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Thesis summary 

 
Down Syndrome (DS) is a complex genetic disorder characterised by learning and 

memory impairments and age-related early-onset Alzheimer’s Disease. Sixty years ago, 

Lejeune et al. (1959) discovered that DS is caused by an extra copy of chromosome 21 

(Hsa21). Despite a large body of research dedicated to the study of DS pathophysiology, 

the complex relationship between gene over-dosage, cognitive function and decline is still 

unclear.  

Genes on Hsa21 share synteny with orthologous regions on three mouse 

chromosomes (Mmu): Mmu16, Mmu17 and Mmu10. The primary aim of this thesis was to 

evaluate the contribution of the three orthologous regions to memory function in DS by 

studying genetically engineered mouse models, trisomic entirely and exclusively for one of 

the three regions: the Dp1Tyb, Dp3Yey and Dp2Yey. A battery of object-recognition 

memory tasks was used to assess different attributes and retention-spans of recognition 

memory in adult (12-13 months) and aged (18-20 months) mice of the three models. 

Performance in these tasks has been demonstrated to require glutamatergic activity within 

a network of medial temporal lobe structures, including the hippocampus. Dp1Tyb mice 

displayed age-independent impairments in recognition memory affecting selectively short-

term memory processes. Dp3Yey mice displayed intact recognition memory. Dp2Yey mice 

displayed age-dependent impairments in recognition memory processes. 

At cellular level, the acquisition of new memories is proposed to rely on the regulation 

of synaptic transmission via changes in glutamate receptor expression. The secondary aim 

of this thesis was to identify biochemical mechanisms possibly associated to the pattern of 

memory performance of the three models. Glutamate receptor expression was thus 

assessed with western blots of hippocampal synaptosomes from the three models. Dp1Tyb 

mice displayed a downregulation of the postsynaptic scaffold protein PSD95 and an 

upregulation of the GluA1 AMPA receptor subunit, which has been previously implicated in 

short-term memory processes. Protein expression was unaltered in Dp3Yey mice. The 

Dp2Yey displayed an age-dependent downregulation of PSD95 and of the GluK5 kainate 

receptor subunit. 

This thesis studied for the first time the separate contribution of Hsa21 orthologues to 

recognition memory function and to glutamate receptor expression. Genes located on 

Mmu16 and 10 were found to be differentially important for memory processes, whereas no 

changes were observed with trisomy of genes on Mmu17. Potential candidate genes 

contributing to the behavioural and synaptic changes are considered and the contribution 

of these findings to understanding the complex genetic and functional changes observed in 

DS are discussed. 
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Chapter 1: Introduction 
 

 

 

Overview 

This chapter outlines the background to the thesis, providing a general introduction 

to Down Syndrome and to mouse models of Down Syndrome. Aims and hypotheses of 

the thesis are then presented. 
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1.1. Thesis overview 

 

Down Syndrome (DS) is the most frequent form of intellectual disability and is caused 

by trisomy of chromosome 21 (Dierssen, 2012). Based on the conserved synteny between 

chromosome 21 and mouse chromosomes, different mouse models of DS have been 

developed over the past decades. Nevertheless, the complex relationship between gene 

over-dosage and memory impairments in DS is still unclear.  

The present chapter will outline the background to the thesis. The following sections 

will provide a general introduction to DS, reviewing genetic cause and clinical presentation 

of the syndrome. Particular attention will be dedicated to cognition and memory function in 

DS individuals. Subsequently, transgenic mouse lines modelling DS will be presented, 

reviewing physical and behavioural phenotypes of the different models. In the final section, 

aims and hypotheses of the thesis will be presented. 

In this thesis, three novel mouse models of segmental DS were used to study the 

contribution of different chromosome 21 orthologues to memory dysfunction in DS. The 

general methods employed will be described in chapter 2. In chapter 3, background 

information on memory systems and their neural substrates will be presented, followed by 

a series of behavioural experiments on the three mouse models. In brief, the animals were 

tested on a battery of object-recognition memory tests assessing memory for novel objects 

(NOR), novel locations (Loc), object-in-place associations (OiP) and temporal order of 

object presentation (TOr). In chapter 4, background information on synaptic plasticity 

mechanisms and glutamate receptors will be presented, followed by a series of western 

blotting experiments. In brief, hippocampal samples were collected from the three mouse 

models and the expression ionotropic glutamate receptors was assessed. In the last 

chapter, behavioural and biochemical findings are merged together, discussing how they 

can inform our understanding of DS in humans. 
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1.2. Down Syndrome 

 Down Syndrome was first described by John Langdon Down in 1866 and was later 

linked to the presence of an extra copy of chromosome 21 (Lejeune, Gautier, & Turpin, 

1959). For this reason, DS is also known as “trisomy 21”. Besides significantly impaired 

cognitive abilities, individuals with DS are also affected by a number of physical conditions, 

such as cardiac, respiratory and gastrointestinal defects (Weijerman & de Winter, 2010). 

Within Europe, the prevalence of DS has been estimated at 11.2 every 10’000 live births 

(Loane et al., 2013). Estimates vary however between countries, depending on the 

availability of prenatal screening tests and pregnancy termination. In 2011, approximately 

40’000 people with DS were estimated to live in the UK (Wu & Morris, 2011). Over the past 

decades, the DS survival rate has largely increased, owing to modern medical care and 

interventions. For example, the life expectancy of the DS population was approximately 10 

years in year 1970 and now has reached 50 years (Presson et al., 2013).  

 Genetic cause 

 In healthy individuals, cells contain 23 pairs of chromosomes. Chromosomes are 

structures composed of a deoxyribonucleic acid (DNA) molecule. DNA contains the entire 

genetic material of the organism, assembled into a series of the nucleotides cytosine, 

guanine, adenine, and thymine. Within the cell nucleus, genetic information is transcripted 

into ribonucleic acid (RNA) and subsequently expressed in the cytoplasm. Portions of DNA 

that code for the synthesis of a specific protein are called genes. Genes determine all 

biochemical and physiological properties of an organism, ultimately resulting in their 

physical form and functional capability. Different genes are located on different 

chromosomes and imbalances in genetic material can severely impact development 

(Alberts et al., 2002). 

Cells of individuals with DS contain an extra copy of human chromosome 21 (Homo 

sapiens autosome 21; Hsa 21). Hsa21 is the smallest human chromosome and makes 

approximately 1.5% of the entire human genome (Hattori et al., 2000). The long arm of 

Hsa21 was completely sequenced in year 2000 (Hattori et al., 2000). Currently, 233 protein-

coding genes, 404 non-coding RNA genes and 188 pseudogenes have been identified on 

Hsa21 (www.ensembl.org/Homo_sapiens/Location/Chromosome?r=21:1-46709983; 

Ensembl release 62).  

In 97% of the cases, DS is due to incorrect cell division during the formation of 

reproductive cells (egg cells or sperm cells) in one of the parents. During meiosis (I or II), 

chromosome 21 is unequally split between the two daughter cells, generating a cell 

containing two copies of the chromosome. Since fertilisation adds a set of chromosomes to 

http://www.ensembl.org/Homo_sapiens/Location/Chromosome?r=21:1-46709983
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the cell, the fertilised cell will carry three full copies of chromosome 21 (Morris, Alberman, 

Mutton, & Jacobs, 2012). In the majority of the cases, meiotic nondisjunction errors occur 

in egg cells, whereby advanced maternal age is the most important risk factor for DS. Allen 

et al. (2009) found that 92% of meiotic nondisjunction errors were of maternal origin, 

associated to increased maternal age (≥ 40 years). Although rare, DS can also be caused 

by partial trisomy 21. In this case, the affected individual carries a trisomy of only a portion 

of Hsa21 (Delabar et al., 1993; Korbel et al., 2009). 

Trisomy 21 can also be caused by nondisjunction errors occurring after fertilisation, 

during mitotic cell division of the zygote. This type of error results in a fraction of cells 

carrying trisomy 21, while the remaining cells contain the correct number of chromosomes, 

a pattern known as mosaicism (as reviewed in Papavassiliou, Charalsawadi, Rafferty, & 

Jackson-Cook, 2004). Mosaic DS occurs only in 1% of the trisomy 21 cases, has less 

severe phenotypes, and is not associated with either parental origin or maternal age (Allen 

et al., 2009; Morris et al., 2012). 

 Finally, chromosomal translocations, usually Robertsonian translocations, can also 

result in DS (Robinson et al., 1994). During meiotic cell division, part of chromosome 21 

can become attached to another chromosome, frequently chromosome 14. Fertilisation of 

a daughter cell containing both a copy of chromosome 21 and the translocated chromosome 

results in translocation DS. Translocations account for around 3% of DS cases and can also 

occur between Hsa21 and chromosome 13, 15 or 21 (Morris et al., 2012).  

 The molecular and cellular events linking the surplus genetic information to abnormal 

development and DS phenotypes are not entirely clear. Initially, the study of cases of partial 

trisomy 21 led to the identification of a specific segment on Hsa21 that if duplicated, seemed 

sufficient for the pathogenesis of DS. This region contains approximately 50 genes and was 

called “Down Syndrome critical region” (DSCR) (Delabar et al., 1993). It was proposed that 

over-dosage of one or a few genes within the DSCR produced many of the physical and 

cognitive features of DS. More recently however, larger studies of partial trisomy 21 

revealed that several Hsa21 regions contribute to DS, contradicting the hypothesis of a 

single critical region (Korbel et al., 2009). Nonetheless, animal studies proved that some 

DSCR-genes (e.g. Down Syndrome Cell Adhesion Molecule - DSCAM, or the Dual 

specificity tyrosine-phosphorylation-regulated kinase 1A - DYRK1A) are indeed crucial for 

the expression of DS-like phenotypes (as reviewed in Lana-Elola, Watson-Scales, Fisher, 

& Tybulewicz, 2011). 

Over the years, two main hypotheses have been advanced in an attempt to explain 

how the extra chromosomal material can give rise to DS. The “developmental instability 

hypothesis” proposes that over-dosage of Hsa21 genes leads to a non-specific, generalised 

imbalance in gene expression, disrupting cellular homeostasis and thus normal 
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development (Hall, 1964). The “gene dosage hypothesis” proposes that over-dosage of 

Hsa21 genes causes the overexpression of critical Hsa21 genes, resulting directly in the 

abnormal phenotypes (Antonarakis, Lyle, Chrast, & Scott, 2001). Although increased gene 

copy number has been related to increased amount of gene product expressed by a cell, it 

is important to bear in mind that gene transcription is a highly regulated process. A wide 

range of cellular mechanisms operates to increase or reduce the expression of specific 

genes, involving gene products coded from chromosomes other than Hsa21 (Dierssen, 

2012). A review by Gardiner (2004) reported in fact that in both human and mouse models 

of DS, only the product of some and not all duplicated genes was overexpressed (typically 

by ~ 1.5 fold), as measured by RNA levels. Interestingly, gene overexpression varied 

between tissue types and between subjects, and altered gene expression (increase or 

decrease) was observed also in a number of non-trisomic genes form different 

chromosomes. 

Both hypotheses provide helpful perspectives on the pathogenesis of DS. Over-

dosage of Hsa21 genes is likely to disrupt normal development by influencing numerous 

molecular processes, including the overexpression of dosage-sensitive Hsa21 genes, 

compensatory regulatory mechanisms of gene transcription involving non-Hsa21 genes and 

inter-individual epigenetic variations (Dierssen, 2012). A better understanding of the gene-

phenotype relationship comes from the generation of mouse models of DS, enabling us to 

study the consequences of over-dosage of specific Hsa21 genes or segments. Before 

considering animal models in more detail, the next section will summarise the main 

phenotypes of DS. 

 Clinical presentation 

Down Syndrome is characterised by a widespread range of physical and cognitive 

features, whereby symptom manifestation and severity vary between individuals. In 

general, DS results in a number of dysmorphic features along with increased risk of 

concomitant disorders and delayed cognitive development. At birth, the presence of a series 

of DS characteristic features, such as flat facial profile, slanted eyes, and low muscle tone, 

can direct genetic testing to confirm the diagnosis of DS (Weijerman & de Winter, 2010). 
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1.2.2.1. Physical features 

The physical problems occurring in DS concern a wide range of body systems, as 

briefly reviewed below.  

Craniofacial dysmorphia 

 The skull of DS individuals is atypically short, resulting in a relatively flat head 

(brachycephaly). Additional craniofacial manifestations include ear anomalies, increased 

interocular distance (hypertelorism) and a flat nasal bridge (Arumugam et al., 2016).  

Oral disorders 

 Oral dysmorphic features include an enlarged tongue (macroglossia), abnormal 

tongue positioning (glossoptosis), maloccusion, abnormal teeth development and enlarged 

tonsils (Weijerman & de Winter, 2010). 

Orthopaedic disorders 

 The tone of the skeletal system is diminished (hypotonia), resulting in general 

weakness and floppiness. Motor development is significantly delayed and DS individuals 

require physical therapy as they display difficulties in postural control, craniocervical 

instability and abnormal motor patterns. Joint hypermobility is also observed and 

spontaneous hip dislocations occur frequently (Weijerman & de Winter, 2010).  

Vision disorders 

 The prevalence of ocular abnormalities in DS ranges from 38-80% (Weijerman & de 

Winter, 2010). Frequent abnormal anatomical features of the visual system include 

narrowed or slanted palpebral fissures, skin folds covering the inner corner of the eye 

(epicanthal folds) and small spots on the iris (brushfield spots). Individuals with DS are often 

affected by vision disorders such as strabismus, nystagmus, cataract, refractive errors and 

glaucoma.  

Hearing disorders 

 Malformations of the inner ear and of the nasopharynx are frequent in DS and can 

result in chronic otitis media and hearing disorders. The prevalence of hearing disorders 

has been estimated at 38-78% and early implementation of hearing aids is particularly 

important to aid the speech development (Weijerman & de Winter, 2010). 

Cardiovascular disorders 

Approximately half of DS neonates are born with cardiovascular defects, most 

frequently atrioventricular and ventricular septal defects (Weijerman & de Winter, 2010). 

The major complication associated to cardiac anomalies is pulmonary arterial hypertension, 
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increasing the risk of heart failure and death. Cardiac defects are usually surgically 

corrected at 2-4 months of age. 

Respiratory disorders 

 Anatomical anomalies of the upper and lower airways can give rise to respiratory 

problems, especially in the presence of heart defects and hypotonia. Around one third of 

DS individuals report recurrent wheezing. Obstructive sleep apnoea is observed in over half 

of the cases in conjunction to oral malformations. (Weijerman & de Winter, 2010).  

Gastrointestinal tract disorders 

 Congenital defects of the gastrointestinal tract are relatively rare (4-10% of cases) but 

have a much higher incidence in DS compared to the general population. Usually, 

anatomical defects can be treated surgically and include the absence or narrowing of 

gastrointestinal cavities, such as duodenal or anal stenosis/atresia. Celiac disease and 

constipation problems also occur more frequently in the DS population (Weijerman & de 

Winter, 2010). 

Hematological and immunological disorders 

 Individuals with DS often report anomalies in the production and counts of white blood 

cells (T- and B- lymphocytes). Down Syndrome is in fact associated to a 10-fold increased 

risk of developing blood cancer, primarily acute myeloid leukemia or acute lymphocytic 

leukemia (Hickey, Hickey, & Summar, 2012). A small portion of newborns with DS (10%) 

presents a form of preleukemia that develops in utero, known as transient myeloproliferative 

disease. This preleukemia may disappear spontaneously, but in some cases precedes the 

development of myeloid leukemia (Weijerman & de Winter, 2010).  

Endocrine disorders 

 The prevalence of thyroid disorders (primarily hypo- or hyperthyroidism) in the DS 

population is estimated at 28-40% and increases with age (Weijerman & de Winter, 2010). 

Thyroid hormones are essential in the regulation of energy use and body growth. Children 

with DS follow a DS-specific growth pattern and are predisposed to overweight. Diabetes 

mellitus also occurs at a higher incidence in DS. 

Seizures 

 Compared to the general population, individual with DS are at higher risk of seizures, 

although the risk is lower compared to other forms of intellectual disability (Hickey et al., 

2012). Typically, the onset of seizures occurs either in the first year of life or around 30 

years of age, whereby late seizure onset of seizures is associated to the emergence of 

dementia (Lott & Dierssen, 2010). 
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1.2.2.2. Cognitive features 

The main characteristic of DS is intellectual disability, along with general learning and 

memory impairments (Lott & Dierssen, 2010). The extent of the impairments varies between 

cognitive domains and between individuals, whereby several factors such as early 

interventions and physical health modulate cognitive function (Lott & Dierssen, 2010). 

Individuals with DS show delayed language development and language deficits persist 

through life. Intelligence tests indicate that intellectual disability ranges from moderate to 

severe. Consequently, cognitive performance of DS individuals is often compared against 

younger control subjects, matched on intelligence scores (IQ), verbal measures or a 

combination of variables corresponding to mental age (MA). The matching procedure allows 

assessment of the impact of DS in addition to baseline intellectual dysfunction. Analogously, 

cognitive studies also often compare performance between DS individuals and individuals 

affected by other types of intellectual disability, to reveal cognitive phenotypes specifically 

associated to trisomy of Hsa21 genes (Godfrey & Lee, 2018). 

Poorer cognitive skills in DS have been associated with the presence of comorbidities 

(Lott & Dierssen, 2010). For example, DS individuals affected by sleep apnoea, thyroid 

disorders or seizures, generally report more severe deficits than unaffected DS subjects. 

Additionally, hearing and vision disorders can negatively affect performance in cognitive 

tests. All these factors need to be carefully considered when assessing cognitive 

phenotypes in DS. 

The cognitive impairments observed in DS are thought to result from the important 

structural anomalies found in DS brains. Before considering cognition in detail, it is 

important to understand how trisomy 21 impacts brain development. 

Brain development 

The brain begins developing during gestation and continues after birth, growing and 

maturing until adulthood. Neurogenesis takes place primarily between the 10-25 week of 

gestation, following the formation of the neural tube. During this period, neural stem cells 

proliferate in large numbers, migrate to specific cellular sites and differentiate into neurons 

or astrocytes (Purves et al. 2012). In the hippocampus (HPC), neurogenesis has been 

shown to continue during the first postnatal years and possibly in adulthood, although to a 

lesser extent (Sorrells et al., 2018). After birth, the connections between neurons expand 

greatly, increasing dendritic branching and synapse number. This increase is accompanied 

by synaptic pruning, whereby surplus synapses and neurons are eliminated (Purves et al. 

2012). 

Anatomical studies report significant structural anomalies in DS brains and are 

already visible prenatally. In general, people with DS have smaller brains (Guidi et al., 2008; 
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Pinter et al., 2001a; Pinter, Eliez, Schmitt, Capone, & Reiss, 2001b). Reduced brain volume 

is particularly prominent in frontal areas, temporal areas, HPC and cerebellum (Pinter et al., 

2001a; Pinter et al., 2001b). Significantly reduced volumes in the HPC and surrounding 

cortices are already present in DS foetuses between the 17-21 gestational week (Guidi et 

al., 2008). Postnatally, an MRI study of DS children and adolescents found that on average, 

total brain volume was reduced by ~18% and hippocampal volume by ~30% compared to 

typically developing subjects (Pinter et al., 2001a).  

Importantly, smaller brain volumes are observed in conjunction with hypocellularity, 

suggesting a defect in the production of neural stem cells during gestation. In fact, reduced 

cell numbers are already observed in DS foetuses and low grey matter levels persist 

postnatally (Guidi et al., 2008; Pinter et al., 2001b). A number of trisomic genes has been 

proposed to interfere with early brain development, primarily affecting cell cycle during 

mitotic division. As reviewed in Stagni, Giacomini, Emili, Guidi and Bartesaghi (2018), the 

overexpression of certain dosage-sensitive Hsa21 genes is thought to alter complex 

signalling cascades, resulting in an elongation of the cell cycle duration and thus decreasing 

the rate of cell production. Candidate genes are DYRK1A, the Amyloid Precursor Protein 

(APP), the Regulator of Calcineurin 1 (RCAN1) and Oligodendrocyte transcription factor 1 

and 2 (OLIG1, OLIG 2). Overexpression of these gene products has been associated to 

reduced cell numbers in DS foetuses, DS-derived stem cell cultures and mouse models of 

DS (Stagni et al., 2018). Additionally, studies have shown that the hypocellularity observed 

in DS is specifically related to a reduced number of neurons, while astrocyte levels are 

increased (Griffin et al., 1998; Guidi et al., 2008). Prenatal neurodevelopment in DS is thus 

characterised by defects in cell proliferation and cell differentiation. 

At cellular level, DS brains also exhibit reduced dendritic length, dendritic branching 

and spine density, both in HPC and cortex (Becker, Armstrong, & Chan, 1986; Ferrer & 

Gullotta, 1990; Takashima, Iida, Mito, & Arima, 1994; Vuksić, Petanjek, Rasin, & Kostović, 

2002). Interestingly, cortical dendritic branching was found to be normal in foetuses and in 

2.5 months old newborns, but significantly reduced in children older than 2 years (Becker 

et al., 1986; Vuksić et al., 2002). Reduced branching thus seems to result from poor 

dendritic growth and synaptogenesis during postnatal development. Aberrant synaptic 

pruning also contributes to reduced branching, as dendritic degeneration rapidly progresses 

with aging (Takashima et al., 1994). Decreased levels of excitatory neurotransmitters, 

including glutamate, have also been observed in temporal and frontal cortices of DS adults 

(Risser, Lubec, Cairns, & Herrera-Marschitz, 1997). Given the fundamental role of the HPC 

and of neuronal connections in memory function (as will be discussed in chapter 3 and 4), 

it can be reasonably assumed that reduced dendritic branching, neurochemical alterations 

and reduced neuronal cell numbers, underpin cognitive impairments in DS.  
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Intelligence 

 The degree of intellectual disability is highly variable. Intelligence tests report 

quotients ranging from 40 to 70 points in adults, denoting severe to moderate impairment 

(Dierssen, 2012; Nelson et al., 2005). Intelligence scores increase with age in DS children, 

indicating that learning processes take place during development, although to a lesser 

degree compared to typically developing children. Intelligence scores reach plateau in 

adolescence and start to decline in adulthood (Dierssen, 2012).  

Language 

Although pre-language behaviour such as babbling emerges within the expected age-

range, language development is significantly delayed (Grieco, Pulsifer, Seligsohn, Skotko, 

& Schwartz, 2015). First words and multi-word phrases emerge late in DS children. As they 

grow, DS children display deficits in pronunciation and morphosyntax, whereby the use of 

verbs, nouns and pronouns is often incorrect. Besides abnormal speech production, speech 

comprehension is also limited and worsens with aging. 

Executive functions 

 Executive functions summarise higher order cognitive processes such as attention, 

inhibition, flexibility, planning, and working memory. They are primarily associated with 

activity in frontal and prefrontal cortices (Purves et al., 2012). Working memory is 

distinguished from explicit and implicit memory as it involves the mental manipulation of 

information, in addition to memory retrieval. As reviewed in Grieco et al. (2015), both 

children and adults with DS present poor executive functions, in particular concerning 

sustained attention and planning skills. People with DS report deficits in working memory 

tasks employing verbal material, while they are relatively unimpaired with visuospatial 

material (Grieco et al., 2015). The evidence suggests however a generally reduced working 

memory capacity, with performance decreasing as the amount of information to be 

processed increases (Grieco et al., 2015). 

Implicit memory 

Research on implicit memory is rather limited but suggests that the implicit acquisition 

of new memories is relatively preserved in DS. For example, DS individuals were found able 

to acquire a motor sequence to a similar extent as MA-matched typically developing children 

(Vicari, Verucci, & Carlesimo, 2007). Individuals with DS have also been shown to be as 

susceptible as controls to visual and verbal priming in picture completion and word 

completion tasks (Vicari, Bellucci, & Carlesimo, 2000; Vicari et al., 2007).  
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Short-term explicit memory 

 Studies assessing short-term memory (STM) in DS generally test memory 

performance after very brief time intervals. Given the profound language impairments 

characteristic of DS, most studies investigated performance in verbal versus non-verbal 

(primarily visuospatial) memory tasks (Godfrey & Lee, 2018). Typically, participants are 

presented with either a series of words or of spatial locations and asked to immediately 

reproduce the series. An incremental procedure is often used, measuring memory 

performance as the longest series of items correctly recalled. 

A clear dissociation pattern emerged from the numerous STM studies (Godfrey & Lee, 

2018). Generally, memory performance of DS individuals in verbal tasks is severely 

impaired, in comparison to both typically developing children and subjects affected by other 

intellectual disabilities. Instead, STM performance in visuospatial tasks is often unimpaired 

and visuospatial skills are considered a relative strength in DS. For example, Jarrold, 

Baddeley and Phillips (2002) assessed verbal and visuospatial STM in DS individuals, 

typically developing children and individuals with learning impairments, matched on their 

vocabulary level. In the verbal task, a list of numbers was presented either acoustically or 

acoustically with simultaneous visual support on a computer screen. In the visuospatial task, 

participants watched the experimenter tap a sequence of spatial locations on a board made 

of different blocks. Individuals with DS performed worse than typically developing children 

and individuals with learning impairments in the verbal task, both in the acoustic and the 

acoustic-visual mode. By contrast, performance of DS individuals in the visuospatial task 

was no different from the two control groups. Verbal STM deficits thus are not strictly a 

result of defective processing of auditory information but reflect a generalised impairment 

in the retention of linguistic information. 

Indeed, the short-term retention of verbal material has been found impaired also when 

assessed with entirely visual tasks (Duarte, Covre, Braga, & de Macedo, 2011). In one 

study, participants were presented with a sequence of images depicting common words 

(e.g. cat, ball, house) and asked to reproduce the sequence using the images. The memory-

span of DS individuals was significantly reduced compared to MA-matched control children, 

indicating poorer short-term retention of visually presented verbal information. Interestingly, 

performance could be rescued by the implementation of visuospatial support: in another 

experimental condition, the sequence of words was presented by the experimenter pointing 

to images on a board. In this case, DS individuals could correctly reproduce the sequence. 

Although it is possible that DS subjects merely retained locations irrespective of the 

depicted words, the study highlights the strength of visuospatial skills. 

Verbal STM deficits observed in visual tasks do not necessarily imply that STM for 

visual material is impaired. A failure to implement verbal codes in support of the retention 
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of visual material can in principle underlie poorer performance in DS, especially in 

comparison to typically developing children whose performance can better profit from verbal 

skills. In fact, when visual STM was tested with random visual patterns or with non-focal 

colours, individuals with DS performed no different to controls, suggesting intact visual STM 

performance (Carretti, Lanfranchi, & Mammarella, 2013; Laws, 2002). 

The dissociation between verbal and visuospatial STM has been observed at different 

developmental stages, from pre-school children to adults (Godfrey & Lee, 2018). A cross-

sectional study reported that both verbal and visuospatial memory-span increase with age, 

indicating that progress indeed takes place during development in DS (Frenkel & Bourdin, 

2009). The memory-span for visuospatial material increased however at a much higher rate 

compared to the verbal memory-span. Interestingly, individuals with Williams syndrome, a 

neurodevelopmental disorder caused by a mutation in chromosome 7, show the opposite 

STM dissociation pattern, implicating different genes in the retention of different types of 

information. For example, individuals with Williams syndrome showed better verbal STM 

than an IQ-matched DS group, while the DS group outperformed individuals with Williams 

syndrome in a visuospatial STM task (Edgin, Pennington, & Mervis, 2010).  

Several studies have attempted to uncover the reason behind poor verbal STM in DS. 

According to one study, individuals with DS performed significantly worse than controls 

when asked to recognise previously listened non-words and their performance decreased 

as syllable-length increased (Raitano Lee, Pennington, & Keenan, 2010). Consequently, 

difficulties in phoneme-discrimination were proposed to underlie verbal STM deficits. 

Support for this hypothesis was however not found in a study by Vicari, Marotta and 

Carlesimo (2004).  

While it is understandable that human DS memory research concentrated on the 

retention of verbal information, such tasks do not find a direct parallel in animal research. A 

few studies have attempted to align human and animal STM research. For example, Kogan 

et al. (2009) tested individuals with DS on a delayed non-match to sample task and a 

delayed non-match to position task, with a 5 second delay. In the first task, participants 

were rewarded with nickels for selecting a novel object over a familiar one. In the second 

task, participants were rewarded for selecting a familiar object in a novel spatial location 

over an identical object in a familiar location. Individuals with DS performed as well as MA-

matched control children on both tasks.  

These results were confirmed by a recent study that used a novel battery of object-

recognition memory tasks especially developed from rodent studies, the Arizona Memory 

Assessment for Preschoolers and Special Populations (A-MAP) (Clark, Fernandez, 

Sakhon, Spanò, & Edgin, 2017). In the study, participants briefly interacted with different 

three-dimensional objects and were then asked to recognise a previously handled object 
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(NOR-equivalent). Participants were also presented with a series of identical (Loc-

equivalent) or different (OiP-equivalent) objects placed on a board and were then asked to 

replicate the spatial configuration. Finally, participants also had to judge which of two 

objects from a pair appeared first in a sequence of previously presented objects (TOr-

equivalent). In line with Kogan et al. (2009), DS individuals reported intact recognition 

memory for single objects (NOR) and locations (Loc). They were however impaired in the 

retention of specific positions associated to different objects (OiP) and in temporal order 

judgments (TOr). 

The majority of STM studies has concentrated on verbal memory, reporting deficits 

beyond MA-expectations. Given the severe language delay in DS, it is possible that verbal 

STM deficits are tightly linked to general language impairments, rather than representing a 

specific STM-defect per se. Instead, STM for non-verbal material (e.g. objects, locations) is 

relatively preserved. These studies tested however immediate recall and evidence from 

patient studies and lesion studies in rodents indicates that such brief intervals are largely 

independent of the HPC (e.g. Clark et al., 2001; see chapter 3). Hippocampal involvement 

is instead noted for longer retention intervals, such as when assessing long-term memory 

(LTM). 

Long-term explicit memory 

 As will be presented in chapter 3, long-term storage of information involves activity 

within the medial temporal lobe system, in particular on the HPC. Similarly to STM resarch, 

studies assessing LTM tested the delayed recall of verbal versus non-verbal (primarily 

visuospatial) material. Overall, the literature points to severely impaired LTM, with deficits 

concerning both verbal and nonverbal information, emerging at pre-school age and 

worsening with age (Godfrey & Lee, 2018). While visuospatial skills are relatively preserved 

in immediate recall tests, they are not when assessed after a retention interval. For example, 

individuals with DS performed worse than MA-matched children in the delayed reproduction 

of a previously learned visuospatial sequence (Vicari et al., 2000). 

Whether LTM performance of DS individuals is different compared to individuals 

affected by other forms of intellectual disability is unclear. In one study, DS participants 

scored significantly higher than individuals with William syndrome both on a verbal and a 

visuospatial task (Edgin et al., 2010). In another study, DS subjects scored lower than 

controls in the reproduction of a complex geometrical figure studied 15-min earlier, but 

similarly to individuals with other types of intellectual disability (Carlesimo, Marotta, & Vicari, 

1997). The same DS subjects however, recalled a significantly lower number of words after 

a 15-min retention interval, in comparison to both control and intellectually disabled 

subjects. 
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Verbal LTM deficits have also been observed in entirely visual tasks. For example, 

individuals with DS recognised a significantly lower number of previously studied images 

than MA-matched subjects (Vicari et al., 2000). Unlike STM, however, impairments in the 

long-term retention of visual information did not seem related to a reduced ability to code 

visual information verbally, because DS subjects were impaired even when tested with 

random visual patterns (Pennington, Moon, Edgin, Stedron, & Nadel, 2003). In fact, visual 

memory seems generally impaired at long-term level. In a visual recognition task, 

individuals were presented with different versions of the same image (e.g. different types of 

trees) and were asked to recognise the version they studied at an earlier time point. 

Individuals with DS recognised a significantly lower number of images in comparison to MA-

matched children (Vicari, Bellucci, & Carlesimo, 2005). 

A possible explanation for the pervasive LTM impairments observed in DS, is the 

dependency of explicit LTM on the HPC. As described in the “Brain development” section, 

the HPC presents with several structural anomalies in the DS population. To investigate this 

hypothesis, Pennington et al. (2003) tested a group of DS and of MA-matched children on 

a series of verbal and non-verbal LTM tasks known to rely on the HPC and a series of verbal 

and non-verbal working memory tasks requiring the prefrontal (PFC) cortex. Individuals with 

DS performed worse than controls on all HPC-dependent LTM tasks, including a test similar 

to the OiP task, in which participants had to recall the spatial location of distinct, random 

patterns. By contrast, no significant differences were observed between the groups in the 

PFC-dependent working memory tasks. 

To confirm the pattern of hippocampal dysfunction in the DS population, several 

studies investigated performance in visuospatial navigation memory tasks which rely on the 

HPC (Courbois et al., 2013; Lavenex et al., 2015; Purser et al., 2015). In one study 

(Courbois et al., 2013), participants were instructed to navigate through a virtual 

environment featuring a variety of landmarks (e.g. tree, dog, bicycle) to reach a particular 

building (e.g. railway station). After a familiarisation phase in which participants were shown 

the right path, spatial memory was tested, and participants had a maximum of 10 trials to 

reach the building without making mistakes. Although DS participants improved their 

performance across the trials, they required more trials to learn the correct pathway than 

controls. In a second test phase, participants were asked to find a shortcut to reach the 

building. Only 2 out of 10 DS participants were able to find the shortcut, in comparison to 5 

out of 10 participants from a MA-matched group and all 10 participants from a chronological 

age-matched group. Additionally, in a subsequent visual recognition memory test, 

participants with DS recognised a significantly lower number of landmarks that appeared in 

the virtual environment, compared to both control groups. 
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Since computerised experiments tend to assess spatial memory from an egocentric 

perspective, Lavenex et al. (2015) wanted to assess viewpoint-independent, allocentric 

spatial memory in DS. In the study, participants were asked to locate three rewards (i.e. 

sweet treats) hidden underneath a number of white plastic cups placed over a test room. 

The rewards were always located in the same three spatial positions. In one condition, the 

three cups covering the rewards were red, serving as local cues. In the allocentric condition, 

all cups were white and distal spatial cues present in the test room served as reference 

points to navigate the environment and memorise the position of the rewards. Each 

condition was repeated for 10 trials, over two days. Individuals with DS displayed normal 

learning in the local cue condition, consistently locating the rewards under the red cups. In 

the allocentric condition however, the DS group performed only at chance level while a MA-

matched group progressively improved performance across the trials. 

In sum, the evidence suggests that triplication of Hsa21 genes results in a generalised 

LTM impairment, affecting the retrieval of verbal, visual and visuospatial information. 

Behavioural findings, together with anatomical findings reporting aberrant hippocampal 

anatomy, converge to support a major role of hippocampal dysfunction in the cognitive 

symptoms of DS. 

Early-onset cognitive decline 

 The LTM impairments observed in DS worsen with increasing age (Godfrey & Lee, 

2018). Cognitive abilities in general begin to deteriorate when DS individuals reach middle 

age. For example, younger DS individuals (22-38 years) performed significantly better than 

older DS individuals (41-61 years) in a memory task that required participants to recall in 

which of three boxes and object was hidden, both after a 10-second and a 2-minute delay 

(Alexander et al., 1997). The cognitive decline observed in DS appears to be more severe 

compared to other forms of intellectual disability. Individuals with DS are in fact at higher 

risk of developing early-onset dementia, frequently Alzheimer’s type (Lott & Head, 2001). 

Alzheimer’s disease (AD) is a neurodegenerative disorder that progressively impairs 

memory and other cognitive domains, such as language and executive functions. The 

disease is initially characterised by impairments in the retention of new episodic memories, 

in conjunction with hippocampal atrophy. As the disease progresses, neurodegeneration 

extends to the neocortex and remote memories become affected. 

In the general population, the onset of sporadic AD usually occurs at advanced age, 

with a prevalence of ~10% in individuals of 70 years and older (Plassman et al., 2007). In 

the DS population however, AD symptoms can emerge as early as the age of 40, with 

incidence rates increasing dramatically later in life. Prevalences are highly variable, ranging 

from 15 to 77% in DS individuals over 60 years (Head, Powell, Gold, & Schmitt, 2012).  
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 The brains of AD patients are characterised by an accumulation of neurofibrillary 

tangles of tau protein aggregates and an accumulation of neuritic plaques made of insoluble 

amyloid-beta (Aβ) peptides (Lott & Head, 2001). Neurofibrillary tangles and Aβ-plaques 

interfere with normal cell functioning, leading to synaptic loss and neuronal death. Insoluble 

Aβ peptides are generated from the incorrect cleavage of the transmembrane amyloid 

precursor protein (APP). The gene encoding APP is located on Hsa21, implicating that 

individuals with DS carry three APP copies. Consequently, overexpression of APP has been 

suggested to underlie the elevated AD incidence observed in the DS population (Lott & 

Head, 2001). In fact, by the age of 40, virtually all DS brains show signs of atrophy and 

widespread accumulation of Aβ-plaques in hippocampal and neocortical areas (Wisniewski, 

Wisniewski, & Wen, 1985). However, despite presenting the neuropathological hallmarks 

of AD, only a portion of DS individuals over 40 years report symptoms of AD (Head et al., 

2012).  
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1.3. Mouse models of Down Syndrome 

 Down Syndrome is a complex genetic disorder. Important advances in understanding 

how triplication of Hsa21 genes results in the typical features of DS have been made 

possible by the generation of genetically modified mice that model trisomy 21. The genetic 

content of the long arm of Hsa21 is evolutionarily conserved in the mouse genome, sharing 

synteny with orthologous regions on three mouse chromosomes (Mus musculus, Mmu): 

Mmu16, Mmu17 and Mmu10 (fig. 1.1) (Lana-Elola et al., 2011). The largest syntenic portion 

is located on Mmu16, containing approximately 115 genes. The Mmu17 and Mmu10 

syntenic portions are smaller, with an estimated number of 19 and 41 genes respectively. 

Based on the conserved synteny between the human and the mouse genomes, several 

mouse models of segmental DS duplicating distinct syntenic portions have been generated 

over the past decades and made commercially available. The majority of the models were 

generated via Cre/loxP recombination, a novel, highly controlled chromosomal engineering 

technique (see section 2.1.1) (Herault et al., 2017). Mouse models are of great value to DS 

research as they provide the unique advantage of studying the consequences of over-

dosage of specific Hsa21 segments. Indeed, DS models successfully recreate a number of 

physical and cognitive phenotypes analogous to human DS. Nonetheless, the role of Hsa21 

genes in brain development and in the regulation of memory processes has not yet been 

fully understood. 

 To better understand memory function in DS, the current research used three novel 

mouse models of segmental DS, each carrying an exact duplication of one of the three 

orthologous regions: the Dp1Tyb for Mmu16, the Dp3Yey for Mmu17 and the Dp2Yey for 

Mmu10 (also known as Ts1Yey / Dp(16)1Yey, Ts3Yey / Dp(17)1Yey, Ts2Yey / Dp(10)Yey) 

(Lana-Elola et al., 2011; Yu et al., 2010b). These models represent a unique tool to assess 

the distinct contribution of the Mmu16, Mmu17 and Mmu10 syntenic regions to DS-like 

phenotypes. In contrast, as reviewed in the following sections, less recently created models 

also duplicate non-syntenic genes in addition to the intended Mmu-mutation and/or lack 

duplication of some syntenic genes, undermining their validity as DS models. Nevertheless, 

comparison of findings obtained with different models can help the identification of dosage-

sensitive genetic portions or single genes directly linked to specific DS phenotypes. To this 

purpose, mutant mouse lines deficient of specific syntenic genes and crosses between 

distinct trisomic lines have also been created (Duchon et al., 2011a; Zhang et al., 2014; Yu 

et al., 2010a).  

Because of hippocampal dysfunction observed in individuals with DS, animal studies 

have concentrated on hippocampal anatomy and physiology, and HPC-dependent memory 

tasks. Phenotypes of trisomic animals are generally compared against euploid animals, that 

is, wildtype mice carrying two copies of each chromosome. A schematic representation of 
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the most frequently employed DS mouse models in the study of memory is shown in fig. 

1.1. Phenotypes of the different Mmu16, Mmu17 and Mmu10 trisomy models are described 

in the following sections and summarised in table 1.1, focusing on brain morphology and 

memory deficits.   
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 The Dp1Tyb and Mmu16 models 

The majority of DS mouse models carry a partial duplication of the Mmu16 syntenic 

region. The first and most extensively studied model is the Ts65Dn (Reeves et al., 1995). 

This model is the result of a translocation between Mmu16 and Mmu17, following X-ray 

irradiation. Ts65Dn mice are trisomic for a large portion but not the entirety, of the Mmu16 

conserved region (Mrpl39 – Zbtb21) and for 60 genes on Mmu17 that are not syntenic to 

Hsa21 (Duchon et al., 2011b). As a consequence, phenotypes observed in the Ts65Dn 

strain cannot be directly linked to only genes syntenic to human DS and are frequently more 

severe compared to other models (Belichenko et al., 2009a). Another widely employed 

model is the Ts1Cje, resulting from a translocation between Mmu16 and Mmu12 (Sago et 

al., 1998). Ts1Cje mice are trisomic for an overlapping, yet shorter Mmu16 segment (Sod1 

– Zbtb21) and monosomic for 7 genes on Mmu12, limiting their validity as DS model 

(Duchon et al., 2011b). The Ts1Rhr model was instead generated to study DSCR genes 

and these mice are trisomic for an even shorter Mmu16 portion, corresponding exactly to 

the DSCR (Cbr1 - Mx2) (Olson, Richtsmeier, Leszl, & Reeves, 2004a). The most recently 

created model is the Dp1Tyb (also known as Ts1Yey or Dp(16)1Yey). The Dp1Tyb is the 

only model trisomic entirely and exclusively for the Mmu16 conserved region (Lipi – Zbtb21) 

(Yu et al., 2010b). Containing the largest number of triplicated Mmu16 syntenic genes and 

lacking perturbations of unrelated genes, the Dp1Tyb is the most representative model to 

study the relationship between DS phenotypes and Hsa21 homologs on Mmu16. Several 

syntenic genes on Mmu16 have been previously implicated in memory function, such as 

Dyrk1A, App, and Rcan1 (Lana-Elola et al., 2011).  

Despite their genetic limitations, classical Mmu16 models reproduce a number of DS-

like phenotypes. Concerning physical features, craniofacial anomalies such as a shorter 

skull and flattened face were observed in Ts65Dn and Ts1Cje, but not Ts1Rhr mice (Olson 

et al., 2004a; Richtsmeier, Baxter, & Reeves, 2000; Richtsmeier, Zumwalt, Carlson, 

Epstein, & Reeves, 2002). This type of findings allows one to conclude that genes causing 

the DS craniofacial phenotypes are located on the Mmu16 segment duplicated in the 

Ts1Cje model, but do not arise from trisomy of the DSCR alone. Further physical conditions 

such as heart defects, anomalies in blood cells production, motor dysfunction and delayed 

body growth have been observed in the Ts65Dn (Costa, Walsh, & Davisson, 1999; 

Holtzman et al., 1996; Kirsammer et al., 2008). Recent evidence suggests that similar 

physical phenotypes are also present in the Dp1Tyb strain. Dp1Tyb animals show altered 

craniofacial morphology, resembling Ts65Dn more than Ts1Cje anomalies (Starbuck, 

Dutka, Ratliff, Reeves, & Richtsmeier, 2014). Approximately one third of Dp1Tyb embryos 

have cardiovascular and gastrointestinal malformations (Li et al., 2007). Postnatally, body 

growth is delayed, along with the acquisition of developmental milestones such as 
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neurological reflexes (Goodliffe et al., 2016). At 2-3 months of age, Dp1Tyb mice show 

signs of motor dysfunction, as measured by poorer nest building skills, reduced motor 

strength, balance and coordination on the rotarod and the hanging wire test (Goodliffe et 

al., 2016; Watson-Scales et al., 2018). Sensory function seems instead unaltered, with 

Dp1Tyb mice showing normal nocifensive responses to cold, heat and mechanical stimuli 

(Watson-Scales et al., 2018). 

Naturally, Mmu16 trisomies affect brain structure as well. While brain volume and 

brain weight are reduced in human DS, these measures are generally normal in mouse 

models, albeit gross anatomical differences can be observed during embryonic life 

(Belichenko, Kleschevnikov, Salehi, Epstein, & Mobley, 2007; Chakrabarti, Galdzicki, & 

Haydar, 2007; Holtzman et al., 1996). For example, brain size is significantly reduced in 

Ts65Dn embryos, but reaches euploid levels shortly before birth (Chakrabarti et al., 2007). 

Neocortical and hippocampal growth are also reduced in Ts65Dn embryos (Chakrabarti et 

al., 2007). These reductions were associated to longer cell cycle duration and reduced 

neurogenesis, two mechanisms found to be defective in human DS brain development as 

well. Surprisingly, such neurodevelopmental changes are not observed in prenatal Dp1Tyb 

mice. Throughout embryonic life, brain size, neocortical and hippocampal growth, and rate 

of neurogenesis, are no different from euploid controls (Goodliffe et al., 2016). 

Consequently, genetic differences between the Dp1Tyb and the Ts65Dn models seem to 

determine the presence of prenatal brain defects. Indeed, despite having the larger number 

of trisomic genes, only 19 of the Mmu16 homologs were found differentially expressed in 

Dp1Tyb embryonic brains, in comparison to 46 in the Ts65Dn (Goodliffe et al., 2016). 

 Further neuromorphological anomalies typical of DS are visible postnatally. Adult 

Ts65Dn, Ts1Cje and Ts1Rhr all show reduced volume and reduced neuronal cell density in 

the cerebellum (Olson et al., 2004b; Olson et al., 2007). Dp1Tyb mice show instead 

unaltered cerebellar anatomy (Watson-Scales et al., 2018). Neonatal and adult Ts65Dn 

mice also show reduced neuronal cell density in the HPC (Kurt, Kafa, Dierssen, & Davies, 

2004). More specifically, the Ts65Dn HPC exhibits decreased levels of excitatory neurons 

and increased levels of inhibitory neurons (Chakrabarti et al., 2010). This pattern was 

however not observed in the Dp1Tyb model. As a matter of fact, numbers of inhibitory 

neurons were found significantly reduced in the neocortex of neonatal Dp1Tyb mice 

(Goodliffe et al., 2016). 

In addition to neuronal cell populations, synapse number and structure are also 

altered. In Ts65Dn newborns, synaptogenesis was found decreased in both neocortex and 

HPC, as indicated by reduced levels of the postsynaptic density protein PSD95 (Chakrabarti 

et al., 2007). Electron microscopy studies confirmed the finding in adult Ts65Dn mice and 

linked the reduction to a specific decrease in the number of excitatory synapses (Kurt et al., 
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2004). Reductions in dendritic spine density were also observed in Ts1Cje and Ts1Rhr 

mice, along with abnormal spine morphology and abnormal arborisation (Belichenko et al., 

2004; Belichenko et al., 2007; Belichenko et al., 2009a). A statistical comparison revealed 

that dendritic anomalies were more severe in Ts65Dn than in Ts1Cje or Ts1Rhr animals 

(Belichenko et al., 2009a). While synapse number and structure have not been studied yet 

in the Dp1Tyb model, research by Souchet et al. (2014) reports alterations in the levels of 

several synaptic markers, including reduced hippocampal levels of glutamate receptors. 

Synaptic plasticity mechanisms, such as long-term potentiation (LTP) and long-term 

depression (LTD) have been proposed to represent the physiological substrate for HPC-

dependent learning and memory (e.g. Morris, Anderson, Lynch, & Baudry, 1986; see 

chapter 4). These changes alter synaptic transmission efficacy and rely primarily on 

expression and activity of glutamate receptors. Given the synaptic anomalies described 

above, plasticity mechanisms are likely to be compromised in Mmu16 trisomy models. 

Indeed, LTP induction was impaired in hippocampal slices of Ts65Dn, Ts1Cje and Ts1Rhr 

brains (Belichenko et al., 2007; Belichenko et al., 2009a; Kleschevnikov et al., 2004; Siarey, 

Villar, Epstein, & Galdzicki, 2005). In the Dp1Tyb, in vitro hippocampal LTP induction was 

also found significantly decreased (Jiang et al., 2015; Yu et al., 2010b; Zhang et al., 2014). 

Additionally, Ts65Dn and Ts1Cje slices also showed increased LTD (Siarey et al., 1999; 

Siarey et al., 2005).  

Together, electrophysiological and neuroanatomical observations point to a state of 

decreased excitatory and increased inhibitory synaptic transmission in Mmu16 trisomies. In 

fact, application of antagonists blocking inhibitory γ-aminobutyric (GABA) receptors was 

found to restore LTP in the Ts65Dn, Ts1Cje and Ts1Rhr models (Belichenko et al., 2007; 

Belichenko et al., 2009a; Kleschevnikov et al., 2004). Such findings led to the formulation 

of the “GABAergic over-inhibition hypothesis”, whereby altered inhibitory signalling is 

postulated to affect neural excitability and result in memory impairments (as reviewed in 

Contestabile, Magara, & Cancedda, 2017). Indeed, although no gene on Mmu16 has yet 

been directly associated to excitatory or inhibitory neurotransmission, several gene 

products have been demonstrated to regulate synaptic transmission and plasticity, such as 

DYRK1A or RCAN 1 (Grau et al., 2014; Martin et al., 2012).   

Unsurprisingly, given the number of hippocampal anomalies observed, all Mmu16 

models report memory impairments. A frequently employed test to assess hippocampal 

integrity in rodents is the spontaneous alternation T-maze (Deacon, Bannerman, Kirby, 

Croucher, & Rawlins, 2002). In this test, mice are placed in the stem of a T-shaped maze 

and allowed to explore either of the two arms for a period of time. Based on their innate 

preference for novelty (Ennaceur & Delacour, 1988), rodents show a tendency to alternate 

entry between the two arms. As shown by a series of studies by Belichenko et al. (2007; 
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2009a), Ts65Dn, Ts1Cje and Ts1Rhr animals all performed significantly worse than euploid 

controls on the T-maze test, displaying near chance alternation rates. These findings 

suggest a degree of hippocampal dysfunction in all three models and that DSCR trisomy 

alone is sufficient to produce the phenotype. Findings regarding the Dp1Tyb model are 

instead contradictory, with some studies reporting normal and others impaired performance 

on the spontaneous alternation T-maze test (Goodliffe et al., 2016; Jiang et al., 2015; 

Souchet et al., 2019). 

Another common paradigm used to assess hippocampal integrity is the Morris water 

maze (MWM) (Morris, Garrud, Rawlins, & O’Keefe, 1982). In this task, the mouse is placed 

in a circular pool filled with water and trained to locate a floating platform. The platform can 

either be clearly visible (e.g. marked by a flag) or hidden. In the cued platform test, spatial 

information is irrelevant and the test is used as a measure of swimming ability, vision and 

motivation to escape the water. By contrast, the hidden platform test is sensitive to 

hippocampal dysfunction because it requires the use of information about the spatial 

organisation of room cues to locate the platform. Over repeated trials, animals learn the 

position of the platform, significantly reducing swimming time and distance. Following the 

learning phase, memory is also assessed by removing the platform and examining the 

amount of time the animal spends searching for the platform in the correct area. When 

tested on the MWM, both Ts65Dn and Ts1Cje animals performed normally in the visible 

platform test but were impaired on a number of measures on the hidden platform test (Sago 

et al., 2000). Impairments were more severe in the Ts65Dn, as some degree of spatial 

learning was preserved in Ts1Cje but not Ts65Dn animals (Sago et al., 2000). Surprisingly, 

despite the T-maze impairment, Ts1Rhr animals were found to perform normally in both the 

visible and the hidden platform test, implicating that trisomy of the DSCR does not affect 

hippocampal function in the MWM (Olson et al., 2007). This discrepancy may suggest that 

performance on the T-maze test and on the MWM may rely on different hippocampal 

networks (Sanderson & Bannerman, 2012). Indeed, the two tests assess very different 

retention spans, with the T-maze assessing brief time intervals and the MWM extending 

over several training days. In line with the longer Mmu16 trisomies, Dp1Tyb performed 

normally in the MWM with the visible platform but were impaired on the hidden platform test 

(Goodliffe et al., 2016; Yu et al., 2010b; Zhang et al., 2014). Partial visuospatial learning 

was however preserved, since Dp1Tyb animals decreased their escape latency and path 

length over trials, and searched for the platform in the target area, although to a lesser 

extent compared to wildtype mice. 

The contextual fear conditioning task is also frequently used to test hippocampal 

function. The animal is placed in a conditioning chamber and its ability to associate a given 

context (e.g. olfactory and visual cues) to the delivery of a foot shock is tested. Memory 
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performance is quantified as the amount of time spent by the animal freezing when re-

placed in the conditioning chamber after a time interval. Ts65Dn animals showed 

significantly reduced freezing times when tested after 48-h, indicating a weaker memory 

trace (Kleschevnikov et al., 2012). Interestingly, treatment with GABA receptor antagonists 

rescued the deficit. Dp1Tyb animals also showed impaired memory on the fear conditioning 

task, both after 24-h and 72-h (Yu et al., 2010b).  

Memory in mouse models of DS is also frequently assessed with Object-recognition 

memory tasks. In the Ts65Dn model, recognition memory for novel spatial locations (Loc) 

following a 10-min delay was impaired (Kleschevnikov et al., 2012). In an OiP task, Ts1Cje 

mice failed to recognise novel object-in-place associations after a 2-min delay (Fernandez 

& Garner, 2007). Indeed, recognition memory relying on spatial/contextual information has 

been demonstrated to depend on the HPC (see chapter 3), suggesting once again HPC-

dysfunction in Mmu16 trisomy models. Most studies on DS mouse models investigated 

however recognition memory for novel objects, a feature of recognition memory that is 

largely independent of HPC-function (e.g. Barker & Warburton, 2011; see chapter 3). A 

large number of lesion studies indicates that processing of object-information depends 

primarily on the perirhinal (PRH) cortex. In a NOR task, Ts65Dn mice were found able to 

discriminate between a familiar and a novel object after a 10-min delay but were impaired 

with a 24-h delay (Kleschevnikov et al., 2012). Similarly, Ts1Rhr animals performed 

normally after 1-h but were impaired after 24-h (Belichenko et al., 2009a). Novel object 

recognition was instead intact in the Ts1Cje after 24-h (Fernandez & Garner, 2007). In 

general, visual recognition memory for objects seems to be relatively preserved after brief 

intervals but impaired after longer delays. Moreover, performance of Ts65Dn mice on both 

the Loc and the NOR task could be rescued by treatment with GABA receptor antagonists 

(Kleschevnikov et al., 2012). In line with these models, Dp1Tyb animals were found unable 

to recognise a novel object after a 24-h delay (Nguyen et al., 2018; Souchet et al., 2019). 

Shorter retention intervals or other types of object-recognition memory tasks have not been 

tested yet in the Dp1Tyb model. Impairments in novel object recognition suggest that the 

Mmu16 trisomy does not exclusively affect hippocampal activity but possibly PRH activity 

as well. Moreover, the duration of the retention interval and activity levels of glutamate 

receptors seem to represent crucial variables affecting recollection.  

Overall, likewise classical Mmu16 trisomy models, the Dp1Tyb strain recreates a 

number of physical and cognitive features analogous to human DS. The Dp1Tyb strain is 

however characterised by important neuromorphological differences, especially in 

comparison to the Ts65Dn strain. Despite carrying the largest Mmu16 duplication, brain 

development and neurogenesis appear to be normal in Dp1Tyb embryos. However, both 

Dp1Tyb and Ts65Dn mice show behavioural delays already shortly after birth. Dp1Tyb mice 
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report motor dysfunction like other Mmu16 models, but their cerebellar anatomy is normal. 

Nevertheless, structural and functional alterations in the HPC along with deficits in HPC-

mediated memory, seem to characterise all Mmu16 trisomy models – including the Dp1Tyb 

– regardless of the size of the genetic duplication. The presence of motor dysfunction in 

Mmu16 models highlights the necessity to disambiguate possible confounding effects of 

motor impairments from cognitive performance. 

 The Dp3Yey and Mmu17 models 

 Given the relatively small size of the Mmu17 conserved region, research on DS has 

primarily focused on the contribution of Hsa21 homologs located on Mmu16. Currently, 

over-dosage of Mmu17 syntenic genes has been modelled in only two mouse lines.  The 

Dp1Yah model (also known as Ts1Yah) is trisomic for a large portion, but not the entirety, 

of the Mmu17 conserved region (from Abcg1 to Cbs) (Pereira et al., 2009). This model was 

created via Cre/loxP engineering and does not carry perturbations of other genetic 

segments. The Dp3Yey model (also known as Ts3Yey or Dp(17)1Yey), is trisomic entirely 

and exclusively for the Mmu17 conserved region (from Abcg1 to Rrp1b) (Yu et al., 2010b). 

Dp1Yah and Dp3Yey mice are trisomic for ~12 and ~19 protein-coding genes respectively. 

Carrying the complete Mmu17 trisomy, the Dp3Yey represents the most valid model to 

investigate the contribution of Mmu17 syntenic genes to DS phenotypes. Currently, only 

one gene on the conserved Mmu17 segment, the Cystathionine-β-Synthase (CBS) gene, 

has been implicated in memory function. The CBS gene encodes an enzyme involved in 

the production of cystathionine, whose deficiency has been associated to intellectual 

disability (Almuqbil, Waisbren, Levy, & Picker, 2019). 

Research on the Dp1Yah and the Dp3Yey is very limited. With respect to the physical 

features of DS, no study has investigated craniofacial dysmorphia, cardiac or 

gastrointestinal defects, body growth and development in either of the two Mmu17 models. 

Some evidence is available concerning motor function in the Dp1Yah. Balance and 

coordination were assessed with the rotarod test, measuring the animal’s ability to walk on 

a rapidly rotating rod. Dp1Yah adult mice performed similarly to euploid controls, suggesting 

that motor dysfunction phenotypes are not linked to trisomy of Mmu17 (Marechal et al., 

2019; Pereira et al., 2009). 

Similarly, neuromorphological alterations have not been investigated in either the 

Dp1Yah or the Dp3Yey, at any age. The limited available evidence has examined 

hippocampal LTP. Surprisingly, although baseline hippocampal excitatory activity was 

normal, LTP was found significantly increased in both Dp1Yah (in vivo) and Dp3Yey (in 

vitro) brains, resulting in enhanced and longer lasting potentiation (Pereira et al., 2009; Yu 

et al., 2010b). Hippocampal synaptic plasticity appears thus to be facilitated in animals 
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trisomic for Mmu17 syntenic genes, in strong contrast to Mmu16 trisomy models. The 

reason for this enhancement is unclear, especially since no gene on the Mmu17 portion has 

yet been directly implicated in synaptic neurotransmission. 

Evidence concerning the cognitive phenotypes of Mmu17 models is more abundant. 

On the spontaneous alternation T-maze test, one study reported reduced alternation rates 

in Dp1Yah mice (Pereira et al., 2009), while a second study found no impairments 

(Marechal et al., 2019). These contradictory findings are puzzling, as animals of roughly the 

same age were tested, with the same methodology. The same two studies were however 

concordant in reporting intact visuospatial memory in Dp1Yah animals on the MWM hidden 

platform test, suggesting normal hippocampal function despite abnormal hippocampal LTP 

(Marechal et al., 2019; Pereira et al., 2009). Memory impairments arose instead when 

Dp1Yah animals were tested on a NOR task, with Dp1Yah mice unable to discriminate 

between a familiar object explored 1-h earlier and a novel object, possibly implicating 

abnormal PRH cortex function (Marechal et al., 2019; Pereira et al., 2009). In Dp3Yey mice, 

memory function was assessed only by one study. In line with the Dp1Yah, Dp3Yey mice  

performed normally on the MWM hidden platform test and also showed no deficit in the 

contextual fear conditioning task (Yu et al., 2010b). 

Although the available evidence is rather limited, models of Mmu17 trisomy emerge 

as very different from Mmu16 models. Behavioural results seem to suggest that the Mmu17 

trisomy does not affect HPC-dependent memory. However, electrophysiological evidence 

reports that hippocampal plasticity is in fact altered, with the Mmu17 trisomy promoting LTP. 

Theoretically, abnormal plasticity mechanisms in the HPC should have an impact on HPC-

dependent memory function (e.g. Morris et al., 1986). Further studies are necessary to 

investigate this relationship in Mmu17 trisomy models. Nevertheless, impairments in visual 

object recognition suggest that Mmu17 genes may alter PRH cortex function.  

 The Dp2Yey and Mmu10 models 

 Only one mouse line has been created to model trisomy of the Mmu10 conserved 

region, the Dp2Yey model. The Dp2Yey strain is trisomic entirely and exclusively for the 

Mmu10 conserved genetic portion (from Prmt2 to Pdxk) (Yu et al., 2010b). Few genes on 

the Mmu10 conserved region have been implicated in memory. Nevertheless, these include 

the S100 calcium-binding protein B (S100B), a gene encoding a calcium-binding protein 

expressed by glial cells, and adenosine deaminase 2 (ADAR2), a gene encoding an enzyme 

responsible for the pre-mRNA editing of glutamate receptors (Block, Ahmed, 

Dhanasekaran, Tong, & Gardiner, 2015).  

 Research on the Dp2Yey model is however extremely limited. To the author’s 

knowledge, there is currently no data on DS-like physical features or brain pathology in the 
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Dp2Yey, at any age. Nevertheless, one study measured the expression levels of proteins 

implicated in memory and synaptic plasticity in the brains of male and female adult Dp2Yey 

mice (Block et al., 2015). Out of 102 proteins measured, the levels of 68 proteins were 

altered in the male Dp2Yey brain. The highest perturbation was observed in the HPC, 

affecting levels of 50 proteins, the majority being overexpressed. Interestingly, female 

Dp2Yey mice showed the highest perturbation in the cerebellum, with a total of 62 altered 

proteins. Importantly, of the 102 proteins assessed, only 3 were encoded by genes trisomic 

in the Dp2Yey, highlighting the fact that segmental trisomies can induce considerable 

downstream changes in the expression of non-trisomic genes. Out of all the 102 proteins 

measured, only one protein was consistently altered in all brain regions and both sexes, 

S100B, with a 25-30% increase. S100B has been implicated in neuronal growth and AD-

pathology (Block et al., 2015). Indeed, APP expression was found increased in the HPC of 

male Dp2Yey, in conjunction with altered expression levels of glutamate receptors (Block 

et al., 2015). Despite these protein perturbations, LTP induction was found to be normal in 

Dp2Yey hippocampal slices (Yu et al., 2010b). 

Cognitive phenotypes in Dp2Yey mice were investigated only by one study. When 

tested on the MWM, adult Dp2Yey mice performed normally on both the visible and the 

hidden platform test (Yu et al., 2010b). Dp2Yey also performed similarly to euploid controls 

in the contextual fear conditioning task (Yu et al., 2010b). Although the available evidence 

is extremely scarce, findings seem to suggest that Hsa21 homologs located on Mmu10 do 

not affect hippocampal function in so far as changing memory processes. However, 

assessment in this regard has been limited and there are no published data regarding the 

effects of the mutation on object-recognition memory task.  

 Non-segmental models 

 In addition to models of segmental DS duplicating portions of the three conserved 

regions, mouse models carrying (near) complete Hsa21 trisomy have also been generated, 

in an attempt to recreate the full complexity of human DS. One of these models is the Tc1 

line (O’Doherty et al., 2005). Tc1 mice carry a freely segregating copy of Hsa21 and are 

thus a “trans-species” model. The Hsa21 copy is, however, incomplete, with Tc1 mice 

trisomic for ~83% of Hsa21 genes (Lana-Elola et al., 2011). Among the not functionally 

triplicated genes is the App gene, making the Tc1 a useful model to assess the contribution 

of Hsa21 genes other than App to AD-pathology (Wiseman et al., 2018). Additionally, the 

Hsa21 copy is not retained by all cells, making the Tc1 a model of mosaic DS. In the brain, 

approximately 66% of nuclei (neuronal and glial cells) retain Hsa21 (O’Doherty et al., 2005). 

This suggests that phenotypes observed in Tc1 animals may be less severe relative to 

human DS or other mouse models, since the trisomy affects only a portion of the cells.  
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Despite its limitations, the Tc1 model has been widely studied. Indeed, Tc1 animals 

present several DS-like physical features. These include craniofacial anomalies such as a 

smaller mandible size, frequent cardiac malformations in embryos and suppressed immune 

responses (O’Doherty et al., 2005). Body weight is also significantly reduced in adult Tc1 

mice (Galante et al., 2009). Analogously to DS individuals and models of Mmu16 trisomy, 

motor function is impaired in the Tc1, with animals displaying deficits in motor coordination 

and balance on different motor tasks (Duchon et al., 2011; Galante et al., 2009). Subtle 

abnormalities have also been noticed in the Tc1 gait pattern (Galante et al., 2009). 

With regards to brain morphology, Tc1 mice exhibit some features typical of DS and 

some atypical features. For example, total brain volume is increased in the Tc1 (Powell et 

al., 2016). Total hippocampal volume is also enlarged, although some sub-regions (e.g. 

CA3) present reduced volume (Powell et al., 2016). In line with DS features, the Tc1 

cerebellum shows reduced total volume and neuronal cell density (O’Doherty et al., 2005; 

Powell et al., 2016). Although neuronal cell density was found unaltered in the HPC, 

dendritic spine density was reduced, along with abnormal spine morphology (Witton et al., 

2015). Levels of glutamate receptors were also found to be reduced in the HPC (Morice et 

al., 2008). Unsurprisingly, several studies have found that the in vivo induction of 

hippocampal LTP is impaired in Tc1 brains (Morice et al., 2008; O’Doherty et al., 2005; 

Witton et al., 2015). Interestingly, detailed investigations showed that impairments were 

present only shortly after LTP induction while LTP maintenance the following 24 - 48 hours 

was normal (Morice et al., 2008; Witton et al., 2015). 

 Although Tc1 mice show altered hippocampal structure and plasticity as observed in 

other models, the cognitive profile of Tc1 mice is atypical to some degree. In the 

spontaneous alternation T-maze, Tc1 mice performed no different than euploid controls, 

alternating significantly above chance between the two arms of the maze (O’Doherty et al., 

2005). When tested on the hidden platform MWM, Tc1 animals were once again 

unimpaired, showing normal improvement in locating the hidden platform over the training 

days (Morice et al., 2008). Interestingly, memory impairments appeared in Tc1 mice when 

performance on the MWM was tested with a protocol assessing shorter retention intervals. 

In this version, animals were trained to locate the hidden platform over consecutive trials 

separated by brief intervals on the same day. Tc1 mice were impaired, showing delayed 

acquisition of the platform position and near chance preference for the target area (Duchon 

et al., 2011; Morice et al., 2008). MWM findings thus seem to reflect decreased early-phase 

LTP but intact late-phase LTP in the Tc1. Since arm choices on the spontaneous alternation 

T-maze test are usually separated by brief time intervals, it is surprising that Tc1 mice 

performed normally on this test.  
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Further evidence supporting a delay-dependent memory performance in Tc1 mice 

comes from object-recognition memory tasks. When visual object recognition memory was 

assessed after a 10-min delay on the NOR task, Tc1 mice were unable to discriminate 

between novel and familiar objects (Hall et al., 2015; Morice et al., 2008; O’Doherty et al., 

2005). However, when the test phase was administered 24-h after the acquisition phase, 

Tc1 animals successfully recognised the novel object (Hall et al., 2016; Morice et al., 2008). 

One possible interpretation was that Tc1 mice might have a generalised impairment in the 

retention of relatively recently formed memories. However, Hall et al. (2016) demonstrated 

that Tc1 mice were indeed able to form memories during short time intervals, as Tc1 mice 

were able to recognise familiar objects occupying a previously vacant spatial location after 

a 10-min delay (Hall et al., 2016). This implicates that short-term memory deficits observed 

in the Tc1 are not pervasive but specifically affect visual object recognition. Instead, in 

contrast to findings on DS individuals, memory assessed after longer retention intervals 

seems generally spared, as Tc1 mice were also able to recognise novel OiP-associations 

after a 24-h delay (Hall et al., 2016). 

A more recently generated mouse line, the Triple Trisomic Strain (TTS), provides a 

less problematic model of Hsa21 trisomy compared to the incomplete and mosaic Hsa21 

trisomy of Tc1 mice (Yu et al., 2010a). Through precise Cre/loxP engineering, TTS animals 

are trisomic entirely and exclusively for all of the three conserved regions on Mmu16, 

Mmu17, and Mmu10 (Yu et al., 2010b). Although the TTS model does not allow one to 

segregate influences originating from distinct genetic portions, the model provides the most 

complete and accurate representation of Hsa21 trisomy, accounting for functional 

interactions between all syntenic genes.  

Only limited published work is available on the TTS model. TTS animals have reduced 

body weight and length at young and older age (Belichenko et al., 2015; Yu et al., 2010a). 

Although most TTS pups have normal appearance, a small portion (~6.5%) exhibit 

hydrocephalus due to abnormally dilated brain ventricles (Yu et al., 2010a). These animals 

generally do not survive beyond 2.5 months of age. Although hydrocephalus has not been 

reported in other DS mouse models, the condition has a higher incidence in the DS 

population (Yu et al., 2010a). 

Decreased hippocampal LTP was also observed in hippocampal slices of TTS 

animals 15-60 min after stimulation and application of GABA receptor antagonists restored 

normal LTP (Belichenko et al., 2015; Yu et al., 2010a).  On the spontaneous alternation T-

maze test, TTS mice performed significantly worse than controls, alternating only at chance 

levels (Belichenko et al., 2015). TTS animals also showed significantly reduced learning on 

the MWM and reduced freezing levels in a contextual fear conditioning task after a 24 and 
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48 hours retention interval (Yu et al., 2010a). Novel object recognition was also impaired 

after 24-h, as observed in Mmu16 trisomy models (Belichenko et al., 2015).  

 Overall, mouse models of complete DS recreate aberrant hippocampal function, in 

line with human DS and Mmu16 trisomy models. Abnormal PRH function is also implicated 

from the behavioural evidence reporting impairments in object recognition memory. The 

Tc1 model exhibits however unusual cognitive features, whereby impairments arise 

exclusively after short retention intervals. 
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Table 1.1: Overview of LTP and memory phenotypes in mouse models of DS. Downward arrows 

indicate decreased LTP; upward arrows indicate increased LTP; equals sign indicates normal LTP. 

Red crosses indicate impaired performance; green ticks indicate intact performance. For NOR task 

performance, different retention intervals are reported. CFC = Contextual Fear Conditioning task. SA 

= Spontaneous Alternation. Ts65Dn: Belichenko et al., 2007; Kleschevnikov et al., 2004; 

Kleschevnikov et al., 2012; Sago et al., 2000. Ts1Cje: Belichenko et al., 2007; Fernandez & Garner, 

2007; Sago et al., 2000; Siarey et al., 2005. Ts1Rhr: Belichenko et al., 2009a; Olson et al., 2007. 

Dp1Tyb: Goodliffe et al., 2016; Jiang et al, 2015; Ngueyen et al., 2018; Souchet et al., 2019; Yu et 

al., 2010b; Zhang et al., 2014. Dp1Yah: Marechal et al., 2019; Pereira et al., 2009. Dp3Yey: Yu et 

al., 2010b. Dp2Yey: Yu et al., 2010b. Tc1: Hall et al., 2016; Morice et al., 2008; O’Doherty et al., 

2005; Witton et al., 2015. TTS: Belichenko et al., 2015; Yu et al., 2010a. 
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1.4. Research aims and hypotheses 

While individuals with DS are relative unimpaired in immediate non-verbal recall tests, 

severe memory impairments arise in delayed recall tests, concerning all sorts of material. 

Memory for visual objects and for visuospatial information is equally affected when tested 

after intervals exceeding a handful of seconds. In conjunction with aberrant hippocampal 

morphology, the behavioural evidence indicates abnormal HPC-function as the primary 

cause of LTM impairments in the DS population. The mechanisms through which over-

dosage of Hsa21 genes affects hippocampal activity and memory processes, are poorly 

understood.  

By studying the Dp1Tyb, Dp3Yey and Dp2Yey mouse models of segmental DS, the 

main aim of the current research was to determine the impact of over-dosage of distinct 

Hsa21 gene orthologous regions on recognition memory function (see chapter 3). The 

animals were tested on a battery of object-recognition memory tasks known to rely on a 

network of medial temporal lobe structures that includes the HPC and PRH cortex, in an 

attempt to link the trisomies to aberrant function of specific subregions. Additionally, since 

ageing in DS is characterised by a dramatic increase in AD-like pathology, animals were 

tested both at adult and advanced age, to uncover whether specific orthologous regions 

contributed to age-related cognitive decline. To better characterise behavioural phenotypes 

associated to the three trisomies and to control for possible confounding effects of motor 

function on memory performance, the animals also underwent the Elevated Plus Maze 

(EPM) test to assess anxiety and locomotor activity levels. 

The secondary aim of this research was to study whether patterns of memory 

performance delineated with object-recognition memory tasks were associated with 

biochemical alterations in the HPC (chapter 4). Glutamate receptors are fundamental for 

the synaptic plasticity changes postulated to underpin memory function. Thus, expression 

of a series of glutamate receptors was measured with western blots in hippocampal 

synaptosomes collected from the three trisomy models. 

Individuals with DS and mouse models of DS report memory impairments that depend 

on the retention interval and that implicate aberrant function of both the HPC and the PRH 

cortex. Based on the presence of known relevant genes and on previous studies on mouse 

models of the Mmu16, Mmu17 and Mmu10 trisomy, the three mouse lines were expected 

to reproduce these impairments in object-recognition memory tasks, revealing trisomy-

dependent memory profiles. This thesis tested the hypothesis that the Mmu16 trisomy 

would be associated with hippocampal dysfunction, the Mmu17 trisomy with PRH cortex 

dysfunction and the Mmu16 and Mmu10 trisomies with age-related cognitive decline. 

Additionally, impairments observed in HPC-dependent memory tasks – OiP, TOr, Loc – 

were expected to be associated with altered levels of glutamate receptors in the HPC. More 
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detailed hypotheses on each mouse line will be presented in the experimental chapters 3 

and 4. 

In comparison to less recently generated DS mouse models, the Dp1Tyb, Dp3Yey 

and Dp2Yey provide the most accurate representation of the Mmu16, Mmu17 and Mmu10 

trisomy. A comprehensive memory profile of the three models has never been carried out 

before and only very limited research is available concerning the expression of glutamate 

receptors. The impact of ageing on behavioural and biochemical phenotypes has also never 

been assessed before in these models. The findings of this thesis are thus anticipated to 

contribute to the understanding of the complex genotype-phenotype relationship underlying 

memory impairments in DS and more generally, to the understanding of the neural 

substrates of recognition memory. 

 



  

 

 

 

 

 

 

 

Chapter 2: Methods 
 

 

 

Overview 

Cohorts of Dp1Tyb, Dp3Yey and Dp2Yey animals were tested on a battery of object-

recognition memory tasks and on the elevated plus maze test. Hippocampal and frontal 

cortex samples were subsequently collected for biochemical analyses assessing 

expression of glutamate receptors in synaptosome preparations. Information on the 

cohorts, general procedures, materials and statistical analyses employed in the behavioural 

and biochemical assays is described in this chapter. Variations from the protocols are 

described in the specific experimental chapters 3 and 4. 
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2.1. Animal subjects 

All animals were genetically engineered at the Francis Crick Institute (Mill Hill, UK) 

and bred from the mating with C57BL/6JNIMR. At approximately 3 months of age, the 

animals were sent to Cardiff University (Cardiff, UK), where all experiments took place. 

Transgenic animals carried an exact duplication of one of the three Hsa21 orthologous 

regions on Mmu 16, 17 or 10 (see fig.1.1). Dp1Tyb animals carried a duplication of Mmu16 

orthologs (Lipi - Zbtb21), Dp3Yey animals of Mmu17 orthologs (Abcg1 - Rrp1b) and Dp2Yey 

animals of Mmu10 orthologs (Prmt2 - Pdxk). Detailed information on the generation of the 

mouse lines is provided in the following section. 

Cohorts 

All animals were male. To determine the impact of ageing in the three mutations, 

cohorts of different age were used (young: 4 months old; adult: 8-12 months old; aged: 20 

months old). All cohorts consisted of a roughly equal number of age-matched wildtype (WT) 

and transgenic (TG) animals. Table 2.1 reports a summary of the tested cohorts. 

Housing conditions 

The animals were housed in opaque plastic cages (L 48 cm x W 15 cm x H 13 cm) 

and held in a purpose built holding room with a 12-h light/dark cycle. The room temperature 

was maintained at a stable 21 ± 2 °C with humidity levels of 60 ± 10%. All cages were lined 

with sawdust bedding and provided with two cardboard tunnels, a wooden chew stick and 

cotton for nesting. The animals were housed in groups of 2-5 per cage and had ad libitum 

access to water and grain-based food pellets.  

Body weight 

The animals were weighed weekly and average body weights are shown in table 2.1. 

Body weight was consistently reduced in Dp1Tyb mice, deteriorating with ageing. 

Independent samples Student’s t-tests (section 2.2.3 for details on statistical methods) 

found that weight differences were not significant at 4 months of age (t(21)=1.735; p=0.097), 

but at 8-12 months (t(21)=2.339; p=0.029) and at 20 months (t(14)=4.189; p<0.001) Dp1Tyb 

weighed significantly less compared to age-matched wildtypes. No statistically significant 

weight difference was observed in the Dp3Yey or Dp2Yey cohorts, at any age (data not 

shown). 

Health 

Health and wellbeing of the animals were checked weekly along with cage changes. 

Throughout the housing period, no increase in mortality rates or incidence of physical 

conditions was observed for trisomic animals of either the three mouse lines.  
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Ethics 

All experiments were conducted in accordance with the Animals Scientific Procedures 

Act (1986) of the UK and the European Union directive 2010/63/EU. Previous studies from 

our laboratory indicated that a sample size of 10-12 animals per genotype provided 

sufficient statistical power while minimising the use of animals and balancing costs. 

 

 

Table 2.1: Sample size and average weight of the cohorts. a denotes significant group difference 

at p<0.05; b denotes significant group difference at p<0.001. 
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 Genetic engineering of the mouse lines  

For all three mouse lines, embryonic stem cells (ES) carrying a duplication of one of 

the three Hsa21 orthologous regions were generated via Cre/loxP engineering. Cre 

recombinase is an enzyme that recognises loxP sites and recombines genes flanked within 

loxP sites. Vectors targeting specific gene sequences were transfected to ES cells to insert 

loxP sites into the endpoints of the respective orthologous region on Mmu16, 17 or 10. 

Detailed information on the vectors used for each mouse line is reported below. A Cre-

expression vector was then transfected into targeted ES cells to induce recombination and 

thus duplication of the given genetic portion labelled within the loxP sites. The duplication 

was then confirmed by Southern blot analysis. Successfully recombined ES cells were 

injected into blastocysts isolated from female C57BL/6J to generate chimeric mice. 

Chimeric mice were then bred with C57BL/6J to produce a colony of the respective mouse 

line, with TG animals carrying the genetic duplication. Weaning took place at 4-5 weeks of 

age. All animals used in this research were backcrossed for at least 5 generations.  

Dp1Tyb 

 Cre-mediated Mmu16 recombination between loxP sites proximal to Lipi and distal to 

Zbtb21 injecting the MHPP352i17-targeting and the MHPN352i16-targeting vector 

respectively, in HM-1 mouse ES cells. The recombination duplicated a 23 Mb region 

syntenic to Hsa21 from q 11.2 to q22.3, corresponding to ~115 genes. The average litter 

size was 4, with a 30% transmission rate of the mutation. Increased mortality was observed 

prior to weaning, mainly due to hydrocephalous. 

Dp3Yey 

 Cre-mediated Mmu17 recombination between loxP sites proximal to Abcg1 and distal 

to Rrp1b injecting the pTV(17)1EP1-targeting and the pTV(17)1EP2-targeting vector 

respectively, in AB2.2 mouse ES cells. The recombination duplicated a 1.1 Mb region 

syntenic to the proximal part of q22.3 on Hsa21, corresponding to ~19 genes. The average 

litter size was 6-8, with a 50% transmission rate of the mutation. 

Dp2Yey 

 Cre-mediated Mmu10 recombination between loxP sites proximal to Prmt2 and distal 

to Pdxk injecting the pTV(10)1EP1-targeting and the pTV(10)1EP2-targeting vector 

respectively, in AB2.2 mouse ES cells. The recombination duplicated a 2.3 Mb region 

syntenic to the distal part of q22.3 on Hsa21, corresponding to ~41 genes. The average 

litter size was 6-8, with a 50% transmission rate of the mutation. 
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2.1.1.1. Genotyping 

 The colonies were genotyped by the molecular diagnostics company Transnetyx 

(Cordova, Tennessee, USA) using a robotic, fully automated genotyping system. Real-time 

quantitative polymerase chain reaction (real-time qPCR) was used to determine whether 

animals were transgenic or wildtype. In real-time qPCR, lysed samples are subjected to 

repeated heating and cooling cycles to induce a polymerase to synthesise new DNA for a 

region of interest labelled by oligonucleotide primers bound to specific genetic sequences. 

DNA synthesis leads to the activation of a fluorescent reporter molecule and fluorescence 

intensity is then used to quantify the accumulation of newly synthesised target-DNA in a 

given sample. The amount of newly synthesised target-DNA is proportional to the amount 

of target-DNA present in the sample before the start of the PCR. Real-time qPCR monitors 

in real time the amount of target-DNA as PCR cycles are carried out. 

 Ear biopsies were collected at the Francis Crick Institute (Mill Hill, UK) and then 

shipped to Transnetyx (Cambridge, UK) in a sealed well plate. Samples were incubated into 

a caustic lysing buffer (NaOH ) for two hours at 55°C to extract DNA and then neutralised 

in a neutralising buffer. DNA was isolated with a magnetic beads-based nucleic acid 

purification. Lysed sample solutions were combined with MagneSil paramagnetic particles 

(Promega) to capture and isolate the extracted DNA. Sample solutions were then washed 

with EtOH and DNA was eluted with dH2O. Applied Biosystems custom TaqMan assays 

(ThermoFisher) were designed to test affinity to the three genetic mutations. The primer 

sequences used in each TaqMan assay are listed in table 2.2. For each mouse line, a 

specific PCR mastermix solution containing primers (900nM) and a TaqMan probe bound 

to a fluorescent dye label (250nM) was added to the isolated DNA. The well plate was then 

loaded onto a Viia7 system (ThermoFisher) and the PCR process initiated. Firstly, sample 

solutions were subjected to a single cycle of initial DNA denaturation (2 minutes at 50°C 

and 10 minutes at 95°C). This was followed by a cycle consisting of 15 seconds at 95°C for 

further denaturation and 1 minute at 60°C for primers’ annealing and DNA extension by Taq 

polymerase. This cycle was repeated 40 times. An automated results review system 

assessed fluorescence intensity over number of PCR cycles and determined whether 

samples were positive or negative for a given TaqMan assay. Figure 2.1 shows an example 

of a real-time qPCR plot obtained from probing Dp3Yey samples. 
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Table 2.2: Forward and reverse primer sequences for TaqMan assays. These sequences were 

used to genotype the three mouse lines. 

  

 

 

  

Figure 2.1: Real-time qPCR plot of Dp3Yey samples. The plot shows fluorescence intensity (y-

axis) over number of PCR cycles (x-axis), where each line represents a different sample. Lines 

that peaked and reached plateau at earlier PCR cycles were classified as positive for the Dp3Yey 

TaqMan assay (TG animals) while lines that peaked only at later PCR cycles were classified as 

negative (WT animals). 
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2.2. Behavioural assays 

The main aim of this research was to assess learning and memory processes in the 

three models of segmental Down Syndrome. All animals underwent behavioural assays to 

test memory, namely different versions of object-recognition memory tasks (2.2.1). As 

willingness to explore novel environments is a key element of these cognitive tasks, all 

animals also underwent the Elevated plus maze test of anxiety (2.2.2). For each assay, 

identification numbers were generated and the experimenter remained blind to genotype 

throughout the entire experimental period. 

 Object-recognition memory tasks 

All cohorts underwent memory tasks using objects to assess different features of 

recognition memory that rely on a well-characterised circuit involving the perirhinal cortex, 

hippocampus and prefrontal cortex. The tasks were also designed to test short-term and 

long-term memory for object identity, object-in-place associations, object location and 

temporal order associations. An overview of the different types of object-recognition 

memory tasks used is provided in figure 2.4. Briefly, the animal was placed in an arena 

containing different objects and after a relatively short or a longer retention interval, the 

mouse was re-placed in the same arena now containing familiar and novel object arrays. 

Contact times with the objects were recorded and intact memory processes were predicted 

to produce higher contact times with target objects. 

2.2.1.1. Materials 

Object-recognition memory tasks were run in a 60 cm (L) x 60 cm (W) x 40 cm (H) 

open field arena made of transparent Plexiglas (fig. 2.2a). The floor of the arena was white 

and the exterior walls were covered with white paper. Distinct high-contrast visual cues 

were taped to the walls of the test room and were visible from within the arena, serving as 

distal, extramaze reference points (fig. 2.2b). The objects used in the tasks were everyday 

objects of different shape, colours and materials. Black or white adhesive tape was attached 

to some objects to create high-contrast distinctive patterns and maximise differences 

between objects (fig. 2.2c). Common features of the selected objects were that they were 

of sufficient weight not to be displaced by the animals and sufficient height to prevent 

climbing. The objects were positioned 10cm away from the corners of the arena and always 

in the same orientation. The objects and the arena were cleaned with 70% ethanol wipes 

before and between each experimental phase to eliminate odour cues. The experiments 

were recorded with an overhead camera, a Philips DVD-R recorder and an Hitachi 
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television. Two Karrimor run stopwatches were used to record contact times with the 

objects. 

 

 

 

 

  

a) 

b) 

c) 

Figure 2.2: Materials used in object-recognition memory tasks. a) Plexiglas arena. b) Example 

of distal spatial cues taped to the walls of the test room. c) Example of objects used. 
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2.2.1.2. Procedure 

Habituation 

Before the experimental period, the animals were handled in the test room by the 

experimenter for approximately 5 minutes, for five consecutive days. Two habituation 

sessions of 10 minutes were then carried out with each animal on two separate days. In the 

first session, the animal was placed in the empty arena while in the second session, an 

object was located in the centre of the arena. The aim of the two sessions was to habituate 

the animal to the new environment and to the presence of objects, respectively. In the 

second session, contact times with the object were recorded and used as an indicative 

measure to determine whether the animal was ready to start the experiment. Animals with 

low contact times (< 7 sec) were given a further habituation session with the object the 

following day. 

Design  

All object-recognition memory tasks consisted of two sample phases followed by a 

test phase (fig. 2.4). Each phase lasted 10 minutes. In all phases, the mouse was placed in 

the centre of the arena and allowed to freely explore the objects in the arena. In between 

the phases, the animal was returned to its home cage for a predetermined time interval. 

The delay between the last sample phase and the test phase was varied to assess different 

memory spans, testing shorter or longer retention intervals. In the test phase, a feature of 

the object array was changed (e.g. a new object or an object in a new location), which 

resulted in familiar and novel target objects. 

In tasks where more than one delay between sample and test phases was used, the 

animals underwent the two delays in counterbalanced order. Testing times were also 

counterbalanced in respect to morning and afternoon experimental sessions. Position of the 

objects in the arena and selection of novel objects were counterbalanced amongst the mice, 

employing as many as possible different setups (fig. 2.3). Testing with different delays or 

tasks was separated by at least a 24-hour rest period in the home cage. 

The animals were run by an experimenter who was blind to the condition of the 

animals. The mice were run in pairs consisting of a WT and a TG animal. The experimenter 

was not blind in respect to which objects were novel and which familiar targets in the test 

phase. Table 2.3 shows an example of how the pairs were allocated to delays and testing 

times. 

Scoring 

Contact times with the objects during the sample phases were scored manually with 

one stopwatch, yielding one score for all objects in the arena. Contact times during the test 

phase were scored manually with two stopwatches, yielding one score for all familiar objects 
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and one score for all novel objects. Contact behaviour with the objects was defined as the 

animal exploring the object (touching the object with the forepaws and/or active, inquisitive 

sniffing) from a distance not greater than 1cm and facing the object. Passive sitting or 

grooming in front of the object were not considered explorative behaviour and were not 

scored. Similarly, attempts to climb onto an object or to chew parts of an object were not 

scored. Subjects with a total contact time < 3 seconds in the sample phase or test phase of 

an object-recognition memory task were considered to be exploring the objects insufficiently 

and were excluded from the analysis of that task. 

Mean contact times with the objects during sample and test phases were calculated. 

The data were further divided to obtain mean contact times with one object in sample 

phases (total object contact time divided by number of objects) and test phases (total 

contact time with familiar resp. target objects divided by number of familiar resp. target 

objects). The main output of object-recognition memory tasks was preference for novel over 

the familiar targets. To obtain a preference for the novel target independent of overall 

contact time during the test phase, a discrimination ratio of contact with novel objects over 

total object contact time was calculated. This resulted in a ratio ranging from 0 to 1, where 

ratios over 0.5 indicated a preference for novel objects and suggested intact recognition 

memory processes. In general, discrimination ratios were calculated as follows: 

 

𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑡𝑖𝑚𝑒 𝑤𝑖𝑡ℎ 𝑡𝑎𝑟𝑔𝑒𝑡 𝑜𝑏𝑗𝑒𝑐𝑡𝑠
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑟𝑔𝑒𝑡 𝑜𝑏𝑗𝑒𝑐𝑡𝑠

𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑡𝑖𝑚𝑒 𝑤𝑖𝑡ℎ 𝑡𝑎𝑟𝑔𝑒𝑡 𝑜𝑏𝑗𝑒𝑐𝑡𝑠
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑟𝑔𝑒𝑡 𝑜𝑏𝑗𝑒𝑐𝑡𝑠

+
𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑡𝑖𝑚𝑒 𝑤𝑖𝑡ℎ 𝑓𝑎𝑚𝑖𝑙𝑖𝑎𝑟 𝑜𝑏𝑗𝑒𝑐𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑎𝑚𝑖𝑙𝑖𝑎𝑟 𝑜𝑏𝑗𝑒𝑐𝑡𝑠

 

 

 

Table 2.3: Counterbalancing of testing time and delay. Animals were run blindly, in pairs of one 

WT and one TG animal. 

 

Pair Blind ID Genotype Delay 1 Testing time Delay 2 Time of day 

1 1 WT 10 min AM 24 h PM 

 2 TG 10 min AM 24 h PM 

2 3 TG 10 min PM 24 h AM 

 4 WT 10 min PM 24 h AM 

3 5 TG 24 h AM 10 min PM 

 6 WT 24 h AM 10 min PM 

4 7 WT 24 h PM 10 min AM 

 8 TG 24 h PM 10 min AM 
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2.2.1.3. Tasks  

To assess different features of recognition memory, the Novel object recognition task, 

the Object-in-Place task, the Object location task and the Temporal order task were used 

(fig. 2.4). The number and type of object-recognition memory tasks ran with a given cohort 

was contingent upon intact memory for object identity as tested with the Novel object 

recognition task. Successful performance in this task was a requirement for further testing 

with the Object-in-place task and Temporal order task but not the Object Location task, as 

intact processing of object-information is essential in the first two, but not the latter task 

(Barker & Warburton, 2011b). 

Novel Object Recognition task (NOR) 

Three different objects were used in two identical 10-min sample phases, 10 minutes 

apart. In the 10-min test phase, one of the objects was replaced with a novel object. The 

side on which the novel object was presented was counterbalanced. The animal was 

expected to discriminate between objects encountered in the sample phases and the novel 

object, indicating intact memory for object identity (fig. 2.4a). 

Object-in-Place task (OiP) 

Three different objects were used in two identical sample phases as described above, 

10 minutes apart. The same objects were used in the test phase, however two of the objects 

exchanged place, in counterbalanced fashion. The animal was expected to discriminate 

between stationary and displaced objects, indicating intact memory for object-in-place 

associations (fig. 2.4b). As this task utilised different objects, it depended on intact memory 

for object identity (Barker & Warburton, 2011b). 

 

Figure 2.3: Counterbalancing of object array. Different symbols represent different objects. The 

position of the objects was continuously rotated clockwise and the selection of the novel object 

(circled in red) was continuously alternated. An analogous counterbalancing logic was used in all 

types of object-recognition memory tasks. 
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Object Location task (Loc) 

Three identical objects were used in two identical sample phases as described above, 

10 minutes apart. The same objects were used in the test phase, where one object moved 

to a previously vacant location, in counterbalanced fashion. The animal was expected to 

discriminate between stationary and displaced objects, indicating intact recognition memory 

for spatial locations (fig. 2.4c). As this task utilised identical objects, it did not depend on 

memory for object identity (Barker & Warburton, 2011b). 

Temporal order task (TOr) 

Two different pairs of identical objects were used in two sample phases, which were 

separated by one hour. In the test phase, one object from each pair was presented. The 

animal was expected to discriminate between the more recently and the less recently 

presented object, indicating intact memory for temporal order associations (fig. 2.4d). As 

this task utilised different objects, it depended on intact memory for object identity (Barker 

& Warburton, 2011b). The order in which the pairs of objects were presented in the sample 

phases was counterbalanced. 
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Figure 2.4: Design of the object-recognition memory tasks. a) Novel Object Recognition task. b) 

Object-in-Place task. c) Object Location task. d) Temporal Order task. Different symbols represent 

different objects and novel objects are in dark blue. The delay between sample and test phase was 

varied depending on the experiment. S = sample phase; T = test phase. 
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 Elevated plus maze test 

To determine the impact of the three genetic mutations on affective phenotypes 

potentially relevant to memory tasks that rely on exploration of novelty, cohorts of the 

Dp1Tyb, Dp3Yey and Dp2Yey were tested with the Elevated Plus Maze to measure anxiety. 

Briefly, the animal was placed in a plus-shaped maze made of two enclosed arms and two 

open arms. The amount of time spent in closed versus open arms was used to determine 

anxiety. 

2.2.2.1. Materials 

 The test was run in an 86 cm (L) x 86 cm (W) x 74 cm (H) x 6 cm (internal W) plus-

shaped wooden maze (fig. 2.5). The plus-shape consisted of two closed arms and two open 

arms, with a small, neutral, centre area (6x6 cm2). The closed arms were enclosed within 

17 cm-high black walls, while the open arms were surrounded by a 1 cm-high rim of 

transparent Plexiglas. The floor of the maze was white. The maze was cleaned with 70% 

ethanol wipes before each tested animal to eliminate odour cues. The experiments were 

recorded with an overhead camera connected to a Sony VAIO laptop using the open-source 

Open Broadcaster Software (OBS Studio 20.1.3). The videos were recorded in .avi format 

(640x480, 30 fps). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Elevated plus maze. Closed arms were safe and sheltered in contrast to the exposed 

open arms of the maze. 
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2.2.2.2. Procedure 

Habituation 

Since the Elevated Plus Maze test assessed anxiety levels, the animals were not 

habituated, either to the test room nor to the maze. The animals were nonetheless already 

accustomed to being handled by the experimenter due to previous behavioural 

experiments.  

Design 

 Each animal underwent one trial on the Elevated Plus Maze. The animal was placed 

in the centre of the maze and explored the area for 5 minutes. Testing was carried out 

across the day and the groups (WT and TG) were distributed equally across morning and 

afternoon sessions.  

Scoring with EthoVision XT 13 

The explorative behaviour of the animal in the maze was scored with the tracking 

software Ethovision XT 13 (Noldus Information Technology). The recorded video clips were 

fed to EthoVision and the animal’s trail in the maze was tracked throughout the 5-minute 

trial. Firstly, an image of the maze was used to calibrate the centimetres-to-pixels 

conversion and to divide the maze into three different zones: closed arms, open arms, and 

centre. Automated settings were used to recognise and track the animal within the maze. 

This yielded three different tracked points: nose-point, body-centre-point, and tail-base-

point. Zone entry was defined as all three points being located within a given zone. To 

correct for involuntary movements (e.g. tail jitter) a zone exit threshold of 1.50 cm was used 

for all three zones. The precision of the tracking was verified by hand for each video clip 

and tracking errors were corrected manually. Figure 2.6 shows a graphical representation 

of the setup.  

The tracking generated time scores for each zone. The main output of the Elevated 

Plus Maze was the amount of time spent in closed and open arms. The following mean 

scores were also generated with EthoVision: arm entry (frequency and latency to first entry), 

distance walked in the arms [cm] (body-center-point), velocity in the arms [cm/sec] (body-

center-point). Head dipping behaviour in the open arms was scored manually with 

EthoVision (frequency and latency to first dip). Head dipping represented risk assessing 

behaviour (Cruz, Frei, & Graeff, 1994) and was defined as a clear downward movement of 

the head towards the floor. The centre of the maze was considered as a neutral, transition 

zone and behaviour in the centre was not scored. Heat maps of the maze were also 

generated by merging mean time scores of WT and TG animals in each zone. 
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Figure 2.6: Elevated plus maze in EthoVision. The maze was divided into three zones: centre 

(blue), closed arms (orange), open arms (pink). Three points were tracked for each animal: nose-

point (yellow triangle), body-center-point (red dot), tail-base-point (blue square). 
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 Data analyses 

The data were mainly analysed using parametric statistics. Under certain 

circumstances, the data were further analysed with Bayesian statistical analyses for the 

reasons outlined below. 

For a given dataset, frequentist statistical inference generates a test value which is 

compared against a critical value representing the theoretical sampling distribution of the 

test value if the null hypothesis were true. If the test value is more extreme than the critical 

value, the null hypothesis (H0) is rejected and the alternative hypothesis (H1) is accepted. 

The result is said to be significant at a predetermined type I error (α-level). This mechanism 

implies that H0 can only be rejected but never verified, one of the major shortcomings of 

frequentist statistics. For the cognitive processes investigated in this study, the 

interpretation of non-significant results was however fundamental, as lack of significant 

differences between the WT and TG group suggests intact, normal memory processes.  

Bayesian factor analysis doesn’t rely on significance thresholds but directly reports 

the strength of the evidence in favour of H0 (B01) and H1 (B10) respectively. The prior 

distributions of H0 and H1 are compared to the observed dataset (posterior distribution) to 

calculate its probability under each hypothesis. These probabilities are then used to 

generate Bayesian factors. Larger Bayesian factors indicate more evidence in favour of a 

given hypothesis, meaning that the hypothesis postulates the observed data as more 

probable. Since Bayesian statistics allows one to quantify evidence in favour of H0, non-

significant results that carried theoretical relevance were further analysed with Bayesian 

analyses, making the absence of group differences a testable hypothesis. Detailed 

information on the data analyses is provided below. 

Frequentist statistical analyses 

Statistical analyses were conducted using IBM SPSS Statistics 23. For all variables, 

normal distribution was evaluated with Shapiro-Wilk tests (p>0.05), skewness, kurtosis, 

histograms, and Q-Q plots. Data were checked for outliers by evaluating boxplots (values 

outside the lower and the upper quartile by 3 times the interquartile range) and standard z-

scores, whereby z-scores smaller / greater than ± 3 were labelled as outliers. This is a 

widely accepted criterion, although it has been criticised (Iglewicz & Hoaglin, 1993). 

Homogeneity of variance was tested with Levene’s tests (p>0.05). Data that met the 

assumptions of parametric statistics were analysed with repeated measures two-way 

analyses of variance (ANOVAs). If the assumption of sphericity was violated (<0.05), then 

Greenhouse-Geisser corrected results were reported. Interactions were analysed with LSD 

adjusted tests of simple main effects. If tests of simple main effects violated Levene’s test 

of homogeneity of variance (p<0.05), results were compared with Welch’s tests. Where 
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appropriate, independent samples Student t-tests were used to directly compare 

performance of WT and TG animals. Unless otherwise specified, all results assume equal 

variances. Data that violated the assumptions of parametric statistics were analysed with 

analogous non-parametric tests, that is with Mann-Whitney U-tests and Krusal Wallis tests. 

For all the analyses the α-level was set at p<0.05.  

Bayesian statistical analyses 

Bayesian statistical analyses were conducted using the open-source software JASP 

0.9.0.1. Bayesian analysis do not require the data to meet any particular assumption, as 

the analysis purely calculates the probability that H0 and H1 attribute to the observed data. 

For all analyses, the strength of the evidence in favour of H0 (B01) was assessed, where 

factors > 1 indicated more evidence for B01 than B10 (B01 = 1/B10). The data were analysed 

with Bayesian independent samples Student t-tests, whereby the robustness of Bayes 

factors was evaluated by testing prior distributions of different widths. As the width of the 

prior distribution did not notably affect the size of Bayes factors, the default prior distribution 

(Cauchy scale =0.707) was used in all tests. 
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2.3. Biochemical assays 

 Brain tissue was collected to examine the effects of the three mutations on brain 

biochemistry and to possibly uncover biochemical mechanisms underlying behavioural 

phenotypes. Western blots were used to quantify the expression of different glutamate 

receptors in synaptosomal preparations. 

 Brain samples 

Brain tissue was collected at rest. The animals were sacrificed by cervical dislocation 

and the brains were immediately removed. The left hemisphere was dissected to remove 

hippocampus and frontal cortex. The frontal cortex dissection was defined as the most 

frontal third of the cortex (~4mm). The samples were immediately snap frozen on liquid 

nitrogen and stored at -80°C until further processing.  

For the Dp1Tyb, brain samples were collected from a single cohort at 20 months of 

age. For the Dp3Yey and the Dp2Yey, brain samples were collected from two different 

cohorts, one at 14 months and the other at 21-22 months of age. 

  Synaptosome extraction 

 A Synaptic Protein Extraction Reagent (Syn-PER) (ThermoFisher Scientific) was 

used to extract proteins and fractionate brain samples into purified synaptosomal and 

cytosolic fractions. Syn-PER reagent was added to each sample at 10µL/1mg of tissue 

together with a protease inhibitor cocktail (Set III, 1:100, Merck Millipore) and a phosphatase 

inhibitor cocktail (Set III, 1:50, Merck Millipore). The tissue was then homogenised manually 

with a tissue grinder, for approximately 40 seconds, to obtain a homogeneous solution 

without solid residues. The samples were then centrifuged for 10 minutes at 1200 × g in a 

refrigerated microcentrifuge at 4°C. The supernatant was carefully removed and the 

insoluble pellet was discarded. The supernatant was further centrifuged for 30 minutes at 

4°C at 1300 × g. This resulted in a supernatant containing the cytosolic fraction and an 

insoluble pellet containing the synaptosome fraction of neuronal cells. The supernatant was 

collected, while the insoluble pellet was re-suspended into Syn-PER at 1.5µL/1mg of 

original tissue weight. Both fractions were stored at -20°C until further processing. 

2.3.2.1. Bicinchoninic Acid Assay 

A Bicinchoninic Acid Assay (BCA) kit (ThermoFisher Scientific) was used to quantify 

the protein concentration of synaptosome samples. Standards were prepared with 1:2 serial 

dilutions of Bovine Serum Albumin (BSA) (Pierce, ThermoFisher Scientific), resulting in 

protein concentrations from 2 to 0.008mg/mL and a dH2O blank control. A 96-well plate 
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was used to load in duplicate the BSA standards, blank control, sample blank (SynPER plus 

protease and phosphatase inhibitor cocktails) and samples. For standards and blank 

control, 25µL were loaded while 1µL was loaded for sample blank and samples. To each 

well, 200µL of BCA working reagent (50 parts of Reagent A and 1 part of Reagent B) were 

added. The plate was mixed on a plate shaker for 30 seconds and incubated at 37°C for 30 

minutes. The light absorbance was read with a spectrophotometer at 540nm. Microsoft 

Excel 2013 was used to generate a standard curve based on the absorbance of the BSA 

standards and to then calculate the protein concentration of the samples. 

 Western blotting 

 Western blots were used to quantify the expression of proteins in synaptosome 

samples of the hippocampus or frontal cortex. The samples were diluted at 1:3 with 3x 

sample buffer (6.3mM TrisBase,  0.8%  [w/v]  SDS  (BioRad), 20%  [v/v]  Glycerol,  10%  

[v/v] β-mercaptoethanol, 2% [v/v] bromophenol blue, dH2O to 50ml) and reduced for 40 

minutes at 90°C prior to the first use. For subsequent uses, samples were thawed for 5 

minutes at 70°C. The samples were loaded onto a 7.5% polyacrylamide gel (dH2O, 2.5% 

[v/v] acrylamide (BioRad), 1.25% [v/v] Tris HCl, 0.1% [v/v] SDS, 0.05% [v/v] APS, 0.005% 

[v/v] TEMED (Sigma Aldrich)) and sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS-PAGE) was used to separate proteins based on their molecular 

weight. A protein concentration of 20µg was loaded for the samples and 10µl were loaded 

for the molecular weight marker (Precision Plus Protein All Blue Standards, BioRad). The 

electrophoresis was first run for 30 minutes at 40mV and then at 140mV for approximately 

90 minutes, in running buffer (25mM Tris base, 190mM glycine, 0.05% [v/v] SDS, pH 8.3). 

The gel was blotted onto a 0.45µm nitrocellulose electrode membrane (GE Healthcare Life 

Sciences) soaked in semi-dry blotting buffer (42.9mM Tris base, 38.9mM glycine, 0.038% 

SDS, in MeOH) for 1 hour at 39mA. After the blotting, the membrane was washed for 30 

seconds in Tris-buffered saline with Tween (TBS-T) (2mM Tris base, 15 mM NaCl, 0.1% 

Tween-20 (Fisher), pH 7.5), blocked for 1 hour at room temperature in 5% blotto (5% [w/v] 

non-fat milk powder (Tesco) in TBS-T) and then washed again for 30 seconds in TBS-T. 

The membrane was cut into different strips, allowing simultaneous incubation into different 

primary antibodies. The membranes were incubated into primary antibodies in 1% blotto 

either overnight at 4°C or for 2 hours at room temperature, on a roller. Optimal dilutions for 

each antibody were determined beforehand and are reported in table 2.4. After primary 

antibody incubation, membranes were washed in TBS-T three times for 10 minutes each 

and incubated into horseradish peroxidase (HRP)-conjugated secondary antibodies (rabbit 

1:15000, Vector Laboratories; or mouse 1:15000, (Vector Laboratories) in 1% blotto for 2 

hours (90 minutes for β-actin) at room temperature, on a roller. The membranes were then 
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washed again three times for 10 minutes each in TBS-T. Finally, the membranes were 

incubated for 5 minutes in a luminol-based enhanced chemiluminescence HRP substrate 

(SuperSignal West dura Extended duration substrate (ThermoFisher Scientific) or Pierce 

ECL western blotting substrate (ThermoFisher Scientific)) and then exposed in succession 

to an automated chemiluminescence machine (G:BOX Chemi XX6, Syngene) to detect 

immunoreactions. For further probing, the membranes were washed in TBS-T for 30 

seconds and incubated for 5 minutes into a stripping buffer (Restore Western blot stripping 

buffer; ThermoFisher Scientific) prior to repeating the antibody incubation procedure 

described above. 

 

Table 2.4: List of primary antibodies. Target, species, dilution and origin of the antibodies are 

reported. All antibodies were polyclonal except for monoclonal β-actin. 
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2.3.3.1. Validation of synaptosome extraction 

 An illustrative western blot assessing synaptic markers (GluN1 and PSD95) in 

synaptosome and cytosolic fractions of the hippocampus and frontal cortex was carried out 

to validate the synaptosome extraction protocol, demonstrating the purity of the fractions. 

Brain samples were obtained from three naïve WT animals (female, 16 months old) and 

protein concentration was measured for both synaptosome and cytosolic fractions with the 

BCA. The western blot was carried out using primary antibody dilutions optimised for 

synaptosome sample. Figure 2.7 shows the western blot results. Across brain regions and 

subjects, the expression of GluN1 and PSD95 was visibly higher in synaptosome relative 

to cytosolic sample. The expression of the housekeeping cytoskeletal protein β-actin was 

equivalent in both types of sample. These qualitative results confirmed that the 

synaptosome extraction protocol reliably produced a synaptically enriched sample. 

 

Figure 2.7: Illustrative western blot to validate the synaptosome extraction protocol. Synaptic 

markers (GluN1 and PSD95) were visibly higher in synaptosome than cytosolic fractions, while β-

actin levels were equivalent. syn= synaptosome; cyt = cytosol; n = 3 WT. 

 

 

 

 

 

 

 Data analyses 

Western blots were analysed with the open-source software NIH ImageJ (1.8.0) to 

quantify protein expression based on the optical density of each sample band. Background 

noise was removed and optical density scores were normalised to internal controls and to 

the expression of other relevant proteins (e.g. β-actin or PSD95) using Microsoft Excel 

2013, as described in the relevant chapter. Statistical analyses were conducted using IBM 

SPSS Statistics 23 as described in section 2.2.3. 

42 kDa 

110 kDa 

85 kDa 

β-actin 

PSD95 

Hippocampus Frontal cortex 

GluN1 

syn cyt cyt syn 



  

 

 

 

 

 

 

 

Chapter 3: Behavioural phenotypes 
 

 

 

Overview 

This chapter begins with an introduction on memory systems and their neural 

substrates, focusing on recognition memory. Recognition memory relies on a network of 

structures within the medial temporal lobe, including the hippocampus. Individuals with DS 

and mouse models of DS report aberrant hippocampal morphology and impairments in 

recognition memory. To determine the contribution of the Mmu16, Mmu17 and Mmu10 

trisomy to recognition memory function, Dp1Tyb, Dp3Yey and Dp2Yey animals were tested 

on a battery of memory tasks assessing different attributes and retention-spans of 

recognition memory. Behavioural experiments are reported in this chapter. The three mouse 

lines revealed distinct patterns of recognition memory performance, implicating distinct 

Hsa21 syntenic portions in the regulation of distinct features of recognition memory. 
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3.1. Introduction 

The capacity to record, retain and recall everyday experiences constitutes a central 

part of human life and is key to survival in animal species. For example, recognising familiar 

faces or driving the way to work are behaviours essential to the daily life and rely on the 

recollection of past experiences. For a mouse, discriminating between safe and noxious 

food or navigating the way to a hideout are behaviours essential to its  subsistence. Memory 

is however a hypothetical construct and as such, it needs to be modelled into theoretical 

frameworks in order to be studied. Studies of brain-injured patients and brain-lesioned 

animals revealed essential for the contemporary understanding of memory processes. Such 

studies rely on the concept of dissociation, whereby injury to a given brain region is 

observed to impair performance in a memory task while sparing performance in a different 

memory task. This type of findings provide evidence for the existence of distinct, 

independent functional subsystems within memory that are subserved by activity of distinct 

brain regions (Eichenbaum, Yonelinas, & Ranganath, 2007; Squire & Zola-Morgan, 1991). 

 Memory systems 

One of the earliest models of memory was developed by Atkinson and Shiffrin (1968). 

Their Multi-store model consisted of three different storage systems: sensory memory, 

short-term memory (STM) and long-term memory (LTM). According to the model, new 

information is presented in the form of a sensory input (e.g. a visual or acoustic stimulus) 

detected by the sensory systems, entering sensory memory. Information that is attentively 

attended is then transferred to STM for brief, temporary storage. Active maintenance 

rehearsal processes enable transfer of the information to LTM for permanent storage, while 

unrehearsed information decays and is eventually forgotten. Upon recall, information is 

retrieved from LTM and momentarily returned to STM for immediate availability.  

The existence of separate storage systems operating on different timescales as 

postulated by the Multi-store model has been corroborated by patient studies reporting 

dissociations between STM and LTM memory performance (Drachman & Arbit, 1966; 

Shallice & Warrington, 1970). One of the most notorious case studies in memory research 

is patient H.M. (Scoville & Milner, 1957). In an attempt to treat epilepsy, patient H.M. 

underwent the bilateral resection of the medial temporal lobe, a system of anatomically and 

functionally related structures comprising the hippocampus. Unexpectedly, the operation 

resulted in severe anterograde amnesia. The patient could recall episodes that occurred 

prior to the surgical intervention but was unable to form new lasting memories, showing a 

complete memory loss for events subsequent the surgery. Interestingly, despite the 

impairment in the long-term retention of new information, H.M. performed normally when 
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asked to memorise and immediately recall a series of digits, indicating intact STM under 

conditions of severely impaired LTM. The same dissociation was observed in other amnesic 

patients who suffered bilateral hippocampal lesions (Cave & Squire, 1992; Drachman & 

Arbit, 1966) and in animal models of medial temporal lobe lesions (Clark, West, Zola, & 

Squire, 2001; Overman, Ormsby, & Mishkin, 1990). These findings point to a critical role of 

the medial temporal lobe, in LTM but not STM.  

At this juncture, it is important to note that the Multi-store model of memory 

encompasses a very narrow definition of STM, postulating STM to retain memories for only 

extremely brief time intervals, namely under 30 seconds (Atkinson & Shiffrin, 1968). 

Although patient studies suggest that STM functions independently of the medial temporal 

lobe, there is evidence indicating that the medial temporal lobe is involved in STM when 

retention intervals exceed a handful of seconds. For example, rats with hippocampal lesions 

showed normal memory performance after a 4 seconds delay but were impaired after one 

minute (Clark et al., 2001). Similarly, monkeys with medial temporal lobe lesions reported 

intact memory up until 10 seconds and were impaired afterwards (Overman et al., 1990). 

Indeed, patient H.M. would generally forget newly learned information in under a minute 

and his short-term retention ability strongly depended upon continuous verbal rehearsal of 

the learned material (Milner, Squire, & Kandel, 1998). Finally, neuroimaging studies on 

healthy subjects demonstrate the involvement of the medial temporal lobe in STM tasks 

(Ranganath & D’Esposito, 2001). 

Given that the current research aimed to study the role of the medial temporal lobe in 

memory, such largely HPC-independent, immediate memories lie outside its scope. With 

regards to the Atkinson and Shiffrin model, it can be reasoned that the current research 

aimed to examine LTM after shorter and longer retention intervals. Therefore, a theoretical 

framework conceiving memory as a single, unitary storage system would be more 

appropriate. Cowan (1988) developed a unitary-store model of memory, proposing that all 

memories are stored in LTM. In this model, STM is defined as an activated portion of LTM. 

Within STM, a subset of activated items lies in the focus of attention, that is, in the immediate 

awareness of an individual. The strength of a given memory representation stored in LTM 

can vary, making the memory more or less likely to become activated, enter the focus of 

attention and be retrieved. For example, memories of recently, frequently or attentively 

experienced stimuli are postulated to be more strongly consolidated in LTM. The 

presentation of memory cues (e.g. relevant context) is predicted to facilitate memory 

retrieval by activating associated LTM representations. 

An important factor that both Atkinson and Shiffrin’s and Cowan’s memory model fail 

to address, is the nature of the memoranda. Both models postulate memory subsystems 

operating on different timescales but do not distinguish between different types of 
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information, implying that all permanent memories are stored in the same system regardless 

of their nature. However, patients with memory dissociations provide clear evidence for the 

existence of separate storage systems for different types of information. For example, 

despite the overwhelming incapacity to retain new facts and episodes, patient H.M. could 

successfully acquire and retain new motor skills indefinitely (Corkin, 1968). Similarly, 

patients with Parkinson’s disease were found unable to learn a procedural task but able to 

recall episodic details of the study, while amnesic patients with bilateral damage to the HPC 

reported the opposite pattern (Knowlton, Mangels, & Squire, 1996). 

Based on these and similar findings, LTM was postulated to consist of distinct storage 

systems for different types of information, a view currently widely accepted (Squire & Zola-

Morgan, 1991; Tulving, 1984). The main distinction lies between implicit (non-declarative) 

and explicit (declarative) memory. Implicit memory entails knowledge on how to carry out 

procedures, where the output is often an automatic motor response expressed through 

performance (e.g. playing an instrument or driving a car). This type of memory is 

independent of the medial temporal lobe and relies mainly on the striatum. Instead, explicit 

memory entails knowledge on facts and events, where the output is easily verbalised and 

expressed through recollection. Explicit memory relies on the medial temporal lobe system 

and can be further divided into semantic memory (knowledge on facts, e.g. recalling the 

date of the graduation ceremony) and episodic memory (knowledge on past episodes, e.g. 

recalling the events that took place during the graduation ceremony). Focus of the current 

research lies on recognition memory, a sub-type of episodic memory.  

 The medial temporal lobe system 

Episodic memory is the recollection of personally experienced events, whereby a 

given life episode is mentally re-lived. In the case of recalling the graduation ceremony, the 

episodic memory would be a combined representation of the content of the event (“what”), 

along with its contextual details, namely location (“where”) and time (“when”) of the event 

(Tulving, 2002).  

Anatomical studies of the human, primate and rodent brain identified the anatomical 

components of the medial temporal lobe system subserving episodic / episodic-like memory 

(Burwell, Witter, & Amaral, 1995; Suzuki & Amaral, 1994). There is general agreement that 

the medial temporal lobe system comprises the HPC and the adjacent entorhinal, perirhinal 

and parahippocampal (postrhinal in rodents) cortices. These structures are densely 

interconnected and together they form a functional network underpinning the acquisition of 

new declarative memories. 

 On the basis of the observed connectivity within the medial temporal lobe system, 

memory formation is widely viewed as a hierarchical process originating from sensory 
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systems and converging in the HPC (Eichenbaum et al., 2007; Squire & Zola-Morgan, 

1991). New information acquired through the sensory systems is processed by unimodal 

and polymodal neocortical association areas via two different pathways projecting to distinct 

medial temporal lobe structures. The ventral “what stream” extends along the temporal lobe 

and processes information regarding the features of a given item. Temporal neocortical 

areas send item-information to the PRH cortex, which then projects to the lateral entorhinal 

cortex. Representations of items (e.g. objects, people, events) are thus formed in the PRH 

and lateral entorhinal cortex. In contrast, the dorsal “where stream” extends along the 

parietal lobe and processes information regarding the context of a given item. Parietal 

neocortical areas send context-information to the parahippocampal cortex, which then 

projects to the medial entorhinal cortex. Representations of contexts (e.g. spatial locations, 

temporal information) are thus formed in the parahippocampal and medial entorhinal 

cortices. Information from the “what” and the “where” streams is then converged in the HPC, 

receiving inputs from the lateral and medial entorhinal cortex. As a consequence of this 

anatomical organisation, the HPC is postulated to be essential for the binding of item- and 

context-information into a cohesive episodic memory. Feedback connections within this 

system support memory retrieval, with the HPC projecting to the entorhinal cortex, 

respectively feeding back to the PRH and parahippocampal cortices, ultimately returning 

signals to neocortical areas of the corresponding stream. Reciprocal connections between 

the HPC and the medial prefrontal cortex also support memory consolidation and retrieval. 

Figure 3.1 provides a schematic representation of the information flow within the medial 

temporal lobe system. Evidence supporting the existence of separate pathways within the 

medial temporal lobe system is presented in the following section, focusing on recognition 

memory. 
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Figure 3.1: Information flow underlying formation and retrieval of episodic memory. The 

ventral “what” stream engages temporal neocortical areas to process object information (e.g. different 

object types) while the dorsal “where” stream engages parietal neocortical areas to process 

contextual information (e.g. spatial location in an open field maze). The streams travel through distinct 

medial temporal lobe regions to ultimately reach the HPC, where object and context information are 

integrated (e.g. location of a given object in the maze). Feedback connections within the system and 

with the medial prefrontal cortex support memory consolidation and retrieval. 
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3.1.2.1. Recognition memory 

Recognition memory concerns the ability to remember whether a stimulus has been 

previously encountered or not. The processes involved in recognition memory have been 

addressed by two major classes of models (Eichenbaum et al., 2007). Dual-process models 

view recognition memory as consisting of two qualitatively different components, familiarity 

and recollection. Familiarity is the knowledge that an item was encountered before, while 

contextual details of the episode are not remembered. Recognition memory based on 

familiarity processes is commonly assessed by testing the discrimination between novel 

and familiar individual stimuli, such as recognising the prior occurrence of a given object. 

Recollection is instead the full, detailed retrieval of the episode in which an item was 

encountered (i.e. “what-where-when”) and relies on activity within the medial temporal lobe 

system (Eichenbaum et al., 2007). Recognition memory based on recollection processes is 

commonly assessed by testing the discrimination between novel and familiar associations, 

such as recognising the prior occurrence of an object in a given spatial location or at a given 

time point. Alternatively, single-process models view recognition memory as a unitary 

process, whereby familiarity and recollection only differ quantitatively in the strength of the 

retrieved episodic memory (Eichenbaum et al., 2007). 

Tests of recognition memory in amnesic subjects provide evidence for a dissociation 

between familiarity and recollection processes, supporting a dual-process view (Aggleton 

et al., 2005). The contribution of patient studies is however limited, as the brain damage 

frequently concerns more than a single component of the medial temporal lobe system. In 

this respect, animal studies provide a better tool to investigate recognition memory 

processes and their neural underpinnings. In animals, recognition memory is commonly 

tested with behavioural paradigms relying on either the trained (delayed non-match-to-

sample tasks) or natural (spontaneous exploration tasks) tendency to prefer novelty 

(Eichenbaum et al., 2007; Ennaceur & Delacour, 1988; Joubert & Vauclair, 1986). In these 

tasks, animals are first presented with a set of stimuli during an acquisition phase and after 

a retention interval, they are presented with previously encountered and novel stimuli. By 

this means, preference for novelty is contingent upon the retrieval of the prior encounter 

with the stimuli, permitting inferences on recognition memory processes from the behaviour 

displayed by the animal. 

In rats, lesions of the PRH cortex were found to impair the recognition of a novel object 

among familiar objects, while lesions of the HPC did not impair object discrimination (Barker 

& Warburton, 2011b; Mumby, Gaskin, Glenn, Schramek, & Lehmann, 2002). Similarly, 

monkeys with lesions of the PRH cortex failed to choose novel objects paired with a food 

reward over familiar objects, while monkeys with lesions of the HPC, parahippocampal 

cortex or entorhinal cortex performed normally (Nemanic, Alvarado, & Bachevalier, 2004). 



 Chapter 3: Behavioural phenotypes  

75 
 

By contrast, recognition memory was found impaired by hippocampal lesions in tasks 

involving the recollection of places or contexts associated to individual stimuli (Bachevalier 

& Nemanic, 2008; Barker & Warburton, 2011b; Mumby et al., 2002). For example, Mumby 

et al. (2002) showed that while rats with hippocampal lesions displayed normal preference 

for exploring a novel object, they were unable to detect novelty when a familiar object was 

placed in a novel spatial position or presented in a novel test room. Interestingly, recognition 

memory relying on the binding of item- and context- information was also affected by lesions 

of other components of the medial temporal system. Monkeys and rats with lesions of either 

the HPC, PRH cortex, parahippocampal cortex or medial prefrontal cortex failed to display 

preference for familiar stimuli that exchanged position over stationary familiar stimuli, 

suggesting that integrated activity within the medial temporal lobe is necessary for the 

retrieval of associations (Barker & Warburton, 2011b; Bechavalier & Nemanic, 2008). 

Overall, animal lesion studies suggest that the PRH cortex and the HPC play distinct 

roles in recognition memory processes. Further evidence comes from electrophysiological 

and cell activity studies. Recordings from the monkey and rat brain showed that repeated 

presentation of a stimulus significantly decreased neuronal responses in the PRH cortex, 

while activity did not or only mildly decreased in the HPC (Xiang & Brown, 1998; Zhu, Brown, 

& Aggleton, 1995). Neurons in the PRH cortex and temporal cortex also showed higher 

responses to features of visual stimuli, such as colour and shape, compared to hippocampal 

and parahippocampal neurons (Riches, Wilson, & Brown, 1991). Instead, neurons in the 

HPC were found to selectively respond to visual stimuli occurring in particular spatial 

positions (Rolls et al., 1989). Similarly, the presentation of images of familiar items in novel 

spatial arrangements resulted in increased hippocampal and postrhinal neural activity, 

leaving PRH and temporal cortex activity levels unaltered, as measured by the expression 

of the immediate-early-gene c-fos (Wan, Aggleton, & Brown, 1999).  

Taken together, these findings identify the PRH cortex as fundamental for the 

recognition of individual items and the HPC for the recognition of spatial or contextual 

aspects associated to individual items. This widely accepted view, matches the hierarchical 

information flow underlying episodic memories outlined in section 3.1.2 and reflects a dual-

process model of recognition memory. Neurons in the PRH cortex encode primarily item-

information (“what stream”), whereby neuronal activity levels signal the familiarity of a 

stimulus and serve familiarity judgments based on single item-recognition processes. 

Hippocampal neurons encode context-information (“where stream”), bind it to item-

information and serve recollection judgments based on associative-recognition processes.  

In DS, medial temporal lobe structures exhibit abnormal morphology and individuals 

with DS report in fact impairments in the recognition of previously presented items and their 

spatial position (Clark et al., 2017; Vicari et al., 2000). To investigate the role of Hsa21 
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orthologous regions in recognition memory dysfunction, recognition memory was assessed 

in the Dp1Tyb, Dp3Yey and Dp2Yey mouse lines. A widely employed experimental 

paradigm to investigate single item- and associative-recognition processes in rodents are 

object-recognition memory tasks. 

Object-recognition memory tasks 

 Object-recognition paradigms for use with rodents are based on spontaneous 

exploration tasks. These rely on the natural tendency of rodents to explore novel stimuli 

(Ennaceur & Delacour, 1988).  The advantage of these tasks is that they do not require 

prior training or reinforcements, and the same basic paradigm can be used to test different 

processes and retention-spans of recognition memory. 

All object-recognition memory tasks consists of a sample phase in which the animal 

encodes an array of objects, and of a test phase, in which the presence of familiar objects 

is postulated to activate the representation of the sample episode and enable the animal to 

detect the presence of novel objects. Firstly, the animal is placed in an open field maze and 

allowed to freely explore an object array (sample phase). After a time delay, the animal is 

re-exposed to an object array consisting of previously encountered and novel objects (test 

phase). Object exploration times are used to create an index of novelty preference, whereby 

preference for novelty indicates intact recognition memory processes. In the test phase, 

different aspects of the object array can be altered to result in novelty, such as object type, 

object location or encounter recency. Distinct sample-test phase incongruences are used 

to assess single item- or associative-recognition processes, as described below. 

In the current research, four different types of object-recognition memory tasks were 

used: Novel Object Recognition (NOR), Object-in-Place (OiP), Object Location (Loc), 

Temporal Order (TOr). Although the exact protocols might slightly differ between 

laboratories, these four tasks are widely employed in mouse memory research (Ennaceur, 

2010; Warburton & Brown, 2015). In the NOR, novelty detection relies solely on single item-

recognition (“what”), whereby the animal is tested with two familiar objects and one new 

object (fig. 2.4a). In the OiP, novelty detection relies on the recognition of associations 

between single items and their spatial location (“what-where”), whereby the animal is tested 

with one stationary object and two familiar objects that exchanged location (fig. 2.4b). In the 

Loc, novelty detection relies on single spatial-recognition irrespective of object type 

(“where”), whereby the animal is tested with two stationary objects and one familiar object 

in a new location (fig. 2.4c). In the TOr, novelty detection relies on the recognition of 

associations between single items and their encounter time (“what-when”), whereby the 

animal is tested with a recently encountered and a remotely encountered object (fig. 2.4d). 

In reference to the neural underpinnings of recognition memory presented previously, 

reasonable assumptions can be made on the medial temporal lobe components that 
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underlie each of the four object-recognition memory tasks. The PRH cortex is expected to 

play a critical role in the single item-recognition processes that enable object novelty 

judgments in the NOR, while the item-in-context associative-recognition processes tested 

in the OiP and TOr would rely more on network activity within the medial temporal lobe. 

Finally, the single context-recognition processes that enable spatial novelty judgments in 

the Loc would mainly rely on the postrhinal cortex and the HPC. 

Indeed, these assumptions are corroborated by studies that explicitly aimed to 

investigate the neural basis of object-recognition memory tasks. Research by Barker and 

Warburton (2011b) used rats to test the effects of bilateral lesions of either the PRH cortex, 

the HPC or the medial prefrontal cortex (mPFC) on performance in the four object-

recognition memory tasks presented above. Unsurprisingly, PRH lesions impaired the 

detection of object novelty in the NOR task, while HPC or mPFC lesions did not affect 

performance. Instead, HPC but not PRH or mPFC lesions impaired the detection of novel 

spatial locations in the Loc task. Performance in the OiP and TOr tasks was affected by 

lesion of either of the three regions. In all tasks, impairments were observed both when 

memory was tested after short (5-min) and long (24-h) retention intervals. To confirm the 

necessity of integrated network activity in the OiP and TOr tasks, the authors also tested 

groups of rats with unilateral HPC lesions together with PRH or mPFC lesions in either the 

ipsilateral or contralateral hemisphere. According to the anatomy of the medial temporal 

lobe system, contralateral but not ipsilateral lesions disconnect network connectivity. 

Predictably, animals with crossed lesions were impaired in both tasks, while ipsilaterally 

lesioned animals performed normally.  

The crucial role of the PRH, but not of the HPC or mPFC, in novel object recognition 

tasks, has been amply demonstrated by several studies, as well as the importance of the 

HPC in object location tasks and of the three regions PRH, HPC and mPFC in object-in-

place and temporal order tasks (Barker, Bird, Alexander, & Warburton, 2007; Cross, Brown, 

Aggleton, Warburton, 2013; Good, Barnes, McGregor, & Honey, 2007; Mitchell & Laiacona, 

1998; Mumby et al., 2002; Mumby, Piterkin, Lecluse, & Lehmann, 2007). Together, studies 

employing object-recognition memory tasks converged to a clear dissociation pattern.  A 

summary of the characteristics of each object-recognition memory task is reported in table 

3.1. 

Nonetheless, a few studies reported the involvement of other brain regions as well. 

For example, performance in the NOR and Loc tasks was impaired by lesions of the nucleus 

accumbens (Nelson, Thur, Marsden, & Cassaday, 2010). Lesions of the retrosplenial cortex 

impaired OiP but not NOR performance (Vann & Aggleton, 2002) and lesions of the 

mediodorsal thalamic nucleus impaired both OiP and TOr performance (Cross et al., 2013). 

Therefore, although HPC, PRH and mPFC emerged as the key regions underlying 
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performance in object-recognition memory tasks, activity in other brain structures is also 

potentially relevant. 

In order to make appropriate inferences on memory processes from exploration times 

observed in object-recognition memory tasks, some key aspects of the tasks need to be 

considered. For one, as discussed by Ennaceur (2010), the choice of the object array must 

be given extensive thought. Although object exploration engages different sensory 

modalities, such as vision, olfaction and haptic perception, object discrimination relies 

mainly on the visual system. Vision in mice is however poor, with 97% of the mouse retina 

consisting of rods and having only two cone types, resulting in dichromatic, low, daylight 

vision (Jacobs, Williams, & Fenwick, 2004; Jeon, Strettoi, & Masland, 1998). Object 

discrimination thus should not be primarily based on colour as any object preference 

potentially observed in the test phase is unlikely to reflect recognition memory processes. 

Instead, objects that clearly differ in size or shape, or that present distinct high-contrast 

patterns, are more appropriate. The selected object array must at the same time prevent a 

priori object preferences. For example, objects that are particularly stimulating in terms of 

visual patterns, odour or surface protrusions, may profit from higher exploration times 

irrespective of the memory representations established during the task (Ennaceur, 2010).  

A final observation tackles a more conceptual aspect of object-recognition memory 

tasks. These tasks are designed to assess recognition memory, a specific type of episodic 

memory in which the cued recall of past experiences is used for novelty judgments. Under 

the perspective of Cowan’s memory model (1988), as the mouse is re-placed in the maze 

for the test phase, familiar cues, such as the environment and some of the objects, activate 

the associated LTM representations, namely the episodic memory of the sample phase. 

Activated representations become readily available and allow novelty detection as the 

animal explores the objects. In this regard, as argued by Ennaceur (2010), it must be noted 

that the value of the four object-recognition memory tasks presented here in the study of 

episodic-like memory is limited, as these tasks only assess certain aspects of a given 

episode and not the triangular “what-where-when” schema. Additionally, the recognition 

memory processes postulated to take place in these tasks are tightly linked to the visual 

system. Generalisation of the findings to other sensory modalities, or to recognition or 

episodic memory in general, is thus potentially problematic. Nonetheless, if conducted 

properly, object-recognition memory tasks provide a valuable tool to study the neural basis 

of visual recognition memory processes. 

At this juncture, it must be noted that while the presented model of recognition 

memory provides the advantage of differentiating between attributes of recognition memory, 

the what-where-when approach does not propose a psychological mechanism enabling 

familiarity judgments to be made. An alternative framework to study recognition memory 
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processes is the Sometimes-Opponent-Process model (SOP) (Wagner, 1981). The SOP 

model allows to address recognition memory processes in terms of habituation to familiar 

stimuli, leading to reduced responding and thus preference for novelty. Performance in 

object-recognition memory tasks will be discussed in the context of the SOP model in the 

general discussion (chapter 5). 

 

Table 3.1: Characteristics of object-recognition memory tasks. Novelty was operationalised 

differently in each task to test different single- or associative recognition memory processes, known 

to rely on different medial temporal lobe structures. Primarily based on Barker and Warburton 

(2011b). 
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 Study rationale 

Down Syndrome is a neurodevelopmental disorder caused by an extra copy of Hsa21. 

Memory function in DS is severely impaired (Godfrey & Lee, 2018; section 1.2.2.2). 

Although DS individuals show relatively preserved memory in immediate recall tests, 

memory is impaired after retention intervals exceeding a few minutes. Subjects with DS 

report deficits in the recognition of previously presented objects and their spatial location, 

along with learning deficits in visuospatial navigation tasks (Clark et al., 2017; Courbois et 

al., 2013; Lavenex et al., 2015; Purser et al., 2015; Vicari et al., 2000; Vicari et al., 2005). 

Patient studies and lesion studies in rodents demonstrate that the medial temporal lobe and 

the HPC in particular, are crucial for the formation of new episodic memories (Cave & 

Squire, 1992; Clark et al., 2001; Drachman & Arbit, 1966; Scoville & Milner, 1957). In DS, 

the HPC is characterised by reduced volume and aberrant cytoarchitecture (Guidi et al., 

2008; Pinter et al., 2001a; Pinter et al., 2001b). These changes are already visible in DS 

foetuses and persist through adulthood.  

DS is also characterised by age-related cognitive decline and increased incidence of 

early-onset AD (Lott & Head, 2000; Wisniewski, et al., 1985). AD is a neurodegenerative 

disorder characterised by episodic memory impairments and hippocampal degeneration, 

due to Aβ accumulation. Virtually all DS brains present signs of amyloid pathology, even at 

early age. Increased Aβ accumulation in DS has been associated to trisomy of key genes 

located on Hsa21, such as APP and S100B (Lott & Head, 2000). 

 Although a number of genes on Hsa21 has been implicated in cognition, such as 

DYRK1A, APP, RCAN1, S100B and CBS, the role that Hsa21 genes play in the regulation 

of memory function is poorly understood. The long arm of Hsa21 shares conserved synteny 

with the mouse genome, mapping to conserved regions on Mmu16, Mmu17, Mmu10 (Lana-

Elola et al., 2011). Based on this synteny, mouse models of segmental DS trisomic for 

distinct portions of the conserved regions have been generated via genetic engineering 

techniques, as reviewed in section 1.3. Indeed, mouse models of DS recreate a number of 

physical and cognitive DS-like features (Belichenko et al., 2009a; Holtzmann et al., 1996; 

Fernandez & Garner, 2007; Kleschevnikov et al., 2012; Li et al., 2007; Olson et al., 2007; 

Pereira et al., 2009; Richtsmeier et al., 2000; Richtsmeier et al., 2002; Souchet et al., 2019). 

The Dp1Tyb, Dp3Yey and Dp2Yey models were recently generated and they carry a 

complete and exact trisomy of the Mmu16, Mmu17, Mmu10 conserved regions, respectively 

(Yu et al., 2010b). By contrast, other mouse models such as the Ts65dn, Ts1Cje or Dp1Yah, 

carry trisomy of genes that are not syntenic to Hsa21 and/or lack trisomy of Hsa21 syntenic 

genes, in addition to the intended trisomy (Duchon et al., 2011b; Pereira et al., 2009). As 

such, the Dp1Tyb, Dp3Yey and Dp2Yey models represent the most valid tool to determine 

the separate contribution of each conserved region to DS-like phenotypes. 
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As previously discussed (section 3.1.2.1), several lesion studies have demonstrated 

that novelty/familiarity and associative recognition processes rely on different medial 

temporal lobe structures, engaging the HPC to a different extent. As such, the pattern of 

memory performance observed in object-recognition memory tasks permit inferences about 

putatively aberrant medial temporal lobe circuits. These tasks are widely employed in the 

study of DS mouse models, with previous evidence revealing trisomy-dependent 

impairments, suggesting that distinct genetic portions regulate distinct processes and 

timeframes of recognition memory. 

Performance on object-recognition tasks is however contingent upon the locomotor 

behaviour of the animal and its willingness to approach novelty. Altered locomotor activity 

and anxiety levels can impact contact times with the objects and mask novelty detection, 

ultimately confounding inferences on memory processes. In DS, motor function is aberrant, 

with individuals presenting hypotonia, gait abnormalities, and difficulties in balance and 

postural control (Weijerman & de Winter, 2010). Additionally, children and adolescents with 

DS also frequently report anxiety disorders, impulsivity and decreased attention. The 

prevalence of attention-deficit/hyperactivity disorders in DS has been estimated to almost 

45% (Ekstein, Glick, Weill, Kay, & Berger, 2011). Indeed, delayed motor development and 

impairments in motor coordination and balance have been observed in several DS models, 

including the Dp1Tyb (Costa et al., 1999; Goodliffe et al., 2016).  

A meta-analysis by Viggiano (2008) identified the entorhinal-hippocampal-septal-

prefrontal cortex-olfactory bulb axis as the system regulating activity levels and lesions of 

the HPC are known to result in hyperactivity (Bannerman et al., 2002). Furthermore, in 

addition to underlying memory function and activity levels, the HPC has also been 

implicated in emotional processing. On the EPM, rats with complete lesions of the HPC 

spent significantly more time in open arms compared to sham-operated rats, suggesting 

reduced anxiety (Bannerman et al., 2002). Similarly, Tg2576 mice, a mouse model of 

hippocampal amyloid pathology similar to AD, showed increased locomotor activity on the 

open-field test and reduced anxiety on the EPM (Lalonde, Lewis, Strazielle, Kim, & 

Fukuchi., 2003). Activity and anxiety phenotypes can thus be indicative of aberrant 

hippocampal function. 

In the present study, the impact of the Mmu16, Mmu17 and Mmu10 segmental 

trisomies on recognition memory processes and age-related cognitive decline was 

assessed. Cohorts of adult (12-13 months) and aged (18-20 months) Dp1Tyb, Dp3Yey and 

Dp2Yey animals underwent a battery of object-recognition memory tasks testing shorter 

(10-min) and longer (3-h or 24-h) retention intervals. To investigate locomotor activity and 

anxiety phenotypes in the trisomies and to disambiguate these variables from performance 
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in memory tasks, the three mouse lines also underwent the EPM test. The three models 

were predicted to display distinct patterns of memory performance, as detailed below. 

Several Hsa21 genes that have been implicated in learning and memory map to the 

Mmu 16 segment, such as App, Dyr1kA and Rcan1 (Lana-Elola et al., 2011). Mouse models 

of Mmu16 trisomy – Ts65Dn, Ts1Cje, Ts1Rhr mice – exhibit abnormal hippocampal 

morphology and impaired hippocampal LTP, along with deficits in HPC-dependent memory 

tasks, such as the MWM, CFC, T-maze test, Loc and OiP tasks (Belichenko et al., 2007; 

Belichenko et al., 2009a; Fernandez & Garner, 2007; Kleschevnikov et al., 2012; Sago et 

al., 2000). Similar phenotypes have been reported in Dp1Tyb mice (Goodliffe et al., 2016; 

Souchet et al., 2019; Yu et al., 2010b). Therefore, the Dp1Tyb mouse line was hypothesised 

to display impaired performance on the three HPC-dependent object-recognition memory 

tasks, namely the OiP, TOr and Loc tasks. Additionally, models of Mmu16 trisomy, including 

the Dp1Tyb, show impaired object novelty recognition, especially following long retention 

intervals (Belcihenko et al., 2009a; Kleschevnikov et al., 2012; Souchet et al., 2019). For 

example, Ts65dn mice were unable to detect object novelty after a 24-h delay but were 

unimpaired after a 10-min delay (Kleschevnikov et al., 2012). Therefore, the Dp1Tyb mouse 

line was also hypothesised to display impairments on the 24-h NOR test. Finally, because 

of the App trisomy, any spared NOR memory was predicted to deteriorate with age, as 

observed in mouse models of AD pathology (Hall et al., 2016; Webster, Bachstetter, Nelson, 

Schmitt, & Van Eldik, 2014).  

The Cbs gene has also been implicated in cognitive dysfunction and maps to the 

Mmu17 segment (Almuqbil et al., 2019; Marechal et al., 2019). Previous evidence on the 

Dp3Yey model reports enhanced hippocampal LTP and intact performance on the MWM 

and CFC task (Yu et al., 2010b). In a mouse model of incomplete Mmu17 trisomy, the 

Dp1Yah, novel object recognition was found impaired after a 1-h delay (Pereira et al., 2009). 

Therefore, the Dp3Yey mouse line was hypothesised to display memory deficits on the NOR 

task, possibly both on the 10-min and the 24-h test. If that were the case, further testing 

with the OiP and TOr tasks would be impracticable, as these tasks depend on intact object 

memory (Barker & Warburton, 2011b). Performance on the Loc task would however be 

testable and expected to report no impairments, in line with previous evidence on the 

Dp3Yey model showing intact performance in HPC-dependent tasks (Yu et al., 2010b). 

Ageing was not predicted to impact memory function. 

The S100b gene has been implicated in AD-pathology and maps to the Mmu10 

segment (Block et al., 2015). Previous evidence on the Dp2Yey model reports normal 

hippocampal LTP and intact performance in the MWM and CFC task at 2-4 months of age 

(Yu et al., 2010b). Therefore, younger Dp2Yey animals were hypothesised to display intact 

memory in HPC-dependent object-recognition memory tasks (OiP, TOr, Loc). Given trisomy 
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of S100b, Dp2Yey mice were hypothesised to display age-dependent cognitive decline, 

resulting in impaired memory performance on the NOR task at older age, as observed in 

mouse models of AD-pathology (Hall et al., 2016; Webster, et al., 2014). 

To date, no study has ever systematically examined recognition memory in the Dp1Tyb, 

Dp3Yey and Dp2Yey models. The current study aimed to provide a better understanding of 

memory dysfunction in DS by identifying gene portions associated to specific memory 

deficits, indicative of aberrant activity in specific medial temporal lobe structures. 
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3.2. Methods 

The general methods are described in chapter 2. Further details on the two 

behavioural tests are provided below. 

 Object-recognition memory tasks 

Object-recognition memory tasks were run as described in section 2.2.1. To obtain 

an initial evaluation of the impact of each trisomy on recognition memory, adult animals (12-

13 months) were first tested on the NOR and OiP tasks, each with a 10-min and a 24-h 

retention interval. Animals underwent the two tasks in counterbalanced order. In case of 

memory impairments, the mouse line was subsequently tested on the Loc and/or TOr task. 

Following the testing of adult animals, cohorts of older animals (18-20 months) were tested 

in the same way. Because memory impairments were observed in adult Dp1Tyb mice, a 

cohort of younger (4 months) mice was additionally tested on the OiP task. In total, 4 

experiments (Exp. 1a, 1b, 1c, 1d) were run on the Dp1Tyb, 2 on the Dp3Yey (Exp. 2a, 2b), 

and 2 on the Dp2Yey (Exp. 3a, 3b). 

Animal subjects 

 For the Dp1Tyb, a cohort of 12-month-old animals (11 WT and 12 Dp1Tyb) was used 

in Exp. 1a and 1b. The same cohort was used in Exp. 1c at 20 months of age (9 WT and 7 

Dp1Tyb). A different cohort of 4-month-old animals (11 WT and 12 Dp1Tyb) was used in 

Exp. 1d. For the Dp3Yey, a cohort of 13-month-old animals (12 WT and 12 Dp3Yey) was 

used in Exp. 2a and a different cohort of 18-month-old animals (9 WT and 12 Dp3Yey) was 

used in Exp. 2b. For the Dp2Yey, a cohort of 13-month-old animals (12 WT and 12 Dp2Yey) 

was used in Exp. 3a and a different cohort of 20-month-old animals (9 WT and 12 Dp2Yey) 

was used in Exp. 3b. 

Materials 

As described in section 2.2.1.1. 

Procedure 

As described in section 2.2.1.2. 

Data analysis 

Statistical analyses were conducted as described in section 2.2.3. The analyses were 

run separately for each mouse line and each object-recognition memory task. Total contact 

time with the objects was averaged over the total number of objects, resulting in mean 

contact times with one object for sample phases and mean contact times with one novel 
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and one familiar object for test phases. In tasks testing two delays, contact times during the 

sample phases were collapsed and averaged over the delays.   

For sample phases, contact times with the objects were analysed using repeated 

measures two-way ANOVAs, with genotype as between-subjects factor and sample phase 

as within-subjects factor. For test phases, contact times with familiar and novel objects were 

analysed using repeated measures three-way ANOVAs, with genotype as between-

subjects factor and object and delay as within-subjects factors. In tasks that tested only one 

delay, the same analysis was run without the within-subject factor of delay.  

Mean discrimination ratios (calculated as described in 2.2.1.2) were analysed with 

repeated measures two-way ANOVAs, with genotype as between-subjects factor and delay 

as within-subjects factor. In tasks that tested only one delay, independent samples 

Student’s t-tests were used. Mean discrimination ratios were also compared against chance 

(0.5) with one-sample t-tests.  

To corroborate results obtained with classical statistical analyses and confirm that TG 

animals performed normally, mean discrimination ratios were further analysed with 

Bayesian statistics as described in 2.2.3. 

 Elevated plus maze test 

Cohorts of adult Dp1Tyb, Dp3Yey and Dp2Yey animals were tested as described in 

section 2.2.2. 

Animal subjects 

For the Dp1Tyb experiments, a cohort of 12-month-old animals (8 WT and 11 

Dp1Tyb) was used, the same of Exp. 1d. For the Dp3Yey experiments, a cohort of 8-month-

old animals (12 WT and 12 Dp3Yey) was used, later tested on Exp. 2a. For the Dp2Yey 

experiments, a cohort of 8-month-old animals (12 WT and 12 Dp2Yey) was used, later 

tested on Exp. 3a. 

Materials 

As described in section 2.2.2.1. 

Procedure 

 As described in section 2.2.2.2. A break of approximately 5 weeks separated EPM 

and object-recognition tests. 
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Data analysis 

Statistical analyses were conducted as described in section 2.2.3 and run separately 

for each mouse line. The percentage of time spent in open arms during the entire trial 

duration was calculated as follows: (seconds in open arms / (seconds in open arms + 

seconds in closed arms)) * 100%). The percentage of time spent in open arms was 

compared between the groups with independent samples Student’s t-tests. The following 

measures –velocity, distance moved, number of arm entries – were analysed with repeated 

measures two-way ANOVAs with genotype as between-subjects factor and arm type as 

within-subjects factor. Latency to first entry into open arms and total number of head dips 

were compared between WT and TG mice with independent samples Student’s t-tests. The 

overall distance moved on the EPM in the first trial minute was compared to the last minute 

with paired samples t-tests within each mouse line. 
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3.3. Dp1Tyb results 

To characterise the behavioural phenotypes associated to trisomy of the Mmu16 

conserved region, the same cohorts of Dp1Tyb animals underwent four experiments 

involving object-recognition memory tasks (exp 1a, 1b, 1c, 1d) and the EPM test (Exp. 1e). 

 Exp. 1a: Delay-dependent impairment in object-in-place memory 

Adult Dp1Tyb and their WT littermates were first tested on the NOR and the OiP task, 

each with a 10-min and a 24-h delay. Respectively, the two tasks assessed the ability to 

recognise a novel object among familiar objects (what) and to recognise objects that 

exchanged position among stationary objects (what-where). Subsequently, to determine 

whether impairments observed in the OiP task were a result of a general impairment in the 

retention of spatial locations or concerned specifically the retention of object-in-place 

associations, the animals were tested on the Loc task. This task assessed the ability to 

detect when an object moved to a previously vacant (and thus novel) location relative to 

other identical but stationary objects (where). Results are reported separately for each task. 

Mean contact times with the objects during sample and test phases are shown in table 3.2. 

Novel Object recognition task 

During the two sample phases, Dp1Tyb and WT displayed similar contact times with 

the objects (two-way ANOVA – genotype: F(1,21)=0.944, p=0.342; genotype x sample phase: 

F(1,21)=0.056, p=0.815). The two sample phases were identical and habituation from the first 

to the second sample phase took place in both groups, as indicated by significantly reduced 

contact times (two-way ANOVA – sample phase: F(1,21)=21.172, p<0.001). 

In the test phase, intact memory for object identity was inferred from longer contact 

times with novel than familiar objects. Overall, contact times with novel objects were 

significantly higher than with familiar objects (three-way ANOVA object: F(1,21)=62.915, 

p<0.001). However, contact times with novel objects by Dp1Tyb mice were significantly 

lower compared to wildtypes (three-way ANOVA – genotype: F(1,21)=6.573, p=0.018; 

genotype x object: F(1,21)=9.539, p=0.006; simple main effects of object – WT: F(1,21)=58.195, 

p<0.001; Dp1Tyb: F(1,21)=12.262, p=0.002; simple main effects of genotype – novel, Welch’s 

corrected: F(1,15)=9.093, p=0.008, familiar: F(1,21)=0.820, p=0.375). This reduction was not 

linked to a specific delay (three-way ANOVA – genotype x delay: F(1,21)=0.223, p=0.641; 

genotype x object x delay: F(1,21)=1.980, p=0.174). In both groups, contact times with novel 

objects were significantly lower at the 24-h than the 10-min delay (three-way ANOVA – 

delay: F(1,21)=7.361, p=0.013; delay x object: F(1,21)=10.811, p=0.004; simple main effects of 

delay – novel object: F(1,21)=10.437, p=0.004; familiar object: F(1,21)=0.529, p=0.475). 
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To investigate preference for novelty independently of total overall contact times 

during the test phase, mean discrimination ratios were analysed (fig. 3.2a). In agreement 

with the previous analysis, both groups displayed significantly above chance preference for 

novel objects, at both delays (one sample t-test – WT10-min: t(10)=5.253, p<0.001; WT24-h: 

t(10)=5.039, p=0.001; Dp1Tyb10-min: t(11)=4.697, p=0.001; Dp1Tyb24-h: t(11)=4.002, p=0.002). 

Furthermore, mean discrimination ratios did not significantly differ between the groups, 

although they were numerically lower in the Dp1Tyb group, at both delays (two-way ANOVA 

– genotype: F(1,21)=0.947, p=0.342; genotype x delay: F(1,21)=0.438, p=0.515). In line with 

the contact time analysis, novelty preference was generally lower at the 24-h than the 10-

min delay (two-way ANOVA – delay: F(1,21)=4.088, p=0.056).  

To further investigate whether novelty preference in the Dp1Tyb was no different from 

the WT group, mean discrimination ratios were also compared with Bayesian statistics. The 

estimated Bayes factors (B01) reported that the data were 1.776 times and 2.471 times more 

likely to occur under H0 than H1 for the 10-min and the 24-h delay respectively, providing 

supporting evidence in favour of group similarity. 

Together, these findings indicate that Dp1Tyb animals were able to discriminate 

between familiar and novel objects, both after the 10-min and the 24-h retention interval. 

Dp1Tyb animals explored novel objects to a lesser extent than their WT littermates, but 

there was still a marked preference for Dp1Tyb mice to explore novel objects across delay 

intervals. 

Object-in-place task 

 One Dp1Tyb animals was excluded from this analysis due to insufficient contact time 

with the objects during the sample phases (< 3 sec). In the sample phases, there was no 

difference in contact times displayed by Dp1Tyb and WT animals (two-way ANOVA – 

genotype: F(1,20)=0.149, p=0.703). Contact times dropped significantly across the two 

identical sample phases in both groups, and this decrease was significantly larger in the 

WT than the Dp1Tyb group (two-way ANOVA – sample phase: F(1,20)=47.134, p<0.001; 

genotype x sample phase: F(1,20)=5.305, p=0.032; simple main effects of sample phase – 

WT: F(1,20)=42.033, p<0.001; Dp1Tyb: F(1,20)=10.407, p=0.004; simple main effects of 

genotype – S1: F(1,20)=1.799, p=0.195; S2: F(1,20)=0.478, p=0.497). 

In the test phase, intact memory for object-in-place associations was inferred from 

longer contact times with objects that exchanged position (i.e. novel place) than stationary 

objects (i.e. familiar place). Overall, contact times were significantly higher for novel place 

than familiar place objects and did not differ between the groups (three-way ANOVA – 

genotype: F(1,20)=0.130, p=0.722; object: F(1,20)=7.673, p=0.012; object x genotype: 

F(1,20)=4.269, p=0.052). However, mean contact times (table 3.2) with novel place objects 

were generally lower in the Dp1Tyb group. This observation is supported by the fact that 



 Chapter 3: Behavioural phenotypes  

89 
 

the interaction between object type and genotype approached significance. Additionally, the 

ANOVA revealed that contact times were significantly lower at the 10-min than the 24-h 

delay, but the decrease was not specifically linked to either object type or genotype (three-

way ANOVA – delay: F(1,20)=5.252, p=0.033; delay x object: F(1,20)=2.006, p=0.172; delay x 

genotype: F(1,20)=0.013, p=0.910; genotype x delay x object: F(1,20)=2.898, p=0.104). 

As suggested by mean contact times, the mean discrimination ratio (fig. 3.2b) of 

Dp1Tyb mice was not significantly above chance at the 10-min delay, in contrast to the WT 

group who performed significantly above chance (one sample t-test – WT10-min: t(10)=2.810, 

p=0.018; Dp1Tyb10-min: t(10)=0.872, p=0.404). In contrast, however, the Dp1Tyb mice but not 

WT mice, showed a significantly above chance novelty preference on the 24-h test (one 

sample t-tests – WT24-h: t(10)=1.800, p=0.102; Dp1Tyb24-h: t(10)=2.899, p=0.016). Differences 

between the groups failed however to reach statistical significance, at either delay (two-way 

ANOVA – genotype: F(1,20)=3.414, p=0.079; genotype x delay F(1,20)=3.252, p=0.086). 

Overall, the tested delay did not significantly affect novelty preference (two-way ANOVA – 

delay: F(1,20)=1.324, p=0.263). 

To further investigate whether Dp1Tyb animals performed normally, mean 

discrimination ratios were compared between groups with Bayesian statistics. For the 10-

min delay, the estimated Bayes factor (B01) reported that the data were only 0.457 times 

more likely to occur under H0 than H1. Instead, for the 24-h delay the data were 2.556 times 

in favour of H0. To corroborate the Bayesian results, performance was directly compared 

between the groups with classical Student’s t-tests. Novelty preference was significantly 

lower in the Dp1Tyb group compared to the WT group at the 10-min delay, but there was 

no difference at the 24-h delay (Student’s t-test – 10-min: t(20)=2.281, p=0.034; 24-h: 

t(20)=0.215, p=0.832). 

Together, these findings indicate that Dp1Tyb animals were less sensitive to novel 

object-in-place associations than their WT littermates. The evidence reports that Dp1Tyb 

animals were not consistently able to discriminate between novel and familiar object-in-

place associations, with memory deficits emerging after the 10-min but not the 24-h 

retention interval. 

Object location task 

To examine whether the impairment on the OiP task concerned short-term memory 

for the spatial organisation of the objects or specifically concerned object-in-place 

associations, the mice were tested on the Loc task with a 10-min delay. In the sample 

phases, there was no significant difference between the contact times of WT and Dp1Tyb 

animals (two-way ANOVA – genotype: F(1,20)=3.542, p=0.074). Unexpectedly, contact times 

did not drop across the two identical sample phases, possibly due to a floor effect (i.e. three 
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copies of the same object; two-way ANOVA – sample phase: F(1,20)=0.654, p=0.428, sample 

phase x genotype: F(1,20)=0.264, p=0.613). 

In the test phase, intact memory for spatial locations was inferred from higher contact 

times with objects moved to a novel, previously vacant locations (i.e. novel location objects) 

than with stationary objects (i.e. familiar location objects). Both groups showed significantly 

higher contact times with novel than familiar location objects, to a similar extent (two-way 

ANOVA – object: F(1,20)=24.809, p<0.001; genotype: F(1,20)=0.036, p=0.851; object x 

genotype: F(1,20)=0.569, p=0.460).  

Mean discrimination ratios (fig. 3.2c) were significantly above chance in both the WT 

and the Dp1Tyb group (one sample t-test – WT10-min: t(10)=5.114, p<0.001; Dp1Tyb10-min: 

t(10)=5.320, p<0.001). Novelty preference was compared between the groups with classical 

and Bayesian Student’s t-tests. Respectively, the tests reported no statistically significant 

difference between the groups (t(20)=1.094, p=0.287) and an estimated Bayes factor (B01) 

indicating that the data were 1.699 times more likely to occur under H0 than H1. 

Together, these findings indicate that following a 10-min delay, Dp1Tyb animals were 

able to discriminate between familiar objects occupying a novel, previously vacant spatial 

location and identical, stationary objects to WT levels. Memory for spatial information was 

thus not overall defective in the Dp1Tyb following a 10-min delay. 
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Table 3.2: Mean contact times of 12-month-old Dp1Tyb mice in object-recognition memory 

tasks. Sample phases comprised a total of three objects. Test phases comprised one novel and two 

familiar objects / locations in the NOR and Loc task, and two novel and one familiar place object in 

the OiP task. Values are mean contact times with one object, ± 1 SD. For NOR and Loc n= 11 WT, 

12 Dp1Tyb. For OiP n=11 WT, 11 Dp1Tyb. 

 

  Mean contact times (sec) 

   WT Dp1Tyb 

NOR 

Sample phase 
S1 7.09 (±1.95) 6.45 (±2.38) 

S2 5.36 (±1.74) 4.53 (±2.01) 

Test - 10-min 
Familiar 4.56 (±2.32) 4.19 (±3.02) 

Novel 12.68 (±5.95) 7.68 (±4.28) 

Test - 24-h 
Familiar 4.48 (±1.50) 3.48 (±1.72) 

Novel 8.22 (±3.23) 5.21 (±1.48) 

OiP 

Sample phase 
S1 7.08 (±1.41) 6.15 (±1.80) 

S2 4.33 (±1.65) 4.78 (±1.45) 

Test - 10-min 
Familiar 3.31 (±2.04) 4.56 (±2.60) 

Novel 5.20 (±3.21) 3.52 (±1.35) 

Test - 24-h 
Familiar 4.47 (±2.11) 4.20 (±2.23) 

Novel 6.11 (±2.63) 5.75 (±2.45) 

Loc 

Sample phase 
S1 5.63 (±2.01) 3.71 (±2.24) 

S2 5.00 (±3.03) 3.57 (±2.04) 

Test - 10-min 
Familiar 3.68 (±1.61) 3.11 (±1.57) 

Novel 6.00 (±2.01) 6.26 (±3.53) 

 

  



 Chapter 3: Behavioural phenotypes  

92 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c) Loc 

Figure 3.2: Mean discrimination ratios of 12-month-old Dp1Tyb mice on the NOR (a), OiP (b) 

and Loc (c) task. Bars originate from a 0.5 discrimination ratio, representing chance. Upward bars 

indicate preference for novelty, downward bars indicate preference for familiarity. Values are means 

± 1 SEM. For NOR and Loc n= 11 WT, 12 Dp1Tyb. For OiP n=11 WT, 11 Dp1Tyb.  

 

a) NOR 

b) OiP 
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 Exp. 1b: Delay-dependent impairment in temporal order memory 

To further characterise the pattern of memory deficits in Dp1Tyb mice, the same mice 

used in Exp. 1a were tested on the TOr task, with a 10-min and a 3-h delay. This allowed 

assessment of the critical 10-min retention interval on a different feature of associative 

recognition memory. The TOr task assessed the ability to discriminate between more 

recently and less recently encountered objects (what-when). Unlike other object-recognition 

memory tasks in which animals were exposed to two identical sample phases, the TOr task 

employed two different sample phases, effectively halving the time to sample a set of 

objects. Because a shorter sampling time could influence novelty detection in the test 

phase, the animals underwent a preliminary experiment to examine novelty detection in the 

NOR task after a single sample phase, with a 10-min delay (fig. 3.3). Dp1Tyb animals 

successfully discriminated between novel and familiar objects, implicating that performance 

on the TOr task would not be a priori impaired by the use of a single sample phase for each 

object pair. Mean contact times with the objects during sample and test phases of the TOr 

and 1-sample NOR task are shown in table 3.3.  

 

 

 

 

 

 

1-sample Novel object recognition task 

One WT animal was excluded from this analysis as contact time with the objects 

during the sample phase met the exclusion criteria (< 3 sec). One Dp1Tyb animal was 

identified as an outlier as assessed with boxplots and z-scores (smaller / greater ± 3), and 

excluded from the analysis. Contact times displayed in the single sample phase did not 

significantly differ between the WT and the Dp1Tyb group (Student’s t-test – t(18)=0.208, 

p=0.838). In the test phase, both WT and Dp1Tyb mice displayed significantly higher 

contact times with the novel than the familiar object, to a similar extent (two-way ANOVA – 

genotype: F(1,18)=1.329, p=0.264; object: F(1,18)=12.532, p=0.002; genotype x object: 

F(1,18)=0.038, p=0.847). In line with these results, mean discrimination ratios (fig. 3.4a) were 

significantly above chance in both the WT and the Dp1Tyb group (one sample t-test – WT: 

Figure 3.3: Design of the 1-sample NOR task. Two identical objects were used in the sample 

phase (S1) and a novel object was presented in the Test phase (T) after a 10-min delay. 
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t(9)=2.536, p=0.032; Dp1Tyb: t(9)=4.768, p=0.001). Novelty preference was compared 

between the groups with classical and Bayesian Student’s t-tests. Respectively, the tests 

reported no statistically significant difference between the groups (t(18)=1.550, p=0.139) and 

an estimated Bayes factor (B01) indicating that the data were 1.110 times more likely to 

occur under H0 than H1. In sum, Dp1Tyb animals were able to detect object novelty after a 

single sample phase and a 10-min retention interval. 

Temporal order task 

One Dp1Tyb and one WT animal were excluded from the analysis as contact times 

with the objects displayed during the sample phases met the exclusion criteria (< 3 sec). 

During sample phases, Dp1Tyb animals spent significantly less time sampling the objects 

than wildtypes (two-way ANOVA – genotype: F(1,18)=9.866, p=0.006). Contact times 

remained stable across the two different phases in both groups, indicating that the two pairs 

of objects were explored to a similar extent (two-way ANOVA – sample phase: F(1,18)=0.476, 

p=0.499; sample phase x genotype: F(1,18)=0.118, p=0.735).  

In the test phase, intact recognition memory for temporal order information was 

inferred from higher contact times with less recently presented objects (i.e. old objects) than 

with more recently encountered objects (i.e. recent objects). Overall, the groups displayed 

significantly higher contact times with old than recent objects (three-way ANOVA – object: 

F(1,18)=35.440, p<0.001). However, overall contact times were significantly lower in the 

Dp1Tyb group compared to the WT group (three-way ANOVA – genotype: F(1,18)=12.001, 

p=0.003). The interaction between genotype and object was significant, confirming that WT 

mice displayed higher contact times than Dp1Tyb mice for both object types and showing 

that this difference was significantly larger for old than recent objects (three-way ANOVA – 

genotype x object: F(1,18)=5.979, p=0.025; simple main effects of object – WT: F(1,18)=35.266, 

p<0.001; Dp1Tyb: F(1,18)=6.153, p=0.023; simple main effects of genotype – old: 

F(1,18)=14.548, p=0.001; recent: F(1,18)=6.194, p=0.023). In other words, generally low 

contact times in the Dp1Tyb group were more evident towards old objects. According to 

mean contact times (table 3.3), the old object preference in the Dp1Tyb was particularly low 

on the 10-min test. There was however no significant difference between the tested delays, 

in either group and towards either object type (three-way ANOVA – delay: F(1,18)=2.612, 

p=0.123; delay x genotype: F(1,18)=0.577, p=0.457; delay x object: F(1,18)=0.035, p=0.854; 

delay x genotype x object: F(1,18)=1.725, p=0.206). 

To account for the difference in overall contact time, mean discrimination ratios were 

analysed (fig. 3.4b). In the WT group, mean discrimination ratios were significantly above 

chance on both the 10-min and the 3-h test (one sample t-test – WT10-min: t(9)=4.040, 

p=0.003; WT3-h: t(9)=2.920, p=0.017). In the Dp1Tyb group instead, only the 3-h mean 

discrimination ratio was significantly above chance (one sample t-test – Dp1Tyb10-min: 
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t(9)=0.126, p=0.903; Dp1Tyb3-h: t(9)=2.947, p=0.016). Despite these findings, group 

differences failed to reach statistical significance (two-way ANOVA – genotype: 

F(1,18)=3.502, p=0.078; genotype x delay: F(1,18)=3.592, p=0.074). Overall, the tested delay 

did not significantly affect novelty preference (two-way ANOVA – delay: F(1,18)=0.230, 

p=0.637).  

Although ANOVAs are theoretically robust against violations of the underlying 

assumptions (Blanca, Alarcón, Arnau, Bono, & Bendayan, 2017), the distribution of the 

discrimination ratios violated the assumption of normality in the Dp1Tyb group at the 10-

min delay. Therefore, mean discrimination ratios were further analysed with classical and 

Bayesian Mann-Whitney U-tests. At the 10-min delay, Dp1Tyb animals performed 

significantly lower than WT animals (U=20, p=0.023) and the estimated Bayes factor (B01) 

reported that these data were only 0.253 times more likely to occur under H0 than H1. At 

the 3-h delay, there was no significant difference between the groups (U=58, p=0.579) and 

the estimated Bayes factor (B01) reported that these data were 2.147 times in favour of H0.  

Together, these findings report that Dp1Tyb animals were not able to discriminate 

between old and recent objects after the 10-min interval, while temporal order discrimination 

was intact following the 3-h retention interval. Additionally, Dp1Tyb mice generally displayed 

reduced contact times. 

 

 

Table 3.3: Mean contact times of 12-month-old Dp1Tyb mice in the TOr and 1-sample NOR 

task. Sample phases comprised a total of two objects, different for each phase. Test phases 

comprised one novel / old and one familiar / recent object. Values are mean contact times with one 

object, ± 1 SD. n= 10 WT, 10 Dp1Tyb. 

   Mean contact times (sec) 

   WT Dp1Tyb 

TOr 

Sample 
S1 7.89 (±1.87) 5.12 (±2.16) 

S2 7.45 (±2.04) 4.98 (±2.25) 

Test - 10-min 
Recent 5.37 (±1.49) 4.70 (±1.50) 

Old 8.40 (±2.67) 5.18 (±2.41) 

Test - 3-h 
Recent 7.72 (±3.04) 4.78 (±2.40) 

Old 9.85 (±3.63) 6.46 (±3.42) 

1-sample 
NOR 

Sample S1 5.04 (±1.32) 4.84 (±2.77) 

Test – 10-min 
Familiar 5.08 (±1.62) 3.58 (±2.02) 

Novel 7.26 (±3.76) 6.01 (±4.00) 
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Figure 3.4: Mean discrimination ratios of 12-month-old Dp1Tyb mice on the 1-sample 

NOR (a) and TOr (b) task. Bars originate from a 0.5 discrimination ratio, representing chance. 

Upward bars indicate preference for novel resp. old objects, downward bars indicate 

preference for familiar resp. recent objects. Values are means ± 1 SEM. n= 10 WT, 10 Dp1Tyb. 

b) TOr 

a) 1-sample NOR 
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 Exp. 1c: Ageing did not impair memory for objects 

Mouse models of Aβ-pathology report impairments in novel object recognition, 

especially following long-term delays (Hall et al., 2016; Webster et al., 2014). To determine 

whether the Mmu16 trisomy – which includes the App gene – in conjunction with ageing 

had detrimental effects on memory performance, the animals used in Exp. 1a and 1b were 

re-tested on the NOR task at 20 months of age, with a 10-min and a 24-h delay. Mean 

contact times with the objects during sample and test phases of the NOR task are shown in 

table 3.4.  

Novel object recognition task 

 During the sample phases, Dp1Tyb and WT animals displayed similar object sampling 

behaviour (two-way ANOVA – genotype: F(1,14)=1.532, p=0.236). Unexpectedly, habituation 

did not take place in either group, as indicated by stable contact times across the two 

identical sample phases (two-way ANOVA – sample phase: F(1,14)=2.533, p=0.134; sample 

phase x genotype: F(1,14)=0.263, p=0.616). 

In the test phase, contact times were significantly higher with novel than familiar 

objects and, in contrast to NOR findings in Exp. 1a, there was no difference between the 

groups (three-way ANOVA – object: F(1,14)=76.041, p<0.001; genotype: F(1,14)=0.669, 

p=0.427; genotype x object: F(1,14)=0.095, p=0.762). As observed in Exp.1a, contact times 

were generally lower at the 24-h than the 10-min delay (three-way ANOVA – delay: 

F(1,14)=10.091, p=0.007). This decrease was once again due to significantly reduced 

contacts with novel objects on the 24-h test, in both groups (three-way ANOVA – delay x 

object: F(1,14)=5.636, p=0.032; simple main effects of delay – familiar: F(1,14)=2.346, p=0.148; 

novel: F(1,14)=12.368, p=0.003; two-way ANOVA – delay x genotype: F(1,14)=0.470, p=0.504; 

delay x genotype x object: F(1,14)=2.373, p=0.146 ). 

In line with the above findings, mean discrimination ratios (fig. 3.5) were significantly 

above chance in both the WT and the Dp1Tyb group, for the 10-min and the 24-h delay 

(one sample t-test – WT10-min: t(8)=16.807, p<0.001; WT24-h: t(8)=4.970, p=0.001; Dp1Tyb10-

min: t(6)=5.418, p=0.002; Dp1Tyb24-h: t(6)=9.014, p<0.001). Surprisingly, novelty preference 

was numerically higher in the Dp1Tyb group but the difference failed to reach statistical 

significance (two-way ANOVA – genotype: F(1,14)=3.663, p=0.076). Although the contact 

time analysis reported lower contacts with novel objects at the 24-h delay, mean 

discrimination ratios did not significantly differ between the delays, in either group (two-way 

ANOVA – delay: F(1,14)=0.818, p=0.381; genotype x delay: F(1,14)=0.411, p=0.532).  

To further investigate whether Dp1Tyb animals performed normally, mean 

discrimination ratios were compared between groups with Bayesian statistics. Estimated 

Bayes factors (B01) reported that the data were 1.762 times more likely to occur under H0 
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than H1 for the 10-min delay but were only 0.861 times in favour of H0 for the 24-h delay. 

To corroborate the Bayesian results, performance on the 24-h test was directly compared 

between the groups with a classical Student’s t-test, reporting no significant difference 

(t(14)=1.775, p=0.098). 

Together, these findings indicate that even at 20 months of age, Dp1Tyb animals were 

able to discriminate between familiar and novel objects, after the 10-min and the 24-h 

retention interval. 

 

 

Table 3.4: Mean contact times of 20-month-old Dp1Tyb mice in the NOR task. Sample phases 

comprised a total of three objects. Test phases comprised one novel and two familiar objects. Values 

are mean contact times with one object, ± 1 SD. n= 9 WT, 7 Dp1Tyb. 

 

   Mean contact times (sec) 

   WT Dp1Tyb 

NOR 

Sample 
S1 14.20 (±4.47) 10.66 (±6.83) 

S2 11.84 (±4.22) 9.46 (±5.58) 

Test - 10-min 
Familiar 10.78 (±3.91) 9.26 (±9.66) 

Novel 30.60 (±10.80) 24.36 (±12.64) 

Test - 24-h 
Familiar 8.61 (±4.56) 5.84 (±4.65) 

Novel 19.08 (±8.35) 18.95 (±9.53) 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Mean discrimination ratios of 20-month-old Dp1Tyb mice on the NOR task. 

Bars originate from a 0.5 discrimination ratio, representing chance. Upward bars indicate 

preference for novelty, downward bars indicate preference for familiarity. Values are means ± 

1 SEM. n= 9 WT, 7 Dp1Tyb. 
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 Exp. 1d: Delay-dependent memory impairments at young age 

To determine whether the 10-min impairment in associative-recognition memory 

observed in Exp.1a and 1b emerged in adulthood or was present already at younger age, 

a cohort of 4-month-old Dp1Tyb was tested on the OiP task, with a 10-min and a 3-h delay. 

The 3-h delay was chosen as pilot tests revealed the 24-h retention interval was too 

challenging for animals of this age to successfully discriminate between novel and familiar 

object-in-place associations. Mean contact times with the objects during sample and test 

phases of the OiP task are shown in table 3.5. 

Object-in-place task 

 Two WT and one Dp1Tyb animal were excluded from the analysis due to insufficient 

contact times with the objects during the sample phases (< 3 sec). During the first sample 

phase, Dp1Tyb mice spent significantly more time sampling the objects than wildtypes, 

while there was no group difference in the second sample phase (two-way ANOVA –  

genotype: F(1,18)=1.873, p=0.188; sample phase: F(1,18)=8.187, p=0.010; genotype x sample 

phase: F(1,18)=4.996, p=0.038; simple main effects of genotype – S1: F(1,18)=5.467, p=0.031; 

S2: F(1,18)<0.001, p=0.998). Contact times decreased significantly across the two sample 

phases in the Dp1Tyb group, while contact times in the WT group did not decrease further 

in the second sample phase (simple main effects of sample phase – Dp1Tyb: F(1,18)=14.430, 

p=0.001; WT: F(1,18)=0.178, p=0.678 ). 

In the test phase, overall contact times were significantly higher with objects that 

exchanged location (i.e. novel place objects) than with stationary objects (i.e. familiar place 

objects), and did not differ between the groups, at either delay (three-way ANOVA – object: 

F(1,18)=4.868, p=0.041; genotype: F(1,18)=2.630, p=0.122; genotype x delay: F(1,18)=0.301, 

p=0.590; genotype x object: F(1,18)=0.161, p=0.693; delay: F(1,18)=1.320, p=0.266; delay x 

object: F(1,18)=0.619, p=0.442). Nonetheless, similarly to OiP findings in Exp. 1a, mean 

contact times (table 3.5) indicate that while Dp1Tyb animals preferred novel place objects 

at the 3-h delay, this was clearly not the case at the 10-min delay. This interaction just failed 

however to meet statistical significance (three-way ANOVA – genotype x delay x object: 

F(1,18)=12.653, p=0.066). 

In line with mean contact times, mean discrimination ratios (fig. 3.6) for the 10-min 

delay were significantly above chance in the WT but not the Dp1Tyb group (one sample t-

test – WT10-min: t(8)=3.454, p=0.009; Dp1Tyb10-min: t(10)=0.750, p=0.471). Instead, mean 

discrimination ratios for the 3-h delay were significantly above chance in the Dp1Tyb but 

not the WT group (one sample t-test – WT3-h: t(8)=1.842, p=0.103; Dp1Tyb3-h: t(10)=2.222, 

p=0.050). In agreement with these results, differences between the mean discrimination 

ratios of the groups approached statistical significance, suggesting a weaker novel place 
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preference in the Dp1Tyb on the 10-min test (two-way ANOVA – genotype: F(1,18)=3.825, 

p=0.066; genotype x delay: F(1,18)=4.335, p=0.052). Overall, novelty preference did not differ 

between the two tested delays (two-way ANOVA – delay: F(1,18)=0.728, p=0.405).  

To further investigate whether Dp1Tyb mice performed normally, mean discrimination 

ratios were compared between the groups with Bayesian statistics. For the 10-min delay, 

the estimated Bayes factor (B01) reported that the data were only 0.091 times more likely to 

occur under H0 than H1. Instead, for the 3-h delay the data were 2.505 times in favour of 

H0. To corroborate the Bayesian results, classical Student’s t-tests were carried out. 

Novelty preference was significantly lower in the Dp1Tyb group compared to the WT group 

at the 10-min delay, but there was no difference at the 3-h delay (10-min: t(18)=3.343, 

p=0.004; 3-h: t(18)=0.057, p=0.955). 

These findings are similar to the results of Exp.1a, indicating that at 4 months of age, 

Dp1Tyb animals were less sensitive to changes in object-in-place associations. Once again, 

memory impairments were restricted to the 10-min retention interval. 

 

 

Table 3.5: Mean contact times of 4-month-old Dp1Tyb mice in the OiP task. Sample phases 

comprised a total of three objects. Test phases comprised two novel place and one familiar place 

object. Values are mean contact times with one object, ± 1 SD. n= 9 WT, 11 Dp1Tyb. 

 

   Mean contact times (sec) 

   WT Dp1Tyb 

OiP 

Sample 
S1 5.10 (±2.26) 7.40 (±2.14) 

S2 4.78 (±2.34) 4.78 (±2.09) 

Test - 10-min 
Familiar 2.51 (±1.57) 5.09 (±1.91) 

Novel 4.33 (±2.30) 4.89 (±2.25) 

Test - 3-h 
Familiar 4.37 (±4.72) 4.45 (±2.37) 

Novel 5.23 (±2.70) 6.50 (±3.43) 
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Figure 3.6: Mean discrimination ratios of 4-month-old Dp1Tyb mice on the OiP task. Bars 

originate from a 0.5 discrimination ratio, representing chance. Upward bars indicate preference for 

novelty, downward bars indicate preference for familiarity. Values are means ± 1 SEM. **p<0.01. n= 

9 WT, 11 Dp1Tyb. 

 

 

** 
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 Exp. 1e: Increased anxiety and activity levels on the EPM 

 The EPM test was used to assess anxiety and general locomotor activity levels in 

adult (12-month-old) Dp1Tyb animals. The exploratory behaviour of the animal during a 5-

min trial on the EPM was tracked with a computerised system (EthoVision XT 13) and 

compared between closed and open arms.  

All WT mice visited the open arms of the maze, while one Dp1Tyb animal did not enter 

them and remained within closed arms throughout the entire trial duration. On average, 

Dp1Tyb mice spent over twice as much time exploring closed arms than open arms, while 

wildtypes showed no clear preference between the two arm types (table 3.6). Respectively, 

the WT and the Dp1Tyb group spent ~47% and ~32% of the trial time within the open arms 

of the maze (fig. 3.7a), a difference that was however not statistically significant (Student’s 

t-test – t(17)=1.346, p=0.196. On average, Dp1Tyb entered open arms for the first time after 

~22 seconds on the EPM, taking significantly longer compared to the ~9 second latency 

displayed by wildtypes (fig. 3.7b) (Student’s t-test, equal variances not assumed – 

t(11)=2.395, p=0.035). One Dp1Tyb animal was excluded from this comparison since it was 

identified as an outlier (latency = 105 sec) as assessed with boxplots and z-scores (smaller 

/ greater ± 3) .Dp1Tyb displayed 21 head dips in contrast to 31 in the WT group, but this 

difference was not statistically significant (table 3.6) (Student’s t-test – t(17)=1.433, p=0.170). 

 The locomotor activity of Dp1Tyb and WT animals on the EPM per minute is shown 

in fig. 3.7c. Overall, there was no difference in the locomotor behaviour of the two groups 

and activity decreased significantly over time in both the WT and the Dp1Tyb group, 

indicating habituation to the maze (two-way ANOVA Greenhouse-Geisser corrected – 

genotype: F(1,17)=1.780, p=0.200; time: F(3,46)=8.227, p<0.001; genotype x time: 

F(3,46)=1.664, p=0.192). In fact, in both groups the distance moved during the last trial minute 

was significantly lower compared to the first minute (paired t-test – WT: t(7)=3.369, p=0.012; 

Dp1Tyb: t(10)=3.326, p=0.008).  

A comparison between the two arm types (fig. 3.7d) revealed that throughout the 

entire trial, Dp1Tyb mice moved a significantly larger distance than WT in closed arms and 

that while Dp1Tyb moved significantly more in closed than open arms, WT didn’t show a 

preference for either arm type (two-way ANOVA – genotype: F(1,17)=1.833, p=0.194; arm 

type: F(1,17)=18.992, p<0.001; arm type x genotype: F(1,17)=7.553, p=0.014; simple main 

effects of arm type – WT: F(1,17)=1.119, p=0.305; Dp1Tyb: F(1,17)=29.984, p<0.001; simple 

main effects of genotype – closed arms, Welch’s corrected: F(1,15)=6.268, p=0.024; open 

arms: F(1,17)=1.782, p=0.199).  

The total number of arm entries did not significantly differ between the two groups, 

but Dp1Tyb mice entered closed arms a significantly higher number of times compared to 

wildtypes, showing instead a significant preference for entering open over closed arms (fig. 
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3.7e) (two-way ANOVA – genotype: F(1,17)=0.034, p=0.857; arm type: F(1,17)=7.715, p=0.013; 

arm type x genotype: F(1,17)=7.303, p=0.015; simple main effects of arm type – WT: 

F(1,17)=12.968, p=0.002; Dp1Tyb: F(1,17)=0.003, p=0.954; simple main effects of genotype – 

closed arms, Welch’s corrected: F(1,16)=5.065, p=0.039; open arms: F(1,17)=1.474, p=0.241). 

Overall, there was no difference in the mean velocity of WT and Dp1Tyb mice, and both 

groups moved significantly more slowly in open than in closed arms (table 3.6) (two-way 

ANOVA – genotype: F(1,16)=1.420, p=0.251; arm type: F(1,16)=20.121, p<0.001; arm type x 

genotype: F(1,16)=1.596, p=0.225). 

Together, these results indicate that Dp1Tyb mice were less prone than WT 

littermates to explore open arms, suggesting increased anxiety levels. Dp1Tyb also 

reported signs of increased locomotor activity, but exclusively within closed arms. 

Representative locomotor tracks and mean heat maps are shown in fig. 3.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) Proportion of time in open arms 

Figure 3.7: Explorative behaviour of Dp1Tyb mice on the EPM (a-e). Values are means ± 1 SEM, 

*p<0.05, **p<0.01, ***p<0.001. n = 8 WT, 11 Dp1Tyb. 
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c) Overall distance moved per minute 

b) Latency to first open arm entry 

d) Distance moved per arm type 

* 

* *** 
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Table 3.6: Explorative behaviour of Dp1Tyb mice on the EPM. Values are means ± 1 SD. No 

significant differences between the groups. n = 8 WT, 11 Dp1Tyb. 

 

 WT  Dp1Tyb 

 Closed arms Open arms  Closed arms Open arms 

Time (sec) 124.19 (±63.01) 111.24 (±62.49)  163.07 (±64.13) 75.95 (±55.93) 

Head dips (freq)  31 (±16.39)   21.36 (±12.97) 

Velocity (cm/sec) 5.83 (±3.05) 3.61 (±1.03)  7.15 (±3.77) 3.83 (±1.31) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e) Number of entries 

* 

** 
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a) WT 

b) Dp1Tyb 

Figure 3.8: Representative locomotor tracks and mean heat maps of Dp1Tyb mice on the 

EPM. a) WT group; b) Dp1Tyb group. On the tracking, closed arms are represented in orange, open 

arms in pink and the centre in light blue. For heat maps, warmer and colder colours indicate longer 

and shorter exploration times respectively. n = 8 WT, 11 Dp2Yey.  
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3.4. Dp3Yey results 

To characterise the behavioural phenotypes associated to trisomy of the Mmu17 

conserved region, Dp3Yey animals underwent two experiments employing object-

recognition memory tasks (Exp. 2a and 2b) and the EPM test (Exp. 2c). 

 Exp. 2a: Intact recognition memory 

Dp3Yey and their WT littermates were first tested on the NOR (what) and the OiP 

(what-where) task at 13 months of age, each with a 10-min and a 24-h delay. The results 

are reported separately for each task. Mean contact times with the objects during sample 

and test phases are shown in table 3.7. 

Novel Object recognition task 

During the sample phases, WT and Dp3Yey animals displayed similar contact times 

with the objects (two-way ANOVA – genotype: F(1,22)<0.001, p=0.998). Habituation took 

place in both groups, as indicated by significantly reduced contact times across the two 

sample phases (two-way ANOVA – sample phase: F(1,22)=56.125, p<0.001; genotype x 

sample phase: F(1,22)=0.038, p=0.848). 

In the test phase, intact recognition memory for objects was inferred from higher 

contact times with novel objects. Overall, both groups displayed significantly higher contact 

times with novel than familiar objects, on both the 10-min and the 24-h test (three-way 

ANOVA – object: F(1,22)=34.626, p<0.001; genotype: F(1,22)=1.739, p=0.201; genotype x 

object: F(1,22)=0.273, p=0.606). Contact times did not differ between the tested delays, in 

either group and for either object type (three-way ANOVA – delay: F(1,22)=0.803, p=0.380; 

delay x genotype: F(1,22)=0.044, p=0.835; delay x object: F(1,22)=0.197, p=0.661; delay x 

genotype x object: F(1,22)=0.047, p=0.830).  

Mean discrimination ratios (fig. 3.9a) were analysed to investigate preference for 

novelty independently of total contact time during the test phase. In line with the above 

findings, mean discrimination ratios were significantly above chance in both the WT and the 

Dp3Yey group, for the 10-min and the 24-h delay (one sample t-test – WT10-min: t(11)=2.876, 

p=0.015; WT24-h: t(11)=2.351, p=0.038; Dp3Yey10-min: t(11)=3.325, p=0.007; Dp3Yey24-h: 

t(11)=4.970, p<0.001). Novelty preference did not differ between the groups at either delay 

and delay did not significantly affect novelty preference (two-way ANOVA – genotype: 

F(1,22)=0.155, p=0.698; delay: F(1,22)=0.447, p=0.511; genotype x delay: F(1,22)=0.008, 

p=0.928). To confirm that Dp3Yey animals performed normally, mean discrimination ratios 

were further compared with Bayesian statistics. The estimated Bayes factors (B01) reported 

that the data were 2.634 times and 2.522 times more likely to occur under H0 than H1 for 

the 10-min and the 24-h delay respectively.  
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Dp3Yey animals were therefore able to discriminate between familiar and novel 

objects similar to WT levels, both after the 10-min and the 24-h retention interval. 

Object-in-place task 

During the sample phases, there was again no difference between Dp3Yey and WT 

animals, and contact times dropped significantly across the two identical sample phases 

(two-way ANOVA – genotype: F(1,22)=0.014, p=0.906; sample phase: F(1,22)=47.275, 

p<0.001; genotype x sample phase: F(1,22)=0.269, p=0.609). 

In the test phase, intact memory for object-in-place associations was inferred from 

higher contact times with objects that exchanged position (i.e. novel place objects) than with 

stationary objects (i.e. familiar place objects). Overall, both groups displayed significantly 

higher contact times with novel place than familiar place objects, on both the 10-min and 

the 24-h test (three-way ANOVA – object: F(1,22)=35.030, p<0.001; genotype: F(1,22)<0.001, 

p=0.985; genotype x object: F(1,22)=0.125, p=0.727;  delay x genotype: F(1,22)=0.002, 

p=0.967). The tested delay did not significantly affect contact times (three-way ANOVA – 

delay: F(1,22)=2.906, p=0.102; delay x object: F(1,22)=0.680, p=0.418; delay x genotype x 

object: F(1,22)=0.181, p=0.674).  

In line with the above findings, mean discrimination ratios (fig. 3.9b) were significantly 

above chance in both the WT and the Dp3Yey group, for the 10-min and the 24-h delay 

(one sample t-test – WT10-min: t(11)=3.345, p=0.007; WT24-h: t(11)=3.398, p=0.006; Dp3Yey10-

min: t(11)=3.452, p=0.005; Dp3Yey24-h: t(11)=3.113, p=0.010). Novel place preference did not 

differ between the groups at either delay and delay did not significantly affect novelty 

preference (two-way ANOVA – genotype: F(1,22)=0.190, p=0.667; delay: F(1,22)=2.192, 

p=0.153; genotype x delay: F(1,22)=0.818, p=0.376). To confirm that Dp3Yey animals 

performed normally, mean discrimination ratios were further compared with Bayesian 

statistics. Estimated Bayes factors (B01) reported that the data were 2.623 times and 1.644 

times more likely to occur under H0 than H1 for the 10-min and the 24-h delay respectively.  

Together, these findings indicate that Dp3Yey animals were consistently able to 

discriminate between novel and familiar object-in-place associations similar to WT levels, 

both after the 10-min and the 24-h retention interval. 
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Table 3.7: Mean contact times of 13-month-old Dp3Yey mice in object-recognition memory 

tasks. Sample phases comprised a total of three objects. Test phases comprised one novel and two 

familiar objects in the NOR, and two novel and one familiar place object in the OiP task. Values are 

mean contact times with one object, ± 1 SD. n= 12 WT, 12 Dp3Yey. 

 

  Mean contact times (sec) 

   WT Dp3Yey 

NOR 

Sample phase 
S1 13.70 (±4.33) 13.82 (±4.82) 

S2 9.11 (±2.83) 8.99 (±2.16) 

Test - 10-min 
Familiar 8.56 (±2.87) 7.37 (±3.78) 

Novel 13.48 (±5.96) 11.28 (±4.93) 

Test - 24-h 
Familiar 9.85 (±3.17) 8.06 (±3.27) 

Novel 13.95 (±6.49) 11.69 (±4.77) 

OiP 

Sample phase 
S1 13.22 (±5.17) 12.70 (±4.73) 

S2 8.37 (±2.69) 8.53 (±3.20) 

Test - 10-min 
Familiar 7.18 (±3.11) 7.23 (±4.41) 

Novel 11.32 (±5.12) 11.39 (±4.56) 

Test - 24-h 
Familiar 8.73 (±4.51) 9.18 (±3.47) 

Novel 12.44 (±3.30) 11.99 (±4.88) 
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Figure 3.9: Mean discrimination ratios of 13-month-old Dp3Yey mice on the NOR (a) and OiP 

(b) task. Bars originate from a 0.5 discrimination ratio, representing chance. Upward bars indicate 

preference for novelty, downward bars indicate preference for familiarity. Values are means ± 1 

SEM. n= 12 WT, 12 Dp3Yey. 

 

a) NOR 

b) OiP 
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 Exp. 2b: Ageing did not impair recognition memory 

To determine whether the Mmu17 trisomy in conjunction with ageing processes had 

detrimental effects on memory performance, a cohort of Dp3Yey animals was tested on the 

NOR and the OiP task at 18 months of age, with a 10-min and a 3-h delay. The 3-h delay 

was chosen as previous data revealed that the 24-h retention interval failed to consistently 

produce preference for novelty in wildtypes. Results are reported separately for each task. 

Mean contact times with the objects during sample and test phases are reported in table 

3.8.  

Novel Object recognition task 

During the sample phases, Dp3Yey and WT mice showed similar object sampling 

behaviour (two-way ANOVA – genotype: F(1,19)=0.603, p=0.447). Although contact times 

dropped from the first to the second sample phase in both groups (table 3.8), this effect just 

failed to reach statistical significance (two-way ANOVA – sample phase: F(1,19)=3.810, 

p=0.066; sample phase x genotype: F(1,19)=0.086, p=0.772). 

In the test phase, both groups displayed significantly higher contact times with novel 

than familiar objects, on both the 10-min and the 3-h test (three-way ANOVA – object: 

F(1,19)=22.544, p<0.001; genotype: F(1,19)=0.186, p=0.671; genotype x object: F(1,19)=0.006, 

p=0.940; delay x genotype: F(1,19)=0.421, p=0.524). The tested delay did not significantly 

affect contact times, in either group and for either object type (three-way ANOVA – delay: 

F(1,19)=0.339, p=0.567; delay x object: F(1,19)=0.025, p=0.875; delay x genotype x object: 

F(1,19)=1.550, p=0.228).  

Similarly to what was observed in Exp.1a with younger mice, mean discrimination 

ratios (fig. 3.10a) were significantly above chance in both the WT and the Dp3Yey group, 

for the 10-min and the 3-h delay (one sample t-test – WT10-min: t(8)=3.695, p=0.006; WT3-h: 

t(8)=4.720, p=0.002; Dp3Yey10-min: t(11)=2.930, p=0.014; Dp3Yey3-h: t(11)=4.444, p=0.001). 

Novelty preference did not differ between the groups at either delay and delay did not 

significantly affect novelty preference (two-way ANOVA – genotype: F(1,19)=0.082, p=0.778; 

delay: F(1,19)=0.164, p=0.690; genotype x delay: F(1,19)=0.413, p=0.528). To confirm that 

Dp3Yey animals performed normally, mean discrimination ratios were further compared 

with Bayesian statistics. Estimated Bayes factors (B01) reported that the data were 2.287 

times and 2.477 times more likely to occur under H0 than H1 for the 10-min and the 3-h 

delay respectively. 

Together, these findings indicate that ageing did not influence the ability of Dp3Yey 

animals to discriminate between familiar and novel objects similar to WT levels, both after 

the 10-min and the 3-h retention interval. 
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Object-in-place task 

One Dp3Yey animal was excluded from this analysis due to insufficient contact times 

(< 3 sec) and one WT animal was excluded as it fell ill during the experimental period. In 

the sample phases, there was again no difference between the groups and contact times 

dropped significantly across the two sample phases (two-way ANOVA – genotype: 

F(1,17)=1.301, p=0.270; sample phase: F(1,17)=5.201, p=0.036; genotype x sample phase: 

F(1,17)=0.025, p=0.876). 

In the test phase, both WT and Dp3Yey mice displayed significantly higher contact 

times with novel place than familiar place objects, although overall contact times were 

significantly higher in the Dp3Yey than WT group (three-way ANOVA – object: 

F(1,17)=29.118, p<0.001; genotype: F(1,17)=4.805, p=0.043; genotype x object: F(1,17)=0.132, 

p=0.721). Once again, the tested delay did not significantly affect contact times in either 

group, for either object type (three-way ANOVA – delay: F(1,17)=0.010, p=0.922;, p=0.454; 

delay x genotype: F(1,17)=0.588; delay x object: F(1,17)=0.578, p=0.458; delay x genotype x 

object: F(1,17)=0.064, p=0.804).  

Similarly to what was observed in Exp. 2a with younger mice, mean discrimination 

ratios (fig. 3.10b) were significantly above chance at both delays in the WT group and were 

at the edge of significance and significantly above chance in the Dp3Yey group for the 10-

min and the 3-h delay respectively (one sample t-test – WT10-min: t(7)=3.426, p=0.011; WT3-

h: 2.612, p=0.035; Dp3Yey10-min: t(10)=2.194, p=0.053; Dp3Yey3-h: t(10)=2.705, p=0.022). 

Novelty preference did not differ between the groups at either delay and delay did not 

significantly affect novelty preference (two-way ANOVA – genotype: F(1,17)=0.190, p=0.669; 

delay: F(1,17)=0.012, p=0.916; genotype x delay: F(1,17)<0.001, p=0.993). To confirm that 

Dp3Yey animals performed normally, mean discrimination ratios were further compared 

with Bayesian statistics. Estimated Bayes factors (B01) reported that the data were 2.412 

times and 2.395 times more likely to occur under H0 than H1 for the 10-min and the 3-h 

delay respectively.  

Together, these findings indicate that ageing did not affect the ability of Dp3Yey to 

discriminate between novel and familiar object-in-place associations similar to WT levels, 

both after the 10-min and the 3-h retention interval. 
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Table 3.8: Mean contact times of 18-month-old Dp3Yey mice in object-recognition memory 

tasks. Sample phases comprised a total of three objects. Test phases comprised one novel and two 

familiar objects in the NOR, and two novel and one familiar place object in the OiP task. Values are 

mean contact times with one object, ± 1 SD. For NOR n= 9 WT, 12 Dp3Yey. For OiP n= 9 WT, 11 

Dp3Yey. 

 

  Mean contact times (sec) 

   WT Dp3Yey 

NOR 

Sample phase 
S1 9.08 (±2.83) 10.17 (±3.18) 

S2 7.91 (±2.71) 8.58 (±3.20) 

Test - 10-min 
Familiar 5.91 (±2.96) 6.58 (±6.22) 

Novel 11.16 (±4.26) 10.08 (±4.86) 

Test - 3-h 
Familiar 5.62 (±2.73) 5.83 (±2.60) 

Novel 8.75 (±3.04) 10.98 (±6.29) 

OiP 

Sample phase 
S1 8.56 (±3.33) 9.78 (±2.66) 

S2 7.11 (±2.80) 8.52 (±2.50) 

Test - 10-min 
Familiar 4.95 (±2.44) 6.22 (±3.07) 

Novel 8.36 (±5.76) 9.61 (±5.46) 

Test - 3-h 
Familiar 4.99 (±3.04) 7.58 (±3.04) 

Novel 6.83 (±2.84) 10.19 (±2.87) 
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a) NOR 

b) OiP 

Figure 3.10: Mean discrimination ratios of 18-month-old Dp3Yey mice on the NOR (a) and OiP 

(b) task. Bars originate from a 0.5 discrimination ratio, representing chance. Upward bars indicate 

preference for novelty, downward bars indicate preference for familiarity. Values are means ± 1 SEM. 

For NOR n= 9 WT, 12 Dp3Yey. For OiP n= 9 WT, 11 Dp3Yey. 
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 Exp. 2c: Increased activity levels on the EPM 

Adult Dp3Yey (8 months old) underwent a 5-min trial on the EPM to assess anxiety 

and general activity levels. All WT and all Dp3Yey mice visited the open arms of the maze 

andboth groups spent more time within closed than open arms (table 3.9). There was no 

significant difference between the groups in the proportion of time spent in open arms, with 

WT and Dp3Yey animals spending respectively ~28% and ~24% of the trial time in open 

instead of closed arms (fig. 3.11a) (Student’s t-test: t(22)=1.009, p=0.324)..   

The latency to enter open arms for the first time (table 3.9) was similar in both groups, 

taking on average ~ 10 seconds (Student’s t-test – t(20)=0.690, p=0.498). One WT and one 

Dp3Yey were excluded from this analysis because they were identified as outliers (latency 

WT = 111 sec; latency Dp3Yey = 127 sec), as assessed with boxplots and z-scores (smaller 

/ greater ±3). There was also no significant difference in the number of head dips displayed 

by the groups (table 3.9), 24 and 22 in the WT and Dp3Yey group respectively (Student’s t-

test – t(22)=0.708, p=0.487).  

 The locomotor activity of Dp3Yey and WT animals per minute on the EPM is shown 

in fig. 3.11b. Overall, Dp3Yey mice moved a significantly greater distance compared to 

wildtypes but activity decreased significantly over time in both groups, indicating habituation 

to the maze (two-way ANOVA – genotype: F(1,22)=6.795, p=0.016; time: F(4,88)=30.696, 

p<0.001; time x genotype: F(4, 88)=0.885, p=0.477). In fact, the distance moved during the 

last trial minute was significantly lower compared to the first minute in both groups (paired 

t-test – WT: t(11)=7.808, p<0.001; Dp3Yey: t(11)=4.137, p=0.002).  

A comparison between the two arm types (table 3.9) revealed that Dp3Yey displayed 

significantly higher locomotor activity compared to wildtypes in either arm type and that both 

groups moved a significantly larger distance in closed than open arms (two-way ANOVA – 

genotype: F(1,22)=9.596, p=0.005; arm type: F(1,22)=512.974, p<0.001; arm type x genotype: 

F(1,22)=3.728, p=0.067). The total number of arm entries did not differ between WT and 

Dp3Yey mice, and both groups entered closed arms a significantly higher number of times 

compared to open arms (two-way ANOVA – genotype: F(1,22)=2.147, p=0.157; arm type: 

F(1,22)=57.441, p<0.001; arm type x genotype: F(1,22)=1.078, p=0.310). There was also no 

difference between the groups in mean velocity and both groups moved significantly more 

slowly in open arms (two-way ANOVA – genotype: F(1,22)=1.069, p=0.312; arm type: 

F(1,22)=219.570, p<0.001; arm type x genotype: F(1,22)=0.325, p=0.574). 

Together, these results report that the exploratory behaviour of Dp3Yey mice towards 

open arms was similar to wildtypes, indicating no anxiety phenotype. Dp3Yey mice showed 

however a general increase in locomotor activity. Representative locomotor tracks and 

mean heat maps for the Dp3Yey and the WT group are shown in fig. 3.12.  
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a) Proportion of time in open arms 

b) Overall distance moved per minute 

Figure 3.11: Explorative behaviour of Dp3Yey mice on the EPM (a-b). Values are means ± 1 

SEM. Significant main effect of group in b) with *p<0.05. n = 12 WT, 12 Dp3Yey. 
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Table 3.9: Explorative behaviour of Dp3Yey mice on the EPM. Values are means ± 1 SD. No 

significant differences between the groups. n = 12 WT, 12 Dp3Yey. 
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Figure 3.12: Representative locomotor tracks and mean heat maps of Dp3Yey mice on the 

EPM. a) WT group; b) Dp3Yey group. On the tracking, closed arms are represented in orange, open 

arms in pink and the centre in light blue. For heat maps, warmer and colder colours indicate longer 

and shorter exploration times respectively. n = 12 WT, 12 Dp3Yey.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

a) WT 

b) Dp3Yey 
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3.5. Dp2Yey results 

To characterise the behavioural phenotypes associated to trisomy of the Mmu10 

conserved region, Dp2Yey animals underwent two experiments employing object-

recognition memory tasks (Exp. 3a and 3b) and the EPM test (Exp. 3c). 

 Exp. 3a: Intact recognition memory 

Dp2Yey and their WT littermates were first tested on the NOR (what) and the OiP 

(what-where) task at 8 months of age, each with a 10-min and a 24-h delay. Because 

Dp2Yey mice performed at chance levels on the 24-h tests, the cohort was subsequently 

tested on the Loc task (where), to determine whether Dp2Yey mice were able to detect 

novelty at all after a 24-h retention interval. The results are reported separately for each 

task. Mean contact times with the objects during sample and test phases are shown in table 

3.10.  

Novel Object recognition task 

During the sample phases, Dp2Yey mice spent significantly less time sampling the 

objects than WT mice in the first, but not the second sample phase (two-way ANOVA – 

genotype: F(1,22)=2.739, p=0.112; genotype x sample phase: F(1,22)=11.336, p=0.003; simple 

main effects of genotype, Welch’s corrected – S1: F(1,18)=5.489, p=0.031; S2: F(1,18)=0.240, 

p=0.631). Habituation to the objects took place in both groups, as indicated by significantly 

reduced contact times from the first to the second sample phase (two-way ANOVA – sample 

phase: F(1,22)=48.592, p<0.001; simple main effects of sample phase – WT: F(1,22)=53.433, 

p<0.001; Dp2Yey: F(1,22)=6.494, p=0.018). 

In the test phase, intact recognition memory for object identity was inferred from 

higher contact times with novel objects. Although mean contact times with novel objects 

were numerically lower in the Dp2Yey (table 3.10), there was no significant difference 

between groups and both groups showed significantly higher contact times with novel than 

familiar objects (three-way ANOVA – object: F(1,22)=21.827, p<0.001; genotype: 

F(1,22)=0.943, p=0.342; genotype x object: F(1,22)=0.619, p=0.440). Total contact times were 

significantly higher on the 24-h than the 10-min test, an increase that was not specifically 

associated to either group or object type (three-way ANOVA –delay: F(1,22)=5.305, p=0.031; 

delay x object: F(1,22)=2.161, p=0.156; delay x genotype: F(1,22)=0.178, p=0.677; delay x 

object x genotype: F(1,22)=1.088, p=0.308). 

Mean discrimination ratios (fig. 3.13a) were analysed to investigate preference for 

novelty independently of total contact time during the test phase. In the WT group, mean 

discrimination ratios were significantly above chance at both tested delays (one sample t-

tests – WT10-min: t(11)=5.269, p<0.001; WT24-h: t(11)=2.867, p=0.015). In contrast, preference 
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for novelty in the Dp2Yey group was significantly above chance at the 10-min but not the 

24-h delay (one sample t-tests – Dp2Yey10-min: t(11)=3.904, p=0.002; Dp2Yey24-h: t(11)=0.929, 

p=0.373). Overall, mean discrimination ratios were significantly lower at the 24-h than the 

10-min delay, but group differences were not statistically significant (two-way ANOVA – 

delay: F(1,22)=6.838, p=0.016; genotype: F(1,22)=1.480, p=0.237; genotype x delay: 

F(1,22)=0.306, p=0.586).  

To further investigate whether Dp2Yey animals performed normally, mean 

discrimination ratios were compared with Bayesian statistics. Estimated Bayes factors (B01) 

reported that the data were 1.497 times and 2.572 times more likely to occur under H0 than 

H1 for the 10-min and the 24-h delay respectively. 

Together, these findings indicate that Dp2Yey animals were able to discriminate 

between novel and familiar objects to WT levels, both after the 10-min and a 24-h retention 

interval. Preference for novel objects in Dp2Yey mice was however at chance levels on the 

24-h test and suggests a subtle deficit in performance.  

Object-in-place task 

During the sample phases, Dp2Yey and WT mice spent a similar amount of time 

sampling the objects and contact times dropped significantly across the two phases (two-

way ANOVA – genotype: F(1,22)=1.140, p=0.297; sample phase: F(1,22)=32.329, p<0.001; 

genotype x sample phase: F(1,22)=2.922, p=0.101). 

In the test phase, intact recognition memory for object-in-place associations was 

inferred from higher contact times with objects that exchanged position (i.e. novel place 

objects) than with stationary objects (i.e. familiar place objects). Although mean contact 

times (table 3.10) with novel place objects were generally lower in the Dp2Yey, there was 

no significant difference between groups and both groups showed significantly higher 

contacts with novel place than familiar place objects (three-way ANOVA – object: 

F(1,22)=12.739, p<0.002; genotype: F(1,22)=1.199, p=0.285; genotype x object: F(1,22)=0.452, 

p=0.509). Total contact times were significantly higher on the 24-h than the 10-min test, an 

increase that was not specifically associated to either group or object type (three-way 

ANOVA – delay: F(1,22)=10.130, p=0.004; delay x object: F(1,22)=0.649, p=0.429; delay x 

genotype: F(1,22)=0.002, p=0.964; delay x object x genotype: F(1,22)=0.003, p=0.955). 

 As observed in the NOR task, mean discrimination ratios (fig. 3.13b) of the WT group 

were significantly above chance at both tested delays, while preference for novelty in the 

Dp2Yey group was significantly above chance at the 10-min but not the 24-h delay (one 

sample t-test – WT10-min: t(11)=2.769, p=0.018; WT24-h: t(11)=2.277, p=0.044; Dp2Yey10-min: 

t(11)=2.255, p=0.045; Dp2Yey24-h: t(11)=1.088, p=0.300). However, novelty preference did not 

differ between the groups, at either tested delay (two-way ANOVA – genotype: F(1,22)=0.257, 
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p=0.617; genotype x delay: F(1,22)=0.059, p=0.811). Delay did not significantly affect mean 

discrimination ratios (two-way ANOVA –delay: F(1,22)=1.710, p=0.205).  

Mean discrimination ratios were further compared between the groups with Bayesian 

statistics. Estimated Bayes factors (B01) reported that the data were 2.656 times and 2.353 

times more likely to occur under H0 than H1 for the 10-min and the 24-h delay respectively.  

Together, these findings indicate that Dp2Yey animals were able to discriminate 

between novel and familiar object-in-place associations to WT levels, both after the 10-min 

and the 24-h retention interval. However, in Dp2Yey mice preference for novel object-in-

place associations was at chance levels on the 24-h test and suggests a subtle deficit in 

performance. 

Object location task 

To determine whether Dp2Yey animals were at all unable to detect novelty above 

chance levels following a 24-h retention interval, this delay was further tested with the Loc 

task. During sample phases, there was no difference between WT and Dp2Yey mice and 

contact times dropped significantly across the two sample phases (two-way ANOVA – 

genotype: F(1,22)=0.994, p=0.330; sample phase: F(1,22)=12.641, p=0.002; genotype x 

sample phase: F(1,22)=2.590, p=0.122).  

In the test phase, intact memory for spatial locations was inferred from higher contact 

times with objects moved to a novel, previously vacant locations (i.e. novel location objects) 

than with stationary objects (i.e. familiar location objects). Overall, contact times were 

significantly higher with novel than familiar location objects and there was no difference 

between WT and Dp2Yey animals (two-way ANOVA – object: F(1,22)=34.366, p<0.001; 

genotype: F(1,22)=0.043, p=0.837; object x genotype: F(1,22)=1.335, p=0.269). 

In contrast to NOR and OiP findings, both WT and Dp2Yey animals showed a 

significantly above chance mean discrimination ratio after 24-h (fig. 3.13c) (one sample t-

test – WT24-h: t(11)=7.526, p<0.001; Dp2Yey24-h: t(11)=5.592, p<0.001). Novelty preference 

was compared between the groups with classical and Bayesian independent samples 

Student’s t-tests. Respectively, the tests reported no statistically significant difference 

between the groups (t(22)=1.215, p=0.237) and an estimated Bayes factor (B01) reporting 

that the data were 1.575 times more likely to occur under H0 than H1. 

Together, these findings indicate that following a 24-h delay, Dp2Yey animals were 

able to discriminate between familiar objects occupying a novel, previously vacant, spatial 

location and identical, stationary objects. Dp2Yey mice were thus able to display above 

chance novelty preference following a 24-h retention interval. 
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Table 3.10: Mean contact times of 13-month-old Dp2Yey mice in object-recognition memory 

tasks. Sample phases comprised a total of three objects. Test phases comprised one novel and two 

familiar objects / locations in the NOR and Loc task, and two novel and one familiar place object in 

the OiP task. Values are mean contact times with one object, ± 1 SD. n= 12 WT, 12 Dp2Yey. 

 

  Mean contact times (sec) 

   WT Dp2Yey 

NOR 

Sample phase 
S1 13.66 (±5.35) 9.40 (±3.32) 

S2 8.08 (±3.88) 7.45 (±2.14) 

Test - 10-min 
Familiar 6.36 (±2.56) 5.73 (±3.26) 

Novel 12.98 (±9.59) 9.23 (±5.16) 

Test - 24-h 
Familiar 10.88 (±4.92) 9.41 (±4.74) 

Novel 13.02 (±5.02) 12.15 (±8.73) 

OiP 

Sample phase 
S1 13.15 (±4.46) 10.56 (±3.81) 

S2 8.87 (±3.69) 8.26 (±3.74) 

Test - 10-min 
Familiar 8.76 (±6.63) 7.21 (±4.51) 

Novel 12.60 (±7.16) 10.11 (±5.83) 

Test - 24-h 
Familiar 11.77 (±5.77) 10.24 (±6.15) 

Novel 14.45 (±3.59) 11.80 (±4.43) 

Loc 

Sample phase 
S1 6.01 (±2.84) 4.55 (±2.05) 

S2 3.35 (±1.52) 3.55 (±1.24) 

Test - 24-h 
Familiar 5.89 (±3.01) 4.83 (±2.40) 

Novel 8.98 (±4.49) 9.44 (±5.08) 
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a) NOR 

b) OiP 

c) Loc 

Figure 3.13: Mean discrimination ratios of 13-month-old Dp2Yey mice on the NOR (a), OiP (b) 

and LOC (c) task. Bars originate from a 0.5 discrimination ratio, representing chance. Upward bars 

indicate preference for novelty, downward bars indicate preference for familiarity. Values are means 

± 1 SEM. n= 12 WT, 12 Dp2Yey. 
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 Exp. 3b: Ageing impaired memory for objects 

To determine whether the Mmu10 trisomy in conjunction with ageing had detrimental 

effects on memory performance, a cohort of Dp2Yey animals was tested at 20 months of 

age. Since younger Dp2Yey animals showed signs of potentially impaired long-term NOR 

memory and since intact memory for object identity was a requirement for testing on the 

OiP task, NOR memory was first assessed, with a 10-min and a 3-h delay. The 3-h delay 

was chosen as previous data revealed that the customary 24-h retention interval failed to 

consistently produce preference for novelty in wildtype mice. Subsequently, to determine 

whether NOR impairments observed in aged animals were a result of a general age-related 

impairment in novelty detection or concerned specifically the retention of object information, 

the animals were tested on the Loc-task, with a 10-min delay. Since identical objects are 

used in the Loc task, performance does not depend on intact memory for objects. One WT 

mouse was excluded from all the analyses as it displayed a strong preference for familiar 

objects in all tests (mean discrimination ratios < 0.25), indicating a profound impairment in 

novelty detection. Results are reported separately for each task. Mean contact times with 

the objects during sample and test phases are reported in table 3.11. 

Novel object recognition task 

During the sample phases, WT and Dp2Yey mice spent a similar amount of time 

sampling the objects and contact times dropped significantly from the first to the second 

sample phase in both groups (two-way ANOVA – genotype: F(1,18)=1.233, p=0.282; sample 

phase: F(1,18)=8.126, p=0.011; sample phase x genotype: F(1,18)=0.871, p=0.363).  

In the test phase, contact times were significantly higher with novel than familiar 

objects and did not differ between the groups (three-way ANOVA – genotype: F(1,18)=0.147, 

p=0.706; object: F(1,18)=19.242, p<0.001). However, mean contact times (table 3.11) 

suggest that preference for novel objects was lower in the Dp2Yey than the WT group, at 

both the 10-min and the 3-h delay. The interaction between genotype and object type failed 

nevertheless to reach statistical significance (three-way ANOVA – genotype x object: 

F(1,18)=4.092, p=0.058). The tested delay did not significantly affect contact times, in either 

group and for either object type (three-way ANOVA – delay: F(1,18)=1.020, p=0.326; delay x 

genotype: F(1,18)=1.427, p=0.248; delay x object: F(1,18)=0.292, p=0.595; delay x genotype x 

object: F(1,18)=1.357, p=0.259).  

 Normalisation of novelty preference over total contact time in the test phase allowed 

group differences to emerge. In the WT group, mean discrimination ratios (fig. 3.14a) were 

significantly above chance at both delays, while in the Dp2Yey group, mean discrimination 

ratios were no different from chance (one sample t-test – WT10-min: t(7)=3.888, p=0.006; WT3-

h: t(7)=3.530, p=0.010; Dp2Yey10-min: t(11)=0.358, p=0.727; Dp2Yey3-h: t(11)=0.138, p=0.893). 
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In fact, mean discrimination ratios displayed by Dp2Yey mice were significantly lower 

compared to wildtypes, independently of the tested delay (two-way ANOVA – genotype: 

F(1,18)=9.647, p=0.006; delay: F(1,18)=0.233, p=0.635; delay x genotype: F(1,18)=0.001, 

p=0.980). 

To confirm impaired novelty detection in the Dp2Yey group, mean discrimination 

ratios were further compared with Bayesian statistics. The estimated Bayes factors (B01) 

reported that the data were only 0.827 times and 0.327 times more likely to occur under H0 

than H1 for the 10-min and the 3-h delay respectively.  

 These findings indicate that at 20 months of age, Dp2Yey animals were unable to 

discriminate between novel and familiar objects, both after a 10-min and a 3-h retention 

interval.  

Object location task 

 To determine whether impairments in novelty detection of aged Dp2Yey mice were 

restricted to object identity, the animals were further tested on the Loc task. One Dp2Yey 

animal was excluded from the analysis due to insufficient contact time with the objects 

during the test phase (< 3 sec).  

During the sample phases, WT and Dp2Yey mice spent a similar amount of time 

sampling the objects (two-way ANOVA – genotype: F(1,17)=0.002, p=0.968). In both groups, 

contact times remained however stable across the two sample phases, possibly due to a 

floor effect (i.e. three copies of the same object) (two-way ANOVA – sample phase: 

F(1,17)=1.214, p=0.286, sample phase x genotype: F(1,17)=0.051, p=0.823). 

In the test phase, there was no difference between the groups and contact times were 

significantly higher with novel than familiar location objects (two-way ANOVA – object: 

F(1,17)=21.996, p<0.001; genotype: F(1,17)=0.207, p=0.655; object x genotype: F(1,17)=0.014, 

p=0.907).  

In line with the above analysis, mean discrimination ratios of both WT and Dp2Yey 

animals were significantly above chance (fig. 3.14b) (one sample t-test – WT10-min: t(7)=7.440, 

p<0.001; Dp2Yey10-min: t(10)=3.501, p=0.006). Novelty preference was compared between 

the groups with classical and Bayesian independent samples Student’s t-tests. 

Respectively, the tests reported no significant difference between the groups (equal 

variances not assumed: t(14)=0.151, p=0.882) and an estimated Bayes factor (B01) indicating 

that the data were 2.437 times more likely to occur under H0 than H1. 

These findings indicate that despite the impairments observed in the NOR task, 20-

month-old Dp2Yey animals were able to detect spatial novelty, successfully discriminating 

between objects occupying a novel, previously vacant spatial location and identical, 

stationary objects. Novelty elicited exploration per se was therefore not pervasively impaired 

in aged Dp2Yey mice. 
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Table 3.11: Mean contact times of 20-month-old Dp2Yey mice in the NOR and Loc task. Sample 

phases comprised a total of three objects. Test phases comprised one novel and two familiar objects 

/ locations. Values are mean contact times with one object, ± 1 SD. For NOR n= 8 WT, 12 Dp2Yey. 

For Loc n= 8WT, 11 Dp2Yey. 

  Mean contact times (sec) 

   WT Dp2Yey 

NOR 

Sample phase 
S1 4.21 (±1.87) 3.78 (±1.39) 

S2 3.71 (±1.63) 2.80 (±0.98) 

Test – 10-min 
Familiar 1.66 (±0.77) 2.17 (±1.02) 

Novel 3.00 (±0.83) 3.23 (±3.18) 

Test – 3-h 
Familiar 2.53 (±1.36) 2.58 (±1.52) 

Novel 4.24 (±2.06) 2.65 (±1.44) 

Loc 

Sample phase 
S1 3.54 (±1.51) 3.60 (±2.08) 

S2 3.18 (±1.16) 3.05 (±2.83) 

Test – 10-min 
Familiar 1.79 (±1.07) 2.05 (±1.50) 

Novel 3.21 (±1.33) 3.54 (±1.98) 

 

 

 

 

 

 

 

 

 

 

 

 

a) NOR 

Figure 3.14: Mean discrimination ratios of 20-month-old Dp2Yey mice on the NOR (a) and LOC 

(b) task. Bars originate from a 0.5 discrimination ratio, representing chance. Upward bars indicate 

preference for novelty, downward bars indicate preference for familiarity. Values are means ± 1 SEM. 

Significant main effect of genotype on the NOR task (p<0.01). N= 8 WT, 12 Dp2Yey. 
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 Exp. 3c: Normal anxiety and activity levels on the EPM 

 Adult (8 months old) Dp2Yey underwent a 5-min trial on the EPM to assess anxiety 

and general activity levels. All WT mice entered the open arms of the maze, although one 

Dp2Yey mouse did not visit the open arms throughout the entire duration of the trial. Both 

WT and Dp2Yey animals spent more time within closed than open arms (table 3.12) and 

there was no significant group difference in the proportion of time spent in open relative to 

closed arms, with WT and Dp2Yey spending respectively ~22% and ~23%  of the trial time 

within open arms (fig. 3.15a) (Student’s t-test – t(22)=0.306, p=0.762). On average, it took 

Dp2Yey ~ 13 seconds and wildtypes ~24 seconds to enter open arms for the first time (table 

3.12), but this difference was not statistically significant (Student’s t-test – t(19)=1.255, 

p=0.225). One WT and one Dp2Yey were excluded from this analysis because they were 

identified as outliers (latency WT = 178 sec; latency Dp2Yey = 104 sec), as assessed with 

boxplots and z-scores (smaller / greater ± 3). On average, both WT and Dp2Yey mice 

displayed a total of ~15 head dips (Student’s t-test – t(22)=0.143, p=0.887). 

 The locomotor activity of Dp2Yey and WT animals per minute on the EPM is shown 

in fig. 3.15b. Overall, Dp2Yey and WT mice moved a similar distance on the EPM and 

activity decreased significantly over time in both groups, indicating habituation to the 

environment (two-way ANOVA – genotype: F(1,22)=0.149, p=0.703; time: F(4,88)=15.847, 

p<0.001; time x genotype: F(4, 88)=2.003, p=0.101). In fact, in both groups the distance 

moved during the last trial minute was significantly lower compared to the first minute 

(paired t-test – WT: t(11)=4.448, p=0.001; Dp2Yey: t(11)=2.465, p=0.031).  

A comparison between the two arm types (table 3.12) confirmed that locomotor 

activity of Dp2Yey mice was similar to wildtypes in both arm types and revealed that both 

groups moved a significantly larger distance in closed than open arms (two-way ANOVA – 

genotype: F(1,22)=0.233, p=0.634; arm type: F(1,22)=622.019, p<0.001; arm type x genotype: 

F(1,22)=0.132, p=0.720). There was also no significant group difference in the number of arm 

entries and both groups entered closed arms a significantly higher number of times 

compared to open arms (two-way ANOVA – genotype: F(1,22)=0.263, p=0.613; arm type: 

F(1,22)=92.499, p<0.001; arm type x genotype: F(1,22)=0.129, p=0.723). Mean velocity on the 

EPM also did not significantly differ between the groups and both groups moved significantly 

more slowly in open arms (two-way ANOVA – genotype: F(1,21)<0.001, p=0.995; arm type: 

F(1,21)=76.003, p<0.001; arm type x genotype: F(1,21)=1.244, p=0.277).  

Together, these results indicate that the exploratory behaviour of Dp2Yey mice was 

similar to wildtypes, suggesting no anxiety or activity phenotypes. Representative locomotor 

tracks and mean heat maps on the EPM for the Dp2Yey and the WT group are shown in 

fig. 3.16. 
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b) Overall distance moved per minute 

Figure 3.15: Explorative behaviour of Dp2Yey mice on the EPM (a-b). Values are means ± 1 

SEM. n = 12 WT, 12 Dp2Yey. 

a) Proportion of time in open arms 
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Table 3.12: Explorative behaviour of Dp2Yey mice on the EPM. Values are mean ± 1 SD. No 

significant differences between the groups. n = 12 WT, 12 Dp2Yey.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.16: Representative locomotor tracks and mean heat maps of Dp2Yey mice on the 

EPM. a) WT group, (b) Dp2Yey group. On the tracking, closed arms are represented in orange, open 

arms in pink and the centre in light blue. For heat maps, warmer and colder colours indicate longer 

and shorter exploration times respectively. n= 12 WT, 12 Dp2Yey. 

 
a) WT 

b) Dp2Yey 
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3.6. Discussion 

Individuals with DS have severe difficulties in the long-term retention of episodic 

memories. The role that Hsa21 genes play in the regulation of memory function is however 

unclear. Here, to determine the separate contribution of the Mmu16, Mmu17 and Mmu10 

conserved regions to memory impairments, the Dp1Tyb, Dp3Yey and Dp2Yey mouse 

models of segmental DS were studied on a battery of object-recognition memory tasks and 

anxiety tests. For each mouse line, adult (12 months) and aged (18-20 months) animals 

were tested on a series of object-recognition memory tasks, assessing different features 

and retention-spans of recognition memory. As anticipated, the mouse lines revealed 

distinct memory profiles, implicating over-dosage of distinct Has21 syntenic regions in the 

production of distinct phenotypes. Table 3.13 provides a summary of the phenotypes 

observed in each mouse line. 

Mmu16 and the Dp1Tyb model 

 Dp1Tyb animals displayed an age-independent, dissociation in recognition memory. 

Performance on the NOR task was unimpaired (Exp. 1a), indicating that Dp1Tyb 

successfully recognised novel objects after short (10-min) and long (24-h) retention 

intervals. However, Dp1Tyb mice were unable to detect spatial novelty associated to 

specific objects in the OiP task (Exp. 1a) and to judge object temporal recency in the TOr 

task (Exp. 1b). These impairments emerged exclusively after a 10-min retention interval, 

while performance was consistently above chance following longer intervals (24-h or 3-h). 

Importantly, the OiP impairment was not due to a deficit in the processing or retention of 

information about the spatial organisation of objects, as Dp1Tyb mice performed normally 

and above chance on the Loc task (Exp. 1a). Hence, the Mmu16 trisomy did not affect 

memory for single items (what) and for spatial organisation (where), but specifically 

impaired short-term memory for item-in-place and item-order associations (what-where and 

what-when). Impairments in associative-recognition memory were already observed at 4 

months of age (Exp. 1d) and memory for single objects was intact even at 20 months of age 

(Exp. 1c). 

 The observation of intact long-term NOR memory is in contrast to previous findings 

on the Dp1Tyb model. Two studies reported that following a 24-h retention interval, Dp1Tyb 

mice failed to display a preference for exploring a novel over a familiar object (Nguyen et 

al., 2018; Souchet et al., 2019). However, the methods of these two studies differed 

substantially from the present protocol. Most importantly, the animals were given only a 

single 10-min sample phase, in contrast to the two employed here. It is possible that 

doubling the acquisition time in the present study prevented the emergence of a memory 

deficit. Indeed, although Dp1Tyb successfully discriminated between familiar and novel 
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objects, contact times with novel objects were significantly reduced compared to controls, 

implying a weaker memory trace. Here, Dp1Tyb mice were also tested on a one-sample 

version of the NOR task and showed normal object memory, but the task was carried out 

only with a 10-min delay (fig. 3.4a). 

Intact long-term NOR memory in the Dp1Tyb is also in contrast to other models of 

Mmu16 trisomy. Recognition of novel objects was impaired in Ts65Dn and Ts1Rhr mice 

after 24-h, but normal in the Ts1Cje (Belichenko et al., 2009a; Fernandez & Garner, 2007; 

Kleschevnikov et al., 2012). This suggests that trisomy of the DSCR is sufficient to produce 

the deficit (Ts1Rhr), but that the deficit disappears under DSCR trisomy in conjunction with 

trisomy of a small portion of Mmu16 homologs (Ts1Cje), re-appears under trisomy of a 

longer Mmu16 portion (Ts65Dn) and would seem to disappear again under complete 

trisomy of Mmu16 homologs (Dp1Tyb). This pattern underlines the necessity to understand 

how simultaneous over-dosage of distinct Mmu16 homologs affects gene transcription and 

ultimately memory function. When NOR memory was assessed in a transchromosomic DS 

model, the Tc1, trisomic animals were impaired on short-term memory but showed 

unimpaired long-term object memory, suggesting that simultaneous over-dosage of Hsa21 

genes mapping to all three conserved regions does not interfere with long-term object 

memory (Hall et al., 2016).  

Although no previous published study has ever tested memory in Dp1Tyb mice 

following shorter delays, current results are in line with Ts65Dn mice displaying intact 10-

min NOR memory (Kleschevnikov et al., 2012). By contrast, evidence in the Tc1 line found 

that despite normal 24-h performance, Tc1 mice were unable to recognise a novel object 

following a 10-min delay (Hall et al., 2016). This suggests that Hsa21 genes mapping to 

Mmu10 or Mmu17 but not Mmu16, might be involved in the regulation of short-term object 

memory.  

 Dp1Tyb animals were expected to display impairments in HPC-dependent memory 

tests, yet, despite evidence of disrupted OiP memory, they performed normally on the Loc 

task (Exp. 1a). This suggests that Dp1Tyb mice possess a subtle spatial memory 

impairment. By contrast, Ts65Dn mice were repeatedly found unable to detect spatial 

novelty in different versions of object-recognition memory tasks (Kleschevnikov et al., 2012; 

Smith, Kesner, & Korenberg, 2014). The Ts65Dn is however a controversial model as these 

animals lack trisomy of some Hsa21-syntenic genes and are trisomic for 60 genes on 

Mmu17 that are not syntenic to Hsa21 (Duchon et al., 2011b). In fact, behavioural and 

physical phenotypes are generally more severe in the Ts65Dn strain compared to other DS 

mouse models (Belichenko et al., 2009a). The HPC of Ts65Dn mice is affected by important 

structural anomalies, such as reduced neuronal and synapse numbers (Chakrabarti et al., 

2007; Chakrabarti et al., 2010). By contrast, although research on Dp1Tyb brain structure 
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is still in its infancy, this mouse line does not seem to be characterised by obvious alterations 

in hippocampal cytoarchitecture (Goodliffe et al., 2016). 

 Nevertheless, Dp1Tyb mice exhibited a delay-dependent deficit on the OiP and TOr 

tasks (Exp. 1a and 1b), known to depend on a network of structures that includes the HPC. 

Importantly, although Dp1Tyb mice failed to display a preference for the less recently 

presented object in the TOr task, they also did not show a preference for the more recently 

presented object. The lack of a preference towards either object implicates that neither 

object was perceived as novel. Thus, Dp1Tyb mice reported a specific difficulty in judging 

the temporal context associated to each object, while recognising both objects as previously 

encountered. 

Memory for object-in-place and object temporal order associations requires the 

integration of object and place / temporal context-information, a role that has been 

repeatedly attributed to the HPC. Indeed, performance of rats with lesions of either the PRH, 

the HPC or the mPFC is impaired on the OiP and TOr tasks, demonstrating the necessity 

of integrated activity within the medial temporal lobe (Barker & Warburton, 2011b). Instead, 

NOR and Loc performance was exclusively affected by lesions of the PRH and the HPC 

respectively. Based on the Dp1Tyb memory profile, it can be postulated that independent 

activity of subregions within the medial temporal lobe appears normal but network activity 

is aberrant, whereby HPC-mediated input integration and/or recall of integrated events is 

defective. In line with this interpretation, Dp1Tyb animals have been repeatedly found 

impaired in tasks requiring the integration of visuospatial / contextual information, such as 

the MWM and the contextual fear conditioning task, known to be sensitive to hippocampal 

dysfunction (Aziz et al., 2018; Goodliffe et al., 2016; Jiang et al., 2015; Yu et al., 2010b; 

Zhang et al., 2014). 

 The memory deficits following brain lesions observed by Barker and Waburton 

(2011b) were however not restricted to a specific time window but affected both short (5-

min) and long (24-h) retention intervals. The pattern of impaired short-term but preserved 

long-term associative-recognition memory in the Dp1Tyb is peculiar, but not 

unprecedented. Tc1 mice displayed the same delay-dependent memory performance on 

the NOR task and on the MWM (Hall et al., 2016; Morice et al., 2008). Moreover, this 

behavioural pattern was reflected in synaptic plasticity, whereby in vivo hippocampal LTP 

was significantly reduced in Tc1 mice after tetanic stimulation, but LTP maintenance levels 

were normal 24-h later (Morice et al., 2008). In the Dp1Tyb, in vitro hippocampal LTP was 

significantly reduced up to 1 hour after induction, but longer intervals have never been 

assessed (Yu et al., 2010b; Zhang et al., 2014). Based on the behavioural evidence it can 

be speculated that, analogously to the Tc1 model, long-term maintenance of LTP may be 

normal in the Dp1Tyb.  
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 Memory performance was expected to deteriorate with age in Dp1Tyb mice, as a 

result of App trisomy promoting AD-like pathology. In the Ts65Dn model, brain APP levels 

were found significantly increased at 10 months of age, while no difference was observed 

at younger ages (Choi et al., 2009). Ts65Dn mice have also been found to display elevated 

Aβ-levels in the HPC and treatment with a γ-secretase inhibitor restored both normal Aβ-

levels and performance on the MWM (Netzer et al., 2010). In the Dp1Tyb model, previous 

research reported that APP overexpression in the HPC was evident already at 4 months of 

age, but Aβ-deposits were not investigated (Yu et al., 2010b).  

Mouse models of AD commonly display diffuse Aβ-plaques after the age of 8 months 

and impairments are observed in HPC-dependent and NOR tasks (as reviewed in Webster 

et al., 2014). On the NOR task, Tg2576 mice displayed intact recognition memory after a 

10-min delay but were impaired after 24-h, suggesting a critical role of APP in the regulation 

of long-term object memory (Hall et al., 2016). This interpretation is agreement with Tc1 

mice – not functionally trisomic for App – who display intact 24-h NOR memory (Hall et al., 

2016). Here however, 20-month-old Dp1Tyb mice showed intact 24-h NOR memory (Exp. 

1c). Furthermore, memory deficits observed on the OiP task were already present in 4-

month-old mice (Exp. 1d). These results demonstrate that App trisomy in conjunction with 

duplication of all Mmu16 homologs did not affect long-term memory for objects and that 

ageing did not represent a crucial factor in the performance of Dp1Tyb mice. 

These seemingly inconsistent findings highlight once again the importance of gene-

to-gene interactions, whereby deleterious effects of a given gene depend on the dosage of 

other Hsa21 homologs. In this perspective, it is worth pointing out that while Tc1 mice do 

not exhibit amyloid pathology, Tc1 mice crossed with a mouse line overexpressing APP 

were found to display significantly increased hippocampal Aβ-levels and Aβ-plaque number 

in comparison to mice solely overexpressing APP (Wiseman et al., 2018). This suggests 

that in DS, genes on Hsa21 other than APP contribute to AD pathology, exacerbating Aβ-

aggregation.  

Dosage-sensitive genes linked to the memory deficits observed in the Dp1Tyb are 

potentially located within the DSCR. By crossing Dp1Tyb mice with mutant mice monosomic 

for the DSCR, Zhang et al. (2014) generated offspring carrying normal copy number of 

DSCR genes and trisomy of all other Mmu16 homologs. In contrast to the Dp1Tyb, the 

crossed mouse line reported normal performance on the MWM and normal hippocampal 

LTP, attributing DSCR genes a causative role in aberrant hippocampal function (Zhang et 

al., 2014). A candidate gene located within the DSCR is DYRK1A. This gene codes for a 

kinase involved in numerous cellular pathways in the developing and adult brain. Alterations 

in DYRK1A dosage have been repeatedly associated to cognitive dysfunction. Studies of 

DS individuals report a gene dosage-dependent expression of DYRK1A, with western blots 
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indicating a ~1.5 fold increase in different brain regions (Dowjat et al., 2007). A similar 

increase in DYRK1A expression has also been found in the Ts65Dn, the Tc1 and the 

Dp1Tyb model (Ahmed et al., 2013; Dowjat et al., 2007; Souchet et al. 2014). 

The molecular mechanisms altered by DYRK1A over-dosage impairing cognition are 

not fully understood and are discussed in more detail in chapter 4. Certainly, DYRK1A plays 

a fundamental role during embryonic development as demonstrated by the mid-gestation 

mortality of Dyrk1A deficient transgenic mice (Fotaki et al., 2002). Reducing Dyrk1A to one 

functional copy (-/+) increased death rates as well, with surviving pups presenting reduced 

body size and brain volume (Fotaki et al., 2002). Although overdosage of Dyrk1A does not 

affect litter viability or gross brain morphology, increased DYRK1A levels have been 

associated to neuronal and behavioural abnormalities, including memory impairments on 

the MWM, the T-maze spontaneous alternation test and the NOR task (Altafaj et al., 2001; 

De la Torre et al., 2014; Souchet et al., 2014). 

To better understand the contribution of DYRK1A to the memory deficits observed in 

DS, a few studies have crossed trisomic and Dyrk1A (+/-) mice to generate offspring with 

normal Dyrk1A copy number on an otherwise trisomic background. In the Ts65Dn model, 

normalisation of Dyrk1A copy number rescued memory performance on the MWM and 

restored normal hippocampal LTP (García-Cerro et al., 2014). In the Dp1Tyb model, 

normalisation of Dyrk1A partially rescued in vitro hippocampal LTP and significantly 

improved spontaneous alternation rates on the T-maze test and freezing levels on the 

contextual fear conditioning task, although performance did not reach normal levels (Jiang 

et al., 2015). By contrast, normalisation of Dyrk1A together with half DSCR (~13 genes) did 

not rescue either memory deficits or LTP, reiterating the importance of gene-to-gene 

interactions in DS (Jiang et al, 2015). 

In addition to memory deficits, the Mmu16 trisomy resulted in an increase in anxiety 

and activity levels on the EPM (Exp. 1e). Compared to wildtypes, Dp1Tyb mice were less 

inclined to explore the open arms of the maze and they moved a larger distance in closed 

arms, suggesting that within a sheltered environment Dp1Tyb mice are hyperactive. 

Measures of anxiety and locomotor activity are important as these variables can interfere 

with explorative behaviour and thus memory performance in object-recognition memory 

tasks. Such confounds would however equally affect performance in all tasks, at all tested 

delays. It is therefore extremely unlikely that anxiety and activity phenotypes participated in 

the very specific pattern of memory dissociation displayed by Dp1Tyb animals.  

Additionally, contact behaviour during the sample phases did not differ between 

Dp1Tyb and WT mice. The only exception was in the TOr task (Exp. 1b), with Dp1Tyb mice 

spending less time with the objects in both sample and test phases. Reduced contacts are 

however unlikely to have confounded the performance, since TOr memory was not fully 
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compromised in the Dp1Tyb but only at the 10-min delay. The reason why Dp1Tyb 

displayed lower contact times than wildtypes in the TOr task is unclear. The TOr was the 

last task of a series of experiments and it is possible that Dp1Tyb mice were more sensitive 

to repeated testing than wildtypes, resulting in reduced task engagement.  

Activity levels have been assessed before in Dp1Tyb mice but produced inconsistent 

evidence. On the open-field test, Dp1Tyb mice were found to display normal, reduced or 

increased locomotor activity (Aziz et al., 2018; Goodliffe et al., 2016; Souchet et al., 2019). 

Here, findings on the Dp1Tyb activity profile were expanded, revealing a hyperactivity 

phenotype in unexposed maze areas (i.e. closed arms). It is possible that discrepant 

findings in the literature resulted from differences in acclimation to the testing environment, 

especially in light of an anxiety phenotype. Increased anxiety levels are consistent with 

previous evidence reporting increased thigmotaxis in Dp1Tyb mice (Goodliffe et al., 2016). 

Altered activity and anxiety levels have been observed in other Mmu16 trisomy 

models and associated to aberrant hippocampal function. Partially in line with Dp1Tyb 

findings, Ts65Dn mice displayed increased locomotor activity on the open-field maze but 

reduced anxiety on the EPM (Sago et al., 2000; Yin et al., 2017). Instead, Ts1Cje were 

found hypoactive on the open-field test but showed increased thigmotaxis, suggesting 

elevated anxiety (Sago et al., 2000). Interestingly, DYRK1A activity has also been 

implicated in altered anxiety and activity levels. Transgenic mice overexpressing Dyrk1A 

displayed reduced anxiety levels on the EPM and increased activity on the open-field maze 

(Altafaj et al., 2001). In the Ts65Dn, normalisation of Dyrk1A copy number reduced 

hyperactivity (García-Cerro et al., 2014). 

Overall, the behavioural profile of the Dp1Tyb strain recreated some, but not all, of 

the phenotypes observed in other Mmu16 trisomy models. Occurrence and nature of 

memory deficits seem to depend on genetic differences between the Mmu16 models. 

However, rather than being specific Mmu16 genes or Mmu16 portions whose over-dosage 

is directly responsible for the manifestation of given memory deficits, it seems that 

phenotypes depend primarily on dosage-dependent interactions between Mmu16 

homologs. 
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Mmu17 and the Dp3Yey model  

 Dp3Yey animals displayed intact recognition memory. Performance was normal on 

the NOR and the OiP task (Exp. 2a), indicating that Dp3Yey mice successfully recognised 

novel objects and novel object-in-place associations, both after short (10-min) and long (24-

h) retention intervals. Intact OiP memory automatically implied normal memory for single 

spatial locations. Hence, the Mmu17 trisomy did not affect either single- or associative- 

recognition memory processes. As predicted, memory was not affected by ageing (Exp. 

2b).  

 Based on the memory profile displayed by Dp3Yey mice, it can be concluded that 

there is no evidence that the Mmu17 trisomy alters activity of medial temporal lobe 

structures, even at advanced age. Genes syntenic to Hsa21 located on Mmu17 thus do not 

seem to contribute to either cognitive decline or hippocampal dysfunction characteristic of 

DS. This interpretation is in line with previous evidence on the Dp3Yey model reporting 

intact memory on the MWM and the contextual fear conditioning task (Yu et al., 2010b).  

Further support for the lack of involvement of Mmu17 homologs in the regulation of 

hippocampal activity comes from mouse lines with partial Mmu17 mutations. Both animals 

trisomic (Dp1Yah) or monosomic (Ms2Yah) for a portion of Mmu17 homologs did not display 

memory deficits in HPC-dependent tasks (Pereira et al., 2009; Sahún et al., 2014). In fact, 

visuospatial learning on the MWM and associative memory on the contextual fear 

conditioning task were significantly increased in the Dp1Yah and Ms2Yah respectively.  

Nevertheless, intact NOR memory in the Dp3Yey diverges from previous findings on 

the Dp1Yah model. Following a 1-h delay, Dp1Yah mice were found unable to discriminate 

between a novel and a familiar object, suggesting that over-dosage of a portion of Mmu17 

syntenic genes interferes with normal activity of the PRH cortex (Marechal et al., 2019; 

Pereira et al., 2009). The task was however carried out with a single sample phase. Whether 

memory for objects following exposure to a single sample phase and after a 1-h retention 

interval would be impaired in Dp3Yey mice, is currently unknown. This seems however 

highly unlikely, since present results found no evidence for a reduction in novelty 

preference. 

Based on the above findings, it can be concluded that genes trisomic in the Dp3Yey 

but not the Dp1Yah model determine the emergence of impairments in object memory. As 

per the importance of gene-to-gene interactions noted for Mmu16 trisomy models, it seems 

plausible that over-dosage of the few genes exclusive to the Dp3Yey model (~5 genes) 

might compensate for the deleterious effects produced by over-dosage of the remaining 

Mmu17 homologs. A possible candidate gene implicated in NOR impairments is the Cbs 

gene, trisomic in both the Dp3Yey and the Dp1Yah model. The Cbs gene codes for an 

enzyme involved in the synthesis of cysteine, an amino acid relevant for metabolism 
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function (Marechal et al., 2019). Mutations in the CBS gene have been associated to 

homocystinuria, a metabolic disorder affecting a wide range of body systems, including the 

central nervous system. Individuals with homocystinuria have intellectual disability 

(Almuqbil et al., 2019). 

In DS individuals, CBS expression in the brain is over twice as much the levels of 

control subjects (Ichinohe et al, 2005). CBS levels in Dp3Yey mice are unknown but 

Dp1Yah mice reported an increase in different brain regions, including the HPC (Pereira et 

al., 2009). Interestingly, normalisation of Cbs dosage in Dp1Yah animals restored normal 

memory for objects (Marechal et al., 2019). Moreover, transgenic mice deficient for Cbs 

showed normal NOR memory, while transgenic mice overexpressing Cbs were impaired 

and the deficit could be rescued by treatment with CBS-inhibitors, attributing CBS 

overexpression a causative role in object memory impairments (Marechal et al., 2019). It is 

possible that in the Dp3Yey model, simultaneous over-dosage of all Mmu17 homologs 

downregulates CBS expression, preventing memory deficits in the NOR task. This 

hypothesis could potentially be confirmed by measuring CBS levels in Dp3Yey brains.  

Interactions between genes do not only occur between genes located on the same 

conserved region, but also between genes on different chromosomes, reiterating the 

genetic complexity of DS. For example, while Dp1Yah mice and transgenic mice 

overexpressing DYRK1A displayed impaired NOR memory, crossing the two mouse lines 

resulted in offspring with intact NOR memory, implicating that interactions between Mmu17 

homologs and Dyrk1A prevent the deficit (Marechal et al., 2019). Indeed, DYRK1A levels 

have been associated to CBS expression (Marechal et al., 2019). However, simultaneous 

Dp1Yah trisomy and DYRK1A overexpression produced a new deficit on the MWM, 

confirming the importance of Dyrk1A dosage in HPC-dependent tasks (Marechal et al., 

2019). 

Although trisomy of Mmu17 homologs did not result in memory deficits, phenotypes 

were observed on the EPM (Exp. 2c). While Dp3Yey mice explored open arms to a similar 

extent as wildtypes, indicating no anxiety phenotype, the overall distance walked on the 

EPM was significantly larger in the Dp3Yey group. Importantly, despite the increase in 

locomotor activity, Dp3Yey habituated normally to the maze, suggesting that hyperactivity 

was not the result of a cognitive defect in accustoming to the environment. Increased activity 

levels in the Dp3Yey are unlikely to have interfered with performance on object-recognition 

memory tasks, as novelty preference of Dp3Yey mice was no different from controls, in any 

task. On the contrary, contact behaviour towards the objects was remarkably similar to 

wildtypes, both in sample and test phases. 

 Normal anxiety levels are in agreement with previous EPM evidence on the Dp1Yah 

model, adding to the interpretation that Mmu17 homologs are not involved in the regulation 
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of anxiety (Pereira et al., 2009). Interestingly, while Dp1Yah and mice overexpressing CBS 

reported normal locomotor levels on the open-field test, normalising Cbs copy number in 

the Dp1Yah produced hyperactivity (Marechal et al., 2019). As noted for object memory, it 

seems plausible that genes trisomic in the Dp3Yey but not the Dp1Yah model downregulate 

the expression of CBS, in this case generating a hyperactivity phenotype.  

 Based on the current findings it can be postulated that syntenic genes located on 

Mmu17 play an important role in the regulation of activity levels, potentially contributing to 

attention deficit / hyperactivity disorders observed in the DS population. Although 

hyperactivity has been previously associated to hippocampal dysfunction, this interpretation 

would be in contrast with present and previous evidence reporting no impairments in HPC-

dependent memory tasks in Dp3Yey mice.  

Overall, the memory profile of Dp3Yey mice was consistent with previous findings 

reporting normal performance in HPC-dependent tasks. The findings were however in 

strong contrast to a model of incomplete Mmu17 trisomy. Once again, gene-to-gene 

interactions seem crucial in determining the emergence of behavioural phenotypes. 

Mmu10 and the Dp2Yey model  

 Dp2Yey animals displayed an age-dependent, deficit in recognition memory. At 12 

months of age, performance on the NOR and the OiP task was no different from controls, 

both after short (10-min) and long (24-h) retention intervals (Exp. 3a). In both tasks however, 

performance of the Dp2Yey on the 24-h test was at chance levels. Low novelty 

discrimination concerned specifically the retention of objects and object-in-place 

associations, since memory for single spatial locations assessed with the Loc task was 

above chance after 24-h (Exp. 3a).  

At 20 months of age, Dp2Yey mice displayed a pervasive impairment in object 

memory. In the NOR task, aged Dp2Yey mice were no longer able to discriminate between 

familiar and novel objects, both after short (10-min) and long (3-h) retention intervals (Exp. 

3b). Consequently, associative-recognition memory processes relying on object memory 

assessed in the OiP and TOr task could not be evaluated and further testing was only 

practicable with the Loc task (Exp. 3b). Aged Dp2Yey mice were still able to discriminate 

between novel and familiar spatial locations, excluding the possibility that NOR deficits were 

caused by non-specific perceptual or attentional impairments. Hence, although the Mmu10 

trisomy alone did not significantly affect single- or associative-recognition memory, the 

Mmu10 trisomy in conjunction with ageing resulted in impaired memory for single items 

(what), sparing memory for single locations (where).  

Electrophysiological and cellular studies repeatedly demonstrated that the processing 

of item information relies on activity of the PRH cortex and lesions of the PRH cortex were 

repeatedly demonstrated to impair memory for objects. On the NOR task, pharmacological 
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inactivation of the PRH cortex prior to the sample phase, during the retention interval or 

prior to the test phase, resulted in impaired performance (Winters & Bussey, 2005). These 

results strongly indicate that activity of the PRH cortex is necessary during encoding, 

consolidation and retrieval of object memory. Here, 20-month-old but not 12-mont-old 

Dp2Yey animals were unable to recognise novel objects among familiar objects on the NOR 

task (Exp. 3b). Therefore, it can be reasonably concluded that the Mmu10 trisomy 

progressively impaired function of the PRH cortex. 

Although memory for objects was impaired in 20-month-old Dp2Yey, memory for 

single spatial locations assessed with the Loc task was preserved (Exp.3b). Spatial / 

contextual information is primarily processed by the postrhinal cortex and the HPC. It could 

thus be assumed that the Mmu10 trisomy did not impair activity of the HPC. However, 

present findings do not permit one to definitively draw this conclusion, as HPC-dependent 

associative-recognition memory processes could not be tested in the presence of defective 

object memory. Although associative-recognition memory processes would be impaired in 

20-month-old Dp2Yey mice due to defective processing of object-information, it cannot be 

excluded that the HPC-dependent integration of object- and context information might also 

be defective.  

In 12-month-old Dp2Yey animals, memory for object-in-place associations was 

unimpaired, suggesting no hippocampal dysfunction at this age (Exp. 3a). However, 

Dp2Yey mice performed only at chance levels on the 24-h test. Since performance was 

also low on the 24-h test of the NOR task (Exp. 3a), it cannot be determined whether low 

performance in the OiP task was due to a defect in HPC-dependent input integration or a 

consequence of already degrading object memory. This ambiguity could potentially be 

clarified by investigating associative-recognition memory processes in Dp2Yey mice at an 

earlier age. 

Although previous evidence on the Dp2Yey model is scarce, findings indeed seem to 

suggest that the Mmu10 trisomy does not interfere with hippocampal function. Dp2Yey 

animals aged 2-4 months reported normal visuospatial learning on the MWM and normal 

associative learning on the contextual fear conditioning task (Yu et al., 2010b). 

Nevertheless, since performance on these tasks requires the HPC-mediated integration of 

item- and contextual-information, it can be predicted that Dp2Yey mice would display 

memory deficits if tested at a later age. 

Whether Mmu10 syntenic genes contribute to the hippocampal dysfunction 

characteristic of DS was also addressed with crossed transgenic mouse lines. Duchon et 

al. (2011a) generated mice monosomic for the entirety of the Mmu10 syntenic region, the 

Ms4Yah. These animals were crossed with Tc1 mice, producing offspring with normal copy 

number of the Mmu10 region on the trisomic background of the Tc1 line. The animals were 
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tested on the short-term version of the MWM, assessing performance following repeated 

training trials separated by brief time intervals. Visuospatial learning was intact in Ms4Yah 

mice but impaired in both Tc1 mice and Tc1 mice with normal Mmu10 dosage, suggesting 

once again that Mmu10 genes do not play a key role in the regulation of hippocampal 

function. 

Although the Mmu10 trisomy does not seem to contribute to aberrant hippocampal 

function, the deficit in the NOR task indicates that it is involved in the object memory 

impairments observed in DS. In the Tc1 line, trisomic mice displayed a deficit on the NOR 

task together with spared memory for novel spatial locations on the Loc task, exactly as 

observed here in aged Dp2Yey (Hall et al., 2016). Since Dp2Yey but not Dp1Tyb or Dp3Yey 

mice reported a NOR deficit, it is plausible that over-dosage of Hsa21 genes mapping to 

Mmu10 causes aberrant memory for objects in DS. The assessment of Tc1 mice with 

normal Mmu10 copy number on the NOR task could potentially confirm this hypothesis, with 

crossed animals expected to perform normally. 

Tc1 mice displayed however the NOR deficit already at 4-7 months of age, while here, 

12-month-old Dp2Yey mice still performed no different from controls. Additionally, Tc1 mice 

were impaired exclusively after a 10-min delay, while here, 20-month-old Dp2Yey mice were 

also impaired after longer retention intervals. At younger age, signs of a weaker memory 

trace were present in the Dp2Yey, but only in long-term memory. It can be speculated that 

in the Tc1 model, trisomy of Mmu10 homologs in conjunction to the remaining Hsa21 

homologs, exacerbates memory deficits, revealing them at an earlier age. At the same time, 

the complete Hsa21 trisomy in the Tc1 model might result in compensatory mechanisms 

rescuing long-term memory performance.  

A candidate Hsa21 gene for the age-dependent cognitive decline observed in the 

Dp2Yey model is the S100B gene, which maps to Mmu10. This gene is primarily expressed 

by astrocytes, encoding for the S100 calcium-binding protein B (Cristóvão & Gomes, 2019). 

S100B can act as neurotrophic factor, contributing to cell proliferation, differentiation and 

growth and has also been involved in synaptic plasticity, as discussed in chapter 4. S100B 

can also play a role in neuroinflammation, acting as a pro-inflammatory cytokine. As such, 

S100B has been repeatedly implicated in the pathogenesis of AD.  

In AD, the formation of Aβ-aggregates and consequent neuronal cell death elicit an 

immune response, resulting in glial cells activation and cytokine expression, including 

S100B (Cristóvão & Gomes, 2019). Immunohistochemical analyses report that cortical and 

hippocampal levels of S100B are elevated in AD-patients and mouse models of AD (Griffin 

et al., 1989; Yeh et al, 2015). Moreover, Tg2576 mice crossed with transgenic mice 

overexpressing human S100B show a significant increase in Aβ-deposits in HPC and 

entorhinal cortex, in comparison to Tg2576 mice (Mori et al., 2010). Respectively, genetic 
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ablation of S100b in a mouse model of AD resulted in a significant decrease in cortical Aβ-

density (Roltsch, Holcomb, Young, Marks, & Zimmer, 2010). 

Such findings provide evidence for the involvement of S100B in the amyloidgenic 

cleavage of APP. Although the exact cellular mechanisms are unclear, S100B has been 

found to upregulate the expression of APP and vice versa, in a self-propagating cycle 

exacerbating AD pathology (as reviewed in Wilcock & Griffin, 2013). In this perspective, the 

higher incidence of AD in the DS population is unsurprising, since trisomy 21 combines 

over-dosage of both the S100B and the APP gene. Indeed, S100B expression is already 

elevated in DS foetuses and progressively increases with age (Griffin et al., 1989; Royston 

et al., 1999). Moreover, cortical S100B levels were found to positively correlate with Aβ-

deposition levels in DS individuals (Royston et al., 1999).  

Considering the previous evidence, it can be postulated that in the Dp2Yey model – 

trisomic for S100b but not App – overexpression of S100B progressively leads to increased 

Aβ accumulation, promoting neurodegeneration and cognitive decline. In fact, transgenic 

mice overexpressing S100B were found to display dendritic spine loss at 1 year of age, 

along with aberrant cytoskeletal morphology and impaired memory on the MWM (Whitaker-

Azmitia et al., 1997). Importantly, the detrimental effect of S100B overexpression depended 

on age, whereby 5-week-old transgenic mice actually displayed an increase in dendritic 

spine density.  

In line with the reciprocally upregulating relationship between S100B and APP, levels 

of S100B were found increased in Ts1Cje mice, trisomic for App but not S100b (Créau et 

al., 2016). This increase was once again age-dependent, observed at 12- and 17- but not 

4-months of age. In the Dp2Yey, hippocampal levels of both S100B and APP were found 

elevated at 8 months of age (Block et al., 2015). Based on current and previous evidence, 

it can be hypothesised that brains of aged Dp2Yey animals are characterised by 

neurodegenerative processes and Aβ-aggregation, causing memory impairments. 

On the EPM (Exp. 3c), the propensity of Dp2Yey mice to explore the open arms of 

the maze was similar to wildtypes, as well as locomotor activity levels. This suggests that 

Hsa21 syntenic genes located on Mmu10 are not involved in the regulation of anxiety or 

activity levels. In line with this interpretation, Ms4Yah mice reported normal locomotor 

activity and normal thigmotaxis levels on the open-field test (Duchon et al., 2011a). 

It must however be noted, that only 12-month-old Dp2Yey animals were tested on the 

EPM. It cannot be excluded that the Mmu10 trisomy might generate anxiety or activity 

phenotypes at a later age, as was the case for memory function. Consequently, it remains 

unclear whether these measures might have interfered with performance in object-

recognition memory tasks at 20-months of age. Nevertheless, the available evidence 

demonstrates that there was no difference in the explorative behaviour of Dp2Yey and WT 
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animals during the sample phases. Additionally, performance of aged Dp2Yey mice was 

not overall impaired, but only in the NOR task. It is unlikely that possible anxiety or activity 

phenotypes produced such a selective deficit. 

Overall, the memory profile of Dp2Yey mice provided no evidence of abnormal 

hippocampal function, in line with previous findings on this model. This interpretation is 

however limited by aberrant memory for objects. The Mmu10 trisomy was nevertheless 

associated to age-dependent abnormal function of the PRH cortex. No anxiety or activity 

phenotypes were associated to the Mmu10 trisomy. 

Conclusion 

These results identify the Mmu16 conserved region as the primary source of aberrant 

HPC-dependent recognition memory processes. Instead, the Mmu10 conserved region was 

identified as the source of aberrant memory for objects and age-related cognitive decline. 

The Mmu17 and the Mmu16 trisomy were related to increased activity and anxiety levels. 

Together, phenotypes observed in the Dp1Tyb, Dp3Yey and Dp2Yey recapitulated 

phenotypes observed in the triple trisomic (TTS) model. Analogously to the Dp1Tyb line, 

TTS mice were found to display deficits in HPC-dependent tasks, namely the MWM and the 

contextual fear conditioning task (Yu et al., 2010a). TTS mice also displayed a deficit in the 

NOR task after a 24-h delay, as observed in aged Dp2Yey (Belichenko et al., 2015). Finally, 

TTS mice showed increased locomotor activity on the open-field test, analogously to what 

observed in the Dp3Yey and to some extent in the Dp1Tyb on the EPM (Belichenko et al., 

2015).  

 Comparison of current findings with other models of the Mmu16, Mmu17 and Mmu10 

trisomy revealed that gene-to-gene interactions are fundamental in determining the 

manifestation of phenotypes, rather than specific genes or gene segments. For example, 

while dosage normalisation of the DSCR in the Dp1Tyb rescued performance on the MWM, 

normalisation of the DSCR plus trisomy of the Mmu17 conserved region reinstated the 

MWM deficit (Zhang et al., 2014). By contrast, dosage normalisation of the DSCR in the 

Dp1Tyb plus trisomy of the Mmu10 conserved region did not prevent DSCR normalisation 

to rescue the MWM deficit. This implicates that genes on Mmu17 but not on Mmu10, interact 

with Mmu16 genes outside the DSCR, reinstating the memory deficit. Further studies 

assessing performance of crossed mouse lines on the NOR task would allow to uncover 

whether Mmu10 genes interact with Mmu16 or Mmu17 in the regulation of object memory. 

The cellular mechanisms through which syntenic genes on Mmu16, Mmu17 and 

Mmu10 regulate each other’s expression in DS, affecting brain development, synaptic 

plasticity and memory function, still need clarification. In this respect, the utility of mouse 

models of segmental DS is limited. 
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Table 3.13: Overview of behavioural findings. Performance in object-recognition memory tasks 

and on the EPM test for the cohorts of Dp1Tyb, Dp3Yey and Dp2Yey animals. Red: impaired memory 

performance / EPM phenotype; green: intact memory performance / no EPM phenotype; yellow: 

chance memory performance.  

 

 

 

 

 

 

 

 



  

 

 

 

 

 

 

 

Chapter 4: Expression of glutamate receptors  
 

 

 

Overview 

This chapter begins with an introduction on synaptic plasticity mechanisms and 

glutamate receptors. Expression and activity of glutamate receptors is fundamental for the 

changes in synaptic transmission postulated to underpin memory function. Indeed, altered 

activity of glutamate receptors has been associated to memory impairments and altered 

glutamate receptor levels are observed in the hippocampus of DS mouse models. 

Therefore, to determine the impact of the Mmu16, Mmu17 and Mmu10 trisomy on glutamate 

receptor expression and to reveal molecular mechanisms possibly associated to 

impairments in object-recognition memory tasks observed in chapter 3, glutamate receptor 

expression was examined in the hippocampus of Dp1Tyb, Dp3Yey and Dp2Yey mice. 

Western blot experiments are reported in this chapter. The three mouse lines revealed 

distinct patterns of glutamate receptor expression, possibly related to over-dosage of key 

genes located on the respective trisomic segment. 
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4.1. Introduction 

In object-recognition memory tasks, successful recall of the sample episode implies 

that the episode was first encoded and then consolidated into a stable memory 

representation. Biochemical processes such as gene expression and protein synthesis in 

the neural networks that encode the memory, take place seconds to years thereafter and 

are proposed to represent the cellular basis of LTM (Dudai, Karni, & Brown, 2015). In this 

chapter, the focus lies on glutamate receptors involved in the molecular mechanisms 

underlying the cellular consolidation of episodic-like memories formed during object-

recognition memory tasks.  

 Synaptic plasticity 

Neurons communicate via the transmission of electrochemical signals exchanged at 

synapses. Signals are transmitted from the axon terminal of the presynaptic neuron to 

dendritic spines on the postsynaptic neuron through the release of neurotransmitters. 

Receptors on the postsynaptic neuron are activated by the neurotransmitter and open to 

allow the influx of positively charged ions. Sufficient depolarisation of the postsynaptic 

neuron triggers transmission of the signal via the same mechanism to connecting neurons 

(Purves et al., 2012).  

At cellular level, memories are postulated to be stored in the strength of the synapses 

connecting the neural circuit encoding the memory (Citri & Malenka, 2008; Dudai et al., 

2015; Hebb, 1949). During memory consolidation, molecular mechanisms modify the 

strength of the connections, inducing long-term changes in the efficacy of synaptic 

transmission. These changes can either facilitate, and thus strengthen communication 

between neurons, or hinder, and thus weaken communication. Long-lasting, experience 

dependent changes in synaptic transmission are referred to as synaptic plasticity.  

There are two main models of synaptic plasticity, long-term potentiation (LTP) and 

long-term depression (LTD). The most common and most extensively studied mechanism 

of LTP and LTD involves the rapid redistribution of postsynaptic receptors. In this type of 

synaptic plasticity, receptors are either added to the synapse to enhance synaptic 

transmission (LTP) or removed from the synapse to decrease synaptic transmission (LTD).  

Long-term potentiation was first demonstrated in the HPC, by electrophysiological 

studies (Bliss & Gardner-Medwin, 1973a; Bliss & Lomo, 1973b). These studies reported 

that repetitive high-frequency stimulation of excitatory synapses resulted in increased 

postsynaptic potentials, lasting for hours and days. Frequent synaptic activation thus 

enhanced transmission efficacy. 
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Numerous studies investigated the molecular mechanisms underlying synaptic 

potentiation, concentrating on the HPC. These studies tested the effects of pharmacological 

inactivation of different postsynaptic receptors or signalling molecules on 

electrophysiological LTP (Lee, Barbarosie, Kameyama, Bear, & Huganir, 2000; Malenka et 

al., 1989; Malenka, 1991; Shi, Hayashi, Esteban, & Malinow, 2001). The resulting evidence 

converged towards a relatively uniform picture of the LTP-intracellular cascades, as 

summarised by Citri and Malenka (2008).  

Upon neuronal activation, the excitatory neurotransmitter glutamate is released at the 

synapse from the presynaptic neuron. Glutamate binds to ionotropic α-amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid receptors (AMPARs) and N-methyl-D-aspartate receptors 

(NMDARs) located on the surface membrane of the postsynaptic neuron, causing AMPAR 

channels to open and allowing sodium ions (Na+) to enter the postsynaptic neuron, 

gradually depolarising it. NMDAR channels are, however, blocked by magnesium and 

remain largely impermeable. Once the postsynaptic neuron is sufficiently depolarised, the 

magnesium block is expelled from NMDAR pores allowing further Na+ influx and 

importantly, the influx of calcium ions (Ca2+). A large increase in Ca2+ concentration 

activates the calcium / calmodulin-dependent protein kinase II (CaMKII), which potentiates 

the synapse in two ways. For one, CaMKII phosphorylates AMPAR subunits causing an 

increase in the conductance of AMPAR channels. For another, CaMKII triggers the 

exocytosis of new AMPARs from intracellular vesicles and their insertion into the 

postsynaptic membrane. These NMDAR-dependent events increase speed and likelihood 

of future postsynaptic depolarisation upon glutamate release, potentiating the 

communication between the neurons. Molecular mechanisms of the LTP-cascade are 

schematically represented in fig. 4.1. 

 The synaptic changes described above have been observed to occur in the first hours 

after electrophysiological stimulation to induce LTP. The subsequent molecular 

mechanisms allowing LTP to be maintained for hours and days are not fully understood, 

but evidence indicates that they depend upon Ca2+-mediated synthesis of new proteins. For 

example, hippocampal injections of the protein synthesis inhibitor anisomycin in freely 

moving rats blocked the expression of LTP 3-4 hours after synaptic stimulation, while initial 

LTP was normal (Krug, Lössner, & Ott, 1984). The available evidence suggests the 

existence of two distinct phases of LTP: an initial induction phase that does not depend on 

protein synthesis, and a later phase that necessitates the synthesis of new proteins for the 

long-lasting stabilisation of LTP. The late-phase of LTP has also been associated to 

morphological changes in the postsynaptic neuron, such as enlargement and growth of 

dendritic spines (Matsuzaki, Honkura, Ellis-Davies, & Kasai, 2004). 
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The idea that synaptic plasticity and, LTP in particular, embody the biological 

mechanism of memory storage, is supported by several studies. For example, injection of 

NMDAR antagonists in the mouse HPC blocked the expression of LTP and produced 

deficits in spatial memory (Morris et al., 1986). Mice that were trained to learn a new 

stimulus-context association in an avoidance task, showed increased AMPAR 

phosphorylation levels and increased excitatory postsynaptic potentials (Whitlock, Heynen, 

Shuler, & Bear, 2006). Further support for the idea that memories are stored in the 

distribution of varying degrees of synaptic strength within a neural circuit, comes from 

electrophysiological experiments observing NMDAR-dependent LTD, proving the existence 

of a mechanism able to modify synaptic strength in the opposite direction to LTP. Dudek 

and Bear (1992) found that repetitive low-frequency stimulation of excitatory synapses in 

rat hippocampal slices resulted in decreased postsynaptic potentials. Importantly, the 

application of NMDAR-antagonists blocked the expression of LTD and high-frequency 

stimulation of previously depressed synapses could reverse LTD and elicit LTP. This 

evidence suggests that the direction of synaptic plasticity depends on the intensity of 

synaptic activation, mediating magnitude and dynamics of postsynaptic Ca2+ entry through 

NMDARs. 

The LTD-intracellular signalling cascade (fig. 4.1) has been investigated by several 

studies (Beattie et al., 2000; Morishita et al., 2001; Mulkey & Malenka, 1992; Mulkey, Endo, 

Shenolikar, & Malenka, 1994). As summarised by Citry and Malenka (2008), LTD is initiated 

by a modest release of glutamate, causing weak activation of AMPARs and slow 

postsynaptic depolarisation. Consequently, NMDAR pores are only partially relieved by the 

magnesium block, allowing a modest influx of Ca2+. At low levels, Ca2+ activates the calcium 

/ calmodulin-dependent phosphatase calcineurin and the protein phosphatase 1 (PP1), 

which in turn dephosphorylate AMPARs, decreasing their conductivity and triggering 

AMPAR endocytosis. As for LTP, the maintenance of LTD requires protein synthesis and 

has been associated to morphological changes, such as NMDAR- and calcineurin-

dependent shrinkage of dendritic spines (Manahan-Vaughan, Kulla, & Frey, 2000; Zhou, 

Homma, & Poo, 2004). Importantly, LTD has been demonstrated as essential as LTP for 

the storage of new memories, whereby calcineurin-knockout mice reported impaired 

electrophysiological LTD and memory impairments (Zeng et al., 2001).  

Although research has largely focused on NMDAR-dependent postsynaptic LTP and 

LTD at hippocampal excitatory synapses, other forms of synaptic plasticity have also been 

observed (Citri & Malenka, 2008). For example, synaptic plasticity can take place in 

presynaptic neurons, regulating neurotransmitter release. Activity-dependent changes have 

also been observed at inhibitory synapses and can involve metabotropic glutamate 

receptors or other types of synaptic receptors. Synaptic plasticity is a dynamic process 
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aimed to regulate surface expression and channel function of synaptic receptors, primarily 

ionotropic glutamate receptors. There are three classes of ionotropic glutamate receptors: 

AMPARs, NMDARs, and kainate receptors (KARs). Receptors actively involved in synaptic 

transmission are clustered together with other signalling molecules in the postsynaptic 

density (PSD) of dendritic spines, an area adjacent to presynaptic terminals. The 

characteristics of each class of ionotropic glutamate receptors are briefly outlined below, 

following the most recent receptor nomenclature (Collingridge, Olsen, Peters, & Spedding, 

2009). 

AMPA receptors 

 AMPARs mediate fast, excitatory synaptic transmission and are expressed 

throughout the entire brain. AMPARs are composed as dimer-of-dimers of the four subunits 

GluA1, GluA2, GluA3, GluA4, each encoded by a different gene. AMPARs can be 

assembled into heterotetrameric or homotetrameric complexes. In the adult rat HPC, the 

majority of AMPARs are GluA1/2 and GluA2/3 heterotetramers, while GluA4 is mainly 

expressed during early development (Wenthold, Petralia, Blahos, & Niedzielski, 1996).  

 Each of the four subunits composing the AMPAR has a binding site for glutamate. 

Channel conductivity increases as more binding sites are occupied by glutamate or upon 

phosphorylation of the receptor (Derkach, Barria, & Soderling, 1999; Rosenmund, Stern-

Bach, & Stevens, 1998). While all AMPARs allow the influx of Na+, GluA2-lacking AMPARs 

also allow the entry of Ca2+ (Hollmann, Hartley, & Heinemann, 1991). Evidence suggests 

that the insertion of Ca2+-permeable AMPARs constitutes the early-phase of LTP and that 

these are subsequently replaced by Ca2+-impermeable AMPARs to stabilise LTP (Plant et 

al., 2006).  

AMPARs are assembled in the endoplasmic reticulum and trafficked to perisynaptic 

sites along the dendritic shaft by transmembrane AMPA receptor regulatory proteins 

(TARPs) (Henley & Wilkinson, 2016). LTP induction triggers the exocytosis of AMPARs, 

which reach the PSD via lateral diffusion at the membrane surface. AMPARs are then 

anchored to the PSD by interacting with Ca2+-sensitive TARPs (e.g. stargazin) and synaptic 

scaffold proteins (e.g. PSD95, SAP97). During LTD induction, AMPARs are internalised at 

endocytic zones adjacent the PSD, whereby internalised AMPARs are either recycled back 

to the plasma membrane or sorted for protein degradation by Ca2+-sensitive pathways. In 

addition to the activity-dependent exocytosis and endocytosis of AMPARs, AMPARs also 

undergo constitutive recycling at the synapse, resulting in highly-dynamic AMPAR 

trafficking both during plasticity and basal conditions (Henley & Wilkinson, 2016). 

Dysregulations in the expression, activity or trafficking of AMPARs at the synapse have 

been linked to memory impairments, in particular in relation to the GluA1 subunit (Lee et 

al., 2003; Sanderson & Bannerman, 2012; Wakabayashi, et al., 1999). 
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NMDA receptors 

 NMDARs are heterotetrameric receptors composed of two obligatory GluN1 subunits 

(encoded by one gene with eight splice variants) and two regulatory subunits (GluN2 or 

GluN3) (Sanz-Clemente, Nicoll, & Roche, 2013). There are four genes encoding the GluN2 

regulatory subunit (GluN2 A-D) and two genes encoding GluN3 (A-B). NMDARs are 

assembled in the endoplasmic reticulum as di-heterotetrameric or tri-heterotetrameric 

complexes. For the NMDAR pore to open, simultaneous binding of glutamate and glycine 

(or D-serine) is necessary. NMDARs are considered “molecular coincidence detectors”, as 

channel gating requires neurotransmitter release from the presynaptic neuron and 

depolarisation of the postsynaptic neuron to expel the magnesium block. Open NMDAR 

channels allow the influx of Na+ and Ca2+ ions. 

NMDAR expression and channel properties depend on their regulatory subunits, 

which are developmentally regulated (Sanz-Clemente et al., 2013). GluN3-containing 

NMDARs exhibit low Ca2+ permeability and GluN2C-containing NMDARs are predominantly 

expressed in the cerebellum. GluN2D- and GluN2B-containing NMDARs are highly 

expressed during early brain development and found only at lower levels in the adult brain. 

By contrast, the expression of Glu2NA-containing NMDARS is weak postnatally but 

increased in adulthood. Regulatory subunits can also determine the subcellular localisation 

of NMDARs, with GluN2A-containing NMDARs preferentially found at synaptic and GluN2B-

containing NMDARs at extrasynaptic sites (Sanz-Clemente et al., 20131). At the synapse, 

NMDARs are anchored to the PSD by binding to scaffold proteins (e.g. PSD95, SAP102) in 

a subunit-dependent manner. While AMPARs are rapidly trafficked to and from the synapse, 

evidence suggests a less dynamic trafficking of NMDARs. Higher mobility and recycling 

rates have been described for GluN2B- in comparison to GluN2A-containing NMDARs. 

Similarly to AMPARs, alterations in activity or surface expression of NMDARs have 

been associated to memory dysfunction and neurodegenerative conditions, such as AD 

(Sanz-Clemente et al., 2013). Neurodegenerative cascades seem to be specifically related 

to the GluN2B subunit (Snyder et al., 2005). 

Kainate receptors 

 In contrast to AMPARs and NMDARs, the role of KARs in synaptic plasticity is less 

clear. Due to pharmacological limitations (i.e. lack of specific KAR antibodies), this receptor 

class was not systematically investigated until recently. KARs are tetrameric complexes 

composed as dimer-of-dimers of the five subunits GluK1, GluK2, GluK3, GluK4, GluK5, 

each encoded by a distinct gene (Evans, Gurung, Henley, Nakamura, & Wilkinson, 2019). 

The GluK1-3 subunits can assemble into homotetramers, while the GluK4 and GluK5 

subunits must co-assemble with a GluK1, 2 or 3 subunit in order to form functional 

receptors. Unlike AMPARs and NMDARs, KAR signalling can be induced not only in 
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response to glutamate binding, but also by G-proteins (Evans et al., 2019). KARs activated 

by glutamate are permeable to Na+ and to a degree to Ca2+, while G-protein-activated KARs 

trigger a series of intracellular events, operating similarly to metabotropic receptors.  

 KARs are widely distributed throughout the brain and are found both pre- and 

postsynaptically. In the HPC, GluK4- and GluK-5 subunits are located mainly on pre- and 

postsynaptic membranes, respectively (Darstein, Petralia, Swanson, Wenthold, & 

Heinemann, 2003). KARs have been implicated in both hippocampal LTP and LTD, with 

presynaptic KARs modulating the release of glutamate and inhibitory neurotransmitter, and 

postsynaptic KARs modulating excitatory responses (Evans et al., 2019). In comparison to 

AMPARs, KARs generate slower and smaller currents of excitatory postsynaptic potentials 

and the majority of KAR-mediated forms of synaptic plasticity are independent of NMDAR-

activity (Castillo, Malenka, & Nicoll, 1997; Evans et al., 2019). 

Several proteins have been involved in KAR anchoring to the PSD (e.g. PSD95), KAR 

endocytosis (e.g. SNAP25, actinfilin) and KAR channel properties (e.g. NETO1, NETO2) 

but the exact mechanisms are not clear (Evans et al., 2019). KARs have been associated 

to several neurological diseases, such epilepsy and mental retardation (Evans et al., 2019). 

In fact, the gene coding for the GluK1 subunit (Glutamate Receptor Ionotropic Kainate 1, 

GRIK1) is located on Hsa21. Additionally, the GluK5 subunit has been specifically 

implicated in synaptic plasticity mechanisms underlying recognition memory and is reduced 

in Tc1 mice (Barker et al., 2006; Hall, 2016). 
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Figure 4.1: Graphical representation of the intracellular cascade during NMDAR-dependent 

LTD and LTP. Left: Weak glutamate release results in weak Ca2+ influx, activating protein 

phosphatases (e.g. calcineurin, PP1) that induce the removal of AMPARs from the PSD (light grey 

area), de-potentiating the synapse (LTD). Right: Strong glutamate release results in the activation of 

NMDAR channels and a strong Ca2+ influx, activating protein kinases (e.g. CaMKII) that induce the 

insertion of new AMPARs into PSD, potentiating the synapse (LTP). Adapted from Lüscher and 

Malenka (2012).  



 Chapter 4: Expression of glutamate receptors  

153 
 

 Study rationale 

 DS is caused by trisomy of Hsa21, a neurodevelopmental disorder characterised by 

learning and memory impairments (section 1.2). The HPC is the core structure supporting 

memory function. In individuals with DS, the HPC is characterised by morphological 

anomalies, such as reduced cell number and dendritic branching (e.g. Becker et al., 1986). 

At cellular level, memories are proposed to be stored in varying degrees of synaptic 

transmission efficacy within a neural network encoding the memory (Citri & Malenka, 2008; 

Dudai et al., 2015; Hebb, 1949). Synaptic transmission efficacy is modulated through 

plasticity mechanisms that either potentiate (LTP) or depotentiate (LTD) communication 

between connecting neurons. 

The most extensively studied form of plasticity takes place at excitatory synapses, 

where activity of ionotropic glutamate receptors can induce long-lasting changes in 

postsynaptic terminals of dendritic spines (section 4.1.1.). This type of synaptic plasticity is 

dependent on NMDAR-activation and consists primarily on the rapid, activity-dependent 

redistribution of AMPAR surface expression. 

AMPARs are synthesised in the endoplasmic reticulum and subsequently trafficked 

to dendritic spines (Henley & Wilkinson, 2016). AMPAR trafficking is highly dynamic, with 

AMPARs undergoing both constitutive and activity-dependent cycling in and out the PSD. 

Upon synaptic activation, Ca2+- sensitive intracellular signalling cascades involving protein 

phosphatases and kinases, upregulate (LTP) or downregulate (LTD) AMPAR surface 

expression, depending on the dynamics of Ca2+ entry. 

 In addition to AMPARs and NMDARs, a third class of ionotropic glutamate receptors 

– KARs – has also been recently demonstrated to contribute to synaptic plasticity at 

excitatory synapses in the HPC. At postsynaptic terminals, KAR-mediated plasticity is 

independent of NMDAR-activation and can operate to regulate AMPAR or KAR surface 

expression (Carta et al., 2013; Petrovic et al., 2017). Recent evidence indicates that 

similarly to AMPARs, KARs undergo activity-dependent cycling at the PSD (Gurung et al., 

2018). 

Fine-tuned regulation of glutamate receptor function is crucial for normal synaptic 

potentiation and memory function. Antagonism of glutamate receptor activity has been 

repeatedly demonstrated to impair learning and memory, including performance in object-

recognition memory tasks (e.g. Barker et al., 2006; Barker & Warburton, 2015). 

Unsurprisingly, mouse models of DS exhibit altered expression of glutamate receptors, 

primarily reduced AMPAR levels in the HPC (Belichenko et al., 2009b; Morice et al., 2008; 

Souchet et al., 2014). Accordingly, electrophysiological studies report defective 

hippocampal LTP in a wide range of DS mouse models, including Tc1, Ts1Cje, Ts1Rhr, 

Ts65Dn, Dp1Tyb and Dp3Yey mice (Belichenko et al., 2007; Belichenko et al., 2009a; 
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Kleschevnikov et al., 2004; Morice et al., 2008; Yu et al., 2010b). Although a number of 

Hsa21 genes has been implicated in receptor trafficking, such as DYRK1A, RCAN1 and 

SYNJ1, the link between gene overdosage and altered synaptic composition is unclear. 

At dendritic spines, glutamate receptors are anchored to the PSD by binding with 

scaffold proteins of the membrane-associated guanylate kinase (MAGUK) family (Won, 

Levy, Nicoll, & Roche, 2017). PSD95 is the major MAGUK scaffold protein, playing a central 

role in the trafficking and localisation of different molecules in the PSD. PSD95 can bind 

directly with GluN2A-C, GluK1, GluK2 and GluK5 subunits and indirectly with GluA1 

subunits via the TARP stargazin, anchoring NMDARs, KARs and AMPARs to the PSD. In 

addition to immobilising receptors to the PSD, PSD95 also clusters receptors with 

intracellular signalling proteins that regulate cycling of synaptic receptors. Consequently, 

PSD95 plays a key role in determining surface levels of glutamate receptors. Indeed, 

PSD95 expression has been associated to synaptic potentiation through the delivery of 

AMPARs and PSD95-knockout mice report reduced AMPAR-mediated and KAR-mediated 

excitatory postsynaptic potentials, LTP and LTD alterations, and memory deficits (Béïque 

et al., 2006; Ehrlich & Malinow, 2004; Migaud et al., 1998; Suzuki & Kamiya, 2016). 

Because PSD95 is a core structural protein present in all glutamatergic dendritic 

spines, expression levels of PSD95 may reflect the abundance of postsynaptic terminals 

(e.g. Chakrabarti et al., 2007; Shao, Mirra, Sait, Sacktor, & Sigurdsson, 2011). Electron 

microscopy demonstrated in fact, that PSD95-constructed molecular scaffolds are essential 

not only for synaptic localisation of glutamate receptors, but also for sustaining the three-

dimensional molecular structure of the PSD (Chen et al., 2011). 

In DS, a number of genes located on Hsa21 have been associated to neuronal cell 

death and AD pathology, such as APP, S100B and TRPM2. Accordingly, individuals with 

DS commonly develop early-onset AD, a disorder characterised by hippocampal 

neurodegeneration and memory impairments. Unsurprisingly, PSD95 levels are 

downregulated in the HPC of AD patients and mouse models of AD (Counts, Alldred, Che, 

Ginsberg, & Mufson, 2014; Simón et al., 2009). 

Here, the separate impact of the Mmu16, Mmu17 and Mmu10 segmental trisomies 

on the expression of glutamate receptors in the HPC was examined in cohorts of Dp1Tyb, 

Dp3Yey and Dp2Yey animals at adult (14 months) and advanced (20-22 months) age. 

Regrettably, only aged animals were examined for the Dp1Tyb line, as younger animals 

were not available for tissue collection. Findings from chapter 3 suggest however that 

ageing does not represent a crucial factor in the Dp1Tyb model, since memory deficits were 

observed already at 4 months of age (Exp. 1d). 

In the three mouse models, expression levels of subunits from each glutamate 

receptor class were assessed with western blotting. These included GluA1, GluN2A, 
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GluN2B, GluN1 and GluK5. These subunits are abundantly expressed in the HPC, play a 

role in synaptic plasticity and have been implicated in object-recognition memory tasks (e.g. 

Barker et al., 2006). Expression levels of PSD95 were also assessed and used as a marker 

to evaluate integrity and abundance of postsynaptic terminals. 

Trafficking to or away from the PSD is largely determined by dynamic regulation of 

the receptor’s phosphorylation state. To investigate potential mechanisms related to 

AMPAR or NMDAR expression, phosphorylation levels of GluA1 on serine 845 (S845) and 

of GluN2B on tyrosine 1472 (Y1472) were also assessed. Dephosphorylation of S845 has 

been previously implicated in internalisation of GluA1-containing AMPARs and LTD (Lee, 

Kameyama, Huganir, & Bear, 1998). Similarly, phosphorylation at Y1472 targets GluN2B-

containing NMDARs for endocytosis, a mechanism observed in relation to AD pathology 

(Snyder et al., 2005).  

Because the proteins of interest studied here are primarily located at postsynaptic 

terminals, brain sample was fractionated into cytosol and synaptosome fractions. 

Synaptosomes were isolated from nerve terminals during nerve tissue homogenisation and 

contained complete presynaptic and postsynaptic terminals. The extraction protocol was 

validated beforehand (see section 2.3.3.1). Examination of synaptosomes allowed to 

selectively study the expression of glutamate receptors potentially involved in synaptic 

function. In addition to HPC synaptosomes, frontal cortex synaptosome extractions were 

also analysed. This allowed to determine whether alterations in glutamate receptor 

expression observed in the HPC affected specifically the HPC or were a more general 

feature of trisomic brains. The frontal cortex was selected for its involvement in the network 

supporting object memory processes (Barker & Warburton, 2011b). 

Previous evidence on the D1Tyb model reported impaired LTP and decreased 

AMPAR and NMDAR levels in the HPC (Souchet et al., 2014; Yu et al., 2010b). Indeed, 

Hsa21 genes implicated in receptor trafficking and phosphorylation (DYRK1A, RCAN1, 

SYNJ1) map to Mmu16 and are trisomic in the Dp1Tyb. A further relevant gene trisomic in 

the Dp1Tyb is GRIK1, coding for the GluK1 subunit. In chapter 3, Dp1Tyb animals displayed 

deficits in HPC-dependent short-term memory (Exp. 1a, 1b, 1d), a retention interval that 

depends on fast synaptic transmission of GluA1-containing AMPARs (Sanderson & 

Bannerman, 2012). Therefore, hippocampal sample from Dp1Tyb animals was expected to 

display reduced GluN1 and GluA1 levels, along with decreased GluA1 phosphorylation at 

S845. Additionally, since GluK5 subunits must assemble with GluK1, 2, or 3 subunits to 

form functional KARs, altered expression of GluK5 was also expected. 

Previous evidence on the Dp3Yey model reported enhanced hippocampal LTP (Yu et 

al., 2010b). However, none of the Mmu17 genes have been related to glutamate receptor 

function or neurodegeneration. Additionally, Dp3Yey animals performed normally in all 
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memory tasks, both at adult and advanced age (Exp. 2a, 2b). Therefore, normal expression 

levels of glutamate receptors were expected from Dp3Yey hippocampal sample. 

Previous evidence on the Dp2Yey model reported intact hippocampal LTP at 2-4 

months of age, consistent with normal memory performance observed here at adult age 

(Exp. 3a) (Yu et al., 2010b). At older age however, Dp2Yey animals displayed memory 

impairments (Exp. 3b). Indeed, Hsa21 genes potentially involved in neuronal cell death 

(S100B, TRPM2) are located on Mmu10 and are trisomic in the Dp2Yey. Therefore, PSD95 

expression was expected to be downregulated in sample from aged but not adult Dp2Yey 

animals, indicating postsynaptic degeneration. Additionally, the memory deficit displayed by 

aged Dp2Yey animals was in the NOR task, which has been demonstrated to depend on 

function of GluN2A-, GluN2B-, and GluK5-containing receptors (Barker et al., 2006). 

Therefore, levels of these subunits were expected to be downregulated in aged, but not 

adult, Dp2Yey mice. Since the NOR task does not primarily rely on the HPC, changes in 

protein expression were not expected to affect exclusively the HPC but potentially include 

the frontal cortex as well. 

To date, no study has ever systematically examined glutamate receptor expression 

in the Dp1Tyb, Dp3Yey and Dp2Yey models. The current study aimed to provide a better 

understanding of synaptic plasticity impairments and neurodegeneration in DS, by 

identifying gene portions associated to specific synaptic phenotypes. Such synaptic 

phenotypes could, theoretically, underlie aberrant memory function in DS. 
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4.2. Methods 

Brain samples were collected at rest from animals previously used in behavioural 

experiments, as described in 2.3.1. The tissue was fractionated as described in 2.3.2 and 

protein expression was assessed with western blotting as described in 2.3.3. Further details 

on the experiments carried out with each of the three mouse lines are provided below. 

Dp1Tyb 

 Three western blot experiments were performed to analyse HPC synaptosomes (Exp. 

4a), frontal cortex synaptosomes (Exp. 4b) and HPC cytosol (Exp. 4c). In Exp. 4c, a rabbit 

polyclonal DYRK1A antibody was used (Abnova, 1:500) and the concentration of the GluA1 

antibody was increased to 1:350. Each experiment was performed on a cohort of 20-month-

old animals (6 WT and 5 Dp1Tyb), on a 10% polyacrylamide gel. 

Dp3Yey 

 A western blot experiment (Exp. 5a) was performed to analyse HPC synaptosomes 

from a cohort of 14-month-old animals (12 WT and 12 Dp3Yey) and a cohort of 21-month-

old animals (9 WT and 12 Dp3Yey). The groups were distributed as equally as possible 

across four 7.5% polyacrylamide gels and one 14-month-old WT animal was randomly 

selected as internal control. 

Dp2Yey 

A western blot experiment (Exp. 6a) was performed to analyse HPC synaptosomes 

from a cohort of 14-month-old animals (10 WT and 11 Dp2Yey) and a cohort of 22-month-

old animals (6 WT and 10 Dp2Yey). The groups were distributed as equally as possible 

across three 7.5% polyacrylamide gels and one 14-month-old WT animal was randomly 

selected as internal control. A further experiment (Exp. 6b) was performed on frontal cortex 

synaptosomes from 22-month-old animals (6 WT and 11 Dp2Yey). The groups were 

distributed as equally as possible across two 7.5% polyacrylamide gels and one WT animal 

was randomly selected as internal control.  

Data analysis 

 Protein expression was quantified as described in 2.3.4 and statistically analysed as 

described in 2.2.3. In experiments comprising more than one gel, protein expression was 

firstly normalised to internal control levels, to account for intra-gel variability. To account for 

differences in total amount of protein, the expression of proteins of interest was normalised 

to β-actin levels. Ultimately, to determine increases or decreases in protein expression 

relative to wildtype levels, protein density levels were normalised to the mean of WT groups. 
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In experiments comprising wildtype and trisomic animals of different age, differences 

in protein expression were analysed separately for each protein of interest using two-way 

ANOVAs with genotype and age as between-subjects factors. In experiments assessing a 

single age range, differences between wildtype and trisomic animals were compared with 

independent samples Student’s t-tests for each protein of interest. Additionally, to determine 

gross anatomical differences and evaluate dissection consistency, sample weight was 

compared between WT and trisomic mice of each model with independent samples 

Student’s t-tests. 
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4.3. Dp1Tyb results 

 In chapter 3, Dp1Tyb mice displayed age-independent memory impairments in tasks 

known to rely on the HPC (Exp. 1a, 1b, 1d), suggesting that the Mmu16 trisomy altered 

synaptic plasticity mechanisms underlying the assessed memory processes. To test this 

hypothesis, a total of three western blot experiments was carried out on HPC and frontal 

cortex sample collected from a cohort of 20-month-old Dp1Tyb animals. The average weight 

of hippocampal dissections was 15.64mg (±3.57) in the WT and 15.34mg (±1.92) in the 

Dp1Tyb group, while frontal cortex dissections weighed 29.55mg (±9.54) and 32.64mg 

(±11.11) respectively. Sample weight did not significantly differ between Dp1Tyb and WT 

animals (Student’s t-test – HPC: t(9)=0.173, p=0.866; frontal cortex: t(9)=0.497, p=0.631). 

 Exp. 4a: Downregulation of PSD95 and upregulation of GluA1 in HPC 

synaptosomes 

In the first experiment, the expression of ionotropic glutamate receptors was assessed 

in purified HPC synaptosome extractions. A subunit from each receptor class was 

assessed: GluN1 for total NMDARs, GluA1 for AMPARs and GluK5 for KARs. Levels of the 

postsynaptic scaffold protein PSD95 were also measured. To assess a mechanism 

potentially involved in AMPAR expression, phosphorylation levels of GluA1 on S845 were 

also measured. Western blots are shown in fig. 4.2 and quantified results are presented in 

fig. 4.3. 

Hippocampal synaptosomes from Dp1Tyb animals displayed a significant reduction 

in the expression of PSD95 (Student’s t-test – t(9)=2.985, p=0.015). Relative to the WT 

group, levels of PSD95 were reduced by ~35%. Instead, expression of the GluA1 subunit 

was significantly upregulated in the Dp1Tyb (Student’s t-test – t(9)=2.371, p=0.042). Relative 

to the WT group, Dp1Tyb synaptosomes displayed a ~1.5-fold increase in GluA1. Levels of 

GluN1 and GluK5 subunits did not differ between Dp1Tyb and WT mice (Student’s t-test – 

GluN1: equal variances not assumed t(5)=0.394, p=0.709; GluK5: t(9)=1.049, p=0.322).  

The GluA1 overexpression was not accompanied by increased GluA1 

phosphorylation. Total phosphorylation levels of GluA1 on S845 relative to β-actin did not 

differ between Dp1Tyb and WT animals (Student’s t-test – t(9)=0.582, p=0.575). To account 

for differences in total expression of GluA1, a ratio of phosphorylated over total GluA1 was 

calculated. Relative to the GluA1 upregulation, phosphorylation levels on S845 were 

significantly decreased in the Dp1Tyb (Student’s t-test – t(9)=3.075, p=0.013). Compared to 

the WT group, GluA1 subunits in the Dp1Tyb displayed a ~30% reduction in S845 

phosphorylation. 
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 In sum, the Mmu16 trisomy resulted in a reduction of the postsynaptic scaffold protein 

PSD95 and a selective increase of the GluA1 subunit, while GluN1 and GluK5 levels were 

normal. Relative to the GluA1 upregulation, phosphorylation at S845 was decreased. 
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a) 

Figure 4.2: Western blots of HPC synaptosomes from Dp1Tyb mice. Blots show downregulation 

of PSD95, upregulation of GluA1 and downregulation of pGluA1(S845) relative to total GluA1. kDa 

= kilodalton, molecular weight. n= 6 WT, 5 Dp1Tyb. 

 

Figure 4.3: Protein density of Dp1Tyb western blots of HPC synaptosomes relative to the WT 

group. a) Protein expression normalised to β-actin levels. b) Phosphorylated GluA1 at S845 

normalised to β-actin or total GluA1 levels. Values are means ± 1 SEM, *p<0.05. n = 6 WT, 5 Dp1Tyb. 

* 

* 
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 Exp. 4b: Normal PSD95 and GluA1 expression in frontal cortex 

synaptosomes 

 To determine whether alterations in PSD95 and GluA1 expression observed in Exp. 

3a concerned specifically the HPC or were a more general characteristic of Dp1Tyb brains, 

PSD95 and GluA1 levels were examined in purified frontal cortex synaptosome extractions. 

Unlike the HPC, PSD95 and GluA1 levels in the frontal cortex did not significantly differ 

between Dp1Tyb and WT animals (Student’s t-test – PSD95: t(9)=0.571, p=0.582; GluA1: 

t(9)=0.726, p=0.486). Western blots are shown in fig. 4.4 and quantified results are presented 

in fig. 4.5. 
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Figure 4.4: Western blots of frontal cortex synaptosomes from Dp1Tyb mice. Blots show no 

difference in protein expression. n= 6 WT, 5 Dp1Tyb. 
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 Exp. 4c: Normal GluA1 but upregulated Dyrk1A cytosolic expression in 

HPC 

To determine whether the GluA1 overexpression observed in HPC synaptosomes 

was accompanied by an increase in the intracellular pool of GluA1 subunits, levels of GluA1 

were assessed in HPC cytosol fractions. Additionally, to investigate a cellular mechanism 

potentially linked to increased surface expression of GluA1, levels of DYRK1A were 

assessed. Previous literature identified the cytosol as the primary subcellular location of 

DYRK1A expression (Martí et al., 2003), which was confirmed beforehand with a qualitative 

western blot comparing DYRK1A levels in synaptosome and cytosol fractions (fig. 4.6). 

 In the cytosol, expression of GluA1 did not differ between WT and Dp1Tyb sample 

(Student’s t-test – t(9)=0.391, p=0.705). Instead, expression of DYRK1A was significantly 

increased in the Dp1Tyb group (Student’s t-test – t(9)=3.440, p=0.007). Relative to the WT 

group, the HPC of Dp1Tyb animals displayed a ~1.7-fold increase in DYRK1A expression. 

Western blots are shown in fig. 4.7 and quantified results are presented in fig. 4.8. 

 

 

 

 

  

Figure 4.5: Protein density of Dp1Tyb western blots of frontal cortex synaptosomes relative 

to the WT group. Values are means ± 1 SEM. n = 6 WT, 5 Dp1Tyb. 
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Figure 4.6: Illustrative western blot to determine the subcellular location of DYRK1A. Levels of 

DYRK1A were visibly higher in cytosol relative to synaptosome fractions. syn = synaptosome; cyt = 

cytosol; hom = homogenate; n = 2 WT. 

 

Figure 4.7: Western blots of HPC cytosol fractions from Dp1Tyb mice. Blots show upregulation 

of DYRK1A. n= 6 WT, 5 Dp1Tyb. 

Figure 4.8: Protein density of Dp1Tyb western blots of HPC cytosol fractions relative to the 

WT group. Values are means ± 1 SEM, **p<0.01. n = 6 WT, 5 Dp1Tyb. 
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4.4. Dp3Yey results 

 In chapter 3, Dp3Yey animals reported intact memory performance at all tested ages 

(Exp. 2a, 2b), suggesting that the Mmu17 trisomy did not interfere with synaptic plasticity 

mechanisms underlying the assessed memory processes. To investigate this hypothesis, a 

western blot experiment was carried out on HPC synaptosomes from a cohort of 14-month-

old and a cohort of 21-month-old Dp3Yey animals. Hippocampal sample collected at 14 

months of age weighed on average 20.11mg (±4.42) in the WT and 18.86mg (±3.68) in the 

Dp3Yey group, while the respective sample weights were 19.32mg (±2.37) and 17.76mg 

(±2.72) at 21 months of age. Sample weight did not significantly differ between the groups 

(Student’s t-test – 14 months: t(22)=0.753, p=0.459; 21 months: t(19)=1.375, p=0.185).  

 Exp. 5a: Unaltered glutamate receptor levels in HPC synaptosomes 

In this experiment, the impact of the Mmu17 trisomy and of ageing on the expression 

of ionotropic glutamate receptors in the HPC was investigated. A subunit from each receptor 

class was assessed: GluN1 for total NMDARs, GluA1 for AMPARs and GluK5 for KARs. 

Levels of the postsynaptic scaffold protein PSD95 were also assessed. Representative 

western blots are shown in fig. 4.9 and quantified results are presented in fig. 4.10. 

Neither the Mmu17 trisomy nor ageing had a significant effect on the expression of 

glutamate receptor subunits, with sample from WT and Dp3Yey mice displaying comparable 

levels of GluN1 (two-way ANOVA – genotype: F(1,40)=0.181, p=0.673; age: F(1,40)=0.720, 

p=0.401; genotype x age: F(1,40)=0.126, p=0.724), GluA1 (two-way ANOVA – genotype: 

F(1,40)=0.011, p=0.916; age: F(1,40)=0.007, p=0.932; genotype x age: F(1,40)=0.031, p=0.862) 

and GluK5 (two-way ANOVA – genotype: F(1,40)=0.294, p=0.591; age: F(1,40)=0.184, 

p=0.670; genotype x age: F(1,40)=1.017, p=0.319). However, ageing significantly increased 

the expression of PSD95, with sample from 21-month-old mice displaying higher levels of 

PSD95 compared to sample from 14-month-old mice, irrespective of genotype (two-way 

ANOVA – genotype: F(1,40)=0.080, p=0.779; age: F(1,40)=8.312, p=0.006; genotype x age: 

F(1,40)=1.677, p=0.203). Relative to younger animals, the HPC of older animals displayed a 

~1.5-fold increase in PSD95. 

 In sum, the Mmu17 trisomy did not alter the expression of glutamate receptors or of 

PSD95 in HPC synaptosomes. For this reason, sample from Dp3Yey cohorts was not 

further examined. 
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** 

Figure 4.9: Western blots of HPC synaptosomes from 14- and 21-month-old Dp3Yey mice. 

Blots show upregulation of PSD95 in the older group. At 14-months n= 11 WT, 12 Dp3Yey. At 21-

months n= 9 WT, 12 Dp3Yey. 

 

Figure 4.10: Protein density of western blots of HPC synaptosomes from 14- and 21-month old 

Dp3Yey mice relative to the 14-month-old WT group. Values are means ± 1 SEM, **p<0.01. At 14-

months n= 11 WT, 12 Dp3Yey. At 21-months n= 9 WT, 12 Dp3Yey. 
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4.5. Dp2Yey results 

In chapter 3, Dp2Yey animals reported age-dependent memory impairments (Exp. 

1b), suggesting that the Mmu10 trisomy in conjunction with ageing interfered with synaptic 

plasticity mechanisms underlying the assessed memory processes. To investigate this 

hypothesis, a western blot experiment was carried out on HPC synaptosomes from a cohort 

of 14-month-old and a cohort of 22-month-old Dp2Yey animals. To determine specificity of 

changes observed in the HPC, a further experiment was subsequently carried out on frontal 

cortex synaptosomes from the older cohort. 

Hippocampal sample collected at 14 months of age weighed on average 20.22mg 

(±1.51) in the WT and 19.55mg (±3.49) in the Dp2Yey group, while the respective sample 

weights were 19.58mg (±3.43) and 21.14mg (±3.06) at 18 months of age. Frontal cortex 

sample weighed on average 37.13mg (±10.63) in the WT and 41.87mg (±12.56) in the 

Dp2Yey group. Sample weight did not significantly differ between the groups (Student’s t-

test – HPC: 14 months: t(19)=0.587, p=0.564; 22 months: t(14)=0.944, p=0.361; Frontal cortex: 

t(15)=0.781, p=0.447). 

 Exp. 6a: Downregulation of PSD95 and GluK5 in HPC synaptosomes 

In this experiment, the impact of the Mmu10 trisomy and of ageing on the expression 

of ionotropic glutamate receptors in the HPC was investigated. A subunit from each receptor 

type was assessed: GluN1 for total NMDARs, GluA1 for AMPARs and GluK5 for KARs. 

PSD95 expression was also assessed. Since the NMDAR subunits GluN2A and GluN2B 

have been previously implicated in the task sensitive to aged Dp2Yey mice (Barker et al., 

2006), levels of GluN2A and GluN2B were also measured in this experiment. Additionally, 

to investigate potential mechanisms related to GluN2B expression, phosphorylation levels 

of GluN2B at Y1472 were also assessed. Representative western blots are shown in fig. 

4.11 and quantified results are presented in fig. 4.12. 

Neither the Mmu10 trisomy nor ageing had a significant effect on the expression of 

GluA1 or NMDAR subunits, with sample from WT and Dp2Yey displaying comparable levels 

of GluA1 (two-way ANOVA – genotype: F(1,32)=0.453, p=0.506; age: F(1,32)=0.030, p=0.864; 

genotype x age: F(1,32)=2.150, p=0.152) and GluN1 (two-way ANOVA – genotype: 

F(1,32)=2.743, p=0.107; age: F(1,32)=2.495, p=0.124; genotype x age: F(1,32)=2.460, p=0.127). 

Since the distribution of GluN2A and GluN2B scores violated the assumption of normality, 

group differences were tested with Kruskal-Wallis tests with group as between-subjects 

factor. There was no significant difference between the four groups in either GluN2A 

(χ2
(3)=0.940, p=0.816) or GluN2B levels (χ2

(3)=2.095, p=0.553). Levels of GluN2B 

phosphorylated at Y1472 were also not normally distributed and analysed with Kruskal-
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Wallis tests, reporting no difference between the four groups relative to β-actin (χ2
(3)=1.544, 

p=0.672) or to total GluN2B levels (χ2
(3)=2.434, p=0.487). 

By contrast, expression levels of the GluK5 subunit significantly differed between the 

groups. A significant interaction between the Mmu10 trisomy and ageing was found on the 

expression of GluK5, with sample from 22-month-old Dp2Yey animals exhibiting lower 

GluK5 levels compared to age-matched wildtypes, while no group difference was observed 

at 14 months of age (two-way ANOVA – genotype: F(1,32)=5.960, p=0.020; age: F(1,32)=0.206, 

p=0.653; genotype x age: F(1,32)=5.556, p=0.025; simple main effects of age – WT: 

F(1,32)=3.334, p=0.077; Dp2Yey: F(1,32)=2.222, p=0.146; simple main effects of genotype – 

14 months: F(1,32)=0.004; p=0.949; 22 months: F(1,32)=10.117, p=0.003). HPC synaptosomes 

of aged Dp2Yey animals displayed a ~50% reduction in GluK5 relative to age-matched 

wildtypes. 

Similarly, expression of PSD95 also depended on the interaction between Mmu10 

trisomy and age. While PSD95 expression did not differ between WT and Dp2Yey animals 

at 14 months of age, 22-month-old Dp2Yey animals displayed significantly reduced PSD95 

levels compared to both age-matched wildtypes and to younger Dp2Yey mice (two-way 

ANOVA – genotype: F(1,32)=0.929, p=0.342; age: F(1,32)=2.277, p=0.141; genotype x age: 

F(1,32)=4.638, p=0.039; simple main effects of age – WT: F(1,32)=0.175, p=0.678; Dp2Yey: 

F(1,32)=8.233, p=0.007; simple main effects of genotype – 14 months: F(1,32)=0.821, p=0.372; 

22 months: F(1,32)=4.270, p=0.047). HPC synaptosomes of aged Dp2Yey animals displayed 

a ~45% decrease in PSD95 relative to age-matched wildtypes. 

In sum, ageing resulted in selective downregulation of the GluK5 subunit and of the 

scaffold protein PSD95 in animals carrying the Mmu10 trisomy. Levels of GluA1, NMDAR 

subunits and phosphorylation of GluN2B at Y1472 were unaltered. 
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Figure 4.11: Western blots of HPC synaptosomes from 14- and 22-month-old Dp2Yey mice. 

Blots show downregulation of PSD95 and of GluK5 in older Dp2Yey mice. At 14-months n= 9 WT, 11 

Dp2Yey. At 22-months n= 6 WT, 10 Dp2Yey. 
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a) 

b) 

Figure 4.12: Protein density of western blots of HPC synaptosomes from 14- and 22-month old 

Dp2Yey mice relative to the 14-month-old WT group. a) Protein expression normalised to β-actin 

levels. b) Phosphorylated GluN2B at Y1472 normalised to β-actin or total GluN2B levels. Values are 

means ± 1 SEM, *p<0.05, **p<0.01. At 14-months n= 9 WT, 11 Dp2Yey. At 22-months n= 6 WT, 10 

Dp2Yey. 
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 Exp. 6b: Normal PSD95 and GluK5 expression in frontal cortex 

synaptosomes 

 To determine whether alterations in protein expression observed in Exp. 3a 

concerned specifically the HPC or were a more general characteristic of aged Dp2Yey 

brains, the same proteins were assessed in purified frontal cortex synaptosome extractions 

collected from the cohort of 22-month-old animals. Representative western blots are shown 

in fig. 4.13 and quantified results are presented in fig. 4.14. 

Analogously to the HPC, there was no significant difference between aged WT and 

Dp2Yey animals in the levels of GluA1 (Student’s t-test – t(14)=1.130, p=0.277), GluN1 

(Student’s t-test – t(14)=0.456, p=0.655), GluN2A (Student’s t-test – t(14)=0.181, p=0.859) or 

GluN2B (Student’s t-test – t(14)=0.738, p=0.473) in the frontal cortex. Levels of 

phosphorylated GluN2B on Y1472 also did not differ between the groups, either when 

normalised to the β-actin (Student’s t-test – t(14)=0.668, p=0.515) or to GluN2B expression 

(Student’s t-test – equal variances not assumed t(13)=1.765, p=0.101). In contrast to HPC 

findings, levels of GluK5 (Student’s t-test – t(14)=0.092, p=0.928) and of PSD95 (Student’s 

t-test – t(14)=1.184, p=0.256) did not significantly differ between Dp2Yey and WT animals in 

the frontal cortex. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) 
b) 

Figure 4.13: Western blots of frontal cortex synaptosomes from 22-month old Dp2Yey mice. 

Blots show no difference in protein expression. n= 5 WT, 11 Dp2Yey. 
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Figure 4.14: Protein density of western blots of frontal cortex synaptosomes from 22-month 

old Dp2Yey mice relative to the WT group. a) Protein expression normalised to β-actin. b) 

Phosphorylated GluN2B at Y1472 normalised to β-actin or total GluN2B levels. Values are means  

± 1 SEM. n= 5 WT, 11 Dp2Yey. 

a) 

b) 
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4.6. Discussion 

At cellular level, formation and consolidation of new memories is postulated to rely 

upon synaptic plasticity changes mediated by glutamate receptors. Activity-dependent 

molecular signalling pathways regulate conductivity and expression of glutamate receptors, 

ultimately modifying synaptic transmission efficacy. In mouse models of DS, memory 

deficits have been repeatedly observed in conjunction with aberrant synaptic plasticity in 

the HPC. 

Here, the separate impact of over-dosage of Mmu16, Mmu17 and Mmu10 homologs 

on expression levels of glutamate receptors (AMPARs, NMDARs, KARs) and the major 

postsynaptic scaffold protein PSD95, was examined in adult (14 months) and aged (20-22 

months) Dp1Tyb, Dp3Yey and Dp2Yey animals in synaptosome extractions with western 

blotting. As anticipated, protein expression was differentially affected by the three trisomies. 

Importantly, no difference was observed between trisomic and WT animals in the weight of 

HPC and frontal cortex sample collected, suggesting that the Mmu16, Mmu17 and Mmu10 

trisomy did not alter gross brain volume. 

Mmu16 and the Dp1Tyb model 

 Western blot analysis of HPC synaptosome extractions from Dp1Tyb animals 

revealed an upregulation of the GluA1 subunit and a downregulation of the scaffold protein 

PSD95 (Exp. 4a). Expression levels of GluN1 and GluK5 subunits were not different from 

wildtypes. Moreover, total phosphorylation levels of GluA1 at S845 were unaltered but 

normalisation to total GluA1 levels revealed a significant reduction in phosphorylation. 

These protein perturbations localised specifically to the HPC, as levels of GluA1 and PSD95 

were normal in frontal cortex synaptosomes (Exp. 4b). Additionally, the hippocampal GluA1 

upregulation specifically concerned synaptosomes, as intracellular levels of the GluA1 

subunit were unaltered in the cytosol fraction (Exp. 4c). The cytosol displayed instead an 

increase in DYRK1A expression. 

PSD95 is a central coordinator of dendritic spine architecture and association with 

PSD95 is critical for determining surface levels of glutamate receptors (Béïque et al., 2006; 

Chen et al., 2011, Ehrlich & Malinow, 2004). In HPC synaptosomes of Dp1Tyb animals, 

levels of PSD95 were downregulated by ~35% compared to the WT group (Exp. 4a). Given 

its major role as scaffold protein, PSD95 downregulation implicates a disruption in the 

molecular structure and composition of postsynaptic densities in the Dp1Tyb. 

Consequently, the experience-dependent potentiation and depotentiation of synaptic 

transmission was likely to be compromised in the Dp1Tyb. At the same time, 

downregulation of PSD95 also suggests a reduction in the number or size of postsynaptic 

terminals. Since only 20-month old animals were investigated, it remains unclear whether 
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low PSD95 levels were a result of defective neurodevelopmental processes or progressive 

neurodegeneration. Both explanations seem possible, as both decreased synaptogenesis 

and age-related deterioration are common features of DS (Becker et al., 1986; Chakrabarti 

et al., 2007; Takashima et al., 1994). However, previous research on the Dp1Tyb reported 

no evidence of neuromorphological anomalies in prenatal or new-born animals, suggesting 

that current results are unlikely a congenital trait (Aziz et al., 2018; Goodliffe et al., 2016). 

In fact, hippocampal PSD95 expression was found to be increased in Dp1Tyb animals at 3-

4 months of age (Souchet et al., 2014). In Ts65Dn mice, PSD95 levels were reduced in 

embryos but increased at 4-5 months of age, arguing for a dynamic regulation of PSD95 

expression (Chakrabarti et al., 2007; Souchet et al., 2014). It seems thus more likely that 

PSD95 downregulation in the Dp1Tyb resulted from age-dependent neurodegeneration. 

This interpretation is compatible with the possibility of the App trisomy progressively 

inducing Aβ-aggregation and ultimately synaptic loss. Indeed, evidence demonstrates that 

Aβ-oligomers preferentially target postsynaptic regions and PSD95 levels are decreased in 

AD patients and mouse models of AD pathology (Counts et al., 2014; Lacor et al., 2004; 

Simón et al., 2009). However, further analyses are necessary to determine whether brains 

of the 20-month-old Dp1Tyb show evidence of Aβ-accumulation. 

An alternative, or concomitant cause for the observed PSD95 downregulation, is 

glutamate-induced excitotoxicity. Hippocampal synaptosome extractions from Dp1Tyb mice 

were in fact characterised by a ~1.5-fold upregulation of the GluA1 subunit (Exp. 4a). 

Overactivation of AMPARs can lead to neurotoxic levels of postsynaptic Ca2+ influx, 

whereby excessive Ca2+ activates protease enzymes leading to apoptosis (Dong, Wang, & 

Qin, 2009). Glutamate excitotoxicity has been implicated in different neurodegenerative 

disorders, including AD. Given GluA1 overexpression, it seems possible that excitotoxic 

processes might have damaged hippocampal neurons, resulting in synaptic degeneration 

and reduced PSD95. Additionally, GluA1 subunits are permeable to Ca2+, potentially 

contributing directly to excitotoxicity. In a recent study, overexpression of GluA1 was directly 

implicated in excitotoxic degeneration of cultured motor neurons (Selvaraj et al., 2018). 

It must be acknowledged that the upregulation of the GluA1 subunit was not 

anticipated. Nevertheless, it is equally noteworthy that this effect was not apparent in frontal 

cortex tissue, suggesting that the upregulation was not a measurement or procedure 

artefact. Although research on glutamate receptor expression in DS mouse models is 

scarce, most studies reported a decrease in AMPAR expression (Belichenko et al., 2009b, 

Morice et al., 2008; Souchet et al., 2014). Even in the Dp1Tyb model, previous research 

employing western blotting found decreased hippocampal GluA1 levels at 3-4 months of 

age (Souchet et al., 2014). The discrepancy between current and previous findings on the 

Dp1Tyb can be explained by several factors. For one, Souchet et al. (2014) did not examine 
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purified synaptosome extractions, but whole cell lysates. As demonstrated in Exp. 4c, the 

GluA1 upregulation concerned specifically the synaptosome fraction, since GluA1 levels 

were normal in the cytosol fraction. It is therefore possible that a potential GluA1 

overexpression at synapses was confounded by other cell compartments. For another, it 

appears that animals examined by Souchet et al. (2014) did not undergo any behavioural 

training. As reviewed throughout this chapter, AMPAR synaptic insertion represents the 

chief plasticity mechanism underlying learning and memory. It is therefore possible that the 

behavioural protocols experienced by Dp1Tyb animals here, played a role in the GluA1 

overexpression. Finally, the GluA1 upregulation might be gradually acquired with age, 

possibly to compensate a downregulation present at earlier age, as observed by Souchet 

et al. (2014).  

Indeed, AMPAR trafficking has been implicated in homeostatic mechanisms aimed to 

regulate the neuron’s own excitability and preserve an overall balance in synaptic strength, 

specifically through synaptic delivery or removal of GluA1 (Ju et al., 2004; Kim & Ziff, 2014). 

In homeostatic plasticity, AMPAR surface expression is regulated on the basis of neuronal 

activity, whereby chronic activity results in AMPAR downregulation and chronic inactivity in 

AMPAR upregulation. It is possible that the GluA1 overexpression in the Dp1Tyb might be 

the result of abnormal compensatory mechanisms aimed to upregulate excitability due to 

an initial GluA1 downregulation. This possibility would fit with the GABAergic over-inhibition 

hypothesis, whereby Mmu16 mouse models have been observed to generally display 

increased GABAergic and decreased glutamatergic synaptic transmission (Contestabile et 

al., 2012). In this regard, examination of synaptosomes from younger Dp1Tyb mice and of 

markers of inhibitory transmission, would provide valuable information. 

Homeostatic synaptic upscaling and downscaling of AMPARs is tightly linked to 

wake/sleep cycles (Tononi & Cirelli, 2014; Vyazovskiy et al., 2008). Wakefulness has been 

shown to favour synaptic potentiation while sleep favours synaptic depotentiation, 

preventing synaptic saturation. In the rat HPC, surface levels of GluA1-containing AMPARs 

have been shown to increase following wake periods and decrease following sleep 

(Vyazovskiy et al., 2008). Here, tissue collection took place during the light period, but WT 

and TG animals of a given mouse line were sacrificed in random order from morning to 

afternoon. It is therefore possible that sleep intervals occurring throughout the day may 

have had an influence on GluA1 expression levels via homeostatic plasticity, affecting 

current results. In this respect, it would be important to investigate whether sleep patterns 

are altered in the Mmu16 trisomy. 

Nevertheless, although unusual, AMPAR upregulation is not completely 

unprecedented in DS research. Findings on Ts65Dn mice report primarily decreased 

AMPAR levels, but unaltered or even increased hippocampal GluA1 expression has also 
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been noted (Siarey et al., 2006; Souchet et al., 2014). Investigations on human DS brains 

are rare. Immunohistochemical analyses found that cortical GluA1 expression progressively 

increased with age in DS but not in neurotypical subjects (Arai, Mizuguchi, & Takashima, 

1996). Prenatally, cortical levels of the GluA2 and GluA3 subunits were significantly 

increased in male DS foetuses, but no difference was observed in GluA1 levels (Falsafi, 

Dierssen, Ghafari, Pollak, & Lubec, 2016). 

 At present, the cause of GluA1 upregulation in the Dp1Tyb HPC can only be 

speculated. None of the genes encoding AMPAR subunits are located on Hsa21, 

implicating that the increase does not reflect gene over dosage, or at least not directly. 

Given that GluA1 levels were not elevated in the cytosol fraction, the intracellular pool of 

GluA1 subunits appears to be normal. This suggests a specific impairment in the cycling of 

AMPARs at the synapse. AMPARs surface levels are tightly regulated by constitutive and 

activity-dependent trafficking, controlling the insertion of newly synthesised receptors, 

lateral diffusion of extrasynaptic receptors and endosomal cycling (Henley & Wilkinson, 

2016). In endosomal cycling, AMPARs are removed from the surface by endocytosis and 

trafficked to early endosomes, where they are sorted for either recycling back to the plasma 

membrane via recycling endosomes or for trafficking to later endosomes for degradation. 

These trafficking pathways are regulated by distinct molecular pathways involving Ca2+-

dependent posttranslational modifications, such as phosphorylation. Fine-tuned 

phosphorylation of AMPARs is key to the rapid, activity-dependent regulation of AMPARs 

surface distribution, targeting AMPARs for synaptic insertion or removal. Dyrk1A is trisomic 

in the Dp1Tyb and activity of this protein kinase has been implicated in the regulation of 

numerous cellular pathways, including regulation of endocytic pathways (Murakami, Bolton, 

& Hwang, 2009). DYRK1A has also been shown to interact directly with NMDARs, whereby 

DYRK1A phosphorylation prevented NMDAR internalisation (Grau et al., 2014). Indeed, 

transgenic mice overexpressing DYRK1A display altered expression levels of different 

NMDAR subunits and deficits in different memory tasks (Souchet et al., 2014).  

In addition to DYRK1A, two other genes located on Hsa21 have been involved in the 

phosphorylation events underlying endosomal cycling, RCAN1 and SYNJ1. Coincidently, 

both genes map to Mmu16 (Lana-Elola et al., 2011). RCAN1 codes for the regulator of 

calcineurin 1, a protein widely expressed in the HPC and upregulated 2-fold in DS foetal 

and adult brains (Ermak, Morgan, & Davies, 2001; Fuentes et al., 2000). RCAN1 inhibits 

the activity of the phosphatase calcineurin. Calcineurin has been implicated in different 

cellular processes, including cell differentiation, gene transcription and synaptic plasticity. 

As outlined in section 4.1.1, calcineurin plays an important role during LTD, 

dephosphorylating AMPARs and targeting them for internalisation (Citri & Malenka, 2008). 

Additionally, similarly to DS mouse models, transgenic mice overexpressing RCAN1 display 



 Chapter 4: Expression of glutamate receptors  

176 
 

reduced hippocampal volume, impaired memory performance on the NOR task, T-maze 

and MWM, along with anomalies in LTP induction (Martin et al., 2012). RCAN1 

overexpression has also been associated to Ca2+-dependent neuronal death (Sun, Wu, 

Herculano, & Song, 2014). 

SYNJ1 codes for the phosphoinositide phosphatase synaptojanin 1, an enzyme 

located in synaptic terminals that regulates the phosphoinositide metabolism (Di Paolo & 

De Camilli, 2006). The primary target of synaptojanin 1 is the phosphatidylinositol-4,5-

bisphosphate [PI(4,5)P2], a signalling lipid that plays a critical role in vesicle endocytosis. 

Accordingly, expression of synaptojanin 1 has been demonstrated to regulate both 

presynaptic neurotransmitter and postsynaptic receptor vesicle endocytosis (Cremona et 

al., 1999; Gong & De Camilli, 2008). In neuronal cell cultures, knockout of synaptojanin 1 

resulted in increased postsynaptic AMPAR levels and decreased AMPAR internalisation 

(Gong & De Camilli, 2008). Overexpression of synaptojanin 1 has instead been associated 

to enlargement of early endosomes, a morphological feature observed in DS related to 

defects in endocytic sorting (Cossec et al., 2012). 

Assuming that overdosage of DYRK1A, RCAN1 and SYNJ1 might directly result in 

increased gene product is however too simplistic. Expression and activity of these genes is 

modulated by a complex interplay with other Hsa21 genes, reiterating once again the 

genetic complexity of DS. For example, RCAN1 activity is induced by DYRK1A 

phosphorylation and higher RCAN1 levels can be induced by APP (Ermak et al., 2001; Jung 

et al., 2011.) In turn, the RCAN1-mediated activity of calcineurin stimulates the activity of 

synaptojanin 1 (Lee, Wenk, Kim, Nairn, & De Camilli, 2004). It can be speculated that in the 

Dp1Tyb, overexpression of DYRK1A and APP might result in higher RCAN1 activity, with 

concomitant lower calcineurin activity. Lower calcineurin activity would directly reduce 

AMPAR internalisation and synaptojanin 1 activity, which would further lower AMPAR 

internalisation. Unfortunately, numerous western blotting attempts to quantify RCAN1 failed 

but DYRK1A levels were found significantly increased in the Dp1Tyb HPC (Exp. 4c). This 

perturbation suggests imbalances in the phosphorylation events downstream of DYRK1A. 

In line with this possibility, levels of GluA1 phosphorylation at S845 relative to total GluA1 

were significantly decreased in the Dp1Tyb (Exp. 4a). It is possible that unbalanced GluA1 

phosphorylation states prevented normal cycling of AMPARs, ultimately resulting in GluA1 

upregulation. 

The S845 phosphorylation site of the GluA1 subunit has been repeatedly implicated 

in synaptic plasticity and AMPAR trafficking. Using a combination of western blotting and in 

vitro electrophysiology, Lee et al. (2000) found that hippocampal LTD induction caused a 

decrease in S845 phosphorylation, while LTP induction caused an increase in 

phosphorylation at a different GluA1 serine site, S831. Furthermore, dephosphorylation and 
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phosphorylation of S845 have been respectively associated to synaptic removal and 

insertion of GluA1 subunits (Esteban et al., 2003; Kim & Ziff, 2014; Lee et al., 1998). 

In a subsequent study, Lee, Takamiya, He, Song and Huganir (2010) generated 

phosphomutant mouse lines unable to phosphorylate either S845 or S831. Hippocampal 

western blots showed that at young age (3 weeks old), S845 and S831 mutants displayed 

normal levels of total GluA1 and normal phosphorylation levels of the respective non-

mutated serine site. At older age however (≥ 3 months old), S831 mutants displayed an 

increase in total GluA1 and a relative decrease in S845 phosphorylation. No difference was 

instead observed in older S845 mutants. The findings on older S831 mutants correspond 

exactly to the pattern observed here in the Dp1Tyb, namely GluA1 upregulation and 

reduced S845 phosphorylation. This suggests the existence of an age-dependent 

mechanism mediated by unbalanced phosphorylation events that results in synaptic 

accumulation of GluA1 subunits. Additionally, LTD was impaired in S845 but not S831 

mutants, confirming the crucial role of the S845 site in synaptic depotentiation (Lee et al., 

2010). Given the ample evidence implicating S845 in GluA1-internalisation, the reduction in 

S845 phosphorylation observed in the Dp1Tyb may suggest that surplus GluA1 subunits 

are potentially targeted for endocytosis. Interestingly, dephosphorylation of S845 is 

operated by calcineurin, pointing to a key role of RCAN1 in altered AMPAR trafficking, 

potentially modulated by elevated DYRK1A levels. Of note, Tc1 mice trisomic for Dyrk1A 

but not Rcan1, displayed instead a downregulation of hippocampal GluA1 (Morice et al., 

2008). 

While analysis of synaptosome extractions permitted to quantify receptors located at 

synaptic terminals, it must be noted that this does not exclusively comprehend receptors 

anchored to the PSD, actively participating in synaptic transmission, but also reserve pools 

of receptors adjacent to the PSD. In view of this, it is not possible to know whether surplus 

GluA1 subunits in the Dp1Tyb were part of functional AMPARs or reserve AMPARs pending 

endocytic sorting. Generally, an increase in synaptic AMPARs is postulated to potentiate 

the synapse, enhancing sensitivity to glutamate release and neuronal excitability. However, 

in the context of prolonged, non-dynamic trafficking, AMPAR upregulation is problematic as 

it may impair the activity-dependent modulation of synaptic strength through AMPAR 

redistribution. Additionally, synaptic overexpression of AMPARs could occlude LTP as the 

synapse cannot be further potentiated (Whitlock et al., 2006). Indeed, electrophysiological 

studies on Dp1Tyb mice consistently reported impairments in hippocampal LTP induction 

(Yu et al., 2010b; Zhang et al., 2014). 

The lack of alterations in NMDAR expression observed in the Dp1Tyb (Exp. 4a) is in 

line with previous evidence reporting normal levels of different NMDAR subunits in the 

Ts65Dn model, but is once again in contrast to the Souchet et al. (2014) study observing 
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NMDAR downregulation. Literature on KARs is scarcer. In Tc1 mice, trisomic for Grik1, 

levels of GluK1 and GluK5 were normal in the HPC, but GluK5 was downregulated in the 

PRH cortex (Hall, 2016). In the Dp1Tyb HPC, GluK5 levels were normal, in line with Tc1 

findings. 

Overall, western blot analysis of Dp1Tyb brains revealed a number of synaptic 

abnormalities, potentially due to trisomy of key genes involved in synaptic degeneration and 

receptor trafficking (App, Dyrk1A, Rcan1, Synj1). Although the Ts65Dn model is trisomic for 

the same key genes, literature on AMPAR expression is largely – but not entirely – in 

contrast to the Dp1Tyb. Inconsistent findings could either be due to the Mmu17 trisomic 

portion of Ts65Dn mice, the investigation of whole cell lysates instead of synaptosomes, or 

differences in the age of the examined animals. Indeed, age seems to play an important 

role in the synaptic phenotypes of the Dp1Tyb. These phenotypes concerned specifically 

the HPC, suggesting that they might underlie the impairments observed in HPC-dependent 

memory tasks (Exp. 1a, 1b, 1d) and that Mmu16 homologs are involved HPC dysfunction. 

Mmu17 and the Dp3Yey model 

Western blot analysis of HPC synaptosome extractions from Dp3Yey animals 

revealed no trisomy-dependent alterations in protein expression. Levels of GluA1, GluN1, 

GluK5 and of the scaffold protein PSD95, did not differ between WT and Dp3Yey mice, 

either at adult (14 months) or advanced (21 months) age (Exp. 5a). The only change 

observed was a trisomy-independent PSD95 upregulation, whereby older WT and Dp3Yey 

animals displayed higher PSD95 levels compared to younger animals (Exp. 5a).  

This was the first study explicitly investigating glutamate receptors in a mouse model 

of Mmu17 trisomy. The lack of trisomy-dependent differences was anticipated, given that 

Dp3Yey animals displayed intact memory function in a series of memory tasks (Exp. 2a, 

2b) and that the Mmu17 trisomy does not include genes that code for proteins directly 

involved in synaptic function. 

However, previous evidence on the Dp3Yey model reported significantly increased 

hippocampal LTP, with Dp3Yey animals exhibiting enhanced and longer lasting potentiation 

(Yu et al., 2010b). Enhanced hippocampal LTP was also observed in an incomplete Mmu17 

trisomy mode, the Dp1Yah (Pereira et al., 2009). These findings implicate that trisomic 

genes shared by the two models (~12 genes) enhance synaptic potentiation. Current results 

indicate however that this enhancement is not mediated by altered expression of the GluA1 

subunit, total NMDARs or the GluK5 subunit. It is possible that glutamate receptor subunits 

not assessed here might be differentially expressed in the Dp3Yey, contributing to 

enhanced LTP. Alternatively, altered phosphorylation events might raise the conductivity of 

glutamate receptors to atypically large levels during LTP. 
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Interestingly, transgenic mice overexpressing CBS also reported enhanced 

hippocampal LTP, attributing once again the Cbs gene a crucial role in the Mmu17 trisomy 

(Régnier et al., 2012). Mutations in CBS are associated to homocystinuria, a metabolic 

disorder comprising intellectual disability (Almuqbil et al., 2019). It is however unclear how 

CBS overexpression might influence synaptic activity. One possibility discussed by Régnier 

et al. (2012) is that CBS might alter hydrogen sulphide concentrations and facilitate NMDAR 

activity. 

Importantly, in contrast to the Dp1Tyb and Dp2Yey, Dp3Yey animals did not display 

signs of synaptic degeneration, as PSD95 levels did not differ between WT and trisomic 

animals, at either age (Exp. 5a). As a matter of fact, PSD95 levels were significantly 

increased in older animals, irrespective of genotype. This finding was unexpected, but 

robust across the western blots.  

Younger and older animals underwent identical treatment during sample collection 

and sample preparation. They also underwent a similar number of behavioural protocols. 

One explanation for the age-dependent PSD95 upregulation might be that in the absence 

of neurodegenerative processes, PSD95 levels normally increase with age. Studies 

investigating ageing and PSD95 expression in healthy subjects are however rare (as 

reviewed in Savioz, Leuba, & Vallet, 2014). Nevertheless, a study did in fact report a 

significant, positive correlation between frontal cortex PSD95 levels and age in ≥ 90 years 

old individuals (Head et al., 2009). Increased PSD95 levels have also been observed in the 

cortex of naturally aged rats (Nyffeler, Zhang, Feldon, & Knuesel, 2007). 

An alternative explanation for the age-dependent PSD95 increase might lie in the 

birthplace of older and younger animals. Although both age groups were generated and 

maintained on a C57BL/6J background and sent to Cardiff University at ~3 months of age, 

the laboratory breeding the animals moved location, resulting in younger and older animals 

born in two different facilities. As confirmed by the breeding laboratory, weaning, animal 

care and housing conditions (including cage enrichment) did not differ between the two 

facilities. It cannot be excluded however, that non-specific environmental differences 

experienced during the first 3 months of life might have caused PSD95 upregulation in the 

older group. Indeed, rats or mice exposed to different housing conditions, such as 

environmental enrichment, show increased PSD95 levels in different brain areas, including 

the HPC (Savioz et al., 2014). 

Overall, no evidence of altered glutamate receptor expression or neurodegeneration 

was observed in the Dp3Yey, in line with fully intact memory performance (Exp. 2a, 2b). 

These findings suggest once again that Mmu17 genes are not involved in either HPC 

dysfunction or age-dependent neurodegeneration in DS. 
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Mmu10 and the Dp2Yey model 

 Western blot analysis of HPC synaptosomes from Dp2Yey animals revealed age-

dependent alterations in protein expression in animals carrying the Mmu10 trisomy (Exp. 

6a). Synaptic expression of GluA1, GluN1, GluN2A, GluN2B subunits and of GluN2B 

phosphorylated at Y1472, did not differ between WT and Dp2Yey animals, either at adult 

(14 months) or advanced (22 months) age. By contrast, although the expression of GluK5 

was normal at adult age, GluK5 levels were downregulated in aged Dp2Yey. The same 

age-dependent phenotype was observed for the scaffold protein PSD95, with aged but not 

adult Dp2Yey reporting reduced PSD95 expression. Additionally, downregulation of GluK5 

and PSD95 was localised specifically to the HPC, since normal protein levels were 

observed in frontal cortex synaptosomes, as for GluA1, GluN1, GluN2A, GluN2B and 

pGluN2B Y1472 (Exp. 6b). 

 PSD95 plays a fundamental role in dendritic spine organisation. In aged (22 months) 

Dp2Yey, PSD95 was downregulated by almost 50% in the HPC (Exp. 6a). As noted for the 

Dp1Tyb, PSD95 downregulation suggests a disruption in the normal molecular composition 

of postsynaptic densities and a reduced number or size of dendritic spines. Importantly, at 

younger age (14 months) levels of PSD95 did not differ from controls. This strongly suggests 

the existence of age-dependent neurodegenerative processes induced by the Mmu10 

trisomy. Indeed, in older Dp2Yey mice PSD95 was significantly downregulated not only 

compared to age-matched wildtypes, but also compared to younger Dp2Yey. 

As proposed in chapter 3, a candidate gene for progressive neurodegeneration is 

S100B. This astrocytic protein plays an important role in neuroinflammation, aggravates AD 

pathology and has been repeatedly implicated in apoptotic processes (Cristóvão & Gomes, 

2019). Elevated levels of S100B are observed in a wide range of neurodegenerative 

disorders, including AD. Importantly, S100B gradually increases with age and animal 

studies have demonstrated harmful effects of S100B overexpression that are progressive 

with age (Créau et al., 2016; Royston et al., 1999; Whitaker-Azmitia et al., 1997).  

Another Hsa21 gene mapping to Mmu10 potentially implicated in cell death is TRPM2. 

This gene codes for the transient receptor potential melastatin 2, a cation channel 

permeable to Ca2+ located in the plasma membrane of neurons and immune cells. TRPM2 

activity is induced by oxidative stress and can aggravate neuroinflammation by promoting 

the production of pro-inflammatory cytokines (Sita, Hrelia, Graziosi, Ravegnini, & Morroni, 

2018). Oxidative stress results from an imbalance between the production of prooxidants 

(i.e. free radicals) and antioxidants, due to dysregulated mitochondrial function. Indeed, 

mitochondrial dysfunction has been implicated in the pathophysiology of DS and 

neurodegenerative disorders, such as AD (as reviewed in Valenti et al., 2018). In cell 

culture, expression of TRPM2 has been associated to Ca2+-dependent cell death following 
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oxidative stress, while genetic deletion of Trpm2 or inhibition of TRPM2 activity has been 

found to protect cell viability (Miller, 2006; Verma et al., 2012). TRPM2 activity has also 

been noted to exacerbate Aβ-mediated neurotoxicity and deletion of Trpm2 in a mouse 

model of AD reverted a number of inflammatory markers to normal levels and rescued 

synaptic degeneration (Ostapchenko et al., 2015).  

Increased susceptibility to oxidative stress, neuroinflammation and disrupted Ca2+ 

homeostasis are normally observed with increasing age (Kregel & Zhang, 2006). Given 

overdosage of both S100b and Trpm2, it can be hypothesised that ageing processes are 

accelerated in the Dp2Yey, by aggravating age-dependent inflammatory processes that 

ultimately result in cell death. From this perspective, it remains surprising that signs of 

neurodegeneration (i.e. PSD95 downregulation) were observed only in the HPC and not in 

the frontal cortex as well (Exp. 6b). 

S100B and TRPM2 levels in the Dp2Yey mice examined in the present set of 

experiments are unknown. However, previous evidence on the Dp2Yey model by Block et 

al. (2015) reports that S100B expression was increased in the HPC of males and females 

Dp2Yey, at 7-9 months of age (Block et al., 2015). Of note, the same study also observed 

an upregulation of APP and RCAN1 in the HPC of male, but not female, Dp2Yey. This 

implicates that the Mmu10 trisomy promotes accumulation of non-Mmu10 gene products 

implicated in neurodegeneration and surprisingly, in a sex-dependent manner. 

 This was the first study explicitly investigating expression of glutamate receptors in a 

mouse model of Mmu10 trisomy. The Block et al. (2015) study assessed expression of a 

wide range of proteins in the Dp2Yey, using reverse phase protein arrays. Coincidently, 

some of these proteins included NMDARs. In line with current findings, Block et al. (2015) 

reported no difference in the expression of GluN1 or GluN2B in the HPC, in both sexes. The 

study found however a significant GluN2A increase in male (but not female) Dp2Yey, which 

was not replicated here. This might be due to the employment of a different method or 

differences in the age of the animals. 

 In AD, levels of NMDARs are generally reduced (Proctor, Coulson, & Dodd, 2011). 

Evidence reports that GluN2B-containing NMDARs are specifically targeted by Aβ-

oligomers, triggering a phosphatase cascade resulting in dephosphorylation of GluN2B at 

the Y1472 site, labelling the receptor for endocytosis (Snyder et al., 2005). Here however, 

expression levels of the GluN2B subunit and the relative Y1472 phosphorylation levels in 

the Dp2Yey did not differ from controls. This was the case both in adult and aged animals, 

both in HPC and frontal cortex synaptosomes (Exp. 6a and 6b). These findings suggest 

that, unlike AD, neurodegenerative processes taking place in aged Dp2Yey animals did not 

involve NMDAR expression.  
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Instead, aged Dp2Yey mice displayed a decrease in KAR expression, whereby the 

GluK5 subunit was downregulated by 50% (Exp. 6a). Given the memory deficit displayed 

by older Dp2Yey (Exp. 3b), this age-dependent downregulation was anticipated, as will be 

discussed in chapter 5. Nevertheless, the cause of the GluK5 downregulation can only be 

speculated. Since PSD95 binds directly to the GluK5 subunit to anchor KARs to the PSD, 

it is possible that PSD95 downregulation resulted in the trafficking of KARs away from the 

synapse. However, PSD95 also binds directly to GluN2 and indirectly to GluA1, yet 

expression levels of these subunits were unaltered. This might be explained by the fact that 

synaptic anchoring of NMDARs and AMPARs can also occur through binding with other 

PSD-MAGUK proteins. For example, all NMDAR subunits display high affinity for SAP102, 

with GluN2B also binding with PSD93 and GluN2A with SAP97. GluA1 subunits can also 

bind directly with SAP97 (Won et al., 2017). Indeed, SAP97 was found to rescue deficits in 

AMPAR currents in PSD93/95 double-knockout neurons (Howard, Elias, Elias, Swat, & 

Nicoll, 2010). By contrast, although there is evidence that GluK5 subunits can also bind with 

SAP97, this association is incomplete and weaker compared to the association with PSD95 

(Mehta, Wu, Garner, & Marshall, 2001). It is therefore possible that in aged Dp2Yey mice, 

PSD-MAGUK proteins could compensate for the scarcity of PSD95 and maintain normal 

pools of GluA1-containing AMPARs and NMDARs, but synaptic anchoring of GluK5-

containing KARs could not be restored.  

A further explanation for the GluK5 downregulation might lie in over dosage of Adar2. 

This gene codes for adenosine deaminase 2, an enzyme primarily located in the nucleus 

that edits RNA (Nishikura, 2016). In the brain, ADAR2 edits the pre-mRNA of glutamate 

receptors, altering their functional properties. In most cases, ADAR2 determines the 

receptor’s permeability to Ca2+ ions, by editing a glutamine residue into an arginine residue 

(Q/R editing). Of relevance, ADAR2 edits GluA2, GluK1 and GluK2 subunits, making them 

Ca2+ impermeable. As described throughout this chapter, maintenance of Ca2+ homeostasis 

is fundamental for normal synaptic function and plasticity. 

Heteromers of GluK5 and GluK2 are the most abundant type of KAR in the brain and 

synaptic expression of GluK5 strongly depends on GluK2 availability (Ball, Atlason, 

Olayemi, & Molnár, 2010). Q/R editing of GluK2 has been shown to reduce the ability of 

GluK2 to assemble with other subunits, leading to GluK2 retention in the endoplasmic 

reticulum (Ball et al., 2010). Thus, it can be hypothesised that in the Dp2Yey, over dosage 

of Adar2 might result in over editing of GluK2 subunits, consequently leading to a reduced 

surface number of GluK5/GluK2 KARs.  

At the same time, excessive Ca2+- impermeable KARs at the synapse might be 

preferentially downregulated through homeostatic scaling, to increase the neuron’s 

excitability. This hypothesis seems plausible, as ADAR2 editing of GluK2 has been 
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demonstrated to depend on synaptic activity. Chronic suppression of synaptic transmission 

with tetrodotoxin treatment or NMDAR antagonism resulted in upscaling of synaptic 

expression of unedited – thus Ca2+ permeable – GluK2-containing KARs (Gurung et al., 

2018). Importantly, although ADAR2 edits GluA2 subunits as well, surface levels of GluA2 

were unaltered, suggesting that KAR trafficking is particularly sensitive to Q/R states. 

Whether gene overdosage of Adar2 could in fact result in increased Q/R editing is 

unclear. Although Higuchi et al. (2000) demonstrated that GluK2 editing progressively 

decreases with reduced Adar2 copy number, Gurung et al. (2018) reported that transient 

ADAR2 overexpression did not exceed baseline levels of edited GluK2. Additionally, if 

Adar2 overdosage played a role in the GluK5 downregulation observed in aged Dp2Yey 

mice, it remains unclear why the same downregulation was not observed in younger 

Dp2Yey animals. One possibility is that subtle GluK5 reductions might not be detected by 

western blotting, while at older age, the combined effect of Adar2 overdosage and PSD95 

downregulation might produce a more obvious, detectable GluK5 downregulation. 

Unlike AMPARs and NMDARs, the role of KARs in synaptic plasticity has been less 

extensively studied. Nevertheless, recent evidence reports the involvement of KARs in a 

wide range of plasticity mechanisms (Evans et al., 2019). Of particular relevance for the 

current results, Carta et al. (2013) demonstrated a GluK5-dependent form of LTD aimed to 

regulate KAR synaptic expression in the HPC. Following synaptic stimulation, CaMKII was 

observed to phosphorylate GluK5 subunits, weakening the association between GluK5 and 

PSD95. Phosphorylation enhanced mobility of GluK5-containing KARs through lateral 

diffusion, resulting in downregulation of KAR surface expression and KAR-mediated 

excitatory postsynaptic potentials. KAR-dependent LTD was not blocked by antagonism of 

NMDARs, confirming the key role of KARs in this form of synaptic depotentiation. 

A more recent study discovered a form of KAR-mediated LTP. Petrovic et al. (2017) 

noted that high-frequency stimulation of KARs increased AMPAR surface levels and 

induced structural changes in dendritic spines, analogously to NMDAR-dependent LTP. 

KAR-mediated LTP was not observed in GluK2-knockout mice, implicating a crucial role of 

GluK2 and potentially of co-assembled GluK5 subunits in this form of synaptic potentiation. 

Given the GluK5 downregulation and the involvement of KARs in synaptic plasticity, 

it can be reasonably hypothesised that normal synaptic potentiation and depotentiation in 

aged Dp2Yey mice was unlikely. Additionally, besides their involvement in 

neuroinflammation, astrocytic release of S100B and neuronal activity of TRPM2 have also 

been implicated in synaptic transmission and plasticity (Nishiyama, Knopfel, Endo, & 

Itohara, 2002; Xie et al., 2011). Electrophysiological studies have however examined 

hippocampal LTP only in 2-4-month-old Dp2Yey animals (Yu et al., 2010b). At this age, 

Dp2Yey mice displayed normal potentiation, in line with current findings showing normal 
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glutamate receptor expression and normal memory performance at adult age (Exp. 3a and 

6a). 

Overall, western blot analysis of Dp2Yey brains revealed age-dependent synaptic 

neurodegeneration, potentially due to trisomy of genes involved in neuroinflammation 

(S100b, Trpm2). Aged Dp2Yey exhibited reduced PSD95 levels and selective 

downregulation of the GluK5 receptor subunit. These changes are potentially related to the 

memory deficits displayed by aged animals (Exp. 3b) and were specifically located in the 

HPC, suggesting that the Mmu10 trisomy is involved in progressive hippocampal 

dysfunction in DS. 

Conclusion 

Western blot analysis of purified HPC synaptosome extractions revealed altered 

expression of glutamate receptors in the Dp1Tyb and Dp2Yey but not the Dp3Yey model. 

These changes are likely to affect normal synaptic function and were observed specifically 

in the HPC, a crucial structure in learning and memory function. Table 4.1. reports a 

summary of the results observed in each mouse line. 

 Research on glutamate receptor expression in the TTS model is currently unavailable. 

Nevertheless, electrophysiological studies of TTS hippocampal slices indicate that 

simultaneous overdosage of Hsa21 syntenic genes results in impaired LTP (Belichenko et 

al., 2015; Yu et al., 2010a). Research by Zhang et al. (2014) revealed that functional 

interactions between triplicated genes determine the emergence of aberrant synaptic 

plasticity in DS. While gene dosage normalisation of the DSCR rescued hippocampal LTP 

in the Dp1Tyb, addition of the Mmu17 trisomy in a crossed model reinstated the impairment. 

By contrast, addition of the Mmu10 trisomy did not prevent DSCR normalisation to rescue 

LTP in the Dp1Tyb. In TTS mice, DSCR normalisation failed to rescue LTP.  

Of the candidate genes reviewed in this discussion, only Dyrk1A is located on the 

DSCR (Lana-Elola et al., 2011). Findings by Zhang et al. (2014) suggest that in addition to 

the DSCR, interactions between Mmu16 genes and Mmu17 genes result in impaired LTP 

impairment, while Mmu10 genes appear irrelevant for the phenotype. This conclusion is 

however too simplistic. Although both Dp1Tyb (Mmu16) and Dp3Yey (Mmu17) mice were 

found to display abnormal LTP, Dp3Yey mice reported significantly enhanced and not 

decreased LTP (Yu et al., 2010b). This suggests that in crossed models, interactions 

between the Mmu16 and Mmu17 segments give rise to a different impairment, at least for 

the Dp3Yey. Additionally, the current research identified ageing as a decisive factor for the 

emergence of Mmu10-dependent phenotypes. Electrophysiological investigations have 

however only been conducted on young animals. Based on current findings it is reasonable 

to expect that studies on older Dp2Yey animals would reveal that the Mmu10 trisomy indeed 

affects hippocampal plasticity. 
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 Overall, current results implicate the Mmu16 and Mmu10 but not the Mmu17 trisomy 

in altered glutamatergic function and neurodegeneration in the HPC. The current study does 

not permit however, to either identify the cause or the consequences of altered glutamate 

receptor expression, which can only be hypothesised at this time. Further studies are 

necessary to investigate the cellular pathways leading to the observed synaptic phenotypes. 

Based on the assumption that glutamate receptor activity is fundamental for plasticity 

mechanisms underpinning memory function, western blot findings obtained here provide 

potential explanations for the memory profile displayed by the three mouse lines in chapter 

3. This will be considered further in the general discussion. 

 

Table 4.1: Overview of western blot findings. Protein expression in TG groups of the Dp1Tyb, 

Dp3Yey and Dp2Yey cohorts relative to the respective age-matched WT groups. Significant increase 

in the TG group (+), significant decrease in the TG group ( - ), no difference between the groups (=). 

Syn = synaptosome fraction, cyt = cytosol fraction; Fr cx = frontal cortex. 

 

 



  

 

 

 

 

 

 

 

 

 

Chapter 5: General discussion 
 

 

Overview 

Following a summary of the main findings of the thesis, behavioural and biochemical 

phenotypes of the Dp1Tyb, Dp3Yey and Dp2Yey models are joined and discussed together, 

aiming to link glutamate receptor expression to performance in object-recognition memory 

tasks. Limitations of the thesis and future research directions are also discussed, followed 

by a summary of the putative contribution of the Mm16, Mmu17 and Mmu10 orthologous 

regions to phenotypes of human DS. 

 

  



 Chapter 5: General discussion  

187 
 

5.1. Summary of main findings 

The primary aim of this thesis was to reveal the contribution of the Mmu16, Mmu17 

and Mmu10 trisomy to memory dysfunction in DS. In chapter 3, a series of object-

recognition memory tasks was used to assess different attributes and retention-spans of 

recognition memory in the three mouse models, at adult and advanced age. To determine 

differences in anxiety or activity levels potentially confounding memory performance, the 

animals also underwent the EPM test.  

Dp1Tyb animals were found to dissociate attributes and retention-spans of 

recognition memory (Exp. 1a, 1b). Performance in non-associative tasks assessing 

recognition of single items or single locations was intact, while performance in associative 

tasks assessing the retention of object-in-place associations and temporal order of object 

presentation was impaired. Memory impairments were specifically observed after short-

term but not long-term delays and were already present at 4 months of age (Exp. 1d). 

Recognition memory for objects did not deteriorate with ageing (Exp. 1c). Dp1Tyb mice also 

displayed increased anxiety and locomotor activity on the EPM (Exp. 1e). 

Dp3Yey animals displayed intact recognition memory, performing normally in all 

object-recognition memory tasks at all tested delays, both at adult and advanced age (Exp. 

2a, 2b). On the EPM test, Dp3Yey mice showed normal anxiety levels but increased 

locomotor activity (Exp. 2c). 

Dp2Yey animals were found to display an age-dependent dissociation in recognition 

memory. At adult age, performance was normal in all object-recognition memory tasks (Exp. 

3a) while at advanced age, memory for single objects was impaired both after short-term 

and long-term delays (Exp. 3b). Despite this impairment, memory for single locations was 

preserved (Exp. 3b). Anxiety and activity levels on the EPM test were also normal (Exp. 3c). 

The secondary aim of this research was to identify molecular mechanisms possibly 

underlying the memory profile of the three mouse models. In chapter 4, expression of 

glutamate receptor subunits was assessed in the HPC with western blotting. To determine 

specificity of changes observed in the HPC, receptor levels were also assessed in the 

frontal cortex. 

Hippocampal synaptosomes from Dp1Tyb animals exhibited a downregulation of the 

major scaffold protein PSD95 and upregulation of the GluA1 subunit (Exp. 4a). Relative to 

the GluA1 increase, phosphorylation levels of GluA1 at S845 were decreased (Exp. 4a). 

These changes were not observed in the frontal cortex (Exp. 4b). In the HPC cytosolic 

fraction, GluA1 expression was normal but DYRK1A was overexpressed (Exp. 4c).  

In the Dp3Yey, no alterations in protein expression were observed in the HPC, either 

at adult or advanced age (Exp. 5a). In the Dp2Yey, protein expression was normal at adult 
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age while at advanced age, levels of GluK5 and of PSD95 were downregulated (Exp. 6a). 

These changes were not observed in the frontal cortex (Exp. 6b). 

In this chapter, behavioural and biochemical findings are combined with the aim to 

link glutamate receptor expression to performance in object-recognition memory tasks. 
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5.2. Recognition memory and glutamate receptors 

Object-recognition memory tasks are widely employed in the study of memory 

function in rodents and the processes enabling novelty judgments in these tasks have been 

amply demonstrated to depend on activity of glutamate receptors. A series of studies by 

Barker and Warburton (2006; 2008b; 2011a; 2015) showed that AMPAR antagonism prior 

to sample or test phases impaired performance in object-recognition memory tasks, 

whereby task-specific impairments were observed depending on the region into which 

antagonists were injected, reflecting the pattern presented in table 3.1. Analogous effects 

were observed for NMDAR and KAR antagonism prior to sample but not test phases. Thus, 

memory acquisition in object-recognition memory tasks requires AMPAR, NMDAR and KAR 

activity, and AMPARs for memory retrieval.  

Memories are postulated to be stored via changes in synaptic connection strength, 

primarily mediated by glutamate receptors. Therefore, it seems that AMPARs, NMDARs 

and KARs are required for the synaptic plasticity mechanisms underlying performance in 

object-recognition memory tasks. In order to discuss the behavioural and synaptic 

phenotypes of the Dp1Tyb, Dp3Yey and Dp2Yey, it is important to present a framework 

within which recognition memory processes and neural activity can be integrated, such as 

Wagner’s Sometimes-Opponent-Process model (SOP) (1981). 

The SOP model can be used to describe recognition memory as short-term and long-

term habituation to stimuli. Habituation is the process by which, prolonged or repeated 

exposure to a stimulus results in reduced responding. According to the SOP model, a 

stimulus is represented by a set of elements. Elements of stimuli can reside into three 

different states of activation: a primary active state (A1), a secondary active state (A2) and 

an inactive state (I). During stimulus presentation, the elements representing the stimulus 

are into A1, being attentively processed and generating strong responses. As familiarisation 

with the stimulus takes place, its elements decay into A2, generating lower responses. 

When the stimulus is removed, elements decay from A2 into the inactive state I.  

Importantly, elements into A1 can only transfer into A2 and elements into A2 can only 

transfer into I, implicating that responses to a stimulus are deemed to decrease with time 

and cannot be restored unless the stimulus is re-presented, a process called self-generated 

priming. Upon stimulus re-presentation, inactive elements in I are returned to A1 while at 

the same time, inactive elements associated to the presented stimulus are retrieved from I 

and activated into A2, a process called retrieval-generated priming. Associations between 

elements to be stored in I are formed exclusively while elements are actively processed into 

A1. According to the SOP model, decay from A1 to A2 is proposed to represent short-term 

habituation and decay from A2 to I to represent long-term habituation to previously 

encountered stimuli. 
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To some extent, the SOP model parallels Cowan’s memory model (1988) presented 

in chapter 3. In Cowan’s model, familiar cues activate the associated LTM representations 

in STM and within STM, only a subset of activated elements can reside in the focus of 

attention. This is analogous to the cue-dependent retrieval of inactive memories from I into 

A2, whereby only certain elements are actively processed in A1. The key point of the SOP 

model lies in the identification of a mechanism enabling memories to decay: habituation. 

Based on the SOP model, performance in object-recognition memory tasks can be 

conceptualised as short-term and long-term habituation to previously presented objects.  

During sample phases, elements representing the objects initially reside into A1, eliciting 

strong responses. As time progresses, elements decay into A2, indicating short-term 

habituation to the objects. This is reflected in contact times generally dropping from the first 

to the second sample phase. In test phases, elements representing objects that were 

previously presented in sample phases can be postulated to reside into A2, either due to 

short-term habituation from a recently experienced sample phase (in the case of the 10-min 

test) or due to long-term habituation following longer retention intervals and retrieval from I 

(in the case of the 3-h/24-h test). Objects whose elements are into A2 will elicit weaker 

responses as animals have habituated to them. By contrast, elements of novel objects or 

of familiar objects in a novel spatial configuration, will reside into A1 and elicit higher 

responses. Consequently, animals will display higher exploration times for novel than 

familiar objects. The SOP model thus provides a psychological mechanism explaining how 

novelty preference is generated in object-recognition memory tasks. In this perspective, the 

HPC can be considered a mismatch detector, continuously comparing stored with present 

information and regulating behavioural responses accordingly (Bannerman et al., 2014). 

Evidence for Wagner’s dual process account of habituation comes from the study of 

transgenic mice lacking Gria1, the gene coding for the GluA1 subunit (Sanderson & 

Bannerman, 2012). GluA1-/- mice were found able to discriminate between familiar and 

novel arms of a Y-maze previously explored over repeated trials separated by 24-h 

intervals, but unable to discriminate between the arms when sample trials were separated 

by 1-min intervals (Sanderson et al., 2009). Similarly, GluA1-/- mice were impaired on a NOR 

and a TOr task with a 2-min retention interval, but unimpaired in an object-in-context task 

that extended over a period of 5 days (Sanderson et al., 2011). 

The dissociation displayed by GluA1-/- mice implicates the existence of GluA1-

dependent and GluA1-independent memory processes, whereby GluA1 deletion seems to 

specifically affect the ability to habituate to stimuli over brief time intervals while preserving 

habituation over longer time periods (Sanderson & Bannerman, 2012). How GluA1 deletion 

may impair short-term habituation is unclear. Electrophysiological studies of the rat PRH 

cortex demonstrate that presentation of novel stimuli elicits high neuronal responses while 
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responses decrease for familiar or recently presented stimuli, providing a possible neural 

substrate for habituation processes (Zhu et al., 1995). Given that the GluA1 subunit 

mediates fast, excitatory neurotransmission, it has been suggested that lack of GluA1 may 

interfere with the rapid decrease in neuronal cell firing possibly underpinning short-term 

habituation and resulting in impaired short-term memory performance (Sanderson & 

Bannerman, 2012). In the following sections, findings on the Dp1Tyb, Dp3Yey and Dp2Yey 

model are discussed in relation to the SOP / AMPA model. 

 Mmu16 and the Dp1Tyb: impaired short-term associative recognition 

memory and GluA1 upregulation 

Dp1Tyb mice revealed a paradoxical dissociation on the OiP and TOr task: impaired 

short-term (10-min) but intact long-term (3-h/24-h) recognition memory. This delay-

dependent performance clearly resembles the pattern observed in GluA1-/- mice and can 

be addressed with the SOP model (Sanderson & Bannerman, 2012). Analogously to GluA1-

/- mice, it can be hypothesised that short-term but not long-term habituation processes might 

be defective in the Dp1Tyb, selectively impairing short-term novelty discrimination. One 

possibility is that primary active processing may decay more slowly in Dp1Tyb than WT 

animals. If this were the case, elements representing familiar and novel object-in-place 

associations during the 10-min test phase of the OiP task would both reside into the primary 

active state A1, eliciting a similar degree of responses. An alternative route also leading to 

both object types being processed into A1 would be via a more rapid decay from A2 into I, 

resulting in the re-activation of familiar objects into A1. 

On the 10-min TOr task, Dp1Tyb animals were unable to discriminate between less 

recently and more recently presented objects but spent a similar amount of time exploring 

both objects. The lack of a preference between the objects suggests that in the test phase, 

both object types generated similar responses, possibly being processed into A1. At this 

point, it must be pointed out that although Dp1Tyb mice were impaired on the 10-min OiP 

and TOr tests, short-term performance was instead intact on the NOR, 1-sample NOR and 

Loc task. This implicates that if defective short-term habituation processes caused memory 

impairments in the Dp1Tyb, such processes were affected selectively for habituation to 

object-in-context associations but not for habituation to independent object- or spatial-

information. This seems possible, given that these attributes of recognition memory rely on 

different structures within the medial temporal lobe (section 3.1.2.1). 

A further characteristic observed in GluA1-/- mice was enhanced long-term memory 

performance (Sanderson & Bannerman, 2012). The authors interpreted the enhancement 

as a consequence of increased A1 processing, enabling the formation of stronger 

associations to be stored into I for long-term retrieval. Interestingly, Dp1Tyb animals 
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performed numerically (but not significantly) better than WT mice on both OiP and TOr long-

term memory tests (Exp. 1a, 1b). On the 24-h OiP task, wildtypes performed at chance level 

while Dp1Tyb mice showed significantly above chance preference for novelty. Moreover, 

the Bayesian analysis indicated that at 20 months of age, Dp1Tyb mice performed better 

than wildtypes on the 24-h NOR task (Exp. 2d). Thus, findings on the Dp1Tyb model match 

performance of GluA1-/- mice and predictions of the SOP model in more than one way. 

Nevertheless, although the SOP model provides a valid framework for understanding 

Dp1Tyb findings, predictions of the model are in contrast with two important points. Firstly, 

if A1 processing is increased in the Dp1Tyb, this should be reflected in higher contact times 

with the objects, as in fact observed in GluA1-/- mice (Sanderson et al., 2011). Secondly, 

contact times should remain stable across identical sample phases, i.e., habituation to the 

sample should be slower in Dp1Tyb mice. Neither of these predictions are supported by the 

behaviour of Dp1Tyb mice. Although Dp1Tyb mice displayed signs of hyperactivity on the 

EPM, contact times in object-recognition memory tasks were similar to WT mice and 

decreased across sample phases. One explanation is that intact habituation processes 

concerning object- and spatial-information features might have enabled Dp1Tyb mice to 

show a reduction in contact across sample phases. 

At cellular level, a possible mechanism for the short-term memory impairments of the 

Dp1Tyb is provided by the hippocampal overexpression of the GluA1 subunit. In view of the 

SOP model, it can be hypothesised that GluA1 overexpression might result in increased 

cell firing, delaying short-term habituation processes. Respectively, increased cell firing 

might enable stronger consolidation and thus enhanced memory in long-term tests. It 

remains however unclear how a similar cellular mechanism might be responsible for short-

term impairments in a model that completely lacks GluA1 (GluA1-/- mice). Of note, impaired 

short-term but intact long-term recognition memory was also observed in Tc1 mice, along 

with reduced hippocampal GluA1 levels (Hall et al., 2016; Hall, 2016; Morice et al., 2008).  

While it seems clear that alterations in GluA1 expression selectively affect short-term 

memory, the synaptic mechanisms still need clarification. Altered GluA1 expression is likely 

to affect excitatory neurotransmission and surface redistribution of AMPARs during LTP / 

LTD, consequently affecting the rate of cell firing. In line with the memory deficits, alterations 

in GluA1 may specifically affect the early-phase and not the late-phase of synaptic plasticity. 

Irrespective of the exact synaptic mechanisms, pharmacological studies by Barker 

and Warburton (2008b; 2011a; 2015) indeed confirm the necessity of AMPAR activity in the 

HPC during object-recognition memory tasks, supporting the interpretation that 

hippocampal GluA1 upregulation might be responsible for memory deficits in the Dp1Tyb. 

In rats, bilateral infusions of AMPAR antagonists into the PRH or mPFC cortex, or crossed 

unilateral AMPAR antagonism into PRH-mPFC, HPC-PRH or HPC-mPFC, all produced a 
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deficit on the OiP task following short (5-min) and long (1-h) retention intervals (Barker & 

Warburton 2008b; 2015). Similarly, bilateral AMPAR antagonism into the PRH or mPFC 

cortex, or crossed unilateral antagonism into the PRH-mPFc cortex, all produced deficits on 

the 3-h TOr task (Barker & Waburton, 2011a). These findings demonstrate once again that 

associative-recognition memory relies on integrated activity within the medial temporal lobe, 

requiring concomitant glutamatergic neurotransmission via AMPARs in the HPC, PRH and 

mPFC. Although speculative, these data raise the possibility that an imbalance in AMPAR 

expression in part of the recognition network could lead to disrupted activity and subsequent 

disruption of information integration necessary for associative recognition memory. 

In addition to AMPARs, blockade of NMDARs and GluK5 into the same three key 

regions also impaired performance on the OiP and TOr tasks (Baker & Warburton, 2008b; 

2011a; 2015). Moreover, although glutamate receptors play an important role in memory 

processes, they are not the only class of receptor involved. For example, antagonism of 

muscarinic receptors was also found to impair performance on the OiP and TOr tasks, 

implicating that cholinergic neurotransmission is a requirement for associative-recognition 

memory (Barker & Warburton 2008a; 2011a). At this point, it cannot be excluded that 

alterations in cholinergic neurotransmission might have contributed to memory impairments 

in the Dp1Tyb. Indeed, degeneration of basal forebrain cholinergic neurons is observed in 

DS individuals (Casanova, Walker, Whitehouse, & Price, 1985). 

In summary, impairments in associative-recognition memory displayed by Dp1Tyb 

mice suggested a dysfunction of the HPC, which was supported by overexpression of the 

GluA1 subunit in the HPC. The mechanisms leading to Dp1Tyb phenotypes are unclear, 

but they may involve defective habituation or retrieval processes as described by the SOP 

model, mediated by altered AMPAR neurotransmission. 

  Mmu17 and the Dp3Yey: normal recognition memory and normal 

glutamate receptor expression 

 Dp3Yey mice were found to perform normally in all object-recognition memory tasks, 

both after short-term (10-min) and long-term (3-h / 24-h) retention intervals. In terms of SOP, 

this would suggest that habituation processes proceeded normally in these mice. In line 

with this, mean contact times with familiar objects progressively decreased from the first to 

the second sample phase and furthermore in test phase (table 3.7, 3.8).  

 The assumption of normal habituation processes is however in disagreement with 

Dp3Yey mice displaying hyperactivity on the EPM test. Hyperactivity can potentially signify 

a deficit in habituating to a novel environment, whereby exploratory locomotor behaviour 

remains elevated over time. Analysis of locomotor activity in the EPM per minute reveals 

however, that although Dp3Yey travelled larger distances compared to wildtypes, activity 



 Chapter 5: General discussion  

194 
 

significantly decreased from the first to the last trial minute, demonstrating that Dp3Yey 

gradually habituated to the EPM.  

 Considering the hyperactivity trait, it is surprising that contact times with the objects 

did not differ between WT and Dp3Yey mice in object-recognition memory tasks. A possible 

explanation may lie in the habituation sessions before the start of the testing period. During 

these sessions, animals were habituated to the open-field maze and to the presence of 

objects. It is possible that elevated activity levels may have gradually normalised during the 

habituation sessions, as observed in the EPM. 

Normal recognition memory function in Dp3Yey mice was supported by normal 

expression of glutamate receptor subunits in the HPC. It cannot however be excluded that 

other types of synaptic receptors or proteins might be altered in the HPC of Dp3Yey mice, 

generating the hyperactivity phenotype on the EPM. 

 Mmu10 and the Dp2Yey: age-dependent recognition memory deficits 

and GluK5 downregulation 

 In Dp2Yey mice, recognition memory was intact at adult but impaired at advanced 

ages, both after short (10-min) and long (3-h) retention intervals. In relation to the SOP 

model, this suggests that both short-term and long-term habituation processes were 

impaired in aged Dp2Yey mice. It can be hypothesised that novel and familiar objects were 

both processed in the primary active state A1, eliciting equally strong responses and thus 

preventing novelty discrimination. Given that aged Dp2Yey mice were impaired both at 

short-term and long-term level, it seems that elements representing the objects did not cycle 

through A1-A2-I, failing to generate a progressive decay in behavioural responses. 

 This interpretation is however in contrast to the fact that contact times were not 

generally increased in aged Dp2Yey mice and that contacts decreased across the sample 

phases, indicating indeed habituation to the objects. Habituation processes taking place 

during the sample phases are however likely to not only reflect object recognition but also 

non-specific adjustments to the testing situation. Additionally, memory for spatial locations 

was preserved in aged Dp2Yey mice, showing that they were nonetheless capable of 

habituating to redundant spatial information. It is thus possible that contact times decreased 

across the sample phases due to a non-specific acclimation to the testing situation and the 

object array. In line with this possibility, mean contact times with familiar objects further 

decreased from the second sample phase to test phase in the WT group, while they 

remained practically stable in aged Dp2Yey mice, suggesting that, following an initial 

acclimation, the processing of familiar objects remained elevated (table 3.11). 

 A possible mechanism for the age-dependent memory impairment is provided by the 

age-dependent downregulation of the GluK5 subunit in the HPC. As proposed by 
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Sanderson et al. (2009), neural activity during A1 processing of a stimulus might be 

necessary to form associations between elements representing the stimulus for subsequent 

retrieval from I. Given the pervasive memory deficit of aged Dp2Yey mice, it seems plausible 

that neural activity might have been insufficient to retain object-information, possibly due to 

decreased kainate-mediated excitatory neurotransmission. 

Although the role of KARs in memory function has been less extensively studied in 

comparison to AMPARs and NMDARs, Barker et al. (2006) demonstrated that KAR activity 

is a requirement for novel object recognition, involving specifically the GluK5 subunit (Barker 

et al., 2006).  

Lesion studies demonstrate that novel object recognition depends on the PRH cortex 

(e.g. Barker & Warburton, 2011b). Indeed, bilateral infusions of AMPAR or NMDAR 

antagonists into the HPC or crossed unilateral AMPAR or NMDAR antagonism into the 

HPC-PRH or HPC-mPFC, did not impair performance on the NOR task (Barker & 

Warburton, 2015). By contrast, bilateral antagonism of AMPARs, NMDARs or of the GluK5 

subunit into the PRH cortex all produced a deficit in the NOR task (Winter & Bussey, 2005; 

Barker et al., 2006). More precisely, GluK5 antagonism impaired NOR memory following 

short (20-min) but not long (24-h) retention intervals, while NMDAR antagonism produced 

the opposite pattern (Barker et al., 2006). Additionally, for NMDAR antagonism to be 

effective, simultaneous GluN2A and GluN2B blockade was required, as NOR performance 

was unaffected when only one NMDAR subtype was blocked. 

Pharmacological studies thus confirm that object recognition necessitates 

glutamatergic activity within the PRH cortex, implicating aberrant PRH cortex activity in 

aged Dp2Yey mice. Expression levels of glutamate receptors in the PRH cortex were 

however not investigated but altered protein expression was observed in the HPC. Although 

a large number of studies demonstrate that object recognition does not depend on the HPC, 

some studies have indeed reported hippocampal involvement in object recognition, 

especially following long delays (24-h) (Clark, Zola, & Squire, 2000). Therefore, it seems 

possible that altered glutamate receptor expression in the HPC might have played a role in 

the memory deficits of aged Dp2Yey mice. Indeed, in line with the critical role of the GluK5 

subunit for NOR memory, levels of GluK5 were found downregulated in the HPC of aged 

Dp2Yey mice. Levels of total NMDAR, GluN2A and GluN2B were instead normal. Although 

the GluK5 subunit has been specifically implicated in short retention intervals, the long-term 

delay assessed in aged Dp2Yey mice was considerably shorter compared to the Barker et 

al. study (2006) (3-h vs. 24-h). Hence, it is possible that the GluK5 downregulation may be 

implicated in both short-term and long-term impairments of aged Dp2Yey mice. At the same 

time, hippocampal GluK5 downregulation could theoretically affect performance in HPC-

dependent memory tasks but aged Dp2Yey mice were found to preserve recognition 
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memory for novel spatial locations. Additionally, although the GluK5 downregulation did not 

extend to the frontal cortex, it cannot be excluded that GluK5 levels may also be reduced in 

the PRH cortex of aged Dp2Yey mice.  

In summary, age-dependent impairments in recognition memory were supported by 

age-dependent downregulation of the GluK5 subunit in the HPC, but levels in the PRH 

cortex are unknown. The mechanisms leading to Dp2Yey phenotypes are unclear, but they 

may involve defective habituation processes in relation to defective KAR-mediated 

excitatory transmission. 
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5.3. Research limitations 

 The primary limitation of the current research lies in the use of animals to study a 

human syndrome. Despite their phylogenetic relatedness, mice and humans are very 

different organisms. Psychological and biochemical processes are likely to differ between 

human and mice, implicating that current findings may not translate to human DS. 

Additionally, segmental Hsa21 trisomies corresponding exactly to single orthologous 

regions do not occur in human DS. 

 Although the validity of mouse models in DS research may be questioned, DS mouse 

models indeed recapitulate several physical and cognitive phenotypes of DS, suggesting 

that they are a suitable tool to study human DS. The use of models of segmental trisomy 

represents however both a strength and a limitation of the current research. While 

segmental trisomies allow to investigate the contribution of distinct gene portions to DS 

phenotypes, findings on segmental trisomies might represent phenotypes of independent 

syndromes rather than components of trisomy 21. This is especially true in view of the 

widespread gene-to-gene interactions noted to occur in DS. Indeed, crossing of different 

mouse models has been shown to give rise to a different set of phenotypes (Jiang et al., 

2015; Zhang et al., 2014). 

 A further limitation of the thesis concerns the use of exclusively male mice. Sex 

differences have been observed in both human DS and mouse models of DS, implicating 

that effects of gene over-dosage can depend on sex (de Sola et al., 2015; Falsafi et al., 

2016). For example, in the Dp2Yey, 72 out of 102 assessed proteins were differentially 

expressed in male and female brains, including proteins coded by Hsa21 candidate genes 

(Block et al., 2015).  

Together, these factors limit generalisation of the present findings to human DS. In a 

critical perspective it could be argued that present experiments merely describe phenotypes 

generated in male mice with selective Mmu16, Mmu17 and Mmu10 trisomy. 

 On a more practical level, further limitations concern the employed experimental 

methods. Here, object-recognition memory tasks were all carried out with a total of 3 objects 

and two sample phases (except for the TOr task). This design was chosen to match 

previous research on the Tc1 model (Hall et al., 2016; Morice et al., 2008) and to employ 

the same number of objects across all tasks, maintaining memory load unvaried. Most 

studies however, carry out object-recognition memory tasks with a total of 2 objects and a 

single sample phase (e.g. Marechal et al., 2019; Nguyen et al., 2018; Pereira et al., 2009; 

Souchet et al., 2019). Therefore, a direct comparison between current and previous findings 

is challenged by these differences. 

Concerning the biochemistry, the most limiting aspect lies in the fact that brain 

samples were collected at rest. This implicates that expression and phosphorylation levels 
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of glutamate receptors merely describe a baseline synaptic state and are not directly related 

to memory function. Current results thus do not provide any information on how exposure 

to objects and the associated recognition processes may alter hippocampal expression and 

activity of synaptic glutamate receptors in the three mouse models. Additional control 

groups and finely timed experiments would be required to investigate this. 

Another limitation of the biochemical analysis is that brain samples were analysed 

with western blotting. Although this technique permitted the simultaneous assessment of a 

large number of proteins, protein quantification with western blotting provides only an 

approximative measure, which may fail to detect small changes in protein expression. 

Western blotting also does not allow to differentiate between subregions of a structure. This 

is particularly important as different roles have been noted for dorsal and ventral HPC, and 

different expression patterns of glutamate receptors have been observed at CA1, CA3 and 

DG synapses (Bannerman et al., 2002; Evans et al., 2019; Henley & Wilkinson, 2016). This 

implicates that current results cannot be linked to specific hippocampal subfields or 

subnetworks. 
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5.4. Future directions 

Moving forward from present findings, biochemical changes postulated to occur in 

Dp1Tyb, Dp3Yey and Dp2Yey brains should be first investigated. It would be important to 

confirm that neurodegenerative processes were taking place in the HPC of Dp1Tyb and 

aged Dp2Yey mice. This could be investigated with immunohistochemical analyses aimed 

to quantify numbers of neuronal cells and of synaptic terminals. At the same time, 

hippocampal levels of Aβ and S100B should be quantified with western blotting or Enzyme 

Linked Immunosorbent Assay (ELISA), possibly identifying mechanisms responsible for 

neurodegeneration. 

In the Dp1Tyb, both behavioural and synaptic phenotypes could be related to aberrant 

RCAN1 activity. Therefore, quantification of RCAN1 and calcineurin levels could provide 

evidence for the involvement of this gene in accumulation of GluA1 subunits and memory 

deficits. In aged Dp2Yey, memory deficits were specifically associated to impaired PRH 

cortex function, but this region could not be investigated with western blotting. Expression 

of glutamate receptors should thus be investigated in the PRH cortex with 

immunohistochemistry, possibly revealing GluK5 downregulation as observed in the HPC. 

In the Dp3Yey, memory and activity phenotypes could be associated to CBS 

downregulation, which could be confirmed by measuring CBS levels with western blotting. 

To test the validity of assumptions made in relation to the SOP model, an immediate-

early-gene study could be carried out. For example, c-fos levels in the HPC could be 

examined in the three mouse lines following single or repeated exposure to an array of 

objects. In the Dp1Tyb, c-fos levels would be expected to be elevated in comparison to 

wildtypes, especially following repeated object presentation. In aged Dp2Yey, c-fos levels 

would be expected to be generally reduced, while normal c-fos expression would be 

expected for the Dp3Yey. Special care should be dedicated to design of the study, given 

the delicate temporal dynamics of c-fos expression. 

The present work identified behavioural and synaptic phenotypes associated to the 

three orthologous regions of Hsa21, but the cellular cascades initiated by gene over-dosage 

impairing memory function remain largely unclear. In a broader perspective, future work on 

the Dp1Tyb, Dp3Yey and Dp2Yey should thus attempt to better characterise the link 

between gene over-dosage, synaptic function and memory impairments. This could be 

investigated by administrating drug treatments aimed to reduce activity of proteins coded 

by candidate genes of the respective trisomy. For example, OiP memory could be tested in 

Dp1Tyb mice following treatment with DYRK1A activity inhibitors. Indeed, such a treatment 

has been reported to rescue memory impairments in Ts65Dn mice (De la Torre et al., 2014). 

In the Dp2Yey, the efficacy of anti-inflammatory drugs against age-dependent memory 

decline could be tested. Again, such a treatment rescued memory deficits in Ts65Dn mice 
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(Lockrow et al., 2009). Additionally, previous pharmacological studies using AMPAR 

agonists or GABA antagonists aiming to increasing excitatory activity have proved effective 

in treating memory impairments of Tc1 and Ts65Dn mice (Hall, 2016; Kleschevnikov et al., 

2012). In light of altered glutamate receptor expression, pharmacological modulation of 

glutamate receptor activity could also rescue memory deficits in Dp1Tyb and aged Dp2Yey 

mice, further clarifying aberrant molecular mechanisms involved in the respective 

impairments. 
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5.5. Conclusion 

 The present work demonstrates for the first time the distinct contribution of the three 

Hsa21 orthologous regions to recognition memory in DS. The three segmental trisomy 

models were also associated to specific patterns of glutamate receptor expression in the 

HPC, revealing possible cellular mechanism underlying the respective memory profile. 

Together, phenotypes observed in the three mouse models of segmental DS recapitulated 

cognitive phenotypes observed in human DS. Figure 5.1 reports a summary of the main 

findings, along with proposed cellular mechanisms. 

 Overall, the Mmu16 trisomy was associated to hippocampal dysfunction, as 

hypothesised. Activity of a number of trisomic gene products was proposed to be implicated 

in memory deficits and altered protein expression in the Dp1Tyb, whereby DYRK1A and 

RCAN1 emerged as particularly relevant. Despite App trisomy, the Mmu16 trisomy was not 

associated to age-related cognitive decline. The Mmu17 trisomy was associated to normal 

hippocampal function and normal ageing as hypothesised but did not reveal the expected 

impairments in object memory. Instead, the Mmu17 trisomy revealed increased activity 

levels. This might reflect the elevated prevalence of attention-deficit/hyperactivity disorders 

in the DS population. Finally, as hypothesised, the Mmu10 trisomy was associated to age-

dependent cognitive decline. Trisomy of S100b and Trpm2 were proposed to aggravate 

neuroinflammatory processes, resulting in synaptic degeneration. 

Despite a large body of literature dedicated to understanding the pathophysiology of 

DS, the intricated relationship between gene overdosage and memory dysfunction remains 

largely unclear. The generation of mouse models of segmental DS carrying breakdown 

mutations of Mmu16, Mmu17 and Mmu10 could help narrow down specific genes related 

to specific phenotypes. Indeed, models trisomic for portions of Mmu16 have already been 

created, the Dp2Tyb, Dp3Tyb and Dp9Tyb (personal communication with the Francis Crick 

Institute). Although these models risk to represent unique trisomies rather than trisomy 21, 

the absence of a given phenotype would at least point towards the necessity of specific 

gene-to-gene interactions for the production of such phenotype. 

 A better understanding of the genes and molecular processes regulating memory 

function in DS would not only contribute to a better understanding of DS pathophysiology 

but also of memory function in general. Such findings could potentially lead to the 

development of drug treatments aimed to enhance memory function or prevent cognitive 

decline in DS individuals and individuals affected by other neurological disorders. 
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