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ABSTRACT  

Cu-In metallic hybrid is a promising non-noble catalyst for selective electrochemical 

CO2 reduction (eCO2R) to CO, but the lack of direct assembly with gas diffusion 

electrode (GDE) limits the further development of eCO2R to CO with both high 

Faradaic efficiency (FE) and high current density. In this study, an in-situ 

electrochemical spontaneous precipitation (ESP) method was applied for the first time 

to prepare GDE-combined Cu-In electrocatalysts. The optimum Cu-In catalyst consists 

of an nano-scale “core-shell” structure of polycrystalline CuxO covered by amorphous 

In(OH)3 interface. Higher than 90% Faradaic efficiency of CO production has been 

achieved. With the synergy of a GDE flow-cell and 1 M KOH catholyte, a current 

density of ~200 mA cm-2 was reached at -1.17 V (RHE), which enabled a CO yield 

efficiency record of 3.05 mg min-1 (CO2/15 ml min-1 with 2 cm2 electrode). The ratios 

between CO and H2 produced can be effectively modulated via fine-tuning ESP 

conditions demonstrating possibility of generating CO or syngas with tuneable ratios. 

The present study provides a simple approach for constructing novel catalytic interfaces 

with dual active centers for eCO2R and other emerging electrochemical catalysis 

research.  
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1. INTRODUCTION 

Electrochemical CO2 reduction (eCO2R) has attracted significant interests in CO2 

utilisation field in recent years, which is well-known to be a sustainable and cost-

effective route among the CO2 conversion pathways1. Only water and renewable 

electricity would be consumed as the inputs to convert CO2 into value-added 

carbonaceous products on the cathodic side, meanwhile with pure O2 evolution 

at the anodic side as the by-product. However, in aqueous electrolyte, CO2 mass 

transfer is constrained by the low CO2-solubility, and the competitive hydrogen 

evolution reaction (HER) consumes electrons simultaneously and reduces the 

current efficiency of eCO2R. To achieve a high reaction rate of eCO2R as well as 

an exclusive selectivity towards one particular carbonaceous product is the 

common goal of this research filed2-4.  

CO is a promising product from eCO2R as its industrial value for the production 

of fuels and chemicals5-6. The electrocatalysts for CO2 reduction to CO are 

mostly reported to be bulk or nanostructured noble metals or their oxides such as 

Au7-8, Ag9-10, Pd11-12 species. Some metal-free carbon materials were also 

presented to perform high CO selectivity from eCO2R, such as carbon 

nanotubes13-14 and graphene quantum dots15 with doping nitrogen to modify the 

active sites. Those catalytic materials all bring their own cost and sustainable 

issues. Aiming at the practical use, the combination of multiple non-noble metals 

in the form of homogeneous alloy or heterogeneous composite should be a cost-

effective approach for the design of catalytic materials. Rasul et al.16-17 showed 

that by alloying two non-noble metals Cu and In for catalysing eCO2R in CO2-

saturated aqueous electrolyte, a Faradaic efficiency (FE) of 90% for CO 
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production was achieved. However, the reaction rate is low with a current density 

lower than 10 mA cm-2 at moderate potentials (about -1 V vs RHE). 

Our previous work18-19 demonstrated the slow reaction rate was caused by the 

limitation of CO2 mass transfer in a traditional two-chambers reactor with CO2-

saturated catholyte, and the low current density to a large extent was resulted 

from using dilute carbonate/bicarbonate catholyte. A combination between gas 

diffusion electrode (GDE) and strong alkaline catholyte can achieve a high 

current density of the reduction reaction, due to the developed CO2 mass transfer 

of GDE and faster ion mobility of strong alkali 
18, 20. Herein, for the first time, we 

propose the GDE-combined Cu-In catalyst in-situ synthesized by a facile 

electrochemical spontaneous precipitation (ESP) method, to achieve high-

performance eCO2R to CO. 

2. RESULTS AND DISCUSSION 

2.1. Characterizations of Cu-In catalyst 

The GDE-combined Cu-In catalyst was fabricated by ESP of In on Cu2O coated gas 

diffusion layer (GDL), which is a Cu-rich combination with ultrathin In(OH)3 layer on 

the surface, as suggested by the catalyst characterization in Figure 1. The XRD result 

(Figure 1a) of CuIn-ESP25min with the highest CO selectivity, which demonstrates the 

phase composition of the bulk electrode only shows Cu-related signals without a sign 

of indium. Compared to the precursor Cu2O-GDL contained majorly Cu2O and a small 

amount of CuO, polycrystalline Cu mainly constitutes the crystal structure of bulk 

CuIn-ESP25min, which indicates a reduction of Cu oxides during the ESP process. 

Even though indium species is undetectable by XRD, the XPS spectra in Figure 1b 
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proves the existence of In on the surface, since the prominent photoelectronic peaks in 

In 3d spectrum are symmetrical at 445.1 eV and 452.5 eV assigned as In 3d5/2 and In 

3d3/2 of In(OH)3
21-22. This hydroxide feature is also manifested in the XPS O1s 

spectrum, presented as M-OH peak which could be differentiated at ~532.5 eV22-23. The 

Cu2P spectrum also indicates the reduction of Cu species during ESP: the CuO peak 

area of CuIn-ESP25min at 933.9 eV in the Cu2p3/2 region reduced compared to Cu2O-

GDL, so that Cu2O or Cu (932.3 eV)24-26 constituted the major Cu species on the surface 

of CuIn-ESP25min.  

 

Figure 1. (a) XRD profiles and (b) High-resolution XPS spectrum of Cu 2p, O 

1s, and In 3d of Cu2O-GDL (top), CuIn-ESP25min (bottom). (c) SEM, (d) 

HAADF STEM image and element mapping, (e) TEM, (f) HRTEM, and (g) 

SAED of CuIn-ESP25min. 

 

The morphology and microstructures of as-prepared Cu-In binary catalyst are 

systematically studied through electron microscopies analysis. As shown in 

Figure 1 c-g, the SEM image in Figure 1c shows the morphology of CuIn-

ESP25min that irregular protrusions with about 0.5 - 2 µm dimension attaching 
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on the reticular Nafion framework. The high-angle annular dark-field (HAADF) 

STEM image (Figure 1d) displays a typical protrusion in micro-scale with 

assembled microparticles bonded by Nafion. As shown in the STEM-EDX 

elemental mapping graphs, F mostly distributes in-between the micro-particles 

and Cu is the dominating composition which mostly distributed in the centre of 

microparticles while In covers more evenly on the whole particle. The TEM 

image in Figure 1e indicates the microparticle is an aggregate of nanoparticles 

with an average diameter of 50 nm. Atomic-scale high-resolution TEM 

(HRTEM) analysis (Figure 1f) presents typical diffraction contract images which 

demonstrate both crystalline and amorphous characteristics of the nanoparticles 

27. The bottom right region shows various crystal fringes with distances of 0.128, 

0.151, 0.213, 0.247 nm represents Cu (220), Cu2O (220), Cu2O (200), and Cu2O 

(111) respectively based on the ICDD database with PDF file No. 03-065-9743 

and 01-078-2076. The featureless area shaped like a shell with 3~10 nm thickness 

tightly capping on the polycrystalline Cu phase, corresponds to the amorphous 

In(OH)3 layer. The SAED images in Figure 1g show both amorphous and 

crystalline characteristics and the crystalline phase consists of polycrystalline Cu, 

and Cu2O mixture (denoted as CuxO) agree with the lattice fringes in the HRTEM 

image28-29. The microscopy analysis indicates the amorphous/crystalline hybrid 

structure of CuIn-ESP25min: the nanolayer of amorphous In(OH)3 capping on 

the polycrystalline CuxO.  

2.2. The ESP method used for preparing Cu-In catalyst 

This material was synthesised by a facile ESP method with 25 minutes. As presented 

in Figure 2a, the synthesis process starts from injecting the acidified In3+ solution (0.05 
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M In2(SO4)3 and 0.4 M citric acid, pH = 2.5) into a container until immersing the two 

electrodes, a Cu2O-binded GDL and a pure In foil, which are externally connected by 

a 2 Ω cable. One-hour ESP experimental phenomenon is also shown. The open-circuit 

voltage (OCV) between these two electrodes is initially 0.68 V as presented in Figure 

2b. The current variation recorded within one-hour ESP is shown in Figure 2c; the 

charge over ESP time calculated by integrating the current-time curve is presented in 

Figure 2d.  

 

Figure 2. (a) Experiment set-up schematic and process observation for 1 h ESP. (b) 

Open circuit voltage (OCV) between fresh In foil and Cu2O-GDL immersed in 0.4 M 

citric acid mixed 0.05 M In2(SO4)3 solution (pH = 2.5), measured for an hour. (c) 

Current recording during ESP process. (d) The calculated charge density over ESP time.  

As indicated in the XRD result in Figure 1a, the Cu2O-GDL, which got reduced during 

the ESP process, should be the cathode, so that the In foil should be generating electrons 

as the anode. Equation (1) – (3) give the anodic and cathodic reactions, and the 

corresponding half-cell reduction potentials E0, which were calculated as displayed in 

Table S1.  

Anode reaction 𝐼𝑛 →  𝐼𝑛3+ + 3𝑒− (1) 
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E0 = -0.233 V vs. SHE, ΔGr
⦵ = -67.27 kJ mol-1 

Cathode reaction 2𝐶𝑢𝑂 +  2𝑒− + 2𝐻+ → 𝐶𝑢2𝑂 + 𝐻2𝑂 (2) 

E0 = +0.668 V vs. SHE, ΔGr
⦵ = -128.83 kJ mol-1 

𝐶𝑢2𝑂 + 2𝑒
− + 2𝐻+  → 2𝐶𝑢 + 𝐻2𝑂 (3) 

E0 = +0.463 V vs. SHE, ΔGr
⦵ = -89.30 kJ mol-1  

In precipitation 𝐼𝑛3+ + 3𝑂𝐻−
𝑝𝐻≥3.4
→     𝐼𝑛(𝑂𝐻)3 ↓  

(4) 

The thermodynamic cell potential of (-)In|CuO(+) and (-)In|Cu2O(+) under reaction 

conditions in this work is respectively 0.901 and 0.696 V, confirming the measured 

initial OCV value of 0.68 V to be reasonable. The small amount of CuO in the Cu2O-

GDL should be reduced to Cu2O firstly as less-negative potential needed in contrast 

with Cu2O reduction to Cu. Indium precipitation takes place locally, where pH growth 

over 3.430 by proton consumption caused by Cu oxides reduction, as shown in Equation 

(4). It is challenging to real-time monitor the local pH variation, however, the growth 

of bulk pH from 2.5 to 2.8 after 2-hour ESP proved the rise of pH. 

As shown in Figure 2a, the colorless solution around the catalyst surface zone turns into 

light blue, which could be non-electrochemical Cu etching, as demonstrated in Equation 

(5) and (6).  

Cu etching                   𝐶𝑢𝑂 + 2𝐻+ → 2𝐶𝑢2+ +𝐻2𝑂 (5) 

𝐶𝑢2𝑂 + 2𝐻
+  → 𝐶𝑢2+ +  𝐶𝑢 ↓ +𝐻2𝑂 (6) 

The white In(OH)3 layer can be also precipitated on the Cu etching sites where the 

growth of local pH occurs. This has been verified by another experiment denoted as 

spontaneous precipitation (SP), which was run at the same condition with ESP but in 

open circuit without a cable connection as shown in Figure S1. Long-time (2h) SP 

treatment on Cu2O-GDL thoroughly etches Cu oxides particles, only In(OH)3 remains 
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on CuIn-SP2h without the existence of Cu species, as indicated by Figure S3 and S5b. 

This is different from ESP, as CuIn-ESP2h is also a Cu-rich combination with even less 

In(OH)3 on the surface than CuIn-ESP25min, demonstrated in Figure S4c. 

Thus, during the ESP process, there should be two different sites for In(OH)3 

precipitation, which commonly increase the local pH - the etching site and reduction 

site of Cu oxides. Figure 3 illustrates the ESP mechanism. Similar with the SP process 

at the beginning, the outer layer of Cu oxides is etched by the acidic In3+ solution, 

allowing the initial precipitation of In(OH)3. The electroreduction reaction of the 

bottomed Cu oxides is carried out simultaneously, which is another site of In(OH)3 

precipitation. Cu species still existes with long-time (2h) ESP since the bottomed Cu 

oxides have been reduced to metallic Cu, which is stable in the acidic solution at the 

reduction potential. The In coverage unlikely follows up an increasing trend over the 

ESP time, as measured by XPS survey spectra (Figure S6). The average surface In/Cu 

atomic ratio of CuIn-ESP15min, CuIn-ESP25min, and CuIn-ESP2h is 0.12, 0.44, and 

0.03, respectively, illustrated in Figure 3. It is worth mentioning that this In/Cu ratio 

should be varied by the depth of XPS detection, the depth here is about 10 nm. In/Cu 

ratio is increased over the first 25 minutes but decreased afterwards. This is possibly 

due to the shrunken particles of Cu species during the reduction process, indicated by 

the SEM image of CuIn-ESP2h in Figure S4b, which are gradually freed from the bond 

of Nafion binder and collaterally take away the precipitated In species. With more 

exposed subsurface Cu metal, which unlikely to be the indium precipitation site, the 

surface In/Cu ratio declines. Linked to the ESP current recording (Figure 2c), the first 

15 min with an increasing current should be an accelerating electrochemical process 

with the reduction of CuO/Cu2O and Cu2O/Cu, allowing an increasing amount of 

In(OH)3 precipitation. However, the non-conductive In(OH)3 layer enhances the 
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resistance of the cathode which may cause the declined ESP current in the next 20 min. 

After 35 min ESP, the current bottoms out and maintaining around 7.2 mA, which is 

probably the endpoint of  ESP. 

 

Figure 3. The surface In/Cu atomic ratios and schematic illustration of the electrode 

surface over ESP time from 0 to 2 hours. Within 5 min: the bottomed CuO and Cu2O 

were firstly reduced, with the outmost Cu oxides etching simultaneously. The initial 

In(OH)3 precipitation site was where the Cu oxides etched. From 5~25 min: with 

reduction of CuO and Cu2O ongoing, protons consumed causing local pH increasing, 

resulting in In(OH)3 precipitation. The surface mass ratio of In/Cu increased during this 

period as more In(OH)3 precipitated. After 25min: particle size of CuO/Cu2O shrank 

after a reduction so that outer Cu particles were gradually freed of the bond of Nafion 

and collaterally took away the precipitated In(OH)3. With the exposure of the nether Cu 

without precipitated indium, the surface In/Cu ratio decreased.  

2.3. eCO2R performance using CuIn-ESPs 

CuIn-ESP prepared by different precipitation time 5min, 15min, 25min, 35min, 

and 2h were evaluated by eCO2R at a wide range of applied potentials (-0.17 ~ -

1.17 V vs RHE). The precursor Cu2O-GDL was also examined denoted as CuIn-

ESP0min. A GDE reactor was applied with using 1 M KOH as the catholyte. As 

previously studied18, the combination of GDE reactor and alkaline catholyte 
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facilitates CO2 mass transfer and the overall reaction kinetics. Results of the 

normalised Faradaic efficiencies (FE) and current density (j) are displayed in 

Figure 4.  

 

Figure 4. eCO2R performances of Cu2O-GDL (ESP 0min) and CuIn-ESP catalysts with 

different precipitation time at (a) -0.17 V, (b) -0.37 V, (c) -0.57 V, (d) -0.77 V, (e) -

0.97 V, (f) -1.17 V (vs. RHE). 

At any potential in Figure 4, CuIn-ESP with any precipitation time shows 

developed CO FE (>50 %) compared to the Cu2O (ESP 0 min). With the 

increasing ESP time, CO FE enhances and reaches the maximum value of around 

90% with CuIn-ESP25min before decreasing to around 50% with CuIn-ESP2h. 

On the contrary, FEs of H2 and formate decrease with the increasing ESP time, 

reaching their minimal values with CuIn-ESP25min. The difference of product 

distribution between CuIn-ESP35min and CuIn-ESP2h is small, probably 

implying the ESP process has been terminated a little while after 35 min, this 

encounters the preceding assumption. When applying more negative potential, 

the current density (j) and C2 selectivity increase. The production of C2 implies 

the remained catalytic activity of Cu species since Cu is known to be the only 
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metal centre that can form deep reduction products (i.e., C≥1 hydrocarbons and 

alcohols)31-32. Although the CO FE decreases with more negative potential, the 

FE sum of CO and C2 does not change much over the potential: ~93% was 

maintained in the tested potential range using CuIn-ESP25min. This probably 

because of the critical intermediate CO*: the CO* dimerization is the rate-

determine step of C2 production33-37 promoted by high overpotential while the 

CO* desorption is crucial for CO production which is a potential-independent 

step7.  

Confirmed by the eCO2R performance of CuIn-SP2h in Figure S7, In(OH)3 alone 

is active for formic acid production from eCO2R, whereas CuxO alone (Cu2O-

GDL) is more selective for hydrocarbons under the reaction condition in this 

study. The contact point of Cu and In species is known for favouring CO 

formation with suppressed HER17, 38-39. This Cu-In interaction was reported to be 

the Cu-In alloy by Rasul et al.17, since after introducing indium as a second metal 

center to Cu, the binding energy of H* was remarkably weakened while CO 

adsorption energy was substantially unchanged. However, Larrazábal et al.38 

stated the Cu-In alloy was not the main active species for CO evolution since 

during eCO2R process the Cu-In composite was evolved with a transition from 

homogeneous alloy to heterogeneous bimetal, along with the development of CO 

selectivity. They also found In(OH)3 played a crucial role in favouring the 

production of CO over Cu−In binary electrocatalysts, which were stably 

unchanged after eCO2R. The results from this study confirm their observation 

and add more insights that the hybrid structure of amorphous In(OH)3 nanolayer 

capping on polycrystalline CuxO facilitates the Cu-In interaction of CO 

formation from eCO2R.  

https://scholar.google.co.uk/citations?user=u3R1zkAAAAAJ&hl=zh-CN&oi=sra
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From the comparison between CuIn-ESP15min, CuIn-ESP25min, and CuIn-

ESP35min, the indium coverage (surface In/Cu ratio) and the phase of copper 

(either Cu2O or Cu) that interacted with In(OH)3 are assumed to play key roles 

in CO selectivity. 0.44 atomic ratio of surface In/Cu (Figure S6b) is considered 

to be the optimum, which is approximately the maximum achieved during ESP 

process in this study. Even it is difficult to show either In(OH)3/Cu2O or 

In(OH)3/Cu is the active site, a higher possibility comes to In(OH)3/Cu2O since 

oxide-derived metal catalyst applied in eCO2R has been known for reducing the 

energy barrier of CO2 activation through strengthening the chemisorption energy 

of CO2
-(ads) on reaction sites2. Especially for oxide-derived Cu, the subsurface 

oxygen from the crystal lattice of Cu oxides can enhance the adsorption and rise 

the coverage of CO*40-41. Also, this oxide-derived feature can be maintained 

during eCO2R by the “protection” of OH groups from alkaline electrolyte 
18, 42. 

2.4. Production of CO and tuneable Syngas 

Table S2 presents the production rates of all the gas and liquid products from 

eCO2R catalysed by Cu2O-GDL and CuIn-ESPs with different precipitation time, 

which shows high production rate is enabled by high FE and current density. 

CuIn-ESP25min with the highest CO selectivity presents high CO yield and CO2 

conversion rate, which are steadily enhancing with the overpotential as displayed 

in Figure 5a, showing controllable CO production by the energy input. With the 

highest energy input of -1.17 V, CO2 conversion and CO yield reach the 

maximum value at 18.2% and 3.05 mg min-1 respectively, with CO2 supplying at 

15 ml min-1 on 2 cm2 working electrode  (WE). The potential-dependent CO yield 

of this work is compared with some related studies11, 16, 38, 43-46 in Figure 5b, this 
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work shows improvement than the noble Ag-GDE. Interestingly, Syngas could 

be also produced by CuIn-ESP. Adapting the ESP time or applying different ESP 

charge density in a more general condition, the CO/H2 producing ratio is 

tuneable, as shown in Figure 5c. The CO/H2 mole ratio was ranging from 1.49 to 

14.77 when using CuIn-ESP catalysts with different ESP time from 5 min to 2 h. 

The stability test of CuIn-ESP25min was carried out at -0.77 V, as shown in 

Figure S8, the CO FE maintained around 90% for more than 5 hours before 

suffering the common “flooding” problem in most GDE-based studies47.  

 

Figure 5. a) CO yield and CO2 conversion of eCO2R catalysed by CuIn-

ESP25min at a wide range of applied potentials. b) A comparison of CO yield 

from eCO2R between this work and other published related studies in recent 

years. c) Syngas production at -1.17 V from eCO2R catalysed by Cu2O, CuIn-

ESP5min, CuIn-ESP15min, CuIn-ESP25min, CuIn-ESP35min and CuIn-ESP2h. 

 
3. CONCLUSIONS 

A facile ESP method was developed to directly synthesize binary Cu-In catalyst 

on GDE. It shows a hybrid structure that amorphous In(OH)3 nanolayer (3 ~10 
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nm thickness) tightly capping on the polycrystalline CuxO. The proper Cu-In 

interaction of this heterostructure enabled ~90% FE of CO production from 

eCO2R. In/Cu atom ratio around 0.44 is assumed to play a crucial role in the 

development of CO selectivity. With the synergy of GDE reactor and 1 M KOH 

catholyte, both high current density ~ 200 mA cm-1 at -1.17 V and high CO FE 

~ 90% were achieved by using CuIn-ESP25min. This enabled CO2 conversion 

rate and CO yield of 18.2 % and 3.05 mg min-1 respectively when CO2 supplied 

at 15 ml min-1 on 2 cm2 electrodes. This record CO production from eCO2R 

showed improvement than literatures using noble metals as the catalyst. Syngas 

could also be produced with tuneable CO/H2 ratio by applying different ESP time 

when preparing Cu-In catalyst. The potential of scaling up from this bench-scale 

reaction has also prospected. The present study provides a simple method to 

construct a catalytic interface with dual active centres, which may bring new 

insights to the development of novel catalysts in energy conversion and storage 

fields. Further improvement of this system could be focusing on developing GDE 

stability, such as using the membrane electrode assembly (MEA)48. 

 

4. EXPERIMENTAL SECTION 

4.1. Preparation of Cu-In catalyst on GDE 

The Cu-In catalyst coated GDE was prepared by precipitation of indium species 

on a Cu2O- GDL. The Cu2O-GDL was fabricated by painting commercial Cu2O 

particles (EPRUI Nanoparticles & Microsphere Co.Ltd) onto the surface of a 

tailored commercial GDL (H2315 I2 C6, Freudenberg). In particular, 15 mg 
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Cu2O was dispersed in 200 µL isopropanol (> 99.8%, VWR chemicals) and 66 

µL 5 wt% Nafion suspension (Sigma-Aldrich) to prepare the catalyst ink. The 

ink was sonicated for 20 min before layer-by-layer hand-painting onto the 2 cm2 

surface of GDL. Drying process (40 - 50 °C, 1 - 3 min) was applied between each 

layer. Painting and drying were repeated until the desired catalyst loading of 4~5 

mg cm-2 was achieved.  

To deposit indium species on the Cu2O-GDL, a pure indium foil (25 mm × 12.5 

mm, 99.999%, ADVENT Research Materials Ltd.) and the Cu2O-GDL and were 

placed face to face with a 1 cm distance in a 20 ml container. An external cable 

(2 Ω) was connected between Cu2O-GDL and In foil to facilitate the redox 

reaction. The electrochemical spontaneous precipitation (ESP) started from 

injecting the acidified In3+ solution (0.05 M In2(SO4)3 and 0.4 M citric acid, pH 

= 2.5) into the container until immersing the two electrodes. The precipitation 

duration was controlled by discharging the In3+ solution. The OCV was 

individually monitored by the potentiostat (Metrohm Autolab PGSTAT128N). 

In another current-monitoring experiment, an amperemeter (1.4 Ω internal 

resistance) was collected between the In foil and Cu2O-GDL to record the current 

variation over the ESP time. For comparison, a non-electrochemical spontaneous 

precipitation (SP) was carried out without connecting the external cable between 

In foil and Cu2O-GDL, as illustrated in Figure S1. All the prepared CuIn-GDEs 

were rinsed by plenty of DI water and dried at 80 °C in an oven (Oven-30S, 

SciQuip) for 8 hours. 

4.2. Catalysts characterisation 
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X-ray diffraction (XRD) spectrum to evaluate the crystal structure of the catalyst 

were obtained by a Philips X-ray diffractometer PW 1730 diffractometer 

equipped with a Cu X-ray tube (Cu–Kα; λ = 0.154 nm) operated at 40 kV and 40 

mA. To determine the elemental compositions and valence states of the electrode 

surface (~10 nm depth), X-ray photoelectron spectroscopy (XPS) was performed 

on a Kratos Axis Nova XPS spectrometer using a K-Alpha line X-Ray source 

(225 W) over an area of approximately 300 × 700 microns. Scanning electron 

microscopy (SEM, Hitachi SU-70) coupled with an energy dispersive X-ray 

detector (EDX, Bruker Quantax 400) were applied to initially analyze the catalyst 

morphology. The microstructures were further analyzed by TEM, HRTEM and 

SAED on a JEOL3000F at 300 kV. HAADF-STEM and XEDS elemental 

mapping was performed on a JEOL JEOL3000F with Be double-tilt analytical 

holder. SAED analysis was performed on JEOL-3000F at 300 kV and the camera 

length was 255.8 mm. All specimens were prepared by dispersing samples into 

ethanol and then drop-casted onto holy carbon supported Au grids. 

4.3. Catalyst evaluation by eCO2R 

A GDE reactor shown in Figure S2a fabricated by 3D printer (Form 2, Formlabs) 

using the photoreactive resin (Form 2 Clear Resin, Formlabs) was used to 

perform the mass transfer developed eCO2R, as illustrated in our previous 

study19. The anode was Platinum plated Titanium mesh with a dimension of 4 

cm2. Ag/AgCl (RE-5B, BASI, 3 M NaCl, 0.197 V vs. SHE) was used as the 

reference electrode, and a luggin capillary was applied to prevent it from being 

damaged in alkaline electrolyte as illustrated in Figure S2b. The applied 

potentials (vs. Ag/AgCl) in the three-electrode system were all converted to the 

bohou
Highlight



 18 

reversible hydrogen electrode (RHE) according to Equation (7). The potentials 

stated in this study are referred to RHE unless otherwise stated. 

                E (vs. RHE) = E (vs. Ag/AgCl) + 0.197 V + 0.0591 × pH                 (7) 

All the electrochemical reactions and measurements were carried out at ambient 

temperature and pressure using a potentiostat (Metrohm Autolab 

PGSTAT128N). The flow rate of CO2 (BOC 99.99%) was controlled at 15 ml 

min-1 by a flow meter (Cole-Parmer TMR1-010462). 1M KOH (Emsure®, 85%) 

solution and 5 M KOH solution was employed as the catholyte and anolyte 

respectively, separated by a cation exchange membrane (CEM) (F-950, 

Fumapem, 50 µm thickness). The anolyte had a higher K+ concentration than the 

catholyte for guaranteeing sufficient cation mobility. A peristaltic pump 

(120U/DM2, Watson Marlow) was used to supply fresh catholyte to maintain the 

local pH and to remove liquid product for reaction equilibrium. The flow rate 

was controlled at 0.25 ml min-1 under the applied potential -0.17 ~ -0.77 V and 

at 0.5 ml min-1 under the applied potential -0.77 ~ -1.17 V. eCO2R was carried 

out by chronoamperometry (CA) recording the current at a particular applied 

potential for 30 minutes ranging from -0.17 to -1.17 V. The current density (j) 

was calculated based on the geometric surface area 2 cm2 of the working 

electrode. 

4.4. Product analysis of eCO2R 

A gas chromatography (Shimazu Tracera GC-2010) equipped with Barrier 

Discharge Ionization (BID) detector was used to analyze gas products and 

alcoholic liquid products. The ShinCarbon ST micropacked column 80/100 
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(Restek) was used to quantitatively analyze permanent gases and light 

hydrocarbons, while the Zebron ZB-WAXplus capillary column (Phenomenex) 

was used for alcoholic liquids. An ion chromatography (Eco IC, Metrohm) 

equipped with the “METROHM 6.1005.200” column was used for quantifying 

volatile fatty acids (VFA) including formic acid. A customized standard mixed 

gas (BOC) with the components of H2 (1.000%), CO (1.000%), CH4 (0.500%), 

CO2 (96.000%), C2H4 (0.500%), C2H6 (0.500%), and C3H6 (0.500%) were used 

to quantify the gas products by area normalization method. Liquid products were 

quantified by the external standard method with creating working curves. 

4.5. Calculation of Faradaic efficiencies 

The absolute FE for each product was calculated based on Faraday’s law (8) 2, 

where z is the number of electrons transferred for per mole of reactant (e.g., z = 

2 for reduction of CO2 to CO), n is mass of the product from the electrode in 

moles, F is Faraday's constant (96485 C mol-1), Q represents the total charge 

passed. 

                                                         𝐹𝐸 =  
𝑧 𝑛 𝐹

𝑄
                                                             (8) 

Liquid products were accumulated continuously and collected for 30 min 

reaction time, the absolute FEs of liquid products represented average values. 

Differently, the gas products were collected during a short period of time at the 

very last minutes of 30 min reaction, the absolute FEs of gas products represented 

instantaneous values. The bulk catalyst (mostly Cu oxides about 10 mg on each 

GDE) would be reduced at the first few minutes of eCO2R when current density 

reached few tens of mA cm-2, thus electrons should be overall used for eCO2R 
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and HER afterwards. To present an average product distribution of 30 min 

reaction and achieve a more comparable dataset, the FE sum was normalized to 

100% with fixing the liquid FEs and proportionally adjusting the gas FEs. 
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Figure S1. Experiment set-up schematic and process observation for 1 h SP. 

 

 

 

 

Figure S2. (a) 3D drawing of the GDE reactor set-up used in this study, reprinted from Ref. 1 

with permission from the Journal of CO2 Utilization Owner Societies. (b) Schematic of the 

Ag/AgCl reference electrode with a plastic Lugin capillary. 

a 
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Figure S3. (a) XRD profiles and (b) High-resolution XPS spectrum of Cu 2p, O 1s, and In 3d 

of Cu2O-GDL (top), CuIn-SP25min (2nd from top), CuIn-SP2h (3rd from top), CuIn-ESP25min 

(2nd from bottom), CuIn-ESP2h (bottom).  

In Figure S3a, the XRD pattern of Cu2O confirms Cu2O is the major phase with 

a small amount of CuO and Cu. Its Cu2p3/2 spectra in XPS analysis (top of Figure 

S3b) also shows the presence of CuO (933.9 eV) and Cu2O or Cu (932.3 eV)2-4. 

The O1s spectra can be de-convoluted into two distinct peaks at 529.5 eV and 

531.2 eV, attributed to the lattice oxygen from copper oxides and organic oxygen 

from Nafion binder respectively5-7.  

SP is a Cu vanishing process with substitutional In(OH)3 precipitation, since all 

the Cu-related peaks attenuated in CuIn-SP25min and disappeared in CuIn-SP2h 

as presented in Figure S3a. No indium signals can be found on the XRD patterns 

of either CuIn-SP25min or CuIn-SP2h, however, the XPS spectrum (2nd and 3rd 

from the top in Figure 3b certificate the existence of indium species on the 

electrode surface. The prominent photoelectronic peaks in In 3d spectra are 

symmetrical, at 445.1 eV and 452.5 eV assigned as In 3d5/2 and In 3d3/2 of 

In(OH)3
8,9. From the XPS O1s spectrum, the M-OH peak can be differentiated at 

~532.5 eV in either CuIn-SP25min or CuIn-SP2h, attributed to the formation of 

In(OH)3
9,10. The absence of lattice oxygen in the O 1s region as well as the 
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disappearing Cu2p signal of CuIn-SP2h indicate the vanish of Cu species during 

SP process, in accordance with the XRD results. 

ESP is a Cu reduction process with overlapping In(OH)3 precipitation. XRD 

pattern of CuIn-ESP25min in Figure S3a (2nd from the bottom) rises three strong 

peaks of metallic Cu with the greatly declined Cu2O peaks. Those metallic Cu 

peaks get intensified with the absence of Cu oxides in the spectrum of CuIn-

ESP2h. This indicates the reduction of Cu oxides during ESP process, and CuIn-

ESP with longer precipitation time get higher reduction degree. Indium species 

is still difficult to be found by XRD, probably implying its amorphous 

characteristics or an ultrathin surface layer. The XPS results of CuIn-ESP in 

Figure S3b (1st and 2nd from the bottom) further indicate the reduction of Cu 

oxides during ESP process. Compared to the Cu2P spectrum of “Cu2O”, the CuO 

peak of CuIn-ESP25min at 933.9 eV in the Cu2p3/2 region reduced and Cu2O or 

Cu (932.3 eV) constituted the major Cu species on the electrode surface. With 

the ESP prolonged to 2h, the Cu species on the electrode surface might be mostly 

metallic Cu with the largest Cu2O or Cu peak at 932.3 eV. Even though no In-

related signal was found on the XRD, the existence of indium can be observed 

from the XPS In3d spectra in the form of In(OH)3, same to those of CuIn-SP. 

The O1s spectra also indicates the reduction of Cu oxides and formation of 

In(OH)3 during ESP process, since the lattice O peak (529.5 eV) which linked to 

the crystallized Cu oxides no longer exists in CuIn-ESP2h and the existence of 

M-OH peak (532.5 eV) which linked to the In(OH)3 in both CuIn-ESP25min and 

CuIn-ESP2h.  
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Figure S4. SEM images of (a) Cu2O-GDL. SEM images, elemental mapping, and quantitative 

EDX analysis of (b) CuIn-ESP25min and (c) CuIn-ESP2h. 
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As shown in Figure S4a, the SEM image of fresh Cu2O presents uniformly 

distributed polygon particles with the size ranging from 100 to 1000 nm. The 

surface of CuIn-ESP25min (Figure S4b) presents disordered reticular structure 

with attaching irregular protrusions in micro-scale. The EDX elemental mapping 

indicates Cu distributes almost the whole selected area but the distribution areas 

of In and F are mostly non-overlapping, implying the indium precipitation was 

majorly taken place on Cu species rather than on Nafion. The EDX result of map 

spectrum and point scan indicating different kinetics of In precipitation on 

different sites. The morphology of CuIn-ESP2h in Figure S4c also shows the 

reticular framework. Different from CuIn-ESP25min, the particles surrounding 

the framework show more regular crystal structure which are mostly thin triangle 

prisms (~0.5 mm edge length). The Elemental mapping and EDX results of CuIn-

ESP2h indicate those crystalline particles are mostly Cu which embedded in the 

Nafion framework, with very small amount of In.  
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Figure S5. SEM images, elemental mapping, and quantitative EDX analysis of (a) CuIn-

SP25min and (b) CuIn-SP2h. 

As shown in Figure S5a, the CuIn-SP25min shows obvious brown-white 

boundary, which in microscale corresponds to the junction of crystalline particles 

bohou
Highlight



S-8 
 

and cloudy reticular structure. The shape of crystalline particles in the brown 

region is uniformly triangular thin prism with the edge length around 0.5 µm 

while the reticular material in the white region presents disordered structure. 

Elemental mapping and EDX were applied to analyse the junction region which 

confirm the existence of Cu and In and further indicate the triangular prisms are 

Cu species while In species are mostly distributed on the reticular structure. On 

the CuIn-SP2h, the crystalline triangular particles completely vanish but the 

reticular disordered material existed as displayed in Figure S5b. The EDX result 

also proves the disappearing of Cu species that F and In are the main elements 

on the surface of CuIn-SP2h, linked to the Nafion binder and indium precipitation 

layer respectively. The elemental mapping indicates Nafion constitutes the 

framework of the reticular material while the indium species primarily occupies 

the pores. The generation of the pores on Nafion framework should be most 

probably resulted from the disappearing Cu particles where the indium 

precipitation took place.  
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(a) CuIn-ESP15min 

 

Average In/Cu atom ratio = 0.12 

 

  

(b) CuIn-ESP25min 

 

Average In/Cu atom ratio = 0.44 

  

  

In/Cu = 0.11 

In/Cu = 0.14 
In/Cu = 0.10 

In/Cu = 0.48 

In/Cu = 0.35 
In/Cu = 0.50 
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(c) CuIn-ESP2h 

 

Average In/Cu atom ratio = 0.03 

  

  

Figure S6. Multi-point Quantification analysis on XPS survey spectrum of (a) CuIn-ESP15min, 

(b) CuIn-ESP25min, and (c) CuIn-ESP2h. 

  

In/Cu = 0.03 

In/Cu = 0.05 
In/Cu = 0.02 
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Table S1. Calculations on half-cell reduction potentials (in reduction form) involved in ESP 

process at standard state. Gibbs–Helmholtz equation, Nernst equation were used based on the 

database from Outokumpu HSC Chemistry 6.0 software. 

Half-cell Reactions ΔHr⦵ 

(KJ) 

ΔSr⦵ (J K-1) ΔGr⦵  (KJ) E0 (V vs. 

SHE) 

𝐼𝑛3+ + 3𝑒− → 𝐼𝑛 104.60 125.2 67.265 -0.233 

2𝐶𝑢𝑂 +  2𝑒− + 2𝐻+ → 𝐶𝑢2𝑂 +  𝐻2𝑂 -144.83 -53.66 -128.83 0.668 

𝐶𝑢2𝑂 + 2𝑒− + 2𝐻+  → 2𝐶𝑢 + 𝐻2𝑂 -115.23 -86.98 -89.297 0.463 

∆𝐺𝑟
⦵ = ∆𝐻𝑟

⦵ − 𝑇∆𝑆𝑟
⦵ 

𝐸0 =  −
∆𝐺𝑟

⦵

𝑧𝐹
 

ΔHr⦵: change in enthalpy at standard state 

ΔSr⦵: change in entropy at standard state 
ΔGr⦵: change in the Gibbs free energy at standard state 
E0: standard half-cell reduction potential 
z: the number of electrons transferred in the half-cell 
reaction 
F: Faradaic constant, 96485 C mol-1. 
T: temperature, here is 298.15 K 
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Figure S7. Normalized FE of all the products and current density (j) of eCO2Rs at -0.77 V (vs. 

RHE) catalysed by blank GDL, Cu2O-GDL, and CuIn-SP with different precipitation time.  

The SP treatment on Cu2O weakened the capability of C2 production, only 3.5% 

C2 could be produced by CuIn-SP25min and no C2 produced by CuIn-SP2h. This 

is in accordance with the vanishing Cu observed by XRD and XPS, as Cu is 

found to be the only metal centre that can form deep reduction products (i.e., C≥1 

hydrocarbons and alcohols)11,12. As the SP time prolonged, CO FE increased to 

35.5% by CuIn-SP25min but dropped to 17.6% by CuIn-SP2h. The slight growth 

of CO production by applying short-time SP implies the evolved interaction 

between Cu and In, since the Cu-In combination forms the active sites for CO 

production with suppressed HER13,14. However, the formate FE presents a slow-

growth trend over the precipitation time, which is an indication of the increasing 

indium content on the surface as indium is known for the preferential formate 

production from eCO2R, either in the form of In metal8 or In(OH)3
15. The CuIn-

SP2h which contains mainly In(OH)3 without Cu species shows highest formate 

FE of 25.7%. The current density decreased over the SP time, probably owing to 
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the declined electrode surface area and conductivity during the complete etching 

of Cu. 

 

 

Table S2. The practical production amounts of all the gas and liquid products of eCO2R 

catalyzed by Cu2O, CuIn-ESP5min, CuIn-ESP15min, CuIn-ESP25min, CuIn-ESP35min and 

CuIn-ESP2h. 

 Cathode 

potential 

(V vs RHE) 

Current  

density 

(mA/cm2) 

Percentages of gas products in tail 

gas 

Yields of liquid 

products (mg/min) 

H2 % CO % C2H4 % CO2 % Formate Ethanol 

C
u

2O
 

-0.17 -5.43 0.19 0.13 0.00 99.68 0.0366  0.000  

-0.37 -20.20 0.70 0.47 0.00 98.84 0.1525  0.000  

-0.57 -48.60 1.91 1.24 0.04 96.80 0.3387  0.005  

-0.77 -96.1 3.58 2.01 0.22 94.19 0.5853  0.015  

-0.97 -139 5.75 2.95 0.36 90.95 0.7446  0.023  

-1.17 -208 11.06 4.58 0.77 83.58 0.8558  0.040  

C
u

In
-E

SP
5

m
in

 

-0.17 -5.25 0.10 0.24 0.00 99.66 0.0190  0.000  

-0.37 -27.56 0.65 1.77 0.00 97.58 0.0937  0.000  

-0.57 -56.72 1.26 3.12 0.05 95.58 0.2782  0.009  

-0.77 -96.63 1.86 3.36 0.21 94.56 0.4781  0.019  

-0.97 -140.28 3.14 6.36 0.47 90.03 0.7035  0.029  

-1.17 -213.75 5.12 7.62 0.89 86.36 0.9102  0.051  

C
u

In
-E

SP
1

5
m

in
 

-0.17 -5.92 0.15 0.37 0.00 99.48 0.0221  0.000  

-0.37 -29.23 0.61 1.78 0.00 97.62 0.0922  0.000  

-0.57 -59.40 1.04 3.22 0.02 95.73 0.2338  0.001  

-0.77 -94 1.53 5.10 0.04 93.33 0.3528  0.004  

-0.97 -135.99 2.56 8.25 0.15 89.04 0.5125  0.010  

-1.17 -214.12 5.13 12.50 0.43 81.94 0.7436  0.028  

C
u

In
-E

SP
2

5
m

in
 -0.17 -4.25 0.02 0.35 0.00 99.64 0.0024 0.000 

-0.37 -24.68 0.10 2.06 0.00 97.85 0.0197 0.000 

-0.57 -58.40 0.27 4.92 0.00 94.81 0.0512 0.000 

-0.77 -92.00 0.43 7.73 0.02 91.82 0.0750 0.007 

-0.97 -134.84 0.53 11.54 0.07 87.86 0.1026 0.013 
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-1.17 -193.45 1.14 16.85 0.30 81.70 0.1218 0.049 

C
u

In
-E

SP
3

5
m

in
 

-0.17 -4.40 0.14 0.29 0.00 99.58 0.0132  0.000  

-0.37 -23.48 0.41 1.61 0.00 97.98 0.0665  0.000  

-0.57 -55.23 0.85 3.23 0.00 95.92 0.1655  0.000  

-0.77 -99.175 2.00 6.63 0.02 91.35 0.2848  0.009  

-0.97 -145.7 2.76 8.62 0.10 88.52 0.4427  0.018  

-1.17 -200.125 4.41 12.60 0.27 82.73 0.5946  0.033  

C
u

In
-E

SP
2

h
 

-0.17 -4.74 0.07 0.30 0.00 99.63 0.0178  0.000  

-0.37 -22.98 0.50 1.43 0.00 98.06 0.0980  0.000  

-0.57 -53.71 1.20 3.16 0.00 95.64 0.2171  0.000  

-0.77 -89.6 2.72 5.27 0.02 91.99 0.3949  0.003  

-0.97 -130.205 3.68 7.00 0.06 89.26 0.5303  0.006  

-1.17 -208.39 5.59 10.61 0.23 83.57 0.7960  0.033  

 

 

 

 

 

 

Figure S8. Stability test of CuIn-ESP25min catalysed eCO2R at -0.77 V (vs. RHE) 
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