
royalsocietypublishing.org/journal/rsos
Research
Cite this article: Platts JA. 2020 Quantum
chemical molecular dynamics and metadynamics

simulation of aluminium binding to amyloid-β

and related peptides. R. Soc. open sci. 7: 191562.
http://dx.doi.org/10.1098/rsos.191562

Received: 6 September 2019

Accepted: 10 December 2019

Subject Category:
Chemistry

Subject Areas:
computational chemistry

Keywords:
molecular dynamics, aluminium, peptide,

semi-empirical

Author for correspondence:
James A. Platts

e-mail: platts@cardiff.ac.uk
© 2020 The Authors. Published by the Royal Society under the terms of the Creative
Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits
unrestricted use, provided the original author and source are credited.
This article has been edited by the Royal Society

of Chemistry, including the commissioning, peer

review process and editorial aspects up to the

point of acceptance.

Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.c.

4824045.
Quantum chemical molecular
dynamics and metadynamics
simulation of aluminium
binding to amyloid-β
and related peptides
James A. Platts

School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK

JAP, 0000-0002-1008-6595

We report semi-empirical tight-binding simulations of the
interaction between Al(III) and biologically relevant peptides.
The GFN2-XTB method is shown to accurately reproduce
previously reported and density functional theory (DFT)-
calculated geometries of model systems. Molecular dynamics
simulations based on this method are able to sample peptide
flexibility over timescales of up to nanoseconds, but these
timescales are insufficient to explore potential changes in
metal–peptide binding modes. To achieve this, metadynamics
simulations using root mean square deviation as a collective
variable were employed. With suitably chosen biasing
potentials, these are able to efficiently explore diverse
coordination modes, for instance, through Glu and/or Asp
residues in a model peptide. Using these methods, we find
that Al(III) binding to the N-terminal sequence of amyloid-β
is highly fluxional, with all acidic sidechains and several
backbone oxygens participating in coordination. We also
show that such simulations could provide a means to predict
a priori possible binding modes as a precursor to longer,
atomistic simulations.
1. Introduction
Alzheimer’s disease (AD) is one of the greatest healthcare
challenges facing society. It is characterized by neuronal damage,
associated with the formation of insoluble plaques and fibrils
made up of amyloid-β (Aβ) peptides in the affected areas of the
brain [1]. While aggregation of Aβ peptides is a key aspect of this
process, the importance of metal ions in this process is
increasingly recognized [2,3]. The primary focus of most research
here has been on naturally occurring metals, notably Cu(II) [4–7],
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Zn(II) [8–11] and Fe(II) [12,13], but studies over several decades have also implicated Al(III) in AD onset

[14–17]. Aluminium is not one of the essential elements of human biology, but technological
applications mean that human exposure to it has increased in the last century [18]. Exley and co-
workers have shown that Al(III) has the ability to bind to Aβ and affect its conformational behaviour
[14], promote aggregation [16] and help in the formation of reactive oxygen species [19]. Other studies
report that Al(III) can be found in senile plaques from AD patients’ brains [20] and that it forms smaller
oligomers than naturally occurring metals [21].

Computer simulation has proved a valuable complement to experiment in exploring metal–Aβ
interactions [22], but applications to Al(III) binding are scarce. A series of studies from Mujika et al.
used density functional theory (DFT) to examine the pro-oxidant activity of Al [19], its binding to
biomolecules [23] including metal-transport proteins [24,25] and neurotransmitters [26]. Most relevant
for this work, the same group showed that Al(III) has a clear preference for anionic sidechains of
peptides over backbone carbonyl or water [27], and that coordination numbers of 5 or 6 are preferred
over lower values [28]. The latter study also sets out a template-based method for location of likely
binding modes of Aβ, identifying Glu3, Asp7 and Glu11 as the preferred sites of interaction. Recently,
our group used atomistic molecular dynamics (MD) to explore how Al(III) binding to Aβ in the
identified coordination mode affects peptide structure and dynamics, finding that this ion promotes
the formation of helical structures and disrupts the salt-bridge network [29]. However, even over
the course several microseconds of MD trajectory, we found little or no evidence of disruption of the
coordination sphere from that used at the outset, despite the use of a non-bonded model of ion
binding that should, in principle, allow this to change. It was not clear from this study whether this
behaviour is truly representative of Al-Aβ binding, or whether it stemmed from the chosen force-field
model and/or simulation protocol.

In this work, we take a different approach and use semi-empirical tight-binding methods [30] to
model Al(III) binding to Aβ and some related model peptides. We aim to ascertain whether such
methods might represent a useful ‘halfway-house’ between DFT and atomistic modelling in modelling
flexible peptides and their interactions with metal ions. Key to this is the fully self-consistent nature of
the method, in which electronic structure of the metal–peptide complex is calculated at every step of a
simulation, and thus able to respond to changes in environment and hence alter coordination modes.
Alongside this, their speed means that dynamical simulation over relevant timescales becomes
feasible, especially when coupled with metadynamics to move trajectories out of potential energy
wells that could otherwise trap simulations, as demonstrated recently by Grimme [31]. In order to
keep the calculations tractable, the full Aβ peptide was truncated to the N-terminal 1–16 residues that
constitute the metal-binding region.

We have several reasons for choosing Al(III) for study: firstly, it may have direct biological relevance
to AD and other disorders, as outlined above. Secondly, it is less studied than many other metal ions, so
any new information on potential binding modes should be of interest to researchers in the field of
metal–Aβ interactions. Thirdly, incorporation of di- and tri-valent ions into atomistic molecular
mechanics simulations is not always straightforward, with limited transferability between different
force fields, mixing rules and simulation conditions. One recent study proposed [32] different non-
bonded parameters for prediction of hydration free energy or ion–oxygen distances of divalent
cations, or a compromise between these. Others show that standard parameters for Ca(II) yield
significant errors in some environments [33]. These issues are assigned to lack of charge transfer,
polarization and potential covalent effects in standard non-bonded models. By comparing results
obtained previously with such models with those from a self-consistent quantum mechanical
approach, we aim to shed new light on suitable simulation protocols for such problems.
2. Computational methods
All tight-binding calculations were carried out using the GFN2-XTB method [34], running on a 28-core
workstation equipped with Intel i9 processors and 32 Gb RAM. Geometry optimization used defaults for
convergence, and for smaller systems confirmed as true minima by numerical harmonic frequency
calculation. MD simulations were performed in the NVT ensemble at 310 K, using a Berendsen
thermostat [35], with selected bonds restrained at their optimized lengths by means of the SHAKE
algorithm [36]. Timesteps varied from 1 to 4 fs, depending on restrained bonds, the latter being
facilitated by use of fictitious hydrogen mass of 4 amu. Metadynamics simulations used the same set-
up, typically with 4 fs timestep, moving the simulation into new areas of phase space by the addition



Table 1. Comparison of DFT with GFN2-XTB optimized geometry of Al-A and Al-AADAA (Å).

A AADAA

DFT GFN2-XTB DFT GFN2-XTB

Al–OAsp 1.827 1.817 1.800 1.757

Al–OH2O
a 1.910 (0.025) 1.875 (0.025) 1.921 (0.019) 1.886 (0.008)

AlOH…O 1.497 1.606 1.627, 1.795 1.734, 1.737

RMSDb 0.115 2.495
aReported as mean (s.d.).
bRoot mean square deviation between DFT and GFN2-XTB structures.
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of a biasing potential based on root mean square deviation (RMSD) as the collective variable, as
described by Grimme [31]. DFT calculations employed the Gaussian09 package, using the B3LYP-
D3(BJ) [37–39] functional and def2-TZVP basis set [40]. Analysis of trajectories used the VMD [41]
and cpptraj [42] packages. All amino acids were constructed in appropriate protonation states for
physiological pH, i.e. negative for Asp and Glu, positive for Arg and Lys and neutral for His. In
principle, this could change over the course of simulations, but in practice, use of SHAKE restraints
mean that this will not occur, and protonation states remain fixed throughout.
3. Results
It is important to assess the suitability of the GFN2-XTB method for the description of Al-peptide binding.
To do so,we adopt twomodel systemspreviously used byMujika et al. [27], namelyAsp-Al(H2O)5 andAla-
Ala-Asp(Al(H2O)5-Ala-Ala, denotedAl-A andAl-AADAA, respectively. Bothwere fullyoptimized atDFT
and GFN2-XTB level, within implicit aqueous solvent. In both cases, the coordination bond to Asp is well
described by the semi-empirical method, at 0.01–0.03 Å shorter than DFT. Bonds to water show slightly
greater deviation, but are still within 0.05 Å of the DFT benchmark. Both complexes exhibit hydrogen
bonding: Al-A contains a single H-bond between water and non-coordinated carboxylate oxygen,
predicted to be within 0.1 Å of DFT by GFN2-XTB. Al-AADAA forms two hydrogen bonds between
water and backbone carbonyl, which are again ca 0.1 Å longer from GFN2-XTB. RMSD is small for Al-A,
indicating excellent overall agreement between methods, but rather larger for Al-AADAA at almost
2.5 Å. Closer analysis indicates that most of this stems from the peptide: restricting the calculation to Al,
carbonyl O plus water yields RMSD= 0.932 Å, demonstrating the suitability of GFN2-XTB for the
description of peptide–Al(III) complexes (table 1).

The speed and accuracy of GFN2-XTB lend it to dynamical simulation, so several 1 ns MD
simulations were performed on Al-AADAA, starting from the optimized geometry. The first of these
used timesteps of 2 fs, along with SHAKE restraints on bonds to hydrogen, in the NVT ensemble
using the Berendsen thermostat to maintain temperature of 310 K. After a period of equilibration of
approximately 250 ps, temperature and total energy were stable over the simulation (see electronic
supplementary material, figure S1). To enhance sampling efficiency, a further simulation restrained all
bonds except those to Al with a fictitious hydrogen mass of 4.0 amu, allowing a timestep of 4 fs.
Equilibration is in this case observed in ca 200 ps, after which temperature and total energy were
stable over the remainder of the simulation. Greater changes were observed in potential energy, which
dropped sharply over the first 100 ps of simulation before stabilizing; RMSD increased over a similar
timescale, before reaching a plateau around 2.5 Å (electronic supplementary material, figure S2). These
changes are associated with changes in the peptide backbone to accommodate more hydrogen bonds
between coordinated water and remote backbone carbonyls, along with movement away from the
extended starting geometry towards the preferred bent geometry of the peptide. This is also evident
in the end-to-end distance, which falls rapidly from an initial value of 21.6 Å, reaching less than 5 Å
within 100 ps, then oscillating around ca 9 Å for the rest of the trajectory.

Although conventional MD successfully samples peptide conformation, even for these small peptides
nanosecond simulations require substantial computing resources while leaving the Al coordination
sphere largely unchanged. We therefore turn to metadynamics in order to enhance sampling and
move the complex into new conformations and/or coordination modes. Following Grimme, we use
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Figure 1. RMSD from 100 ps metadynamics simulation of Al-AADAA.
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RMSD from the starting structure as the collective variable, enclosing the system within a wall potential
to prevent decomposition. A 100 ps of metadynamics was carried out on Al-AADAA, adding Gaussian
potentials every picosecond and a pushing constant ki/N = 0.001 Eh, with 4 fs timestep, SHAKE on all
non-metal bonds and H mass = 4 amu. Such a simulation explored a similar set of conformations as
conventional MD but in a much reduced time frame, with the end-to-end distance reaching ca 5 Å
within 50 ps. RMSD from initial structure rises quickly before exhibiting oscillatory behaviour after
approximately 10 ps, repeatedly reaching larger values than were observed over a 10 times longer
conventional MD simulation (figure 1). However, the Al(III) coordination mode remains intact
throughout, indicating that the bias potential in this case is applied mainly to the peptide.

As a more challenging example, we examined Al-EAAAD, in which Al(III)(H2O)5 was initially
coordinated to OE2 of the N-terminal glutamic acid. Conventional MD showed similar behaviour to
that described above, reaching equilibration in ca 100 ps before settling into a stable conformation for
the remainder of the simulation. Metadynamics with the same bias potential as used for Al-AADAA
behaved similarly, exploring the conformational freedom of the peptide more than conventional MD but
keeping Al-coordination intact. However, an increased pushing constant of ki/N = 0.025 Eh gave rise to
quite different behaviour. After a brief period of equilibration in which only the peptide moved
appreciably, a water molecule was displaced from Al(III) coordination by the backbone O of Glu1 after
ca 10 ps. The resulting chelated Glu1-Al(H2O)4 structure persisted for around 50 ps, before further
waters were displaced, first by OE1 of Glu1, then by backbone O of alanines, and eventually
carboxylate of Asp5. By the end of a 70 ps metadynamics run, no water was bound directly to Al(III),
with coordination supplied by sidechains of Glu1 (monodentate) and Asp5 (bidentate) as well as
backbone O of Glu1 and Ala3. During the entire simulation, every peptide O atom spends at least 5ps
within 2 Å of the metal. The resulting radial Al–O distribution functions (RDFs) for peptide and water
oxygens are shown in figure 2: both show notable peaks around 2 Å, slightly lower for peptide than for
water, while the former also shows a broad peak around 4 Å, to outer-shell hydrogen-bonded contacts
mediated through inner-shell waters. The integration of RDF values indicate that on average, peptide O
coordination number is ca 2.4 while water coordination number is ca 3.2, yielding an overall value of
slightly less than 6. This compares well with Mujika et al’s findings that penta- and hexa-coordinated
Al(III) ions are preferred, and that carboxylate ligands are particularly favourable binders.

Encouraged by this performance of RMSD-biased metadynamics for smaller peptides, we turned our
attention to the interaction of Al(III) to the N-terminal sequence of amyloid-β, denoted Al-AB16. To do
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so, we took as a starting point the structure of Al-Aβ28 in explicit aqueous solvent reported by Mujika
et al. [28], truncating this to the N-terminal 16 amino acids along with Al, bound initially through
backbone (1.90 Å) and sidechain (monodentate 1.73 Å) of Glu3, sidechain of Asp7 (monodentate
1.66 Å), and backbone (1.91 Å) and sidechain (bidentate 1.73 and 1.75 Å) of Glu11, in approximately
octahedral geometry. Twenty water molecules within 10 Å of the Al(III) ion were also retained. GFN2-
XTB optimization of this system retained the coordination sphere of Al and the peptide conformation,
with RMSD from starting point of 1.40 Å. A 1 ns conventional MD simulation with settings as
outlined above (4 fs timestep, SHAKE on all non-metal bonds) proceeded smoothly, with backbone
RMSD rising smoothly to 4.5 Å within 50 ps and remaining approximately constant thereafter, with no
perturbation of Al coordination (electronic supplementary material, figure S5).

Two separate metadynamics simulations, each of 250 ps, starting from the same optimized geometry
but with different initial velocities, were carried out, with pushing constant ki/N = 0.006 Eh. Backbone
RMSD rose rapidly at first, before stabilizing to values oscillating around 7.5 Å after ca 20 ps, while Rg
stabilized to an average value of 8.6 Å after the same time (figure 3). Behaviour was broadly similar
to that noted for Al-EAAAD: an initial period of around 50 ps involved motion of peptide and water,
with Al binding remaining stable. After this point, Al–O bonds dissociated and others enter the
coordination sphere, leading to coordination numbers as low as 4 and as high as 7, with the mean
value of 5.2 (electronic supplementary material, figure S7). On average, coordination from sidechain
oxygens is twice as prevalent as that from backbone atoms (mean 3.4 versus 1.8), but as many as four
backbone oxygens coordinate Al(III) in some frames. As well as providing evidence of the utility of
metadynamics in simulating such systems, the broad similarity of the data from two independent
simulations lends confidence that results are not strongly dependent on starting conditions.

Interrogation of Al–O distances reveals highly fluxional coordination: every sidechain oxygen, with
the exception of Gln15, spent some time in contact with Al (defined as less than 2.75 Å, vide infra). This
contact was fleeting for Asp1 (1% of frames), but persistent for Glu3, Asp7 and Glu11, without any being
present for the whole of the simulations. That the sum of contact for these residues exceeds 100%
indicates bidentate coordination is present: close contacts for both sidechain O atoms were found for
14, 17 and 27% of frames for Glu3, Asp7 and Glu11, respectively. Backbone oxygens also featured in
Al coordination: the initial coordination through Glu3 persisted through much of the simulations, but
in contrast that through Glu11 was rapidly (less than 10 ps) lost and returned only fleetingly.
Backbone oxygens of Phe4 and Arg5 also made significant contact with Al, whereas those later in the
sequence, and especially Val12 and beyond, were much less involved in coordination (table 2).

Combining Al–O distances into a radial distribution function, g(r), sheds further light on Al(III)
binding. Separate g(r) data for oxygens in the peptide and in water from three independent
metadynamics runs are plotted in figure 4 (plots from individual simulations are reported in
electronic supplementary material, showing essentially no difference for peptide contacts, and only
minor ones for water). The former exhibits a sharp peak centred on 1.75 Å, extending to 2.75 Å, and a
lower, shallower peak around 3.85 Å. The former is taken as the first coordination shell, which
integrates to 5.4, an estimate of the average coordination number of the ion, and one that is in accord
with DFT estimates of the preferred coordination numbers for Al(III) as being 5 and 6. The peak
around 4 Å is associated with the non-bonded O of monodentate acidic sidechain ligands. A small
peak is also found around 6Å, which may be due to outer-shell coordination. g(r) for water also
shows a peak around 2Å, but the values are markedly lower, such that the contribution to



Table 2. Percentage of simulation frames contributing to the first coordination sphere.

sidechaina backbone

Asp1 1/0 6

Ala2 7

Glu3 21/92 67

Phe4 37

Arg5 24

His6 13

Asp7 34/75 5

Ser8 1

Gly9 4

Tyr10 0.0 8

Glu11 74/53 6

Val12 0

His13 2

His14 1

Gln15 0 0

Lys16 0
aReported for Oδ1/Oδ1 or Oε1/Oε2 where appropriate.
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coordination from solvent is just 0.07, i.e. effectively ruling out solvent participation in coordination, at
least within the timescale of these simulations.

A more challenging problem is to determine whether metadynamics simulations such as these can
locate potential binding modes without being placed in suitable starting geometry. A model system
consisting of Al(H2O)6 placed in the proximity of EAAAD, with deprotonated Glu and Asp, was
constructed. Geometry optimization and conventional MD formed hydrogen bonds between water O–H
and peptide oxygens, but did not perturb ion coordination. By contrast, metadynamics with a pushing
constant ki/N = 0.025 rapidly sampled alternative coordination modes. Within 15 ps, one water molecule
was displaced by Oδ of Asp, leading to a relatively stable monodentate adduct that persisted for 15 ps,
at which point a second water molecule was displaced by the backbone O of Ala. Further waters were
displaced from Al after around 50 ps of simulation, until by 65 ps, all were detached completely, after
which point the simulation proceeded in similar fashion to that described above.

A similar procedure for Al-AB16 was tested: Al(H2O)6 placed in the proximity of Aβ16, and
optimized to form hydrogen bond contacts with N-terminal residues. Three metadynamics
simulations, each of 250 ps in length and with identical settings except their initial velocities, were
started from the optimized geometry. In all cases, backbone RMSD increased rapidly in the first 10 ps,
before reaching a plateau of around 7 Å, due to motions corresponding to peptide flexibility and
intermolecular contacts. For each simulation, the first ca 50 ps consisted of intact Al(H2O)6 bound



(a) (b)

Figure 5. Endpoint of 1 ns conventional MD (a) and of 250 ps metadynamics (b) of Al-AB16. Al(III) is shown as a teal sphere,
coordinating residues as stick models, and peptide backbone as ribbon (grey, coil; blue, turn).
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through hydrogen bonds to various points on the peptide. After that, Al–O bonds to water ruptured: in
runs 1 and 3, these were quickly replaced by peptide oxygens, but in run 2 low-valent Al(H2O)n (n = 1, 2,
3) species persisted for ca 40 ps before bonds to peptide formed. Despite this, 100 ps is sufficient for the
initial hydration sphere to be completely lost and Al(III) to be completely bound by the peptide, after
which point behaviour is similar, both within these runs and to the simulations starting from bound
Al reported above. In particular, all acidic sidechains spend some time coordinated to Al, as do
several backbone oxygens in the N-terminal region. We also note that the starting point for these
simulations appears to be irrelevant, as the first 50 ps effectively equilibrates the location of Al(H2O)6.
This is evident in the distance between Al and N-terminal Cα, which rises from 6 Å in the optimized
geometry to 16 Å after 20 ps, falls to 5 Å and rises again to 15 Å within 50 ps, before stabilizing to
around 4 Å once Al is bound through acidic sidechains.
4. Discussion
The data reported show that GFN2-XTB is a useful method for the description of interactions of Al(III) with
peptides, comparing well with DFT geometry for model peptides for a small fraction of the computational
time required. This speed makes the dynamic simulation of such systems feasible on desktop computing
resources. Such simulations proceed smoothly, while the use of restraints on bond lengths along with
fictitious hydrogen mass allows timestep of 4 fs to further enhance efficiency. Conventional MD allows
peptide conformation to change, but leaves coordination of the metal ion intact, even over multiple
nanosecond simulation times. It is only when a biasing potential is introduced through metadynamics
that we observe sampling of alternative coordination modes. These simulations typically undergo a short
(20–50 ps) period of conformational flexibility of the peptide, before bonds to Al are ruptured and
different atoms enter the inner coordination sphere. Ion binding is solely through oxygen, often of acidic
sidechains but also of peptide backbone; however, where explicit water is present in simulations, it does
not contribute significantly to ion binding. The ability of metadynamics to alter coordination mode is
demonstrated in figure 5, which shows the endpoint of 1 ns conventional MD and of 250 ps
metadynamics of Al-AB16. The former is little changed from the starting point, i.e. Al bound through the
backbone and sidechain of Glu3 and Glu11, and sidechain only of Asp7, whereas metadynamics
substantially alters the coordination sphere, ending with backbone O of Arg5 bound to Al, along with
only sidechain atoms of the above-mentioned residues. In both cases, the peptide is largely unstructured,
with short sequences between metal-binding residues identified as having turn character (blue in figure 5).

Simulations suggest that Al(III) coordination to Aβ16 is fluxional, the ion being capable of coordinating
through a wide variety of O donors in the peptide. The question then arises, why was such behaviour not
observed in microsecond length MD simulations using conventional, atomistic description of the peptide
and ion? One can envisage that this stems from shortcomings in the non-bondedmodel of ion coordination
employed, or from the simulation protocol employed, or both. As noted above, a non-bonded atomistic
force field neglects details of charge transfer and polarization due to ion–peptide interactions. The metal
centre parameter builder approach used in that work allows atomic charges on the peptide to include
ion proximity effects, but not to adapt over the course of a simulation, such that a particular binding
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modemay be ‘locked in’ by this procedure. This is apparent in the atomic charges obtained in our previous
study, based on restrained electrostatic potential (RESP) analysis of B3LYP/6-31G(d) electron density.
Within a monodentate carboxylate ligand, the O bound to Al was assigned much more negative charge
(−1.02/−0.90 e) than the unbound one (−0.54/−0.55 e), whereas charges for bidentate carboxylate are
more similar (−0.91 and −0.72 e). Similarly, a bound backbone O was more negative (−0.79 e) than its
non-bound counterparts (−0.40 to −0.58 e). Such differences could prevent exploration of alternative
coordination modes in atomistic simulation, especially since electrostatic forces are expected to
dominate the interaction between these hard donor/acceptors.

However, our data also suggest another possible reason for lack of sampling: we find that, even with
the ability for the method to adapt electronic structure to the ion’s immediate environment, conventional
MD does not alter the coordination mode established at the outset of the simulation. Of course, the
simulations reported here are much shorter than those possible with purely atomistic methods, due to
the greater computational overhead of the method. It is not feasible with current resources for us to
determine whether microsecond or longer trajectories might eventually sample binding through other
oxygens. We did, however, extend one conventional MD simulation on Al-EAAAD to 5 ns (with all
non-metal bonds restrained, 4 fs timestep). This was at the limit of the computing resources available
to us. During this time, coordination of Al(III) exclusively through OE2 of Glu is retained: we find no
evidence even of bidentate coordination, still less of Asp becoming involved in ion binding (figure 6).
We conclude, therefore, that changes in coordination of Al(III) are ‘rare events’ on these timescales,
such that enhanced sampling methods are required to move trajectories into new configurations.

It is appropriate at this stage to discuss possible limitations of this work. Firstly, despite the speed of
the GFN2-XTB method, computational resources are a key consideration: it was necessary to truncate the
Aβ sequence to the N-terminal 16 residues, and even with this short peptide, we were only able to
generate a few nanoseconds of MD or metadynamics trajectories. This is insufficient to sample the
whole conformational space of such a flexible peptide, which can take multiple microsecond or more
timescales. Still further out of reach, at present at least, would be the simulation of larger peptides
such as full-length amyloid-β and its oligomers that are implicated in the onset of Alzheimer’s. We
therefore see this approach as complementary to atomistic models, or the template approach taken by
Mujika et al. In particular, the use of GFN2-XTB with metadynamics could be used to identify
possible ion-binding modes in cases where little or no experimental data are available to guide the
choice of residues bound to the metal ion. Short metadynamics runs could identify possible binding
modes, from which longer atomistic simulations could be started.

Secondly, we have chosen Al(III) for study here due to its biological relevance, as well as potential
challenges in modelling such ions within classical force-field approaches. Table 1 indicates that GFN2-
XTB works well for Al-peptide complexes, but we have not yet tested this for other metal ions. In
particular, transition metals such as copper, iron and zinc are known to be important in Alzheimer’s
and other neurodegenerative diseases. These display subtle d-orbital effects that are not relevant for
Al(III): these are included in GFN2-XTB parameterization, but we have not provided any evidence for
the balanced description of different metals’ binding to Aβ. In addition, we have not addressed
whether such simulations can be used to calculate binding (free) energy of the metal ion, and if any
specificity for Al(III) over other ions can be demonstrated.

Thirdly, one issue that did not arise in this work but may be relevant in other cases is that of
protonation state: all Asp and Glu residues were modelled as being deprotonated, ready to interact
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with the ‘hard’ Al(III) ion. In principle, a method such as GFN2-XTB could model changes in protonation

state, but distance restraints on bonds to hydrogen are incompatible with this. Moreover, using RMSD of
all atoms as the collective variable in metadynamics may not be sufficient to allow deprotonation and
metal binding to occur within simulations of the timescale reported here.

Fourthly, while RMSD has proved useful as the collective variable in this work, we have not tested
alternatives to this. In atomistic modelling of flexible peptides such as Aβ, variables such as radius of
gyration, backbone dihedral angles, helical and strand content, and coordination of one or more
residues have been used in this role, and may provide more efficient, or at least different, sampling of
coordination and conformation modes. Moreover, in this work, the collective variable was applied to
all atoms, whereas our main interest is in the behaviour of Al and coordinating residues, such that
restricting the biasing potential to a subset of atoms may be beneficial. We hope to report the results
of such studies in future submissions.
 os

R.Soc.open
sci.7:191562
5. Conclusion
We have demonstrated the utility of the semi-empirical tight-binding method GFN2-XTB for modelling
the interactions of Al(III) with various peptides. Optimized geometries compare well with DFT
benchmarks, and the speed of the method allows molecular dynamic simulations. Conventional MD
allows changes in peptide conformation but leaves Al coordination intact, whereas metadynamics
with a suitably chosen biasing potential is able to sample different coordination modes. Application of
this approach to the N-terminal fragment of amyloid-β suggests that Al(III) binding is fluxional, with
the majority of oxygens found in contact with the ion at some point during multiple 250 ps
metadynamics simulations, leading to an estimated average coordination number of 5.2, with little or
no water contributing to this value. We also show that suitable simulations are able to identify
potential binding modes in unbiased fashion, starting from hydrogen-bonded contact between
Al(H2O)6 and an extended peptide. We envisage this approach complementing atomistic, force-field
bases MD, perhaps by identifying diverse starting points for longer timescale dynamics that can fully
explore the conformational flexibility of peptides such as Aβ.
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