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COLOURED NOISE FROM STOCHASTIC INFLOWS IN
REACTION-DIFFUSION SYSTEMS

MICHAEL F ADAMER *, HEATHER A HARRINGTON f, EAMONN A GAFFNEY?#, AND
THOMAS E WOOLLEY?

Abstract. In this paper we present a framework for investigating coloured noise in reaction-
diffusion systems. We start by considering a deterministic reaction-diffusion equation and show how
external forcing can cause temporally correlated or coloured noise. Here, the main source of external
noise is considered to be fluctuations in the parameter values representing the inflow of particles to
the system. First, we determine which reaction systems, driven by extrinsic noise, can admit only
one steady state, so that effects, such as stochastic switching, are precluded from our analysis. To
analyse the steady state behaviour of reaction systems, even if the parameter values are changing,
necessitates a parameter-free approach, which has been central to algebraic analysis in chemical
reaction network theory. To identify suitable models we use tools from real algebraic geometry that
link the network structure to its dynamical properties. We then make a connection to internal noise
models and show how power spectral methods can be used to predict stochastically driven patterns
in systems with coloured noise. In simple cases we show that the power spectrum of the coloured
noise process and the power spectrum of the reaction-diffusion system modelled with white noise
multiply to give the power spectrum of the coloured noise reaction-diffusion system.

1. Introduction. One of the central challenges in mathematical biology is un-
derstanding mechanisms involved in development processes. Within the context of
developmental biology, the emergence of large scale spatial structure, has often been
theoretically explored through a common framework of deterministic partial differen-
tial equations defining reaction-diffusion systems [1, 2, 3]. While current frameworks
may explain a variety of phenomena in development, they can also suffer from over-
simplification [4], with the additional caveat that finding theoretical models both
consistent with mechanism-based knowledge and capable of predicting observed pat-
terns is a highly complex task, suffering from both model and parameter fine tuning
[5, 6].

Many models that describe pattern formation assume parameters are constant;
however, this deterministic assumption is not suitable for certain conditions. Some
systems are better suited towards a stochastic approach. When a system is coupled to
external and stochastic drivers, then the parameter values can change. The stochastic
driving is often represented by stochastic parameters, that is a parameter which is
drawn from a certain distribution at each time step or spatial point, and referred to as
extrinsic noise below. This contrasts with most previous work on stochastic pattern
formation, referred to as intrinsic noise, which assumes low copy number and it does
not assume external drivers as the source of noise [7, 8, 4, 9, 10, 11]. Extrinsic noise
has been studied extensively in [12], however, not in the context of chemical reaction
network theory and reaction-diffusion systems.

The structure of intrinsic noise is often taken to be be highly constrained and in
particular uncorrelated in time, leading to white noise representations. For instance,
if the noise is due to low copy number induced dynamics, Gaussian white noise forcing
emerges from the chemical Langevin equation approximation to the chemical master
equation [13]. Even with such constraints there is a rich diversity of noise-induced
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phenomena, such as spatio-temporal pattern formation [7, 10], stochastic oscillations
[8], metastability [4], waves [9] or enhanced oscillation amplitude [14] and a general
introduction to the effects of noise in spatial system can be found in [15].

However, when the source of the noise is extrinsic, other forms of noise are per-
missible. In particular, the defining special properties of white noise may in general
be relaxed and hence stochastic forcing can emerge with non-trivial temporal correla-
tions, often termed coloured noise. Our objective is to show how extrinsic noise influ-
ences spatio-temporal reaction-diffusion patterns, in particular by developing power
spectral methods to analyse the impact of coloured noise. In this paper it is assumed
that the effects of intrinsic noise are negligible and only the extrinsic noise provides a
stochastic perturbation of the system. Therefore, in contrast to internal noise mod-
els, the common description of a stochastic chemical reaction network as a continuous
time Markov chain (and its computational solution via the Gillespie algorithm [16])
cannot typically be applied.

To proceed, we abstract the biological system to a chemical reaction network
and use techniques from the mathematical modelling of chemical reaction networks.
However, for biological interpretations it is imperative to remember that many cellular
processes are governed by biochemical reactions [17] and, hence, can be described
by chemical reaction networks. First, we note that deterministic pattern formation
reaction diffusion systems in biological applications with n interacting biochemical
species take the form [3, 1]

oz D 9z

+ f(z)

in one spatial dimension, where £ € R%, is a vector of n chemical concentrations.
The models we consider are networks with mass action kinetics [18], rendering the
term f(x) = (fi(x),..., fn(x))T a vector of polynomial functions. The polynomials
describe the underlying reaction network between the species and D(9%x/ds?) with
D = diag(D;, ..., D,) describes the diffusion of . Let there be M chemical reactions
in the spatially homogeneous system whose dynamics are described by 0z /0t = f(x).
Each reaction is parametrised by a reaction rate k; > 0 and therefore we have a vector
of reaction rates k = (k1,...,ky) € R%. Throughout this paper we use homogeneous
Neumann boundary conditions

ox
1.2 — =0
( ) s s=0,L ’

where L is the domain length. Note that, although our work is only applied to systems
of one spatial dimension, the theory can easily be extended to an arbitrary number
of spatial dimensions.

Counter-intuitively, it has been shown that under certain conditions [1] diffusion
can drive an otherwise spatially uniform stable state to instability. Such unstable
systems, which can form stable patterns, such as stripes or spots, are called Turing
Systems [3, 19]. To avoid the complications of bistable dynamics, and later stochastic
analogues such as switching between steady states, we impose the constraint that
the spatially homogeneous solution has a unique stable steady state, *, such that
f(x*) =0 [1]. To find models which have this property we use techniques from real
algebraic geometry [20] which provides simple tools, which ensure there exists only a
single steady state in a model. Since Turing’s work in 1952 many biological patterning
systems have been suggested to be Turing systems [21, 22, 23].
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Fundamentally, the application of a set of partial differential equation (PDE)
models for a biochemical reaction system assumes that the species of interest are
in high enough concentration to allow continuum modelling. By contrast, when the
number of particles in the biological system is low, intrinsic stochasticity of the system
must be included in the model [7, 10, 8, 4, 9], which typically yields studies that
investigate the impact of white noise.

However, as mentioned, stochasticity in biological systems can also arise from
extrinsic noise and hence temporal variations in parameter values [24]. Thus, in-
stead we generalise the deterministic system to include stochastic parameter values.
Specifically, we focus on the effect of stochastic fluctuations in the constant term,
the “inflow” term, of the chemical reaction network f(x). As the extrinsic noise
can arise from a vast number of different mechanisms, such as varying experimental
conditions [25], it is largely free of microscopic constraints, especially the absence of
temporal correlation. However, the impact of correlated external noise has, to the
authors’ knowledge, received little theoretical modelling attention. Thus we proceed
to develop a framework to study external coloured noise forcing of the above deter-
ministic system for pattern formation in biologically motivated scenarios, analysing
how temporal correlation in noise, as described by colour, impacts self-organisation
properties.

The paper is organised as follows. In section 2 we introduce required notions of
chemical reaction network theory to select a class of models relevant to our frame-
work, i.e. those whose number of steady states is unaltered by changes in parameter
values, temporal or otherwise. We then introduce stochastic inflow parameters and
describe their connection coloured noise. In section 3 we highlight the impact of noise
colouring on the spatio-temporal patterns formed by example of the Schnakenberg
system. In particular, we discuss noise arising from stochastic subnetworks and vary-
ing experimental conditions. Our numerical results are discussed in section 4 where
we summarise the distinguishable differences between the various noise colours.

2. Theoretical Background and Power Spectra Analysis. In this section
we introduce the theoretical background of this paper.

2.1. Chemical Reaction Network Theory. A central aim of chemical re-
action network theory (CRNT) is to describe the properties of a chemical reaction
network from its reaction graph alone [26, 27]. One such property is the capac-
ity for multiple steady states. Define a chemical reaction network by the multi-set
N ={8,C,R}, where §,C, R are defined below. We begin by embedding the network
into n dimensional Euclidean space R™ by associating a basis vector e; to each chem-
ical species X; such that X; — e; = (1,0,0,...)T, X5 — e = (0,1,0,...)T and so
on. Let S = {X1,...,X,} be the set of all chemical species in the network, then a
generic reaction can be expressed as

(2.1) iaiXi 5 iﬁzXz .
i=1 i=1

The constants «; and (; are stoichiometric coefficients which give information about
how many molecules of X; are consumed and produced in each reaction. By letting
X; — e; we can formulate a reaction vector describing the consumption, or production,
of a species X; in a reaction

(2.2) r= Z(ﬁi —w)e; .



If an entry of r is negative, then a species is consumed, whilst if an entry of = is
positive, then a species is produced.

Denote the set of all reaction vectors in a network by R = {ry,...,rpy}. To
complete the description of a chemical reaction network in terms of sets and their
embedding into Euclidean space we introduce the notion of compleres. Complexes
are linear combinations of species which appear on the left or right hand sides of
reaction vectors. In equation (2.1) the two complexes are C; = Y | ;X; and
Cy = Z?Zl BiX;, where Cy is the reactant complex and Cy is the product complex.
Let the set of all complexes be C = {C4, ..., C;}. The reaction network, N, is therefore
a directed graph with vertex set C and a directed edge between vertices C; and C}
if and only if C; — C; € R, with the same embedding, X; — e;. Note that the
description of the reaction network does not include any notion of rate constants k,
however, many results in chemical reaction network theory include the reaction rates
explicitly as a positive vector k = (kq,...,kn,)T € RY).

In this paper we study the influence of noise on reaction-diffusion systems that are
able to produce patterns in a well-defined parameter region. Critically, we will see that
coloured noise is able to have both a constructive influence outside of this previously
defined parameter region (i.e. the noise stabilises patterns where we would not expect
them deterministically), as well as a destructive influence on patterns which normally
would arise. In particular, we would like to exclude the intrinsically stochastic effect
of stochastic switching, which occurs for a system that has multiple steady states
in some parameter region. Stochastic switching describes the phenomenon that a
chemical reaction network can jump from one steady state to another when subject
to finite stochastic perturbations. To avoid this scenario we use a network structure
based tool described in [20] which a priori excludes multistationarity.

Take a chemical reaction network N and embed its complexes and reactions into
R™. Then define the matrices m; = (r17y---7y) for r; € R and m% = (byby---b,.)
where {b;} is the set of reactant complex vectors of N'. Let diag(k1,...,knr) be the
diagonal matrix of reaction constants. Using the law of mass action the dynamics of
the species concentrations can be described by

(2.3) % = f(x) = my diag(ky, ... kp)x™
where @2 = (g5 abiz . ghin o pbangbaz o b )T Note that the reactant com-
plexes and the reactions are structural properties of the reaction graph. Further, let
a € R"™ and define its sign vector o(a) = {—,0,+}" by applying the sign func-
tion to each component of a. Therefore, the i*" component of the sign vector
o(a); = sign(a;) € {+,0,—}.

The link from network structure to multistationarity is outlined in [20, Theorem
1.4] and it concerns the injectivity of the map f : x — da/dt. If f(x) is injective then
there exists a unique vector * € R™ such that f(x*) = 0. In other words the network
is monostationary. The conditions for an injective f(x) hold for all parameter values
k= (ki,...,kn). A corollary of [20, Theorem 1.4] is that f(x) is injective if

(2.4) ker(mg) = {0} and o(ker(mq)) No(im(ms)) = {0} .

Note, that this condition depends on the network structure, specifically, the spaces
spanned by the kernel of the reaction matrix, mi, and the image of the source complex
matrix, ms, but not on the parameter values.
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2.2. Stochastic Inflow in Chemical Reaction Networks. We will now show
how chemical reaction networks (CRNs) that satisfy injectivity (preclusion of multi-
stationarity) can be applied to consider parameter stochasticity, especially, to the case
of stochastic inflows. In particular, this subsection serves to show the mathematical
equivalence between stochastic inflows and internal noise systems but also to intro-
duce a novel way of modelling external noise in chemical reaction networks. Readers
interested in applying coloured noise to stochastic reaction-diffusion equations with
internal noise modelled by reaction-diffusion PDEs or Chemical Langevin Equations
may skip this subsection.

Much effort in the CRNT literature investigates the effect of inflows into the
chemical system, especially when the network is changed to a “fully open system”
in which every species has an inflow reaction [28, 29, 30, 31]. By contrast, here we
change the nature of the model by generalising the inflow reaction rates to stochastic
processes, rather than simply adding inflow processes as deterministic reactions. It
should be noted that despite the name we do not assume that these reactions are
inflows into the domain of simulation, rather, the inflow reactions correspond to the
creation of particles from some other process which happens throughout the domain.
Sometimes these inflow reactions are the called “inputs” in engineering applications
and the concentrations are the “outputs” and, therefore the study of chemical reaction
networks with varying inflows can be rephrased into a study of the “input-output”
relation as has been the approach in previous work [32].

Consider a chemical reaction network A. An inflow reaction for species X; is
manifested in the reaction graph as

kiu

Usually, the work in CRNT assumes the reaction rate ki, to be constant in time (and
space). However, the zero complex, (), symbolises a process not included in the model
such as the the production of X; by another network, which we call an “auxiliary net-
work”, or a mechanical addition of X; to an experimental setup. Both mechanisms are
often subsumed into () and usually approximated as constant or “perfect” inflow, how-
ever, they can exhibit intricate dynamics. We model the dynamics of “non-perfect”
inflows by a stochastic process whose origin can be two-fold.

(a) Stochastic sub-systems: We assume that the inflow into the (deterministic)
reaction diffusion system is provided by the output of another chemical reac-
tion network (with a unique fixed point). When the number of particles in
the auziliary network is large the system will be in a steady state and the in-
flow rate k;, will simply be proportional to the steady state value of a species
of the auxiliary system. However, when the particle number in the auxil-
iary system is low, stochastic fluctuations cannot be ignored and, while still
proportional to the concentration of a species in the subsystem, the actual
influx parameter ki, will be a stochastic process Kj,(t). Due to correlations
and interactions within the auxiliary system Kj, () may not simply be white
noise.

(b) Experimental fluctuations: In chemical engineering it is assumed that inflow
of chemicals into a reactor is a perfectly deterministic process, however, due
to mechanical or other experimental imperfections the inflow into a reaction
can vary stochastically. This again renders the influx parameter k;, into a
stochastic process Kip(t).

Whereas the two sources of parameter noise are conceptually different, their math-

5



(a)
xperimental T kin Turing System
orrelations f(w)
® ti Turing S:
Ic Ein uring System
f aux ( y) ()

Fig. 1: The two mechanisms contributing to stochastic inflows. The boxes on the left
are usually treated as black boxes resulting in some constant inflow modelled by the
parameter k;,. We differentiate between experimental fluctuations, symbolised by a
correlation 7 in (a) and auxiliary networks described by faux(y) in case (b).

ematical description is the same. Consider a stochastic process K (t) with an under-
lying distribution D(t). Therefore, at every time t we have K(¢) ~ D(t). To be
biologically relevant (i.e. to ensure all chemical concentrations are non-negative at
every t) we require D = 0 for all K(¢t) < 0 and, hence, the distribution D needs to
be continuous almost everywhere. To simplify the following mathematical analysis
we approximate the distribution of K(t) as a truncated Gaussian, since we would
like to connect our analysis to the internal noise case. Future work could focus on
other non-negative distributions, such as the log-normal distribution, on a continuous
probability space. Therefore, we can describe K (t) as

K(0) =k,
AK = K(t)-E[K(t)] = %\/ gt t')e,
Kit)=0 if AK <-E[K(t)],
such that:
(2.5) E[K(t)]=k V¥Vt >0,

where £ ~ N (0, 1), Q is positive constant and g(¢,t’) is a positive function. We assume
that the standard deviation of the Gaussian perturbation to the mean parameter
value is small such that K(t) < 0 is a rare event. Due to the negligible truncation,
we approximate the moments of the truncated Gaussian as the moments of the full
Gaussian such that (K (t) —k) = 0 and ((K () —k)(K(t') —k)) = Q7 1g(t,t'). In other
words, the small exponential tail which is truncated would only provide a negligible
perturbation to the moments of the non-truncated Gaussian. The validity of this
assumption is confirmed in the computational results of Section 3. In the remainder
of this paper we will show how various functions ¢(t,t') can arise in mathematical
modelling, especially when stochastic auxiliary networks are considered.

We can further connect the parameter €2 to physical quantities of the underly-
ing chemical reaction network by again considering the sources of stochastic inflow.
We assume that the origin of the stochastic inflow is stochastic auxiliary networks
or experimental imperfections. Therefore, in the limit of either a perfect experi-
ment or a deterministic auxiliary network the inflow should be deterministic and
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((K(t) — kE)(K(t') — k)) = 0 implying 2 — oo. For stochastic auxiliary networks the
quantity €2 which parametrises the size of the stochastic fluctuations can be related
to the system size [33]. Similarly to the system size expansion, we require £ to be
sufficiently large. Large ) helps to maintain a positive solution of the stochastic par-
tial differential equation, although, positivity cannot be guaranteed when the noise is
correlated suggesting a breakdown of the modelling assumptions for such events.

Next, consider a chemical reaction network N in which a subset of species has
an inflow reaction. Denote the set of species with (stochastic) inflow by S, € S. If
there is more than one (stochastic) inflow |Si,| > 1 the stochastic process will be a
multi-dimensional version of (2.5). Further, assume that the stochastic process has a
spatial dependence. The description of the stochastic process outlined in this section
still applies in this case, if we have Kj,(¢,s) as the vector of stochastic inflow such
that

E[Kin(t, S)] = kin

and
Kiy(t,s) — E [Kin(t',s)] = n(s)
with
(m)=0
<7777T> = B(Sv S/)G(t’ t/)
(2.6) = {Bij(s,8")Gi;(t, 1)}

and B(s, s’) representing the potential covariances between the stochastic inflows.

Since our assumptions made the inflow process additive and uncoupled to the
species, the stochastic reaction network can be described by the system of stochastic
partial differential equations (SPDEs)

Oz 0%z

1
+ fz) + Vol
where 71 is a vector of stochastic processes such that its support is supp(n) = Si.

Note that in our limit randomising inflows leaves N as well as f(x) invariant, and
hence, the steady state structure of the system; i.e. if we start out with an injective
function f(«) then adding stochasticity will not change this injectivity.

The assumption of rate constants being stochastic processes rather than constants
can be extended to non-inflow reactions too. However, equation (2.7) will have extra
terms of multiplicative noise. In the next section we study perturbations to the steady
state whose scaling will render the study of non-inflow stochastic reaction rates a
trivial extension of the analysis of this subsection.

Further, it should be added that in this paper it is assumed that in the system
under study internal noise is negligible compared to the effects of external noise.
However, if internal noise was to be included, then the inflow rate constants could
be modified in a chemical master equation which could be simplified using a weak
noise expansion. Care needs to be taken, however, when judging system sizes as
the external system size, here denoted as {2, may be considerably different from the
internal system size.



2.3. Power Spectra for Stochastic Inflows. To fully classify the patterns
arising from the addition of stochastic inflows we calculate the power spectra of the
patterns. Power spectra are an analytic tool showing which spatial and temporal
frequencies are present in a pattern [34, 7, 35]. Peaks in power spectra give information
about dominant frequencies and, hence, about oscillatory behaviour of a system in
space and time.

First, we linearise equation (2.7) about the fixed point  ~ x* + éx, where dx
represent small perturbations. These perturbations should decay in the deterministic
limit as the system will converge to the steady state outside the Turing parameter
regime. Inside the Turing regime the system is assumed to converge to a stable pattern
rather than a stable state which is not considered in this paper. Hence, our analysis
is valid only outside the Turing pattern regime. Substituting the linearisation ansatz
into equation (2.7) and keeping lowest order terms only we get

déx 0%6x —

1

\/ﬁ’rl b
where J|g—q+ is the Jacobian of f(x) evaluated at the fixed point x*, which for
notational convenience we will denote as J.

We make one further assumption, namely the scaling of the perturbation da with
the parameter  controlling the magnitude of the stochastic input. Let dz = Q.
Then, if & < —1/2 and in the limit of  — oo the leading order term is the stochastic
process 1 only, similarly, if & > —1/2, then n could be neglected to leading order in
Q. Hence, we let a« = 1/2 for a dominant balance and equation (2.8) simplifies to

obx 0?5z

The reasoning behind choosing o« = 1/2 is analogous to the reasoning of the scaling in
the weak noise expansion of van Kampen [33], especially the requirement that in the
limit £ — oo the noise correlations are zero. However, the system size in the external
noise case is imposed by an external mechanism such as a non-modelled stochastic
network with system size Q.

The scaling of the perturbations to the steady state determines a hierarchy on the
terms of equation (2.7) and in the case of non-inflow stochastic rate constants all multi-
plicative noise terms are linearised to additive terms with all non-trivial multiplicative
perturbations only manifesting at higher order. The approach of this paper is similar
to a weak noise approximation, however, with the fundamental difference that the
weak noise expansion is used to approximate a probability distribution, whereas the
perturbations to the steady state used in this paper approximate the local dynamics
of a systems of PDEs.

Note, that equation (2.9) is mathematically equivalent to a chemical Langevin
equation of compartmentalised diffusion in the limit of the compartment size, Ag,
going to zero [36]. However, in our derivation the source of the noise is external. To
emphasise the mathematical connection with internal noise we will in fact discretise
equation (2.9) into a finite number of compartments, such that for an n species network
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with I compartments we have

(2.10a) 6 = [6x1, ..., 0K, 0%k 1, -+, 0T0K, .-, 0%nk]T
(210b) n= [7717 RN/} N/ o= PR /7] P WTLK]T 5
(2.10¢) s~ s; =iAy wherei={1,...,K},
(2.10d) 0%6z(s) - dx(s; + Ag) + dx(s; — Ag) — 20x(s;) ’
0s? (Ag)?

and the matrices D and J turn into block matrices such that

[Diliexxc 0 0
(2.11) D= 0 [Dalcuic 0

The 45" block of J is J;;Ixcxx to give

[Jll}ICxIC [J12]IC><IC
[Jotliewre  [22liexx

(2.12) T= il [alexx

Compartmentalisation results in a system of nkKC coupled SDEs
(2.13) déx = Adx dt +n dt,

with A = D/A2+ 7, (n;(t)) = 0 and (n;(t)n;(t')) = B;jGi;(t,t'). Note that after
compartmentalisation B(s,s’) is a block matrix of n? K x K matrices, describing the
spatial auto-correlation of each species and the spatial correlations between species.

To calculate the power spectra of the system we introduce the discrete cosine
transform [37]

K
(2.14) Fo =AY cos[rA (G — )] f(s5) -
i=1

The cosine transform incorporates the von Neumann (no flux) boundary conditions,
which are commonly used for reaction-diffusion systems, however, other boundary
conditions can easily be implemented [37]. Due to the boundary conditions we require
k=mm/l withm € {0,1,2,...}. We refer to m as the spatial mode. Note that the use
of (j — 1) instead of j which is due to the fact that the compartment labelling starts
at j = 1. Hence, by applying the spatial Fourier transform we reduce the system of
nk SDEs (2.13) to a system of n coupled SDEs

(2.15) ddx,, = Az, dt + 1, dt .

Finally, applying the temporal Fourier transform
(2.16) f)= [ swear,

we get an expression for &, (w). Note that the Fourier transform always exists if we
consider the system to have a fixed point [38].

(2.17) 0, (w) = [~ Ay, — iw] " A (w) .
9



Therefore, the power spectra of the pattern, Ps,(x,w), can be expressed as the diag-
onal elements of

(2.18) (68, ()&, (W) = 7 (AWl @) (1),
N

where we defined
(2.19) O =—[A; +iw,

and 1 denotes the hermitian conjugate of a matrix. In order to be guaranteed real
power spectra we need N = Nt. In the case of Gaussian noise we have

(2.20) N = Feos (F(BG(t,1))),

where F..s denotes the cosine transform and F the temporal Fourier transform. Note
that when all temporal correlations are equal such that G;;(t,t') = g(¢,t') the trans-
form factor becomes

(221) N = ]:cos (B) ]:(g(ta t/)) = BHPCOrrelations(w) y

where Porrelations 1S the power spectrum of the correlation function g(t,¢') and By
is the n X n matrix of covariances. For white noise we take g(t,t') = §(t — t')/dt to
reduce (2.13) to the It6 form

(2.22) déx = Adx dt +n Vdt

with (n;(t)n;(t')) = B;;0(t — t’) and, therefore, Poorrelations = 1. Hence, we see that
for white noise the power spectra are

(02 (w)o, (w))

Il
L—|
&

L
—
)
=
—

&
S—
=)
Z—l—
—
&
S—
~—
—
M
-
SN—"
.
i
Il

(2.23) - [@‘1BK (cb‘l)q — Punite -
For general temporal correlations g(t,t') we have

<6im(w)6il(w)> = |:q)_anPCOrrelations ((I)_l)T] =
(224) = whitePCorrelations )

such that the spectra of the noise colour appear as a multiplicative factor modulating
the white noise spectra.

2.4. Application to the Schnakenberg System. We illustrate our analysis
via the example of the Schnakenberg kinetics. The Schnakenberg system is an n = 2
species reaction-diffusion system which, despite its apparent simplicity, exhibits a
wealth of different behaviours in the deterministic [39, 40, 41, 42] as well as stochastic
[7, 35] regimes. The Schnakenberg system is a fully open system and, hence, both
species can be subject to stochastic inflow. Hence, the Schnakenberg system is a per-
fect candidate to highlight the effects of coloured noise computationally and illustrate
how the above analysis can be applied in practise. The system follows the reaction
scheme

(2.25) Xo 20 2 xy 2X) + X 153X, .
k

-1
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The dynamics of the Schnakenberg system is described by the system of PDEs

0 o?
—;tl =D (9:21 + k1 — k_1z1 + ksaizs,
0 02

(226) % = DQWQ;Q + kg - kgx%l‘g.

First we check for a potential multistationarity in the Schnakenberg system by
formulating the matrices my and mo.

(2.27) my = (1 Lol ) and my =

N O = O
= o O O

It is easy to check that ker(ms) = {0}. Further, we have
o(ker(m1)) = {(+,+,0,0)", (=, 0,+,+)"}

and

(2.28) o(im(mz)) = {(0,+,0,4)",(0,0,0,+)"} .

Hence, applying the injectivity criterion (2.4) we see that the Schnakenberg system is
monostationary for all positive parameter values and, therefore, stochastic fluctuations
in the inflow parameters cannot trigger stochastic switching.

Next, we consider stochastic inflows which result in k; — k;+1/v/Qn; fori € {1,2}
and the equations

8$1 8251,‘1 2 1
v = DIW + k1 — ko171 + ksxiwe + ﬁﬁh
&rg 82x2 2 1

2.2 —— =Do—— + ko — k —1s.

(2:29) ot g T T Memira T e

Linearising equations (2.29) about the steady state zi = (ki + ko)k_|, =5 =
kzkzlkg 1(141 + kg)’2 and discretising space we get a system of linear stochastic dif-
ferential equations similar to the ones arising from the study of internal noise [7]

dx
2. —=A
(2.30) 7 T+,

with

(2.31) A= <‘c‘ Z) ,

where a, d are tridiagonal matrices with diagonal elements
ap = —2D1 /A% — k_y + 2ksatah,
(2.32) do = —2Dy /A% — kzxt?
and off-diagonal (sub- and super-diagonal) elements
ay = D1/A? =d,,
(2.33) dy = Dy/A? = d,.
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Colour Correlation Function Effect Possible Origin Section
White 1 N/A internal 3.2
Ornstein-Uhlenbeck | 1/ (wQTQ + 1) suppresses small w | experimental apparatus | 3.3
Red 1/w? excites small w deterministic 34
Predator-Prey (a + ng) / (w4 +yw? + 5) induces oscillations | stochastic subsystems 3.5

Table 1: An overview of our main results on various noise colours.

The matrices b and ¢ are diagonal matrices with entries

*2
bo = k3x7”,

(2.34) co = —2kzxis.

Note that the vector & has 2KC components. There are K components for species
1 and C components for species xs.

Hence, Fourier transforming equation (2.30) in space and time we can compute
the power spectra,

t
(2.35) P, w) = [Ag + ] (i) (@) ([An +i] 1)
with

_(ag + 2aq cos KA bo
(236) A= ( Co do + 2d; cos KAS) ’

In the following section we will discuss the effect of various noise correlations on
the power spectra, and hence, the patterns generated.

3. Computational Results. In this section we highlight the computational
patterns generated by a Turing system with coloured noise.

3.1. Numerical Methods. The system of SDEs (2.13) is simulated by an Euler-
Maruyama scheme [43] with time step At such that

(3.1) x(t + At) = a(t) + AzAt + nAt.

The important step of the integration is to find the correct vector 7.
The white noise and Ornstein-Uhlenbeck noise are generated by an auxiliary noise
process. In particular, at teach time step the white noise is sampled from a multivari-

ate Gaussian distribution
nAt ~ N (0, BAt).

The Ornstein-Uhlenbeck process is a generated by the stochastic differential equation

dn 1 VB
dt Tn + T &
where £ is a standard white noise vector. Therefore, at time ¢ the vector n(t) is
added to the to the system of SDEs. The Ornstein-Uhlenbeck “auxiliary equation” is
integrated by an Euler-Maruyama scheme as described in [44].

To simulate power law noise for which, in general, no auxialiary SDE exists we
use inverse transforms [45]. To generate a vector 1(t) with correlations (n(t)nT (¢')) =
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Byg(t —t'), we first use the fact that n = v/ B¢ where &€ may be correlated in time
but not in space, i.e. (€(t)€T(¥')) = §;;9(t —t'). Then, let the power spectrum of &;
be 1/w® as described in subsection 3.4 and use the algorithm of [45] to create a time
series. Multiplication of &(t) with /B gives the desired noise process, 1(t), which
can be added to the SDE system. Auxiliary networks as in 3.5 can be simulated by
either method and in this paper the auxiliary network input is generated by using the
inverse transforms technique.

The truncation of the Gaussian distribution is implemented by setting negative
values of the noise to zero at each time step. However, negative inflows were a rare
occasion (for the simulation parameters chosen, only for violet noise any truncation
was needed) and, hence, truncation had no effect on our simulations.

3.2. White Noise. First, we consider external white noise. In this special case
the noise vector m is just a Wiener process with correlation matrix B. This case
is mathematically identical to the case of internal noise in the weak noise limit as
studied in [7]. The main differences between internal noise and the parameter noise
considered in this paper are the amplitude of the noise and the exact forms of the
covariances of the stochastic processes 7.

Both approximations (the weak noise limit, as well as our “truncated Gaussian”
approximation) assume that the stochastic effect is a perturbation to the deterministic
limit. However, as derived in [7], the covariance matrix of the stochastic processes n
is determined by the microscopic processes whereas for external noise, whose origin
can be manifold, the covariance matrix is arbitrary. For mathematical simplicity we
choose the covariance matrix

(3.2) B, — G i) .

Throughout the remainder of this paper we fix the parameter values to

k1 = k2 =10.0, k3 =0.01, k_;=20.0,
L=0.1, K=40,

with diffusion coefficients

D, =104,
(3.3) Dy = 1072,

which results in steady state concentrations of 7 = 1, 5 = 1000. The parameters
chosen are not generic, but they represent a particularly interesting point in parameter
space. The parameters are in the (stable) oscillatory regime of the Schnakenberg
system and outside the Turing space. The main function of the noise will be to
temporarily move the system into the Turing regime. Note that the system has large
inflows (and outflows) compared to the chemical reaction parametrised by ks which
allows for larger variations in the noise translating into larger pattern amplitudes.
The modifications to the power spectra due to coloured noise are generic and apply
all points in parameter space. However, the visibility of these modifications depends
on the point in parameter space and the correlation matrix. Similarly, the results
on amplitude of the patterns are parameter-dependent. To simulate the system, we
discretise the space into 40 compartments of width A; = 0.0025 (which gives a total
domain length of L = 0.1).
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(a) The deterministic solution of the Turing system  (b) A stochastic realisation with white noise
at the given parameter point
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(¢) The power spectra of the analytical calculations (dashed lines) and
their simulated curves averaged over 50 realisations of length 7" = 1000
and subsystem size 2 = 5000. We attribute the differences in peak
height to the finite time steps used.

Fig. 2: An overview of the deterministic and white noise behaviour of the system
with parameters as in (3.3). The peak in 2c at zero spatial mode, m = 0, indicates
temporal oscillations which result from deterministic limit cycle oscillations. Due to
the choice of reaction kinetics the temporal oscillations of species £y and xo are in
phase.

Simulating equation (2.30) under the influence of white noise and with the given
parameter values we obtain Figure 2 and its corresponding averaged power spectrum.
The power spectrum shows the temporal frequencies, w, and spatial modes, m, present
in the pattern. The amplitude of the oscillations is about 3% of the steady state value
for species x1 whereas for species x5 it is much lower. Therefore, we assume that any
patterning of x5 is not generally measurable and, therefore, we focus our attention
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on z;. The prominent temporal oscillations with no spatial dependency manifest
themselves as a sharp peak in the power spectrum. This is due to the fact that the
chosen parameter point is in the oscillatory regime of the Schnakenberg model. Upon
close inspection slight spatial variations in the pattern of x; can be seen, but with
white noise these are not very pronounced. In the following sections we show how
noise colour can enhance spatial modes, create additional oscillations or even create
a stable pattern.

3.3. Ornstein-Uhlenbeck Noise. Next, we investigate the effect of exponen-
tially correlated noise also known as Ornstein-Uhlenbeck noise [46]. This stochastic
process has a finite correlation time 7 which we interpret as a response time. Consider
an experiment in which the inflow rate is highly sensitive to the ambient temperature.
Further, suppose this temperature undergoes random fluctuations about a regulated
mean value. Therefore, the correlation time 7 could represent the average response
time of the temperature regulator.

We make the simplification that all the temporal correlations in equation (2.6)
originate from Ornstein-Uhlenbeck processes with the same correlation time, 7, such
that

’ ’ 1 [t=t']
(34) gij(tat ) = g(tat ) = ;6 T
Hence, it follows that
- - 1
(3.5) <n,{(w)77,i(w)T> = Bnm

where B, is the same matrix as in the white noise case and therefore P(k,w)or-un =
P(K,w)white/(w?7% + 1). Hence, the noise colouring will dampen temporal frequen-
cies of w # 0 and, therefore, stabilise the pattern. Consequentially, in systems with
Ornstein-Uhlenbeck noise we would expect any present stationary patterns that may
be obscured by transient noise effects to be more prominent. We simulated the
Schnakenberg system with Ornstein-Uhlenbeck noise and plotted the resulting pat-
terns and power spectra in Figure 3. The pattern of xo has the same characteristic
as in the white noise case, except for a smaller amplitude. Interestingly, x; shows
a very different behaviour to the white noise case. Clear spatial structures can be
seen, in particular the phenomenon of polarity switching [35, 7]. A Turing pattern of
mode m = 1 is generated with a given polarity, namely, a minimum at s = 0 and a
maximum at s = L or vice versa. Polarity switching describes the inherently stochas-
tic phenomenon of a sudden change in polarity as can be observed in Figure 3. The
temporal oscillations, although still present, are reduced to a practically unobservable
level. We attribute this to the fact that the exponential noise correlations dampen
the oscillations present in the white noise system.

3.4. Power Law Noise. By power law noise we mean a stochastic process whose
frequency distribution follows a power law in Fourier space

1
(36) Ppower - E
Various types of power law noise are common in engineering and are defined by colours
summarised in Table 2. In this paper we study red noise, white noise (subsection 3.2)
and violet noise to illustrate the effects of a positive, zero and negative exponent, «.
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Fig. 3: The patterns and power spectra for the species x1 (left) and zo (right) with
noise generated by an Ornstein-Uhlenbeck process and 7 = 100. Spatial patterns
become visible in the Ornstein-Uhlenbeck case which can be attributed to its damp-
ening effect on temporal oscillations. This can be observed as a visible excitation
of the m = 1 mode in the power spectrum of x; with the dashed line representing
the analytical prediction. The well-known phenomenon of polarity switching [7] is
observed in the pattern of z;. The spectra were averaged over 50 repetitions with
T = 1000 and subsystem size 2 = 100.

Colour «
Red a=2
Pink a=1
White a=0
Blue a=-—1
Violet =-2

Table 2: The various colours of power law noise. In this paper we focus on red and
violet noise.
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Red noise amplifies small temporal frequencies with 1/w? — co as w — 0. There-
fore, the zero frequency behaviour dominates the pattern. As can be seen in Figure
4, due to the amplification of small w, the pattern becomes stable, even though the
amplitude grows beyond the biologically viable (non-negative) bound indicating that
non-linear effects need to be considered in the model. To investigate the red noise
further, we look at the noise vector 1. For the simulation times chosen, 7" = 1000,
the noise vector is independent of the time ¢ such that each n; has a constant, but
random value. Hence, the effect of red noise is deterministic and equation (2.30) is
just a linear ordinary differential equation with a constant drift term. After applying
the spatial Fourier transform we obtain the equation

dox,.
dt

(3.7) = A 0%, + N,

and denoting the eigenvalues and eigenvectors of A, as A\1(k), A\2(x) and v (k), va(k)
respectively, the linear equation can be solved to give

(3.8) 8z, (1) = crvn (k)M 4 covy (k)M — A1y,

where ¢; and ¢y are constants determined by the initial conditions. Investigating the
spatial mode m = 0, which corresponds to the dynamics of the non-spatial system,
we find that the dynamics corresponds to a stable spiral and, therefore, transient
oscillations around w = 0.5 are expected. Indeed, it can be seen in Figure 4 that tran-
sient oscillations are present and in order to calculate the power spectrum accurately
only the time points in ¢ € [800, 1000] are used. If the entire data were used for the
calculation of power spectra a peak at w = 0.5 would appear which is not accounted
for in the analytic spectrum. The same caveat does not apply to other coloured noise
processes due to the constantly varying perturbations to the steady state.

To illustrate the behaviour of the system on the other end of the colour spectrum,
and to highlight the limits of our analysis, we simulated violet noise which stabilised
the temporal oscillations further and due to large power at large w drove the oscillation
amplitude in the linear treatment to unphysical values. Again, this indicates that
violet noise cannot be treated in biological applications with a simple linear theory,
but a full non-linear theory must be used. For violet noise the effect of the truncation
of the Gaussian became too large to obtain an accurate prediction of the power spectra
as can be seen in Figure 5. Further, while noise colours with positive exponent are
actively studied in biology [47], the potential emergence of blue or violet noise in
applications is not clear.

3.5. Stochastic Auxiliary Networks. We now proceed to the second major
source of random inflows, namely the dependence on a stochastic auxiliary network.
An auxiliary network is a chemical reaction network which provides an input into
the Turing system (see Figure 6). The auxiliary network is connected to the main
network only via an inflow reaction and, if the auxiliary network reaches a steady state,
it can be subsumed into the zero complex for practical modelling. If, however, the
auxiliary network exhibits more complex dynamics such as deterministic or stochastic
oscillations, then it needs to be treated as a part of the main network. We focus
on auxiliary networks which are deterministically stable, but show stochastic quasi-
cycles. The dynamics of such systems are modelled by using a correlated stochastic
inflow parameter as outlined in section 2.2.
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Fig. 4: The patterns and power spectra for the species x; (left) and zo (right) with
noise generated by a red noise process. As predicted, the spectra are dominated by
the behaviour the w = 0, which amounts to the stabilisation of a particular spatial
mode. The species concentrations, however, go negative indicating that a full non-
linear model needs to be used. The peak in the power spectrum for x5 is a numerical
artefact. The spectra were averaged over 50 repetitions with simulation time 7' = 200.
The subsystem size was = 5000.

As an illustrative example we use the predator-prey system described in [8],

d d

(3.9) 2y &Y+, B v,

In [8] it was shown that in the deterministic regime the system (3.9) has exactly
one attractor for any choice of rate constants. Hence, as the inflow parameters k;
and ko are proportional to the concentration of Y7, they will have a constant value.
However, when the copy numbers of Y7 and Y5 are small and stochastic fluctuations
are important the predator-prey model (3.9) can exhibit so-called “quasi-cycles” which
are stochastic analogue of limit-cycles and manifest themselves as peaks in the power
spectra.

Consider this “predator-prey noise” in a Schnakenberg system. Suppose the in-
flows k1 and ko in the Schnakenberg system depend on the presence of the chemical
species Y7, such that ky o< y; and ko o y;, where y; denotes the concentration of Y7.
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Fig. 5: The patterns and power spectra for 1 (left) and x2 (right) with noise generated
by a violet noise process. The discrepancy in the power spectra originates from the
truncation of the Gaussian process. The negative species concentrations indicate that
a non-linear theory needs to be used to fully model a violet noise system. The spectra
were averaged over 50 repetitions with simulation time 7" = 200. The subsystem size
was {2 = 5000.

Again, we assume g;;(t,t") = g(t,t") for mathematical simplification. In Fourier space
the power spectrum of Y7 is

o+ Bw?

3.10
( ) w? +Q(2)) + 20?2’

PPredator-Prey = (

where we use the parameter values from [8] a = 0.000384, 8 =T = 0.04, Q3 = 0.016.

Equation (3.10) has a peak at w ~ 0.06, so we expect peaks at a similar frequency
for each non-zero spatial mode in the power spectrum of the Schnakenberg system.
The resulting patterns and the corresponding average power spectra are presented in
Figure 7. The power spectra gained a second peak in the m = 0 mode and peak in
all modes m > 0 at w ~ 0.06. Therefore, it can be seen that a deterministic parent
system can inherit the dynamics of a stochastic auxiliary network and mix it with its
own intrinsic dynamics.
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Fig. 6: A schematic of an auxiliary network and its input to the main system. This
is a specific example of scenario (b) of Figure 1.
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Fig. 7: The power spectra for the species x; (left) and x5 (right) with noise generated
by a stochastic predator-prey network [8]. The power spectra inherited a second peak
from the subsystem which activates oscillatory modes on top of the deterministic
oscillation frequency. The spectra were averaged over 50 repetitions and simulation
time 7" = 200 with m indexing the spatial mode. The subsystem size was 2 = 100.

3.6. Mixed Noise. Next, we investigated the case of mixing noise processes, in
particular, we consider an Ornstein-Uhlenbeck process which has a different correla-
tion time for x7 and x2, 71 and 75 respectively. Then we let 75 — 0 in order to recover
the white noise case for species two.

We introduce the auxiliary normal stochastic processes £ and hence, the spatial
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modes of the noise 7, are described by [46]

dn,. L 9 L 9
(311) dnt - - <8 1) Nk + (8 1) bi§,

T2 T2

where b, is a 2 X 4 matrix satisfying b.b. = B,. We Fourier transform (3.11) and
define the matrix,

1 .
o tw 0
(312) ¢_< 0 é+w>
to give
1 9 5
(313) Tk = ¢_1 (8 1) bnﬁ
T2
Letting 7 — 0 and computing the covariance matrix gives
B, 1 B, _1
(3.14) N = (i ()i ()T = 11 Hoizfg 12T 07 ,
By o= By 22

where By, ;; are the i7" elements of the B, matrix. Note that N is hermitian and
therefore we expect real power spectra for the patterns of z; and xs.

Simulating equation (2.9) with the noise process described by (3.11) gives rise to
the mixed patterns seen in Figure 8. Note, that computationally the limit 75 — 0 is
equal to setting 75 to the time step dt. The patterns of both species appear similar
to the pure Ornstein-Uhlenbeck patterns, however, with reduced amplitude.

3.7. Reduced Stochastic Inflows. In the final subsection we instigate the case
of only species z1 being subjected to stochastic inflows. The species x5 is assumed
to only have deterministic inflow at a rate ks and ny = 0. Hence, the correlation
matrices N will be reduced to

(3.15) N — <<ﬁ150ﬁikn> 8) .

In the noise processes studied in this paper the behaviour of the species is virtually
unchanged and the patterning is robust with respect to disregarding cross-correlations.

4. Conclusion. In this paper we investigated the effect of stochastic inflows
on a deterministic reaction-diffusion system. We restricted the class of networks
considered to monostationary systems and used results from real algebraic geometry
to show how monostationarity is related to network structure. We then introduced
a stochastic perturbation to an inflow reaction as a truncated Gaussian process with
the expectation value at the deterministic inflow parameter. After linearising we
computed the power spectra for arbitrary noise colours and showed that in simple
cases the power spectra can be derived as a multiplicative factor. The remainder of the
paper consisted of applying our analysis to the Schnakenberg system and highlighting
the effects various noise colouring can have on a reaction-diffusion system.

We briefly restated the results from the white noise analysis, proceeding to add
coloured noise and then demonstrating its effect by computing the power spectra. In
particular, for the simple case when all species experience the same temporal cor-
relations, the power spectra of the correlations appear as a multiplicative factor in
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Fig. 8: The patterns generated for the species z1 (left) and x5 (right) with Ornstein-
Uhlenbeck noise and 7 = 100 for x; and x5 with white noise.The patterns are phe-
nomenologically similar to the Ornstein-Uhlenbeck patterns, however, with reduced
amplitude. The power spectrum of zo is a mixture of white noise and Ornstein-
Uhlenbeck noise. The power spectra were averaged over 50 simulations with simula-
tion time 7" = 1000 and subsystem size 2 = 5000.

the total power spectra. Hence, depending on the nature of the correlations they
will suppress or excite temporal frequencies at all spatial modes. Ornstein-Uhlenbeck
noise has a Lorentzian frequency distribution and, therefore, suppresses positive fre-
quencies. Power law noise can either completely stabilise or destabilise the pattern
depending on the sign of the exponent, a. This is due to the fact that for positive
« temporal frequencies at w = 0 go to infinity and, therefore, all oscillations are
suppressed which results in a stable pattern which resembles a pattern arising from
simulations inside the Turing regime.

For the simulation times used in this paper, the noise vector was actually constant,
and, therefore, deterministic methods could be used to study the stabilising effect of
pink or red noise. The opposite is the case for negative o where the frequency contri-
bution in the power spectrum increases as w increases and oscillations are enhanced.
However, certain aspects of the red, blue, or violet, noise cases cannot be explained by
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our simple analytic prediction. The significance and the correct analytic description
of blue/violet noise could form a part of further work.

When turning to stochastic auxiliary networks we see that the reaction-diffusion
system can inherit traits of the dynamics of the auxiliary network. In particular,
we showed that when the auxiliary network exhibits a predator-prey dynamic with
stochastic oscillations these oscillations can still be observed in the deterministic main
network. We concluded the range of applications by considering mixed noise with
Ornstein-Uhlenbeck input for species 1 and white noise for species x3. In this case,
the system behaves similar to a system with pure Ornstein-Uhlenbeck dynamics and
differences can only be found by a power spectral analysis. Finally, we observed in the
cases considered that when only one species experiences stochastic inflow the patterns
created are, except for potential special cases, similar to the ones when the inflow to
both species is randomised. However, the extent to which such results may hold in
generality is for further work.

Further directions could also include attempting to relate these studies to po-
tential mechanisms of left-right symmetry breaking amplification in developmental
biology, in particular the impact of induced Nodal production on one side of the
embryonic node, which is hypothesised to be driven by ciliary fluid flows and also
highly error-prone [48]. It is generally asserted that the resulting interactions of the
gene products Nodal and Lefty, which are major contenders as Turing morphogens
[49, 50, 51], amplify this initial error-prone signal to generate robust patterning, driv-
ing downstream developmental left-right asymmetry. However, the ability of Turing
systems to amplify the spatially localised, error-prone, and thus stochastic, influx of
activator morphogen [48, Figure 2] to robustly amplify a stochastic symmetry break-
ing in self-organisation, as well as any additional constraints required to do so, is
theoretically untested. Thus examining the mechanistic basis of these postulates in
this critical developmental biological process provides a fundamental application for
the theoretical foundations developed here.
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