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Abstract—The proliferation of innovative mobile services such
as augmented reality, networked gaming, and autonomous driv-
ing has spurred a growing need for low-latency access to comput-
ing resources that cannot be met solely by existing centralized
cloud systems. Mobile Edge Computing (MEC) is expected to
be an effective solution to meet the demand for low-latency
services by enabling the execution of computing tasks at the
network edge, in proximity to the end-users. While a number
of recent studies have addressed the problem of determining
the execution of service tasks and the routing of user requests
to corresponding edge servers, the focus has primarily been on
the efficient utilization of computing resources, neglecting the
fact that non-trivial amounts of data need to be pre-stored to
enable service execution, and that many emerging services exhibit
asymmetric bandwidth requirements. To fill this gap, we study
the joint optimization of service placement and request routing in
dense MEC networks with multidimensional constraints. We show
that this problem generalizes several well-known placement and
routing problems and propose an algorithm that achieves close-
to-optimal performance using a randomized rounding technique.
Evaluation results demonstrate that our approach can effectively
utilize available storage, computation, and communication re-
sources to maximize the number of requests served by low-latency
edge cloud servers.

I. INTRODUCTION

A. Motivation

Emerging distributed cloud architectures, such as Fog and

Mobile Edge Computing (MEC), push substantial amounts

of computing functionality to the edge of the network, in

proximity to the end-users, thereby allowing to bypass fun-

damental latency limitations of today’s prominent centralized

cloud systems [2]. This trend is expected to continue unabated

and play an important role in next-generation 5G networks for

supporting both computation-intensive and latency-sensitive

services [3].

Part of this work appeared in the proceedings of the IEEE International Con-
ference on Computer Communications (Infocom), 2019 [1]. This publication
was supported partly by the National Science Foundation under Grants CNS
1815676 and 1619129, the Army Research Office under Agreement Number
W911NF18-10-378, and the U.S. Army Research Laboratory and the U.K.
Ministry of Defence under Agreement Number W911NF-16-3-0001.
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Fig. 1: An example MEC system. Service placement and

request routing are constrained by the storage, computation,

and bandwidth resources of BSs.

With MEC, services can be housed in base stations (BSs)

(or edge servers close to BSs) endowed with computing

capabilities that can be used to accommodate service requests

from users lying in their coverage regions. The computation

capacity of BSs, however, is much more limited than that

of centralized clouds, and may not suffice to satisfy all user

requests. This naturally raises the question of where to execute

each service so as to better reap the benefits of available

computation resources to serve as many requests as possible.

While there have been several interesting approaches to

determine the execution (or offloading) of services in MEC,

e.g., [4] and [5], to cite two of the most recent, an impor-

tant aspect has been hitherto overlooked. Specifically, many

services today require not only the allocation of computation

resources, but also a non-trivial amount of data that needs

to be pre-stored (or pre-placed) at the BS. In an Augmented

Reality (AR) service, for example, the placement of the object

database and the visual recognition models is needed in order

to run classification or object recognition before delivering

the augmented information to the user [6]. Yet, the storage

capacity of BSs may not be large enough to support all offered

services.

The above issue is further complicated by the services’

communication requirements. Many modern services require



uploading data from the user to be used as input for service

execution, whose output must then be downloaded for con-

sumption by the user. Such bidirectional communication may

be asymmetric in general, taking up different portions of BSs’

uplink and downlink bandwidth capacities [7].

In addition, the density of BSs has been increasing and

is expected to reach up to 50 BSs per km2 in future 5G

deployments [8]. This is creating a complex multi-cell envi-

ronment with users concurrently in range of multiple BSs with

overlapping coverage regions, and where the operator can use

multiple paths to route associated service requests. Figure 1

illustrates an example of such a system.

Evidently, in this context, MEC operators have a large

repertoire of service placement and routing alternatives for

satisfying the user requests. In order to serve as many requests

as possible from the BSs, the operator has to jointly opti-

mize these decisions while simultaneously satisfying storage,

computation, and communication constraints. Clearly, this is

an important problem that differs substantially from previous

related studies (e.g., see [4], [5] and the discussion of related

works in Section VII) that did not consider storage-constrained

BSs and asymmetric communication requirements. While a

few recent works [9], [10], [11] studied the impact of storage

in MEC, they neither considered all the features of these

systems discussed above nor provided optimal or approximate

solutions for the joint service placement and request routing

problem.

Given the above issues, the key open questions are:

• Which services to place in each BS to best utilize their

available storage capacity?

• How to route user requests to BSs without overwhelming

their available computation and (uplink/downlink) band-

width capacities?

• How the above decisions can be optimized in a joint

manner to offload the centralized cloud as much as

possible?

B. Methodology and Contributions

In this paper, we follow a systematic methodology in order

to answer the above questions, summarized as follows.

1) We formulate the joint service placement and request

routing problem (JSPRR) in dense multi-cell MEC net-

works aiming to minimize the load of the centralized

cloud. We consider practical features of these systems

such as overlapping coverage regions of BSs and multi-

dimensional (storage, computation, and communication)

resource constraints.

2) We identify several placement and routing problems

in literature that are special cases of JSPRR, gaining

insights into the complexity of the original problem.

3) Using a randomized rounding technique [12], we de-

velop a multi-criteria algorithm that provably achieves

approximation guarantees while violating the resource

constraints in a bounded way. To the best of our knowl-

edge, this is the first approximation algorithm for this

problem.

4) We extend the results for dynamic scenarios where the

user demand profiles change with time, and show how

to adapt the solution accordingly.

5) We carry out evaluations to demonstrate the performance

of the proposed algorithm. We show that, in many

practical scenarios, our algorithm performs close-to-

optimal and far better than a state-of-the-art method

which neglects computation and bandwidth constraints.

The rest of the paper is organized as follows. Section II

describes the system model and defines the JSPRR problem

formally. We analyze the complexity of JSPRR and present

algorithms with approximation guarantees in Section III and

IV, respectively. Section V discusses practical extensions of

our approach, while Section VI presents our evaluation results.

We review our contribution compared to related works in

Section VII and conclude our work in Section VIII.

II. MODEL AND PROBLEM DEFINITION

We consider a MEC system consisting of a set N of N ∈ N

BSs equipped with storage, computation, and communication

capabilities, and a set U of U ∈ N mobile users, subscribers of

the MEC operator, as depicted in Figure 1. The users may be

arbitrarily distributed over the (possibly overlapping) coverage

regions of the BSs, where Nu ⊆ N denotes the set of BSs

covering user u.

We consider multiple types of resources for the MEC BSs.

First, each BS n has storage capacity Rn (hard disk) that can

be used to pre-store data associated with services. Second,

BS n has a CPU of computation capacity (i.e., maximum

frequency) Cn that can be used to execute services in an on-

demand manner. Third, BS n has uplink (downlink) bandwidth

capacity B↑
n (B↓

n) that can be used to upload (download) data

from (to) mobile users requesting services.

The system offers a library S of S ∈ N latency-sensitive

services to the mobile users. Examples include augmented

reality, video streaming and networked gaming. Services may

have different requirements in terms of storage, CPU cycles,

and uplink/downlink bandwidth resources. We denote by rs
the storage space occupied by the data associated with service

s. The notation cs indicates the required computation, while b↑s
and b↓s indicate the uplink and downlink bandwidth required

to satisfy a request for service s, respectively.

The system receives service requests from the users in

a stochastic manner. Without loss of generality, we assume

that each user u performs one request for a service denoted

by su. If a user performs multiple requests, we can split

it into multiple users. User requests can be predicted for

a certain time period (e.g., a few hours) by using learning

techniques [9]. Yet, user demand can change after that period

as users may gain or lose interest in some services. We provide

more details about this issue in Sections V and VI.

The request of user u can be routed to a nearby BS in

Nu provided that service su is locally stored and the BS has

enough computation and bandwidth resources. If there is no

such BS, we assume that the user can access the centralized

cloud, which serves as a last resort for all users. Accessing the



cloud, however, may cause high delay due to its long distance

from the users, and therefore should be avoided.

The network operator needs to decide in which BSs to

place the services and how to route user requests to them. To

model these decisions, we introduce two sets of optimization

variables: (i) xns ∈ {0, 1} which indicates whether service

s is placed in BS n (xns = 1) or not (xns = 0), and (ii)

ynu ∈ {0, 1} which indicates whether the request of user u
is routed to BS n (ynu = 1) or not (ynu = 0). Similarly, we

denote by ylu the decision to route the request of user u to the

(centralized) cloud. We refer by service placement and request

routing policies to the respective vectors:

x = (xns ∈ {0, 1} : n ∈ N , s ∈ S) (1)

y = (ynu ∈ {0, 1} : n ∈ N ∪ {l}, u ∈ U) (2)

The service placement and request routing policies need to

satisfy several constraints. First, each user request needs to be

routed to exactly one of the nearby BSs, or the cloud:
∑

n∈Nu∪{l}

ynu = 1, ∀u ∈ U (3)

Second, requests cannot be routed to BSs that are not nearby:

ynu = 0, ∀u ∈ U , n /∈ Nu (4)

Third, in order to route the request of user u to BS n, service

su must be placed in BS n:

ynu ≤ xnsu , ∀n ∈ N , u ∈ U (5)

Fourth, the total amount of service data placed in a BS must

not exceed its storage capacity:
∑

s∈S

xnsrs ≤ Rn, ∀n ∈ N (6)

Fifth, the total computation load generated by the user requests

routed to BS n must not exceed its computation capacity:
∑

u∈U

ynucsu ≤ Cn, ∀n ∈ N (7)

Sixth, the total bandwidth load generated by the requests

routed to BS n must not exceed its uplink and downlink

bandwidth capacity:
∑

u∈U

ynub
↑
su

≤ B↑
n, ∀n ∈ N (8)

∑

u∈U

ynub
↓
su

≤ B↓
n, ∀n ∈ N (9)

The goal of the network operator is to find the joint

service placement and request routing policy that maximizes

the number of requests served by the BSs, or, equivalently,

minimizes the load of the cloud:

min
x,y

∑
u∈U ylu (10)

s.t. Constraints: (1) − (9)

We refer by JSPRR to the above problem. This is an integer

optimization problem and such problems are typically chal-

lenging to solve. In the next sections, we discuss the relation to

other known problems and propose approximation algorithms.

III. RELATION TO KNOWN PROBLEMS

The JSPRR problem is NP-Hard since it generalizes the

knapsack problem by comprising multiple packing constraints

(Inequalities (6)-(9)). In this section, we investigate several

special cases of the problem and show how these can be solved

by making connections to some other well-studied placement

and routing problems in literature. All the special cases we

present make the simplifying assumption of homogeneous

service requirements (rs = cs = b↑s = b↓s = 1 for all s ∈ S),

while each special case makes its own extra assumptions.

A. Special case 1: Non-overlapping BS coverage regions

In the first special case, we make the simplifying assumption

(in addition to the homogeneity of service requirements) that

the coverage regions of the BSs do not overlap with each other.

This particularly applies to sparse BS deployments where the

BSs are located far away one from the other. It follows that

the JSPRR problem can be decomposed into N independent

subproblems, one per BS n. The objective of subproblem n is

to maximize the number of requests served by BS n.

It is not difficult to show that there is always an optimal

solution to subproblem n that places in BS n the Rn most

locally popular services, i.e., the services requested by most

users inside the coverage region of BS n. Then, BS n will

admit as many requests for the placed services as its compu-

tation and bandwidth capacities Cn, B↑
n and B↓

n can handle,

i.e., min{Cn, B
↑
n, B

↓
n} requests at most. Indeed, consider a

solution that places in BS n a service s1 requested by fewer

users inside the respective coverage region than another service

s2. Then, one could swap the two services in the placement

solution and route the same number of requests to BS n
without changing the objective function value. Therefore, the

JSPRR problem is trivial to solve in this special case.

B. Special case 2: Non-congestible computation & bandwidth

In the second special case, we allow the coverage regions of

BSs to overlap, but we make the simplifying assumption that

the computation and bandwidth resources are non-congestible,

i.e., they always suffice to route all user requests to BSs. In

other words, we assume that the capacities Cn, B↑
n and B↓

n

are greater than or equal to the demand of users, so that we

can remove Constraints (7)-(9) from the problem formulation

without affecting the optimal solution.

Without the computation and bandwidth constraints, the

problem becomes much simpler. For a given service placement

x, finding the optimal request routing policy y is straightfor-

ward; simply route each user request to a nearby BS having

stored the requested service, if any; otherwise route it to

the cloud. This special case has been extensively studied in

literature under the title ‘data placement’ [13] or ‘caching’

problem [14], [15]. This problem asks to place data items

(services) to caches (BSs) with the objective of maximizing

the total number of requests served by the caches.

While the data placement problem is NP-Hard, several

approximation algorithms are known in literature. The main



method used to derive such approximations is based on show-

ing the submodularity property of the optimization problem.

That is, to show that the marginal value of the objective

function never increases as more data items are placed in

the caches. Having shown the submodularity property, several

‘classic’ algorithms can be applied, with the most known being

greedy, local search, and pipage rounding [15]. Among the

three algorithms, the greedy is the simplest and fastest, and,

hence, the most practical.

C. Special case 3: Unit-sized storage capacities

In the third special case, we allow the coverage regions of

BSs to overlap and the computation and bandwidth resources

to be congestible, but we make the simplifying assumption that

the storage capacities are unit-sized (Rn = 1 for all n ∈ N ).

That is, we assume that only 1 service can be stored per BS.

The simplified JSPRR problem can be reduced to the

‘middlebox placement’ problem [21], [22]. While there exist

many different variants of the middlebox placement problem

in literature, typically, this problem asks to pick m out of p
nodes in a network to deploy middleboxes. The goal is to

maximize the total number of source-destination flows (out of

q flows) that can be routed through network paths containing

at least one middlebox, subject to a constraint k that limits the

number of flows processed by each middlebox.

Although the reduction is not straightforward, the main idea

is to construct the middlebox placement instance by creating:

(i) a distinct node for each pair of a BS and a service (p = NS
nodes in total) and (ii) a distinct flow for each user (q = U
flows in total). We then allow each flow to be routed through

any node whose BS-service pair satisfies that the BS covers

the respective user and the service is the one requested by that

user. The question is which m = N out of the p = NS nodes

to pick to deploy middleboxes subject to the constraint that at

most k = min{Cn, B
↑
n, B

↓
n} flows can be routed through each

node corresponding to BS n and the additional constraint that

only 1 out of the S nodes corresponding to BS n can be picked

(representing the storage constraint Rn = 1). The picked node

will determine which of the S services is placed at BS n.

Recent works have shown that the maximum flow objective

of the middlebox problem is a submodular function [21], [22].

Therefore, this problem can be solved by using the same

approximation algorithms mentioned in special case 2.

D. General case: Non-submodular

Although it would be tempting to conjecture that our JSPRR

problem is submodular in its general form (with overlapping

coverage regions, congestible bandwidth and computation and

large storage capacities), we can construct counter-examples

where this property does not hold. First, we introduce the

definition of submodular functions.

Definition 1. Given a finite set of elements G (ground set), a

function f : 2G → R is submodular if for any sets A ⊆ B ⊆ G
and every element g /∈ B, it holds that:

f(A ∪ {g})− f(A) ≥ f(B ∪ {g})− f(B) (11)

P SUB APX-SUB NP-Hard

General caseUnit-sized storage           

(special case 3)

Non congestible 

computation & bandwidth 

(special case 2)

Non overlapping BS 

coverage regions     

(special case 1)

Fig. 2: Complexity of special cases of JSPRR: Polynomial-

time solvable (P), Submodular (SUB), and Approximately

submodular (APX-SUB) classes. All special cases are under

the assumption of homogeneous service requirements.

Next, we introduce the element ens to denote the place-

ment of service s in BS n. The ground set is given by

{e11, . . . , eNS}. Every possible service placement policy can

be expressed by a subset E ⊆ G of elements, where the

elements included in E correspond to the service placement.

Given a service placement E , we denote by f(E) the maximum

number of user requests that can be satisfied by the BSs.

We will construct a counter-example where the function

f(E) is not submodular. Specifically, we consider a system of

N = 2 BSs and U = 2 users located in the intersection of the

two coverage regions. The users request two different services

denoted by s1 and s2. We set the computation capacities

to C1 = C2 = 1 (i.e., at most one service request can

be satisfied by each BS), while the storage and bandwidth

capacities are abundant. The two placement sets we consider

are A = {e11} and B = {e11, e21}, where A ⊆ B. We note

that f(A) = f(B) = 1 since in both cases only one of the

two services is stored (s1), and hence only one of the two

requests can be served. Besides, f(A ∪ {e12}) = 1 since the

computation constraint prevents BS 1 from serving both user

requests. However, f(B ∪ {e12}) = 2 since now each BS can

serve one user request. Therefore, the marginal performance

is larger for the set B than the A, i.e., f(B∪{e12})−f(B) >
f(A∪{e12})− f(A), which means that f is not submodular.

E. General case: Approximately-submodular

Although JSPRR does not fall into the class of submodular

problems, we can show that it belongs to the wider class of

approximately submodular problems [24]. The complexity of

JSPRR for general and special cases is depicted in Figure 2.

Definition 2. A function f : 2G → R is δ-approximately

submodular if there exists a submodular function F : 2G → R

such that for any E ⊆ G:

(1− δ)F (E) ≤ f(E) ≤ (1 + δ)F (E) (12)

We define by F (E) the maximum number of user requests

that can be satisfied by the BSs given the service placement

set E in the special case that the bandwidth and computation

resources are non-congestible (special case 2). Since there are

fewer constraints in this special case than in the general case, it

holds that f(E) ≤ F (E). Therefore, for any δ ∈ [0, 1], we have



f(E) ≤ (1 + δ)F (E). What remains to find is a δ value that

satisfies the first inequality in (12), i.e., (1− δ)F (E) ≤ f(E).
We note that when computing the value of F (E), the BS n is

allowed to satisfy all the requests for stored services generated

by users in its coverage region. We denote by Φn the number

of these requests. In case that it happens Φn ≤ Cn, Φn ≤
B↑

n and Φn ≤ B↓
n for all n ∈ N , then the computation and

bandwidth resources are non-congestible and we have f(E) =
F (E). In the other case that, for some n ∈ N , it happens

Φn > Cn or Φn > B↑
n or Φn > B↓

n, then the BS n can

process up to Φn/Cn times more requests, compared to f(E).
Similarly, the BS n can receive (deliver) data from (to) up

to Φn/B
↑
n (Φn/B

↓
n) times more users. Therefore, the total

number of satisfied requests is upper bounded by:

F (E) ≤ max
n∈N

{
Φn

Cn

,
Φn

B↑
n

,
Φn

B↓
n

, 1}f(E) (13)

where the value 1 inside the max operator ensures that F (E)
will never be lower than f(E). We thus can ensure that (1−
δ)F (E) ≤ f(E) by picking:

δ = 1−
1

maxn∈N {Φn

Cn
, Φn

B
↑
n

, Φn

B
↓
n

, 1}
(14)

The problem of maximizing a δ-approximately submodular

function has been studied in the past [24]. Based on the results

in [24], we can use a simple greedy algorithm to achieve the

approximation ratio described in the following proposition.

Proposition 1. The Greedy algorithm returns a solution set

E∗ such that:

f(E∗) ≥
1

2

(1− δ

1 + δ

) 1

1 +
∑

n∈N Rnδ

1−δ

max
E

f(E) (15)

Consider for example the case that the demand exceeds the

available resources by up to 50%, i.e., there exists a BS n for

which Φn = 1.5Cn or Φn = 1.5B↑
n or Φn = 1.5B↓

n. Then,

δ = 1/3, and the approximation factor becomes:

f(E∗) ≥
1

4

1

1 +
∑

n∈N Rn

2

max
E

f(E) (16)

The above approximation ratio worsens as the network be-

comes congested (δ increases) and the storage capacities

increase (Rn). To find a tighter approximation, we present in

next section another method based on randomized rounding.

IV. APPROXIMATION ALGORITHM

In this section, we present one of the main contributions

of this work; a novel approximation algorithm for the JSPRR

problem that leverages a randomized rounding technique and is

referred to as Service Placement and Routing via Randomized

Rounding, or SPR3. The SPR3 algorithm is described in detail

below and summarized in Algorithm 1.

The SPR3 algorithm starts by solving the linear relaxation of

the JSPRR problem (Line 1). That is, it relaxes the variables

{xns} and {ynu} to be fractional, rather than integer. The

Algorithm 1: SPR3 algorithm

1 Solve the linear relaxation of JSPRR problem to obtain

(x†,y†) optimal solution.

2 for n ∈ N , s ∈ S do

3 Set x̂ns = 1 with probability x†
ns.

end

4 for u ∈ U do

5 Define N ′
u = (n ∈ Nu : x̂nsu = 1).

6 if N ′
u = ∅ then

7 Set ŷlu = 1 with probability Θu given in (20).

else

8 Set ŷnu = 1, n ∈ N ′
u, with probability

y†
nu

x
†
nsu

,

9 and ŷlu = 1 with probability[
y
†
lu

−
∏

n∈Nu
(1−x†

nsu
)

1−
∏

n∈Nu
(1−x

†
nsu )

]

+

10 Among all n ∈ N ′
u such that ŷnu = 1, pick one

of them uniformly at random.

11 if all n ∈ N ′
u are such that ŷnu = 0 then

12 Pick the cloud value ŷlu.

end

end

end

13 Output x̂, ŷ

Linear Relaxation of JSPRR problem, LR-JSPRR for short,

can be expressed as follows:

min
x,y

∑
u∈U ylu (17)

s.t. Constraints: (3) − (9)

xns ∈ [0, 1], ∀n ∈ N , s ∈ S (18)

ynu ∈ [0, 1], ∀n ∈ N ∪ {l}, u ∈ U (19)

where we have replaced Equations (1)-(2) with (18)-(19).

Since the objective and the constraints of the above problem

are linear, it can be optimally solved in polynomial time using

a linear program solver [25]. We denote by {x†
ns} and {y†nu}

the optimal solution values. The next step is to round these

values to obtain an integer solution, denoted by {x̂ns} and

{ŷnu}. For each pair of node n and service s, the algorithm

rounds variable x̂ns to 1 with probability x†
ns (Lines 2-3). Each

rounding decision is taken independently from each other.

Finally, the algorithm uses the rounded placement variables

{x̂ns} to decide the rounding of the routing variables (Lines 4-

12). For each user u, it defines the set of nearby BSs that have

stored the requested service su by N ′
u (Line 5) and uses this

set to distinguish between two cases: (i) if user u cannot find

service su in any of the nearby BSs, i.e., N ′
u = ∅, then the user

request is routed to the cloud with probability Θu (Lines 6-7)

given by:

Θu =




1, if y†lu ≥

∏
n∈Nu

(1− x†
nsu

)
y
†
lu∏

n∈Nu
(1−x

†
nsu )

, else

(20)



(ii) otherwise, the user is randomly routed to one of the BSs in

N ′
u or the cloud (Lines 8-12). The routing probabilities depend

on the fractional values {x†
ns} and {y†nu}. Higher probability

is given to BSs with larger y†nu values. If more than one of

the y†nu values are rounded to 1, only one of them is picked

uniformly at random. Routing to the cloud is considered only

if none of the BS values is picked. The notation [.]+ in Line 9

denotes the ramp function, i.e., [α]+ = max{a, 0}.

Subsequently, we provide guarantees on the quality of the

solution returned by the SPR3 algorithm. We begin with the

following lemma.

Lemma 1. SPR3 algorithm routes every user request with high

probability as the BS density and service requirements grow.

Proof. For a given user u, there are two cases when rounding

the fractional variable y†nu to ŷnu for a BS (n ∈ N ) or the

cloud (n = l): (i) there is no nearby BS having stored the

requested service (N ′
u = ∅) and (ii) there is at least one such

BS (N ′
u 6= ∅). The probability that the request of user u is

routed to the cloud is given by:

Pr[ŷlu = 1] = Pr
[
ŷlu = 1 | N ′

u = ∅
]
Pr
[
N ′

u = ∅
]

+ Pr
[
ŷlu = 1 | N ′

u 6= ∅
]
Pr
[
N ′

u 6= ∅
]

= Θu

∏

n∈Nu

(1− x†
nsu

)

+

[
y†lu −

∏
n∈Nu

(1− x†
nsu

)

1−
∏

n∈Nu
(1− x†

nsu)

]

+

(1−
∏

n∈Nu

(1− x†
nsu

))

= y†lu (21)

The first equation is by the definition of conditional probabil-

ity. The second equation is by replacing the probability values

in Lines 7 and 9 of the algorithm and due to the fact that

the {x†
ns} variables are rounded independently of one another

(hence, Pr[N ′
u = ∅] =

∏
n∈Nu

(1− x†
nsu

)). To show the third

equation we consider two cases: (i) y†lu ≥
∏

n∈Nu
(1− x†

nsu
)

and (ii) y†lu <
∏

n∈Nu
(1 − x†

nsu
), and replace the values of

Θv and [.]+ accordingly. In both cases, the end result of the

equation will be equal to y†lu.

Similarly, the probability that the request of user u is routed

to BS n is given by:

Pr[ŷnu = 1] = Pr
[
ŷnu = 1 | x̂nsu = 1

]
Pr
[
x̂nsu = 1

]

+ Pr
[
ŷnu = 1 | x̂nsu = 0

]
Pr
[
x̂nsu = 0

]

=
y†nu

x†
nsu

x†
nsu

= y†nu (22)

The first equation is by the definition of conditional probability

and the fact that the rounding decision of ŷnu variable depends

on the x̂nsu value regardless of the N ′
u set. The second

equation is by replacing the probability value in Line 8 of

the algorithm and because Pr[ŷnu = 1 | x̂nsu = 0] = 0.

The sum of probabilities of routing the request of user u to

the cloud or the BSs is given by:
∑

n∈Nu∪{l}

Pr[ŷnu = 1] =
∑

n∈Nu∪{l}

y†nu = 1 (23)

where the first equation holds due to Equations (21) and (22),

and the second due to (3).

The above is an upper bound on the probability of routing

the request of user u except for an additive gap that goes

to zero with BS density. Specifically, the probability that the

request of user u is not routed by SPR3 is given by:

Pr
[ ∑

n∈Nu∪{l}

ŷnu = 0
]
=

= Pr
[ ∑

n∈Nu∪{l}

ŷnu = 0 | N ′
u = ∅

]
Pr
[
N ′

u = ∅
]

+ Pr
[ ∑

n∈Nu∪{l}

ŷnu = 0 | N ′
u 6= ∅

]
Pr
[
N ′

u 6= ∅
]

(24)

Furthermore, the probability that no nearby BS has stored

su (in the rounded solution) can be bounded as:

Pr[N ′
u = ∅] = Pr[

⋂

n∈Nu

{x̂nsu = 0}]

=
∏

n∈Nu

(1− x†
nsu

)

≤ (1−min
Ñu

x†
nsu

)|Ñu| (25)

where Ñu = (n ∈ Nu : x†
nsu

> 0) is the set of nearby BSs

storing su in the fractional solution.

As BS density and service resource requirements increase

then |Ñu| also grows, and by Equation (25) Pr
[
N ′

u = ∅
]
→ 0.

Equation (24) then becomes:

Pr
[ ∑

n∈Nu∪{l}

ŷnu = 0 | N ′
u 6= ∅

]
=

(a)
=

∏

n∈N ′
u

(
1−

y†nu

x†
nsu

)
·

(
1−

[
y†lu −

∏
n∈Nu

(1− x†
nsu

)

1−
∏

n∈Nu
(1− x†

nsu)

]

+

)

(b)

≤
∏

n∈N ′
u

(
1−

y†nu

x†
nsu

)
(26)

where (a) holds because the routing variables are rounded

independently of one another and in the end one of them is

picked (so the probability of not picking any of the variables

is equal to the probability of all of them being rounded to

zero). (b) holds because term [.]+ is a probability value.

As BS density and service requirements increase, the set

N ′
u grows and eventually contains a BS n that is out of range

of all the other users requesting the same service su. In this

case, there is an optimal fractional solution with y†nu/x
†
nsu

= 1
since it would be wasteful for BS n to store a larger portion

x†
nsu

than the routed portion y†nu, while Constraint (5) ensures

that the stored portion is larger or equal to the routed one, so

it should be equal, and the product in (26) goes to 0.



We note that there can be also derived worst case results

to upper bound the probability Pr
[∑

n∈Nu∪{l} ŷnu = 0
]
≤

1/e ≈ 0.3679 in all cases and without the BS density and ser-

vice requirement assumptions of Lemma 1. These worst case

results can be derived by showing that the product function in

(26) is Schur-concave and then applying majorization theory.

By construction, SPR3 routes requests only to BSs that

are nearby and have stored the respective service (N ′
u set in

Line 5) or to the cloud. Therefore, Constraints (4) and (5) are

satisfied. Next, we study whether the remaining constraints in

(6), (7), (8), and (9) are satisfied.

Lemma 2. The solution returned by the SPR3 algorithm sat-

isfies in expectation the storage, computation, and bandwidth

capacity constraints in (6), (7), (8), and (9).

Proof. We begin with the storage capacity constraint. The

expected amount of data placed in BS n is given by:

E[
∑

s∈S

x̂nsrs] =
∑

s∈S

Pr[x̂ns = 1]rs =
∑

s∈S

x†
nsrs = Rn (27)

where the second equation is because the {x̂ns} variables are

binary, with success probabilities the fractional values {x†
ns}.

The last equation is due to Constraint (6) and the fact that it

would be wasteful to not use all the storage space.

Next, we consider the computation capacity constraint. The

expected computation load of BS n is given by:

E[
∑

u∈U

ŷnucsu ] =
∑

u∈U

Pr[ŷnu = 1]csu =
∑

u∈U

y
†
nu

csu ≤ Cn (28)

where the second equation holds due to Equation (22). The

inequality is by Constraint (7). Similar inequalities can be

shown for the uplink/downlink bandwidth constraints:

E[
∑

u∈U

ŷnub
↑
su
] =

∑

u∈U

Pr[ŷnu = 1]b↑
su

=
∑

u∈U

y
†
nu

b
↑
su

≤ B
↑
n

(29)

E[
∑

u∈U

ŷnub
↓
su
] =

∑

u∈U

Pr[ŷnu = 1]b↓
su

=
∑

u∈U

y
†
nu

b
↓
su

≤ B
↓
n

(30)

where we have used Equations (8), (9) and (22).

A similar result holds for the objective function value.

Lemma 3. The objective value returned by the SPR3 algo-

rithm is in expectation equal to that of the optimal fractional

solution.

Proof. The expected number of user requests routed to the

cloud by SPR3 is given by:

E[
∑

u∈U

ŷlu] =
∑

u∈U

Pr[ŷlu = 1] =
∑

u∈U

y†lu (31)

where the second equation holds due to Equation (21).

The above lemmas have shown that the SPR3 algorithm

satisfies in expectation the capacity constraints and achieves

the optimal objective value. However, in practice, the capacity

constraints may be violated. Therefore, it is important to bound

the factor by which this happens.

Theorem 1. The amount of data placed by the SPR3 algorithm

in BS n ∈ N will not exceed its storage capacity by a

factor larger than
3 ln(S)
Rn

+ 4 with high probability under the

assumptions Rn ≥ ln(S) and S > N .

Proof. The proof uses the following Chernoff Bound [26]:

Given I independent variables z1, z2, . . . , zI where for all

zi ∈ [0, 1] and m = E[
∑I

i=1 zi], it holds that Pr[
∑I

i=1 zi ≥

(1 + ǫ)m] ≤ exp
−ǫ2m
2+ǫ .

For a given BS n ∈ N , the products x̂nsrs for all s ∈ S
are independent random variables with expected total value

E[
∑

s∈S x̂nsrs] = Rn (cf. Equation (27)). Moreover, by

appropriately normalizing the rs and Rn values, we can ensure

that the x̂nsrs variables take values within [0, 1]. Therefore,

we can apply the Chernoff Bound theorem [26] to show that

for any ǫ > 0:

Pr[
∑

s∈S

x̂nsrs ≥ (1 + ǫ)Rn] ≤ exp
−ǫ2Rn

2+ǫ (32)

Next, we find an ǫ value for which the probability upper bound

above becomes very small. Specifically, we require that:

exp
−ǫ2Rn

2+ǫ ≤
1

S3
(33)

which means that the probability bound goes quickly (at a

cubic rate) to zero as the number of services increases. In

order for this to be true, the ǫ value must satisfy:

ǫ ≥
3 ln(S)

2Rn

+

√
9 ln2(S)

4R2
n

+
6 ln(S)

Rn

(34)

The above condition holds if we pick:

ǫ =
3 ln(S)

Rn

+ 3 (35)

since, in practice, Rn ≥ ln(S). Finally, we upper bound the

probability that any of the BS storage capacities is violated:

Pr[
⋃

n∈N

∑

s∈S

x̂nsrs ≥ (1 + ǫ)Rn]

≤
∑

n∈N

Pr[
∑

s∈S

x̂nsrs ≥ (1 + ǫ)Rn]

≤ N
1

S3
≤

1

S2
(36)

where the first inequality is due to the Union Bound theorem.

The second inequality is due to Equation (33) and because

the number of BSs is N . The last inequality is because, in

practice, the service library size is larger than the number of

BSs (S > N ). Therefore, with high probability, the storage

capacity of any BS n will not be exceeded by more than a

factor of 1 + ǫ = 3 ln(S)
Rn

+ 4.

Theorem 2. The computation load of BS n ∈ N returned

by the SPR3 algorithm will not exceed its capacity by more

than a factor of
3 ln(S)

λ† + 4 with high probability, where λ†

is the minimum computation load among BSs in the optimal

fractional solution, under the assumptions λ† ≥ ln(S) and

S > N .



Proof. The proof is similar to Theorem 1. For a given BS

n ∈ N , the variables ŷnucsu for all u ∈ U are independent

with expected total value E[
∑

u∈U ŷnucsu ] =
∑

u∈U y†nucsu
(cf. Equation (28)). Moreover, they can be normalized to take

values within [0, 1]. Therefore, we can apply the Chernoff

Bound theorem:

Pr[
∑

u∈U

ŷnucsu ≥ (1+ǫ)
∑

u∈U

y
†
nu

csu ] ≤ exp
−ǫ2

∑
u∈U y

†
nucsu

2+ǫ (37)

Unlike storage, however, the expected computation load may

not be equal to the capacity, i.e.,
∑

u∈U y†nucsu 6= Cn. There-

fore, we cannot replace it in the above inequality. To overcome

this obstacle, we use the fact that
∑

u∈U y†nucsu ≤ Cn (by

Constraint (7)) and λ† ≤
∑

u∈U y†nucsu (by definition of λ†)

to show the following two inequalities:

Pr[
∑

u∈U

ŷnucsu ≥ (1 + ǫ)Cn] ≤ Pr[
∑

u∈U

ŷnucsu ≥ (1 + ǫ)
∑

u∈U

y†
nu

csu ]

(38)

exp
−ǫ2

∑
u∈U y

†
nucsu

2+ǫ ≤ exp
−ǫ2λ†

2+ǫ (39)

By combining Equations (37), (38), and (39), we obtain:

Pr[
∑

u∈U

ŷnucsu ≥ (1 + ǫ)Cn] ≤ exp
−ǫ2λ†

2+ǫ (40)

To complete the proof, we will find an ǫ value for which the

probability upper bound above becomes very small, i.e., at

most 1/S3. Similarly to Theorem 1, we can set ǫ = 3 ln(S)
λ† +3.

Then, we can upper bound the probability that any of the

computation capacities is violated by:

Pr[
⋃

n∈N

∑

u∈U

ŷnucsu ≥ (1 + ǫ)Cn]

≤
∑

n∈N

Pr[
∑

u∈U

ŷnucsu ≥ (1 + ǫ)Cn]

≤ N
1

S3
≤

1

S2
(41)

This means that, with high probability, the computation ca-

pacity of any BS will not be exceeded by more than a factor

of 1 + ǫ = 3 ln(S)
λ† + 4.

Using similar arguments, the following two theorems can

be proved for the uplink and downlink bandwidth capacities.

Theorem 3. The uplink bandwidth load of BS n ∈ N returned

by the SPR3 algorithm will not exceed its capacity by more

than a factor of
3 ln(S)

µ† +4 with high probability, where µ† is

the minimum uplink bandwidth load among BSs in the optimal

fractional solution, under the assumptions µ† ≥ ln(S) and

S > N .

Theorem 4. The downlink bandwidth load of BS n ∈ N
returned by the SPR3 algorithm will not exceed its capacity by

more than a factor of
3 ln(S)

ν† +4 with high probability, where

ν† is the minimum downlink bandwidth load among BSs in the

optimal fractional solution under the assumptions ν† ≥ ln(S)
and S > N .

What remains it to describe the worst case performance of

the (in expectation optimal) SPR3 algorithm.

Theorem 5. The objective value returned by the SPR3 algo-

rithm is at most
2 ln(S)

ξ†
+3 times worse than the optimal with

high probability, where ξ† is the optimal objective value in the

linear relaxed problem under the assumption ξ† ≥ ln(S).

Proof. The proof is similar to the previous theorems, yet the

bound is tighter since we do not need to apply the Union

Bound theorem. We begin by showing that:

Pr[
∑

u∈U

ŷlu ≥ (1 + ǫ)ξ†] ≤ exp
−ǫ2ξ†

2+ǫ (42)

Since ξ† ≤ ξ̂ where ξ̂ is the optimal integer solution value, it

also holds that:

Pr[
∑

u∈U

ŷlu ≥ (1 + ǫ)ξ̂] ≤ exp
−ǫ2ξ†

2+ǫ (43)

Next, we upper bound the right hand side of the above

inequality by 1/S2. In order for this to be true, the ǫ value

must satisfy the following condition:

ǫ ≥
ln(S)

ξ†
+

√
ln2(S)

ξ†2n
+

4 ln(S)

ξ†
(44)

The above condition holds if we pick:

ǫ =
2 ln(S)

ξ†
+ 2 (45)

since, in practice, the number of requests will be more than the

number of services (ξ† ≥ ln(S)). Thus, with high probability,

performance will be at most 1 + ǫ = 2 ln(S)
ξ†

+ 3 times worse

than optimal.

In many practical settings, the above factors are constant,

i.e., the term that depends on the system parameters is small.

For example, consider a system with thousands of users

generating requests for services in a library of size S = 1, 000.

Each BS can process up to a thousand requests (Cn = 1, 000)

and the minimum computation capacity utilization is 40%
(λ† = 400). Then, the computation capacity violation factor

becomes
3 ln(1000)

400 + 4 ≈ 4.05.

The factors in Theorems 1-5 upper bound with probability

that goes to 0 at a quadratic rate the violation of capacity

constraints and the performance gap from optimal. While we

showed that each of the five factors holds individually, we can

also show that the five factors hold jointly, essentially binding

the factors together. This can be achieved by using again the

Union Bound Theorem where the probability that any of the

five factors in Theorems 1-5 does not hold goes to zero at a

quadratic rate 5/S2 which is the sum of the right-hand sides

of Equations (36), (41) and analog equations in Theorems 3-5.

We need to emphasize that our analysis exploits the large

scale of the MEC system (large number of base stations and

services) to derive the high probability bounds of constraint

violation and performance gap caused by the rounding process

of the SPR3 algorithm. Another promising direction is to



repeat the rounding process of SPR3 multiple times and exploit

this redundancy to prove tighter bounds. For example, the

pioneer work in [18] performs multiple rounding tries until

a multi-criteria solution is found, while our previous work in

[19] bounds the probability of constraint violation as a function

of the rounding tries. Such repeated rounding process could

be also added to our SPR3 following similar arguments as in

[18] and [19]. The improved bounds, however, would be at

the cost of increased computation time of the algorithm.

V. EXTENSION AND PRACTICAL CASES

In this section, we discuss how to handle changes in the user

demand. In addition, we describe how to make the solution of

the SPR3 algorithm satisfy the constraints, thereby making the

algorithm more practical.

A. Handling user demand changes

The service placement and request routing decisions are

taken for a certain time period during which the demand is

fixed and predicted. The demand, however, may change over

time, e.g., after a few hours or even at a faster timescale

depending on the scenario. The MEC operator will have to

repeatedly predict the new demand for the next time period

and adapt the service placement and request routing decisions

accordingly. For example, the MEC operator should replace

services that are no longer popular with other services that

recently gained popularity.

The adaptation of the service placement is not without cost.

In fact, replacing previously placed services with new ones

would require the BSs to download non-trivial amounts of data

from the cloud through their backhaul links. This operation

creates overheads which, depending on the timescale, can be

significant and therefore should be avoided.

The SPR3 algorithm can be extended to become aware of

the service placement adaptation costs. To this end, we add a

new constraint into the JSPRR problem. This constraint upper

bounds by a constant D the total amount of data associated

with the replaced services:
∑

n∈N

∑

s∈S

xns(1− xp
ns)rs ≤ D (46)

where xp
ns is the placement solution in the previous time

period. Here, placing a service s at BS n (xns = 1) adds

rs to the adaptation cost if and only if that service was not

placed in the previous time period (xp
ns = 0).

We note that all the presented lemmas and theorems still

hold as they do not depend on the presence of constraint (46).

What remains to analyze is how likely is for the rounded

solution x̂ returned by the algorithm to violate constraint (46).

This is described in the following theorem.

Theorem 6. The total amount of data associated with service

placement adaptation will not exceed the upper bound D by

more than a factor of
2 ln(S)

D
+ 3 with high probability.

Proof. The proof is similar to the previous theorems. The

Chernoff Bound is applied for the sum of random variables

{xns(1−xp
ns)rs}, the expected total value of which is D.

B. Constructing a feasible solution

As the SPR3 algorithm may violate the storage capacities

of the BSs by a factor of 3 ln(S)/Rn + 4, the MEC operator

may not be able to store all the services required to ensure the

performance guarantee of the algorithm. Similarly, the service

placement may violate the limit of allowable adaptations D,

while the request routing may overwhelm the computation and

bandwidth capacities or leave some users unserved. To respond

to such cases, the operator needs to convert the multi-criteria

solution into a feasible solution, i.e., a solution that satisfies

constraints (3), (6)-(9) and (46).

To obtain such a solution, we start with the service place-

ment x̂ outputted by the SPR3 algorithm. Then, we iteratively

perform the removal of a service from a BS that yields the

minimum cloud load increment. When a service is removed

from a BS, the user requests for that service previously routed

to that BS are now re-directed to other nearby BSs with

available bandwidth and computation and the requested service

stored (if any), or otherwise to the cloud. The procedure ends

when constraints (6) and (46) are satisfied. To satisfy the

remaining constraints we perform one more step. That is, we

iteratively re-direct a user request that is unserved or served by

an overloaded BS towards another BS with available resources

(if any) or to the cloud, until all the requests are served

without any overloaded BSs. The re-directions of requests

happen by ranking the users and BSs based on their indices

and examining each user-BS pair one-by-one following that

order, while ensuring that none of the constraints is violated

because of each re-direction.

VI. EVALUATION RESULTS

In this section, we carry out evaluations to show the

performance of the proposed SPR3 algorithm after we convert

its solution into a feasible one (Section V.B). We consider a

similar setup as in the previous work [9], depicted in Figure

3. Here, N = 9 base stations (BSs) are regularly deployed on

a grid network inside a 500m×500m area. U = 1, 000 mobile

users are distributed uniformly at random over the BS coverage

regions (each of 150m radius). Each user requests one latency-

sensitive service drawn from a library of S = 1, 000 services.

The service popularity follows the Zipf distribution with shape

parameter 0.8, which is a common assumption for several

types of services such as video streaming. For each BS n,

we set the storage capacity to Rn = 200 GBs, the compu-

tation capacity to Cn = 20 GHz and the uplink (downlink)

bandwidth capacity to B↑
n = 100 (B↓

n = 250) Mbps. Yet, all

these values are varied during the evaluations.

We set the resource requirements rs, cs, b↑s and b↓s of the

S = 1, 000 services randomly by mapping them to 4 real

latency-sensitive services, namely Video streaming (VS), Face

recognition (FR), Gzip (compression) and Augmented reality

(AR), listed in Table I. Video streaming requires significant

storage (1GB - 10GB) and downlink rate (1Mbps - 25Mbps)

capturing videos of various lengths and playback qualities. The

computation and uplink rate requirements are negligible for



TABLE I: Resource requirements of different types of services.

Service s Uplink b↑s (Mbps) Storage rs (GB) Computation cs (GHz) Downlink b↓s (Mbps)

Video Streaming (VS) - [1,10] - [1,25]
Face Recognition (FR) [1,8] [2,10] [0.375,3] -
Gzip [1,8] 0.02 [0.04,0.32] [0.25,2]
Augmented Reality (AR) [1,8] [2,20] [0.375,3] [0.25,2]
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Fig. 3: Evaluation setup.

this particular service. Face recognition consumes notable up-

link bandwidth for video frame uploading (1Mbps to 8Mbps)

which depends on the resolution of the camera (SD or HD)

and the use case of interest (e.g., security and surveillance

or access control). It also consumes significant computation

(up to 3GHz) and storage (at least 2 GB) for matching to a

database of possibly thousands of frames, but the downlink

rate is negligible. The above values are inline with the real

service specifications in [27]. Gzip generates downlink rate

4 times lower than uplink rate representing a compression

ratio of 4. The computation is set within [0.04,0.32] GHz

assuming 330 cycles per byte (or about 40 cycles per bit)

of the uploaded data [28] while the storage footprint is small

(20MB). Augmented reality is the most resource demanding

service. It requires significant bandwidth for the upload of

video frames and the download of holograms to be augmented

to the frames. The hologram sizes are set to 1/4 of the original

frames and hence the required downlink rate is lower. The

computation is set similar to the FR service while the required

storage can be more than 10 GBs [29].

We compare our algorithm with two baseline methods.

1) Linear-Relaxation (LR): The optimal (fractional) solu-

tion to the linear relaxation of JSPRR problem. This

solution is found by running a linear solver and provides

a lower bound to the optimal integer solution value.

2) Greedy [15]: Iteratively, places a service to a BS cache

that reduces cloud load the most, until all caches are

filled. Each request is routed to the nearest BS with

the service, neglecting computation and bandwidth con-

straints.

On one hand, LR can be used as a benchmark to gauge

the performance gap of our algorithm from optimal. On the

other hand, it is well-known that Greedy achieves near-optimal

performance for the traditional data placement (or caching)

problem, leveraging its submodular property [15]. Therefore,

a natural question to ask is whether the efficiency of Greedy is

maintained or novel algorithms are needed when the placement

of services with multidimensional resource requirements is

considered. We remark that our evaluation code is publicly

available online in [40].

We first explore the impact of storage capacity Rn ∀n on

the load of the centralized cloud. In Figure 4a, Rn spans a

wide range of values, starting from 50GBs to 250GBs. As

expected, increasing storage capacities reduces cloud load for

all the algorithms as more requests can be satisfied locally

(offloaded) by the BSs. The proposed SPR3 algorithm per-

forms significantly better than Greedy with gains up to 29.4%
for Rn = 250GBs. At the same time, the gap from LR, and

hence optimal, is small (no more than 14.2% gap) showing

the efficiency of the proposed algorithm.

Next, we show the impact of computation capacity Cn in

Figure 4b. While the cloud load reduces with Cn for all the

algorithms, SPR3 performs consistently better than Greedy and

very close to LR. Especially when Cn is equal to 10GHz,

the gains from Greedy climb up to 30.1% and the gap from

LR is only 3.6%. Similarly, Figure 4c depicts the cloud load

for different combinations of uplink (B↑
n) and downlink (B↓

n)

bandwidth capacities. While the cloud load reduces with each

of the B↑
n and B↓

n values for all the algorithms, SPR3 achieves

gains between 13.9% and 27.1% over Greedy. The gap from

LR is no more than 8.7% in all combinations.

We take a closer look into the utilization of BS resources

when the SPR3 and Greedy algorithms are used. The four

subplots in Figure 5 show the resource utilization for each

of the four resource types. We observe that both algorithms

utilize most of the available storage and computation resources

(90% or more for most BSs). Interestingly, Greedy utilizes

slightly more of these two types of resources. Yet, SPR3

manages to utilize significantly more bandwidth for almost all

BSs. Specifically, it utilizes 95.7% of BS uplink bandwidth on

average as opposed to 85.7% of the Greedy. The difference is

more pronounced for the downlink bandwidth. Such effective

balancing of load and utilization of bandwidth resources

eventually leads to superior performance.

It is worth exploring which types of service requests are

offloaded to the BSs and which are handled by the centralized

cloud when the SPR3 algorithm is applied. To shed light on

this issue, Figure 6 depicts the distribution of requests across

the four types of services (VS, FR, Gzip and AR) in four

different scenarios. The values of storage, uplink and downlink
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Fig. 5: Resource utilization per type and per BS.

bandwidth capacities are varied in each scenario. Subfigure

(a) shows the results for the default values of Rn = 200GB,

B↑
n = 100Mbps and B↓

n = 300Mbps. While about half of

the requests are offloaded to the BSs, most of them are for

video streaming since this type of service does not require any

computation and uplink bandwidth which are the bottleneck

resources. When we reduce the storage capacities from 200

to 100 GB (subfigure (b)), the volume of offloaded requests

decreases for all the services but Gzip. This is because Gzip

has almost zero storage footprint and therefore is not affected

by alterations in this resource. Similarly, in subfigure (c), the

reduction of the uplink rate from 100 to 25 Mbps reduces

the offloaded requests for all services but the video streaming

since the latter is the only service without any upload data

requirements. We explore how the distribution changes when

the downlink rate reduces from 300 to 100 Mbps in subfigure

(d). This time the service that is affected the most is video

streaming, with its share reducing from 19% to 9%. This was

expected since video streaming has the highest downlink rate

requirements (up to 25Mbps).

The above results revealed that our SPR3 algorithm tends to

offload fewer requests for resource-demanding services (e.g.,
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Fig. 6: Distribution of requests across services for different

resource capacities: (a) default values, (b) reduced storage, (c)

reduced uplink and (d) reduced downlink.

AR), depending on which are the bottleneck resources, so as

to maximize the aggregate of offloaded requests for all the

services. This is desirable when all the services are fairly

sensitive to latency. Yet, in some cases, certain services may be

more latency-sensitive than others and hence it is more critical

to prioritize their offloading. Our algorithm can be easily

extended to handle such cases. Specifically, we can update

the objective function in (10) by multiplying the variable ylu
for each user u requesting the critical service with a weight

value. The larger the value of this weight is, the higher priority

will be given by the algorithm to offload the requests for the

critical service. Consider for example the case in Figure 7

where the weight for the AR service is varied from 1 to 10.

While about 41% of the AR requests are offloaded for weight

equal to 1, this percentage notably increases up to 62% as the

weight increases. At the same time, the aggregate of offloaded

requests decreases in a mediocre way, as some of the requests

for the other services are “sacrificed” to favor the AR service.

Another interesting question is how much the resource

capacities are violated by algorithm before its solution is con-
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verted into a feasible one. Figure 8 shows the maximal (over

all BSs) capacity violation for each type of resource. Here,

three scenarios are investigated differing in the availability of

storage, computation, uplink and downlink resources, namely

low (25GB, 5GHz, 25Mbps, 100Mbps), medium (50GB,

10GHz, 50Mbps, 200MBps), and high (250GB, 50GHz,

100Mbps, 300Mbps). Overall, the capacity violations are

much smaller than the worst case conditions in theorems 1-4

indicate. In the worst case (low scenario), the storage capacity

is violated by about 35%. Yet, the violation factors become

negligible as the capacities increase.

So far, we have assumed that the demands of the various

services can be estimated accurately. In practice, such estima-

tion is unlikely to have perfect accuracy and some estimation

error will exist. For example, estimators that rely on historical

records to predict future demands cannot estimate the demands

for new services that recently entered the market and hence

they do not have any records. We denote the number of these

new services by L and refer to it as the “aging factor” since

these new services represent how “aged” the records of the

estimator are. We then perform additional evaluations where

the actual service popularity follows a different distribution

than the estimated one (Zipf distribution considered so far).

Specifically, we set the actual popularity distribution to be of

size S + L where the L new services are augmented to the

end of the estimated popularity vector. Then, the actual service

requested by a user (su) is randomly set to either the estimated
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TABLE II: Running times for different algorithms.

Algorithm Running time (seconds)
U=500 U=1000 U=1500 U=2000

LR 0.6 2.1 6.8 27.6

SPR3 0.7 2.2 7.0 27.7
Greedy 19.8 23.6 54.0 64.8

service or one of the services in the L subsequent positions

of the new popularity vector. Figure 9 depicts the impact of

the aging factor L on the cloud load returned by SPR3 and

Greedy. As expected, aging affects the performance of both

algorithms. However, SPR3 performs consistently better than

Greedy, which shows the robustness of our method.

We finally highlight the running times of the presented

algorithms, summarized in Table II. These running times are

based on a Matlab implementation run on a MacBook Pro

laptop with 2.3 GHz Intel Core i5 processor. The proposed

SPR3 algorithm requires only slightly more time than LR to

perform the rounding process regardless of the number of users

U . Greedy requires significantly more time to return a solution

and is 2.3 to 28 times slower than the proposed algorithm.

VII. RELATED WORKS

Most of the existing related works considered only some

of the three types of resources (computation, communication,

and storage). These works can be grouped into five categories:

(i) computation and communication, (ii) caching, (iii) caching

and communication, (iv) caching and computation, and (v)

caching, computation, and communication. We describe these

works in the sequel and list them in Table III.

A. Computation & Communication

The most common approach in the literature is to treat

services as virtual network slices that consume two types of re-

sources, computation and communication. In this context, the

works of [4] and [5] proposed methods to decide which service

requests to offload to the edge cloud servers or to execute

locally at the mobile devices aiming to minimize delay and

computation overhead. Another line of research focused on the

problem of placing middleboxes that are able to host services.

The question of placing a minimum number of middleboxes

together with the routing of traffic flows through them subject



TABLE III: RELATED WORKS ON COMPUTATION, COMMUNICATION & CACHING.

Ref. Computing Communication Caching Objective Technique Solution

[4] ✓ ✓ ✗ Min delay Convex optimization Heuristic
[5] ✓ ✓ ✗ Min computation overhead Greedy Heuristic

[21], [22] ✓ ✓ ✗ Min # middleboxes Submodularity log(min(N,B))-approx.
[23] ✓ ✓ ✗ Min # middleboxes Randomized rounding Multi-criteria-approx.
[16] ✓ ✓ ✗ Min traffic cost Markov approximation Heuristic
[17] ✓ ✓ ✗ Min bandwidth Column generation ǫ-optimal
[18] ✓ ✓ ✗ Max profit Randomized rounding Multi-criteria approx.
[20] ✓ ✓ ✗ Min resource cost Linear programming Optimal

[13] ✗ ✗ ✓ Min delay Relaxation & rounding 10-approx.
[14] ✗ ✗ ✓ Min delay Greedy & swapping 1/2-approx.
[15] ✗ ✗ ✓ Min delay Submodularity e/(e− 1)-approx.

[30] ✗ ✓ ✓ Max cache hits Lagrangian relaxation Heuristic
[31] ✗ ✓ ✓ Max cache hits Facility location O(S)-approx.
[32] ✗ ✓ ✓ Min delay Submodularity e/(e− 1)-approx.
[33] ✗ ✓ ✓ Min transmit power Learning & clustering Heuristic
[34] ✗ ✓ ✓ Min brown energy Sequential fixing Heuristic

[35] ✓ ✗ ✓ Max quality Stochastic knapsack Heuristic
[36] ✓ ✗ ✓ Min delay Conditional gradient Heuristic
[37] ✓ ✗ ✓ Max revenue ADMM Heuristic

[10] ✓ ✓ ✓ Max cache hits Submodularity Heuristic
[38] ✓ ✓ ✓ Min cost & delay BSUM Heuristic
[39] ✓ ✓ ✓ Min energy & bandwidth ADMM Heuristic

This work ✓ ✓ ✓ Max cache hits Randomized rounding Multi-criteria-approx.

to computation constraints was formulated as a submodular

optimization problem for which efficient approximation algo-

rithms are known [21], [22]. Another approximation algorithm

for the same problem was provided in [23] using randomized

rounding techniques. The problem of placing virtual machines

(or functions) and routing traffic in a network was studied in

[16] and a Markov approximation was given. An extension of

this work for flows that require to traverse chains of functions

in specific order was provided in [17]. The authors applied

the column generation method to approximate the solution

with the minimum bandwidth cost. This problem can be

also casted as a virtual network embedding (VNE) problem

for which multi-criteria approximation algorithms are known

[18]. Extensions of the VNE approach to handle multicast

routing were recently given in [19]. The fractional analog

of integral routing and function placement was studied in

[20], which led to tractable linear programming formulations.

However, the above works focused on the computation and

communication resources, neglecting that, for many services,

non-trivial amounts of data need to be stored at the servers.

B. Caching

Another related problem is the data placement or caching

problem, which asks to place popular contents into caches

distributed throughout a network, given some predicted dis-

tribution of content demand. Approximation algorithms have

been developed by applying linear relaxation and rounding in

[13], greedy and swapping methods in [14], and submodular

optimization in [15]. However, the caching problem only

considers storage ignoring the other types of resources.

C. Caching & Communication

Recently, the caching problem was extended to account for

the communication between caches and users requesting the

contents, which can be the bottleneck resource. Specifically,

[30] formulated the joint content caching and request routing

problem under link bandwidth constraints so that network

congestion is avoided and the volume of served requests by

caches is maximized. A Langragian relaxation method tailored

to hierarchical cache topologies was presented. The same

problem was studied in [31] for a two-tier caching network

with caches installed in macro-cells and small-cells for which

a facility location inspired approximation was proposed. The

submodularity property was used again in [32] for a similar

network setup where the greedy algorithm was used. For a

2-tier caching network formed by drones and infrastructure

nodes, learning and clustering techniques were applied in

[33]. For cache-nodes that operate using renewable energy,

a sequential-fixing algorithm was proposed in [34].

D. Caching & Computation

Traditionally, caching and computation were treated as

two separate resource allocation problems. Joint caching and

computation frameworks were recently introduced in MEC

networks for satisfying user requests for videos at different

bitrates. Specifically, a lower bitrate variant can be obtained

from a higher bitrate variant via transrating or transcoding, a

process that consumes computation resources. [35] and [36]

optimized the caching of videos and allocation of computation

resources so as to improve video quality and delay. Another

joint caching and computation problem was considered in

[37] for offloading mining tasks and caching cryptographic

hashes of blocks in a blockchain network, for which an



ADMM algorithm was proposed. However, these works did

not consider the bandwidth allocation problem.

E. Caching, Communication & Computation

Only a few works have considered all the three types of

resources. The work in [10] studied joint service placement

and request scheduling in edge cloud systems. However, it

assumed that the coverage regions of the base stations are

non-overlapping and therefore each user can associate with

only one base station. The submodularity property was shown

for the special cases of unit-sized storage capacities and non-

congestible computation capacities. A block successive upper

bound minimization (BSUM) method was proposed in [38] for

allocating triplets of resources. However, no hard bandwidth

constraints were considered for the links. This assumption was

relaxed in [39] which applied the ADMM method. However,

these works did not provide optimal or approximate solutions

for the joint service placement and request routing problem.

VIII. CONCLUSION

In this paper, we studied service placement and request

routing in MEC-enabled multi-cell networks with multidimen-

sional resource requirements. We showed that this problem

generalizes well-known problems in literature that only con-

sider a subset of resources, and is particularly relevant for next-

generation data, computation, and communication intensive

services (e.g., AR). Using a randomized rounding technique,

we proposed an algorithm that achieves provably close-to-

optimal performance, which, to the best of our knowledge, is

the first approximation for this problem. Interesting directions

for future work include studying the coordination between BSs

through backhaul links as well as the generalization of our

model to services with multiple (chained) functions.

REFERENCES

[1] K. Poularakis, J. Llorca, A.M. Tulino, I. Taylor, L. Tassiulas, “Joint
Service Placement and Request Routing in Multi-cell Mobile Edge
Computing Networks”, IEEE Infocom, 2019.

[2] P. Mach, Z. Becvar, “Mobile Edge Computing: A Survey on Architecture
and Computation Offloading’”, IEEE Communications Surveys & Tuto-

rials., vol. 19, no. 3, pp. 1628-1656, 2017.
[3] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, V. Young, “Mobile Edge

Computing - A Key Technology Towards 5G”, ETSI White Paper, 2015.
[4] M. Chen, Y. Hao, “Task Offloading for Mobile Edge Computing in

Software Defined Ultra-Dense Network”, IEEE Journal on Selected Areas

in Communications, vol 36, no. 3, pp. 587-597, 2018.
[5] H. Guo, J. Liu, J. Zhang, W. Sun, N. Kato, “Mobile-Edge Computation

Offloading for Ultra-Dense IoT Networks”, IEEE Internet of Things

Journal, vol. 5, no. 6, pp. 4977-4988, 2018.
[6] P. Jain, J. Manweiler, R. R. Choudhury, “Low Bandwidth Offload for

Mobile AR”, ACM CoNEXT, 2016.
[7] M.S. Elbamby, C. Perfecto, M. Bennis, K. Doppler,“Towards Low-

Latency and Ultra-Reliable Virtual Reality”, IEEE Network, 2018.
[8] X. Ge, S. Tu, G. Mao, C. X. Wang, T. Han, “5G Ultra-Dense Cellular

Networks”, IEEE Wireless Communications, vol. 23, no. 1, 2016.
[9] J. Xu, L. Chen, P. Zhou, “Joint Service Caching and Task Offloading for

Mobile Edge Computing in Dense Networks”, IEEE Infocom, 2018.
[10] T. He, H. Khamfroush, S. Wang, T.L. Porta, S. Stein, “It’s Hard to

Share: Joint Service Placement and Request Scheduling in Edge Clouds
with Sharable and Non-sharable Resources”, IEEE ICDCS, 2018.

[11] M. Chen, Y. Hao, L. Hu, M.S. Hossain, A. Ghoneim, “Edge-CoCaCo:
Toward Joint Optimization of Computation, Caching, and Communication
on Edge Cloud”, IEEE Wireless Comm., vol. 25, no. 3, pp. 21-27, 2018.

[12] A. Srinivasan, “Approximation Algorithms Via Randomized Rounding:
A Survey”, Advanced Topics in Mathematics, PWN, pp. 9-71, 1999.

[13] I. Baev, R. Rajaraman, C. Swamy, “Approximation Algorithms for Data
Placement Problems”, SIAM Journal on Comp., vol. 38, 2008.

[14] S. Borst, V. Gupta, A. Walid, “Distributed Caching Algorithms for
Content Distribution Networks”, IEEE Infocom, 2010.

[15] K. Shanmugam, N. Golrezaei, A. Dimakis, A. Molisch and G. Caire,
“FemtoCaching: Wireless Content Delivery Through Distributed Caching
Helpers”, IEEE Transactions on Information Theory, vol. 59, no. 12, 2013.

[16] J.W. Jiang, T. Lan, S. Ha, M. Chen, Mung Chiang, “Joint VM Placement
and Routing for Data Center Traffic Engineering”, IEEE Infocom, 2012.

[17] N. Huin, B. Jaumard, and F. Giroire, “Optimal Network Service Chain
Provisioning”, IEEE/ACM Trans. Networking, vol. 26, no. 3, 2018.

[18] M. Rost, S. Schmid, “Virtual Network Embedding Approximations:
Leveraging Randomized Rounding”, IEEE/ACM Transactions on Net-

working, vol. 27, no. 5, pp. 2071-2084, 2019.
[19] M. Michael, J. Llorca, A.M. Tulino, “Approximation Algorithms for the

Optimal Distribution of Real-Time Stream-Processing Services”, IEEE

ICC, 2019.
[20] H. Feng, J. Llorca, A.M. Tulino, D. Raz, A.F. Molisch, “Approximation

Algorithms for the NFV Service Distribution Problem”, Infocom, 2017.
[21] T. Lukovszki, M. Rost, S. Schmid, “It’s a Match! Near-Optimal and In-

cremental Middlebox Deployment”, ACM SIGCOMM Comput. Commun.

Rev., vol. 46, no. 1, pp. 30-36, 2016.
[22] T. Lukovszki, M Rost, S Schmid, “Approximate and Incremental Net-

work Function Placement”, Journal of Parallel and Distributed Comput-

ing, vol. 120, pp. 159-169, 2018.
[23] M. Charikar, Y. Naamad, J. Rexford, X.K. Zou, “Multi-Commodity Flow

with In-Network Processing”, ALGOCLOUD, 2018.
[24] T. Horel, Y. Singer, “Maximization of Approximately Submodular

Functions”, NIPS, 2016.
[25] Y.T. Lee, A. Sidford, ”Efficient Inverse Maintenance and Faster Algo-

rithms for Linear Programming”, FOCS, 2015.
[26] M. Mitzenmacher, E. Upfal, “Probability and Computing : Randomized

Algorithms and Probabilistic Analysis”, Cambridge Univ. Press, 2005.
[27] SmartFace, Plug & Play Face Recognition, https://www.innovatrics.com/

face-recognition-solutions
[28] T. Q. Dinh, Q. D. La, T. Q. Quek, H. Shin, “Distributed Learning for

Computation Offloading in Mobile Edge Computing”, IEEE Transactions

on Communications, vol. 66, no. 12, pp. 6353-6367, 2018.
[29] HP Windows Mixed Reality Headset Developer Edition, https://store.hp.

com/us/en/cv/mixed-reality-headset
[30] J. Dai, Z. Hu, B. Li, J. Liu, B. Li, “Collaborative Hierarchical Caching

with Dynamic Request Routing for Massive Content Distribution”, in
Proc. of IEEE Infocom, 2012.

[31] K. Poularakis, G. Iosifidis, and L. Tassiulas, “Approximation Algorithms
for Mobile Data Caching in Small Cell Networks”, IEEE Trans. Comm.,

vol. 62, no. 10, pp. 3665-3677, 2014.
[32] M. Dehghan, B. Jiang, A. Seetharam, T. He, T. Salonidis, J. Kurose, D.

Towsley, R. Sitaraman, “On the Complexity of Optimal Request Routing
and Content Caching in Heterogeneous Cache Networks”, IEEE/ACM

Tran. Netw., vol. 25, no. 3, pp. 1635-1648, 2017.
[33] M. Chen, M. Mozaffari, W. Saad, C. Yin, M. Debbah, and C. S. Hong,

“Caching in the Sky: Proactive Deployment of Cache-enabled Unmanned
Aerial Vehicles for Optimized Quality-of-Experience”, IEEE J. Sel. Areas

Commun., vol. 35, no. 5, pp. 1046–1061, 2017.
[34] A. Khreishah, H. B.-Salameh, I. Khalil, A. Gharaibeh, “Renewable

energy-aware joint caching and routing for green communication net-
works”, IEEE Syst. J., vol. 12, no. 1, pp. 768–777, Mar. 2018.

[35] H. A. Pedersen, S. Dey,“Enhancing Mobile Video Capacity and Quality
Using Rate Adaptation, RAN Caching and Processing,” IEEE/ACM Trans.

on Networking, vol. 24, no. 2, pp. 996-1010, 2016.
[36] T.X. Tran, D. Pompili, “Adaptive Bitrate Video Caching and Processing

in Mobile-Edge Computing Networks”, IEEE Trans. Mobile Comp., 2018.
[37] M. Liu, F.R. Yu, Y. Teng, V.C.M. Leung, M. Song, “Computation

Offloading and Content Caching in Wireless Blockchain Networks with
Mobile Edge Comp.”, IEEE Trans. on Vehicular Tech., 2018.

[38] A. Ndikumana, N. H. Tran, T.M. Ho, Z. Han, W. Saad, D. Niyato, C.S.
Hong, “Joint Communication, Computation, Caching, and Control in Big
Data Multi-access Edge Computing”, IEEE Trans. Mobile Comp., 2019.

[39] Q. Chen, F.R. Yu, T. Huang, R. Xie, J. Liu, Y. Liu, “Joint Resource
Allocation for Software-Defined Networking, Caching, and Computing”,
IEEE Transactions on Networking, vol. 26, no. 1, pp. 274-287, 2018.

[40] https://www.dropbox.com/s/gutw8milc4ttl00/main.m?dl=0



Konstantinos Poularakis obtained the Diploma,
and the M.S. and Ph.D. degrees in Electrical En-
gineering from the University of Thessaly, Greece,
in 2011, 2013 and 2016 respectively. In 2014, he
was a Research Intern with Technicolor Research,
Paris. Currently, he is a Research Scientist at Yale
University. His research interests lie in the area of
network optimization with emphasis on emerging
architectures such as software defined networks and
mobile edge computing and caching networks. He
was the recipient of several awards and scholarships

during his studies, from sources including the Greek State Scholarships
foundation (2011), the Center for Research and Technology Hellas (2012),
the Alexander S. Onassis Public Benefit Foundation (2013) and the Bodossaki
Foundation (2016). He also received the Best Paper Award at the IEEE
Infocom 2017 and IEEE ICC 2019.

Jaime Llorca (S ’03 – M ’09) received the B.Sc.
degree in Electrical Engineering from Universidad
Politecnica de Catalunya, Barcelona, Spain, in 2001,
and the M.S. and Ph.D. degrees in Electrical and
Computer Engineering from University of Maryland,
College Park, MD, in 2003 and 2008, respectively.
He held a post-doctoral position with the Center for
Networking of Infrastructure Sensors, College Park,
MD, from 2008 to 2010, and a Senior Research
Scientist position with Bell Labs, New Jersey, from
2010 to 2019. He is currently a Research Professor

with the Electrical and Computer Engineering Department, New York Uni-
versity Tandon School of Engineering, Brooklyn, NY. His research interests
are in the field of network algorithms, network optimization, distributed
control, and network information theory, with applications to next generation
communication networks, distributed cloud networking, and content distribu-
tion. He currently serves as an Associate Editor for the IEEE Transactions
on Networking. He is a recipient of the 2007 Best Paper Award at the
IEEE International Conference on Sensors, Sensor Networks and Information
Processing, the 2016 Best Paper Award at the IEEE International Conference
on Communications, and the 2015 Jimmy H.C. Lin Award for Innovation.

Antonia M. Tulino (F’13) received the Ph.D. degree
in electrical engineering from Seconda Universita
degli Studi di Napoli, Italy, in 1999. She held
research positions with the Center for Wireless Com-
munications, Princeton University, Oulu, Finland,
and also with the Universita degli Studi del Sannio,
Benevento, Italy. From 2002 to 2016, she has been
an Associate Professor with the Universita’ degli
Studi di Napoli Federico II, where she is, now,
Full Professor since 2017. Since 2009, she has been
collaborating with Nokia Bell Labs. Starting from

October 2019, she is, also, Research Professor at the at Dep. of Electrical and
Computer Engineering NYU Tandon School of Engineering, NY, 11201, USA.
Her research interests lay in the area of communication systems approached
with the complementary tools provided by signal processing, information
theory, and random matrix theory. From 2011 to 2013, she has been a member
of the Editorial Board of the IEEE Transactions on Information Theory and
in 2013, she was elevated to IEEE Fellow. From 2019, she is the chair of
the Information Theory society Fellows Committee. She has received several
paper awards and among the others the 2009 Stephen O. Rice Prize in the
Field of Communications Theory for the best paper published in the IEEE
Transactions on Communications in 2008. She was a recipient of the UC3M-
Santander Chair of Excellence from 2018 to 2019. She has been a principal
investigator of several research projects sponsored by the European Union and
the Italian National Council, and was selected by the National Academy of
Engineering for the Frontiers of Engineering program in 2013.

Ian Taylor is a Professor at the University of
Notre Dame and a Reader at Cardiff University.
He has a degree in Computing Science, a Ph.D.
studying neural networks applied to musical pitch
and he designed/implemented the data acquisition
system and Triana workflow system for the GEO600
gravitational wave project. He now specializes in
Blockchain, open data access, Web dashboards/APIs
and workflows. Ian has published over 180 papers
(h-index 43), 3 books and has won the Naval Re-
search Lab best paper award in 2010, 2011 and

2015. Ian acts as general chair for the WORKS Workflow workshop yearly
at Supercomputing.

Leandros Tassiulas (S’89, M’91, SM/05 F/07) is
the John C. Malone Professor of Electrical Engi-
neering at Yale University. His research interests
are in the field of computer and communication
networks with emphasis on fundamental mathemat-
ical models and algorithms of complex networks,
architectures and protocols of wireless systems,
sensor networks, novel internet architectures and
experimental platforms for network research. His
most notable contributions include the max-weight
scheduling algorithm and the back-pressure network

control policy, opportunistic scheduling in wireless, the maximum lifetime
approach for wireless network energy management, and the consideration
of joint access control and antenna transmission management in multiple
antenna wireless systems. Dr. Tassiulas is a Fellow of IEEE (2007). His
research has been recognized by several awards including the IEEE Koji
Kobayashi computer and communications award, the inaugural INFOCOM
2007 Achievement Award for fundamental contributions to resource allocation
in communication networks, the INFOCOM 1994 and 2017 best paper awards,
a National Science Foundation (NSF) Research Initiation Award (1992), an
NSF CAREER Award (1995), an Office of Naval Research Young Investigator
Award (1997) and a Bodossaki Foundation award (1999). He holds a Ph.D. in
Electrical Engineering from the University of Maryland, College Park (1991).
He has held faculty positions at Polytechnic University, New York, University
of Maryland, College Park, and University of Thessaly, Greece.


