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Abstract

We study the total quantum dimension in the thermodynamic limit of topologically ordered systems.
In particular, using the anyons (or superselection sectors) of such models, we define a secret sharing
scheme, storing information invisible to a malicious party, and argue that the total quantum
dimension quantifies how well we can perform this task. We then argue that this can be made
mathematically rigorous using the index theory of subfactors, originally due to Jones and later
extended by Kosaki and Longo. This theory provides us with a ‘relative entropy’ of two von Neumann
algebras and a quantum channel, and we argue how these can be used to quantify how much classical
information two parties can hide form an adversary. We also review the total quantum dimension in
finite systems, in particular how it relates to topological entanglement entropy. It is known that the
latter also has an interpretation in terms of secret sharing schemes, although this is shown by
completely different methods from ours. Our work provides a different and independent take on this,
which at the same time is completely mathematically rigorous. This complementary point of view
might be beneficial, for example, when studying the stability of the total quantum dimension when the
system is perturbed.

1. Introduction

Quantum phases can be understood as equivalence classes of ground states of quantum many body systems [1].
In this paper we are particularly interested in gapped quantum phases, up to quasiadiabatic evolution [2, 3]. A
particularly interesting set of phases is that of topological ordered phases, i.e. classes of ground states that exhibit
long-range entanglement. There are several different ways of setting up an equivalence of phases [1, 2, 4, 5], but
in general they are expected to give rise to the same equivalence relation. It is believed that topological order is a
property of states alone [5]. While defining the equivalence relation from physical principles is a task in itself, the
characterisation of all possible equivalence classes is a much more subtle endeavour. One way of tackling this
problem is to find invariants for the equivalence classes which can be computed locally and which allow one to
distinguish different phases.

A possible candidate for an invariant is the topological entanglement entropy (TEE) [5, 6], which is believed
to be a strong indicator of topological order. It is motivated by systems where the ground state satisfies an area
law. In states with long-range entanglement, where this area law is expected to hold, the TEE is a correction of
order O(1) to the von Neumann entropy of the reduced density matrix of the ground state on a disk shaped
region. Furthermore, for the usual examples of anyonic systems, such as the toric code model [7] and the string-
net models [8], it is proportional to log(D), where D is the total quantum dimension of the modular tensor
category describing the anyons. The proportionality factor depends on the geometry of the bipartition of the
system. The total quantum dimension itself characterises to some degree the anyonic nature of the local
excitations of the ground state, as it is given by the quantum dimensions d,, of the different types of anyons via
D? = 3", d; [9]. A total quantum dimension that is larger than the number of distinct particles signifies non-
abelian anyons [10], since an anyon a is abelian if and only ifd, = 1. The quantum dimension d,, of an anyon of
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type a can be understood as the asymptotic growth of the Hilbert space that encodes n anyons a placed on a plane
and conditioned on global vacuum (or trivial charge) [9].

In the thermodynamic limit of topologically ordered systems the total quantum dimension can be related to
the Jones—Kosaki—Longo (JKL) index of certain inclusions of algebras of observables localised in cones [11].
Under precise (and natural) technical assumptions this index coincides with D?. The reason is that the JKL index
gives us a way to compare the size of two (infinite dimensional!) algebras. As we shall see later, in our setting the
big algebra is related to the smaller one precisely through ‘charge transporters’, which in turn are in
correspondence with the different types of anyons. This suggests that there should be a connection between the
JKL index and the TEE. However, it is a priori not clear how these very different concepts are related.
Investigating this relation is one of the main goals of this paper.

In particular, we show with the example of the toric code how a secret sharing scheme for classical
information between two parties naturally arises, and how we can relate it to the inclusion of algebras mentioned
above. The amount of classical information that can be hidden with this scheme is then given by the JKL index.
We compare this to a similar result in finite dimensions [12], where the TEE was shown to coincide with the
optimal achievable rate of a (different) secret sharing scheme via the irreducible correlation. Based on this we
argue that the JKL index is indeed closely related to the TEE. This picture is strengthened by the observation that
the index is in a sense optimal and that it is related to a relative entropy between the corresponding von
Neumann algebras. This is a generalisation of the relative entropy known from finite dimensional systems. Using
this relative entropy and its relation to the index, we can interpret the index as a bound on the amount of classical
information that can be encoded in the above secret sharing scheme.

1.1. Total quantum dimension and the TEE

An anyon model can be specified in terms of a set of particle types, together with a set of fusion rules, certain
matrices describing the interchange of two anyons, i.e. the braiding, and tensors relating the different orders in
which one can fuse n anyons. These rules have to satisfy certain compatibility conditions. Mathematically, this
means an anyon model is described by a modular tensor category [13]. To each anyon type one can associate a
quantum dimension d;. One way to interpret this dimension is as a ‘scaling factor’ describing the asymptotic
growth of the state space of n anyons of that type. It also describes the growth in ground-state degeneracy of a
model when it is placed on an n-torus [14]. The total quantum dimension is defined as D* = 3 d?, where the
sum is over all anyon types. In the language of tensor categories, D? is called the (global) dimension of the
category [15].

Based on arguments involving topological quantum field theory, Kitaev and Preskill [6] introduced a way to
calculate the total quantum dimension: they defined an entropic quantity Stlf,g and argued that it is equal to
log D. Levin and Wen also defined a similar entropic quantity St%)‘gf, and showed that Sa,v = log D? for so-called
quantum double models [5]. The difference of a factor of two between the two definitions can be attributed to
the different shapes of the regions used in their definition.

The TEE has become a key tool in the study of topological order because it allows for a fairly practical
approximation of the total quantum dimension: one only needs to solve the model on a torus large enough that
the entropies for the various regions involved in its definition can be non-trivial [16]. Unfortunately the TEE
does suffer from some shortcomings: it is far from clear how to extend it to higher dimensional systems (see,
however [17] for recent progress) and situations involving symmetry protection [18] and it is also a deeply non-
trivial task to show that it is stable under quasiadiabatic equivalence (for some partial progress see [19]). Another
issue is that one can construct examples of states that appear to have a universal TEE term in their entanglement
entropy but which are topologically trivial. One such example is due to Bravyi (see section 2.3 of [20] for a
description).

1.2. Secret sharing
Secret sharing schemes can be seen as an instance of error correction codes. They are based on the idea that,
given a set of states of the system, one needs access to a certain ‘minimal’ set of observables on the system in order
to distinguish states in this set. This becomes particularly interesting when considering settings where
information should be encoded in such a way that only observers, that can act on sufficiently large parts of the
system are able to decode the hidden information. Classical secret sharing schemes where discussed in [21] and
later generalised to the quantum setting in [22]. There are certain bounds on the amount of information that can
be encoded in such schemes [22, 23], that is, bounds on the size of the regions (also called shares) and the
minimal number required to decode the information, given the total system size. Here we consider secret
sharing schemes in the context of topologically ordered states.

For topologically ordered systems, such as the toric code, the ground states of the Hamiltonian are locally
indistinguishable [4]. That is, with access to observables that act on a few sites of the system only, it is not possible
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Figure 1. An anyon model has a total quantum dimension D?. The existence of anyons in models is related to long-range
entanglement in the system. By judiciously choosing combinations of entanglement entropies of distinct regions, the entanglement
due to topological order can be isolated. This leads to topological entanglement entropies SSP and SIQ’;’ , the differences being mainly
due to the choice of regions. These entropies are argued to be related to the total quantum dimension D? [5, 6]. The latter can be
obtained as a Jones—Kosaki—Longo index associated to cone algebras [11]. In this paper we concentrate on the dashed arrows, arguing
that by reinterpreting the topological entropy in terms of an information hiding task [12], it can be naturally connected to the cone
index. The log of the index tells us something about how much information we can hide, and the index theory provides us with a
channel £ which describes the limited powers of an adversary Eve. Finally, D is related to the ground space degeneracy as a function of
the genus of the surface on which the model is defined [14].

to distinguish the ground states. In order to do so one needs observables that act non-locally, that is, on a part of
the system that is large compared to the system size. Note that this is exactly an error correction condition on the
ground state space: local perturbations of the ground state can be detected and afterwards corrected. Hence, we
can regard the ground state space as a quantum code, where the resulting size of the code space is determined by
the total quantum dimension D of the anyon model and the genus of the manifold in which the system is
embedded [7].

In the thermodynamic limit, however, locally indistinguishable states converge to the same state (in the
weak *-topology), since their expectation values on local operators coincide as soon as the system size is big
enough. Hence in that setting we cannot directly appeal to the degeneracy of the ground state space.
Nevertheless, it should still be possible to use the topological charges to secretly share information between two
parties in the system, if one restricts the corresponding regions in which the excitations are distributed
accordingly. The intuition for this comes from the observation that in two dimensions excitations above the
ground state always occur in conjugate pairs at the endpoints of a string, where the excitations do not depend on
the exact geometry of the string but only on its endpoints. As long as one can ‘keep’ these endpoints ‘away’ from a
possibly malicious third party by restricting their observables it should be impossible for them to determine
which pair of excitation was created. The expected size of the code space is then again given by the total quantum
dimension D of the anyon model. This forms the basis for our secret sharing scheme in the thermodynamic
limit.

1.3. Content of this work
In this paper we try to connect the different approaches to obtain the total quantum dimension D and related
quantities. In particular, we advocate an (operator) algebraic way to obtain the total quantum dimension D,
which will allow for generalisations to different dimensions and symmetry protected cases. In addition, we
interpret D in terms of a information hiding task, making a direct connection between the TEE and the JKL
index possible. Although we do not claim that our approach solves the problems with the TEE mentioned above,
we believe it offers additional insight to the nature of topological order. In particular, as we formulate D in terms
of observable algebras it is easier to anticipate a proof of the stability of the index under adiabatic equivalence and
to extend it to more exotic scenarios. There are many ways to think about D, some of which are outlined in
figure 1. That figure also shows how our work fits into the big picture.

We will start in section 2 with explaining our intuition about the index at a finite dimensional variant, discuss
drawbacks and problems that arise in the context of finite system sizes, and illustrate our intuition with the
example of a chain of Fibonacci anyons. In section 3 we recall the necessary notions and properties of two
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Figure 2. The system is partitioned into three parts: regions A and B controlled by Alice and Bob, and the rest (E), controlled by Eve.

dimensional models in the thermodynamic limit that we want to consider and discuss how the JKL index
appears in this context. Section 4 then is devoted to constructing a secret sharing scheme in the example of the
toric code on the infinite plane and to explaining how it relates to the index. Furthermore we discuss how this is
connected to recent work [12], where for finite two-dimensional lattice systems it was shown that thereisa
connection between the TEE and the irreducible correlation of certain secret sharing schemes. We also discuss
the role of superselection sectors in our construction.

One of the main contributions of our work is discussed in section 5. There we illustrate how index theory can
be used to study the secret sharing scheme in the context of quantum information theory. In particular, one gets
a quantum channel ‘for free’, and it is possible to define a relative entropy for certain algebras. Using this relative
entropy the (logarithm of the) index can be recovered, and we see how this provides us with bounds on the
amount of information that can be hidden in the secret sharing scheme. As we are mainly working in an
algebraic setting, in section 6 we shed some light on how one can reformulate the picture of secret sharing
schemes in terms of private subsystems of a channel between the corresponding algebras of observables, and give
some of the details for the example of the toric code. Finally we remark on the stability of the index under local
perturbations.

The goal of this work is to focus on the physical ideas and intuition behind our constructions. Many parts can
be made mathematically rigorous, but this requires substantial mathematical machinery, in particular from the
theory of von Neumann algebras. We refer to the relevant literature whenever this is the case. However, since we
work in an operator-algebraic framework, some basic terminology of this field is unavoidable. The appendix
contains a motivation on why we use this language to describe systems in the thermodynamic limit, as well as an
introduction to the basic notions that we use in the course of this work.

2. Finite dimensions

To explain the main idea behind our index approach, we first consider a finite-dimensional variant. Although
the main idea can be made clear in this case, it is a little surprising that a careful algebraic analysis seems
infeasible, precisely because of the finite dimensionality. We return to this point later. Although the finite
dimensional case is perhaps somewhat naive in light of these limitations, it nevertheless provides some intuition
for the approach we take in the thermodynamic limit.

2.1. Motivation: a secret sharing task

The results in this section are not completely rigorous, but are intended as motivation for the (rigorous!) results
in the thermodynamic limit, which we describe later. In the finite-dimensional ‘toy model’, the set-up is as
follows. The system, defined on a lattice L, is divided into three parts A, B, and E, like in figure 2. Alice and Bob
each control disjoint parts of the system, and Eve (perhaps some government agency) controls the rest. Suppose
the system is initially in the state |€2). Alice and Bob have the task of storing a classical message in |€2); they want
to use the system to set up something akin to a quantum I2P network which would be anonymous and immune
from censorship. To achieve this task they are allowed to do any joint quantum operation on their respective
regions A and B. In this case one can easily deduce that the configuration space for their anonymous and secret
messages is given by

Vap = span{Uys|Q2) | supp(Usp) C AB}.

However, in achieving their information-hiding goal there is no reason we should restrict Alice’s and Bob’s
operations to act only on AB. Indeed, they are allowed to touch sites belonging to Eve, as long as Eve does not find
out. Clearly, in this finite-dimensional setting, this will be help if Eve is allowed to perform any bona fide
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Figure 3. Alice and Bob control the regions A and B, but in addition have access to aregion C, ‘bridging’ their parts. Eve on her part has
access to a disjoint region E, small compared to the system size. Alice and Bob can change their choice of region C, according to Eve’s
choice of the region E.

quantum operation on her part of the system. However, if for some reason Eve’s capabilities are restricted (e.g.
perhaps government funding for building spying networks has been cut), there is a possibility for Alice and Bob
to exploit this limitation and potentially hide more information in |$2). In this paper we postulate that Eve should
only be able to do local measurements. Here ‘local’ means small compared to the system size, and compared to
the regions that Alice and Bob control’. In particular, we disallow measurements that act on all sites on a ring
around either Alice’s or Bob’s region (see figure 3). It will become clear from the example given below why we
impose this restriction. Eve can do an unlimited number of such operations in succession, so long as the resulting
operation does not encircle A or B°.

Alice and Bob can do any joint operation on their part of the system and in that way can store a classical or
quantum message that is inaccessible to Eve. Given that Eve has limited eavesdropping capabilities, the question
is if this allows Alice and Bob to encode additional signals into [§2). This is the problem that we want to answer.
To this end, consider the space Vis generated by states that Eve cannot distinguish from |Q2) by the operations at
her disposal. If we denote Of for the set of operations that Eve is allowed to perform, it can be defined as

Vi := span {|Qupe) [ (Qupe|OplQupe) = (O, ¥ Or € Og). (D

Note that this is precisely the statement that the space Vs forms an error correction code that corrects the errors
caused by Eve’s observables O [24]. Clearly the Hilbert space V,p is contained in 9A 5. Note that the condition
on the expectation values above is nonlinear in the vectors of the form Uygg|(2), so that it is not quite natural to
take the linear span. For the models we have in mind, however, this is does make sense. A typical feature of these
models is that the states corresponding to anyons of distinct type cannot be converted into each other with local
operations (if the compensating anyonic excitations, which are necessarily there because of charge conservation,
are localised far away). In other words, the anyons belong to different superselection sectors. Taking a
superposition of such states, one sees that for local observables O the cross terms vanish when calculating the
expectation value. This is essentially why this somewhat naive approach works in models such as the toric code.

We now have enough information to explain the calculation of the index invariant. This is given by the ratio
of the dimensions of V3 and V5 of Alice’s and Bob’s regions:

dlm],}A B

Vg : Vapl = .
[Vap : Vasl dimVus

©))
We will later consider a different (and less naive) definition for this index in an operator-algebraic setting. For
now we note that an equivalent way to express the index in this toy model is as a difference of entropies: here
Alice and Bob are comparing the rates of two maximally mixed signal ensembles, one built from the Hilbert
space Vyp, namely p, , := [/dimV),p and the one built from Vg, namely p, 5 = H/ dimV,3:

log [Vag : Vanl = S(Bap) — S(pap)-

At this point we illustrate the task above by an example. Consider Kitaev’s toric code [7]. In this model, one can
create pairs of (anyonic) excitations by acting with path operators on a ground state. These paths are either
drawn on thelattice or on the dual lattice, or a combination of the two. Using such a path operator Fy, Alice and
Bob can create a pair of excitations, where one excitation is in Alice’s part, while the other one belongs to Bob.

5 . . . . .
Perhaps the best analogy here is that Alice and Bob control separate nation-size states that cannot be completely encircled by an
antagonistic spying nation.

Note that, in the finite case, the set Of of Eve’s observables does not obviously form an algebra.
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The claim is that Eve, with the operations at her disposal, cannot detect that such a pair of excitations was created.
Indeed, it is well known that the state F¢|(2), where |(2) is a ground state, only depends on the endpoints of €.
Hence, since Eve can only do local measurements, one can always choose a path that avoids the support of Eve’s
measurement, in which case it is clear that Eve cannot detect it. Note that the only way to detect the excitations is
to measure the total charge in a region by measuring the path operator corresponding to a Wilson loop enclosing
the region. This is precisely how Alice and Bob can detect the presence of a charge in their respective parts of the
system. Since in the toric code charge addition is done modulo two, and there are two fundamental charges
(electric and magnetic), they have access to four times as many orthogonal states in Vs relative to V5 to hide
information from Eve. Thus the index for this case is 4, which is the total quantum dimension for the toric code.
Since Alice and Bob can only measure charges locally in their region, relative phases between the different
charged states get lost upon measurement. Hence they can only retrieve four classical bits of information.

2.2. Problems with this approach

There are some drawbacks to this approach. They mainly stem from two causes: (i) the index quantity is not
obviously independent of the regions A and B; and (ii) there is no clear algebraic structure underlying the set of
allowed operations for Eve. Her local operations do generate an algebra, but this algebra is too big: it contains all
operations on Eve’s region. In some cases there is a natural choice of algebra: for example in the toric code one
can choose the abelian algebra generated by all star and plaquette operators acting on E. However, in general it
seems to be difficult to get a good handle on Eve’s operations, and consequently, it is difficult to find out what all
the allowed operations for Alice and Bob are. We argue below that these difficulties can be overcome by passing
to the thermodynamic limit. This is the starting point of our analysis.

The naive analysis here can be refined by using techniques developed by Haah [25]. He considers ground
states of local commuting projection Hamiltonians for which examples include Kitaev’s toric code and the
Levin—Wen models. His main goal is to define an invariant for such Hamiltonians that is stable with respect to
local perturbations that do not close the gap. Part of his construction is to identify the different types of (anyonic)
excitations in the model. As discussed above, such excitations are precisely what allow Alice and Bob to share
classical information. A key ingredient in his construction are algebras associated to annuli. These algebras are
obtained by looking at the observables supported on the annulus, and dividing out the observables that
commute with all terms of the Hamiltonian supported on the annulus, i.e., those operators that do not create
excitations in the annulus. This quotient algebra can then be decomposed into smaller algebras using projections
which correspond to the different particle types. This construction is—in a sense—dual to ours outlined above.
His procedure allows one to detect a single charge sitting inside the annulus. Since the total charge should be zero
on the ground state space, the compensating charge can be thought of as sitting inside a different annulus. By
growing (and deforming) the annuli on the outside, we can make them fill the entire space outside of the parts in
the interior. Hence, we again have divided the system into three regions—Alice, Bob and Eve. The only
difference is then that we are interested in which information can be hidden from Eve (i.e., which are invisible to
her), while Haah considers all the charges that can be detected inside the annuli. These two notions are clearly
related, but we will not pursue this connection any further in this paper.

2.3.The Fibonacci chain

Before we discuss the thermodynamic limit, we consider another example which sheds some light on the
relation to the algebraic properties of the anyons (for example, given as a modular tensor category, see [13]). For
concreteness, suppose that we have n anyons, fusing to the vacuum. A basis for such states can be conveniently
represented in terms of fusion trees. The key point then is to define the appropriate notions of a local operation
for Alice, Bob and Eve, given that they each control a fixed set of the anyons. To this end we follow the approach
of [26]. Of the n anyons, Alice (Bob) controls a group of 1, (n5) anyons, Eve the rest. These groups of anyons are
assumed to have total charge given bylabels p,, p; and p;.. Thelocal operations are then precisely those
operations on the respective groups of anyons that leave this total charge unchanged. We can then construct the
spaces Vigand Vyp.

As an example we consider the Fibonacci model [27] with anyons 1, 7 and assume that p, = py = pp = L.
The Hilbert space of the system is also called the fusion space. Its states describe the different ways that the anyons
can fuse. In the Fibonacci chain there is only one non-trivial fusion rule: 7 ® 7 = 1 @ 7. That s, if we fuse two
Tanyons, we either get a 7 anyon again, or the trivial anyon 1. A basis for the Hilbert space of the system can then
be obtained by labelling all different ways n distinct 7 anyons can fuse to the trivial anyon. This can be done
conveniently with the help of fusion trees, which label the outcome of the fusion operations. In figure 4 we
illustrated this with an example of a handful of anyons. In this example, the two left-most anyons fusetoa 7,
while the fourth and fifth anyon fuse to the trivial charge. The order in which the fusion is performed should be
the same for all basis elements, but is otherwise arbitrary. Choosing a different order amounts to a basis
transformation [13].
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Figure 4. Consider a chain of # T-anyons, grouped into three groups. Alice, Bob control the left and right group, Eve the ones in the
middle. Since the fusionrulesare 7 ® 7 = 1 @ 7, these nanyons can fuse to the trivial charge 1. The states describing these different
configurations span a vector space: the fusion space. A basis can be described by considering fusion trees as above. For example, the two
leftmost T anyons fuse to 7, while the two in the middle fuse to 1. Fusing the anyons in a different order would give a different basis,
which is related to the old one by a unitary transformation.

Now choose a fusion tree where p, = p; = pp = 1, thatis, all Alice’s anyons fuse to the trivial anyon, and
the same is true for Bob and Eve. Write |Q2) for the corresponding fusion state. If Alice and Bob act with local
operations on the state |2}, they cannot change the total charge in their respective regions. That is, they can only
make states such that Alice’s anyons fuse to 1, and the same is true for Bob. By finding all fusion trees subject to
these constraints we find the space V3.

In contrast, if they are allowed to do non-local operations as well, there are additional possibilities: they can
collude and make states such that the total charge in Alice’s region and that in Bob’s region is 7, but in such a way
that these two 7’s fuse to 1, so that the total charge of the system remains trivial. They can do this without
changing the total charge of Eve (because two 7’s can fuse to 1), so she is not able to detect this. This gives a bigger
space ﬁAB-

Finding the dimensions of V3 and 17,43 now reduces to the straightforward combinatorial task of counting
all admissible fusion trees. If the number of anyons n, and np tend to infinity, the ratio of the dimensions of these
spaces tendsto 1 + (2, where s the golden ratio. This is precisely the total quantum dimension of the
Fibonacci model. Of course, this is not a useful way to find the total quantum dimension, since this immediately
follows from the given data. However, by considering this abstract setting it does shed more light on the secret
sharing task, giving support to the definition in equation (2).

These different examples show that the essential step is to find the appropriate notion of what alocal
operation should be, emphasising that the algebraic point of view is a natural one.

3. Thermodynamic limit

To obtain a clear-cut, purely algebraic construction of the communication task described in the previous section
we have to go to the thermodynamic limit. Instead of keeping track of the system size N, we start with infinitely
many sites from the outset [28, 29]. The sites are labelled by a countable set B. Typically, in the models we are
interested in B is the set of edges (bonds) between nearest neighbours in a Z? lattice or of a honeycomb lattice.
For simplicity we assume that the local dimension is the same d for each site, but this can easily be generalised.

This setting is most conveniently described in the operator-algebraic framework, where the observables of
the system are modelled by a C*-algebra 1. This can be thought of as the algebra of all observables (or, more
general, operations) that can be approximated arbitrarily well (in norm) by observables that only act on a finite
number of sites. We refer to appendix for an overview of the main definitions.

The results in this section are not new. Rather, we recall the main objects of interest in the operator-algebraic
approach to topological phases, with a view towards our intended applications. Technical details can be found
in[11,30].

3.1. Alice, Bob and Eve again

We can divide the system into three parts again. Alice and Bob both control (disjoint) cone-like regions (see
figure 5), and Eve controls the complement. We write Ay, for the set of all sites that Eve controls, and similarly A4
and Ag for Alice’s and Bob’s cones. The corresponding observable algebras are denoted by 2((A;). These are the
algebras of all observables that can be approximated arbitrarily well in norm by observables acting on only
finitely many sites inside A;. The specific shape of the cones is not that important, as long as they are without
holes, disjoint, and extend to infinity. It will become clear below why this choice of regions is natural.
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Figure 5. Alice and Bob each control infinite disjoint cone-like regions A4 and Ag, Eve controls the rest of the system.

We now suppose that 2l is represented on some Hilbert space H by an irreducible representation m, that is
o (W) is a C*-subalgebra of 9B (H). Which representation to use (in general, there are many inequivalent choices)
is dictated by physical principles; in our case it will come from a pure, translation invariant ground state wj via
the GNS construction (see appendix for a short introduction). Motivated by the discussion above we postulate
that Alice and Bob can perform every operation that commutes with all of Eve’s local operations, hence this is
given by Rup = T (A(Ag))’. Recall that the prime denotes the commutant so that Rap is the set of all bounded
operators in B (H) that commute with each m (A), A € A(Ag). On the other hand we can consider all
operations that Alice can implement on the cone she controls. These are given by the von Neumann algebra
Ra = m(RA(A4))". Taking the double commutant is natural here: it ensures that all the relevant spectral
projections are in the algebra [28]. We define R similarly. The operations Alice and Bob can do together when
only acting on their cones is then R,p := R4 V Rp, where the wedge denotes the von Neumann algebra
generated by the two algebras. Note that by locality, m (2A(As U Ap)) C 7 (RA(Ag))’. Taking commutants twice
it follows that we have an inclusion Ry5 C Rz of von Neumann algebras. The algebras are in fact factors, if one
assumes that the ground state representation 7 is irreducible (equivalently, wy is a pure state), and
Rp N ﬁAB = CI[11, Lemma 3.2]. Such an inclusion of von Neumann algebras is called an irreducible
subfactor.

3.2.JKL index

We are interested in the question of which extra operations Alice and Bob can perform. These extra operations
are precisely those that are in Rp but not in Ry 5. Therefore we would like to know how much ‘bigger’ the
algebra ﬁA p is compared to R4p. One way in which this can be quantified is by the Jones [31] (or rather, in our
case, Kosaki-Longo [32]) index [ﬁA 5 Ragl of inclusions of von Neumann algebras. It can be thought ofas a
generalisation of the index of a subgroup Hin a group G. For our purposes, the technical details and properties
behind this index (a subject on its own in operator algebra) play only a minor role. Rather, in the sequel we will
focus on some properties that follow from the general theory, in particular the existence of a particular quantum
channel and the Pimsner—Popa basis, a way to write elements of ﬁA g as alinear combination of a finite number
of ‘basis’ elements with coefficients in the smaller algebra R 3.

If we assume two technical assumptions, the approximate split property (in [33] this property was referred to
as the distal split property) and Haag duality [33, 34], it can be shown that the index does not decrease if one
enlarges the cones. Haag duality (in a representation 7) is a property of the commutants of cone algebras. In
particular, it says that if A is a cone, 7 (A(A))’ = m (A (A))”, where A (/) is the algebra generated by all local
observables outside of the cone. One inclusion follows easily from locality, but the other inclusion is non-trivial,
and may fail in general. We will not give a precise definition here of the approximate split property (see [33] for
the details), but in the present setting it amounts to saying that the map AB — A ® B, with A € R, and
B € Rpextends toanisomorphism R g — R4 ® Rpof von Neumann algebras, if A and B are two separated
cones. When one thinks of finite dimensional systems this looks like a trivial statement, but in the
thermodynamic limit it is not, and this property is related to deep operator-algebraic questions. For example,
Longo used the split property in his solution to the factorial Stone-Weierstrass conjecture, which at the time was
open for along time [35]. One consequence is that if 2 C 9B is an inclusion of C"-algebras, then any factor state
(in the sense that its GNS representation is a factor) of 2 extends to a factor state of 2B. It also has been important
in understanding entanglement properties in algebraic quantum field theory [36].

In general, we expect the index to be independent of the choice of cones (as long as their opening angles are
big enough). In the next subsection it will become clear that the inclusion R 45 C ﬁA pis related to the different
charges of the model, and to operators that move them around. Keeping this in mind, independence of the index
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on the choice of cones can be interpreted physically by saying that excitations can be localised well enough. That
is, as long as the opening angle of the cone is not too small, each anyon can be localised in such a cone (regardless
of the orientation of the cone). This can be shown explicitly for the toric code [11].

Note that the index is a property of the state, just like TEE. This is perhaps not apparent at first sight, but one
should keep in mind that the respective algebras are taken in a specific representation 7. This representation, in
turn, usually is obtained from a state (in our case, generally a translation invariant ground state), and different
states in general lead to different algebras (and possibly different values for the index).

3.3. Superselection sectors

In the finite-dimensional toy model we observed that the extra power that Alice and Bob have at their disposal is
due to the existence of anyonic excitations which live in different superselection sectors. This is also true in the
thermodynamic limit, where there is an elegant characterisation of such sectors. There they appear because there
are inequivalent irreducible representations of 2(. This is equivalent to saying that vector states corresponding to
distinct representations are not superposable, i.e. a relative phase between such vectors cannot be observed with
any observable in 2/ [37].

Not all representations of 2l are physically relevant. In the models we are interested in, charges are created by
applying string-like operators. By moving one end of the string to infinity, we can obtain a state with a single
charge. In topologically ordered models states created by such string-like operators only depend on the
endpoints of the string. Hence the direction in which the charge is moved to infinity is not observable. In fact, if
we restrict to operations outside an arbitrary cone containing the endpoint of the string, the charge cannot be
detected at all and the system appears to be in the translationally invariant ground state. In other words, the
charges can be localised in cones. Another natural condition is that we should be able to move the charges
around.

On the level of representations 7, these features are encoded by demanding that they satisfy the following
criterion for all cones A:

7o [A(AS) 22 RA(AC). ©)

Here with [ we mean that we restrict the representation to the subalgebra 21 (A°). That is, the criterion demands
that if we restrict the representations 7 and m to observables outside of a cone A, they become unitarily
equivalent. Note that this restriction is important: for example, the representations 7 and 7 are not equivalent if
7 describes a single anyonic excitation. That is, in such case there is no unitary Vsuch that my(A) = Vr (A)V*
forall A € 2, butif we only require this to hold for A € 2((/), such a unitary does exist. In algebraic quantum
field theory a similar criterion is used, and it is known that (under some additional technical assumptions),
studying these equivalence classes of representations allows one to find all relevant properties of the charges in
the theory, for example their statistics and fusion rules [37]. Using similar ideas this can also be done for
quantum lattice models, such as Kitaev’s quantum double [30, 34].

How does this relate to the choice of the algebras Ryp and 7/€A 5¢ Asin the finite dimensional setting, the idea
is that Alice and Bob each control their own regions. The algebra R describes the local operations they can
perform. For example, it allows them measure the total charge in their region or move charges around. But it
does not give them the ability to move a charge from one cone to the other, or equivalently, create a pair of
conjugate charges (one in each cone). One can however show that charge transporters V that can move a charge
from one cone into the other are contained in ﬁAB. This shows that ﬁAE is bigger than R 4, and it is precisely the
observation that it contains the charge transporters that will allow us to connect it to the quantum dimension.

4. Secret sharing

We now have the technical tools to describe a version of the quantum information task of section 2 in the
thermodynamic limit. In particular, we will describe how we can use charges localised in cones to store data that
is invisible to Eve, using the presence of superselection sectors, and argue how our procedure is related to

the TEE.

In section 2 we described how an information hiding-task can be implemented for systems on a finite lattice
in two dimensions, motivating our index approach. Although the naive method there works, this finite
dimensional description suffers from drawbacks, such as the index described there not manifestly being
independent of the regions A and B and that the set of allowed operations for Eve not carrying a nice algebraic
structure. Here we describe an analogous setting in the thermodynamic limit of the toric code on the plane and
show that it overcomes both drawbacks, while still resulting in an operationally sensible picture.

Asin the finite dimensional variant, the task for Alice and Bob is to share information encoded in some
quantum state on the whole system in such a way that Eve cannot access this information with any local
measurement on her system. This means that Alice and Bob should be capable of reconstructing the shared
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Figure 6. Example of a protocol for a secret sharing scheme: a sender X chooses a state €2; from the set of code states

{Qy = Q, Qx, Oy, Qy}and sends it to the system consisting of authorised shares Alice (A) and (B) and unauthorised share Eve (E).
The shares then operate locally on their part of the system to detect which state they received. The authorised shares Alice and Bob will
be able to recover the information i of which state they received, whereas Eve will always get the same answer (0) no matter which state
was sent.

information encoded in the quantum state just by performing local operations on their respective part of the
system, while Eve cannot cannot access this information by using operations on her part of the system”. This is
exactly the situation described by secret sharing schemes as treated in [23]. In such schemes the parts of the
system that are capable of reconstructing the shared information solely by performing local operations are
usually referred to as authorised, whereas those that cannot are called unauthorised. In our setting Alice and Bob
will comprise the authorised parts of the system and Eve is unauthorised. Secret sharing schemes are usually
defined for systems described by a finite dimensional Hilbert space, where the partition of the system into
subsystems is given by a tensor product structure. In the thermodynamic limit of the toric code the system’s
Hilbert space is clearly infinite dimensional and the we do not have an obvious partition into tensor factors. In
fact, one can show that the ground state Hilbert space does not factor [33] as Hy ® H x, where H, is the Hilbert
spacerelated to a cone®. In [23] it was shown, however, that there exists a characterisation of secret sharing
schemes by error correction conditions. We will not generalise this secret sharing scheme to infinite dimensions,
but will use this characterisation to illustrate that we indeed find a secret sharing scheme in the thermodynamic
limit of the toric code. This is motivated by the observation that error correction schemes can be formulated in
terms of operators [38] and, more generally, for von Neumann algebras [39].

We will briefly review the authorised and unauthorised sets comprising a secret sharing scheme in finite
dimensions. Given a subspace C C K of some n-partite Hilbert space C, the authorised sets A C {1,...,n}are
characterised by the condition that C corrects errors on their complements A°. Thatis, for all ¢, ¢ € C and for
all E € B (K 4) itholds that (¢, E¢) = (1, Ey). Unauthorised sets U C {1,...,n} are characterised by the
condition that C corrects errors on them, i.e. (¢, F$) = (¢, Fib) forall ¢, ¢ € Cand F € B(Ky). For such
pure state quantum secret sharing schemes it is easy to see that the no-cloning theorem implies that the
unauthorised sets must be the complements of authorised sets and vice versa [23].

The setting we are considering here corresponds to the case where the shared information is classical. That s,
the set of code states C consists of a choice of orthonormal vectors {);}. Then the conditions for unauthorised
sets remain the same but the authorised sets A are characterised by demanding that for each pair of indices 7, j
and each operator E € B (I s itholds (¢, Eyj) = 6;j (1, Ev;)[23]. Hereitis no longer true that
unauthorised sets have to be complements of authorised sets, for classical information can be cloned. Figure 6
shows what a protocol implementing a secret sharing scheme for classical information looks like. In the
following section we describe how we can set up a secret sharing scheme in the thermodynamic limit of the toric
code, specify a set of states which serve as code states, and check the above conditions.

4.1. The use of cones

We now come back to the thermodynamic limit and start by considering two disjoint cones A4 and Ag which are
separated sufficiently far enough from each other”. For concreteness we describe the example of the toric code,
but we believe that the method can be generalised to similar models; in particular Kitaev’s quantum double
models for abelian groups G can be handled directly by using results from [34]. These cones represent the
regions to which Alice and Bob have access. The complement Ag of the union of these two cones is considered to
be controlled by a (possibly malicious) third party Eve. Eve cannot access A4 or Ag. With the notations
introduced in section 3 we denote the von Neumann algebras of observables localised in the cones A4 and Az by
R4 and Rp. The von Neumann algebra generated by the local observables on Eve’s part is written as R, while
the algebra of observables commuting with Ry; is denoted R . Here we are working in the translation invariant

If we speak of ‘local’ we always mean that the observable acts on finitely many particles on the lattice. Furthermore, in this context ‘local
additionally means that the observable is localised in one of the cones.

Although we do not claim that this is the case here, this touches upon a more fundamental property of infinite dimensional systems.
Recently Slofstra has found a counterexample to Tsirelson’s problem [60], by showing that there are commuting operator models for two-
party correlations that are not equivalent to a tensor product model.

o In [33] this is defined rigorously for the toric code, and in [11] this is extended to more general models.
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Ag

Figure 7. The cones A4 and Aj are the regions Alice and Bob have access to, and the remainder of the system A is controlled by Eve.
The charge transporters between A, and Ay are constructed from sequences of ribbons with fixed endpoints (one in each cone) such
that with growing length the ribbons avoids finite sets in Ag. The solid line indicates an infinite ribbon that stretches out to infinity and
which we can think of representing a charge transporter.

ground state representation of 2, that is, the cyclic representation 7 associated to the (unique) translation
invariant ground state wy of the toric code, on a Hilbert space H, with wj represented as a unit vector 2 € H.

We are interested in ways to create states that Alice and Bob can distinguish, but Eve cannot. Of course, if
Alice and Bob have access to both A4 and Ag, they can just store their information by acting with local operators
in one (or both) of the cones, and Eve will not be able to detect this. This scenario in itself is not that interesting,
so we ask the question what they can do if they in addition have access to operations that are not generated by the
local observables in A4 or Ag, but nevertheless invisible to Eve. Potentially, this gives them more power
compared to the ‘baseline’ scenario of local operations on their cones, and it are these additional capabilities that
we want to investigate. The idea is to create a pair of charges, with one end of the pair in each cone. Since we are
interested in the additional power of Alice and Bob, we can disregard local modifications of these states that can
be obtained by acting with observables in R, or Rg. Such operations include moving the charge around in the
cone, or introducing pairs of charge and conjugate charge within a cone. We will come back to this point after we
introduce the main idea in more detail.

Note that the operations that Alice and Bob can perform in their respective cones commute with the
observables Eve has at hand. This is the locality condition that is already built into the construction of the
systems. We will show that we can use the charge transporters Vy, V; and Vythat create pairs of excitations
distributed over the cones A4 and A to construct states that the authorised parts can distinguish. They are
unitaries on the Hilbert space H and one can think of them as creating correlations between the cones when
applied to the ground state vector €2. Even though they are notlocalised in A4 U Ag, they still commute with all
of Eve’s observables, and hence are elements of ﬁA - The reason is that they can be obtained as weak operator
limits of path operators. That is, one chooses a site in each cone, and connects them with a path (see figure 7).
Then, as n grows, we let the path go to infinity (in the sense that it will avoid any finite subset of Ay eventually,
keeping the endpoints fixed). The corresponding path operators then converge to the charge transporter in the
weak-operator topology. As aresult the charge transporters commute with all of Eve’s local observables, and
hence are contained in Rz [30]. From this it already follows thatif E € R is any operator on Eve’s part of the
system, its expectation values in the states Vy €2, V2, V& Q and € coincide. That is, consider for example the
state V;Q with i = X, Z or Y, then (V;Q, EV:Q) = (Q, V*EV;Q). Since V; € Rapwehave [V;, E] = 0,and
therefore

(ViQ, EVIQ) = (0, EQ), i=X,Z,Y.

Hence Eve cannot distinguish between the states in C := {2, Vx2, Vz, V4 Q} byacting with local operators
on her system. On the other hand Alice and Bob can distinguish these states by acting locally on their cones: the
construction of the charge transporters includes a specification of a site in each cone and the transporters create a
pair of conjugate excitations from the ground states at these sites. Alice and Bob can now locally measure the flux
through a (Wilson) loop around the respective sites to determine which excitation or whether at all was created.
In other words, they do a charge measurement in their respective cones. The position of the site inside the cone
itselfis not so important here (that is why we did not specify it further) since there are always unitaries with
supportin either of the cones that can move the excitation around.

This means, that Alice and Bob each possess a POVM that allows them to distinguish the states in C. The
choice of this POVM is not unique, since it depends on the loops around the site at which the excitation created
by V;islocalised. It can in principle be any loop of any size as long it surrounds the excitation. The flux
measurement corresponds to a projection on the enclosed area onto the excitation one wants to measure
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(detailed descriptions of these projections can be found in [7, 40]). The POVM elements then simply consist of
the projections on the different excitations that can occur, given that the loop is fixed.

The above construction can be extended a bit. In the end, Alice and Bob are only interested in the fotal charge
in their region. Acting with local operators in either of the cones might move the existing charge around, or
create pairs of conjugate charges, but the total charge does not change. Hence, instead of just the states V; (2, we
can consider the four spaces RypV; 2 (or their closure). To Eve, all these states look the same, since R4p C R,
but Alice and Bob can in principle distinguish the four subspaces. Note that this is less practical, since the
location of the charge of interest is not known, and Alice and Bob have to make sure their charge measurements
encompass a big enough region. The projections that measure the total charge in A4 or Agare both in R4z, but
these operations clearly are not local any more. For simplicity, we restrict to the set C of four states, and ignore
the local modifications in the cones: the corresponding statements for that case can be obtained
straightforwardly'’.

If we go back to the finite-dimensional description of secret sharing schemes where the Hilbert space is
described by a tensor product of n Hilbert spaces, it can be easily checked thatforaset A C {1,...,n}tobe
authorised with respect to a code space C is equivalent to requiring the existence of a POVM {E;} acting on H,
such that E;¢; = §; ;9); where 1); € C.Itis necessary that the POVM elements commute with the operators
acting on the complement of A. It makes sense then to rephrase the condition on A to be authorised to the
following: elements E that commute with the observables B (},) on A such that it holds that (), Eyj) = 0if
i = j. Note that this is equivalent to the original definition, since the Hilbert space decomposes as a tensor
product of the authorised part H, and its complement H .

In the infinite dimensional setting we do not necessarily have a decomposition of the Hilbert space into
tensor products. But the algebraic view still allows for the characterisation of authorised sets. That is, we say that
asubalgebra A of our system’s algebra m, (2()” is authorised with respect to the classical code space C if for all
E € Nandall ¥, ¥ € Cwith i = jitholds that (1), Ey);) = 0.

We can show that in our example of the toric code this is true for both Alice’s and Bob’s observables R4 and
Rp. In order to prove this it is crucial to understand what the structure of the commutants R/, and R}y is. In the
following we only consider Alice’s observables R4, since the case for Bob can be understood analogously. In fact
it was shown [33] that the von Neumann algebra R, satisfies Haag duality, thatis, Ry = R ;. Hence the
commutant R/, is exactly given by the observables Rz on the complement A° = BE of Alice’s cone. In the
thermodynamic limit, this statement is non-trivial, the reason being that the algebras Rz and R4 do notlive on
different tensor factors of the underlying Hilbert space. Moreover, it is in fact false for the algebra R 45 (in the
sense that R,z = R g = Rg) of observables localised in both cones A, and Ag, which is the whole reason that
our construction works. In that case R 4 is properly included in the ﬁA 5> which as we recall is the algebra of
observables that commute with all of Eve’s observables. Hence Haag duality for cone algebras and its failure for
the algebra R 45 are important for our setting. Even more, the identification of Alice’s and Bob’s part of the
system, A4 and Ag, as authorised sets by just the requirement that C corrects errors on their complements A5,
and Aj still makes sense.

Nowlet ¥, ¢ € Cbedistinctstatesand E € R/, = Rpg. Without loss of generality we can assume that Eis a
product of ribbon operators Fgand Frin R and R, since the linear span of products of such forms a strongly
dense subalgebra of R 5 [33]. Furthermore, recall that 1) = V;€2and ¢ = V;( forsome i = j, including the
possibility that Vj = I. Hence (¢, E¢) = (0, V;*FzF5V; (). Recall also that the action of the charge
transporters V. on the ground state € create an excitation at some site s € Ag and its conjugate at some site
sp € A4. Thus, in order this scalar product be non-zero, the ribbons to which the operators Frand Fg
correspond, needed to connect the sites sg and s, with each other. But this is impossible, since this would require
aribbonin A, starting at s, and connecting to the boundary in Ay4, and the corresponding ribbon operator
would be in R 4. Hence the product V;*Fy F V; creates non-trivial excitations above the ground state when acting
on 2, and it follows (1), E¢) = 0, since states that contain excitations above the ground state are orthogonal to
the latter (see also [41]).

Summarising this, we consider the collection of orthonormal states C = {2, VxQ, V), VyQ}, or rather
the classes of states R4V, {2 (recall that these are orthogonal spaces). Alice and Bob can distinguish these classes
of states by doing charge measurements in the cones A4 or A, hence A, and Ap are authorised sets. On the
other hand, all states look the same for local measurementsin A = (A4 U Ap)S, hence this can be regarded as
an unauthorised set. The key properties used for this characterisation are Haag duality of cone algebras in the
ground state representation and the detailed knowledge about the local excitation structure above the ground
state.

10 The choice of taking C = {2, VxQ, VzQ, Vx V; 2} from the spaces RapV; €2 can be interpreted as choosing different implementations
of secret sharing schemes with same information to be hidden and same access structure. Additionally Alice and Bob can act locally on the
state within their cones without the corresponding other being able to notice.
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We would like to stress that this scheme cannot be extended to one for sharing quantum information. Given
two different code states 1); and )3, i = j (or, two states in different classes, in the general setting), we could in
principle also prepare the superposition 1) = % (¥ + €i*1;), where @is a fixed complex phase. But we cannot
distinguish this superposition from any other of these two states by any local operation on A, or Ag. To see this,
consider alocal observable A € R4. Then, since A just acts in the cone A4 the operator Vi*AVj, i = jcreates
non-trivial excitations above the ground state, hence (1;, ij> = 0, and therefore
(¥, AY) = % (i, AYy) + % (15, Avj). Solocal charge measurements lose information about relative phases in
the superposition of code states. That is, the code states obey a superselection rule.

Another question is if there are more states which we can add to the already known code states to increase the
amount of information Alice and Bob can share (where, as before, we are only interested in states up to acting
with local operators in A4 or Ap). Thatis, are there perhaps other operations in R g thatlead us to a new class of
states that can be distinguished with local operations in A4 or Ag? This turns out not to be the case, which can be
understood by the JKL index. The charge transporters which are used to create the code states are such that they
commute with all observables at Eve’s disposal, but are not localised in either cone. Hence the question whether
this set of states is complete translates to the question whether we found all charge transporters, corresponding
to charges that we may not have found yet. This question can be answered by computing the value of the JKL
index: it turns out that all the observables ﬁA 5 that commute with Eve’s allowed operations R are precisely
generated by those in the cone and the unitary operators V, Vz, Vv, thatis 7/€AB is generated as a von Neumann
algebra by the charge transporters and Ry [11]. This result follows from two steps: first one proves the general
result that the index provides a bound on the number of inequivalent charges (and hence, the number of
‘inequivalent’ charge transporters). Then one can calculate the index itself, and see that the known charge
transporters already saturate this bound. This argument shows that we can regard the JKL index then as the
maximal number of code states for a secret sharing scheme of classical information. We come back to this point
in more detail in section 5.

There is one other point to discuss: is it really necessary to use the operations in Rap? Indeed, if Feisapath
operator between the sites in cone Ay and Ag, then V;Q) = F; Q). The problem is that Alice and Bob at some point
have to apply an operator to store the classical information. If they do this by creating a pair of excitations in one
cone, and then move one of the excitations to the other cone, Eve could detect the excitation as it moves through
her region. Even if Alice and Bob are able to do this so quickly that Eve has no chance of finding out, there is
another method for Eve to detect this. So far we have assumed that Eve does not alter her part of the state. That s,
the state we start with is (2. But nothing prevents Eve from doing any operation on her part of the system. For
example, she could create a configuration of charges on her side. If the path operator that Alice and Bob apply to
the system crosses one of the paths of Eve’s operators, the state will acquire a phase because of the anyonic nature
of the excitations, which opens up possibilities of detection. If Alice and Bob use the operations in Rap, this
cannot happen, although it should be noted that in a laboratory setting this may not be very practical (or even
possible). We briefly comment on this last point below.

4.2. TEE and the irreducible correlation

There exists an interesting interplay between the TEE [5, 6] and the irreducible correlation of the state, which
provides the TEE with an operational interpretation as the achievable rate of a certain secret sharing scheme of
classical information [12].

The irreducible correlation is a measure of correlations on multipartite quantum systems. More generally,
the k-th irreducible correlation C%® (p) of a state p on an n-partite system quantifies how much correlations are
contained in the kth reduced density matrix (RDM) p() that are not contained in the (k — 1)-RDM p*—1_Itis
given by the expression C®¥ (p) = S(p®) — S(p%~D), where pV is the state that maximises S (¢’) when
optimising over all states that have the same I-RDM as p. Precise definitions can be found in [12, 42].

Consider now a state p of a quantum many body system that satisfies an area law with a ‘topological’
contribution, i.e. S(A) = B|OA| — ngay + O(|OA[™!) for (large) regions A with some constant 3 > 0 and ny,
being the number of connected components of the boundary of A, and «y the TEE. Assume that the correlation
length is finite, i.e. p, = p, ® p, for disjoint regions A, C thatare far away from each other, and that the
conditional mutual information between A and C conditioned on Bis zero, i.e. I (A : C|B) = 0, if the regions A
and Care connected through a third region B such that ABC has no holes. Under these conditions it was shown
in [12] that the TEE S, coincides with the 3rd irreducible correlations of the reduced density matrix (RDM) on
regions ABC [12]. Here ABC is a partition of the system in a configuration as considered in Kitaev—Preskill [6]
and similarly in Brown et al [16], or as in the Levin—Wen definition of TEE [5]. Note that, borrowing the
notation from the introduction, Stlf)lls = vyand Stlg)‘gf = 27.

If we consider a finite region ABC asin [5, 6] the 3rd irreducible correlation C®(p, ) thus characterises the
correlation in p, . that are not contained in the RDM of any bipartition of the tripartite system ABC.
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Furthermore, in [12] it was shown that then C® (p, ;) carries an operational interpretation in terms of the
maximal rate rypc of a certain secret sharing scheme of classical information. To be more precise, regarding p, -
asa tripartite state over ABC itholds that C® (p, ) is equal to the optimal sharing rate rp¢ for a secret sharing
scheme for classical information that encodes information in p, g such that the information can only be
decoded by having access to all three regions'' A, Band C.

That s, for optimal encoding and decoding channels the number bits that can be encoded is given by r,c.
Now since C®(p, sc) = Tapc this means that the number of bits that can be encoded using the tripartite
correlations of p, . is given by S,. For the case of anyon models where the TEE of the ground state is given by
+ = log D and D is the total quantum dimension, the number of bits that can be encoded is D in case of
Stlf)g and D? in case of Sg(;‘{)v. Therefore the total quantum dimension determines the maximal amount of
information we can encode in p, - by just using the tripartite correlations in this state. The difference between
the two settings of [5, 6] is a result of the different topologies in the choice of ABC. Intuitively in the Levin/Wen
type of regions there exist operators acting along non-contractible loops that leave the ground state invariant and
that contribute to C? (p, ) whereas in the Kitaev/Preskill setting such loops can be contracted.

In the thermodynamic limit of the toric code we have, however, a different geometry of the regions
A, B and C, where we identify the regions A and B with the cones A4 and Ag controlled by Alice and Bob,
respectively, and C with Eve’s part Ag. Also note that in this case we have that ABC comprises the whole system,
as opposed to the finite dimensional case, where ABC just needs to be a sufficiently large region. As discussed in
the previous sections, in this setting D? is the dimension of the code space of a secret sharing scheme for classical
information between the algebras over disjoint cones. More precisely, the number of equivalence classes
Rap Vi of states that differ only by local operators in the respective cones, is given by D?. The code space is
maximal in so far as that the JKL index bounds the number of superselection sectors from above [11], and is
equal to D?. In this sense log[ﬁA 5 : Ragl = log D?is the optimal sharing rate of that scheme and we regard this
as an infinite dimensional analogue of the results obtained in [12]. In the next section this equality is discussed in
more detail. In the general case we expect that the index also carries a similar interpretation.

The JKL index can also be related to a relative entropy for the inclusion R4p C ﬁ/\ p which can be interpreted
in terms of a Holevo quantity, giving a bound on how much better we can distinguish states using operations
from Ryg, compared to with just operations from R 4. The details can also be found in the next section.
Consequently the thermodynamic limit exhibits a very similar structure as in the situation of finite lattices.

4.3. Can we work around superselection sectors?

The secret sharing task we described depends on the presence of charge transporters, and hence of
superselection sectors. These are modelled as equivalence classes of representations, satisfying the localisation
criterion (3). The idea to use superselection sectors to assist in quantum information tasks is not new, see for
example [43], where the authors apply the fact that local operators cannot distinguish the different
superselection sectors to a data hiding protocol.

Itis natural to ask if superselection sectors can be used to circumvent certain no-go theorems in quantum
information. Unfortunately, this turns out not to be the case, if we assume an adversary Eve has access to an
auxiliary system to store compensating charges [44]. Hence the authors of [44] conclude that superselection
sectors cannot be used to increase the security of quantum information protocols.

This result appears to be at odds with our claim that Alice and Bob can share a secret securely with the help of
superselection sectors (which is essential in our construction). This is not the case, since the two settings are
fundamentally different. In particular, Kitaev et al consider the case where the superselection sectors are given by
acompact group symmetry. The adversary Eve is then allowed to do any operation that commutes with this
symmetry. If she has an auxiliary system available in which she can store a compensating charge, she can
implement arbitrary transformations without breaking the symmetry. In our setting, we know that the
symmetry is not given by a group (since our anyons are describe by a modular tensor category), and Eve does not
have an auxiliary system at her disposal. In addition, she can only do local operations, which further limits her
powers. In particular, such operations cannot interpolate between different superselection sectors, at least not in
our setting, where the we describe infinite systems.

We also do not need to assume that the total charge in the system is zero, it is enough to know that the total
charge in both Alice’s and Bob’s cone is trivial, which they can check before starting the secret sharing protocol.
If there are only abelian sectors, even this assumption is not necessary: Alice and Bob can each measure the total
charge in their cone before the protocol starts, and record the result. Since the fusion rules in that case give a
unique charge after fusing two anyons, they can compensate their measurements by computing the result of

11 . . . . . . . .
The optimal rate determines how many bits can at most be encoded in the state p, 5 that it there exists a decoding channel that reliably
can recover the information in asymptotic many uses of the scheme.
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fusion with the conjugate charge. In the non-abelian case this is no longer true, since there are multiple fusion
outcomes.

5. Channels and entropy

The secret sharing task we described suggests a description in terms of quantum channels. In particular, we
would like to have a quantum channel that compares the ‘full’ operations available to Alice and Bob, described
by Rap, to the strictly local operations R 4. Fortunately the index theory for subfactors provides such a map.
This is the map that we investigate in this section. Moreover, it is possible to define a relative entropy for
subfactors. This relative entropy is related to the index of the inclusion. Here we will argue that this relative
entropy makes it possible to connect the index to the well-known Holevo y -quantity, which tells us how well we
can distinguish states, and is related to the classical capacity of a quantum channel.

We will again consider the toric code here, although the abstract constructions work for any subfactor with
finite index. The toric code however has the advantage of being simple enough to allow a concrete analysis, and
at the same time providing a clear physical interpretation. It will allow us to match the mathematical
constructions to physical processes.

5.1. Channels
The inclusion Ry C ﬁA p of the cone observables into the algebra of observables that commute with Eve’s
observables is accompanied by a conditional expectation & : ﬁA B — Rap[11,32], thatis, a generalisation of the
partial trace to the language of operator algebras. A conditional expectation is a (normal) unital completely
positive (cp) map such that E(ABC) = AE(B) Cforall A, C € Rypand B € Ras. The subalgebra R 45 hereby
plays the role of the subsystem. In fact £ is a channel; it is linear, cp, preserves the identity operator and is normal
in the sense that it maps normal states to normal states. These are states that are represented by density matrices
on the Hilbert space on which the algebra is represented. As mentioned earlier elements of Rap can be expressed
aslinear combination of some ‘basis’ with coefficients in R 4 3. Moreover the algebra ﬁA p is generated as a von
Neumann algebra by R 3 and the charge transporters { Vy, V}. With the notation
Vi,i = 0,X,Z,YwithVy = I and V4 = ViV, the basis expansion of elements X € ﬁAB is then
X =3,A;V; with A; € Rap[11]. Another way of saying this is that ﬁAB is aleft module over R 4. In this case
the operators V; are also called a ‘Pimsner—Popa basis’.

The channel £ is then given by

glﬁABHRAB:XHA(). (4)

In asenseitleaves the states 2, VxQ, V; and W, invariant. This can be seen as follows. In the Schrodinger
picture the channel is given by the unique cp map &y determined by E4(p) := p o £ where p is anormal state
over R,p. We do not intend to give a full characterisation of & here. Instead we show how it acts the vector
states §2, Vx 2, VzQ and V §2, where €2 is the ground state. Since these are vectors in the Hilbert space, they give
rise to normal states on R 45 and on 7/€AB. Let 1) be any of these states and X € ﬁAE asabove, and let p be the
corresponding state on R 4. As shown in section 4, (2] V;AV; |2) = Oforany A € Rygpand V; = Vj.In
particular, this implies that (10| AV; [¢)) = 0if i = 0, and we find

(Exp)(X) = p(Ag) = (W] Ag |¥) = (W] X |¢). Hence the states corresponding to v are invariant under the
action of &. For superpositions this is no longer true since £ erases the off-diagonal elements of the density
matrices in this basis. Of course the situation is much more complicated for general normal states on R 45 but
this illustrates well the classical nature of the secret sharing scheme. Note that the argument still holds if we
consider the states V{2, with U a unitary in R 43, so that we again have four classes of (vector) states.

Before we come to the information-theoretical interpretation of the map &, we first make another
interesting observation. There is a canonical way to get a tower of inclusions of von Neumann algebras if we have
a finite index subfactor. We here give an example of extending the tower downwards. Recall that the charge
transporters constitute a unitary representation of the group Z, x Z, on the Hilbert space of the ground state
representation. This representation induces an action on the operators by conjugation. This action maps R 45
into itself. Therefore the twirl £&(A) := i S VLAV, A € Rypisaconditional expectation from the cone algebra

Rap to the subalgebra R of fixed points of this action. The inclusion Ry C R4p then has index [7/5/;3 : Ragl.
Furthermore, the channel & is implemented by the projection Py = i >;Viinthe sense that &(A) Py = PyAP,.
This subalgebra consists of these operations in the cones A, and Ag which cannot distinguish the states

Q, VxQ, VzQ and V% from each other. In this sense the channel & can be interpreted as the completely
depolarising channel on these states.
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5.2. Relative entropies and classical information
The index can be connected to a relative entropy [45]. Here we follow the work of Hiai [46], who discusses the
case of general subfactors (not just Type II;'*) and gives different characterisations of the index. We start with
defining the relative entropy of a pair of von Neumann algebras 9t C 9t with respect to a normal state ¢ on 9.
This is given by

H, (M) = S(HI;Z[S(PL*% ©) = Sy [N, 0], 6

i)

where again we use | to denote restriction to a subalgebra. The supremum is over all finite convex combinations
such that ¢ = >".p,;, with ¢; a normal state. That is, we consider all different preparations of the state ¢. The
relative entropy S(p,;, ) istobe understood in the sense of Araki [47] (see [48] for an introduction).
Compared to these references we switched the order of the arguments to agree with the usual definition in
quantum information. The definition of Araki reduces to the well-known formula for the quantum relative
entropy of finite systems if the algebras are matrix algebras. We also note that the terms in square brackets are
positive. This is perhaps not immediately clear, but essentially follows from the monotonicity of the relative
entropy (restricting the states is like tracing out a part of the system).

First we find it useful to find a physical interpretation of equation (5). Intuitively, it should capture how well
we can distinguish states when we have all operations in 9t at our disposal, compared to when only
measurements (or, POVM’s) from 1 are allowed. To make this intuition more precise, consider the following
scenario which is typical when trying to send classical information over a quantum channel. We largely follow
Holevo [49] (but also see [50]), and for the moment consider finite dimensional systems. Let p be a state on the
system. If p is a mixed state, there are different ways to prepare this state. In particular, consider a probability
distribution p, andlet p, be states such that p = 3~ p. p,.. Thatis, Alice picks a state according to the probability
distribution p,. The question then is if Alice sends this state to Bob, how well Bob can recover the distribution p,.
In general, even if Alice sends many copies, Bob cannot recover p, exactly, for example when the p, are pure but
overlapping states. How well Bob is able to recover p, is governed by the Holevo x -quantity, defined as

xUpds (o) =S = > p.S() =D p.S(pe p). (6)

This is a quantum generalisation of the Shannon information, and gives an upper bound on the amount of
information Bob can recover. The equality follows from the definition of the relative entropy.

In the infinite setting that we are interested in, the definition of the entropy S (p) is problematic (since it
typically scales with the dimension of the system), and it is better to stick to the relative entropy. We therefore
take the right-hand side of equation (6) as the definition of . Using the identity
S(p;op @) = p.S(@ @) + p;log(p,), we can rewrite equation (5) to

H, (NN = supx ({p;}> {9} — xUp}s {4 19}).
(@)
By the previous paragraph, this tells us the maximum amount of extra information we can gain if we are allowed
to use operations from 21, compared to when only operations from 91 are allowed, in case the state ¢ is sent.
Sometimes it is also called the ‘quantum privacy’, since it tells us how much information is inaccessible for 1.

We now come back to the inclusion R,p C ﬁA 5- The discussion of the secret sharing protocol shows that
ﬁA p contains operators that are not in R 45, that make it possible to share classical information. Conversely, it is
possible to discern more states using operations in Rz compared to R 5. Hence we expect that there are states
@ such that H, (7A2A 8lRap) > 0. Thisisindeed the case. In fact, we will relate these relative entropies to the
quantum dimension, by relating it to the JKL index of the inclusion.

To do this, recall that if the subfactor R, C 73,4 p has finite index, then there is a conditional expectation
E: 7/€AB — Rap such that thereis some A > 0 with £(X) > )\ Xforall positive operators X € 7/€AB. In fact,
there is a unique conditional expectation £ maximising the constant A [32]. In the example of the toric code it is
the map £ of equation (4). The index is then equal to the inverse of the best such constant, with the convention
that the index is infinite if there is no conditional expectation for which such a (positive) A exists. Conversely, the
existence of such a conditional expectation implies that the index is finite, in particular thereisa A > 0.

Consider then the conditional expectation £ that maximes the bound. One can then define the relative
entropy with respect to £ by

He (Ras|Rap) = sup H, (Ras|Rap).-

12 Von Neumann algebras which have trivial centres (in other words, factors), can be classified in types I, II;, Il and Type III. Type I factors
are precisely those that are isomorphic to B (H) for some Hilbert space . The type of the factors has important implications for the
technical parts of the index theory, but the qualitative features are largely the same.
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The supremum is over all faithful normal states ¢ on Rap such that @ o & = ¢.In general the relative entropy
He (ﬁA 5l Rap) is bounded from above by the logarithm of the index [ﬁA 5 : Rag] (see below for the argument in
the easier Type I case). By corollary 7.2 of [46], however, equality is attained if and only if the conditional
expectation £ maximises the bound in the previous paragraph. Hence we have

He (RapRap) = log[Ras : Rasl. )

This relates the quantum dimension to a quantity that has a clear operational interpretation in terms of the
amount of information that can be hidden. As an aside, for such ¢ one can actually simplify the formula for
H, (OMMN) abit:

H,(M|M) = sup> S(@;, @; 0 E).
@) i

The optimisation is again over all (finite) decompositions of (.

To get some intuition for the quantity Hg (99%|91) for some inclusion 9t C 99t of von Neumann algebras, it is
useful to consider the case where 907 and 91 are of Type II;. It can be shown that this is not true in the case we are
interested in [33], but the example is illustrative nonetheless. In the Type II; case, there is a (faithful) tracial state
7 on M, that is, a state such that 7 (AB) = 7 (BA). It should be noted that Type II; factors are defined on infinite
dimensional Hilbert spaces, so that 7 is not the familiar trace of bounded (trace class) operators. If the index is
finite, a trace preserving conditional expectation &£ : 9T — 91 exists, with the index being equal to the inverse of
the best constant A as above. Note that this further supports the notion of £ as a quantum channel (since in the
usual setting they are required to preserve the trace). In that case, it can be shown that the relative entropy can be
rewritten as follows, where we set A, :== 7 (x;) [46]:

He (M) = sup ) Ay, [S(E(p,) — S(p,)]- ®)
() i

Here p, is the density operator x; /), and the entropy S is defined with respect to 7. The supremum is over all
finite sets of positive operators x; such that " x; = 1.In other words, it is an optimisation over all (finite)
POVMs. Note that instead of looking at states, we now look at the possible operations we can use to distinguish
states. The quantity between square brackets is called the entropy gainin [51].

Before we comment on the physical interpretation of equation (8), we come back to the claim on why it is
equal to the Jones index. Again, we consider the Type II; case for simplicity, following Pimsner and Popa [45].
The case of infinite factors that we need here is technically much more involved, but uses some similar ideas [46].
Recall that thereisa A > 0suchthat £(X) > A Xfor all positive X. Then, since the logarithm is operator
increasing, from equation (8) one can show that Hg (91|9) < log X1. Since one of the equivalent definitions of
the index is that it is the inverse of the best of such constants A, it follows that He (MT[9%) < log[90T : N]. To
complete the argument Pimsner and Popa find lower bounds for He (99t|91), and show that in the case of
irreducible factors (such as we consider here), equality is in fact attained. The proof of this is more involved, and
requires properties of subfactors that are out of the scope of this paper.

To understand equation (8) abit better, note that since £(I) = I, wecanadd S(I) — S(E(I)) to the right-
hand side of equation (8). But in that case, it simplifies to

sup X (fA {o.1) = x (UMD (€I D).
I:z)\xpx

Note that that the optimisation is only over ensembles that sum up to the completely mixed state. This should be
contrasted with the (Holevo) channel capacity x := sup, phipg X ({ A}, {€(p) }), which gives the amount of
classical information that can be transmitted using the channel [52]. Note that here the optimisation is over all
ensembles.

We also like to point out the similarity to wiretap channels. In a quantum wiretap channel, quantum
information is sent form Alice to Bob, with an eavesdropper Eve. Such a channel maps density operators on
HaintoHp ® Hgviaamap p — VpV*, where V is an isometry. Note that any quantum channel can be written
in this form by means of a Stinespring dilation. The point of the wiretap channel is that certain information is
inherently private, in the sense that no measurement on Hj can recover it. This was first studied for quantum
channels by Schumacher and Westmoreland [53]. Later this analysis was extended, for example by allowing
simultaneous use of multiple copies of the channel [54]. This for example leads to a proof that the (classical)
private information is bounded from below by the (quantum) channel capacity. Although our setting is slightly
different, the definition of what information is inaccessible or private is essentially the same.

There is yet another description of essentially the same problem, in terms of a subfactor that is closer to the
protocol outlined earlier. The inclusion R 3 C ﬁA 5 could be understood by considering the charge
transporters. The interpretation above however does not directly connect to the secret sharing scheme described
earlier. A property of the index is that it is invariant under taking commutants:
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[Ras : Rasl = [Rys : ﬁ/AB]-

Note that ﬁ/A 5 = m(A(Ag))”, that is, the von Neumann algebra generated by all local observables accessible to
Eve. In contrast, R/, contains more operations. In particular, it contains projections that measure the total
charge in one of the cones. These projections are not in Eve’s algebra, hence she cannot use them. This is precisely
what Alice and Bob use to hide information from her, and by a similar analysis as we have provided above, the
amount of information that can be hidden in this way is quantified by the index.

5.3. Total quantum dimension

The discussion above gives a relation between the index [73,4 5 : Rap] and the amount of inaccessible classical
information. In particular, this can be quantified by equation (7), so it would be good to have a better
understanding of [ﬁAE : Rapl. From section 3.2 we see that this number tells us (in a sense) how much bigger
ﬁA g is than R, while section 3.3 and the example in section 5.1 indicate that this is related to the superselection
sectors (or anyons) of the theory. On the other hand, the TEE is related to the logarithm of the total quantum
dimension, while also quantifying achievable rates in a secret sharing scheme, as discussed in section 4.2. Hence
itwould be reasonable to assume that there is a relation between the index and the total quantum dimension.

This is indeed the case, and can be shown without any reference to any communication protocols. Already in
1989 Longo showed that the quantum dimension d; of a representative of a superselection sector can be
obtained as the index of a certain inclusion of von Neumann algebras [32]. Later in 2001 it was shown that for the
class of rational conformal field theories on the circle, the total quantum dimension is equal to the index of an
inclusion R C R, very similar to the inclusion Rp C 7/€AB [55], and indeed our results are partially motivated
by that paper.

A similar strategy can be applied to the lattice models that we are interested in. If we assume (in addition to
the technical conditions of Haag duality and the approximate split property mentioned above) that each charge
has a corresponding conjugate charge (or show that they exist), it is always possible to define the quantum
dimension of a charge. In that case, the relation [ﬁA B: Ragl = Zidiz holds [11, 55], where the sum is over all
distinct charges p;, and d; is the corresponding statistical (quantum) dimension. If we do not assume existence of
conjugate charges, the index still gives an upper bound on the number of them.

It should be noted that this is more than abstract theory. For example, for the toric code one can explicitly
show that Haag duality and the approximate split property hold [33]. It is also possible to explicitly obtain
representatives of different superselection sectors, and for example show that conjugates exist [30]. Finally,
independently from the superselection sector analysis, it can be shown that [ﬁA B: Rapl = 4[11].Infact, this
result can be used to show that in fact any superselection sector of the model is equivalent to one of the explicit
representatives that can be constructed. Hence for the toric code, the whole program can be carried out in full
detail, and we see that also using the index method, we see that we can hide four classical bits.

To summarise the discussion, we can conclude that the total quantum dimension gives tells us how much
classical information can be hidden, in the setup described above. This provides an alternative interpretation
way of thinking about the total quantum dimension. One of the advantages is that the argument is completely
rigorous, and independent of any results on the finite dimensional models. In particular, we do not need to
assume the relation between the TEE and the total quantum dimension. We also point out that the analysis is not
restricted to the topologically ordered quantum spin systems that we have looked at so far. Rather, they can be
applied to all models (once one makes appropriate technical assumptions) for which one can do a superselection
structure analysis in terms of localised and transportable representations. This in particular applies to rational
conformal field theories on the circle in the operator-algebraic approach [55].

6. Private quantum subsystems

We have discussed an operational interpretation of the JKL index in terms of a secret sharing task: the anyonic
charges allow Alice and Bob to store (classical) bits which are not available to the adversary Eve. This is
reminiscent of the theory of private quantum codes or private subsystems (see [56] and references therein). We
argue that our construction can be interpreted in this way.

Our description is stated in terms of observables, hence it is most natural to use the Heisenberg picture.
Therefore in our setting a quantum channel will be a unital cp normal (i.e., continuous with respect to the weak-
operator topology) map £ : 91 — 91 between two von Neumann algebras. Its dual is a normal cp map
Ex : My — My, mapping normal states to normal states. Since we are dealing with infinite dimensional von
Neumann algebras (and Hilbert spaces) it is necessary to go beyond the setting of [56], and we will use the recent
generalisation to von Neumann algebras by Crann et al [39]. Let £ : 9t — B (H) be a quantum channel,and P a
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projection on the Hilbert space H. Suppose moreover that A/ is a von Neumann algebra on P H. Then 2 is
called private for £ with respect to Pif PE(N)P C N.

Our setup immediately leads to an example of a private quantum channel. The index theory gives us a
normal conditional expectation & : Rag — Rap. Hencein particular, £ is a normal cp map. We can choose
N = (Ra V Rp) = Rz Since Ry V Rpisavon Neumann algebra, and therefore equal to its double
commutant, it follows that 91" = R 4. Hence M is private for £ with respect to P = I.Notealso that Ry C N,
thatis, Eve’s observables are private for £.

One can show that 2 is private for £ ifand only if it is correctable (in the sense of [57]) for any
complementary channel £€ of £ [39, theorem 4.7]. That is, there is some channel R such that £¢ o R = idsy.
Here £¢isa channel of the form £9(X) = V*XV forall X € 7 (7/@,43) ', where (7, V, H)isa Stinespring triple
for the channel £.

Consider again the example of the toric code. In that case we have an explicit description of R 5, which
allows us to identify such a Stinespring triple. In particular, we know that Rapis isomorphic to the crossed
product Rup Xo (Zy X Z),where o (A) = VgAVgk and g — V, isaunitary representation of Z, x Z,
obtained by mapping (1, 0) — Vx and (0, 1) — V7 [11]. Concretely, denote H for the Hilbert space of the
GNS representation of the translational invariant ground state of the toric code. Then we can define a
representation 7 of Rp bysending >, _ x v Ak Vi (With Ay € Ryp) to the following operator, acting on
Hs=HOHDHDH:

Ay AxVx AzVz; AyVy
AxVx Ay AyWy AzVy
A Vi) = .
T(CAW) =0y A A At
AyVy AzVz; AxVx  Ag

This can be shown to give an isomorphism of R 45 with the crossed product. Now define an isometry
Vi H — Hsby Vip = (¢, 0, 0, 0). Then by a short calculation we check that

EX) = V*(X)V, XE Rup,

thatis, (m, V, Hg) is a Stinespring triple for £. Note that 7 (ﬁAB) V'H is dense in H;, hence the Stinespring
dilation is minimal. Now consider the map R : 91 — B (Hj), defined by R(N) = diag(N, N, N, N), whichis
anormal unital cp map. Then since N = Ry, itis clear from the description of m above that

R(N) C 7 (Rap)’. Moreover, £ o R = idy;, hence 9 is correctable for € (with respect to the identity
projection). Similarly one can see that in this representation the twirl channel & from section 5 is represented as
EA) = i deGV*ﬂ' (VgAV;) V, A € Ryp,with G = Z, x Z,,and 7 (R) is given by matrices of the form
diag(A, A, A, A) with A € R, where R is the fixed-point algebra as before.

This example can be generalised to the abelian quantum double model in a straightforward way. The non-
abelian model is more difficult, since there the symmetry is not described by G x G any more, and we do not
expect to find a similar crossed product structure. However, the general setting of the quantum dimension being
related to the Jones index still applies, and we expect a similar correctable subalgebra result to hold with respect
to the canonical conditional expectation £ one obtains from the index theory. Moreover, what is interesting is
that the index gives us a measure of the amount of classical information that is private for Eve. This suggests that
the Jones index might be a useful tool in the study of the capacity of quantum channels. We hope to return to this
question in the future.

7. Stability under perturbations

There are a few technical assumptions that we needed to make in our analysis of the systems in the
thermodynamic limit. In particular, we assume that the superselection sectors associated to the anyons can be
strictly localised in cone regions. Although any topological charge should certainly be localisable in such a
region, strict localisation is likely a too strong condition in general. This generalisation is important when
considering perturbations of the system, which is necessary if one wants to show that the quantum dimension is
truly an invariant of a topologically ordered quantum phase.

This can be seen as follows. Because of the topological order condition, we expect that the properties of the
anyonic excitations will be the same across the whole phase (indeed, they should be by the very definition of a
phase). That is, if we perturb the dynamics of our model (without closing the spectral gap), the perturbed ground
state should have the same superselection sectors. However, the selection criterion, equation (3), as we have used
it here, will generally no longer hold: in the thermodynamic limit the ground states of the deformed model can
be obtained by composing the original ground states with an automorphism « [3]. This automorphism is
however not strictlylocal. Rather, « satisfies a Lieb—Robinson type of bound, such that for strictlylocal A, a(A)
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can in general only be approximated up to a small (exponentially decreasing) error by a strictly local observable.
Asa consequence, if 7 satisfies the selection criterion, it is not guaranteed that m o « does so too, since we only
know unitary equivalence of mand 7 for observables outside any given cone. However, since « is not strictly
local, it does not map cone algebras into cone algebras.

Asaresultitis necessary to adapt the superselection criterion, and in turn the inclusion of the von Neumann
algebras associated to the two cones. It should be noted that a similar phenomenon also appears in [12]: their
results are only strict in the case of zero correlation length. In either case it is expected that in the thermodynamic
limit (or in the operator-algebraic case we are interested in, the limit of growing cone size) the small corrections
vanish. We believe the information theoretic interpretation here will be of use in studying this question: for
example, instead of correctable algebras in the previous section, one should use €-correctable algebras [39],
which allow for (arbitrarily small) errors in the correction. We hope to come back to this issue in future work.

8. Summary and discussion

We have reviewed the total quantum dimension of topologically ordered systems, in particular how in the
thermodynamic limit it can be obtained as the JKL index of an inclusion of certain algebras of observables. It has
been argued by other authors [5, 6] that the quantum dimension can also be obtained via TEE in finite
dimensional systems, a fundamentally different approach. Nevertheless, it turns out that both quantities have an
interpretation in terms of a secret sharing scheme, although the implementation details are different in both
cases. Even though our secret sharing scheme is not very practical (and is not intended as such), it provides new
insight to the quantum dimension, and gives a completely different viewpoint (or approach) of what appears to
be same underlying concept. We believe that this may be beneficial to gaining a better understanding of such
systems.

The operator-algebraic approach we advocate here provides a rigorous and elegant mathematical
framework. It also has other advantages. For example, inclusions of subfactors are well studied, in particular in
the context of the JKL index, and many mathematical results are available. This puts the theory on firm
mathematical footing. Moreover, a lot of structure comes for free with a finite index inclusion: we mentioned the
conditional expectation £, which can be interpreted as a quantum channel.

We also believe this operator-algebraic approach might be beneficial in the important question of stability of
topological phases. Although we have only explicitly mentioned the toric code as a test case, we argued that these
structures hold more general in topologically ordered models (with the caveat mentioned in the previous
section). Generalisation to the abelian quantum double is straightforward, but also in non-abelian models we
expect to have a similar structure. An explicit verification, however, will of course be much more involved.
Finally, while we mainly have studied what is usually referred to as ‘long-range entangled’ phases, an algebraic
approach to symmetry protected phases appears to be reasonable; as a toy model one can consider the Kitaev
wire, and divide the system into three parts, as we did in the example of the Fibonacci chain. We conjecture that
this can be related to a notion of entanglement entropy for symmetry protected phases, see [58].

Although the setting we discussed here is tied to the setting of charges belonging to different superselection
sectors, the conditional expectation (and hence a quantum channel) always exists for subfactors of finite index.
Moreover, the index is related to a relative entropy, which opens up connections to quantum information
theory: the discussion in section 5 is an example of that. We believe that the index theory may be useful to study,
for example, capacities of quantum channels, in particular for systems with infinitely many degrees of freedom.
Except for the case of gaussian states, there are comparatively few tools available to deal with such examples.
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Appendix. Operator algebras

Dealing with quantum systems with infinitely many degrees of freedom, such as the thermodynamic limit of the
quantum spin systems we are interested in here, introduces complications that are not present when discussing
finite dimensional systems. We prefer to use an operator-algebraic approach to tackle these. In this appendix we
give some reasons for why we elect this perspective, and introduce the main definitions and concepts.

To see an example of the difficulties that arise, consider an infinite chain of qubits. Naively, one might expect
that the Hilbert space of this system is given by H = @)° _ ., C2. There is however a problem with the
definition of the inner product: let v, n € H. Then the inner product should be defined as

oo

Wmw =TI @ nc
n=-—o00
analogously to the tensor product of a finite number of Hilbert spaces. The problem is that the expression on the
right generally does not converge, since it is an infinite product. A simple example is given by taking a unit vector
2 € C*andsetting ¢, = Q and 1, = (—1)"Q2.

We can work around this by using von Neumann’s construction of the infinite tensor product: we choose a
reference unit vector €2, for each 1, and only consider vectors @ € H for which v, = Q,, for only finitely many
n. For such vectors the expression above converges and defines an inner product. By taking the completion with
respect to the norm obtained from this inner product, we arrive at a Hilbert space H.

This definition is somewhat undesirable, since it depends on the choice of reference vector, and a canonical
choice may or may not be available (and results might depend on the choice of vector). In addition, it is not
entirely clear what the observables are. One could consider all bounded operators 5 () as in single-particle
quantum mechanics (potentially considering unbounded observables as well), but this has the downside that
one loses some of the locality structure that the chain clearly has. These are some of the reasons why we prefer to
work in an operator-algebraic (or, if one wishes, observable-centric) approach, which does not have these
problems. For the benefit of the reader we recall the main definitions and explain how they can be interpreted in
the context of quantum mechanics (see also [28, 29, 59]).

A.1. C*-algebras

We want to consider quantum spin systems with infinitely many sites. For concreteness, consider the square
lattice 72, where at each site there is a quantum spin, with Hilbert space C?. As remarked above, we cannot just
take the infinite tensor product of C%, and we will focus on the local observables of the system.

Let A C Z?bea finite subset, consisting of | A| spins. Since this is a finite quantum spin system, it is described
bya Hilbert space Hy = .1 C? Hence the associated observables are the (self-adjoint) elements of

AN) = B(HY = @ Ma(©).
xeA
We will find it convenient to call (A) the local observables with supportin A (or localised in A), even for those
elements that are not self-adjoint.

Now suppose that Ay C A, are both finite subsets of Z*. Then Hy, 2 H, @ Hy,\ - Hence we can identify
A e AA) withA ® Iy, in A(Ay). Inaddition, if A € A(A)) and B € A(A,), with Ay N A, = @ and both
finite, itis clear that [A, B] = 0. This is known as locality, and hence we have alocal structure. We want to
consider the algebra generated by all such local observables. To this end, define the (strictly) local observables by
Aoc = JaA(A), where the union is over all finite subsets of Z,, and we identify those operators that come from
inclusions 2A(A;) C 2((A,) in the obvious way.

The algebra 2, has a natural norm, induced by the operator norm on M, (C). Itis however not complete
with respect to this norm: there are Cauchy sequences in 2, that do not converge. This can be solved by taking
the closure with respect to this norm, i.e., by adding limits of Cauchy sequences. This gives a complete normed
*_algebra 2, whose norm satisfies || A*A|| = ||A|?forall A € 2. Suchan algebrais calleda C*—algebra. We call
the elements of 2 quasi-local observables, since they can be approximated arbitrarily well (in the operator norm)
by strictly local observables.

In this setting states are given by positive linear functionals w of norm one on 2. That is, linear maps
w: A — Csuchthat w(A*A) > 0 and w(I) = 1(or, equivalently, ||w|| = 1). The value w (A) for a positive
operator A has the same interpretation as in Hilbert space quantum mechanics: it is the expectation value of A.
We note that states are not necessarily of the form Tr(pA) for some density matrix p.

Finally, once we have the algebra of observables we can specify the dynamics by specifying local
Hamiltonians. These Hamiltonians generate, under suitable conditions (e.g., the interactions should decay fast
enough), a time evolution on the algebra, which is most conveniently described as a one-parameter group
t — o, of automorphisms. That is, this gives a time evolution of the observables in the Heisenberg picture. Once
dynamics are defined it is possible to talk about ground states: these are essentially the states that minimise the
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energy. In our case we are usually interested in translationally invariant ground states, and in many of the models
of interest they are in addition frustration free: they minimise the expectation values of each local Hamiltonians
individually.

The Hilbert space picture can be very useful, and fortunately it is not lost in this algebraic approach. Indeed,
the Gel'fand—Naimark—Segal (GNS) construction gives a representation of 2 on a Hilbert space. More precisely,
suppose that w is a state on . Then the GNS construction gives a triple (, €2, H), where H is a Hilbert space, ™
is arepresentation of 2 as bounded operators on H, thatis, alinear map 7 : 2 — 9B () thatis compatible with
the product and adjoint operation of 2. The state w is implemented in the Hilbert space by 2 € H, in the sense
that w(A) = (Q, 7 (A)Q) forall A € 2. Note that this does not imply that w is a pure state. In fact, this is true if
and only if 7 acts irreducibly on H, or equivalently, only multiples of the identity commute with every 7 (A).

A.2.Von Neumann algebras

Now consider a Hilbert space H. Then B (H), the algebra of bounded operators on H, is a C*-algebra. Besides
convergence in the operator norm, the underlying Hilbert space gives additional notions of convergence. If

A; € B (H) (or more generally, anet A of operators) is a sequence of operators, we say it converges strongly, or
in the strong operator topology, to an operator A € B (H) ifforany ¢ € H, we have that ||(A; — A)¥|| — 0.In
other words, when acting on a fixed vector, we get a convergent sequence. In general the rate of convergence
depends on the vector v, and if H is infinite dimensional one cannot conclude that A; — A in the

operator norm.

There is another topology that has a clear physical interpretation. We say that a sequence A, of operators
converges in the weak operator topology to some operator A if for each ) € H, we have that
[ (¥, Ayb) — (¢, AY)| — 0if n — oo. Thatis, a sequence of observables converges in this topology if we
cannot distinguish them (in the limit # —00) by measuring in arbitrary vector states.

Now consider a unital *-subalgebra 91 C B (H). We say that 9 is a von Neumann algebra if it is closed in
the weak operator topology. This is equivalent to being closed in the strong operator topology, since one can
show that both topologies coincide on bounded sets. A perhaps more surprising (and very useful) fact is that this
is equivalent to the algebraic condition 9t = 9", where 9" := (9M')’, and the prime denotes the commutant
in B (H). Thatis, M’ := {T € B(H): TX = XT for all X € M}. Thisisknown as the bicommutant theorem.
Itis easy to check that 901” = 90U if 901 is closed under the *-operation, hence this gives an easy way to obtain
von Neumann algebras from subsets of 95 (H).

Finally we would like to mention another useful property of von Neumann algebras, which is not true for
general C*-algebras: they are generated by their projections. This has the following application. Suppose that
O € 9 is some self-adjoint observable that we would want to measure. It is often the case that we cannot (or do
not want) the whole observable O, for example due to limitations on equipment, but are content with the
following question: does the measured value of O lie in some interval I = [a, b]? This yes/no question
corresponds to measuring a projection Py, ;. Indeed, it is the spectral projection of O on the interval I. It follows
from spectral theory that this projection also is in 21, and hence an observable. This is even true for positive
unbounded operators, such as the Hamiltonian H of the system, under mild additional assumptions (in
particular, it should be affiliated with 9 [28, lemma 2.5.8]). These properties make it natural to look at von
Neumann algebras.
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