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Abstract
We study the total quantumdimension in the thermodynamic limit of topologically ordered systems.
In particular, using the anyons (or superselection sectors) of suchmodels, we define a secret sharing
scheme, storing information invisible to amalicious party, and argue that the total quantum
dimension quantifies howwell we can perform this task.We then argue that this can bemade
mathematically rigorous using the index theory of subfactors, originally due to Jones and later
extended byKosaki and Longo. This theory provides uswith a ‘relative entropy’ of two vonNeumann
algebras and a quantum channel, andwe argue how these can be used to quantify howmuch classical
information two parties can hide form an adversary.We also review the total quantumdimension in
finite systems, in particular how it relates to topological entanglement entropy. It is known that the
latter also has an interpretation in terms of secret sharing schemes, although this is shown by
completely differentmethods fromours. Ourwork provides a different and independent take on this,
which at the same time is completelymathematically rigorous. This complementary point of view
might be beneficial, for example, when studying the stability of the total quantumdimensionwhen the
system is perturbed.

1. Introduction

Quantumphases can be understood as equivalence classes of ground states of quantummany body systems [1].
In this paper we are particularly interested in gapped quantumphases, up to quasiadiabatic evolution [2, 3]. A
particularly interesting set of phases is that of topological ordered phases, i.e. classes of ground states that exhibit
long-range entanglement. There are several different ways of setting up an equivalence of phases [1, 2, 4, 5], but
in general they are expected to give rise to the same equivalence relation. It is believed that topological order is a
property of states alone [5].While defining the equivalence relation fromphysical principles is a task in itself, the
characterisation of all possible equivalence classes is amuchmore subtle endeavour. Oneway of tackling this
problem is tofind invariants for the equivalence classes which can be computed locally andwhich allow one to
distinguish different phases.

A possible candidate for an invariant is the topological entanglement entropy (TEE) [5, 6], which is believed
to be a strong indicator of topological order. It ismotivated by systemswhere the ground state satisfies an area
law. In states with long-range entanglement, where this area law is expected to hold, the TEE is a correction of
order ( ) 1 to the vonNeumann entropy of the reduced densitymatrix of the ground state on a disk shaped
region. Furthermore, for the usual examples of anyonic systems, such as the toric codemodel [7] and the string-
netmodels [8], it is proportional to ( )log , where  is the total quantumdimension of themodular tensor
category describing the anyons. The proportionality factor depends on the geometry of the bipartition of the
system. The total quantumdimension itself characterises to some degree the anyonic nature of the local
excitations of the ground state, as it is given by the quantumdimensions da of the different types of anyons via

= å da a
2 2 [9]. A total quantumdimension that is larger than the number of distinct particles signifies non-

abelian anyons [10], since an anyon a is abelian if and only if da=1. The quantumdimension da of an anyon of
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type a can be understood as the asymptotic growth of theHilbert space that encodes n anyons a placed on a plane
and conditioned on global vacuum (or trivial charge) [9].

In the thermodynamic limit of topologically ordered systems the total quantumdimension can be related to
the Jones–Kosaki–Longo (JKL) index of certain inclusions of algebras of observables localised in cones [11].
Under precise (and natural) technical assumptions this index coincides with 2. The reason is that the JKL index
gives us away to compare the size of two (infinite dimensional!) algebras. Aswe shall see later, in our setting the
big algebra is related to the smaller one precisely through ‘charge transporters’, which in turn are in
correspondencewith the different types of anyons. This suggests that there should be a connection between the
JKL index and theTEE.However, it is a priorinot clear how these very different concepts are related.
Investigating this relation is one of themain goals of this paper.

In particular, we showwith the example of the toric code how a secret sharing scheme for classical
information between two parties naturally arises, and howwe can relate it to the inclusion of algebrasmentioned
above. The amount of classical information that can be hiddenwith this scheme is then given by the JKL index.
We compare this to a similar result infinite dimensions [12], where the TEEwas shown to coincidewith the
optimal achievable rate of a (different) secret sharing scheme via the irreducible correlation. Based on this we
argue that the JKL index is indeed closely related to the TEE. This picture is strengthened by the observation that
the index is in a sense optimal and that it is related to a relative entropy between the corresponding von
Neumann algebras. This is a generalisation of the relative entropy known from finite dimensional systems. Using
this relative entropy and its relation to the index, we can interpret the index as a bound on the amount of classical
information that can be encoded in the above secret sharing scheme.

1.1. Total quantumdimension and the TEE
An anyonmodel can be specified in terms of a set of particle types, togetherwith a set of fusion rules, certain
matrices describing the interchange of two anyons, i.e. the braiding, and tensors relating the different orders in
which one can fuse n anyons. These rules have to satisfy certain compatibility conditions.Mathematically, this
means an anyonmodel is described by amodular tensor category [13]. To each anyon type one can associate a
quantumdimension di. Oneway to interpret this dimension is as a ‘scaling factor’ describing the asymptotic
growth of the state space of n anyons of that type. It also describes the growth in ground-state degeneracy of a
model when it is placed on an n-torus [14]. The total quantumdimension is defined as = å di i

2 2, where the
sum is over all anyon types. In the language of tensor categories, 2 is called the (global) dimension of the
category [15].

Based on arguments involving topological quantumfield theory, Kitaev and Preskill [6] introduced away to
calculate the total quantumdimension: they defined an entropic quantity Stop

KP and argued that it is equal to

log . Levin andWen also defined a similar entropic quantity Stop
LW, and showed that = S logtop

LW 2 for so-called
quantumdoublemodels [5]. The difference of a factor of two between the two definitions can be attributed to
the different shapes of the regions used in their definition.

The TEE has become a key tool in the study of topological order because it allows for a fairly practical
approximation of the total quantumdimension: one only needs to solve themodel on a torus large enough that
the entropies for the various regions involved in its definition can be non-trivial [16]. Unfortunately the TEE
does suffer from some shortcomings: it is far from clear how to extend it to higher dimensional systems (see,
however [17] for recent progress) and situations involving symmetry protection [18] and it is also a deeply non-
trivial task to show that it is stable under quasiadiabatic equivalence (for some partial progress see [19]). Another
issue is that one can construct examples of states that appear to have a universal TEE term in their entanglement
entropy butwhich are topologically trivial. One such example is due to Bravyi (see section 2.3 of [20] for a
description).

1.2. Secret sharing
Secret sharing schemes can be seen as an instance of error correction codes. They are based on the idea that,
given a set of states of the system, one needs access to a certain ‘minimal’ set of observables on the system in order
to distinguish states in this set. This becomes particularly interesting when considering settings where
information should be encoded in such away that only observers, that can act on sufficiently large parts of the
system are able to decode the hidden information. Classical secret sharing schemeswhere discussed in [21] and
later generalised to the quantum setting in [22]. There are certain bounds on the amount of information that can
be encoded in such schemes [22, 23], that is, bounds on the size of the regions (also called shares) and the
minimal number required to decode the information, given the total system size.Here we consider secret
sharing schemes in the context of topologically ordered states.

For topologically ordered systems, such as the toric code, the ground states of theHamiltonian are locally
indistinguishable [4]. That is, with access to observables that act on a few sites of the systemonly, it is not possible

2
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to distinguish the ground states. In order to do so one needs observables that act non-locally, that is, on a part of
the system that is large compared to the system size. Note that this is exactly an error correction condition on the
ground state space: local perturbations of the ground state can be detected and afterwards corrected. Hence, we
can regard the ground state space as a quantum code, where the resulting size of the code space is determined by
the total quantumdimension  of the anyonmodel and the genus of themanifold inwhich the system is
embedded [7].

In the thermodynamic limit, however, locally indistinguishable states converge to the same state (in the
weak*-topology), since their expectation values on local operators coincide as soon as the system size is big
enough.Hence in that settingwe cannot directly appeal to the degeneracy of the ground state space.
Nevertheless, it should still be possible to use the topological charges to secretly share information between two
parties in the system, if one restricts the corresponding regions inwhich the excitations are distributed
accordingly. The intuition for this comes from the observation that in two dimensions excitations above the
ground state always occur in conjugate pairs at the endpoints of a string, where the excitations do not depend on
the exact geometry of the string but only on its endpoints. As long as one can ‘keep’ these endpoints ‘away’ from a
possiblymalicious third party by restricting their observables it should be impossible for them to determine
which pair of excitationwas created. The expected size of the code space is then again given by the total quantum
dimension  of the anyonmodel. This forms the basis for our secret sharing scheme in the thermodynamic
limit.

1.3. Content of this work
In this paper we try to connect the different approaches to obtain the total quantumdimension  and related
quantities. In particular, we advocate an (operator) algebraic way to obtain the total quantumdimension ,
whichwill allow for generalisations to different dimensions and symmetry protected cases. In addition, we
interpret  in terms of a information hiding task,making a direct connection between the TEE and the JKL
index possible. Althoughwe do not claim that our approach solves the problemswith the TEEmentioned above,
we believe it offers additional insight to the nature of topological order. In particular, as we formulate  in terms
of observable algebras it is easier to anticipate a proof of the stability of the index under adiabatic equivalence and
to extend it tomore exotic scenarios. There aremanyways to think about , some ofwhich are outlined in
figure 1. Thatfigure also shows howourworkfits into the big picture.

Wewill start in section 2with explaining our intuition about the index at afinite dimensional variant, discuss
drawbacks and problems that arise in the context offinite system sizes, and illustrate our intuitionwith the
example of a chain of Fibonacci anyons. In section 3we recall the necessary notions and properties of two

Figure 1.An anyonmodel has a total quantumdimension 2. The existence of anyons inmodels is related to long-range
entanglement in the system. By judiciously choosing combinations of entanglement entropies of distinct regions, the entanglement
due to topological order can be isolated. This leads to topological entanglement entropies Stop

KL and Stop
LW, the differences beingmainly

due to the choice of regions. These entropies are argued to be related to the total quantumdimension 2 [5, 6]. The latter can be
obtained as a Jones–Kosaki–Longo index associated to cone algebras [11]. In this paper we concentrate on the dashed arrows, arguing
that by reinterpreting the topological entropy in terms of an information hiding task [12], it can be naturally connected to the cone
index. The log of the index tells us something about howmuch informationwe can hide, and the index theory provides uswith a
channel  which describes the limited powers of an adversary Eve. Finally,  is related to the ground space degeneracy as a function of
the genus of the surface onwhich themodel is defined [14].

3
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dimensionalmodels in the thermodynamic limit that wewant to consider and discuss how the JKL index
appears in this context. Section 4 then is devoted to constructing a secret sharing scheme in the example of the
toric code on the infinite plane and to explaining how it relates to the index. Furthermore we discuss how this is
connected to recent work [12], where for finite two-dimensional lattice systems it was shown that there is a
connection between the TEE and the irreducible correlation of certain secret sharing schemes.We also discuss
the role of superselection sectors in our construction.

One of themain contributions of ourwork is discussed in section 5. Therewe illustrate how index theory can
be used to study the secret sharing scheme in the context of quantum information theory. In particular, one gets
a quantum channel ‘for free’, and it is possible to define a relative entropy for certain algebras. Using this relative
entropy the (logarithmof the) index can be recovered, andwe see how this provides uswith bounds on the
amount of information that can be hidden in the secret sharing scheme. Aswe aremainlyworking in an
algebraic setting, in section 6we shed some light on howone can reformulate the picture of secret sharing
schemes in terms of private subsystems of a channel between the corresponding algebras of observables, and give
some of the details for the example of the toric code. Finally we remark on the stability of the index under local
perturbations.

The goal of this work is to focus on the physical ideas and intuition behind our constructions.Many parts can
bemademathematically rigorous, but this requires substantialmathematicalmachinery, in particular from the
theory of vonNeumann algebras.We refer to the relevant literature whenever this is the case. However, sincewe
work in an operator-algebraic framework, some basic terminology of thisfield is unavoidable. The appendix
contains amotivation onwhywe use this language to describe systems in the thermodynamic limit, as well as an
introduction to the basic notions that we use in the course of this work.

2. Finite dimensions

To explain themain idea behind our index approach, wefirst consider afinite-dimensional variant. Although
themain idea can bemade clear in this case, it is a little surprising that a careful algebraic analysis seems
infeasible, precisely because of thefinite dimensionality.We return to this point later. Although the finite
dimensional case is perhaps somewhat naive in light of these limitations, it nevertheless provides some intuition
for the approachwe take in the thermodynamic limit.

2.1.Motivation: a secret sharing task
The results in this section are not completely rigorous, but are intended asmotivation for the (rigorous!) results
in the thermodynamic limit, whichwe describe later. In the finite-dimensional ‘toymodel’, the set-up is as
follows. The system, defined on a lattice L, is divided into three partsA,B, andE, like infigure 2. Alice and Bob
each control disjoint parts of the system, and Eve (perhaps some government agency) controls the rest. Suppose
the system is initially in the state Wñ∣ . Alice and Bob have the task of storing a classicalmessage in Wñ∣ ; theywant
to use the system to set up something akin to a quantum I2P networkwhichwould be anonymous and immune
from censorship. To achieve this task they are allowed to do any joint quantumoperation on their respective
regionsA andB. In this case one can easily deduce that the configuration space for their anonymous and secret
messages is given by

Wñ Ì≔ { ∣ ∣ ( ) } U U ABspan supp .AB AB AB

However, in achieving their information-hiding goal there is no reasonwe should restrict Alice’s and Bob’s
operations to act only onAB. Indeed, they are allowed to touch sites belonging to Eve, as long as Eve does not find
out. Clearly, in this finite-dimensional setting, this will be help if Eve is allowed to perform any bona fide

Figure 2.The system is partitioned into three parts: regions A andB controlled byAlice and Bob, and the rest (E), controlled by Eve.
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quantumoperation on her part of the system.However, if for some reason Eve’s capabilities are restricted (e.g.
perhaps government funding for building spying networks has been cut), there is a possibility for Alice and Bob
to exploit this limitation and potentially hidemore information in Wñ∣ . In this paperwe postulate that Eve should
only be able to do localmeasurements. Here ‘local’means small compared to the system size, and compared to
the regions that Alice and Bob control5. In particular, we disallowmeasurements that act on all sites on a ring
around either Alice’s or Bob’s region (seefigure 3). It will become clear from the example given belowwhywe
impose this restriction. Eve can do an unlimited number of such operations in succession, so long as the resulting
operation does not encircleA orB6.

Alice and Bob can do any joint operation on their part of the system and in that way can store a classical or
quantummessage that is inaccessible to Eve. Given that Eve has limited eavesdropping capabilities, the question
is if this allowsAlice and Bob to encode additional signals into Wñ∣ . This is the problem thatwewant to answer.

To this end, consider the space AB
 generated by states that Eve cannot distinguish from Wñ∣ by the operations at

her disposal. If we denoteE for the set of operations that Eve is allowed to perform, it can be defined as

W ñ áW W ñ = áW Wñ " Î≔ {∣ ∣ ∣ ∣ ∣ ∣ } ( ) O O Ospan , . 1AB ABE ABE E ABE E E E


Note that this is precisely the statement that the space AB
 forms an error correction code that corrects the errors

caused by Eve’s observablesE [24]. Clearly theHilbert space AB is contained in AB
 . Note that the condition

on the expectation values above is nonlinear in the vectors of the form Wñ∣UABE , so that it is not quite natural to
take the linear span. For themodels we have inmind, however, this is doesmake sense. A typical feature of these
models is that the states corresponding to anyons of distinct type cannot be converted into each other with local
operations (if the compensating anyonic excitations, which are necessarily there because of charge conservation,
are localised far away). In other words, the anyons belong to different superselection sectors. Taking a
superposition of such states, one sees that for local observablesOE the cross terms vanishwhen calculating the
expectation value. This is essentially why this somewhat naive approachworks inmodels such as the toric code.

We nowhave enough information to explain the calculation of the index invariant. This is given by the ratio
of the dimensions of AB and AB

 of Alice’s and Bob’s regions:

[ ] ≔ ( ) 



:

dim

dim
. 2AB AB

AB

AB

 

Wewill later consider a different (and less naive) definition for this index in an operator-algebraic setting. For
nowwenote that an equivalent way to express the index in this toymodel is as a difference of entropies: here
Alice and Bob are comparing the rates of twomaximallymixed signal ensembles, one built from theHilbert
space AB, namely r ≔  dimAB AB and the one built from AB

 , namely r ≔  dimAB AB
 :

r r-[ ] ≔ ( ) ( )  S Slog : .AB AB AB AB

At this point we illustrate the task above by an example. Consider Kitaev’s toric code [7]. In thismodel, one can
create pairs of (anyonic) excitations by actingwith path operators on a ground state. These paths are either
drawn on the lattice or on the dual lattice, or a combination of the two.Using such a path operator Fξ, Alice and
Bob can create a pair of excitations, where one excitation is in Alice’s part, while the other one belongs to Bob.

Figure 3.Alice andBob control the regionsA andB, but in addition have access to a regionC, ‘bridging’ their parts. Eve on her part has
access to a disjoint region E, small compared to the system size. Alice and Bob can change their choice of regionC, according to Eve’s
choice of the region E.

5
Perhaps the best analogy here is that Alice and Bob control separate nation-size states that cannot be completely encircled by an

antagonistic spying nation.
6
Note that, in thefinite case, the setE of Eve’s observables does not obviously form an algebra.
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The claim is that Eve, with the operations at her disposal, cannot detect that such a pair of excitations was created.
Indeed, it is well known that the state Wñx∣F , where Wñ∣ is a ground state, only depends on the endpoints of ξ.
Hence, since Eve can only do localmeasurements, one can always choose a path that avoids the support of Eve’s
measurement, inwhich case it is clear that Eve cannot detect it. Note that the onlyway to detect the excitations is
tomeasure the total charge in a region bymeasuring the path operator corresponding to aWilson loop enclosing
the region. This is precisely howAlice andBob can detect the presence of a charge in their respective parts of the
system. Since in the toric code charge addition is donemodulo two, and there are two fundamental charges
(electric andmagnetic), they have access to four times asmany orthogonal states in AB

 relative to AB to hide
information fromEve. Thus the index for this case is 4, which is the total quantumdimension for the toric code.
Since Alice andBob can onlymeasure charges locally in their region, relative phases between the different
charged states get lost uponmeasurement. Hence they can only retrieve four classical bits of information.

2.2. Problemswith this approach
There are some drawbacks to this approach. Theymainly stem from two causes: (i) the index quantity is not
obviously independent of the regionsA andB; and (ii) there is no clear algebraic structure underlying the set of
allowed operations for Eve.Her local operations do generate an algebra, but this algebra is too big: it contains all
operations on Eve’s region. In some cases there is a natural choice of algebra: for example in the toric code one
can choose the abelian algebra generated by all star and plaquette operators acting onE. However, in general it
seems to be difficult to get a good handle on Eve’s operations, and consequently, it is difficult tofind outwhat all
the allowed operations for Alice and Bob are.We argue below that these difficulties can be overcome by passing
to the thermodynamic limit. This is the starting point of our analysis.

The naive analysis here can be refined by using techniques developed byHaah [25]. He considers ground
states of local commuting projectionHamiltonians forwhich examples includeKitaev’s toric code and the
Levin–Wenmodels. Hismain goal is to define an invariant for suchHamiltonians that is stable with respect to
local perturbations that do not close the gap. Part of his construction is to identify the different types of (anyonic)
excitations in themodel. As discussed above, such excitations are precisely what allowAlice andBob to share
classical information. A key ingredient in his construction are algebras associated to annuli. These algebras are
obtained by looking at the observables supported on the annulus, and dividing out the observables that
commutewith all terms of theHamiltonian supported on the annulus, i.e., those operators that do not create
excitations in the annulus. This quotient algebra can then be decomposed into smaller algebras using projections
which correspond to the different particle types. This construction is—in a sense—dual to ours outlined above.
His procedure allows one to detect a single charge sitting inside the annulus. Since the total charge should be zero
on the ground state space, the compensating charge can be thought of as sitting inside a different annulus. By
growing (and deforming) the annuli on the outside, we canmake themfill the entire space outside of the parts in
the interior. Hence, we again have divided the system into three regions—Alice, Bob and Eve. The only
difference is then that we are interested inwhich information can be hidden fromEve (i.e., which are invisible to
her), whileHaah considers all the charges that can be detected inside the annuli. These two notions are clearly
related, butwewill not pursue this connection any further in this paper.

2.3. The Fibonacci chain
Beforewe discuss the thermodynamic limit, we consider another examplewhich sheds some light on the
relation to the algebraic properties of the anyons (for example, given as amodular tensor category, see [13]). For
concreteness, suppose thatwe have n anyons, fusing to the vacuum.A basis for such states can be conveniently
represented in terms of fusion trees. The key point then is to define the appropriate notions of a local operation
for Alice, Bob and Eve, given that they each control afixed set of the anyons. To this endwe follow the approach
of [26]. Of the n anyons, Alice (Bob) controls a group of ( )n nA B anyons, Eve the rest. These groups of anyons are
assumed to have total charge given by labels r r,A B and rE. The local operations are then precisely those
operations on the respective groups of anyons that leave this total charge unchanged.We can then construct the
spaces AB

 and AB.
As an examplewe consider the Fibonaccimodel [27]with anyons t1, and assume that r r r= = = 1A B E .

TheHilbert space of the system is also called the fusion space. Its states describe the different ways that the anyons
can fuse. In the Fibonacci chain there is only one non-trivial fusion rule: t t tÄ = Å1 . That is, if we fuse two
τ anyons, we either get a τ anyon again, or the trivial anyon 1. A basis for theHilbert space of the system can then
be obtained by labelling all different ways n distinct τ anyons can fuse to the trivial anyon. This can be done
conveniently with the help of fusion trees, which label the outcome of the fusion operations. Infigure 4we
illustrated this with an example of a handful of anyons. In this example, the two left-most anyons fuse to a τ,
while the fourth andfifth anyon fuse to the trivial charge. The order inwhich the fusion is performed should be
the same for all basis elements, but is otherwise arbitrary. Choosing a different order amounts to a basis
transformation [13].
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Now choose a fusion tree where r r r= = = 1A B E , that is, all Alice’s anyons fuse to the trivial anyon, and
the same is true for Bob and Eve.Write Wñ∣ for the corresponding fusion state. If Alice and Bob act with local
operations on the state Wñ∣ , they cannot change the total charge in their respective regions. That is, they can only
make states such that Alice’s anyons fuse to 1, and the same is true for Bob. Byfinding all fusion trees subject to
these constraints wefind the space AB.

In contrast, if they are allowed to do non-local operations aswell, there are additional possibilities: they can
collude andmake states such that the total charge inAlice’s region and that in Bob’s region is τ, but in such away
that these two τʼs fuse to 1, so that the total charge of the system remains trivial. They can do this without
changing the total charge of Eve (because two τʼs can fuse to 1), so she is not able to detect this. This gives a bigger
space AB

 .
Finding the dimensions of AB and AB

 now reduces to the straightforward combinatorial task of counting
all admissible fusion trees. If the number of anyons nA and nB tend to infinity, the ratio of the dimensions of these
spaces tends to j+1 2, wherej is the golden ratio. This is precisely the total quantumdimension of the
Fibonaccimodel. Of course, this is not a useful way tofind the total quantumdimension, since this immediately
follows from the given data.However, by considering this abstract setting it does shedmore light on the secret
sharing task, giving support to the definition in equation (2).

These different examples show that the essential step is tofind the appropriate notion of what a local
operation should be, emphasising that the algebraic point of view is a natural one.

3. Thermodynamic limit

To obtain a clear-cut, purely algebraic construction of the communication task described in the previous section
we have to go to the thermodynamic limit. Instead of keeping track of the system sizeN, we start with infinitely
many sites from the outset [28, 29]. The sites are labelled by a countable set B. Typically, in themodels we are
interested in B is the set of edges (bonds) between nearest neighbours in a 2 lattice or of a honeycomb lattice.
For simplicity we assume that the local dimension is the same d for each site, but this can easily be generalised.

This setting ismost conveniently described in the operator-algebraic framework, where the observables of
the system aremodelled by aC*-algebra A. This can be thought of as the algebra of all observables (or,more
general, operations) that can be approximated arbitrarily well (in norm) by observables that only act on afinite
number of sites.We refer to appendix for an overview of themain definitions.

The results in this section are not new. Rather, we recall themain objects of interest in the operator-algebraic
approach to topological phases, with a view towards our intended applications. Technical details can be found
in [11, 30].

3.1. Alice, Bob and Eve again
Wecan divide the system into three parts again. Alice and Bob both control (disjoint) cone-like regions (see
figure 5), and Eve controls the complement.Wewrite LE for the set of all sites that Eve controls, and similarly LA

and LB for Alice’s andBob’s cones. The corresponding observable algebras are denoted by A L( )i . These are the
algebras of all observables that can be approximated arbitrarily well in normby observables acting on only
finitelymany sites inside Li. The specific shape of the cones is not that important, as long as they are without
holes, disjoint, and extend to infinity. It will become clear belowwhy this choice of regions is natural.

Figure 4.Consider a chain of n τ-anyons, grouped into three groups. Alice, Bob control the left and right group, Eve the ones in the
middle. Since the fusion rules are t t tÄ = Å1 , these n anyons can fuse to the trivial charge 1. The states describing these different
configurations span a vector space: the fusion space. A basis can be described by considering fusion trees as above. For example, the two
leftmost τ anyons fuse to τ, while the two in themiddle fuse to 1. Fusing the anyons in a different order would give a different basis,
which is related to the old one by a unitary transformation.
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Wenow suppose that A is represented on someHilbert space by an irreducible representation p0, that is
Ap ( )0 is aC*-subalgebra ofB( ) .Which representation to use (in general, there aremany inequivalent choices)

is dictated by physical principles; in our case it will come froma pure, translation invariant ground state w0 via
theGNS construction (see appendix for a short introduction).Motivated by the discussion abovewe postulate
that Alice and Bob can perform every operation that commutes with all of Eve’s local operations, hence this is

given by Ap L ¢≔ ( ( ))AB E0
 . Recall that the prime denotes the commutant so thatAB

 is the set of all bounded
operators inB( ) that commutewith each p ( )A0 , AÎ L( )A E . On the other handwe can consider all
operations that Alice can implement on the cone she controls. These are given by the vonNeumann algebra

Ap L ≔ ( ( ))A A0 . Taking the double commutant is natural here: it ensures that all the relevant spectral
projections are in the algebra [28].We defineB similarly. The operations Alice and Bob can do together when
only acting on their cones is then ≔  AB A B, where thewedge denotes the vonNeumann algebra
generated by the two algebras. Note that by locality, A AÈp pL L Ì L ¢( ( )) ( ( ))A B E0 0 . Taking commutants twice

it follows thatwe have an inclusion Ì AB AB
 of vonNeumann algebras. The algebras are in fact factors, if one

assumes that the ground state representation p0 is irreducible (equivalently, w0 is a pure state), and
Ç¢ =  IAB AB

 [11, Lemma 3.2]. Such an inclusion of vonNeumann algebras is called an irreducible
subfactor.

3.2. JKL index
Weare interested in the question of which extra operations Alice andBob can perform. These extra operations

are precisely those that are inAB
 but not inAB. Thereforewewould like to knowhowmuch ‘bigger’ the

algebraAB
 is compared toAB. Oneway inwhich this can be quantified is by the Jones [31] (or rather, in our

case, Kosaki–Longo [32]) index [ ] :AB AB
 of inclusions of vonNeumann algebras. It can be thought of as a

generalisation of the index of a subgroupH in a groupG. For our purposes, the technical details and properties
behind this index (a subject on its own in operator algebra)play only aminor role. Rather, in the sequel wewill
focus on someproperties that follow from the general theory, in particular the existence of a particular quantum

channel and the Pimsner–Popa basis, a way towrite elements ofAB
 as a linear combination of afinite number

of ‘basis’ elements with coefficients in the smaller algebraAB.
If we assume two technical assumptions, the approximate split property (in [33] this property was referred to

as the distal split property) andHaag duality [33, 34], it can be shown that the index does not decrease if one
enlarges the cones. Haag duality (in a representation p0) is a property of the commutants of cone algebras. In
particular, it says that ifΛ is a cone, A Ap pL ¢ = L ( ( )) ( ( ))0 0

c , where A L( )c is the algebra generated by all local
observables outside of the cone. One inclusion follows easily from locality, but the other inclusion is non-trivial,
andmay fail in general.Wewill not give a precise definition here of the approximate split property (see [33] for
the details), but in the present setting it amounts to saying that themap ÄAB A B , with Î A A and
Î B B extends to an isomorphism  Ǟ  AB A B of vonNeumann algebras, ifA andB are two separated

cones.When one thinks offinite dimensional systems this looks like a trivial statement, but in the
thermodynamic limit it is not, and this property is related to deep operator-algebraic questions. For example,
Longo used the split property in his solution to the factorial Stone-Weierstrass conjecture, which at the timewas
open for a long time [35]. One consequence is that if A BÌ is an inclusion ofC*-algebras, then any factor state
(in the sense that its GNS representation is a factor) of A extends to a factor state ofB. It also has been important
in understanding entanglement properties in algebraic quantum field theory [36].

In general, we expect the index to be independent of the choice of cones (as long as their opening angles are
big enough). In the next subsection it will become clear that the inclusion Ì AB AB

 is related to the different
charges of themodel, and to operators thatmove them around. Keeping this inmind, independence of the index

Figure 5.Alice andBob each control infinite disjoint cone-like regions LA and LB , Eve controls the rest of the system.
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on the choice of cones can be interpreted physically by saying that excitations can be localisedwell enough. That
is, as long as the opening angle of the cone is not too small, each anyon can be localised in such a cone (regardless
of the orientation of the cone). This can be shown explicitly for the toric code [11].

Note that the index is a property of the state, just like TEE. This is perhaps not apparent at first sight, but one
should keep inmind that the respective algebras are taken in a specific representation p0. This representation, in
turn, usually is obtained from a state (in our case, generally a translation invariant ground state), and different
states in general lead to different algebras (and possibly different values for the index).

3.3. Superselection sectors
In thefinite-dimensional toymodel we observed that the extra power that Alice and Bob have at their disposal is
due to the existence of anyonic excitations which live in different superselection sectors. This is also true in the
thermodynamic limit, where there is an elegant characterisation of such sectors. There they appear because there
are inequivalent irreducible representations of A. This is equivalent to saying that vector states corresponding to
distinct representations are not superposable, i.e. a relative phase between such vectors cannot be observedwith
any observable in A [37].

Not all representations of A are physically relevant. In themodels we are interested in, charges are created by
applying string-like operators. Bymoving one end of the string to infinity, we can obtain a state with a single
charge. In topologically orderedmodels states created by such string-like operators only depend on the
endpoints of the string.Hence the direction inwhich the charge ismoved to infinity is not observable. In fact, if
we restrict to operations outside an arbitrary cone containing the endpoint of the string, the charge cannot be
detected at all and the system appears to be in the translationally invariant ground state. In other words, the
charges can be localised in cones. Another natural condition is that we should be able tomove the charges
around.

On the level of representationsπ, these features are encoded by demanding that they satisfy the following
criterion for all conesΛ:

A Ap pL @ L( ) ( ) ( )  . 30
c c

Herewith ¸wemean that we restrict the representation to the subalgebra A L( )c . That is, the criterion demands
that if we restrict the representationsπ and p0 to observables outside of a coneΛ, they become unitarily
equivalent. Note that this restriction is important: for example, the representations p0 andπ are not equivalent if
π describes a single anyonic excitation. That is, in such case there is no unitaryV such that p p=( ) ( ) *A V A V0

for all AÎA , but if we only require this to hold for AÎ L( )A c , such a unitary does exist. In algebraic quantum
field theory a similar criterion is used, and it is known that (under some additional technical assumptions),
studying these equivalence classes of representations allows one tofind all relevant properties of the charges in
the theory, for example their statistics and fusion rules [37]. Using similar ideas this can also be done for
quantum latticemodels, such as Kitaev’s quantumdouble [30, 34].

Howdoes this relate to the choice of the algebrasAB andAB
 ? As in thefinite dimensional setting, the idea

is that Alice and Bob each control their own regions. The algebraAB describes the local operations they can
perform. For example, it allows themmeasure the total charge in their region ormove charges around. But it
does not give them the ability tomove a charge fromone cone to the other, or equivalently, create a pair of
conjugate charges (one in each cone). One can however show that charge transporters V that canmove a charge
fromone cone into the other are contained inAB

 . This shows thatAB
 is bigger thanAB, and it is precisely the

observation that it contains the charge transporters that will allow us to connect it to the quantumdimension.

4. Secret sharing

Wenowhave the technical tools to describe a version of the quantum information task of section 2 in the
thermodynamic limit. In particular, wewill describe howwe can use charges localised in cones to store data that
is invisible to Eve, using the presence of superselection sectors, and argue howour procedure is related to
the TEE.

In section 2we described how an information hiding-task can be implemented for systems on afinite lattice
in two dimensions,motivating our index approach. Although the naivemethod thereworks, this finite
dimensional description suffers fromdrawbacks, such as the index described there notmanifestly being
independent of the regionsA andB and that the set of allowed operations for Eve not carrying a nice algebraic
structure. Herewe describe an analogous setting in the thermodynamic limit of the toric code on the plane and
show that it overcomes both drawbacks, while still resulting in an operationally sensible picture.

As in thefinite dimensional variant, the task for Alice andBob is to share information encoded in some
quantum state on thewhole system in such away that Eve cannot access this informationwith any local
measurement on her system. Thismeans that Alice and Bob should be capable of reconstructing the shared
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information encoded in the quantum state just by performing local operations on their respective part of the
system,while Eve cannot cannot access this information by using operations on her part of the system7. This is
exactly the situation described by secret sharing schemes as treated in [23]. In such schemes the parts of the
system that are capable of reconstructing the shared information solely by performing local operations are
usually referred to as authorised, whereas those that cannot are called unauthorised. In our setting Alice and Bob
will comprise the authorised parts of the system and Eve is unauthorised. Secret sharing schemes are usually
defined for systems described by afinite dimensional Hilbert space, where the partition of the system into
subsystems is given by a tensor product structure. In the thermodynamic limit of the toric code the system’s
Hilbert space is clearly infinite dimensional and thewe do not have an obvious partition into tensor factors. In
fact, one can show that the ground stateHilbert space does not factor [33] as ÄL L  c , where L is theHilbert
space related to a cone8. In [23] it was shown, however, that there exists a characterisation of secret sharing
schemes by error correction conditions.Wewill not generalise this secret sharing scheme to infinite dimensions,
butwill use this characterisation to illustrate that we indeed find a secret sharing scheme in the thermodynamic
limit of the toric code. This ismotivated by the observation that error correction schemes can be formulated in
terms of operators [38] and,more generally, for vonNeumann algebras [39].

Wewill briefly review the authorised and unauthorised sets comprising a secret sharing scheme infinite
dimensions. Given a subspace Ì  of some n-partiteHilbert space , the authorised sets Ì ¼{ }A n1, , are
characterised by the condition that  corrects errors on their complementsAc. That is, for all f y Î , and for
all BÎ ( )E Ac it holds that f f y yá ñ = á ñE E, , . Unauthorised sets Ì ¼{ }U n1, , are characterised by the
condition that  corrects errors on them, i.e. f f y yá ñ = á ñF F, , for all f y Î , and BÎ ( )F U . For such
pure state quantum secret sharing schemes it is easy to see that the no-cloning theorem implies that the
unauthorised setsmust be the complements of authorised sets and vice versa [23].

The settingwe are considering here corresponds to the casewhere the shared information is classical. That is,
the set of code states  consists of a choice of orthonormal vectors y{ }i . Then the conditions for unauthorised
sets remain the same but the authorised setsA are characterised by demanding that for each pair of indices i j,
and each operator BÎ ( )E Ac it holds y y d y yá ñ = á ñE E, ,i j i j j j, [23]. Here it is no longer true that
unauthorised sets have to be complements of authorised sets, for classical information can be cloned. Figure 6
showswhat a protocol implementing a secret sharing scheme for classical information looks like. In the
following sectionwe describe howwe can set up a secret sharing scheme in the thermodynamic limit of the toric
code, specify a set of states which serve as code states, and check the above conditions.

4.1. The use of cones
Wenow come back to the thermodynamic limit and start by considering two disjoint cones LA and LB which are
separated sufficiently far enough from each other9. For concreteness we describe the example of the toric code,
butwe believe that themethod can be generalised to similarmodels; in particular Kitaev’s quantumdouble
models for abelian groupsG can be handled directly by using results from [34]. These cones represent the
regions towhichAlice and Bob have access. The complement LE of the union of these two cones is considered to
be controlled by a (possiblymalicious) third party Eve. Eve cannot access LA or LB.With the notations
introduced in section 3we denote the vonNeumann algebras of observables localised in the cones LA and LB by
A andB. The vonNeumann algebra generated by the local observables on Eve’s part is written asE , while
the algebra of observables commutingwithE is denotedAB

 . Herewe areworking in the translation invariant

Figure 6.Example of a protocol for a secret sharing scheme: a senderX chooses a state Wi from the set of code states
W = W W W W{ }, , ,X Z Y0 and sends it to the system consisting of authorised shares Alice (A) and (B) and unauthorised share Eve (E).
The shares then operate locally on their part of the system to detect which state they received. The authorised shares Alice and Bobwill
be able to recover the information i ofwhich state they received, whereas Evewill always get the same answer (0)nomatter which state
was sent.

7
If we speak of ‘local’we alwaysmean that the observable acts onfinitelymany particles on the lattice. Furthermore, in this context ‘local’

additionallymeans that the observable is localised in one of the cones.
8
Althoughwe do not claim that this is the case here, this touches upon amore fundamental property of infinite dimensional systems.

Recently Slofstra has found a counterexample to Tsirelson’s problem [60], by showing that there are commuting operatormodels for two-
party correlations that are not equivalent to a tensor productmodel.
9
In [33] this is defined rigorously for the toric code, and in [11] this is extended tomore generalmodels.
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ground state representation of A, that is, the cyclic representation p0 associated to the (unique) translation
invariant ground state w0 of the toric code, on aHilbert space, with w0 represented as a unit vector W Î .

We are interested inways to create states that Alice and Bob can distinguish, but Eve cannot. Of course, if
Alice and Bob have access to both LA and LB, they can just store their information by actingwith local operators
in one (or both) of the cones, and Evewill not be able to detect this. This scenario in itself is not that interesting,
sowe ask the questionwhat they can do if they in addition have access to operations that are not generated by the
local observables in LA or LB, but nevertheless invisible to Eve. Potentially, this gives themmore power
compared to the ‘baseline’ scenario of local operations on their cones, and it are these additional capabilities that
wewant to investigate. The idea is to create a pair of charges, with one end of the pair in each cone. Sincewe are
interested in the additional power of Alice and Bob, we can disregard localmodifications of these states that can
be obtained by actingwith observables inA orB. Such operations includemoving the charge around in the
cone, or introducing pairs of charge and conjugate chargewithin a cone.Wewill come back to this point after we
introduce themain idea inmore detail.

Note that the operations that Alice and Bob can perform in their respective cones commutewith the
observables Eve has at hand. This is the locality condition that is already built into the construction of the
systems.Wewill show thatwe can use the charge transportersV V,X Z andVY that create pairs of excitations
distributed over the cones LA and LB to construct states that the authorised parts can distinguish. They are
unitaries on theHilbert space and one can think of them as creating correlations between the cones when
applied to the ground state vectorΩ. Even though they are not localised in ÈL LA B, they still commutewith all
of Eve’s observables, and hence are elements ofAB

 . The reason is that they can be obtained asweak operator
limits of path operators. That is, one chooses a site in each cone, and connects themwith a path (see figure 7).
Then, as n grows, we let the path go to infinity (in the sense that it will avoid anyfinite subset of LE eventually,
keeping the endpoints fixed). The corresponding path operators then converge to the charge transporter in the
weak-operator topology. As a result the charge transporters commutewith all of Eve’s local observables, and
hence are contained inAB

 [30]. From this it already follows that if Î E E is any operator on Eve’s part of the
system, its expectation values in the states W W WV V V, ,X Z Y andΩ coincide. That is, consider for example the
state WVi with =i X Z, orY, then á W Wñ = áW Wñ*V EV V EV, ,i i i i . Since Î Vi AB

 wehave =[ ]V E, 0i , and
therefore

á W Wñ = áW Wñ =V EV E i X Z Y, , , , , .i i

Hence Eve cannot distinguish between the states in W W W W≔ { } V V V, , ,X Z Y by acting with local operators
on her system.On the other handAlice and Bob can distinguish these states by acting locally on their cones: the
construction of the charge transporters includes a specification of a site in each cone and the transporters create a
pair of conjugate excitations from the ground states at these sites. Alice and Bob can now locallymeasure the flux
through a (Wilson) loop around the respective sites to determine which excitation orwhether at all was created.
In otherwords, they do a chargemeasurement in their respective cones. The position of the site inside the cone
itself is not so important here (that is whywe did not specify it further) since there are always unitaries with
support in either of the cones that canmove the excitation around.

Thismeans, that Alice and Bob each possess a POVMthat allows them to distinguish the states in  . The
choice of this POVM is not unique, since it depends on the loops around the site at which the excitation created
byVi is localised. It can in principle be any loop of any size as long it surrounds the excitation. Theflux
measurement corresponds to a projection on the enclosed area onto the excitation onewants tomeasure

Figure 7.The cones LA and LB are the regions Alice and Bob have access to, and the remainder of the system LE is controlled by Eve.
The charge transporters between LA and LB are constructed from sequences of ribbonswith fixed endpoints (one in each cone) such
that with growing length the ribbons avoids finite sets in LE . The solid line indicates an infinite ribbon that stretches out to infinity and
whichwe can think of representing a charge transporter.
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(detailed descriptions of these projections can be found in [7, 40]). The POVMelements then simply consist of
the projections on the different excitations that can occur, given that the loop isfixed.

The above construction can be extended a bit. In the end, Alice and Bob are only interested in the total charge
in their region. Actingwith local operators in either of the conesmightmove the existing charge around, or
create pairs of conjugate charges, but the total charge does not change.Hence, instead of just the states WVi , we
can consider the four spaces W VAB i (or their closure). To Eve, all these states look the same, since Ì AB E,
but Alice and Bob can in principle distinguish the four subspaces. Note that this is less practical, since the
location of the charge of interest is not known, andAlice and Bob have tomake sure their chargemeasurements
encompass a big enough region. The projections thatmeasure the total charge in LA or LB are both inAB, but
these operations clearly are not local anymore. For simplicity, we restrict to the set  of four states, and ignore
the localmodifications in the cones: the corresponding statements for that case can be obtained
straightforwardly10.

If we go back to thefinite-dimensional description of secret sharing schemeswhere theHilbert space is
described by a tensor product of nHilbert spaces, it can be easily checked that for a set Ì ¼{ }A n1, , to be
authorisedwith respect to a code space  is equivalent to requiring the existence of a POVM { }Ei acting onA

such that y d y=Ei j i j j, where y Î j . It is necessary that the POVMelements commutewith the operators
acting on the complement ofA. Itmakes sense then to rephrase the condition onA to be authorised to the
following: elements E that commutewith the observablesB( )A onA such that it holds that y yá ñ =E, 0i j if
¹i j. Note that this is equivalent to the original definition, since theHilbert space decomposes as a tensor

product of the authorised partA and its complementAc.
In the infinite dimensional settingwe do not necessarily have a decomposition of theHilbert space into

tensor products. But the algebraic view still allows for the characterisation of authorised sets. That is, we say that
a subalgebra  of our system’s algebra Ap ( )0 is authorisedwith respect to the classical code space  if for all
Î ¢E and all y y Î ,i j with ¹i j it holds that y yá ñ =E, 0i j .
We can show that in our example of the toric code this is true for bothAlice’s and Bob’s observablesA and

B. In order to prove this it is crucial to understandwhat the structure of the commutants ¢A and ¢B is. In the
followingwe only consider Alice’s observablesA, since the case for Bob can be understood analogously. In fact
it was shown [33] that the vonNeumann algebraA satisfiesHaag duality, that is, = ¢ A Ac. Hence the
commutant ¢A is exactly given by the observablesBE on the complement =A BEc of Alice’s cone. In the
thermodynamic limit, this statement is non-trivial, the reason being that the algebrasBE andA do not live on
different tensor factors of the underlyingHilbert space.Moreover, it is in fact false for the algebraAB (in the
sense that ¢ ¹ =  AB AB Ec ) of observables localised in both cones LA and LB, which is thewhole reason that

our constructionworks. In that caseAB is properly included in theAB
 , which as we recall is the algebra of

observables that commutewith all of Eve’s observables. HenceHaag duality for cone algebras and its failure for
the algebraAB are important for our setting. Evenmore, the identification of Alice’s and Bob’s part of the
system, LA and LB, as authorised sets by just the requirement that  corrects errors on their complements LA

c

and LB
c stillmakes sense.

Now let y f Î , be distinct states and Î ¢ = E A BE.Without loss of generality we can assume thatE is a
product of ribbon operators FB and FE inB andE , since the linear span of products of such forms a strongly
dense subalgebra ofAB [33]. Furthermore, recall that y = WVi and f = WVj for some ¹i j, including the

possibility that =V I0 . Hence y fá ñ = áW Wñ*E V F F V, , i E B j . Recall also that the action of the charge
transportersVk on the ground stateΩ create an excitation at some site Î LsB B and its conjugate at some site

Î LsA A. Thus, in order this scalar product be non-zero, the ribbons towhich the operators FE and FB
correspond, needed to connect the sites sB and sAwith each other. But this is impossible, since this would require
a ribbon in LA starting at sA and connecting to the boundary in LA, and the corresponding ribbon operator
would be inA. Hence the product *V F F Vi E B j creates non-trivial excitations above the ground state when acting
onΩ, and it follows y fá ñ =E, 0, since states that contain excitations above the ground state are orthogonal to
the latter (see also [41]).

Summarising this, we consider the collection of orthonormal states = W W W W{ } V V V, , ,X Z Y , or rather
the classes of states W VAB i (recall that these are orthogonal spaces). Alice and Bob can distinguish these classes
of states by doing chargemeasurements in the cones LA or LB, hence LA and LB are authorised sets. On the
other hand, all states look the same for localmeasurements in ÈL = L L( )E A B

c, hence this can be regarded as
an unauthorised set. The key properties used for this characterisation areHaag duality of cone algebras in the
ground state representation and the detailed knowledge about the local excitation structure above the ground
state.

10
The choice of taking = W W W W{ } V V V V, , ,X Z X Z from the spaces W VAB i can be interpreted as choosing different implementations

of secret sharing schemeswith same information to be hidden and same access structure. Additionally Alice and Bob can act locally on the
state within their coneswithout the corresponding other being able to notice.
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Wewould like to stress that this scheme cannot be extended to one for sharing quantum information. Given
two different code states yi and yj, ¹i j (or, two states in different classes, in the general setting), we could in
principle also prepare the superposition y y y+ j≔ ( )ei j

1

2
i , wherej is afixed complex phase. Butwe cannot

distinguish this superposition from any other of these two states by any local operation on LA or LB. To see this,
consider a local observable Î A A. Then, sinceA just acts in the cone LA the operator ¹*V AV i j,i j creates
non-trivial excitations above the ground state, hence y yá ñ =A, 0i j , and therefore

y y y y y yá ñ = á ñ + á ñA A A, , ,i i j j
1

2

1

2
. So local chargemeasurements lose information about relative phases in

the superposition of code states. That is, the code states obey a superselection rule.
Another question is if there aremore states whichwe can add to the already known code states to increase the

amount of informationAlice and Bob can share (where, as before, we are only interested in states up to acting
with local operators in LA or LB). That is, are there perhaps other operations inAB

 that lead us to a new class of
states that can be distinguishedwith local operations in LA or LB? This turns out not to be the case, which can be
understood by the JKL index. The charge transporters which are used to create the code states are such that they
commutewith all observables at Eve’s disposal, but are not localised in either cone.Hence the questionwhether
this set of states is complete translates to the questionwhether we found all charge transporters, corresponding
to charges thatwemay not have found yet. This question can be answered by computing the value of the JKL
index: it turns out that all the observablesAB

 that commutewith Eve’s allowed operationsE are precisely

generated by those in the cone and the unitary operatorsV V V, ,X Z Y , that isAB
 is generated as a vonNeumann

algebra by the charge transporters andAB [11]. This result follows from two steps:first one proves the general
result that the index provides a bound on the number of inequivalent charges (and hence, the number of
‘inequivalent’ charge transporters). Then one can calculate the index itself, and see that the known charge
transporters already saturate this bound. This argument shows that we can regard the JKL index then as the
maximal number of code states for a secret sharing scheme of classical information.We come back to this point
inmore detail in section 5.

There is one other point to discuss: is it really necessary to use the operations inAB
 ? Indeed, if xF is a path

operator between the sites in cone LA and LB, then W = WxV Fi . The problem is that Alice and Bob at some point
have to apply an operator to store the classical information. If they do this by creating a pair of excitations in one
cone, and thenmove one of the excitations to the other cone, Eve could detect the excitation as itmoves through
her region. Even if Alice and Bob are able to do this so quickly that Eve has no chance offinding out, there is
anothermethod for Eve to detect this. So farwe have assumed that Eve does not alter her part of the state. That is,
the statewe start with isΩ. But nothing prevents Eve fromdoing any operation on her part of the system. For
example, she could create a configuration of charges on her side. If the path operator that Alice and Bob apply to
the system crosses one of the paths of Eve’s operators, the state will acquire a phase because of the anyonic nature
of the excitations, which opens up possibilities of detection. If Alice and Bob use the operations inAB

 , this
cannot happen, although it should be noted that in a laboratory setting thismay not be very practical (or even
possible).We briefly comment on this last point below.

4.2. TEE and the irreducible correlation
There exists an interesting interplay between the TEE [5, 6] and the irreducible correlation of the state, which
provides the TEEwith an operational interpretation as the achievable rate of a certain secret sharing scheme of
classical information [12].

The irreducible correlation is ameasure of correlations onmultipartite quantum systems.More generally,
the k-th irreducible correlation r( )( )C k of a state ρ on an n-partite systemquantifies howmuch correlations are
contained in the kth reduced densitymatrix (RDM) r( )k that are not contained in the -( )k 1 -RDM r -( )k 1 . It is
given by the expression r r r= - -( ) ( ˜ ) ( ˜ )( ) ( ) ( )C S Sk k k 1 , where r̃( )l is the state thatmaximises s( )S when
optimising over all states that have the same l-RDMas ρ. Precise definitions can be found in [12, 42].

Consider now a state ρ of a quantummany body system that satisfies an area lawwith a ‘topological’
contribution, i.e. b g= ¶ - + ¶¶

-( ) ∣ ∣ (∣ ∣ )S A A n AA
1 for (large) regionsAwith some constant b > 0 and ¶n A

being the number of connected components of the boundary ofA, and γ the TEE. Assume that the correlation
length isfinite, i.e. r r r= ÄAC A C for disjoint regions A C, that are far away from each other, and that the
conditionalmutual information betweenA andC conditioned onB is zero, i.e. =( ∣ )I A C B: 0, if the regionsA
andC are connected through a third regionB such thatABC has no holes. Under these conditions it was shown
in [12] that the TEE Stop coincides with the 3rd irreducible correlations of the reduced densitymatrix (RDM) on
regions ABC [12]. Here ABC is a partition of the system in a configuration as considered inKitaev–Preskill [6]
and similarly in Brown et al [16], or as in the Levin–Wendefinition of TEE [5]. Note that, borrowing the
notation from the introduction, g g= =S Sand 2top

KP
top
LW .

If we consider afinite region ABC as in [5, 6] the 3rd irreducible correlation r( )( )C ABC
3 thus characterises the

correlation in rABC that are not contained in theRDMof any bipartition of the tripartite system ABC .
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Furthermore, in [12] it was shown that then r( )( )C ABC
3 carries an operational interpretation in terms of the

maximal rate rABC of a certain secret sharing scheme of classical information. To bemore precise, regarding rABC

as a tripartite state over ABC it holds that r( )( )C ABC
3 is equal to the optimal sharing rate rABC for a secret sharing

scheme for classical information that encodes information in rABC such that the information can only be
decoded by having access to all three regions11A,B andC.

That is, for optimal encoding and decoding channels the number bits that can be encoded is given by rABC .
Now since r =( )( )C rABC ABC

3 thismeans that the number of bits that can be encoded using the tripartite
correlations of rABC is given by Stop. For the case of anyonmodels where the TEE of the ground state is given by
g =  log and is the total quantumdimension, the number of bits that can be encoded is  in case of

S andtop
KP 2 in case of Stop

LW. Therefore the total quantumdimension determines themaximal amount of
informationwe can encode in rABC by just using the tripartite correlations in this state. The difference between
the two settings of [5, 6] is a result of the different topologies in the choice of ABC . Intuitively in the Levin/Wen
type of regions there exist operators acting along non-contractible loops that leave the ground state invariant and
that contribute to r( )C ABC

3 whereas in theKitaev/Preskill setting such loops can be contracted.
In the thermodynamic limit of the toric codewe have, however, a different geometry of the regions

A B C, and , wherewe identify the regions A Band with the cones L LandA B controlled byAlice and Bob,
respectively, and C with Eve’s part LE. Also note that in this case we have that ABC comprises thewhole system,
as opposed to thefinite dimensional case, where ABC just needs to be a sufficiently large region. As discussed in
the previous sections, in this setting 2 is the dimension of the code space of a secret sharing scheme for classical
information between the algebras over disjoint cones.More precisely, the number of equivalence classes

W VAB i of states that differ only by local operators in the respective cones, is given by 2. The code space is
maximal in so far as that the JKL index bounds the number of superselection sectors from above [11], and is
equal to 2. In this sense =[ ]  log : logAB AB

2 is the optimal sharing rate of that scheme andwe regard this
as an infinite dimensional analogue of the results obtained in [12]. In the next section this equality is discussed in
more detail. In the general case we expect that the index also carries a similar interpretation.

The JKL index can also be related to a relative entropy for the inclusion Ì AB AB
 which can be interpreted

in terms of aHolevo quantity, giving a bound on howmuch better we can distinguish states using operations

fromAB
 , compared towith just operations fromAB. The details can also be found in the next section.

Consequently the thermodynamic limit exhibits a very similar structure as in the situation offinite lattices.

4.3. Canwework around superselection sectors?
The secret sharing taskwe described depends on the presence of charge transporters, and hence of
superselection sectors. These aremodelled as equivalence classes of representations, satisfying the localisation
criterion (3). The idea to use superselection sectors to assist in quantum information tasks is not new, see for
example [43], where the authors apply the fact that local operators cannot distinguish the different
superselection sectors to a data hiding protocol.

It is natural to ask if superselection sectors can be used to circumvent certain no-go theorems in quantum
information. Unfortunately, this turns out not to be the case, if we assume an adversary Eve has access to an
auxiliary system to store compensating charges [44]. Hence the authors of [44] conclude that superselection
sectors cannot be used to increase the security of quantum information protocols.

This result appears to be at oddswith our claim that Alice and Bob can share a secret securely with the help of
superselection sectors (which is essential in our construction). This is not the case, since the two settings are
fundamentally different. In particular, Kitaev et al consider the case where the superselection sectors are given by
a compact group symmetry. The adversary Eve is then allowed to do any operation that commutes with this
symmetry. If she has an auxiliary system available inwhich she can store a compensating charge, she can
implement arbitrary transformationswithout breaking the symmetry. In our setting, we know that the
symmetry is not given by a group (since our anyons are describe by amodular tensor category), and Eve does not
have an auxiliary system at her disposal. In addition, she can only do local operations, which further limits her
powers. In particular, such operations cannot interpolate between different superselection sectors, at least not in
our setting, where thewe describe infinite systems.

We also do not need to assume that the total charge in the system is zero, it is enough to know that the total
charge in bothAlice’s and Bob’s cone is trivial, which they can check before starting the secret sharing protocol.
If there are only abelian sectors, even this assumption is not necessary: Alice and Bob can eachmeasure the total
charge in their cone before the protocol starts, and record the result. Since the fusion rules in that case give a
unique charge after fusing two anyons, they can compensate theirmeasurements by computing the result of

11
The optimal rate determines howmany bits can atmost be encoded in the state rABC that it there exists a decoding channel that reliably

can recover the information in asymptoticmany uses of the scheme.
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fusionwith the conjugate charge. In the non-abelian case this is no longer true, since there aremultiple fusion
outcomes.

5. Channels and entropy

The secret sharing taskwe described suggests a description in terms of quantum channels. In particular, we
would like to have a quantum channel that compares the ‘full’ operations available to Alice andBob, described

byAB
 , to the strictly local operationsAB. Fortunately the index theory for subfactors provides such amap.

This is themap thatwe investigate in this section.Moreover, it is possible to define a relative entropy for
subfactors. This relative entropy is related to the index of the inclusion.Herewewill argue that this relative
entropymakes it possible to connect the index to thewell-knownHolevo c-quantity, which tells us howwell we
can distinguish states, and is related to the classical capacity of a quantum channel.

Wewill again consider the toric code here, although the abstract constructions work for any subfactor with
finite index. The toric code however has the advantage of being simple enough to allow a concrete analysis, and
at the same time providing a clear physical interpretation. It will allow us tomatch themathematical
constructions to physical processes.

5.1. Channels
The inclusion Ì AB AB

 of the cone observables into the algebra of observables that commutewith Eve’s

observables is accompanied by a conditional expectation   : AB AB
 [11, 32], that is, a generalisation of the

partial trace to the language of operator algebras. A conditional expectation is a (normal) unital completely
positive (cp)map such that =( ) ( ) ABC A B C for all Î Î A C B, andAB AB

 . The subalgebraAB hereby
plays the role of the subsystem. In fact  is a channel; it is linear, cp, preserves the identity operator and is normal
in the sense that itmaps normal states to normal states. These are states that are represented by densitymatrices

on theHilbert space onwhich the algebra is represented. Asmentioned earlier elements ofAB
 can be expressed

as linear combination of some ‘basis’with coefficients inAB.Moreover the algebraAB
 is generated as a von

Neumann algebra byAB and the charge transporters { }V V,X Z .With the notation

= = =V i X Z Y V I V V V, 0, , , with andi Y X Z0 , the basis expansion of elements Î X AB
 is then

= å Î X A V Awithi i i i AB [11]. Anotherway of saying this is thatAB
 is a leftmodule overAB. In this case

the operatorsVi are also called a ‘Pimsner–Popa basis’.
The channel  is then given by

 ( )   X A: : . 4AB AB 0

In a sense it leaves the states W W W WV V V, , andX Z Y invariant. This can be seen as follows. In the Schrödinger
picture the channel is given by the unique cpmap * determined by r r r( ) ≔ ◦*  where is a normal state
overAB.We do not intend to give a full characterisation of * here. Insteadwe showhow it acts the vector
states W W W WV V V, , andX Z Y , where W is the ground state. Since these are vectors in theHilbert space, they give
rise to normal states onAB and onAB

 . Let y be any of these states and Î X AB
 as above, and let r be the

corresponding state onAB. As shown in section 4, áW Wñ =∣ ∣V AV 0i j for any Î ¹A V VandAB i j . In
particular, this implies that y yá ñ = ¹∣ ∣AV i0 if 0i , andwe find

r r y y y y= = á ñ = á ñ( )( ) ( ) ∣ ∣ ∣ ∣* X A A X0 0 . Hence the states corresponding to y are invariant under the
action of * . For superpositions this is no longer true since * erases the off-diagonal elements of the density
matrices in this basis. Of course the situation ismuchmore complicated for general normal states onAB but
this illustrates well the classical nature of the secret sharing scheme.Note that the argument still holds if we
consider the states WVi , withU a unitary inAB, so that we again have four classes of (vector) states.

Before we come to the information-theoretical interpretation of themap  , wefirstmake another
interesting observation. There is a canonical way to get a tower of inclusions of vonNeumann algebras if we have
afinite index subfactor.We here give an example of extending the tower downwards. Recall that the charge
transporters constitute a unitary representation of the group ´ 2 2 on theHilbert space of the ground state
representation. This representation induces an action on the operators by conjugation. This actionmapsAB

into itself. Therefore the twirl å Î( ) ≔ * A V AV A,i i i AB1
1

4
is a conditional expectation from the cone algebra

AB to the subalgebra0 offixed points of this action. The inclusion Ì AB0 then has index [ ] :AB AB
 .

Furthermore, the channel 1 is implemented by the projection = åP Vi i0
1

4
in the sense that =( ) A P P AP1 0 0 0.

This subalgebra consists of these operations in the cones L LandA B which cannot distinguish the states
W W W WV V V, , andX Z Y from each other. In this sense the channel 1 can be interpreted as the completely
depolarising channel on these states.
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5.2. Relative entropies and classical information
The index can be connected to a relative entropy [45]. Herewe follow thework ofHiai [46], who discusses the
case of general subfactors (not just Type II1

12) and gives different characterisations of the index.We start with
defining the relative entropy of a pair of vonNeumann algebrasN MÌ with respect to a normal state Mj on .
This is given by

MN N Nå j j j j= -j
j

( ∣ ) [ ( ) ( )] ( )
( )

 H S p S psup , , , 5
i

i i i i
i

where againwe use to denote restriction to a subalgebra. The supremum is over all finite convex combinations
such thatj j= å pi i i, withji a normal state. That is, we consider all different preparations of the statej. The
relative entropy j j( )S p ,i i is to be understood in the sense of Araki [47] (see [48] for an introduction).
Compared to these references we switched the order of the arguments to agreewith the usual definition in
quantum information. The definition of Araki reduces to thewell-known formula for the quantum relative
entropy offinite systems if the algebras arematrix algebras.We also note that the terms in square brackets are
positive. This is perhaps not immediately clear, but essentially follows from themonotonicity of the relative
entropy (restricting the states is like tracing out a part of the system).

First we find it useful tofind a physical interpretation of equation (5). Intuitively, it should capture howwell
we can distinguish states whenwe have all operations inM at our disposal, compared towhen only
measurements (or, POVM’s) fromN are allowed. Tomake this intuitionmore precise, consider the following
scenariowhich is typical when trying to send classical information over a quantum channel.We largely follow
Holevo [49] (but also see [50]), and for themoment consider finite dimensional systems. Let r be a state on the
system. If r is amixed state, there are different ways to prepare this state. In particular, consider a probability
distribution px and let rx be states such that r r= å px x x. That is, Alice picks a state according to the probability
distribution px. The question then is if Alice sends this state to Bob, howwell Bob can recover the distribution px.
In general, even if Alice sendsmany copies, Bob cannot recover px exactly, for examplewhen the rx are pure but
overlapping states. Howwell Bob is able to recover px is governed by theHolevo c-quantity, defined as

å åc r r r r r- =({ } { }) ≔ ( ) ( ) ( ) ( )p S p S p S, , . 6x x
x

x x
x

x x

This is a quantumgeneralisation of the Shannon information, and gives an upper bound on the amount of
information Bob can recover. The equality follows from the definition of the relative entropy.

In the infinite setting that we are interested in, the definition of the entropy r( )S is problematic (since it
typically scales with the dimension of the system), and it is better to stick to the relative entropy.We therefore
take the right-hand side of equation (6) as the definition of c. Using the identity

j j j j= +( ) ( ) ( )S p p S p p, , logi i i i i i , we can rewrite equation (5) to

MN Nc j c j= -j
j

( ∣ ) ({ } { }) ({ } { })
( )

H p psup , , .i i i i
i

By the previous paragraph, this tells us themaximumamount of extra informationwe can gain if we are allowed
to use operations fromM, compared towhen only operations fromN are allowed, in case the statej is sent.
Sometimes it is also called the ‘quantumprivacy’, since it tells us howmuch information is inaccessible forN.

We now come back to the inclusion Ì AB AB
 . The discussion of the secret sharing protocol shows that

AB
 contains operators that are not inAB, thatmake it possible to share classical information. Conversely, it is
possible to discernmore states using operations inAB

 compared toAB. Hencewe expect that there are states
j such that >j ( ∣ ) H 0AB AB

 . This is indeed the case. In fact, wewill relate these relative entropies to the
quantumdimension, by relating it to the JKL index of the inclusion.

To do this, recall that if the subfactor Ì AB AB
 hasfinite index, then there is a conditional expectation

  : AB AB
 such that there is some l l> ( ) X0 with X for all positive operatorsXÎAB

 . In fact,
there is a unique conditional expectation  maximising the constant l [32]. In the example of the toric code it is
themap  of equation (4). The index is then equal to the inverse of the best such constant, with the convention
that the index is infinite if there is no conditional expectation forwhich such a (positive) l exists. Conversely, the
existence of such a conditional expectation implies that the index is finite, in particular there is al >0.

Consider then the conditional expectation  thatmaximes the bound.One can then define the relative
entropywith respect to  by

j( ∣ ) ≔ ( ∣ )   H Hsup .AB AB AB AB
 

12
VonNeumann algebras which have trivial centres (in otherwords, factors), can be classified in types I, II1, ¥II andType III. Type I factors

are precisely those that are isomorphic toB( ) for someHilbert space . The type of the factors has important implications for the
technical parts of the index theory, but the qualitative features are largely the same.
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The supremum is over all faithful normal statesj on AB
 such thatj j=◦  . In general the relative entropy

( ∣ ) H AB AB
 is bounded from above by the logarithmof the index [ ] :AB AB

 (see below for the argument in
the easier Type II1 case). By corollary 7.2 of [46], however, equality is attained if and only if the conditional
expectation  maximises the bound in the previous paragraph.Hencewe have

=( ∣ ) [ ] ( )   H log : . 7AB AB AB AB
 

This relates the quantumdimension to a quantity that has a clear operational interpretation in terms of the
amount of information that can be hidden. As an aside, for suchj one can actually simplify the formula for
MNj ( ∣ )H a bit:

MN å j j=j
j

( ∣ ) ( ◦ )
( )

H Ssup , .
i

i i
i

The optimisation is again over all (finite) decompositions ofj.
To get some intuition for the quantity MN( ∣ )H for some inclusionN MÌ of vonNeumann algebras, it is

useful to consider the case whereM Nand are of Type II1. It can be shown that this is not true in the case we are
interested in [33], but the example is illustrative nonetheless. In the Type II1 case, there is a (faithful) tracial state

Mt on , that is, a state such that t t=( ) ( )AB BA . It should be noted that Type II1 factors are defined on infinite
dimensionalHilbert spaces, so that t is not the familiar trace of bounded (trace class) operators. If the index is
finite, a trace preserving conditional expectation M N : exists, with the index being equal to the inverse of
the best constant l as above.Note that this further supports the notion of  as a quantum channel (since in the
usual setting they are required to preserve the trace). In that case, it can be shown that the relative entropy can be
rewritten as follows, wherewe set l t≔ ( )xx ii

[46]:

MN ål r r= -( ∣ ) [ ( ( )) ( )] ( )
( )

H S Ssup . 8
x i

x x x
i

i i i

Here rxi
is the density operator lxi xi

and the entropy S is definedwith respect to t . The supremum is over all
finite sets of positive operators xi such thatå xi i=1. In otherwords, it is an optimisation over all (finite)
POVMs.Note that instead of looking at states, we now look at the possible operationswe can use to distinguish
states. The quantity between square brackets is called the entropy gain in [51].

Before we comment on the physical interpretation of equation (8), we come back to the claimonwhy it is
equal to the Jones index. Again, we consider the Type II1 case for simplicity, following Pimsner and Popa [45].
The case of infinite factors thatwe need here is technicallymuchmore involved, but uses some similar ideas [46].
Recall that there is a l > 0 such that l( ) X X for all positive X . Then, since the logarithm is operator
increasing, from equation (8) one can show that MN l-( ∣ ) H log 1. Since one of the equivalent definitions of
the index is that it is the inverse of the best of such constants l, it follows that MN M N( ∣ ) [ ] H log : . To
complete the argument Pimsner and Popafind lower bounds for MN( ∣ )H , and show that in the case of
irreducible factors (such as we consider here), equality is in fact attained. The proof of this ismore involved, and
requires properties of subfactors that are out of the scope of this paper.

To understand equation (8) a bit better, note that since =( ) I I, we can add -( ) ( ( ))S I S I to the right-
hand side of equation (8). But in that case, it simplifies to

c l r c l r-
ål r=

({ } { }) ({ } { ( )})sup , , .
I

x x x x
x x

Note that that the optimisation is only over ensembles that sumup to the completelymixed state. This should be
contrastedwith the (Holevo) channel capacity c c l rr≔ ({ } { ( )}){ } { }  sup ,p x x,x x

, which gives the amount of

classical information that can be transmitted using the channel [52]. Note that here the optimisation is over all
ensembles.

We also like to point out the similarity towiretap channels. In a quantumwiretap channel, quantum
information is sent formAlice to Bob, with an eavesdropper Eve. Such a channelmaps density operators on

Ä  intoA B E via amap r r *V V , whereV is an isometry. Note that any quantum channel can bewritten
in this formbymeans of a Stinespring dilation. The point of thewiretap channel is that certain information is
inherently private, in the sense that nomeasurement onE can recover it. This was first studied for quantum
channels by Schumacher andWestmoreland [53]. Later this analysis was extended, for example by allowing
simultaneous use ofmultiple copies of the channel [54]. This for example leads to a proof that the (classical)
private information is bounded frombelow by the (quantum) channel capacity. Although our setting is slightly
different, the definition of what information is inaccessible or private is essentially the same.

There is yet another description of essentially the same problem, in terms of a subfactor that is closer to the
protocol outlined earlier. The inclusion Ì AB AB

 could be understood by considering the charge
transporters. The interpretation above however does not directly connect to the secret sharing scheme described
earlier. A property of the index is that it is invariant under taking commutants:
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= ¢ ¢[ ] [ ]   : : .AB AB AB AB
 

Note that Ap¢ = L ¢¢( ( ))AB E
 , that is, the vonNeumann algebra generated by all local observables accessible to

Eve. In contrast, ¢AB containsmore operations. In particular, it contains projections thatmeasure the total
charge in one of the cones. These projections are not in Eve’s algebra, hence she cannot use them.This is precisely
what Alice and Bob use to hide information fromher, and by a similar analysis as we have provided above, the
amount of information that can be hidden in this way is quantified by the index.

5.3. Total quantumdimension
The discussion above gives a relation between the index [ ] :AB AB

 and the amount of inaccessible classical
information. In particular, this can be quantified by equation (7), so it would be good to have a better
understanding of [ ] :AB AB

 . From section 3.2we see that this number tells us (in a sense) howmuch bigger

AB
 is thanAB, while section 3.3 and the example in section 5.1 indicate that this is related to the superselection
sectors (or anyons) of the theory. On the other hand, the TEE is related to the logarithmof the total quantum
dimension, while also quantifying achievable rates in a secret sharing scheme, as discussed in section 4.2.Hence
it would be reasonable to assume that there is a relation between the index and the total quantumdimension.

This is indeed the case, and can be shownwithout any reference to any communication protocols. Already in
1989 Longo showed that the quantumdimension di of a representative of a superselection sector can be
obtained as the index of a certain inclusion of vonNeumann algebras [32]. Later in 2001 it was shown that for the
class of rational conformalfield theories on the circle, the total quantumdimension is equal to the index of an

inclusion Ì , very similar to the inclusion Ì AB AB
 [55], and indeed our results are partiallymotivated

by that paper.
A similar strategy can be applied to the latticemodels that we are interested in. If we assume (in addition to

the technical conditions ofHaag duality and the approximate split propertymentioned above) that each charge
has a corresponding conjugate charge (or show that they exist), it is always possible to define the quantum
dimension of a charge. In that case, the relation = å[ ]  d:AB AB i i

2 holds [11, 55], where the sum is over all
distinct charges ri, and di is the corresponding statistical (quantum) dimension. If we do not assume existence of
conjugate charges, the index still gives an upper bound on the number of them.

It should be noted that this ismore than abstract theory. For example, for the toric code one can explicitly
show thatHaag duality and the approximate split property hold [33]. It is also possible to explicitly obtain
representatives of different superselection sectors, and for example show that conjugates exist [30]. Finally,
independently from the superselection sector analysis, it can be shown that [ ] :AB AB

 =4 [11]. In fact, this
result can be used to show that in fact any superselection sector of themodel is equivalent to one of the explicit
representatives that can be constructed.Hence for the toric code, thewhole program can be carried out in full
detail, andwe see that also using the indexmethod, we see that we can hide four classical bits.

To summarise the discussion, we can conclude that the total quantumdimension gives tells us howmuch
classical information can be hidden, in the setup described above. This provides an alternative interpretation
way of thinking about the total quantumdimension. One of the advantages is that the argument is completely
rigorous, and independent of any results on the finite dimensionalmodels. In particular, we do not need to
assume the relation between the TEE and the total quantumdimension.We also point out that the analysis is not
restricted to the topologically ordered quantum spin systems thatwe have looked at so far. Rather, they can be
applied to allmodels (once onemakes appropriate technical assumptions) for which one can do a superselection
structure analysis in terms of localised and transportable representations. This in particular applies to rational
conformal field theories on the circle in the operator-algebraic approach [55].

6. Private quantum subsystems

Wehave discussed an operational interpretation of the JKL index in terms of a secret sharing task: the anyonic
charges allowAlice and Bob to store (classical) bits which are not available to the adversary Eve. This is
reminiscent of the theory of private quantum codes or private subsystems (see [56] and references therein).We
argue that our construction can be interpreted in this way.

Our description is stated in terms of observables, hence it ismost natural to use theHeisenberg picture.
Therefore in our setting a quantum channel will be a unital cp normal (i.e., continuouswith respect to theweak-
operator topology)map M N : between two vonNeumann algebras. Its dual is a normal cpmap
N M* * * : , mapping normal states to normal states. Sincewe are dealingwith infinite dimensional von

Neumann algebras (andHilbert spaces) it is necessary to go beyond the setting of [56], andwewill use the recent
generalisation to vonNeumann algebras byCrann et al [39]. Let M B ( ) : be a quantum channel, and P a
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projection on theHilbert space. Supposemoreover that  is a vonNeumann algebra onP. Then A is
called private for  with respect to M Ì ¢( ) P P Pif .

Our setup immediately leads to an example of a private quantum channel. The index theory gives us a
normal conditional expectation   : AB AB

 . Hence in particular,  is a normal cpmap.We can choose
N =  ¢ = ¢( )  A B AB. Since  A B is a vonNeumann algebra, and therefore equal to its double
commutant, it follows thatN¢ = AB. HenceN is private for  with respect to =P I . Note also that Ì E ,
that is, Eve’s observables are private for  .

One can show thatN is private for  if and only if it is correctable (in the sense of [57]) for any
complementary channel  ofc [39, theorem4.7]. That is, there is some channel such that N=◦  idc .
Here  c is a channel of the form =( ) * X V XVc for all pÎ ¢( )X AB

 , where p( )V, , is a Stinespring triple
for the channel  .

Consider again the example of the toric code. In that case we have an explicit description ofAB
 , which

allows us to identify such a Stinespring triple. In particular, we know thatAB
 is isomorphic to the crossed

product ´a ( )   AB 2 2 , where a =( ) *A V AV g Vandg g g g is a unitary representation of ´ 2 2

obtained bymapping ( ) ( )V V1, 0 and 0, 1X Z  [11]. Concretely, denote for theHilbert space of the
GNS representation of the translational invariant ground state of the toric code. Thenwe can define a
representation p of AB

 by sending å = A Vk X Y Z k k0, , , (with Î Ak AB) to the following operator, acting on
Å Å Å≔    S :

åp =( )
⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
A V

A A V A V A V
A V A A V A V
A V A V A A V
A V A V A V A

.
k k k

X X Z Z Y Y

X X Y Y Z Z

Z Z Y Y X X

Y Y Z Z X X

0

0

0

0

This can be shown to give an isomorphism ofAB
 with the crossed product. Nowdefine an isometry

y y = ( ) V V: by , 0, 0, 0S . Then by a short calculationwe check that

p= Î( ) ( )* X V X V X, ,AB


that is, p( )V, , S is a Stinespring triple for  . Note that p ( ) VAB
 is dense inS, hence the Stinespring

dilation isminimal. Now consider themap N B ( ) : S , defined by =( ) ( ) N N N N Ndiag , , , , which is
a normal unital cpmap. Then sinceN = ¢AB, it is clear from the description of p above that

N pÌ ¢( ) ( ) AB
 .Moreover, N=◦  idc , henceN is correctable for  (with respect to the identity

projection). Similarly one can see that in this representation the twirl channel 1 from section 5 is represented as
p= å ÎÎ( ) ( )* * A V V AV V A,g G g g AB1

1

4
, with = ´ G 2 2, and p ( )0 is given bymatrices of the form

Î( ) A A A A Adiag , , , with 0, where0 is thefixed-point algebra as before.
This example can be generalised to the abelian quantumdoublemodel in a straightforwardway. The non-

abelianmodel ismore difficult, since there the symmetry is not described by ´G G anymore, andwe do not
expect tofind a similar crossed product structure. However, the general setting of the quantumdimension being
related to the Jones index still applies, andwe expect a similar correctable subalgebra result to holdwith respect
to the canonical conditional expectation  one obtains from the index theory.Moreover, what is interesting is
that the index gives us ameasure of the amount of classical information that is private for Eve. This suggests that
the Jones indexmight be a useful tool in the study of the capacity of quantum channels.We hope to return to this
question in the future.

7. Stability under perturbations

There are a few technical assumptions that we needed tomake in our analysis of the systems in the
thermodynamic limit. In particular, we assume that the superselection sectors associated to the anyons can be
strictly localised in cone regions. Although any topological charge should certainly be localisable in such a
region, strict localisation is likely a too strong condition in general. This generalisation is important when
considering perturbations of the system,which is necessary if onewants to show that the quantumdimension is
truly an invariant of a topologically ordered quantumphase.

This can be seen as follows. Because of the topological order condition, we expect that the properties of the
anyonic excitations will be the same across thewhole phase (indeed, they should be by the very definition of a
phase). That is, if we perturb the dynamics of ourmodel (without closing the spectral gap), the perturbed ground
state should have the same superselection sectors. However, the selection criterion, equation (3), as we have used
it here, will generally no longer hold: in the thermodynamic limit the ground states of the deformedmodel can
be obtained by composing the original ground states with an automorphism a [3]. This automorphism is
however not strictly local. Rather, a satisfies a Lieb–Robinson type of bound, such that for strictly local a ( )A A,
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can in general only be approximated up to a small (exponentially decreasing) error by a strictly local observable.
As a consequence, if p satisfies the selection criterion, it is not guaranteed that p a◦ does so too, sincewe only
knowunitary equivalence of p pand 0 for observables outside any given cone.However, since a is not strictly
local, it does notmap cone algebras into cone algebras.

As a result it is necessary to adapt the superselection criterion, and in turn the inclusion of the vonNeumann
algebras associated to the two cones. It should be noted that a similar phenomenon also appears in [12]: their
results are only strict in the case of zero correlation length. In either case it is expected that in the thermodynamic
limit (or in the operator-algebraic case we are interested in, the limit of growing cone size) the small corrections
vanish.We believe the information theoretic interpretation herewill be of use in studying this question: for
example, instead of correctable algebras in the previous section, one should use e-correctable algebras [39],
which allow for (arbitrarily small) errors in the correction.We hope to come back to this issue in future work.

8. Summary anddiscussion

Wehave reviewed the total quantumdimension of topologically ordered systems, in particular how in the
thermodynamic limit it can be obtained as the JKL index of an inclusion of certain algebras of observables. It has
been argued by other authors [5, 6] that the quantumdimension can also be obtained via TEE infinite
dimensional systems, a fundamentally different approach. Nevertheless, it turns out that both quantities have an
interpretation in terms of a secret sharing scheme, although the implementation details are different in both
cases. Even though our secret sharing scheme is not very practical (and is not intended as such), it provides new
insight to the quantumdimension, and gives a completely different viewpoint (or approach) of what appears to
be same underlying concept.We believe that thismay be beneficial to gaining a better understanding of such
systems.

The operator-algebraic approachwe advocate here provides a rigorous and elegantmathematical
framework. It also has other advantages. For example, inclusions of subfactors arewell studied, in particular in
the context of the JKL index, andmanymathematical results are available. This puts the theory onfirm
mathematical footing.Moreover, a lot of structure comes for free with afinite index inclusion: wementioned the
conditional expectation  , which can be interpreted as a quantum channel.

We also believe this operator-algebraic approachmight be beneficial in the important question of stability of
topological phases. Althoughwe have only explicitlymentioned the toric code as a test case, we argued that these
structures holdmore general in topologically orderedmodels (with the caveatmentioned in the previous
section). Generalisation to the abelian quantumdouble is straightforward, but also in non-abelianmodels we
expect to have a similar structure. An explicit verification, however, will of course bemuchmore involved.
Finally, while wemainly have studiedwhat is usually referred to as ‘long-range entangled’ phases, an algebraic
approach to symmetry protected phases appears to be reasonable; as a toymodel one can consider theKitaev
wire, and divide the system into three parts, as we did in the example of the Fibonacci chain.We conjecture that
this can be related to a notion of entanglement entropy for symmetry protected phases, see [58].

Although the settingwe discussed here is tied to the setting of charges belonging to different superselection
sectors, the conditional expectation (and hence a quantum channel) always exists for subfactors offinite index.
Moreover, the index is related to a relative entropy, which opens up connections to quantum information
theory: the discussion in section 5 is an example of that.We believe that the index theorymay be useful to study,
for example, capacities of quantum channels, in particular for systemswith infinitelymany degrees of freedom.
Except for the case of gaussian states, there are comparatively few tools available to deal with such examples.
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Appendix. Operator algebras

Dealingwith quantum systemswith infinitelymany degrees of freedom, such as the thermodynamic limit of the
quantum spin systemswe are interested in here, introduces complications that are not present when discussing
finite dimensional systems.We prefer to use an operator-algebraic approach to tackle these. In this appendix we
give some reasons forwhywe elect this perspective, and introduce themain definitions and concepts.

To see an example of the difficulties that arise, consider an infinite chain of qubits. Naively, onemight expect
that theHilbert space of this system is given by = =-¥

¥⨂ n
2. There is however a problemwith the

definition of the inner product: let y h Î , . Then the inner product should be defined as

y h y há ñ á ñ
=-¥

¥

≔ , , ,
n

n n
2

analogously to the tensor product of afinite number ofHilbert spaces. The problem is that the expression on the
right generally does not converge, since it is an infinite product. A simple example is given by taking a unit vector
W Î 2 and setting y h= W = - W( )and 1n n

n .
We canwork around this by using vonNeumann’s construction of the infinite tensor product: we choose a

reference unit vector Wn for each n, and only consider vectors y Î  for which y ¹ Wn n for only finitelymany
n. For such vectors the expression above converges and defines an inner product. By taking the completionwith
respect to the normobtained from this inner product, we arrive at aHilbert space.

This definition is somewhat undesirable, since it depends on the choice of reference vector, and a canonical
choicemay ormay not be available (and resultsmight depend on the choice of vector). In addition, it is not
entirely clear what the observables are. One could consider all bounded operatorsB( ) as in single-particle
quantummechanics (potentially considering unbounded observables aswell), but this has the downside that
one loses some of the locality structure that the chain clearly has. These are some of the reasonswhywe prefer to
work in an operator-algebraic (or, if onewishes, observable-centric) approach, which does not have these
problems. For the benefit of the readerwe recall themain definitions and explain how they can be interpreted in
the context of quantummechanics (see also [28, 29, 59]).

A.1. *C -algebras
Wewant to consider quantum spin systemswith infinitelymany sites. For concreteness, consider the square
lattice 2, where at each site there is a quantum spin, withHilbert space d. As remarked above, we cannot just
take the infinite tensor product of d, andwewill focus on the local observables of the system.

Let L Ì 2 be a finite subset, consisting of L∣ ∣ spins. Since this is afinite quantum spin system, it is described
by aHilbert space =L ÎL⨂ x

d. Hence the associated observables are the (self-adjoint) elements of

A BL =L
ÎL

( ) ≔ ( ) ⨂ ( ) M .
x

d

Wewillfind it convenient to call A L( ) the local observableswith support in L (or localised in L), even for those
elements that are not self-adjoint.

Now suppose that L Ì L1 2 are bothfinite subsets of 2. Then ÄL L L L⧹  
2 1 2 1
 . Hencewe can identify

A AÎ L Ä LL L( ) ( )⧹A IA with in1 22 1
. In addition, if A AÎ L Î L( ) ( )BA and1 2 , with ÇL L = Æ1 2 and both

finite, it is clear that =[ ]A B, 0. This is known as locality, and hencewe have a local structure.Wewant to
consider the algebra generated by all such local observables. To this end, define the (strictly) local observables by
A A= LL⋃ ( )loc , where the union is over allfinite subsets of 2, andwe identify those operators that come from
inclusions A AL Ì L( ) ( )1 2 in the obvious way.

The algebra Aloc has a natural norm, induced by the operator normon ( )Md . It is however not complete
with respect to this norm: there areCauchy sequences in Aloc that do not converge. This can be solved by taking
the closurewith respect to this norm, i.e., by adding limits of Cauchy sequences. This gives a complete normed
*-algebra A, whose norm satisfies =*A A A 2    for all AÎA . Such an algebra is called a –*C algebra.We call
the elements of A quasi-local observables, since they can be approximated arbitrarily well (in the operator norm)
by strictly local observables.

In this setting states are given by positive linear functionals w of normone on A. That is, linearmaps
Aw  : such that w w =( ) ( )* A A I0 and 1 (or, equivalently, w = 1  ). The value w ( )A for a positive

operator A has the same interpretation as inHilbert space quantummechanics: it is the expectation value of A.
We note that states are not necessarily of the form r( )Tr A for some densitymatrix r.

Finally, oncewe have the algebra of observables we can specify the dynamics by specifying local
Hamiltonians. TheseHamiltonians generate, under suitable conditions (e.g., the interactions should decay fast
enough), a time evolution on the algebra, which ismost conveniently described as a one-parameter group

at t of automorphisms. That is, this gives a time evolution of the observables in theHeisenberg picture. Once
dynamics are defined it is possible to talk about ground states: these are essentially the states thatminimise the
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energy. In our case we are usually interested in translationally invariant ground states, and inmany of themodels
of interest they are in addition frustration free: theyminimise the expectation values of each localHamiltonians
individually.

TheHilbert space picture can be very useful, and fortunately it is not lost in this algebraic approach. Indeed,
theGel’fand–Naimark–Segal (GNS) construction gives a representation of A on aHilbert space.More precisely,
suppose that w is a state on A. Then theGNS construction gives a triple p W( ), , , where is aHilbert space, p
is a representation of A as bounded operators on, that is, a linearmap A Bp  ( ): that is compatible with
the product and adjoint operation of A. The state w is implemented in theHilbert space by W Î , in the sense
that w p= áW Wñ( ) ( )A A, for all AÎA . Note that this does not imply that w is a pure state. In fact, this is true if
and only if p acts irreducibly on, or equivalently, onlymultiples of the identity commutewith every p ( )A .

A.2. VonNeumann algebras
Nowconsider aHilbert space. ThenB( ) , the algebra of bounded operators on, is a *C -algebra. Besides
convergence in the operator norm, the underlyingHilbert space gives additional notions of convergence. If

BÎ ( )Ai (ormore generally, a net lA of operators) is a sequence of operators, we say it converges strongly, or
in the strong operator topology, to an operator BÎ ( )A if for any y Î , we have that y- ( )A A 0i  . In
otherwords, when acting on a fixed vector, we get a convergent sequence. In general the rate of convergence
depends on the vector y, and if is infinite dimensional one cannot conclude that A Ai in the
operator norm.

There is another topology that has a clear physical interpretation.We say that a sequence An of operators
converges in theweak operator topology to some operator A if for each y Î , we have that
y y y yá ñ - á ñ   ¥∣ ∣A A n, , 0 ifn . That is, a sequence of observables converges in this topology if we

cannot distinguish them (in the limit n¥) bymeasuring in arbitrary vector states.
Now consider a unital *-subalgebraM BÌ ( ) .We say thatM is a vonNeumann algebra if it is closed in

theweak operator topology. This is equivalent to being closed in the strong operator topology, since one can
show that both topologies coincide on bounded sets. A perhapsmore surprising (and very useful) fact is that this
is equivalent to the algebraic conditionM M= ¢¢, whereM M¢¢ ¢ ¢≔ ( ) , and the prime denotes the commutant
inB( ) . That is,M B M¢ Î = Î≔ { ( ) }T TX XT X: for all . This is known as the bicommutant theorem.
It is easy to check thatM M M= ¢‴ if is closed under the *-operation, hence this gives an easyway to obtain
vonNeumann algebras from subsets ofB( ) .

Finally wewould like tomention another useful property of vonNeumann algebras, which is not true for
general *C -algebras: they are generated by their projections. This has the following application. Suppose that
MÎO is some self-adjoint observable that wewouldwant tomeasure. It is often the case that we cannot (or do

notwant) thewhole observable O, for example due to limitations on equipment, but are content with the
following question: does themeasured value of O lie in some interval = [ ]I a b, ? This yes/no question
corresponds tomeasuring a projection [ ]P a b, . Indeed, it is the spectral projection of O on the interval I . It follows
from spectral theory that this projection also is inM, and hence an observable. This is even true for positive
unbounded operators, such as theHamiltonian H of the system, undermild additional assumptions (in
particular, it should be affiliatedwithM [28, lemma 2.5.8]). These propertiesmake it natural to look at von
Neumann algebras.
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