrup et al. 2019). 

 

1.6 The Pied Flycatcher as a model study species 

One long-distance Oak woodland-breeding migratory songbird of current conservation 

concern is the Pied Flycatcher (Ficedula hypoleuca). The species and its ecosystem provide 

a classic model for examining cascading impacts of global climate change across trophic 

levels (Both and Visser 2001; Lundberg and Alatalo 2010; Samplonius et al. 2018). The 

Pied Flycatcher is a small trans-Saharan migratory passerine bird which breeds in many 

forested areas of the Palaearctic region, and migrates to over-winter in tropical West Africa 

between the Sahara Desert and the Gulf of Guinea (Cramp and Perrins 1993; Lundberg 

and Alatalo 2010). Europe contains 75 % of the world’s population of Pied Flycatchers, 

which is estimated at between 33 and 52 million (BirdLife International 2018). This suggests 

an European population estimate of between 25 and 38.8 million mature individuals (Birdlife 

International 2015).  

 

Much research has been carried out on Pied Flycatchers over recent decades, particularly 

so in the context of climate change and European populations (Both and Visser 2001; Both 

et al. 2006). The propensity for this species to breed in nest boxes in Western Europe has 

made it a very popular “model” species for breeding studies (Lundberg and Alatalo 2010). 

These latter studies have examined the associations between climate variables and Pied 

Flycatcher population size, timing of arrival at the breeding grounds, phenology of egg-

laying, clutch size, chick growth and annual survival of adults and fledglings from one 

breeding season to the next (Both and Visser 2001; Both et al. 2006; Samplonius et al. 

2018). The preference of Pied Flycatchers for occupying artificial nest boxes in preference 

to natural tree cavities (Eeva and Lehikoinen 1996; Lundberg and Alatalo 2010) means that 
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it is possible to capture the birds whilst in the nest box (adults as well as chicks) marking 

them individually with metal leg-rings, enabling subsequent individual identification 

(Lundberg and Alatalo 2010). The result of such studies is that over two million Pied 

Flycatcher nestlings have been ringed in Europe during the last four decades (Both 2010). 

As a result, the breeding biology of the species is understood in great detail. To date, 

however, relatively little is known about Pied Flycatcher wintering ecology (but see 

(Ouwehand and Both 2017). 

 

1.7 Population abundance and declines in Pied Flycatchers 

In the UK the British Trust for Ornithology coordinates the annual Breeding Bird Survey 

(BBS). This allows population trends to be assessed using standardised and comparable 

methodology. The results of this survey show that Pied Flycatchers have declined more 

than 60 % in the 20 years between 1994 and 2014 with a recent increase (Figure 1.1) 

(Woodward et al. 2018). 

 

Figure 1.1 Historic trend of Pied Flycatcher abundance in the UK using data from the Breeding 
Bird Survey from 1994 – 2017 (reproduced from Woodward et al. 2018) 

 

The spatial distribution of Pied Flycatchers is not uniform across the UK, with a skew 

towards Wales and the south of Scotland, in association with the distribution of woodlands 

dominated by Oak (Quercus spp.). The Welsh population is estimated at 7800 - 9800 

breeding pairs (Harris 2019 in litt.), with spatial variation between Welsh breeding sites in 

the local population trajectories (Smith et al. unpubl. – see Chapter 5). 

 

In the Pied Flycatcher’s preferred breeding habitat – Oak woodlands – the spring peak of 

invertebrate availability is relatively brief (typically peaking across 1-2 weeks). This makes 

long-distance migrants, whose ability to advance their egg laying is constrained by the 

timing of migration, vulnerable to trophic mis-matches. In contrast, resident bird species 

(e.g. titmice Parus spp.) do not have such constraints on the timing of egg laying, and so 
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have been better able to track the rapidly advancing invertebrate phenology (Both and 

Visser 2001). 

 

Although the concept of trophic mis-match is well established in the field of climate change 

biology, the nature of the links between phenology (e.g. laying date of migrant songbirds), 

and the demographic and population-level consequences of trophic mis-matches, has yet 

to be examined in detail. Many previous studies have identified links between climate 

variables and the timing of arrival of migratory birds back to the temperate breeding grounds 

(Jonzén et al. 2007). They have also identified responses of various breeding parameters 

(e.g. nest productivity) to changes in a multitude of environmental factors such as food 

availability and local weather conditions (Siikamäki 1995). There remains a need, however, 

to understand how and why trophic mis-matches may drive demographic changes and 

population declines, and (ii) to assess the role of trophic mis-matches in driving population 

change, in the context of the whole of the annual cycle.  

 

1.8 Modelling of patterns and mechanisms of population change 

Patterns in weather variables and population trends have been well-described and 

correlated (Pearce-Higgins et al. 2015) but the underlying processes linking weather and 

populations remain poorly understood. Knudsen (2011) highlighted that there was a greater 

body of evidence of patterns (observations of what has changed) rather than mechanisms 

(how and why these changes have occurred) and consequences for individuals, populations 

and species interactions. Subsequently, a major aim of this thesis is to develop a 

mechanistic understanding of the processes underlying such patterns, and to model the 

consequences of these mechanisms at the level of population size and the interactions 

between trophic levels. This addresses the question of how individual-level demographic 

responses lead to changes in population size and the evolution of demographic traits. 

Previous studies have rarely integrated these individual patterns and processes in an over-

arching conceptual framework, to understand and predict how the impacts of climate on 

individual aspects of the annual cycle together act to create demographic and population 

changes. This research need was highlighted by Vickery et al. (2014) who suggested that 

one of four of the main foci of research on declining migrant birds should be to use the 

abundance of data from the European breeding-grounds to identify spatial and temporal 

patterns in demographic parameters. 

 

Classical modelling frameworks in systems ecology evolved from looking at linear 

relationships between single or multiple variables (typically using General Linear Models), 

to identify associations (e.g. between temperature and breeding productivity), or differences 
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between groups (e.g. differences in clutch size between first-year and more experienced 

females). These approaches identified patterns (associations and differences) in 

demographic variables, but not the causal mechanisms underlying population change. More 

recent approaches have looked at the individual to try to theorise as to the processes. These 

Individual-Based Models (IBMs) predict how individuals would have to behave (e.g. with 

regards to exploration/dispersal and territoriality) in order to match the observed population 

changes (Green Woodhoopoe - Phoeniculus purpureus, du Plessis 1992). These individual-

based models are primarily used to identify hypotheses that could then be tested using real 

world data. They tend to be so specific as to lose generality to other situations and are 

therefore not widely applicable (Grimm and Railsback 2005). 

 

Other research has taken a population-level approach, by using Matrix Population Models 

(MPMs) to determine population level dynamics. Here, researchers group populations by 

categories (e.g. age class) and using empirical data provide estimates of demographic 

parameters (e.g. survival and reproduction). For many study systems, this has proven 

effective as estimated population growth rates have been shown to be relatively accurate 

(Jones 2019). MPMs use categorical variables (e.g. reproductive state) to create predictions 

for life history traits as organisms transfer from one category to another e.g. from juvenile 

to adult. A major disadvantage of MPMs is that there is no scope for modelling differences 

between individuals within groups. For example, all individuals of age class “adult” are 

assumed to have the same reproductive output and survival probabilities. In practice, 

individuals within categories may exhibit substantial variability in key traits that are 

intrinsically linked to demographic parameters, and hence to population growth rates. 

 

IBMs are excellent at creating scenarios with which processes can be hypothesised but 

where no empirical data are used to formulate these and population level parameters are 

not the focus. MPMs, in contrast, provide good estimates of population level parameters but 

ignore individual-level variation. This can, to an extent, be mitigated by increasing the 

number of classes and decreasing the difference between classes i.e. instead of having 

“adult” and “juvenile” age classes have “year 1”, “year 2”, “year 3”, etc. This allows for a 

greater resolution between groups and a more representative population model. Categorical 

variables which are divided into infinite numbers of classes can be considered to be 

continuous. 

 

Easterling (2000) advanced the method of MPMs by changing the input variable from 

categorical to continuous, creating an Integral Projection Model (IPM). These models, 

initially applied to an endangered plant (Northern monkshood, Aconitum noveboracense), 

used differences in a growth variable to separate individuals. No longer were the individuals 
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separated by age category, but by a continuous explanatory (independent) variable (e.g. 

stem diameter), which could change between individuals within the same year, and within 

individuals between years. The result is an IPM which is informed by four sub-models 

(describing Survival, Growth, Fecundity and Inheritance) using the continuous trait as the 

explanatory variable. Populations of mammals, birds and amphibians have subsequently 

been modelled using multiple continuous independent variables (e.g. body mass, laying 

date and parasite load (Ozgul et al. 2010; Childs et al. 2016; Metcalf et al. 2016) to explain 

trends in survival, recruitment, etc. The effects of these independent variables on 

demographic parameters are then integrated by the IPM to project population growth rates.  

 

In this thesis, an IPM will be used to model the demographic and population-level 

consequences of phenological matching / mis-matching between breeding birds and their 

invertebrate food supplies. The IPM framework conceptualised by Easterling (2000) brings 

the benefits of IBM and MPM concepts together under a unifying framework. IPMs use the 

individual nature of the IBM and the population level outputs of the MPM by using a 

continuous, rather than categorical, trait - specific to each individual - to identify how the 

population changes under different conditions. 

 

Despite the wealth of data available there are currently very few IPMs conducted on birds. 

The three published examples to date identify genetic differences in a resident population 

of Great Tits (Childs et al. 2016), the effects of habitat management on migratory Black-

tailed Godwits (Kentie et al. 2018) and how body size and condition alter reproductive 

success in the Eurasian Hoopoe (Upupa epops) (Plard et al. 2018). To date, there are no 

published IPMs on migratory passerines. This is a clear research need, given the benefits 

of the IPM approach and the rapid population crashes currently being observed among 

long-distance trans-equatorial migrants. 

 

1.9 Predicting population trajectories of a migratory passerine using an 

Integral Projection Model  

In this study, populations of Pied Flycatchers breeding in Wales are used to test a series of 

interlinking hypotheses addressing the ecological and behavioural mechanisms underlying 

historic, current and future changes in demography and population size. This study is, 

therefore, the first to analyse demographic mechanisms in a declining migratory passerine 

using an IPM. I use laying date as a continuous trait variable, to explain adult survival, 

fecundity and recruitment in the Pied Flycatcher. Once an IPM has been built, in silico 

experimentation in the form of sensitivity analysis allows us to understand the effects of 

hypothetical changes in individual demographic parameters on population trajectories. This 
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experimental manipulation approach is often impossible to implement in the field, but is 

readily implemented within an IPM, and so adds to our understanding of the mechanisms 

driving population declines. It also allows us to understand how particular conservation 

strategies might affect population trajectories.  

 

1.10 Thesis structure and hypotheses 

The thesis comprises of three data chapters, starting with a long-term study of demography 

and the effect of weather, moving to understanding how food supply is affected by weather 

and its effect on flycatcher demography, building to specifying an IPM studying the impacts 

of laying date changes on population trajectories. 

 

Utilising 25-year datasets on Pied Flycatcher breeding phenology, productivity and local 

weather, I aim to test the hypothesis that inter and intra-annual variation in weather variables 

(e.g. temperature and rainfall) resulted in long term population declines, by means of 

changes in demographic variables (e.g. clutch size and fledging success) (Chapter 2). 

 

By monitoring seasonal variation in invertebrate abundance in broad-leafed woodlands, I 

test the hypothesis that peak invertebrate abundance occurred earlier in years with elevated 

spring temperature (potentially leading to a greater trophic mis-match and a subsequent 

reduction in Pied Flycatcher breeding success (Chapter 3). 

 

Using an Integral Projection Model framework, I will test whether birds which laid early in a 

given year, relative to the population mean laying date, had a greater reproductive fitness 

than later-laying individuals, and examine how perturbations to demographic parameters 

(e.g. laying date) change future population viability (Chapter 4).  

 

My aims are (i) to aid in understanding of the role of climate-driven trophic mis-matches in 

influencing songbird population trajectories, (ii) to investigate the impacts of perturbations 

of demographic parameters of population growth rates, and (iii) to create a model general 

enough to predict the effects of variation in laying date on breeding productivity and 

population change, in other songbird populations.  
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2 Population Decline and Demographic Changes in a 
Breeding Population of Pied Flycatchers in South 
Wales over 26 years 

2.1 Abstract 

Long-term demographic studies are vital for understanding trends in population size; for 

example, the on-going and rapid decline of many bird species across Europe. This chapter 

reports the population change of one such species, the Pied Flycatcher, Ficedula 

hypoleuca, from a population in south Wales, UK, over 26 years, and investigates the 

demographic changes accompanying its population change. The study was carried out at 

Cwm Clydach; a low altitude oak woodland, where laying date, clutch size, brood size and 

number of fledglings have been recorded annually between 1990 and 2016, allowing a 

detailed study of changes in breeding biology. Population size and demographic parameters 

were examined across a 26-year study period to i) describe temporal changes in 

demographic parameters, ii) assess the extent to which variation in those parameters could 

be accounted for by weather, and iii) assess whether breeding-related demographic 

changes explain the observed population changes. The results of these analyses show that 

i) the Cwm Clydach Pied Flycatcher population has declined faster than the UK average, 

with the number of breeding pairs falling by approximately 66 % and nest box occupancy 

falling by approximately 77 % between 1990 and 2015. After an initial increase (1990-1997), 

the number of breeding pairs declined from a maximum of 111 in 1997 to 15 pairs in 2015, 

and occupancy declined from 50 % to 10 % of nest boxes.  Ii) Temperature and rainfall had 

impacts on different stages of the breeding cycle. Clutch initiation was earlier when April 

temperatures were higher, and fledging success was correlated with rainfall in April, but the 

strength and direction of this effect depended primarily on rainfall during May. Fledging 

success was a significant predictor of the next year’s population size, indicating a 

measurable effect of breeding productivity on population change. The population in Cwm 

Clydach is at risk of extirpation if the current rate of decline continues.  
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2.2 Introduction 

There are contrasting population trends within temperate woodland bird species, depending 

predominantly on their migratory strategies (Amar et al. 2006). The populations of many 

resident temperate woodland bird species (e.g. Blue Tit, Cyanistes caeruleus and Great Tit, 

Parus major) are stable or increasing, whereas populations of long-distance migrants (e.g. 

Pied Flycatcher, Ficedula hypoleuca and Common Redstart, Phoenicurus phoenicurus) are 

generally declining (Morrison et al. 2016). In addition, there is spatial heterogeneity between 

population trends at a continental scale. For example, migratory species in North-Western 

Europe are declining less rapidly than those in Southern Europe (PECBMS 2015). In the 

UK, approximately half of woodland-breeding bird species are red or amber-listed in the 

latest assessment of Birds of Conservation Concern (Eaton et al. 2015), due to their 

breeding population having declined by more than 50 % (red-listed), or by 25 - 50 % (amber-

listed) over the past 25 years. Eaton and colleagues (2015) specifically highlighted concerns 

about the declines in woodland-breeding and long-distance migratory species, such as the 

Pied Flycatcher. 

 

As a long-distance migratory woodland bird breeding in the UK, which preferentially 

chooses artificial nest boxes over natural nest sites (Huhta et al. 1998), the Pied Flycatcher 

is a valuable model species for understanding the links between environmental, 

demographic and population changes (Lundberg and Alatalo 2010). In terms of diet, 

migration and breeding biology, Pied Flycatchers are broadly representative of many 

insectivorous long-distance migrants which breed in North-Western Europe and winter in 

sub-Saharan Africa (Zwarts et al. 2010).  

 

With resident woodland-breeding species generally becoming more widespread and 

abundant, and woodland-breeding migrant species declining in abundance and 

geographical range, there is a need to understand the mechanisms driving their contrasting 

population trends (Amar et al. 2006). Stressors faced by migratory species are spatially 

heterogeneous, with many stressors occurring in the wintering grounds, including habitat 

loss and shifts in vegetation phenology - leading to a reduction in the availability of food 

prior to departure from the wintering grounds (Saino et al. 2017; Awa et al. 2018). Major 

reviews of population changes among woodland birds in the UK identified conditions on the 

sub-Saharan wintering grounds were a major cause of population decline among trans-

Saharan migratory species (Fuller et al. 2005). Overwinter conditions may affect overwinter 

survival and have carry-over effects on fecundity in the subsequent breeding season. 

Ockenden et al. (2013) found that climate change on the breeding grounds explains more 

variation in fecundity than carry-over effects from wintering grounds. Further detailed 
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research on understanding the impacts of changes in individual-level demographic 

variables on population change is, however, required in order to understand the 

demographic mechanisms underlying population changes. 

 

Although migrant and resident bird species within a woodland breed in the same location, 

their behavioural responses to the environment may be different. For example, resident 

Blue Tits adapt their reproductive phenology to that of the Lepidopteran caterpillar larvae 

found in Oak (Quercus spp.) woodlands, resulting in the peak in food demand of Blue Tit 

chicks closely matching the peak in the availability of caterpillars (Visser et al. 2004). This 

phenological match results in continued high breeding success despite these climate-driven 

ecological changes. Increased over-winter survival rates of resident birds, due to milder 

winters, have also contributed to increased population sizes of resident species (Askeyev 

and Askeyev 2002). In contrast, long-distance migrant species are less adaptable to 

phenological changes on the breeding grounds than resident birds (Bartosova et al. 2014). 

A trans-Saharan migrant’s arrival date is constrained by its departure date from the 

wintering grounds, which is primarily driven by photoperiod rather than climate variables 

(Gwinner 1996). The inability of long-distance migrants to adapt fully to the changing 

phenology of their invertebrate prey under climate change, has, in years with an early 

spring, resulted in a phenological mis-match between the nutritional demands of the 

nestlings and the availability of their invertebrate food supply. For example, the peak 

availability of caterpillars in broadleaved woodlands now occurs too early to coincide with 

the peak food demand for nestling Pied Flycatchers (Both and Visser 2001).  

 

Demographic changes associated with climatic variables, such as temperature and rainfall, 

result in variation in breeding productivity. The behavioural response of migrants to the 

inverse relationship between arrival date and monthly temperature has been to advance 

their arrival dates by 1.6 days per decade (Croxton et al. 2006). This advance in arrival date 

has been achieved primarily by accelerated migration following departure from Africa (Both 

2010). Nevertheless, the advance in arrival time on the breeding grounds has been 

insufficient to keep pace with the advance in peak caterpillar abundance. Suboptimal timing 

of arrival (late arrival) results in late laying and reduced breeding productivity (Thomas et 

al. 2001), with impacts on population size. For example, breeding productivity has been 

shown to be the most important driver of population change in Willow Warblers, 

Philloscopus trochilus; population size increased in years when annual survival and 

breeding productivity were both high (Morrison et al. 2016). 

 

Ambient temperature and rainfall affect the breeding productivity of songbirds, both directly 

(e.g. by increasing thermal costs of endothermy and incubation), and indirectly (e.g. by 
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reducing the availability / activity density of invertebrate prey) (Seward et al. 2014; Vafidis 

et al. 2016). A meta-analysis of 283 studies showed that low temperatures result in smaller 

clutches and smaller eggs, which have a lower probability of hatching and the resultant 

chicks have a lower probability of fledging (Krist 2011). Shifts in temperature therefore 

influence breeding success (Golawski 2008). Clutch size has been shown to vary in some 

species, based upon parental food availability during the pre-laying period (Hall et al. 2018), 

and clutch size declines across the breeding season (Czeszczewik 2004). The proportion 

of eggs which hatch depends, initially, on the number of eggs fertilised and then, on 

investment in incubation by the female parent (only the female parent incubates in the Pied 

Flycatcher), as embryo development ceases below an internal egg temperature of 26 °C 

(Conway and Martin 2000).  

 

Invertebrate abundance in oak woodlands is affected by weather variables. Temperature 

increases in Spring trigger the emergence of terrestrial invertebrates from their eggs or from 

dormancy, coinciding with leaf growth of food plant species (Bauer et al. 2010). Lower 

Spring temperatures result in delayed leaf growth and subsequent delays in caterpillar 

emergence. Low temperatures, particularly frost, after oak leaf burst can result in the death 

of leaves (pers. obs.) making them unpalatable to caterpillars. Reductions in invertebrate 

availability can result from caterpillars being washed off leaves due to heavy rainfall in May 

(Thom 1986). As many woodland birds, including Pied Flycatchers, glean caterpillars from 

leaves (Stowe 1987), heavy rain events and low temperatures can both reduce and delay 

the availability of food for the parent birds to collect and provide to their chicks (Leech and 

Crick 2007). 

 

Chick survival and growth are indirectly affected by food availability, and directly by climatic 

effects of temperature and rainfall (Oeberg et al. 2015). Rainfall which can wet the plumage 

of parent birds may lead to reduced or less efficient incubation of eggs and brooding of 

chicks. This indirect effect of rainfall, and the direct effect of particularly low temperatures 

on nest temperatures, can cause chilling of eggs and hypothermia in chicks resulting in 

mortality (Leech and Crick 2007). Likewise, high temperatures can cause chicks to 

overheat, as they are not able to thermo-regulate fully until eight days after hatching (Sturkie 

1976). Once hatched, the proportion of chicks that successfully reach fledging depends 

upon both their ability to maintain an appropriate body temperature and a high enough food 

intake, to facilitate growth of feathers and to gain enough mass to leave the nest in good 

condition. It is predominately the combined and cumulative effect of diet and weather that 

determines whether chicks survive to fledging or not (Siikamäki 1995). The increase in UK 

Spring temperatures over the last three decades (Hart et al. 2010) has occurred 
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simultaneously with a decline of more than 60 %, in the number of breeding Pied 

Flycatchers in the UK (Woodward et al. 2018).  

 

Within the UK, the core range of Pied Flycatchers is Wales, SW England and SW Scotland; 

areas that contain broad-leafed woodlands, dominated by Sessile Oak, Quercus petrea, 

and are characterised by steep-sided upland woodlands. Some of these sites have long-

term (25+ years) data time-series which have been systematically collected. The design 

and consistency of these studies enables both the identification of trends over long periods 

of time, as well as determining the environmental variables acting upon the populations 

(Hart et al. 2010; Burgess 2014).  

 

In this chapter, the changes in abiotic parameters, and how they affect Pied Flycatcher 

demographics in a woodland in South Wales over a 25-year period, are explored. Long-

term declines in the Pied Flycatcher breeding population have been observed in Cwm 

Clydach (H. Coats, pers. comm.). The nature and rate of population change in this woodland 

is described to determine and understand its drivers. If breeding productivity in one year 

has a significant effect on population size of Pied Flycatchers in the subsequent year, then 

it should be possible to show that variables which affect breeding productivity also affect 

the population size.  

 

The overall hypothesis to be tested is that Pied Flycatcher population change is driven by 

changes in weather that, in turn, affect breeding productivity. The rate of decline in the 

breeding population at Cwm Clydach study site will firstly be quantified and compared with 

simultaneous national (UK) population change. Next, the associations will be examined 

between year to year variations in different weather variables (temperature, rainfall) and 

breeding parameters (laying date, clutch size, hatching success, brood size and fledging 

success). These data will be used to i) test the hypothesis that weather explains annual 

variation in breeding productivity, and ii) investigate which demographic parameters are 

most sensitive to changes in weather. Finally, iii) associations between breeding 

parameters and subsequent changes in population size will be used to identify whether 

breeding productivity is the primary proximate driver of population change.  
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2.3 Methods 

2.3.1 Study Site 

Cwm Clydach is a nature reserve of approximately 50 hectares (centred on 51°42’ 25 N, 

3°54’ 18” W) in the administrative area of Neath - Port Talbot, South Wales (Figure 2.1). 

The site comprises steep-sided sessile oak woodlands on either side of the Clydach River, 

with elevations ranging between 40 and 110 m a.s.l. Much of the woodland is owned and 

managed by the Royal Society for the Protection of Birds (RSPB), with all nest box recording 

conducted by the Gower Ornithological Society (GOS).  

 

 

2.3.2 Data Collection 

The dataset comprises Pied Flycatcher breeding data from Cwm Clydach across 30 years 

(1986-2015, excluding 2001 when a Foot and Mouth disease outbreak prevented access to 

the study site). Wooden nest boxes (275 mm x 145 mm x 19 mm, with 32 mm front facing 

hole) have been fixed to trees at approximately 1.5 m above ground level. Nest box 

availability varied between years, increasing from 13 boxes in 1986 to a maximum of 302 

in 1998. Availability of boxes remained above 250 from 1996 onwards. Due to limited 

sample size (fewer than 150 boxes) (Figure 2.3), population abundance data from 1986 to 

1989 has been excluded from the main analysis.  

 

Figure 2.1 Cwm Clydach study site, South Wales. Images obtained from Google Earth 
(left) and modified from OS maps (right) 
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Nest box occupancy and breeding data were collected by volunteers according to the 

protocols used in the Nest Record Scheme (NRS), co-ordinated by the British Trust for 

Ornithology (BTO) (Crick et al. 2003). Nest boxes were checked weekly, with clutch size, 

brood size and chick mortality recorded for each box, along with first-egg laying date, 

individual ring number of parents and nestlings, hatching success (proportion of eggs that 

hatched), fledging success (proportion of chicks that fledged) and fledging date, recorded 

wherever possible. If laying date was not recorded directly, then it was estimated based on 

an assumption of one egg laid per day, and incubation starting from the day of completion 

of the clutch (Both et al. 2005). If a female was found to be brooding young and the laying 

date was unknown, then the calculation was based on an assumption of one egg per day 

plus 14 days for incubation, plus the apparent age of the chicks (Laaksonen et al. 2006). 

Young were ringed at 7-10 days old. Nest boxes were emptied and cleaned between 

seasons. 

 

In 2003 and 2004, the frequency of visits by volunteers and their timing prohibited brood 

size from being recorded. Also, in 1992, 1996, 1997, and 1999-2006, laying dates were not 

recorded, meaning that data for laying date was available for 18 years. Although there are 

gaps in the resulting dataset, the long-term nature of the study allows for long-term 

relationships between demography and weather to be examined. 

 

2.3.3 Weather data 

Monthly rainfall and temperature data, 1990 – 2015, were downloaded from the 

Meteorological Office website (Met Office et al. 2017), and data extracted for the 5 km2 cell 

containing the Cwm Clydach study site from the national spatially-smoothed weather 

dataset (UKCP09 gridded observation datasets). Four variables were used to quantify 

weather during the breeding season, calculated separately for each month April – June 

inclusive (i.e. 12 variables in total): 1. number of heavy rain days (> 10 mm rain falling in a 

day), 2. mean rainfall (mm), 3. number of nights on which ground frost occurred, and 4. 

mean temperature (℃). These specific temperature and rainfall variables were chosen as 

they had previously been found to be useful predictors of bird breeding biology, with specific 

anticipated effects on the woodland ecosystem (Bagchi et al. 2012): 1. Heavy rainfall 

washes caterpillars off oak leaves reducing the foraging efficiency of insectivorous birds 

and chilling adults and chicks (Burgess 2014), 2. Mean rainfall influences the rate of 

advancement of the growing season (Amar et al. 2006), 3. Frost causes damage to newly 

opened oak leaves affecting the abundance of food available for caterpillars which in turn 

affects flycatcher foraging success (Moreno et al. 2015), and 4. Mean daily temperature 

influences when the oak leaves will start budding and the caterpillars will emerge from their 

eggs (Visser et al. 1998). 
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2.3.4 Statistical Analysis 

All analyses were conducted using R v3.5.1 (R Core Team 2018) with additional packages 

lme4 (Bates et al. 2015) and mgcv (Wood 2011) used for linear and non-linear modelling, 

respectively. Statistical methods followed Thomas et al. (2017). 

 

2.3.5 Principal Component Analysis 

Tests for multi-collinearity between weather variables were conducted and, on finding that 

multiple variables were substantially correlated with each other, a Principal Component 

Analysis (PCA) was conducted to summarise the main axes of variation in weather following 

methods in Shariati-Najafabadi et al. (2016). The first five principal components (PCs) were 

retained, as they exceeded the eigenvalue retention threshold of 1 (following Thomas et al. 

2017). These five PCs accounted for 87 % of the variation within the weather variables. 

Using PCs from a PCA, the impacts of inter-related weather variables could be identified 

together rather than assessing impacts of each variable independently. The combining of 

variables is biologically relevant as temperature and rainfall co-vary in nature and the effect 

on the ecosystem is in response to both variables. Using PCA both variables can be 

investigated whilst reducing redundancy. 
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Table 2.1 Eigenvectors for each of the input weather variables of a Principal Components 
Analysis at Cwm Clydach (1990 and 2015). Each new principal component was described by 
using the corresponding emboldened numbers identifying the original weather variables that 
were most strongly correlated with each Principal Component. 

 PC1 PC2 PC3 PC4 PC5 Total 

Variance explained (%) 32.0 18.6 15.7 12.0 9.2 87.5 

Apr Rain > 10 mm 0.246 -0.039 0.599 -0.004 0.148 

 

May rain > 10 mm -0.344 -0.036 0.378 0.215 0.110 

Jun rain > 10 mm 0.408 -0.098 0.050 0.100 0.428 

Apr temperature -0.305 -0.262 -0.248 -0.188 0.493 

May temperature 0.223 -0.491 -0.192 -0.164 -0.242 

Jun temperature -0.274 -0.393 0.125 0.166 -0.174 

Apr rain 1 mm 0.299 -0.175 0.501 -0.073 -0.183 

May rain 1 mm -0.371 -0.257 0.142 0.162 0.223 

Jun rain 1 mm 0.390 -0.039 -0.168 0.102 0.505 

Apr frost 0.166 0.202 -0.238 0.607 -0.255 

May frost -0.168 0.507 0.153 0.182 0.213 

Jun frost -0.048 0.358 0.055 -0.641 -0.049 

 

PC1 summarised the timing of spring warming and rainfall, with high PC1 values 

representing colder than average conditions in April, drier conditions in May but more than 

average rain in June. PC2 summarised the strength of a breeding season cold snap with 

high PC2 values representing frost and low temperatures in May and June. PC3 

summarised the amount of April rainfall with high PC3 values representing higher than 

average heavy rainfall in April and May, and a cold May. PC4 summarised the temperature 

in April with high PC4 values representing higher than average April temperature. PC5 

summarised the probability of a dry cold June with high PC5 values representing a higher 

than average chance of a dry frost in June. All five Principal Components were used as 

candidate independent variables in the statistical models described below, as indices of 

weather conditions during the Pied Flycatcher breeding season at Cwm Clydach. 

 

2.3.6 Temporal trends 

Trends in population size, nest box occupancy and nest productivity variables were 

analysed using Poisson, quasibinomial and binomial error terms and square root, log and 

logit link functions respectively. Non-linear temporal trends were modelled using 

Generalised Additive Models (GAMs) with the degree of non-linearity (fitted using thin-plate 

splines) selected by using generalised cross validation (Wood 2006). Long-term linear 
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trends, in these previously described dependent variables, were modelled separately using 

Generalised Linear Models (GLMs) All of these GAM and GLMs contained only “year” as 

the independent variable therefore no model refinement was required. Link function 

selection was conducted by using Akaike Information Criterion (AIC) values. Models with 

the lowest absolute AIC values were selected as the most parsimonious following Thomas 

et al. (2017).  

 

2.3.7 Weather impacts on demography 

Relationships between variations in nest productivity (dependent variable) in relation to the 

five identified principal components of weather (fixed independent effects) were examined 

using a Generalised Additive Mixed Model (GAMM), with a binomial error family and 

complementary log-log link function. Random independent effects of year and location 

(woodland subsection) were included to control statistically for inter-annual variation and 

spatial pseudo-replication respectively. Prior to refinement all five weather PCs from the 

PCA were initially included in the full model along with all 2-way interactions. Subsequent 

model refinement, using the AIC, resulted in PC1, PC2 and PC3 being retained in the most 

parsimonious model with an interaction between PC1 and PC3.  

The relationship between the current year’s population size (dependent variable), the 

previous year’s population size and previous year’s breeding productivity (independent 

variables) were modelled in a GLM with a Poisson error family and log link transformation. 
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2.4 Results 

2.4.1 Population size and nest box occupancy 

The number of nesting attempts by Pied Flycatchers at Cwm Clydach increased from 80 in 

1990 to a maximum of 108 in 1997, after which there was a steep decline in the number of 

breeding attempts, with only 27 nests recorded in 2015 (Figure 2.2). The overall decline in 

the number of nesting attempts between 1990 and 2015 was 66 %, although the decline 

was not linear during this period (Figure 2.2: GAM; χ2 = 470.6, edf = 7.799, p <0.001, 

deviance explained 95.6 %). 

 

 

Figure 2.2 Historic trend in the numbers of Pied Flycatchers breeding in nest boxes at Cwm 
Clydach, from 1990 – 2015, with fitted modelled line (solid) and 95 % CI (dashed). 

 

Nest box occupancy, adjusting for the varying number of nest boxes available through time, 

showed a similar decline to the number of nests (comparing Figure 2.3 with Figure 2.2). 

The frequency at which Pied Flycatchers occupied nest boxes remained relatively stable at 

40-50 % between 1990 and 1996, but then the occupancy declined by 50 %, falling from an 

occupancy of 40 % to 20 % between 1996 and 2003. By 2015, nest box occupancy had 

fallen to nearly 10 % (Figure 2.3). This decline in percentage of nest boxes occupied was 

significantly non-linear (Gamma GAM; edf = 5.82, ref.df = 6.95, F = 42.7, p< 0.001, deviance 

explained = 94.2 %).  
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Figure 2.3 Trend in proportional nest box occupancy (1990 – 2015) with fitted modelled line 
(solid) and 95% CI (dashed).  

 

Table 2.2 Annual number of boxes checked in Cwm Clydach between 1986 - 2015 

Year No. boxes checked Year No. boxes checked Year No. boxes checked 

1986 13 1996 266 2007 187 

1987 65 1997 292 2008 252 

1988 87 1998 302 2009 240 

1989 144 1999 285 2010 241 

1990 193 2000 276 2011 240 

1991 202 2002 280 2012 240 

1992 218 2003 262 2013 240 

1993 208 2004 272 2014 240 

1994 235 2005 265 2015 240 

1995 242 2006 267   

 

2.4.2 Inter-annual variation in April weather and laying date  

Over the period of decline in the Pied Flycatcher populations, mean April temperatures 

increased by 1.5 °C (GLM; mean increase ± SE = 0.059 ± 0.003 °C per year, F1,1576 = 306.5, 

p < 0.0001, R2 = 0.16), The was also a long-term advancement of laying date of 1-2 days 

across the study period (Figure 2.4), this estimate was robust to removal of outliers where 
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individuals laid after day 55 (where clutches might be replacements). There was no 

difference in the slope when all dates were included (slope = -0.074) or when the 

replacement clutches had been removed (slope = -0.071). Intra-annual variability in laying 

date was much greater than inter-annual variation. Laying date was negatively (mean ± 

S.E. = -0.03 ± 0.001, p< 0.0001) and significantly associated with mean April temperatures 

(Figure 2.5) whilst there was no association with rainfall in April (p = 0.211) (GLMM: Chi1,765 

= 12.9, R2 = 0.09). Annual mean laying date was approximately seven days earlier in the 

warmest versus coldest observed April conditions across the study period Figure 2.5).   

 

 

 

Figure 2.4 Pied Flycatcher first-egg laying date (no. of days from 1st April) 1990-2015.  
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Figure 2.5 Shifts in laying date in relation to temperature at Cwm Clydach between 1990 and 
2015 

 

There was a strong correlation between laying date and clutch size (GLMM; slope ± SE 

= -0.01 ± 0.002 eggs per day, p < 0.0001) with larger clutches, mean of 7.7 eggs, laid at the 

beginning of the season (30 April) compared with a mean of 4.7 eggs at the end of the 

season (12 June). 

 

There was significant inter-annual variation in all of the demographic parameters recorded 

(clutch size, brood size, number of chicks fledged) (Figure 2.6) (Table 2.3). There was also 

significant inter-annual variation in the calculated metric of hatching success (GLM: LRT = 

524.54, df = 22, p< 0.0001) with an annual mean hatching success range of 50 – 87%.  

 

The analysis identified long-term negative trends in the number of chicks which fledged 

(GLM; mean ± SE = -0.006 ± 0.001, F1, 1501 = 273.6, p < 0.0001, R2 = 0.1536) and the 

proportional of chicks which fledged of 2 % per year (GLM; mean ± SE = -0.02 ± 0.006 

decrease per year, t = -3.54, pseudo R2 = 0.007). The other demographic parameters 

showed no significant long-term trends (p = 0.143, 0.330 and 0.751 for clutch size, hatching 

success and brood size, respectively).  

 

The modal clutch size across the whole study period was seven eggs (mean = 6.8 eggs, 

range = 4 - 9 eggs), and the modal brood size was seven chicks (mean = 6.01, range = 0 - 

9 chicks), yet there was substantial and significant inter-annual variation in both clutch 
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(range of annual mean values 5.7 - 7.3 eggs per clutch) (Figure 2.6a), and brood (range of 

annual mean values 3.5 - 6.1 chicks per brood) (Figure 2.6b) size. 

 

Of the 1,540 nests recorded during the study, 215 contained eggs but did not result in any 

fledglings (14%) but from nests which fledged chicks, the modal number of fledglings was 

six, giving a modal fledging success of 85 %. Predation of the nests by mammals (primarily 

Grey Squirrel, Sciurus carolinensis, Common Weasel, Mustela nivalis and Wood Mouse, 

Apodemus sylvaticus and birds (primarily Great Spotted Woodpecker, Dendrocopos major) 

at the study site was minimal, with desertion of the clutch or starvation of the brood being 

the primary cause of nest failure (H. Coats pers. comm.).  

 

Figure 2.6 Variation in a) clutch size, b) brood size, c) number of fledglings produced per nest, 
d) nest productivity (proportion of eggs which resulted in fledged chicks) at Cwm Clydach 
1990 – 2015. Annual means ± standard error are given. 

 

Table 2.3 Inter-annual variation in demographic parameters (Clutch size, Brood size and 
number of chicks which fledged) 

Variable Chi statistic Degrees of freedom p-value Pseudo-R2 

Clutch size 124.5 22, 1441 <0.0001 0.65 

Brood size 175.5 22, 1012 <0.0001 0.79 

No. fledged 142 24, 1478 <0.0001 0.69 
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There were no significant linear increases or decreases in any of the weather patterns 

described by PCs 1-5 during the course of the study (p = 0.053, 0.081, 0.813, 0.065 and 

0.833, respectively) (Figure 2.7).  

 

Figure 2.7a-e. Weather variation between 1990 and 2015 at Cwm Clydach, all dependent 
variables are scaled by long-term mean. a) Inter-annual variation in Spring phenology 
(summarised by PC1). High values of the spring phenology index represent warm April 
temperatures, dry May and wet June. b) Index of temperature during the nesting period (May 
and June). High values represent warmer conditions. c) Index of rainfall in April. Larger 
positive values represent higher frequency of heavy rainfall events and a greater quantity of 
rain. d) Index of temperature in April. Larger values indicate a warmer temperature. e) Index 
of frost in June. Higher positive numbers represent an increase in the number of days with 
frost. Dashed line represents the non-significant trend. 

 

2.4.3 Effects of weather on fledging success 

The three PCs which explained the most variation in weather (PCs 1 - 3) were retained in 

the GAMM explaining fledging success after AIC-based model selection. These were 

indices of spring timing, April rainfall and the degree of frost in May. The effect of April 

rainfall on fledging success was impacted significantly by how early spring started in a given 

year (F2,2 = 4.77, p = 0.009) and varied non-linearly in its effect across the range of rainfall 

index values. In years which had a drier April/May (low PC3 values; Figure 2.8, left hand 

end of red line), fledging success was very high (80-100 %). It was also high when a wet 
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April was followed by a wet May and then a dry June (Figure 2.8). When rainfall conditions 

differed in April and May, nesting success was low, more so in years when April was very 

wet (high PC3 values) and cold (low PC1 values), followed by a very dry May (high PC1 

values). In years when the conditions were poor, the fledging success of a brood was as 

low as 40 %.  

 

The probability of fledging was higher at times of no frost in May, compared to heavy or 

frequent frost (high PC2 values) (Figure 2.9). It was also higher in years when April had a 

lower than average temperature and a drier than average May (high PC1 values). 
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Figure 2.8. Probability of fledging success per nest in different rain conditions in April (PC3), 
mediated by rain in May and June (PC1). Blue: High May-June rainfall index. Red: Low May-
June rainfall index. 

 

Figure 2.9 Probability of nest fledging success under varying temperatures and rainfall 
conditions. Wet May followed by dry June (blue), dry May followed by wet June (red). 

 

Mean annual fledging success was a significant predictor of the subsequent population size 

(GLM: F2,21 = 19590, pseudo R2 = 0.81, p < 0.001), even once the previous year’s population 

abundance had been controlled for (mean slope ± S.E. = 0.81 ± 0.385, z = 2.117, p = 0.034), 

with 81 % of the variation in the subsequent year’s population abundance being explained 
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by the combination of current year’s abundance and breeding productivity. Mean annual 

productivity itself explained 8 % of the variation in the subsequent year’s population 

abundance (GLM: F1,22 = 8250, pseudo R2 = 0.08 p < 0.001). The interaction between 

population size and fledging success in the current year was not significantly associated (p 

= 0.829) with population size in the subsequent year, indicating that there was no significant 

density dependence influencing population change.  
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2.5 Discussion 

2.5.1 Population change in a global, long-term & multi-species context 

The present study identifies some demographic processes which contribute to the change 

in a Pied Flycatcher population and examines the role of weather conditions (temperature 

and rainfall) in driving the underlying demographic changes. Significant declines occurred 

over the 25-year study period, in both the numbers of breeding pairs of flycatchers at Cwm 

Clydach, and the proportion of nest boxes occupied by them. The decline in population size 

(66 %) in Cwm Clydach was greater than the UK average over the same period (38 %) 

(Woodward et al. 2018), but smaller than declines in other Welsh woodlands where Pied 

Flycatchers have recently become extinct. The population decline seen at Cwm Clydach 

over the period 1990 – 2015 is also steeper than has been reported among Pied Flycatcher 

populations across Europe over a similar period (1980-2016), which has been described as 

a ‘moderate’ decline (< 5 % per year) (PECBMS 2015). The mean population trends for 

Pied Flycatchers in the UK (1995 – 2016) and across western Europe (1980 – 2016) were 

both 38 %. The rate of population decline in Cwm Clydach is not, therefore, fully explained 

by the continental scale decline, but is likely to be more rapid due to more local factors.  

 

The proportion of nest boxes occupied (10-50 %) by Pied Flycatchers was comparable with 

other UK studies where inter-specific competition was the most important factor which 

affected the proportion of nest boxes occupied (Burgess 2014). The lack of an increase in 

Pied Flycatcher abundance after the protracted decline implies that the population is 

continuing to be constrained by environmental factors such as inter-specific competition, 

food availability and weather. Lundberg et al. (1981) found no density dependent effects on 

clutch size or hatching success in years of good weather. In bad weather (heavy rain and 

near freezing temperatures), however, occurring near the time of hatching, nestlings 

growing in high density areas were more successful than those in low density areas 

(Lundberg et al. 1981b). Breeding densities were comparable between the present study 

and those in Lundberg et al. (1981) and were likely to be higher than those nesting in natural 

cavities which would therefore have reduced intra-specific competition for nest sites.  

 

2.5.2 Inter-annual variation in weather conditions 

At Cwm Clydach, weather conditions affected Pied Flycatchers throughout the breeding 

season. Those parents which were most able to adjust to variations, by being behaviourally 

plastic, maximised their lifetime reproductive fitness. Across the 25-year study period, mean 

monthly (April, May, June) temperatures fluctuated between 7 °C and 16 °C, and monthly 

mean rainfall fluctuated between 2.6 mm and 22 mm. Although there were substantial and 
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statistically significant variations between years in weather conditions, as denoted by the 

five PCs, there were no significant long-term linear changes in any of the PCs across the 

study period. The large inter-annual variation in patterns in weather mean that long-term 

climate trends are not exhibited (IPCC 2014). A longer time series of weather data would 

permit understanding of the changes in weather at a decadal scale, providing clearer 

patterns in climate. Nevertheless, the substantial variation between years in weather 

conditions highlights the inter-annual behavioural plasticity required by the parents to time 

egg laying and incubation correctly, to result in high fledging success of their offspring.  

 

2.5.3 Changes in the timing of breeding 

Across the temperate zones, winter is becoming wetter and summer drier, with mean 

monthly temperatures increasing (IPCC 2014). Increased mean temperatures in April would 

advance both tree bud burst and caterpillar peak abundance. As the rate of change is 

consistent across the UK (Burgess et al. 2018), birds could compensate for the 

advancement by a shift in range to higher altitude or latitudes, or matching the advancement 

of the date of clutch initiation. Failure to do this has been shown to result in a mis-match 

between peak nesting demand and peak food availability (Burgess et al. 2018).  

 

Laying dates were significantly negatively correlated with mean temperature in April which 

resulted in birds laying significantly earlier following warm Aprils. This behavioural plasticity 

reduced phenological mis-match. As Pied Flycatchers did not lay earlier after a drier than 

average April, April’s temperature may be the cue for laying and not rainfall. Mean laying 

date varied by seven days across the range of temperatures experienced during the study, 

with a linear advancement of 1-2 days over the 25 years (Figure 2.4). This observed 

advance in mean laying date is in line with the rate of change reported in other studies of 0 

- 0.6 days per decade (Croxton et al. 2006), in which similar rates of advancements have 

been reported over an even greater range of temperatures and laying dates (Both and 

Visser 2001). Not all Pied Flycatcher populations respond to the same degree to changes 

in temperature. In some populations there is no advancement in laying dates despite 

significantly increased spring temperatures (Sanz 2003; Goodenough et al. 2010). 

 

The large intra-annual variation in laying dates, but minimal linear trend, suggests that 

variation in laying date is primarily due to phenotypic plasticity at an individual level, rather 

than being an evolutionary response to consistent directional selection at the population 

level.  

 



 34 

2.5.4 Variation in clutch size 

There was substantial inter- and intra-annual variation in clutch size, although again no 

long-term linear trend in clutch size across the 26-year study. The highly variable 

temperature observed during the study period may be associated with the variation in clutch 

size within and between seasons. The relationship between temperature and clutch size is, 

however, unclear; in the present study there was no long-term change in temperature and 

there was also no long-term change in clutch size. Previous studies have differed in their 

conclusions. Sanz (2003) reported a decrease in clutch size associated with increased 

spring temperatures, whereas Winkel and Hudde (1997) found an increase in clutch size at 

higher temperatures. Burgess (2014), on the other hand, found no biologically significant 

relationship between the two.  

 

There is intra-annual variability in clutch size, specifically, a seasonal decline in clutch size 

of approximately three eggs between the beginning and the end of the breeding season. 

The magnitude of this seasonal decline is consistent with that described previously 

(Lundberg and Alatalo 2010). The seasonal decline in clutch size is correlated with a 

seasonal decline in the food availability in a territory; when the timing of parental food 

demand did not coincide with peak food availability (mis-match) a lower than average mean 

clutch size was observed (Arcese and Smith 1988). Temporal decrease in clutch size during 

the breeding season, combined with an increased proportion of birds laying later than the 

peak in food availability, would also result in a reduced mean population clutch size 

(Hamann and Cooke 1987; Stenning et al. 1988).  

 

2.5.5 Variation in hatching success, brood size and number of fledged chicks 

As with laying date and clutch size, hatching success varied substantially between years 

(range: 50 % - 87 %) but with no significant linear long-term trend. The maximum hatching 

success was comparable to previous studies (82.4 % (Stenning et al. 1988) and 86 % 

(Siikamäki 1995)). Individual brood size (population mean = 6.01) was driven primarily by 

hatching success (rather than clutch size) and varied more than was reported for Pied 

Flycatchers elsewhere in Wales by Wright (2004) (mean = 5.7 birds).  

 

The number of chicks which hatched (brood size) varied significantly between years but 

there was no significant long-term change across the study, indicating that this aspect of 

demography is not affected by a constant and unidirectional selection pressure in the 

breeding season. The number of chicks which fledged per nest varied significantly between 

years and showed a long-term significant decline across the study. A small difference 

between the brood size and the number of nestlings at seven days is consistent with 
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previous studies showing that chick mortality within the first seven days is low (Lundberg 

and Alatalo 2010), especially if the nest is in a nest box rather than in a natural cavity (Baillie 

and Peach 1992). Clutches which failed to produce any fledglings occurred in approximately 

one out of every six nests (14%) which is broadly comparable with similar studies in the UK 

(22 and 19%) (Lundberg and Alatalo 2010). The main cause of nestling mortality is 

starvation, driven by inclement weather reducing food availability and increasing 

interspecific competition, as shown by a density dependent response exhibited most 

strongly in bad weather (Baillie and Peach 1992). 

 

2.5.6 Associations between weather and breeding parameters 

Both temperature and rainfall had significant effects on fledging success at different times 

during the breeding season. Temperature and rainfall in months with peak nestling demand, 

and high rainfall in June, have previously been shown to affect nest productivity (Burgess 

2014). The current study clarifies this relationship by describing the interaction between 

rainfall prior to laying and fledging, and incorporates the effect of temperature during 

incubation and chick rearing.  

 

Fledging success declined significantly during the study period and varied significantly 

between years in relation to the variable weather conditions experienced in different years. 

Fledging success was high (near 100 %) at both extremes of rainfall in April, provided that 

the same conditions persisted into May. Conversely, the lowest mean fledging success (40 

%) occurred when April had higher than average rainfall, and May was dry. In addition to 

the effect of rainfall throughout the breeding season, there was an additive effect of 

temperature in May and June, when warmer temperatures result in higher fledging success.  

 

Even before passerine chicks achieve homeothermy at eight days (Bourret et al. 2017), 

they have a high tolerance for hypothermia (Blix 2016) which may explain why rainfall is a 

greater predictor of fledging success than temperature. Heavy rainfall events wash 

lepidopteran caterpillars off the oak leaves, decreasing the foraging efficiency of the parent 

birds (Burgess 2014). Reduced food availability for the growing chicks results in reduced 

fledging success from a nest. The ideal weather for high Pied Flycatcher fledging success 

is high rainfall in April and May (promoting leaf growth), with considerably less rainfall in 

June (improving caterpillar survival and hence Pied Flycatcher foraging efficiency), and 

warmer temperatures in May and June (promoting caterpillar development). As temperature 

in April also affects laying date, weather plays an important role in the timing of breeding, 

as well as the success or failure of a nest, and therefore population change. 
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2.5.7 Drivers of population change 

The fledging success (% of eggs resulting in fledged chicks) in each year accounted for 

only 8 % of the variation in the population size in each following year, suggesting (i) that the 

observed changes in breeding productivity in the present study explain some – but not all - 

of the population change, and (ii) that factors other than breeding productivity, such as adult 

survival, are also important drivers of population change in Pied Flycatchers (see Chapter 

4). As weather variables influence fledging success, and fledging success accounts for 8 % 

of the population change, this study provides evidence for a partially weather driven change 

in the abundance in this population of Pied Flycatchers.  

 

As only approximately 3 % of Welsh Pied Flycatcher fledglings survive to return to their 

natal area (Kern et al. 2014), factors operating during the trans-Saharan migrations, and on 

the sub-Saharan wintering grounds, may be of greater importance than factors operating 

on the breeding grounds. This is not the case for all Afro-Palearctic migrants; breeding 

productivity in the Willow Warbler has been shown to have significant impacts upon the 

breeding population in subsequent years, such that high fledging success in one year can 

reverse the population decline in the next (Morrison et al. 2016). 

 

The changes in fledging productivity observed in the present study appear to have a small 

(<10 %) but significant impact upon the subsequent year’s population size. This is contrary 

to Wright et al. (2004) who found no link between population declines and changes in 

breeding parameters. Baillie and Peach (1992) proposed that it is not fledging success 

which drives population change in Pied Flycatchers and other long-distance migrants (e.g. 

Blackcap (Silvia atricapilla), but instead post-fledging mortality. In breeding seasons 

following a higher post-fledging survival, recruitment is high and therefore population 

declines are lower. Conversely, mass brood mortality, as observed in Spain, due to a spring 

cold snap, can lead to significant loss of recruitment and, therefore, negatively impact 

population size (Moreno et al. 2015). In addition to that accounted for by fledging success, 

in the present study 73 % of the subsequent population size was explained by the current 

year’s population size. Therefore, reductions in the number of individuals returning from 

Africa in one year will significantly affect the subsequent year’s population (Stenning et al. 

1988). This highlights the importance of understanding the effects of adult survival across 

the non-breeding season, on population trends. 

 

The trends in breeding population size are not the same for all UK breeding woodland 

species; this could lead to changes in community composition. Over the same period that 

Pied Flycatchers declined by 38 % (across western Europe), Blue Tit populations remained 
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relatively stable (3 % decrease) and Great Tits increased by 30 % (Woodward et al. 2018). 

The inverse relationship between presence of Pied Flycatchers and the level of inter-

specific competition from Blue and Great Tits was the main predictor for presence of Pied 

Flycatchers in Yarner Wood, Devon (Burgess 2014). It is possible, therefore, that the decline 

in Pied Flycatchers may, at least in part be due to greater interspecific competition (Amar 

et al. 2006). No such data were available for analysis in this study, however in each year 

there were multiple unoccupied nest boxes. As such, interspecific competition for breeding 

sites is unlikely to limit Pied Flycatcher population size although it is possible that 

competition for food is a limiting factor at Cwm Clydach. Blue Tits and Great Tits are known 

to have better over-winter survival when the weather is milder (warmer mean temp, reduced 

precipitation), allowing for better conditioned individuals to breed as soon as conditions 

allow in the Spring (Stowe 1987). Blue Tits are also known to track the changes in food 

availability, by altering laying dates, more effectively than Great Tits and Pied Flycatchers 

(Visser et al. 2004). They may, therefore, occupy nest boxes first in years during which the 

caterpillars emerge earlier (Visser et al. 2004), to the exclusion of Pied Flycatchers, whose 

laying date is constrained by the timing of arrival from their long-distance migration (Both 

and Visser 2001). By using long-term studies such as this to understand the climate-driven 

demographic changes underlying population trends in Pied Flycatchers it is possible to 

identify potential causes of decline (or even increases) in other species within the woodland 

community.  

 

2.5.8 The value of long-term studies for understanding the climatic and 

demographic drivers of population change 

Long-term studies of population changes, recording population size, demographic trends 

and relevant environmental data are essential for understanding the way in which animal 

populations vary (Baillie and Peach 1992). This long term approach is complementary to 

focused shorter term studies of mechanisms (Stenning et al. 1988). These concepts 

highlight the importance of comprehensive long-term studies such as the one analysed 

here, and recognises the bridge they form between understanding past patterns and 

predicting future trends. 

 

Despite the extensive literature on Pied Flycatchers there are not many long-term datasets 

available from the UK. Vaugoyeau et al. (2016) analysed a total of 23 long-term studies of 

which only three were using UK datasets. The mean duration of these studies was 15 years 

and so one of the important contributions of this present study is the addition of a 25-year 

dataset. Short-term studies may be subject to bias, with conclusions not always being 

independent of the start and end time of the project (IPCC 2018). This is primarily due to 
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any lag effect in a population (i.e. If there were a particularly bad breeding season then the 

population recovery may take multiple years to occur, not showing a representative general 

long-term trend). The lack of independence is particularly important when considering the 

need for forecasting potential trends under future climate scenarios, and for planning 

management practices and conservation strategies. The analyses of these studies 

therefore needs to be flexible so that any future predictions are not constrained to simplistic 

extrapolation of linear or similar mathematical functions (e.g. Wright et al. 2004).  

 

The rapid decline in iconic species such as the Pied Flycatcher is of public concern, but 

there is only a limited understanding of what drives these declines. How they can be 

mitigated remains unclear. This study highlights how breeding conditions, demography and 

productivity could explain a small but significant proportion of the population change. The 

links between weather and demography may be direct, through incubation intensity and 

hypothermia, but links through trophic levels will also have sizeable indirect impacts. These 

effects include changing tree bud burst date and duration, time of caterpillar emergence, 

leaf death through frost, invertebrate activity and interspecific overwinter survival. 
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3 Phenology of invertebrate abundance and Pied 
Flycatcher breeding biology -causes and 
consequences of trophic mis-matches 

 

3.1 Abstract 

Studies of trophic cascades can provide a mechanistic understanding of climate-driven mis-

matches between timing of food availability and seasonal food requirements of predators. 

Trophic mis-matches are implicated in the rapid declines of temperate woodland-breeding 

summer migrant bird species, such as the Pied Flycatcher. In this study, the trophic 

mechanisms linking weather conditions, invertebrate availability and Pied Flycatcher 

breeding biology were investigated, to understand the role of trophic mis-matches in driving 

this decline. Across three years (2016-2018) the direct and indirect impacts of temperature 

and rainfall on Pied Flycatcher breeding demographics were observed. Invertebrate activity 

density was monitored using frass and sticky traps, and flycatcher breeding productivity was 

monitored through nest box checks. Warmer spring conditions were associated with earlier 

abundance of flying invertebrates and caterpillars, and short-term temperature variations 

were associated with fluctuations in invertebrate abundance. In each of the three years, the 

seasonal peak in Pied Flycatcher nestling food demand dates did not closely match the 

peak in caterpillar availability. This indicates that flycatchers were not able to respond fully 

to adjust their timing of breeding to variation between years in spring weather conditions 

and hence the timing of peak food availability. The majority of Pied Flycatcher nesting 

attempts were timed in a way that allowed for successful fledging, but later nests tended to 

be less successful. This variation in fledging success appears to be linked to the timing of 

invertebrate availability, driven by differences in weather, leading to lower fledging success 

in circumstances of greater trophic mis-match. These results together show the importance 

of reproductive timing in Pied Flycatchers, and the impacts that fluctuations between years 

in weather conditions and food availability may have on the breeding productivity of 

insectivorous birds.  
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3.2 Introduction 

Understanding the mechanisms driving population declines of migrant songbirds is 

essential to be able to predict accurately future population changes and potential 

conservation interventions (M ø ller et al. 2004). The interactions between global climate 

change, local weather variations, and the abundance and timing of availability of food for 

migrant birds on their breeding grounds have been shown to have significant impacts on 

migrant birds (Both and Visser 2001). Broad scale impacts of climate on birds include range 

shifts, changes in demography, and changes in the timing of breeding (Green and Pearce-

Higgins 2014). Birds respond to the environmental conditions (e.g. weather, food supply) 

that they experience on a local scale, rather than directly responding to global climate 

(Walther et al. 2002). Different species may also respond to different weather variables (e.g. 

temperature or rainfall) as well as food availability (Green 2010).  

 

Predominant local weather effects come from temperature and rain, the effects of which 

can be direct or indirect. These effects are frequently non-independent as they are to some 

degree correlated and may also be additive. Decreased overnight temperatures increase 

metabolic costs, requiring adult birds to retain larger fat reserves overnight and to replenish 

them during the day (Thomas and Cuthill 2002). For breeding birds this may involve trading-

off self-maintenance against provisioning their young. For example, in Blue Tits an increase 

in ambient temperature during incubation allowed females to leave the nest for longer and 

the males to make fewer mate-provisioning visits (Amininasab et al. 2016). Although adult 

birds are directly affected by weather (Dybala et al. 2013), during the breeding season, the 

effects are most severely felt by nestlings (Ross et al. 2018). Rainfall and low temperatures 

can result in chicks getting wet and becoming hypothermic (Barrionuevo et al. 2018). Even 

if these impacts are non-lethal then the metabolic cost to the chick, of producing enough 

energy to raise its body temperature, will be higher.  

 

Indirect effects of weather are mediated mainly through impacts upon food availability. 

Breeding birds need abundant food to provision their chicks during the period when the 

chicks are in the nest, and during this period nestlings need an abundant supply of food if 

they are to grow rapidly to fledging (Visser et al. 2006). Weather conditions such as 

temperature and rainfall may influence the abundance and activity of invertebrates (Pearce-

Higgins et al. 2005), changing the availability of prey species to foraging birds (Vafidis et al. 

2016). Numerical abundance of prey may not be the only important factor influencing chick 

growth; for example the combination of high temperatures and low rainfall can result in 
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reduced water content in food items, and so the birds may become dehydrated (Catry et al. 

2015).  

 

Changes in Spring phenology may disrupt previously synchronous events (e.g. weather-

dependent food availability and the timing of breeding of long-distance migrants) which 

result in negative effects on demography and population trends. Higher spring temperatures 

result in earlier emergence of invertebrates, and also result in earlier laying by many species 

of birds. Long distance migrant birds may, however, be constrained in the extent to which 

they can alter their laying date. More specifically, the extent to which trans-Saharan migrant 

birds breeding in NW Europe can adapt to phenological changes between years is limited 

by their arrival date on the breeding grounds. The arrival date is linked to the departure date 

from the wintering grounds, which is triggered by small day-length changes in Africa 

(Gwinner 1996). As day length is a climate-independent cue, there is little flexibility in 

departure date, leading to a constraint on arrival date. A knock-on effect of limited plasticity 

of arrival is that laying date is itself constrained by arrival date, although the duration of the 

gap between arrival and laying can vary (Both and Visser 2001). As invertebrate emergence 

is climate-driven but the laying date of migrant birds is constrained, in years when 

invertebrate emergence is earlier, the lack of plasticity in laying date can result in a mis-

match in timing between peak food demand of bird nestlings and the availability of their 

invertebrate prey. With continued climate warming, the extent of this mis-match is predicted 

to increase, with negative consequences for breeding success, demographic trends and 

population trajectories of insectivorous migratory birds such as Pied Flycatchers. 

 

Whilst the mis-match between food availability and peak requirements for breeding birds 

has been extensively described (Both et al. 2009; Burgess et al. 2018), the specific links 

between local and short-term weather conditions, invertebrate availability and bird breeding 

parameters, are still poorly understood. Although not all species and populations have 

responded (or failed to respond) to climate driven changes to the same degree, some of 

the clearest examples of trophic mis-match have been reported for Pied Flycatcher 

populations (Both and te Marvelde 2007).  

 

Despite their name, Pied Flycatcher diet comprises a wide diversity of invertebrates across 

the breeding cycle, which they capture at a wide range of heights in the woodland habitat. 

Pied Flycatchers spend 30 - 40 % of their time taking prey from the field layer, and 

approximately 40 % taking prey in the canopy (Stowe 1987). Temporal variation in diet may 

result in Pied Flycatchers switching their diet between different taxa at different stages of 

the breeding cycle. On arrival in Spring, prior to breeding and during egg laying (April-May), 

caterpillars are usually still scarce and so diet may be more based on other invertebrates 



 42 

such as parasitoid wasps (Stowe 1987). Many parasitoid wasps belonging to the families 

Ichneumonidae and Braconidae parasitise Lepidopteran larvae (Wharton 1993) and are in 

flight in April and May, with some species (e.g. Itoplectis maculator) specialising on Tortrix 

moth larvae emerging in March (Fitton et al. 1988). The broad ecological niche of parasitoid 

wasps means that they parasitise many other orders as well as Lepidoptera, including 

Coleoptera and Diptera. 

 

During the nestling period, in June, both adult and nesting diet is dominated by Lepidopteran 

caterpillars, but also is comprised of; Coleoptera, Hymenoptera, Aranea and Diptera 

(Bel’skii and Bel’skaya 2009). In many woodlands, this caterpillar biomass is itself 

dominated by caterpillars of the Winter Moth Operophtera brumata (Visser and Holleman 

2001). Winter moths emerge in November/December and lay their eggs on or near Oak 

buds. These eggs develop through Winter and hatch in early Spring. Egg hatching is 

strongly temperature driven, and synchrony of hatching with Oak bud burst is essential to 

the survival and growth of 1st instars (Salis et al. 2016). Winter Moth caterpillars complete 

leaf feeding at the beginning of June, before they descend into the soil to pupate during 

June and July at which time they become unavailable as food for Pied Flycatchers.  

 

Pied Flycatcher timing of arrival and breeding partially track local temperature trends (Ahola 

et al. 2004). Between 1974 and 2001 in Wales, Pied Flycatcher mean laying dates 

advanced by eight days (Wright et al. 2004). Temperatures at the time of arrival increased 

over the same period. In contrast, in parts of their breeding range where temperatures after 

arrival have not changed substantially, Pied Flycatcher breeding timing has not advanced. 

In other locations, Pied Flycatchers have advanced their laying days, but not enough to 

keep pace with the advance in caterpillar phenology. For example, in the Netherlands, 

increased Spring temperatures caused bud burst in Oak leaves to advance by 2.9 days 

between 1988 and 2005. The resultant advance in peak caterpillar abundance was 15 days, 

whereas the corresponding advance in the mean Pied Flycatcher laying date was only 7.2 

(Both et al. 2009). These resulting phenological mis-matches between caterpillar 

emergence and Pied Flycatcher laying dates have resulted in lower food availability during 

peak nestling demand, leading to reduced fledging success (Burgess et al. 2018). Research 

on this classic case study of trophic mis-match has primarily focussed on the trophic 

interaction between Pied Flycatchers and Lepidopteran caterpillars, as the Flycatchers 

forage primarily on caterpillars during chick provisioning (Stowe 1987), whereas little is 

known about the role of other taxa in influencing the impact of the mis-match with caterpillar 

phenology. Nevertheless, caterpillars may be nutritionally important during chick rearing, 

and the positive association between the relative abundance of caterpillars in the diet, and 
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Pied Flycatcher fledging success suggests that caterpillar abundance is an important 

constraint on breeding productivity. 

 

The overall hypothesis to be tested in this chapter is that Pied Flycatcher demography 

(specifically laying date and fledging success) is driven directly by variations in annual 

spring and summer weather patterns, and indirectly by the effects of weather variations on 

food availability. Variation in inter-annual and seasonal temperature and rainfall patterns 

will be examined, to identify a) their direct effects through a mechanism of reduced 

incubation stress in warm weather and wetting of incubating females during heavy rainfall 

events and b) their indirect effects on Pied Flycatchers through their impacts on the timing 

of invertebrate abundance as availability of food for Flycatchers. Pied Flycatcher breeding 

data will be used to investigate the phenology of flycatcher laying date and fledging success 

in relation to weather-dependent food availability. Specifically, higher temperatures in early 

Spring are predicted to lead to an earlier and higher availability of flying invertebrates, which 

in turn will lead to an earlier laying date in Pied Flycatchers. In addition, higher Spring 

temperatures are predicted to lead to an earlier peak in caterpillar abundance, which will 

lead to a greater mis-match in timing between nestling demand and caterpillar availability, 

reducing Pied Flycatcher fledging success.  
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3.3 Methods 

3.3.1 Study Site 

Tŷ Mawr woodland (52°12’23 N 3°29’06 W), is an unmanaged, privately-owned semi-

natural broadleaf woodland in upland Mid-Wales. The woodland is dominated by Oak, and 

other tree species present consist of; Beech (Fagus sylvatica), Holly (Ilex aquifolium), Birch 

(Betula pendula) and Ash (Fraxinus excelsior). There is little understory with a ground flora 

comprised of Common Bluebell (Hyacinthoides non-scripta) and Bilberry (Vaccinium 

myrtillus). No active sheep grazing has occurred in recent decades. Predation at the study 

site was minimal, and so therefore not included in the present analyses. The site is split into 

three sub-units (Redwood, 6.25 ha, Ridge, 4.7 ha and Bank, 9.99 ha), two of which (Ridge 

and Bank) are contiguous, while the third (Redwood) is separated by approximately 150 m. 

Redwood has a south facing aspect and a gradient of approximately 20 %; Ridge and Bank 

are north-west facing with gradients of  approximately 4 % and 10 %, respectively. The 

altitude range of the woodland spans 217-312 m a.s.l.  

 

 

Figure 3.1 Tŷ Mawr farm near Llysdinam, Wales. a) Tŷ Mawr Redwood, b) Tŷ Mawr Ridge and 
c) Tŷ Mawr Bank. Red dots indicate nest box location and yellow dots indicate sticky trap and 
frass trap invertebrate-sampling locations. 
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3.3.2 Weather 

Daily mean temperatures, total daily rainfall and the number of frost events per month were 

obtained from the Llysdinam Field Centre weather station (1.5 km away from Ty Mawr 

woodland).  

 

Four iButton temperature loggers [Thermochron High Res, iButtonLink LLC] were deployed 

within the Tŷ Mawr woodland, between March and June, in 2017 and 2018. Due to 

incomplete data, temperature data for Tŷ Mawr were not available consistently throughout 

the three years. In order to validate the use of temperature data from a nearby weather 

station (Llysdinam), Temperatures recorded in situ at Tŷ Mawr were compared with daily 

mean temperatures from the Llysdinam weather station. I used GLMs to examine the 

difference in mean temperature between the two locations, and a linear regression to 

examine the association between temperatures at the two locations. As the temperatures 

at the two sites were strongly positively correlated (slope ± S.E. = 0.856 ± 0.037, t = 23.003,  

p< 0.0001), and as no significant differences in temperatures between Llysdinam and Tŷ 

Mawr were found (mean difference = 0.047 °C, t423.93 = 1.285, p = 0.1994), the temperatures 

recorded at Llysdinam were used in subsequent analyses. 

 

Llysdinam temperature data from March 1st to June 30th in each year were included in the 

subsequent analyses. Integrative measures of temperature and rainfall across duration of 

each nest were calculated as i) cumulative rainfall (mm) and ii) cumulative daily temperature 

for the estimated life time of each chick. Life time was calculated as the Julian day of the 

first egg date, plus the clutch size, plus 14 days for incubation and 14 days for growth until 

fledging. For an average clutch of seven eggs this is a period of 35 days. Temperature (oC) 

was summed across the relevant period for each chick. 

 

A Degree-Day is the number of degrees above a given threshold, e.g. 11oC for a 10oC 

threshold (the threshold for invertebrate development) equals 1 Degree-Day. All Degree-

Day values were summed across the focal period (1st March-30th June), for minimum grass 

temperature and mean daily air temperature. 

 

3.3.3 Invertebrates 

Relative abundance of flying invertebrates was recorded using plastic sticky traps (100 mm 

x 55 mm) [Greenhouse sticky traps, Dragonfli Ltd., Michigan], placed inside wire mesh 

cages (mesh size = 10 x 10 mm) and attached to trees 1 m from the ground. Twelve traps 

were placed in pairs running perpendicular to the river in the Redwood section of Ty Mawr 
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woodland. The traps were retrieved and replaced weekly, and stored inside transparent 

plastic wallets at room temperature. Invertebrates were identified to order level, separated 

into size classes and counted. Size classes were <2 mm (small), 2-5 mm (medium) and >5 

mm (large). An index of cumulative fly abundance during the lifetime of the chick was 

calculated as the mean total number of small flies available, across all traps, for the 14-day 

window when the chick was in the nest.  

 

Caterpillar faeces (hereafter referred to as “frass”), were used to calculate caterpillar 

biomass. Frass was collected in twelve frass traps (fabric squares suspended on square 

wooden frames measuring 50 cm x 50 cm) which were built using techniques adapted from 

Hinks et al. (2015). Frass traps were positioned at the same location as the sticky traps and 

suspended 1 - 1.5 m from the ground, with one side of the frame positioned against the tree 

which provided stability against wind. The centre of the muslin square was weighed down 

to prevent the muslin material from billowing and ejecting the frass. Each frass trap was 

emptied weekly, between April and July in all years, with all captured material being 

removed, stored in 25 ml Universal sample tubes [Sarstedt, Nümbrecht], and oven-dried for 

a minimum of 24 hours before being stored as per Hinks et al. (2015) to remove any non-

frass material. Before processing, samples were re-dried for 24 hours, then sorted from 

debris and weighed to 0.01g. Weekly values were divided by seven to give daily masses. 

Frass mass was converted to caterpillar biomass using the equation presented by 

Tinbergen and Dietz (1994): biomass (mg/m2/day)  = 24.38 x F -0.767 x F x T, when F = 

frass (mg m-2) and T = Temperature (°C). The frass traps used in Tinbergen and Dietz’s 

calculation were placed 1m from the trunk of the tree. My data are therefore not completely 

comparable between studies, but they are comparable within my study (e.g. for examining 

seasonal changes across the same twelve traps). Caterpillar biomass has widely been used 

as an index of food availability in the study of timing of breeding in insectivorous birds (see  

(Visser et al. 2006; Scholl et al. 2016; Burgess et al. 2018). Caterpillar biomass was 

converted into caterpillar abundance by dividing biomass by the mean mass of a caterpillar 

(taken to be 45.94 mg, following (Tikkanen et al. 2000).  

 

3.3.4 Birds 

There were 153 nest boxes checked during the study with 63, 40 & 50 in Redwood, Ridge 

and Bank respectively, resulting in a density of 19, 23 and 15 boxes per hectare. Nest boxes 

had internal dimensions of 90 x 110 x 170 mm, and an entrance hole diameter of 32 mm. 

Those with damaged fronts increasing the size of the hole had a metal plate placed to 

restrict the hole diameter to 32 mm. Most boxes had been in place for >10 years prior to 

the start of the present study. Where necessary, boxes were replaced with new ones, but 
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there was no difference in the frequency of use between new and old boxes (pers. obs.) as 

has been shown for other hole-nesting species of woodland birds (Hipkiss et al. 2013). 

 

Nest checking protocols were in accordance with the BTO Nest Record Scheme (Crick et 

al. 2003) to minimise impact on the birds and the risk of increased predation (Arroyo et al. 

2017). Boxes were visited twice per week, unless additional nest box visits were conducted 

in order to ring the adult females, and to ring the chicks when seven days old. A range of 

demographic parameters were recorded, including first egg date, clutch completion, 

hatching and fledging success, and clutch size and number of fledglings. From this dataset, 

survival of nests and breeding success could be calculated. Nests were considered to be 

occupied if egg laying was initiated and those nests from which a chick fledged were 

considered successful. If laying date was not recorded directly, then it was estimated based 

on an assumption of one egg laid per day, and incubation starting from the day of 

completion of the clutch (Yom-Tov et al. 2000; Slagsvold 2004). If a female was found to 

be brooding young and the laying date was unknown, then the calculation was based on an 

assumption of one egg per day plus 14 days for incubation, plus the apparent age of the 

chicks (Laaksonen et al. 2006). Maximum clutch and brood sizes were observed by nest 

box checks. 

 

3.3.5 Statistical analysis 

All analyses were conducted using R Statistical Software (R Core Team 2018) with 

additional packages lme4 (Bates et al. 2015) and mgcv (Wood 2011) being used for linear 

and non-linear models, respectively. The packages dplyr (Wickham et al. 2018) and tidyr 

(Wickham and Henry 2018) were used to handle data and ggplot2 (Wickham 2016), 

RColorBrewer (Neuwirth 2014) and gridExtra (Auguie 2017) were used to create graphics. 

Initial model error distribution and link functions were selected following methods in Thomas 

et al. (2017) with link function selection refined using comparisons of Akaike Information 

Criterion (AIC) values, with selection of the link function giving the lowest AIC. 

 

3.3.5.1 Models of temperature and rainfall 

Seasonal and yearly patterns in mean air temperature and total rainfall were each modelled 

as dependent variables using General Additive Models (GAMs) using Gaussian and 

Gamma error distributions respectively and log link transformations. Julian day, as an 

independent variable, was represented with a thin plate spline, with the degree of non-

linearity selected using generalised cross validation (Wood 2006). Year was included as a 

categorical term, and the model included the 2-way interaction between year and Julian 

day. All terms were significant and so no model refinement was needed. 
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3.3.5.2 Calculating seasonal invertebrate abundance in relation to weather 

Trends in invertebrate abundance collected by using frass and sticky traps were analysed 

using Generalised Additive Mixed Models (GAMMs). Abundance of small flies (dependent 

variable) caught on sticky traps were analysed using a negative binomial error distribution 

and log link function. Julian day (smoothed independent variable) was represented with a 

thin plate spline, with the degree of non-linearity selected using generalised cross validation 

(Wood 2006). Year was included as a independent categorical variable to explain inter-

annual variation. The model included the 2-way interaction between year and Julian day. 

Mean weekly air temperature and mean weekly rainfall were included as fixed covariates, 

as well as the 2-way interaction between temperature and rainfall. The sampling location 

was included as a random term to control for any spatial variation across the woodlands 

and to account for the repeated measurements from each location. Traps were not 

positioned to sample individual bird territories, but rather to estimate the overall abundance 

of invertebrates across the sampling area. An ANOVA between models which included trap 

location and those which didn’t showed no significant difference indicating that trap location 

was not a significant predictor of frass abundance. Spatial autocorrelation was therefore 

controlled for in the final model by inclusion of the trap location as a random term. Fixed 

term model selection and degree of smoothness were also refined based on lowest AIC.  

 

The association between Pied Flycatcher laying date (dependent variable) and the 

seasonal abundance of small flies (smoothed independent term) was modelled using a 

GAMM (Poisson error family, log link function). In addition to fly abundance being used as 

a fixed effect, the sampling year, the 2-way interaction between fly abundance and year, 

clutch size, cumulative temperature of the 14 days prior to laying and quantity of rainfall for 

the same 14 days and the 2-way interaction between temperature and rainfall were all 

included as candidate fixed effects. Model refinement was based on lowest AIC. Residual 

deviance was calculated by comparing the final GAMM with the null model GAMM. The 

most parsimonious model after refinement resulted in laying date (dependent variable) 

being explained by the cumulative temperature ( independent variable) and the year 

(categorical independent variable). 

 

Caterpillar frass (dry weight) or biomass (dependent variable) were modelled using a 

Gamma error distribution and log link function. Caterpillar models were run first run using 

frass dry weight as the dependent variable and secondly using caterpillar biomass as the 

dependent variable (calculated from frass dry weight and temperature using the Tinbergen 

and Dietz (1994) equation in section 3.3.3). These models were qualitatively the same with 

regards to the direction and significance of the relationships described. Caterpillar biomass 
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was used in subsequent models and graphics as a more ecologically relevant dependent 

variable. All independent variables used in the fly models, above, were incorporated into 

the final caterpillar biomass model.  

 

The fledging success of Pied Flycatchers was calculated by creating a two-dimensional 

matrix of the number of chicks which fledged, in relation to the number of chicks which failed 

to fledge. This was then used as the dependent variable in a GLMM, with a binomial error 

family and a complementary log-log link function. Due to the synchrony of hatching and 

fledging of birds within a nest, each nest was treated as a single unit. The cumulative air 

temperature and the total quantity of rainfall which occurred during the life-time of chicks in 

each nest was calculated. Abundance of caterpillars and small flies available in the 

woodland were calculated as the cumulative caterpillar or fly abundance available over the 

lifetime of the chicks, given an estimated time to fledging of 14 days. This model tested the 

hypothesis that fledging success depended upon the cumulative seasonal abundance of 

caterpillars, flies, year, the 2-way interactions between prey and year, clutch size, life-time 

temperature, life-time rainfall and the two-way interaction between temperature and rainfall. 

The sampling location was included as a random term to control for any spatial variation 

across the woodlands and to account for the repeated measurements from each location. 

Data were excluded for individuals that fledged after the final day of invertebrate sampling. 

The GAMM output showed that the association between fledging success and Julian day 

was linear in all years. The AIC of the GAMM was compared with the AIC of a comparable 

Generalised Linear Mixed Models and the GAMM was shown to be more efficient and was 

therefore used.  
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3.4 Results  

Mean air temperature varied significantly within and between the three years of the study 

(Table 3.1). Mean air temperature in March 2017 was significantly higher than that of 2016 

or 2018 (Figure 3.2b) and the thermal threshold for degree-days occurred earlier in 2017 

(4th May) than in 2016 and 2018 (5th May) (Figure 3.2). There was a sharp frost on 11th May 

2017 (day 131) represented by a sharp drop in minimum grass temperature (Figure 3.2a) 

which occurred after the initial increase in caterpillar hatching (Figure 3.5b). Although frosts 

occurred later in 2016 and 2018 (Figure 3.2a), these occurred before the initiation of 

caterpillar increase and therefore did not have the same effect on caterpillar abundance 

(Figure 3.5b). The frost impacted caterpillars indirectly as many recently emerged Oak 

leaves were killed, which resulted in a shallow peak in caterpillar abundance (J Smith pers. 

obs.). Despite the initial steep increase in cumulative minimum temperature in 2018, there 

was a prolonged cold snap which returned the cumulative minimum temperature back to 

that of 2016 and 2017 by the beginning of May (Figure 3.2a).  

 

Rainfall also varied significantly within and between years (Table 3.2). There was a 

significantly greater quantity of daily rainfall in 2016 than in 2017 but not significantly greater 

than in 2018 (Table 3.2).  

 

Table 3.1 GAM to explain mean air temperature (dependent variable) in relation to the year 
(categorical term) and Julian day (modelled as non-linear relationship), and the 2-way 
interaction between year and Julian day. Deviance explained by the model = 77.9% 

Independent 
variable 

Parameter 
value SE d.f. t P 

Year: (vs. 2016)      

2017 0.17154 0.04247 1 4.039 <0.0001 

2018 -0.03174 0.05363 1 -0.592 0.554 

   e.d.f. F P 

Julian day 
(2016)   7.465 29.02 <0.0001 

Julian day 
(2017)   7.065 34.05 <0.0001 

Julian day 
(2018)   8.658 24.55 <0.0001 
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Figure 3.2 Trends in a) minimum grass and b) mean temperature change across three season. 
Date (1 = 1st January). Coloured lines represent modelled mean values and shaded areas 
represent 95% confidence intervals. Green = 2016, Orange = 2017 and Purple = 2018. Arrow 
indicates frost event occurring 11th May 2017. 

 

Table 3.2 GAM to explain daily rainfall (dependent variable) in relation to the year (categorical 
term) and Julian day (modelled as non-linear relationships), and the 2-way interaction 
between year and Julian day. Deviance explained by the model = 25.0% 

Independent 
variable 

Parameter 
value SE d.f. t P 

Year: (vs. 2016)      

2017 -1.1395 0.3244 1 -3.513 <0.0001 

2018 -0.4256 0.3244 1 -1.312 0.191 

   e.d.f. F P 

Julian day 
(2016)   1.000 2.570 0.110 

Julian day 
(2017)   5.781 19.638 <0.0001 

Julian day 
(2018)   1.000 6.029 0.015 
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Figure 3.3 Seasonal changes in total daily rainfall across three seasons. Green = 2016, Orange 
= 2017 and Purple = 2018. 

 

Figure 3.4 a) Seasonal accumulation of degree-days (i.e. days above 10°C), and b) Seasonal 
abundance of flies smaller than 2mm, across three seasons. Coloured lines represent 
modelled mean values and shaded areas represent 95% confidence intervals. Green = 2016, 
Orange = 2017 and Purple = 2018. 
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3.4.1 Weather and invertebrates 

 

Figure 3.5 a) Minimum ground temperature measured in degree days (cumulative number of 
degrees above 10 °C, since Jan 1st) between March and June, across three seasons. b) Mean 
density of caterpillars (abundance per m2 per day) across three seasons. Coloured lines 
represent modelled mean values and shaded areas represent 95% confidence intervals. 
Green = 2016, Orange = 2017 and Purple = 2018. Arrow indicates frost event occurring 11th 
May 2017. 

  

By the end of June the mean air temperature in each year was similar, but through the 

breeding season the rate of increase differed (Figure 3.2). Temperatures in 2017 were 

higher initially but the rate of increase during the season was lower (Figure 3.2), associated 

with a lower abundance of caterpillars compared with the other two years (Figure 3.5b). 

Caterpillar abundance was significantly associated with the negative interaction between 

rainfall and temperature. In other words, the positive effect on caterpillar abundance of 

increased temperature was reduced under high rainfall and vice-versa (Table 3.3). 
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Table 3.3 GAMM to explain caterpillar abundance (dependent variable) in relation to the 
abundance of Julian day (modelled as non-linear relationships), daily mean air temperature 
and daily rainfall conditions, year (categorical term), the 2-way interaction between 
temperature and rainfall. Deviance explained by the model = 82.5% 

Independent variable Parameter 
value 

SE d.f. t P 

Rainfall 0.480 0.241   1 1.992 0.047 

Temperature 0.212 0.064   1 3.317   0.001 

Rainfall:Temp -0.054    0.018 1 -2.978   0.00313 

Year: (vs. 2016)      

2017 0.632 0.104 1 6.068 <0.0001 

2018 0.005 0.142 1 0.036 0.97144 

   e.d.f. F P 

Julian day:Year (2016)   5.900 61.77 <0.0001 

Julian day:Year (2017)   5.153 23.98 <0.0001 

Julian day:Year (2018)   5.749 26.45 <0.0001 

 

 

Figure 3.6 a) Changes in caterpillar density with degree days above 10°C. b) Changes in 
caterpillar density with observed tempartures, across three seasons. Coloured lines 
represent modelled mean values and shaded areas represent 95% confidence intervals. 
Green = 2016, Orange = 2017 and Purple = 2018. 
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3.4.2 Bird breeding parameters and phenology  

The number of Pied Flycatcher nests within the 153 nest boxes in the woodland study area 

was 48 in both 2016 and 2017, and 53 in 2018 (Table 3.4). Pied Flycatcher first arrival dates 

in Ty Mawr woodland in 2016-2018 were April 13th, 4th and 9th respectively. First egg dates 

were 9th May, 28th April and 6th May, resulting in an interval of 34, 24 and 33 days in 2016-

2018 respectively.  

  

Table 3.4 Nest box occupancy and breeding demographics of Pied Flycatchers in Tŷ Mawr 
woodland, 2016-2018 

Year No. of 
Nests 

Nest box 
Occupancy 
(%) 

Mean 
Clutch  
size 

Mean 
Brood  
size 

Mean no. 
Fledglings 

Fledging  
success (%) 

Total 
number of 
fledglings 
from the 
population  

2016 48 31.4 6.41 5.54 4.98 68.2 210 

2017 48 31.4 7.12 6.43 5.04 70.4 241 

2018 53 35.3 6.20 5.50 5.20 73.8 220 

 

Mean laying date was earliest in 2017 and latest in 2016. A GLMM analysis (Table 3.5) 

showed that laying date was significantly associated with the cumulative temperature in the 

14 days prior to laying and the year in which laying occurred but was not significantly 

associated with the seasonal variation in the abundance of small flies or the abundance of 

rainfall in the period prior to laying. Mean laying was ~5 days earlier in 2017 than 2016 and 

~2 days earlier in 2018 than 2016 (Table 3.5). Timing of egg laying differed significantly 

between years, with laying occurring significantly earlier in 2017 (Table 3.5).  
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Table 3.5 GLMM to explain laying date (dependent variable) in relation to the cumulative 
temperature over the 14 days prior to laying and between-year differences across the three 
years of the study (2016-18). Cumulative abundance of flies, rainfall and clutch size, were not 
significant and so were not retained in the final model (P > 0.05). Deviance explained by the 
model = 11.5%. 

Independent 
variable 

Parameter 
value 

SE z p 

Temperature +0.0007 0.0002 2.948 0.003 
** 

2017 -0.040 0.019 -2.080 0.038 
* 

2018 -0.021 0.018 -1.123 0.261 

  

 

 

 

 

Figure 3.7 Timing of egg laying initiation. Date 1 = January 1st. 

 

Laying dates were more variable in 2017 than in 2016 or 2018; they ranged from 9th May – 

19th May (10 days) in 2016, 28th April – 17th May (19 days) in 2017, and 6th May – 15th May 

(9 days) in 2018 (Figure 3.7). The peak number of pairs laying on any one day was 12 in 

2016 and 2018, and 7 in 2017. First egg date was 11 days earlier in 2017 than 2016 and 8 

days earlier than in 2018. Earlier laying resulted in earlier hatching and earlier peak food-

demand of chicks. A greater mis-match between peak chick food requirement and 

caterpillar availability was associated with lower fledging success (Table 3.6). 
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Table 3.6 Annual summary of temporal patterns of birds and caterpillars in nesting period. 
Dates are reported in Julian days. Mis-match is reported in days, demand is earlier (+) or later 
(-) than food availability. 

Year Laying 
date 

Hatching 
date 

Peak caterpillar 
date 

Peak 
requirements 

Mis-match 
(days) 

Fledging 
Success 

(%) 

2016 133 153/154 152 160 -8 68.2 

2017 124 145 159 152 +7 70.4 

2018 129 149 150 156 -6 73.8 

 

3.4.3 Variation in Fledging success in relation to weather and caterpillar 

abundance 

Chick fledging success was significantly associated with clutch size, temperature and 

rainfall and their interaction as well as caterpillar abundance and varied between years 

(Table 3.7). Fledging success was significantly higher in 2018 than in 2017 or 2016 (Table 

3.7) and was highly positively correlated with the abundance of caterpillars available during 

the lifetime of the chick in the nest. This effect was stronger in 2017 than in 2016 or 2018. 

Chicks in larger broods had a higher probability of fledging. Fledging success was 

influenced by temperature and rainfall and their 2-way interaction.  
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Figure 3.8 Proportional fledging success per nest in 2016 - 2018 in relation to caterpillar 
abundance. Coloured lines represent modelled mean values and grey areas represent 95% 
confidence intervals. Green = 2016, Red = 2017 and Blue = 2018. 

 

There was a significant positive association between fledging success and caterpillar 

abundance, this association was strongest in 2017 (Figure 3.8). but there was a negative 

association between fledging success and rainfall but this was mediated by temperature 

(Table 3.7). As there was significantly less rainfall in 2018 the fledging success of the later 

birds was lower (Figure 3.8). 

  

Figure 3.9 Fledging success at a) two different rainfall categories across a range of 
temperature measurements and b) two different temperature categories across a range of 
rainfall measurements. 

 
If there is high rainfall in a year, then as long as a threshold lifetime cumulative thermal 

value of 490°C is reached then fledging success will be high. If there is low rainfall, then a 
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cumulative temperature value of 100°C will increase the mean probability of fledging by 

25% (Figure 3.9a). 

 

The effect of rainfall on fledging success is highly dependent on temperature. If temperature 

is low then the effect on fledging success is minimal (10%) whereas if the temperature is 

high the difference in rainfall can result in a difference between complete failure (0%) and 

complete success (100%) (Figure 3.9b).   
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Table 3.7 GLMM to explain fledging success (dependent variable) in relation to caterpillar 
abundance, clutch size, temperature and rainfall conditions across the chick’s lifetime, the 
interaction between temperature and rainfall and between-year differences across the three 
years of the study (2016-18). Delta marginal R2 = 25.9%. 

Independent variable Parameter value SE d.f. z P 

Caterpillars 0.009 0.002 1 3.931 <0.0001 

Year: (vs. 2016)      

2017 -8.603 1.475 1 -5.833 <0.0001 

2018 12.314 2.835 1 4.343 <0.0001 

Clutch 1.006 0.147 1 6.848 <0.0001 

Temperature -0.165 0.050 1 -3.290 0.001 

Rainfall -1.110 0.226 1 -4.921 <0.0001 

Rainfall: Temp 0.002 0.0004 1 5.070 <0.0001 

Caterpillars:  
(vs. 2016) 

     

2017 0.065 0.010 1 6.471 <0.0001 

2018 -0.017 0.011 1 -1.488 0.136 
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3.5 Discussion 

The present study has shown the relationships between weather and food availability for 

Pied Flycatchers, and the relationships between food availability and Pied Flycatcher 

breeding parameters, ultimately influencing overall breeding productivity of the birds. These 

relationships are important for understanding the cascading impacts of climate variation 

across trophic levels in the woodland ecosystem. 

 

3.5.1 Weather variation 

There was substantial variation between years in progression of changes in weather 

variables between March and June, prior to arrival of Pied Flycatchers at the study site, until 

the majority of their chicks had fledged. Spring warming in 2017 was earlier than in 2016 

and 2018, but included a sharp frost on 11th May, just as caterpillars were starting to 

increase in abundance (Figure 3.3). Rainfall also varied between years; 2016 was wettest, 

with rainfall distributed more evenly across the study period, whereas 2018 was driest, with 

most rainfall concentrated in March and early April (Figure 3.3).  

 

3.5.2 Invertebrate abundance and phenology 

The rate of accumulation of mean degree-days in April was highest in 2018, which coincided 

with a higher peak abundance of small flying invertebrates than in 2016 or 2017 (Figure 

3.4). Recording of flying invertebrates only began after the Pied Flycatcher arrival on their 

breeding territories (day 110 onwards), and we cannot discount the possibility that an earlier 

peak in 2017 may have occurred prior to the start of sampling, given the relatively early 

increase in degree-days in March-April 2017 (Figure 3.4). This may be particularly likely for 

univoltine species of Hymenoptera and Diptera, which have a bimodal emergence; the first 

peak due to emergence of the males and the second peak for the females (Forbes et al. 

2010). 

 

The emergence of budding leaves, and the herbivorous invertebrates which feed on them 

(Blondel et al. 1993), is closely tied to local weather conditions (Meineke et al. 2018). Earlier 

increases in spring temperatures result in earlier Oak bud-burst, and emergence of leaf-

feeding caterpillars (Visser and Holleman 2001). In the present study, mean degree-days 

accumulated slightly earlier in 2017 than in 2016 and 2018. Likewise, caterpillar emergence 

was earliest in 2017, but followed by the sharp frost in early May described above. A 

previous study in the Netherlands showed that a frost which occurred between 18 and 21st 

April damaged leaves and killed caterpillars (Both et al. 2009). Frost occurring during 

caterpillar growth therefore results in mortality of caterpillars (Abarca et al. 2018), and the 
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frost in May 2017 was followed by a slower increase and a lower peak caterpillar abundance 

than in either 2016 or 2018.  The timing of frost may be very important. If frost occurs, in 

early May, when the oak leaves are emerging and not frost resistant then they can freeze 

and wither as happened in 2017 (J Smith pers. obs.). The effect of this is that food 

availability for caterpillars is severely reduced reducing their ability to survive or grow (Both 

et al. 2009). The reduction in biomass of caterpillars can then have a direct impact on 

flycatcher productivity due to the reduction in food availability for chicks. In 2017 the frost 

occurred at a time when leaves were emerging and had ramifications on caterpillar biomass 

throughout the breeding season. All chicks in 2017 could have been affected. If the last 

frost occurred prior to the oak leaves emerging, as happened in 2016 and 2018, then there 

would have been little to no effect (indirect or direct) on the flycatcher breeding performance. 

Overall caterpillar abundance was highest in 2016, which notably had a much more rapid 

accumulation of minimum degree-days than occurred in 2017 and 2018.  

 

Overall, both flies and caterpillars appeared to show between-year differences in seasonal 

abundance that were broadly associated with between-year differences in spring warming 

-particularly the rate of accumulation of degree-days (specifically regarding mean degree-

days for flies, and minimum degree-days for caterpillars) and for caterpillars, an additional 

effect of current air temperature (Figure 3.5b). Although these associations do not 

demonstrate causation, it is striking that the observed differences in spring warming 

between the three years are consistent with the expected responses of invertebrates, given 

the previous literature on this subject. Differences between taxa in responses to weather 

are to be expected, given that temperature thresholds for development themselves differ 

between taxa (e.g. ~2oC for flies and ~10oC for caterpillars (Johansen 1990). 

 

3.5.3 Pied Flycatcher breeding phenology 

Prior to the chick-rearing phase, caterpillars are yet to have emerged. During this period, 

adult Pied Flycatchers have a much higher proportion of small flying invertebrates in their 

diet than during the chick-provisioning stage, when both adult and nestling diet is dominated 

by caterpillars (Stowe 1987). The nutrient content of these flying invertebrates provides high 

levels of calcium, good for egg deposition, leading to high hatching success (Bidwell and 

Dawson 2005) but was not shown to influence laying date.  

 

The mean laying date of flycatchers was earlier in 2017, and laying dates were less 

synchronised, than in either 2016 or 2018 (Figure 3.7). This between-year variation in laying 

date appears to be linked to weather conditions and food availability in the pre-laying period, 

since 2017 was an earlier spring, with earlier caterpillar emergence (Figure 3.5). It is not 
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clear, however, that the phenology of small flying invertebrates was earlier in 2017, as 

discussed above. Some of the flexibility in the timing of laying date relates to the time 

intervals between arrival, nest building, and egg laying. The variation in laying dates 

between years shows that Pied Flycatchers have some capacity for behavioural plasticity 

in the timing of laying. We did not measure the time between nests being built and laying in 

the present study, but in deciduous woodland in Sweden there was a mean interval of 6.1 

days (Lundberg et al. 1981a), implying that birds could advance their egg laying by up to 6 

days by reducing this interval. 

 

The degree of mis-match experienced by the birds ranged from chick demand peaking on 

average seven days before the peak availability in caterpillar abundance in 2017, to eight 

days after the peak availability in 2016. The smaller the mis-match the greater the 

abundance of caterpillars in the diet of Pied Flycatcher nestlings (Sanz 1998), and in the 

present study a greater abundance of caterpillars was associated with a higher fledging 

success (Figure 3.8). Specifically, the smallest mis-match in 2018 (six days) was followed 

by the highest fledging success and the largest total number of fledglings produced from 

the study site (Table 3.6). Mis-match between migrant woodland species and peak 

availability of food has been demonstrated in the Netherlands (Both et al. 2009). Resident 

species accurately adjusted their timing of breeding to match peak food availability, whereas 

migrants failed to do so (Resident mis-match: 0 days (Great Tit), 2 days (Blue Tit) and 14 

days (Pied Flycatcher)). 

 

In the present study, mean annual hatching success remained relatively constant at 

between 86% and 90% across the three-year study period. Likewise, mean annual fledging 

success was relatively stable, at between 68.2% and 73.8% of eggs resulting in a fledged 

chick. However, mean annual clutch size varied between 6.2 and 7.1 eggs across the three 

years, so mean brood size was larger (by ~1 chick per brood) in 2017 than in 2018. 

Likewise, the number of occupied nests varied between 48 in 2016 and 2017, and 53 in 

2018. The additive effect of these variations in the number of breeding attempts and 

demographic parameters together have implications for the total number of fledglings 

produced by the population of Pied Flycatchers within our study site. This varied between 

226 and 250 fledglings across the three years. The highest number of fledglings was 

achieved in 2018, when clutch size was low but number of nests and fledging success were 

high, demonstrating that a higher number of nests and a higher fledging success were more 

important than higher clutch sizes in producing more fledglings for the population. 

 

The interacting effects of temperature and rainfall are shown in Figure 3.9. Under high 

rainfall conditions, fledging success was highly temperature-dependent. At low cumulative 



 64 

temperatures and high rainfall, small increases in temperature significantly improved 

fledging probability, up to a threshold cumulative temperature of 490°C, above which, 

fledging success was 100% (Figure 3.9b). Under low rainfall conditions the effect of 

temperature on fledging success was much reduced (Figure 3.9b). Conversely, under high 

temperature conditions, high rainfall appears to be required for high fledging success 

(Figure 3.9a), whereas very dry conditions result in extremely low fledging success, 

irrespective of temperature (Figure 3.9a). Under high spring temperatures, the most 

significant change in fledging probability occurs between 40 and 90mm of rainfall over the 

chick’s nestling period. During conditions of low temperature, fledging success was low and 

was largely unaffected by rainfall (Figure 3.9a). 

 

Seasonal timing of breeding to coincide with abundances of prey species has been reported 

many times (Slagsvold 1975; Both et al. 2009). In 2017, when caterpillar density was lower 

but the peak was maintained for a longer period of time (Figure 3.5), Pied Flycatcher 

fledging success was positively associated with caterpillar abundance (Figure 3.9). This 

positive association was strongest in 2017 but was not evident in 2018. This lack of an effect 

of caterpillar density in 2018 may be due to the near ideal combination of weather conditions 

across the breeding season (wet April and May, dry and warm June, Chapter 2) combined 

with a low degree of mis-match between peak chick demand and peak caterpillar density 

(Table 3.6). These conditions potentially reduced the metabolic pressures on the nestlings, 

resulting in high fledging success despite the relatively low peak abundance of caterpillars 

in 2018. Relationships between Blue Tit fledging success and food abundance, using 

caterpillar frass as a proxy for caterpillar numbers, were identified by Tremblay et al. (2003), 

showing that a measure of 373 frass mg m2 day-1 resulted in 100 % fledging success. If Pied 

Flycatchers have the same, relative to mass, requirements as Blue Tits then Pied 

Flycatchers would require 440 mg m2 day-1 to successfully raise a chick. This equates to an 

available abundance of approximately 110 caterpillars m2 day-1. 

 

This study has been conducted over a small spatial scale which required use of local 

temperature and rainfall measurement in contrast to broader spatial scale studies which 

have used patterns in the North Atlantic Oscillation (NAO) to study impacts of weather of 

flycatcher breeding success (Sanz 2003). Conclusions in this study show that the interaction 

between the weather in multiple months and not just singular months as has been reported 

previously (Burgess 2014) effect the timing and abundance of food availability for Pied 

Flycatcher breeding productivity. The interplay between temperature and rainfall also 

reported in Chapter 2 and reinforced here has resulted in the reporting of the overall weather 

in a season rather than separating out individual months.  
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Although the focus of this study was to identify trends between direct and indirect effects of 

local weather on Pied Flycatcher breeding productivity it must be noted that there are also 

potential carry over effects from the other aspects of the annual cycle, particularly weather 

on the wintering grounds (Saino et al. 2011). Brood size in Common Redstart, for example, 

has been shown to increase with increased rainfall in the Sahel, in comparison with no 

change in response to weather conditions during the breeding season (Finch et al. 2014).  

 

The interconnected nature of woodland ecosystems means that demographic changes 

such as laying date not only have an impact on individuals and intraspecific interactions 

(Burgess et al. 2018) but also on interspecific relationships too (Both et al. 2009). Broadleaf 

upland woodlands contain a community of bird species whose energetic demands overlap 

temporally as well as spatially and so inter specific synchrony of breeding may contribute 

to variation in breeding success. The impacts of breeding synchrony and the additive effects 

of weather variables adds significant ecological stress in a habitat, such as woodlands, 

which has a short period of peak food abundance (Sheldon). In other habitats where food 

availability exists at a lower level but over a much broader peak these same constraints do 

not have such strong impacts (Seward et al. 2014; Vafidis et al. 2016). 

 

3.5.4 Overall conclusions  

This study has provided evidence that variation in Pied Flycatcher fledging success is both 

directly and indirectly (via food availability) effected by temperature and rainfall. It has also 

provided evidence that increased abundance of small flying invertebrates can advance egg 

laying date and increased Lepidopteran caterpillar abundance can increase fledging 

success. Overall, the smaller the phenological mis-match between peak chick food demand 

and caterpillar availability, the higher the fledging success, with an additive effect of 

temperature and rainfall. 
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4 Integral Projection Model (IPM) of Pied Flycatcher 
Demography and Population Dynamics 

 

4.1 Abstract 

 

Declines in Pied Flycatcher breeding populations have been well documented, but until now 

few attempts have been made to predict future population trends in response to changing 

environmental variables. Annual variation in food availability and weather conditions drive 

decisions about the timing of egg laying. Here I identify the demographic consequences 

that laying date can have on a focal Pied Flycatcher population in South Wales, using laying 

date to predict annual adult survival and recruitment, as well as examining changes in the 

timing of breeding from one year to the next and from generation to generation. Laying date 

had a significant effect on adult survival and fledging success, with early-laying birds having 

a higher probability of surviving, a longer life expectancy and higher fledging success. The 

ongoing population decline in the study population is predicted to continue; under current 

demographic parameters the study population is projected to go extinct within the next 15 

years, but potentially in the next five years depending on inter-annual variation in breeding 

conditions. Sensitivity analysis of demographic processes revealed that increased inter-

annual survival of early laying birds would result in potential population growth. Additionally, 

a greater consistency in laying dates between years of early laying individuals appears to 

be the strongest mechanisms by which this population could avoid extinction in the longer 

term.  
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4.2 Introduction 

Monitoring of population trends of organisms is well established for a wide range of taxa 

(e.g. birds, butterflies, moths, some mammals), but most studies have focused on reporting 

the abundance of a species (Gross et al. 2007; Hayhow et al. 2015) and describing historic 

patterns of population change, rather than projecting future changes. These studies have 

been essential to record the decline of many species, leading to research addressing the 

causes of decline, and identifying potential conservation actions (Goodenough et al. 2009). 

An extension of these studies of abundance is to estimate the impacts of vital rates such as 

survival and reproduction in driving these trends. Combining patterns in abundance and 

changes in vital rates into a modelling framework provides greater insight into the causes 

of population trajectories. Using statistical modelling it is also possible to test the sensitivity 

of each of the parameters to predict responses in population trends to future conditions.   

 

Studies of demographic parameters often overlook variation in these parameters when 

assessing population trajectories. Plasticity in behavioural traits such timing of breeding and 

variation in survival rates is important to quantify and incorporate into the modelling process. 

Such studies present the opportunity to construct population models, integrating population 

changes and the demographic parameters underlying them. Such models can be used (i) 

to understand past and current population trends, (ii) to forecast future trends, (iii) to identify 

the primary demographic drivers of these trends, (iv) to explore the sensitivity of different 

parameters to environmental change, in order to (v) design effective conservation strategies 

for declining populations in the face of ongoing environmental change.  

  

Phenotypic plasticity in behaviour allows individuals to adapt instantaneously to changes in 

their local environment (Arroyo et al. 2017). The individuals who have the greatest plasticity 

will be able to adjust most effectively to environmental stressors, in order to survive and 

raise offspring (Clauser and McRae 2017). If the plasticity of a trait is itself heritable, then 

the offspring will themselves benefit from this flexibility (Serobyan and Sommer 2017). In 

the context of avian breeding biology, this means that a female’s ability to change the date 

on which egg-laying is initiated (hereafter “laying date”) to most closely match the changing 

climate conditions could be passed on to her offspring. Her offspring would therefore have 

a better chance of reproducing under variable environmental conditions than offspring who 

do not exhibit this plasticity. Combinations of individual behaviours result in variation in 

individual fitness and population-level effects with potentially large impacts. The effects of 

these individual behaviours can be investigated in a modelling framework. 
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Many different types of population models have been used to understand population 

trajectories, based on the traits of individuals (Individual Based Models; IBMs), or based on 

discrete (i.e. categorical) traits (Matrix Population Models; MPMs), and more recently using 

continuous labile traits (Integral Projection Models; IPMs). Individual Based Models use the 

properties and behaviours of individuals to answer questions which aid in determining the 

structure of the systems which they form (Grimm and Railsback 2005). Hundreds of studies 

have been published using MPMs on a diverse variety of taxa (Jones 2019) which are able 

to project future population sizes based upon categorical demographic classes, e.g. life-

stage. Neither of these previous model structures incorporate information from individuals 

and population level demographics which the IPM does. The evolution of IPMs from MPMs 

means that by using a continuous trait (e.g. laying date), rather than a categorical trait (e.g. 

early/late laying) it is possible to identify the effects of variation in individual traits on 

population trends at a much finer resolution. One of the major novel aspects of my research 

is the use of IPMs for linking ecological and evolutionary processes in a declining population 

of birds; the Pied Flycatcher. Currently only three papers using IPMs on birds have been 

published, the first on resident Blue Tits (Cyanistes caeruleus) (Childs et al. 2016), the 

second on migrant Black-tailed Godwits (Limosa limosa) (Kentie et al. 2018) and most 

recently the European Hoopoe (Upupa epops) (Plard et al. 2018).  

 

I shall be using laying date of the first egg as the continuous trait variable of interest. If 

earlier laying is beneficial, then eggs that are laid earlier will hatch to produce more chicks 

of higher quality than are produced from eggs that are laid later; this will be measured by 

quantifying the association between laying date and chick fledging success. Chicks which 

fledge first will generally have higher food availability (Visser et al. 2004), and so may be of 

higher quality than later-fledging birds, thereby increasing their survival. Fledglings which 

survive to the next year and reproduce successfully will provide chicks for recruitment into 

the population. By specifying survival rate and reproductive output per capita, we can 

estimate population growth rate. In this way, IPMs can be used to develop robust predictions 

of future population change, via a mechanistic (i.e. demographic) explanation of how that 

population change arises. Using this framework, I identify how laying date and other 

covariates influence survival, growth, reproduction, and how the changes in those 

demographic parameters affect the population size of a local population of Pied Flycatchers 

(Figure 4.1). 

 

Pied Flycatchers are an important model study species because of their current decline and 

the abundance of published literature on them, including Chapters 2 & 3. The potential high 

breeding density in which Pied Flycatchers can nest provides an opportunity to acquire 

large sample sizes which are necessary for IPMs. In addition the medium sized clutches 
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which are frequently laid allow for variation in success to be recorded compared to species 

with one offspring which either survives or doesn’t (Ozgul et al. 2010). Pied Flycatcher 

breeding biology has been extensively documented, with many papers showing that 

breeding productivity has not declined over the past 30 years (Wright et al. 2004), leading 

to a current research focus on over-wintering survival in Africa (Ouwehand and Both 2017).  

 

As shown in Chapter 3, there is evidence of a mis-match in timing between the maximum 

food requirements of the Pied Flycatcher chicks and peak food availability. How this affects 

the population as a whole, rather than one individual or one nest, requires a larger scale 

modelling approach - which I address using the IPM. I test whether the number of fledglings 

produced is significantly affected by the date on which the first egg was laid. I also test 

whether the effort expended by adults to raise young will affect their between-year survival; 

specifically predicting that earlier-laying birds (and their offspring) will have higher 

overwinter survival. The mis-match between timing of maximum prey availability and peak 

nestling food-demand would be smaller than for late-laying individuals, leading to less 

energetic stress on early-breeding parents. These pressures will impact any migrant 

passerine breeding in a habitat with an ephemeral timing of food availability.   

 

In this Chapter, I combine the IPM approach of quantifying the effect that different variables 

(i.e. survival, growth, reproduction, inheritance) have on subsequent events (e.g. change in 

population size), with the General Linear Mixed Model (GLMM) approach of trying to explain 

what is causing variance in the variable of interest (laying date) in the first place. My aim is 

to identify whether there is an effect of laying date on survival through the overwintering 

phase and recruitment into the subsequent breeding season, with implications for 

population growth rate.  
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Figure 4.1 Flowchart of the structure of an IPM. The input variables include the main variable (laying date) as well as population annual mean laying 
date and clutch size. Intercepts and coefficients from four GLMMs are used as input variables for the IPM 
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4.3 Methods 

4.3.1 Data set 

The same dataset is used as for Chapter 2, namely variables of individual laying date, clutch 

size, year and female identity. In addition to the data collected, I have also calculated new 

variables for use in the present chapter; i) annual mean population laying date (year t), ii) 

individual laying date relative to the corresponding year’s mean (year t), iii) annual mean 

population laying date (year t+1), iv) individual laying date relative to the corresponding 

year’s mean (year t+1) and v) survival status (0 or 1). Offspring laying date was defined as 

the date on which they were laid as they cannot have a laying date until they have returned 

and recruited into the population. A study by Tomas (2015) has shown that hatching date 

better correlates with peak food demand in chicks. As hatching dates were not directly 

recorded in this citizen-science project, any attempt to calculate it would require addition of 

a fixed value and would therefore be nullify the purpose. 

 

4.3.2 Overview of the IPM 

The IPM is comprised of two major components, frequently described as “kernels” which 

are each in turn comprised of four Generalised Linear (Mixed) Models (GLMMs) (Figure 

4.1). The four GLMMs represent key demographic processes influencing individual lifetime 

fitness and population change, namely; i) Survival, ii) Reproduction iii) “Growth” and iv) 

Inheritance. Each uses a labile (i.e. continuous) term as the independent trait variable. The 

premise is that a trait represented by a continuous variable (e.g. laying date) has a direct 

link to the survival of an individual, which in turn affects its reproductive output. Changes 

between years in an individual’s expression of the trait (termed “growth”) is examined in the 

Growth model of the IPM, and whether the trait itself, or the plasticity of the trait, is passed 

on between mother to daughter is investigated in the Inheritance part of the model. This 

variable is termed “growth” for historical reasons as the first IPMs to be developed used 

plant growth as the primary variable of interest. In this IPM the labile trait used is the laying 

date of each individual female in that year. All laying dates are reported in Julian days from 

January 1st, so that 1st May = day 121.  

 

Each demographic process (e.g. Survival) was modelled using four different model 

structures. Model 1 contained the dependent variable (e.g. survival) and the sole 

independent variable of laying date. Model 2 contained laying date and mean population 

laying date, for survival, growth and inheritance models, and clutch size for the recruitment 

model. Model 3 contained the independent variables from model 2 plus the random term of 

“year”. This controlled for inter-annual differences in environmental variables (e.g. weather). 
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Model 4 contained model 3 variables plus the addition of female identity as a random term. 

Any pseudo-replication from individuals laying in multiple years was controlled for. 

Appropriate error structures were used with link transformations selected based upon 

lowest AICs. Model 1 allowed for estimates of the impact of laying date on each function if 

not other variables had any affect. Inter-annual difference in environmental variables 

change the optimal laying date for the population. By inclusion of mean population laying 

date into model 2, inter-annual variation in optimum conditions was controlled for. In 

addition, any long-term changes in demographic parameters would be identified. The cause 

of this variation, however, was not completely controlled for by inclusion of mean population 

laying date, so remaining inter-annual variation was controlled for with the inclusion of year 

in model 3.  

 

Each function identifies the impact that each individual’s laying date had on demographic 

parameters between time t and t +1. The survival function describes the probability of an 

individual surviving from time t to time t +1 depending on its laying date. The recruitment 

function describes the number of offspring produced in year t that survive to year t + 1. The 

analysis focuses on identifying the expected number of offspring produced by a female 

having a given laying date. The laying date “growth” function describes how laying date 

changes among surviving individuals from year t to year t + 1. Not all surviving individuals 

that had the same laying date in year t will have had identical laying dates in year t + 1, 

meaning that for each laying date in year t there was a probability distribution of possible 

laying dates at time t + 1. The relationship between an individual parent’s laying date and 

its offspring’s laying date is identified using the inheritance function. The purpose with all of 

these functions is to calculate an estimate of the mean parameter value and variance 

around the mean, for each function, which can subsequently be inserted into the IPM 

framework.  

 

Two different types of IPMs were run, deterministic and stochastic. The first contained only 

fixed terms (laying date, mean population laying date and/or clutch size) which provided 

instantaneous population growth estimates, without error, as they did not incorporate any 

variation observed between years. The second type of IPMs were stochastic models which 

incorporated inter-annual variation and resulted in a distribution of population trajectories. 

The comparisons between the deterministic and stochastic models were used to gain 

ecological and evolutionary insights in the population dynamics.  
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4.3.3 Statistical analysis 

All analyses were conducted using R Statistical Software (R Core Team 2018) with the 

additional package lme4 (Bates et al. 2015) being used for generalised linear mixed models. 

LMERConvenienceFunctions (Tremblay and Ransijn 2015) and lmtest (Zeileis and Hothorn 

2002) were used to validate GLMMs. The packages data.table (Dowle and Srinivasan 2018) 

and tidyverse (Wickham 2017) were used to handle data and ggplot2 (Wickham 2016), and 

RColorBrewer (Neuwirth 2014) and gridExtra (Auguie 2017) were used to create graphics. 

Code for parameterisation of the IPM has been modified from Coulson (2012) using the 

Matrix (Bates and Maechler 2018) package and the IPMpack package (Metcalf et al. 2012). 

Recapture and survival estimates were calculated in MARK (White and Burnham 1999) to 

ensure that recapture probabilities did not bias survival estimates. 

 

4.3.3.1 Laying date – survival 

In situations where not all living individuals are recorded then mark–recapture analysis has 

been widely used for cases (Lebreton et al. 1992). Annual recapture and survival 

probabilities were estimated using the program MARK. Mean recapture probability was 0.57 

with an inter-annual range of 0.29 to 0.83, with mean survival probability (corrected for 

recapture probabilities) of 0.45 with a range of 0.21 to 0.94. The results obtained from 

MARK were very similar to those obtained from classical linearalised modelling, with 

regards to both survival and its relationship with laying date (Appendix 2). I, therefore, used 

a GLMM to identify the equation explaining individual survival. Individuals either survived or 

didn’t and so a binomial error structure was used. 

 

4.3.3.2 Laying date – recruitment  

Pied Flycatchers can fledge between zero and nine chicks with a maximum recorded in the 

Cwm Clydach dataset of nine fledglings therefore the models of reproductive success have 

a Poisson error structure. As chicks were hatched from one year but begin laying in the 

subsequent (at the earliest), a multiplication factor was used to represent an apparent 

survival of 0.03 or 3 % (Kern et al. 2014). I also ran a further two deterministic models using 

multiplication factor values of 0.05 and 0.07 to model the effect of higher apparent over-

winter fledgling survival on population dynamics. Previous IPMs have specified whether or 

not an organism has bred and therefore requires an estimate of the proportion of 

reproductive adults in the population. In this study only reproductive females were recorded 

and so as the proportion of reproductive adults would be one, I have not included that 

element in the IPM structure.  
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4.3.3.3 Laying date – inter-annual change 

To investigate how individuals changed their laying dates between years, I regressed laying 

date in year t with laying date in year t + 1. The change in laying date of an individual was 

calculated by squaring the residuals of the initial model (following Coulson 2012). 

Determining how the magnitude of this change varied with initial laying date was done by 

regressing the newly calculated change in laying date against the original laying date. This 

regression examined whether late or early laying birds who survived, advanced their laying 

dates more, or less, than those laying at the population mean laying date. As the change in 

laying dates formed a broadly normal distribution, a Gaussian error family was used. 

Stochastic models allowed me to examine the effect of inter-annual variation and individual 

level variation on the modelled parameter estimates. 

 

4.3.3.4 Laying date – inheritance 

To identify the strength of inheritance of laying dates between mothers and offspring, I 

regressed the laying date of offspring that recruited into the population at time t + 1 against 

that of their mothers at time t. As I dealt with only the female component of the population, 

I used maternal laying date at time t. This protocol excludes the effect of any polygamous 

males having multiple laying dates. Offspring inheritance was calculated by using only the 

subset of females who were born in Cwm Clydach, had subsequently been recruited back 

into the population and had laying dates recorded for subsequent years. Only the first year 

after hatching was used in order to remove any effect of breeding experience on laying 

date. Due to the small sample size available in these data, only four mother/daughter 

relationships were recorded, inheritance coefficients from these models were unreliable. To 

overcome this, values provided for an ecologically similar and closely related species, the 

Collard Flycatcher (Ficedula albicollis) from Sheldon et al. (2003) were used. As with the 

“growth” model, the distribution of laying dates formed a broadly normal distribution, hence 

a Gaussian error family was used. 

 

4.3.3.5 IPMs 

To identify how laying date affects each of the four processes above (Survival, Growth, 

Reproduction and Inheritance) a deterministic IPM was created. This used the intercept and 

laying date coefficients from model 1 from each model type to parameterize the IPM. As the 

breeding season for the flycatchers is between 110 to 150 days from January 1st (20th April 

to 30th June) this is the range of hypothetical laying dates on which I based my IPM. The 

first deterministic IPM (model1) allowed me to identify the direct effect of laying date on 

each demographic parameter, although any inter-annual variation of population mean 

laying date was not controlled for. This meant that effects on demographic parameters 
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caused by variation between years in weather conditions, which resulted in “early” and “late” 

breeding seasons, were not accounted for. In order to do so, another deterministic IPM 

(model 2), which incorporated population mean laying dates and clutch size, was created. 

In this IPM (model 2) individual clutch size was included as an independent variable to 

control statistically for variation in clutch size. The two deterministic models only included 

fixed terms which resulted in single specific values for population growth rates. To include 

inter-annual variation in population projections, stochastic models were required. 

 

Table 4.1 Fixed and random terms included in each demographic model. 

Model Fixed variable 1 Fixed variable 2 Random 
variable 1 

Random 
variable 2 

1 Laying date    

2 Laying date Population mean 
laying date / Clutch*   

3 Laying date Population mean 
laying date / Clutch* Year  

4 Laying date Population mean 
laying date / Clutch∗ Year Female ID 

 

Two different stochastic models were created. The introduction of annual variations by 

inclusion of year as a random term (model 3) allowed me to identify population growth rates 

in hypothetically good, mean and poor years. The causes of these variations are not 

explicitly stated but will include direct and indirect effects of food availability and weather 

(Chapters 2 and 3). Including female identity into the stochastic model (model 4) allowed 

me to control for pseudo-replication caused by individual females laying in multiple years, 

as their laying dates are more likely to be similar to their previous laying dates than to the 

laying dates of others in the population. By perturbing stochastic models, the variation 

accounted for by these variables provided an opportunity to identify how population growth 

rate and other output variables change through time, including the probability of extinction. 

 

Once the initial IPMs were created they could be used to identify the relative effects of 

changes in different demographic parameters on population level growth rates. For 

example, if adult over-winter survival was 1 % higher than the mean, how would this affect 

the population growth rate? Here I altered each input parameter by 1 % to identify the 

resulting change in reproductive output and population growth rate. The parameters 

                                                
∗ Clutch size used in recruitment model only. Population mean laying date used in other 
three models. 
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perturbed were; 1) the intercept of the model, 2) the slope of the relationship between the 

dependent variable and laying date and 3) the slope of the relationship between the 

dependent variable and the population mean. Perturbations of 1 % in parameters had 

different directional effects on the output depending on the individual parameter perturbed 

and whether it was positive or negative. The sensitivity of each parameter in the individual 

demographic models was assessed. A 1 % increase in the intercept, which was positive in 

all models, resulted in an increase in that demographic model’s output e.g. a 1 % increase 

in the value of the intercept in the survival model would result in increased mean survival 

for all individuals irrespective of laying date. The relationship between survival and laying 

date, however, was negative, therefore an increase in the strength of that relationship of 1 

% resulted in a more negative relationship. An increase in that relationship, therefore, would 

result in later laying birds having a lower probability of survival than before the perturbation. 

Population growth rates, stable population size distribution, reproductive values and life 

expectancy were calculated from these models.  
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4.4 Results 

Over the 26-year time period over which the Pied Flycatcher population was surveyed at 

Cwm Clydach, 16 years had laying date recorded (Figure 4.2). The declining number of 

records across the study period reflected the decline in the number of Pied Flycatcher pairs 

breeding within the study site (see Chapter 2). Mean population laying date varied from 5th 

May to 13th May with the overall mean of 8th May (Julian day = 125-133).  

 

 
Figure 4.2: Annual variation in laying dates throughout the study period. Bold lines within 
each box represent the median values for each year. The population mean laying date across 
study period is shown as a dashed line. Annual sample size is shown above each year. 
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4.4.1 Laying date in relation to the demographic models (Survival, Reproduction, 

Growth & Inheritance) 

 

4.4.1.1 Laying date vs. survival 

The probability of female flycatchers surviving from one laying season to the next, declined 

with later laying dates (Figure 4.3a). Those laying at the beginning of the breeding season 

(25th April, Julian day 115) had twice the survival probability of those laying towards the end 

of the season (22nd May, Julian day 142) (GLM model 1; slope: -0.05, F1,573 = 0.743, p = 

0.0002, pseudo-R2 = 0.018). All models (1-4) had a similar slope for this relationship 

showing robustness of this result to the specific design of the model chosen (Figure 4.3a).  

 

4.4.1.2 Laying date vs. reproduction 

The number of chicks which fledged from a nest was significantly associated with laying 

date and clutch size (GLM model 2; F1,450 = 594.8, p < 0.0001, pseudo-R2 = 0.07). Surviving 

females returning to breed produced an average of five fledged chicks per year (mean 

across all years = 5.18 chicks) but the number fledged varied in relation to laying date (GLM 

model 2; slope ± SE: -0.01 ± 0.003). For every 12 days later a bird laid, one fewer chick 

fledged (Figure 4.3b). There was a significant positive association of clutch size with 

fledging success; for every additional seven eggs that were laid, one more chick fledged 

(GLM model 2; slope ± SE: 0.13 ± 0.02). 

 

4.4.1.3 Inter-annual variation in laying date i.e. “Growth” 

Breeding females who survived between years and had a subsequent breeding attempt 

were not consistent in their timing of laying (GLMM model 4 F1,129 = 0.260, p = 0.613, R2 = 

0.02). In other words, those who laid late in one year did not necessarily have a late laying 

date in the next year (Figure 4.3c).  

 

4.4.1.4 Inheritance of laying date 

It was not possible to detect a significant effect of inheritance in laying date using the Cwm 

Clydach dataset, as there was no significant association between laying dates of mothers 

and their daughters (relative to the annual mean; GLM model 1, F2,1 = 1948.0, p = 0.853) 

(Figure 4.3d). The mother’s laying date explained only 17.5% of the variance in the 

daughter’s laying date (i.e. pseudo-R2 = 0.175). This is likely due to the small sample size 

described in section 4.3.3.4. Therefore, the slope coefficient to be used in subsequent IPMs 
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is +0.192 with a variance of 0.0016 extracted from Sheldon’s et al. (2003) study of Collared 

Flycatchers. 

 

 

Figure 4.3 Relationships between demographic variables and laying date for each of the four 
model structures from the Cwm Clydach dataset. a) Survival, b) Growth, c) Reproduction and 
d) Inheritance. Dashed lines indicate a one-to-one relationship for graphs b & d. 

a) b) 

c) d) 
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Table 4.2: Parameter estimates from models 1- 4 of each demographic model structure (Survival, Reproduction, Growth and Inheritance). 

 Survival Models Reproduction models 

 1 2 3 4 1 2 3 4 

Fixed effects         

Intercept 6.923 15.264 17.075 17.075 3.715 1.984 2.667 2.667 

Laying date -0.055 -0.044 -0.044 -0.044 -0.016 -0.010 -0.014 -0.014 

Pop. mean laying date  -0.076 -0.090 -0.090     

Clutch size      0.134 0.115 0.115 

Random effects         

Year   0.268 0.268   0.137 0.137 

Female    0    0 

 

 Mean growth models Mean inheritance models 

 1 2 3 4 1 2 3 4 

Fixed effects         

Intercept 4.777 4.026 - 4.026 5.103 3.382 3.382 - 

Laying date 0.001 0.001 - 0.001 -0.001 -0.002 -0.002 - 



 81 

Pop. mean laying date  0.006 - 0.006  0.014 0.014 - 

Clutch size         

Random effects         

Year   - 0   0 - 

Female    0    - 

 

 Variance growth models Variance inheritance models 

 1 2 3 4 1 2 3 4 

Fixed effects         

Intercept 2.582 -105.021 - 57.917 0.902 -13.565 -13.565 - 

Laying date 0.005 0.051 - -0.125 -0.006 -0.015 -0.015 - 

Pop. mean laying date  0.798 - -0.353  0.118 0.118 - 

Clutch size         

Random effects         

Year   - 0.934   0.098 - 

Female    2.588    - 
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4.4.2 Results from the IPM 

 

The IPM predicted a mean laying date of 8th May (Julian day ± SD = 128 ± 3). This mean is 

the same as the true population mean laying date over the study period. The standard 

deviation of three days represents a variation in predicted laying date between early and 

late years. The observed range in mean laying dates was between 5th and 12th May. 

 

4.4.2.1 Results of the Deterministic IPM 

Variation in laying date, when not controlling for mean population laying date and clutch 

size (model 1), predicted an annual population decline of 72 %. When both of these 

covariates were controlled for, however, by including them in the model (model 2), the mean 

population decline predicted was 52 % per year. The mean number of fledglings produced 

by an individual at mean laying date (day 128, 8th May) was 5.18 fledglings but this varied 

extensively depending on when the clutch was laid. The mean number of fledglings 

produced per female ranged from 6.9 to 3.2 for individuals which laid on 24th April and 9th 

June respectively, the earliest and latest observed laying dates in the study (Figure 4.3c). 

A breeding individual’s life expectancy also depended upon their laying date. Those 

individuals which laid on or before 5th May had a mean future life expectancy of two years 

and therefore had an opportunity for two further breeding seasons, whereas those 

individuals who bred after 5th May, lived on average for only one further breeding season. 

The model suggests that hypothetically, if a bird were to lay before 23rd April then they could 

live for three further breeding seasons, and therefore potentially have three times the 

number of additional breeding seasons of an individual laying 20 days later (Figure 4.4b). 

The earliest observed laying date was the 27th April and therefore close to the 23rd April 

threshold. 

 

Early laying individuals have a higher probability of surviving between one year and the 

next, and therefore have a longer life expectancy. This compounds the positive effect that 

these individuals would have on the population growth rate. The IPM quantifies this effect, 

showing that those individuals which lay early have the largest impact upon the population 

growth rate. Not only do the breeding individuals have a higher probability of survival to 

breed in subsequent years (Figure 4.4b), but their reproductive value is higher (Figure 4.4a), 

meaning that they contribute more recruits to the population as their chicks, which would 

have hatched earlier in the season, have had a higher probability of surviving until fledging 

(Figure 4.3c).  
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Figure 4.4 a) Reproductive output for individuals on different laying dates. Range 0-1, 0 = 
complete nest failure, 1 = complete success (i.e. 100% eggs result in fledging young), b) Life 
expectancy (post fledging) of individuals based on laying. 

 

The distribution of laying dates needed to maintain a stable population (growth rate = 1) 

was predicted and visualised (Figure 4.5). When laying date was the only independent 

variable used in the IPM there was a bimodal distribution in the laying dates required to 

produce a stable population. This bi-modality arises due to the distribution of early and late 

population mean laying dates in the dataset (Figure 4.5a).  
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Figure 4.5 a) Distribution of laying dates required to maintain a stable population, peak 
density is at day 135 (15th May) using model 1. b) Distribution of laying, after controlling for 
annual mean laying date, required to maintain a stable population, peak density is at day 128 
(8th May) using model 2. c) Observed distribution of laying dates in the Cwm Clydach Pied 
Flycatcher population using raw data. d) Observed distribution of relative laying dates in the 
Cwm Clydach population. 

 

The observed distribution of laying dates (grey bars in Figure 4.5b) does not exhibit the 

second peak around day 135 (15th May) but is in fact close to a normal distribution peaking 

at day 128. Once shifts in mean annual laying date had been accounted for in model 2, the 

laying date distribution required to produce a stable population size was unimodal and 

predicted a peak laying date of 8th May (Figure 4.5c).  

 

4.4.2.2 Investigation of changes in model parameters in the IPM 

The effect of varying different demographic parameters on population growth rate and 

reproductive value was assessed by varying mean laying date and recruitment in the model.  

 

4.4.3 Varying laying dates in the deterministic IPM 

In order to examine the effect on breeding behaviour of population level variation in mean 

laying date the IPM was parametrised to represent different scenarios i.e. early at late laying 

dates. In a year when the mean laying date was early (5th May) (Figure 4.6a) then a 

relatively synchronous distribution of laying dates would be required in order to achieve a 
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stable population. In contrast, in a year when the mean laying date was later (11th May) 

(Figure 4.6b) then a less synchronous distribution of laying dates would be required. 

 

When a hypothetical population’s mean laying date was advanced from the observed long-

term mean of 8th May to 5th May, the annual population decline reduced from 52 % to 39 %. 

Conversely if the mean population laying date was delayed by from 8th May to 11th May, 

then the mean population decline increased to 68 %. The change in population decline due 

to a three day delay (-16 % change) is greater than the population decline due to a three 

day advance (+13 % change) shows the non-linear impact of laying date on the rate of 

population decline. 

  
Figure 4.6 Distribution of laying dates required to achieve a stable population, for two 
hypothetical populations with a mean laying date of a) 5th May and b) 11th May, showing the 
very different variances in laying dates under the two scenarios. Bold dashed lines indicate 
the mean laying date. 

 

4.4.4 Varying recruitment in the deterministic IPM 

Increasing recruitment in the hypothetical population from 3 % to 5 % or 7 % had the effect 

of reducing the decline to 33 % or 19 % respectively. Increased post-fledging survival and 

recruitment to the breeding population is therefore predicted to have a large positive impact 

on the population trajectory.   
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As the distribution of laying date is so synchronous within real Pied Flycatcher populations, 

and because the effect of laying date on survival and recruitment is so strong, a small 

population level shift towards earlier laying will have a large impact on the population growth 

rate.  

 

4.4.5 Stochastic IPMs 

Stochastic changes between years in demographic parameters (e.g. caused by variation in 

weather conditions) were introduced into a stochastic IPM to examine the effect of this 

variability on population growth rates. The mean population growth rate was calculated, as 

-0.50, where 0 represented a stable population and -1 represented instantaneous 

extinction. This population was therefore predicted to halve each year. This stochastic 

model was run 500 times, in zero of these instances the population growth rate was above 

zero (population increase), and in 16 instances the population growth rate was -1 or below 

(instantaneous extinction) (Figure 4.7, Table 4.3).  

 

 

 

Figure 4.7 Long-run growth rate of population when annual variations are incorporated 
(model 3). A growth rate of 0 represents stable population growth and a growth rate of -1 or 
below represents instantaneous population extinction, as indicated by the red dashed lines.   

 

 

Extinction Decline Growth 
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Table 4.3 Stochastic simulation model outcomes based on 500 simulations, which compared 
baseline stochastic model parameters (model 3), with inter-annual variation increased by 50%  

Parameter Extinction events Population Growth Extinction : growth ratio 

Baseline 16 0 16:0  

Survival 12 0 12:0  

Reproduction 15 1 15:1  

Growth 18 1 18:1 

Inheritance 18 0 18:0  

 

4.4.5.1 Stochastic sensitivity analysis 

A sensitivity analysis is a process of examining how model predictions change when an 

individual model parameter is slightly altered. To do this, model sensitivities were calculated 

by separately perturbing each model parameter by 1 %, describing the size and direction 

(positive or negative) of the effect on the model output. 

When each of the four parameter values were increased by 1 %, in turn, then the number 

of extinction events changed relative to the number of growing populations (Table 4.3). The 

only positive effect on the population growth rate was when the reproductive parameter 

value was increased; the effect of increasing the other parameters was negative, i.e. they 

caused the population to decline more rapidly. An increase in the “growth” parameter (i.e. 

an increase in difference in laying date between two years) had a large impact on the 

population’s persistence, as 18 extinction events were observed from 500 simulations, but 

only one population growth event (Table 4.3). When the survival parameter value was 

increased (i.e. weakening the relationship between laying date and survival), the relative 

frequency of extinction events increased. When the inheritance parameter value was 

increased (i.e. weakening the negative relationship between laying date of mother and 

daughter), the relative frequency of extinction events slightly increased. In all of the 

population trajectory models the probability of extinction occurred before growth. 

 

4.4.6 Relative importance of demographic parameters 

4.4.6.1 Effects on population growth rate 

Small perturbations (1 %) were added to the model parameters to identify the relative effect 

on population growth (Figure 4.8) and lifetime reproductive success (Figure 4.9). Overall, 

increasing mean survival had the largest positive impact upon the population growth rate 
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(Green line Figure 4.8a), and increasing the mean difference in laying date between years 

had the largest negative impact (green lines in Figure 4.8c). The specific effects of each 

perturbation are as follows: 

 

A 1 % increase in mean survival had a positive effect (15 %) on population growth for early 

laying individuals, but little to no effect on late laying birds (Green line; Figure 4.8a). If the 

slope of the relationship between survival and laying date became greater by 1 %, such that 

early-laying populations experienced increased survival, then the population would decline 

by nearly 10 % (Purple line; Figure 4.8a). At an individual level, this effect is smaller; If the 

relationship between survival and laying date became stronger by 1 %, such that early-

laying individuals experienced increased survival, then the population would decline by ~5 

% (Orange line; Figure 4.8). Perturbations to mean and population level reproduction result 

in a higher population growth rate, however an increase in the individual laying date resulted 

in a small population decline (Figure 4.8), with little effect of clutch size (Purple line; Figure 

4.8b).  

 

Increased inter-annual difference between laying dates (“growth”) resulted in a considerable 

decrease in population growth rate of ~30%. As the earliest layers are disproportionately 

influential in the models, then a greater disparity between their laying dates, (i.e. from laying 

early and contributing positively to the population by surviving and producing more young 

to laying late and having a reduced survival and producing fewer young),  had a large 

negative impact upon the population growth rate (Green line; Figure 4.8c). A decrease in 

the population level inter-annual difference in laying dates resulted in a small decrease in 

population growth rate for early laying populations, although this was not observed in late 

laying populations (Purple line; Figure 4.8c). There was no impact of individual-level 

changes in laying date on population growth (Orange line; Figure 4.8c). There was also no 

impact on population growth or declines of perturbing inheritance values (all lines; Figure 

4.8d).  
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Figure 4.8 Modelled perturbations in a) Survival, b) Reproduction, c) Growth and d) 
Inheritance on population growth rates. 1 % increase in intercept (green), 1 % increase in 
individual laying date slope (orange) and 1 % increase in population laying date slope (a, c & 
d) / clutch size (b) (purple). In (c) and (d) solid lines represent perturbations to parameters in 
the mean functions and dashed lines represent perturbations to parameters in the variance 
functions. 
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Figure 4.9 Modelled perturbations in a) Survival, b) Reproduction, c) Growth and d) 
Inheritance on lifetime reproductive growth rates (delta log(R0)). 1% increase in the intercept 
(orange), 1% increase in individual laying date (green) and 1% increase in population laying 
date (purple). In (c) and (d) solid lines represent perturbations to parameters in the mean 
functions and dashed lines represent perturbations to parameters in the variance functions. 

 

4.4.6.2 Effects on reproductive output 

Reproductive output was most strongly positively influenced by increased individual survival 

of later-laying birds (Green line; Figure 4.9a), as this provides an opportunity for a second 

breeding season. Reproductive output was negatively affected by larger disparity in laying 

dates between years (“growth”), for birds who laid in the middle of the season (Green line; 

Figure 4.9c). These individuals will be more likely to shift to a more detrimental laying date, 

which has a strong effect on reproductive output. As we have seen that a later laying date 

has more of an effect than earlier laying, the net result is a decrease in reproductive output. 

There was little impact of increases in clutch size, individual-level laying date changes, or 

mean number of fledglings, on reproductive output (Figure 4.9b). Stronger inheritance of 

laying date negatively impacted the reproductive output of individuals who laid at the end of 

the season (Figure 4.9d). 

 
Overall, the most sensitive parameters to perturbation were survival and growth, with 

increases in mean survival and greater similarity of laying dates between years having the 

largest effects on the population growth rate and reproductive output.  
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4.5 Discussion 

Pied Flycatchers represent a particularly useful model study system for exploring 

evolutionary and demographic processes. Extensive research has been conducted on 

many aspects of their vital rates which allows construction of population models to 

understand demographic processes (Hemborg and Lundberg 1998; Wright et al. 2004; 

Järvistö et al. 2016). This chapter takes advantage of the wealth of ecological and 

behavioural knowledge about this system, by combining statistical descriptions of 

demographic processes underlying population dynamics, into a series of IPMs. These 

models facilitate an understanding of future growth rates and identify the most sensitive 

parameters to perturbation.  

 

4.5.1 Population decline 

The global conservation status of the Pied Flycatcher is classified by the IUCN as Least 

Concern (BirdLife International 2018) but it has been reported as undergoing a moderate 

decline by PECBMS since 1980 (PECBMS 2015). The decline had not occurred prior to this 

in Wales, as Campbell (1965) reported that populations of flycatchers in numerous counties 

in Wales were increasing or remaining stable. Cwm Clydach is undergoing a steeper decline 

(Chapter 2) than the UK average between 1995 - 2016 (38 %; range = - 67 % to + 4 %) 

(Woodward et al. 2018).  

 

The modelled population showed a population decline of between 53 and 72 % from the 

stochastic and deterministic models respectively. The deterministic model indicates a 

higher rate of decline than the overall observed rate of decline in Cwm Clydach (Chapter 

2). The stochastic model indicates a lower but more variable rate of decline and shows 

sensitivity to random events as is to be expected with a small population. The likely 

difference between modelled and observed population declines is that not all of the potential 

influences on population size were incorporated in the IPM. For example, the population 

was assumed to be closed with no immigration or emigration whereas in reality there was 

some degree of mixing between local populations (G. Roberts pers. comm.). Cwm Clydach 

may be acting as a population sink with immigration exceeding emigration resulting in a 

slower decline in population size than predicted by the model. With the current demographic 

parameters and excluding any impact of immigration, the simulated population is unlikely to 

grow and could become extinct due to stochastic processes. By changing these 

parameters, we identified which of the vital rates are most sensitive to change and therefore 

changing population growth and reproductive success. Introducing inter-annual variation 

into the stochastic model does not significantly change the mean rate of decline but does 
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highlight the variability between years and the higher likelihood of extinction than population 

growth (Table 4.2). 

 

The conclusion of this study suggests that immigration to this site may be vital to the 

continuation of Pied Flycatchers at Cwm Clydach. Annual growth in this population, without 

immigration, is highly unlikely, and when it does occur it is unlikely to be sufficient to result 

in a long-term stable or increasing population. This is not unexpected as a population from 

north Cardiff (Coed-y-Bedw) has become extinct in the past five years (Wildlife Trust of 

South and West Wales 2012).  

 

4.5.2 Demographic processes underlying population decline 

To understand the mechanistic processes causing the decline of Pied Flycatchers in Cwm 

Clydach, IPMs were created to identify how each demographic process was influenced by 

the key behavioural trait of laying date. Of the four demographic models from which the IPM 

was comprised, laying date had a significant association with survival and the number of 

fledglings produced. It was not, however, as strongly associated with the change in laying 

date of an individual from one year to the next (“growth”). Neither was there a significant 

degree of inheritance of laying date between a mother and a recruited daughter. 

 

4.5.2.1 Relationship between survival and laying date  

A novel finding of the present study is that adult survival was associated with laying date at 

a fine scale; this finding was incorporated into the IPM in order to understand the ecological 

pressures acting on populations, and their impacts on population growth rates. Higher 

survival for early laying individuals resulted in longer life expectancy. Earlier laying birds 

would be able to obtain the highest quality territories which would result in reduced pressure 

due to increased foraging efficiency. This reduction in pressure, leading to increased fitness 

has a carry-over effect into the winter (Finch et al. 2014). The size of this effect is biologically 

important; early-breeding birds can live for twice as many further breeding seasons as late-

breeding birds. With minimal extrapolation projected life expectancies for individuals laying 

on the 23rd April (3 years) could be twice that of those laying on the 18th May (1.5 years). 

Birds breeding at the mean laying date had a life expectancy of 1.75 years which is 

comparable to previous estimates of 1.6 (Artem'ev 1998; Lundberg and Alatalo 2010).  

 

4.5.2.2 Relationship between fledging success and laying date  

Eggs which were laid earlier had a higher probability of resulting in a fledged chick. This 

has been shown to be, in part, due to closer phenological matching of chick demand with 
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food availability (Both et al. 2009). Higher chick provisioning resulted in faster fledging 

(Siikamäki 1998), which enabled parents to reach the end of the breeding season with a 

higher biological fitness and enabling the nestlings to fledge. Furthermore, these adults and 

fledglings may be ecologically fitter individuals for their migration to Africa with potential 

inter-annual carry over effects into the subsequent breeding season (Finch et al. 2014).  

 

Birds laying earlier than the population mean of 8th May, not only had a higher probability of 

survival but also successfully fledged more offspring. As these offspring were more likely to 

survive and recruit, the population-level impact of an early laying mother was large. The 

mechanisms underlying the association between laying date and survival are not directly 

addressed in the present study but may involve a greater level of physiological and 

energetic stress on later-breeding parent birds that are temporally mis-matched with their 

invertebrate food supply (Chapter 3). Conversely, early-breeding birds may be of higher 

biological fitness, and therefore are able both to breed earlier and to survive, in contrast to 

lower quality individuals. Regardless of the mechanism(s) and direction of cause and effect, 

this relationship is revealed by the IPM to have important population-level consequences. 

 

4.5.2.3 Relationship between mean population laying date and laying date synchrony 

When temperatures increase earlier, than the average in Spring, there is a greater pressure 

on all potential breeders to breeds as quickly as possible to not miss the peak availability of 

food. This means that irrespective of when a bird arrives back on the breeding territory, they 

will lay as soon as possible, resulting in a relatively synchronous distribution of laying dates. 

Conversely when the temperature in spring increases more slowly or later in the year then 

mean laying dates are later. This is due to the reduced pressure on individuals to breed as 

soon as they can as the peak abundance in food availability may be later. As some birds 

arrived earlier than others, they may be in breeding condition and be ready to occupy 

territories. These individuals would lay early. The birds who arrived a few days later may 

have taken the same time to achieve the same level of condition and may lay later. The 

later the peak in food availability is the more spread the distribution of laying dates. 

 

 

4.5.3 Sensitivity Analysis 

The population-level consequences of associations between laying date and demographic 

parameters were experimentally tested in silico. These sensitivity analyses conducted on 

the IPM determined which model parameters had the greatest effect on population growth 

rate. The most sensitive parameters to perturbation were survival and inter-annual change 
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in adult laying date, whereas inheritance and reproductive success had only small effects 

on the population growth rate predicted by the IPM. The high overall mean reproductive 

success of the population could explain the lack of sensitivity of reproductive success to 

perturbations, as there is little capacity to increase fledging success which is already close 

to the upper limit of 100 %.  

 

The earliest-breeding birds contribute the most to the population growth rate. However, the 

birds which have the greatest potential to change the population growth rate are those birds 

that breed immediately either side of the population mean (8th May). The sensitivity analysis 

shows that these birds could have a large impact on the population growth rate by laying 

on or before the population mean laying date. Specifically, if those birds who previously 

bred just after the mean, were to breed just before the mean in the following year, their 

impact on population growth rate would be positive. As the standard deviation of laying 

dates is 5.7 days, only individuals who laid on or before the 14th May are likely to be able to 

advance their laying date sufficiently to lay on or before the mean laying date. These 

individuals would potentially have a substantial impact on the population growth rate. If a 

previously early breeder subsequently laid after the mean laying date in the following year, 

then the effect on the population growth rate would be negative. This is in part due to the 

low survival of individuals with a late laying date, who therefore do not have an opportunity 

to advance their laying date in subsequent years.  

 

Increasing the difference between laying dates in consecutive years by 1 % has a negative 

effect on population growth rates, as there is a disproportionately large disadvantage of 

early birds becoming late. Late breeders contribute fewer recruited offspring into the 

population, in subsequent years, which has a negligible effect on population growth rate. 

As late breeding birds have low survival, they more rarely have the opportunity to lay early 

in a subsequent year. The number of days by which a bird could advance its laying date 

was not dependent on its original laying date (Figure 4.3b). This suggests that individual 

late-laying birds are not consistently advancing their laying date more than early laying 

birds, as would be expected if laying date were responding to selection pressure. Instead 

the difference in laying dates between years suggests an individual-level of plasticity 

whereby an individual could adjust its timing in response to current conditions. 

 

Changes by 1 % in modelled reproduction and inheritance parameter values have only 

small effects on population growth. It is likely for reproduction that this is because an 

increase of 1 % of 7 eggs laid (0.07 eggs) is not a biologically meaningful change. The 

increased difference in a population’s laying date between successive years results in a 
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negative effect on population growth rate of mid-season laying birds, as those birds would 

become more mis-matched with food availability, and therefore produce fewer offspring and 

have a lower lifetime expectancy. The lack of consistency in laying dates between mothers 

and daughters (inheritance) indicated the plasticity in laying date which the birds exhibit. 

This plasticity enables them to respond to local conditions within a breeding season (Both 

and Visser 2001; Childs et al. 2016)  

 

4.5.4 Future advancements of the IPM 

To increase the explanatory power of this model, the model structure could be extended to 

include other variables such as the age or life-stage (e.g. number of prior breeding attempts) 

of each individual. This information was not available for most of the birds in the present 

dataset but would be possible to obtain from a more comprehensively marked population. 

 

Inclusion of additional independent variables in the model would have been possible if we 

had those data for the same location and time frame as for the nest box dataset; specifically, 

weather variables and food availability in terms of temperature, rainfall, phenology and 

abundance of different invertebrate taxa from the same woodland (see Chapter 3). This 

would allow the model to be parameterised to examine the role of phenological matching in 

driving the processes described by the current model. 

 

For Pied Flycatchers I would like to be able to identify what drives productivity in a 

population within a woodland, but also affects their dynamics on a landscape scale. The 

current IPM assumes a closed population with no immigration or emigration, and future 

extensions would incorporate these dynamics into a wider meta-population model. The lack 

of inclusion of emigration and immigration is one possible cause of disparity between the 

modelled and realised population decline. In addition to this the large variability in the 

population decline observed in the stochastic model indicates the possible range of growth 

outcomes for the Pied Flycatchers given the changing environmental conditions. A meta-

population scale model would therefore incorporate philopatry, as a covariate, to 

understand the role of dispersal mechanisms in driving declines across multiple 

populations. This approach is illustrated by Howell et al. (2018), who designed a new 

spatially explicit model which incorporates both landscape heterogeneity and 

metapopulation dynamics of colonisation and extinction.  

 

Two of the novel results from this study may have substantial implications for understanding 

the decline in Pied Flycatcher populations. Firstly, the positive effect of an early laying date 
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on inter-annual survival of breeding individuals suggests that there may a selection pressure 

towards earlier laying. Any population with a large proportion of late-laying individuals would 

be expected to undergo a steep population decline. Secondly, these non-linear increases 

in survival associated with early laying dates result in individuals with a longer life 

expectancy and more breeding seasons, contributing disproportionately and positively to a 

population’s growth rate. A large proportion of early-laying individuals in a population could 

facilitate a positive population growth rate.  
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5 General Discussion 

 

5.1 The novel contribution of this study  

Breeding populations of Pied Flycatchers have been studied for many years (see Lundberg 

& Alatalo 2010) and more recently this model system has been incorporated into a tri-trophic 

framework for understanding cascading impacts of climate change across trophic levels, 

from trees to caterpillars to birds (Burgess et al. 2018). For the first time, this thesis 

integrates a long-term observational study of breeding biology, with a short-term intense 

study of the tri-trophic system, to specify an Integral Projection Model (IPM) of a Pied 

Flycatcher population. IPMs have been used to understand demographic trends in species 

across many taxa, including plants and mammals (Adler et al. 2010; Ozgul et al. 2010), 

however to date only four IPMs have been created for birds (Childs et al. 2016; Kentie et 

al. 2018; Plard et al. 2018; Plard et al. 2019). Until now, short-lived long-distance woodland 

migrants have not been represented in any IPMs, and so this study presents the first such 

IPM to be developed for this ecological guild (Figure 5.1).  

 

 

Figure 5.1 Venn diagram of existing bird IPMs, showing Pied Flycatcher to be the only short-
lived, woodland-breeding, long-distance migratory species to be examined with an IPM.  
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Table 5.1 Previously published Integral Population Models of bird populations. 

Study Species Focal trait(s) 
and other 
traits 
considered 

Age-
structured 
model? 

2-sex 
model? 

Integrated with 
population 
model (IPM2)? 

Present 
study 

Pied 
Flycatcher 
Ficedula 
hypoleuca 

Laying date N N N 

Childs et 
al. 2016 

Great Tit 
Parus 
major 

Laying date 
(synchrony), 
sex, age 

Y Y N 

Plard et al. 
2018 

Eurasian 
Hoopoe 
Upupa 
epops 

Fixed 
morphology, 
body 
condition, 
sex, age 

Y Y N 

Kentie et 
al. 2018 

Black-
tailed 
Godwit 
Limosa 
limosa 

Laying date N N N 

Plard et al. 
2019 

Barn 
Swallow 
Hirundo 
rustica 

Laying date 
Breeding 
attempt 

N N Y 

 

Statistical modelling in general, and IPMs in particular, allow questions to be asked about 

the demography of birds of conservation concern, and to model the potential population-

level outcomes of different ecological, demographic or conservation-focused changes. In 

this way, monitoring and modelling of a study population feeds into actionable responses, 

rather than just recording the decline of bird populations to extinction. Short-lived bird 

species provide a greater opportunity for rapid evolutionary change than long-lived species, 

due to their faster maturation and shorter generation times. As such, shorter time frames 

(e.g. the 26 years examined in Chapters 2 & 4) can provide an opportunity to study potential 

evolutionary changes as well as phenotypic changes in behavioural traits across multiple 

generations. Species living in habitats with seasonally ephemeral food resources (e.g. Oak 

woodlands, see Chapter 3) may undergo stronger selection pressures than those occupying 

habitats with long-lasting peaks in food supplies (e.g. agricultural landscapes, Plard 2019). 

More extended food peaks can allow multi-brooding in bird species breeding in such 

habitats, which reduces the impact of a single unsuccessful nesting attempt. The 

evolutionary pressure on woodland long-distance migrants, such as the Pied Flycatcher, 
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provides another reason why Pied Flycatchers are a good candidate system for this 

approach.   

 

Trans-equatorial long-distance migrants are undergoing some of the steepest population 

declines among avian taxa (Green and Pearce-Higgins 2014) and so understanding the 

causes of decline is both essential and time-limited. As these individuals are vulnerable to 

the sum of all impacts of environmental changes along the migratory route, and therefore 

across the annual cycle, an in-depth understanding of each stage is important. The 

combination of these life-history traits (short-lived), behavioural traits (long-distance 

migratory) and habitat traits (woodland-breeding) results in the Pied Flycatcher IPM being 

an important case-study in modelling the decline of a species decline. Insights gained from 

the IPM result in an integrated view of the species’ ecology, and help both to identify the 

primary causes of decline and mechanisms by which extinction might be averted.  

 

5.2 The novel contribution of Chapter 2 

The breeding status and population size of many species of conservation concern (Eaton 

et al. 2015) are recorded by citizen scientists, which provides a wealth of data. 

Unfortunately, many of these datasets are not brought into the public domain through 

appropriate analysis and publishing. The dataset from Cwm Clydach used in this study has 

been collected for 30 years and yet has not previously been analysed or published (H Coats 

pers. comm.). As conservation interventions also often lack formal evaluation, few 

management protocols have been enacted to help with conservation of migratory woodland 

birds. Recent local population extinctions at the edges of the Pied Flycatcher’s core range 

in Wales (e.g. at Coed-y-Bedw near the south Wales coast, WTSWW 2012), and the rapid 

decline in Cwm Clydach (greater than national average, see Figure 5.2), have highlighted 

the need for urgent conservation management for this species. The work in this thesis has 

highlighted the importance of such management plans taking into account future variation 

in weather associated with climate change (IPCC 2014). Chapter 2 showed how weather 

variables may have interactive effects on nest productivity and so should be considered in 

a holistic view and not as single terms in isolation, as has frequently been the case in 

previous studies (Artem'ev 2002). Combinations of multiple weather variables also have 

temporally differing effects on various prey taxa, and so should be considered during a 

species-specific timeframe (e.g. incubation period, chick lifetime etc.) and not just as 

monthly data (cf. Burgess 2014). Ignoring these interactive effects and predicted changes 

in future weather may result in underestimating rates of population declines. 
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Figure 5.2 Population trajectories of different Pied Flycatcher populations in the UK, complied 
from data presented in Chapter 2 and previously published studies. A) Cwm Clydach, south 
Wales (Chapter 2), B) Coed y Bedw, south Wales (Wildlife Trust of South and West Wales 
2012), C) Llanwrthwl, mid-Wales (Kern et al. 2014), and D) the UK national population estimate 
(Robinson 2018). 

 

5.3 The novel contribution of Chapter 3 

The prey of Pied Flycatchers has been identified by hard parts analysis (Stowe 1987), 

camera trapping (Sanz 1998) and molecular analysis (Tyrrell 2017), but the present study 

is the first to model the effects of food availability (in the form of both caterpillars and small 

flying invertebrates) for Pied Flycatcher chicks in the UK over multiple years. I extended this 

approach by identifying the impacts of temperature and precipitation on timing and 

abundance of prey items and subsequent effects on Pied Flycatcher fledging success. This 

led to the quantification of the temporal mis-match between peak caterpillar availability and 

peak nestling demand (considered to be 7-10 days after hatching) and demonstrated the 

high sensitivity of Pied Flycatchers to phenological mis-match.   

 

5.4 The novel contribution of Chapter 4 

IPMs made it possible for the first time to identify the impacts of individual laying date on 

population demographics and population growth rate. The link between early laying date 

and individual life expectancy, reproductive success and population growth have extended 

our knowledge of Pied Flycatcher breeding biology. The variation around these estimates, 

provided by the inclusion of annual variation in stochastic models, provides estimates of 
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population change under the observed inter-annual variability of recent weather conditions. 

Longer life expectancy has been reported to be important in population persistence and 

growth (Lundberg and Alatalo 2010), as has a reduction in phenological mis-match between 

peak food demand and availability, mitigated through advancing laying date (Both et al. 

2006). The present study is the first study on Pied Flycatchers to link early individual laying 

date to increased life expectancy. The results add support to previous research into Pied 

Flycatcher breeding biology which has noted no long-term change in the number of 

fledglings produced or population breeding success ((Woodward et al. 2018). Chapter 4 

shows, however, that due to decreased life expectancy of late laying birds, the consequent 

reduced life-time reproductive success may indeed be a driver of population decline.  

 

Several recent studies on Pied Flycatcher breeding biology have highlighted the importance 

of overwinter conditions as drivers of population change, leading to a great research focus 

on the overwintering ecology of Pied Flycatchers in sub-Saharan Africa during the 

Palearctic wintering period (Mallord et al. 2016; Ouwehand and Both 2017). The results of 

these studies reported that the rainfall in the Sahel was a driver in population declines on 

the breeding grounds, but here I reveal a potentially more complex story, involving carry 

over effects from breeding into over-wintering survival, and from the over-wintering period 

to breeding, with the probability that there will be additional stressors at the staging grounds 

en route. These ecological pressures on long-distance migrants represent an important 

distinction from resident species, which are subject to different overwinter pressures, and 

are much less constrained in their decisions about laying date. As a result, resident bird 

species have generally tracked phenological changes in their prey more closely than have 

long-distance migrants.  

 

Many woodland-breeding long-distance migrant birds (e.g. Common Redstart (Phoenicurus 

phoenicurus), Wood Warbler (Phylloscopus sibilatrix), Tree Pipit (Anthus trivialis), and 

Ovenbird (Seiurus aurocapilla)) share a similar ecology to Pied Flycatchers; laying a single 

clutch in broadleaf deciduous woodlands between April and July, feeding their nestlings on 

invertebrates and migrating to trans-equatorial regions to over-winter. As such, these 

species all experience similar conditions on both the breeding and wintering grounds with 

regards to food availability and weather conditions, and therefore experience similar 

ecological pressures. It is therefore unsurprising that like Pied Flycatchers, they have all 

declined significantly during the same period. Many of these species are more difficult to 

monitor extensively due to their nests being more difficult to find, or due to low breeding 

densities, and therefore have had considerably less research conducted on them. Due to 

the similarities in ecology between these species it may be possible to extend the IPM 

framework developed here to compare drivers of population declines amongst this wider 
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guild of woodland migrants. In order to make the models as relevant as possible, data which 

have been collected on these species could replace the parameter estimates for individual 

functions wherever these data are available. By doing so we could create the most robust 

models for these species that is possible with current data. To then identify how the 

parameters for which we do not have directly observed values influence the population 

growth rate, we can use sensitivity analysis as has been demonstrated here using the Pied 

Flycatcher IPM. This may allow us not only to understand what elements of a species’ 

demography are contributing to the observed decline but may also lead us to understand 

what research questions need to be addressed in order to mitigate these drivers of decline. 

Until these extensions to -and applications of- the present IPM are conducted, it is important 

to acknowledge the large step forward that single species IPMs can and are contributing to 

our understanding of the drivers of population declines. Here we have shown that an 

individual’s laying date has a significant effect on its survival and lifetime reproductive 

success, which in turn has an important effect on the population growth rate.  

 

The heritability parameter estimated from the very limited data available from the Cwm 

Clydach dataset (only four mother-daughter pairs) was not significantly different from zero, 

and yet laying date must show some degree of heritability (for example because there are 

consistent between species differences). Sensitivity analysis showed how the impact of 

heritability on population growth rate changed with altered levels of inheritance (Chapter 4). 

Two methods to improve this estimate would be to i) increase the number of years over 

which this population was studied to increase the probability of an increase in recruited 

individuals being present or ii) use estimates from other populations to create a more robust 

estimate for use in the IPM. An extension to the inheritance model has already been 

developed by Childs et al. (2016) by explicitly incorporating genetic components into the 

model which address the impact of phenotype on the inheritance of the focal trait.    

 

5.5 Future developments  

Often it is not possible to obtain data on individual level survival, reproduction and laying 

dates from the same location. Designed for these situations, Integrated Population Models 

(IPMpop) were developed (Schaub and Abadi 2011), which use population estimates of 

these demographic parameters from geographically distinct studies to build a population 

model. The strength of this was combined with the strength of the IPM to form an “IPM2“, 

where individual level values (IPM) are used from multiple distinct populations (IPMpop), to 

form a robust geographically structured model. Given the different population trajectories 

exhibited by Pied Flycatchers in the UK (Figure 5.2) it is important to extend the framework 

of the IPM constructed in this study to understand population trajectories across the UK and 
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Europe. This would integrate parameter estimates across the broad geographic range of 

the Pied Flycatcher and enable widely applicable conservation strategies to be created.   

 

To increase the explanatory power of these models it would be beneficial to add other co-

variates which have been shown to be of importance for Pied Flycatcher demographic 

processes (e.g. between-year variation in caterpillar abundance and phenology, and 

weather). Incorporating these into the already powerful IPM framework would increase our 

mechanistic understanding of this ecosystem. Explicitly modelling the spatial resolution of 

food availability and phenology could further increase the power of this analysis (Cole and 

Sheldon 2017). In this study, the spatial variation within the Tŷ Mawr woodland was 

statistically controlled for, to enable a population-wide understanding of the effects of mean 

food availability, and increasing the number of nests which could be included in the 

analyses. 

 

I have interpreted the association between laying date and survival as implying that earlier 

laying facilitates individuals surviving for longer, however it is possible that ecologically fitter 

individuals may be able to breed earlier than less fit individuals, and subsequently have 

higher survival. To be able to address the causal mechanism underlying this association 

we would need to artificially advance or delay the laying dates of multiple individuals, and 

identify the subsequent change in survival and reproductive output. This raises both ethical 

and logistical concerns.  

 

5.6 Selection pressure and adaptation. 

The increased survival and life expectancy associated with early laying in the IPM, shows 

that there is likely to be strong selection pressure towards earlier laying. Despite departure 

date from Africa being independent of environmental conditions (Gwinner 1996), flexibility 

in departure date from Africa provides a mechanism for birds to advance their arrival dates 

(Ouwehand and Both 2017). There was little variation in migration duration between 

individuals (2.9 days) but large variation in departure date (five weeks). As the study 

conducted by Ouwehand and Both (2017) analysed a single year of migration it is not 

possible to identify whether this is an example of behavioural plasticity or individual 

differences.    

 

The model estimates of individual phenotypic plasticity both within and between seasons 

and generations (5.7 days) is marginally more than the overall advancement in laying date 

(five days in 20 years) exhibited by a Pied Flycatcher population in the Netherlands (Both 
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et al. 2009). The advancement in laying date in the UK, 10 days in 51 years, (Woodward et 

al. 2018) also exceeds the phenotypic plasticity demonstrated by individuals, which 

indicates that long-term adaptation has occurred. Selection pressure only produces 

evolutionary change if the response needed is greater than that which can be provided by 

phenotypic plasticity. Provided that the selection for earlier breeding is more beneficial to 

the overall lifetime reproductive success than it is detrimental to any other aspects of the 

annual cycle there will be an evolutionary response towards earlier laying. 

 

5.7 Conclusion 

The well-known quote from statistical modelling holds: “All models are wrong, but some are 

useful” (Box 1976). However, the more that we are able to accurately model the variation 

within a natural system, the more useful the models can be. This is particularly important in 

aiding the framing of conservation questions. Understanding what causes a species and 

ecosystem to change over a short- or long-timescale facilitates the development of effective 

conservation management strategies. These conservation management schemes are often 

enacted or monitored by members of the public conducting citizen science, yet the data 

collected are frequently underused. The interrogation of one such dataset in the present 

study, combined with new detailed observations of food availability and the combined 

effects of weather, have provided new insights into Pied Flycatcher breeding ecology in 

Cwm Clydach which can potentially be more widely applicable to other locations and other 

species. The combination of these results with the current literature emerging from research 

on wintering ecology in Africa will greatly increase the knowledge of Pied Flycatcher ecology 

and demographic trends.  
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6 Appendix  

6.1 Appendix 1 

Table A1.1 Contrast of annual mean clutch size with population mean clutch size 

(represented by data from 1990)  

Year Mean S.E. z- score p  

Intercept 1.910 0.041 46.823 <0.001  

1991 0.023 0.059 0.397 0.692  

1992 0.038 0.058 0.646 0.518  

1993 0.034 0.057 0.608 0.543  

1994 0.000 0.057 -0.007 0.994  

1995 0.025 0.056 0.445 0.657  

1996 -0.026 0.058 -0.443 0.658  

1997 0.035 0.055 0.630 0.529  

1998 -0.037 0.057 -0.647 0.517  

1999 -0.019 0.057 -0.336 0.737  

2000 0.019 0.062 0.303 0.762  

2002 -0.010 0.071 -0.135 0.893  

2005 0.010 0.067 0.155 0.877  

2006 0.042 0.069 0.611 0.541  

2007 -0.056 0.072 -0.772 0.440  

2008 -0.052 0.071 -0.726 0.468  

2009 0.024 0.076 0.310 0.756  

2010 0.024 0.076 0.310 0.756  

2011 0.050 0.067 0.749 0.454  

2012 0.022 0.071 0.311 0.756  

2013 -0.167 0.100 -1.670 0.095  

2014 0.042 0.089 0.476 0.634  

2015 0.036 0.083 0.431 0.666  
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Table A1.2 Contrast of annual mean brood size with population mean brood size 

(represented by data from 1993) 

 Year Mean S.E. z value p  

Intercept 1.790 0.044 40.618    <0.0001  

1990 -0.084 0.064 -1.307 0.191  

1991 0.023 0.064 0.363 0.716  

1992 0.173 0.087 1.991 0.047 * 

1994 -0.139 0.065 -2.157 0.031 * 

1995 0.027 0.060 0.452 0.651  

1996 0.088 0.072 1.234 0.217  

1997 0.167 0.075 2.239 0.025 * 

1998 -0.095 0.062 -1.519 0.129  

1999 0.110 0.099 1.110 0.267  

2000 0.156 0.083 1.884 0.060 . 

2002 0.139 0.102 1.359 0.174  

2005 0.156 0.110 1.416 0.157  

2006 0.170 0.093 1.823 0.068 * 

2007 -0.116 0.078 -1.482 0.138  

2008 -0.142 0.078 -1.814 0.070 . 

2009 -0.052 0.083 -0.621 0.534  

2010 0.058 0.080 0.716 0.474  

2011 0.032 0.072 0.438 0.662  

2012 -0.034 0.078 -0.442 0.658  

2013 -0.080 0.107 -0.750 0.453  

2014 0.208 0.137 1.515 0.130  

2015 0.047 0.104 0.454 0.650  
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Table A1.3 Contrast of annual mean fledgling number with population mean fledging 

number (represented by data from 1990) 

 Year Mean S.E. z value  p   

Intercept 1.621 0.048 33.617 <0.0001 *** 

1991 0.151 0.067 2.242 0.025 * 

1992 0.182 0.068 2.681 0.007 ** 

1993 0.083 0.066 1.249 0.212 
 

1994 -0.140 0.070 -2.003 0.045 * 

1995 0.071 0.064 1.106 0.269   

1996 0.085 0.065 1.293 0.196 
 

1997 0.048 0.064 0.747 0.455   

1998 -0.399 0.073 -5.482 <0.0001 *** 

1999 -0.251 0.071 -3.539 0.000 *** 

2000 0.068 0.070 0.964 0.335 
 

2002 0.009 0.081 0.116 0.908   

2003 -0.065 0.096 -0.677 0.498   

2004 0.247 0.080 3.085 0.002 ** 

2005 -0.132 0.082 -1.612 0.107   

2006 0.156 0.077 2.014 0.044 * 

2007 -0.229 0.089 -2.588 0.010 ** 

2008 -0.251 0.089 -2.836 0.005 ** 

2009 -0.140 0.094 -1.486 0.137   

2010 0.097 0.086 1.118 0.264 
 

2011 -0.075 0.082 -0.917 0.359   

2012 -0.127 0.093 -1.355 0.175 
 

2013 -0.051 0.111 -0.457 0.648   

2014 0.031 0.103 0.299 0.765 
 

2015 -0.083 0.103 -0.811 0.417   
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Table A1.4 Contrast of annual mean nest productivity with population mean nest 

productivity (represented by data from 2002) 

Year Mean S.E. z value p   

Intercept 1.179 0.052 22.582 <0.0001 *** 

1990 -0.102 0.064 -1.608 0.108  

1991 0.557 0.069 8.066 <0.0001 *** 

1992 0.623 0.071 8.776 <0.0001 *** 

1993 0.178 0.064 2.782 0.005 ** 

1994 -0.483 0.061 -7.862 <0.0001 *** 

1995 0.127 0.063 2.021 0.043 * 

1996 0.495 0.068 7.287 <0.0001 *** 

1997 -0.039 0.062 -0.637 0.524   

1998 -1.073 0.061 -17.730 <0.0001 *** 

1999 -0.829 0.061 -13.651 <0.0001 *** 

2000 0.060 0.067 0.899 0.369  

2005 -0.534 0.068 -7.909 <0.0001 *** 

2006 0.471 0.077 6.143 <0.0001 *** 

2007 -0.550 0.071 -7.770 <0.0001 *** 

2008 -0.659 0.070 -9.429 <0.0001 *** 

2009 -0.600 0.073 -8.255 <0.0001 *** 

2010 0.305 0.082 3.742 <0.0001 *** 

2011 -0.477 0.067 -7.097 <0.0001 *** 

2012 -0.584 0.073 -8.024 <0.0001 *** 

2013 0.764 0.123 6.208 <0.0001 *** 

2014 -0.085 0.085 -0.991 0.322  

2015 -0.502 0.079 -6.373 <0.0001 *** 
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6.2 Appendix 2 

 

 

Figure A2.1 Linear relationship between mean annual survival and mean annual laying date 
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