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Abstract 

Depression is more frequent among individuals exposed to traumatic events. Both trauma exposure 

and depression are heritable. However, the relationship between these traits, including the role of 

genetic risk factors, is complex and poorly understood. When modelling trauma exposure as an 

environmental influence on depression, both gene-environment correlations and gene-environment 

interactions have been observed. The UK Biobank concurrently assessed Major Depressive Disorder 

(MDD) and self-reported lifetime exposure to traumatic events in 126,522 genotyped individuals of 

European ancestry. We contrasted genetic influences on MDD stratified by reported trauma 

exposure (final sample size range: 24,094–92,957). The SNP-based heritability of MDD with reported 

trauma exposure (24%) was greater than MDD without reported trauma exposure (12%). 

Simulations showed that this is not confounded by the strong, positive genetic correlation observed 

between MDD and reported trauma exposure. We also observed that the genetic correlation 

between MDD and waist circumference was only significant in individuals reporting trauma exposure 
(rg = 0.24, p = 1.8 × 10−7 versus rg = −0.05, p = 0.39 in individuals not reporting trauma exposure, 
difference p = 2.3 × 10−4). Our results suggest that the genetic contribution to MDD is greater when 
reported trauma is present, and that a complex relationship exists between reported trauma 

exposure, body composition, and MDD. 

Introduction 

Depression is among the most common mental illnesses worldwide and accounts for 5.5% of all 

years lost through disability globally [1]. In England ~28% of individuals self-report depression during 

their lifetime [2]. The most common clinically recognised form of depression is called Major 

Depressive Disorder (MDD). Both environmental and genetic factors influence MDD. In particular, 
MDD is more commonly observed among individuals reporting exposure to stressful life events and 

early-life traumas [3–6]. In turn, reported trauma exposure has been robustly correlated with a 

range of adverse life outcomes including MDD [6–9]. The relationship between MDD and reported 

trauma exposure is complex. Reported trauma exposure is associated with both subsequent MDD 

and prior MDD [10, 11]. However, the majority of people reporting exposure to traumatic 

experiences do not report MDD [6–9]. 

Twin studies show that MDD is moderately heritable, with 30–40% of the variance in MDD 

attributable to genetic factors [12]. The proportion of heritability captured by common genetic 

variants, also known as single nucleotide polymorphism or SNP-based heritability, can be estimated 

from genome-wide association study (GWAS) data. Such estimates tend to be lower than those 

obtained from twin approaches, due to the incomplete capture of genetic information in GWAS data 

among other reasons [13]. The most recent major depression GWAS from the Psychiatric Genomics 



Consortium was anchored in 35 cohorts (including the 23andMe discovery cohort [14]) recruited 

with a variety of methods [15]. This meta-analysis identified 44 loci significantly associated with 
major depression, and estimated a SNP-based heritability of 9–10% [15]. These results strongly 

suggest both the mild and more severe forms of depression are polygenic, with potentially 

thousands of variants with very small individual effects contributing to risk. 

There are far fewer genetic studies of reported trauma exposure than of MDD. However, the 

available studies have demonstrated that reported trauma exposure is heritable, with twin 

heritability estimates of 20–50% [16–18] and SNP-based heritability estimates of 30% [19]. 

Combining measures of trauma exposure and depression at scale is difficult, given the need for 
careful phenotyping [20]. Potential confounds include the (often unavoidable) use of retrospective 

self-reported measures of trauma exposure, which can be weakly correlated with objective 

measures of traumatic experiences [9]. Furthermore, current (i.e. state) low mood can increase self-

reporting of previous trauma exposure [9, 21]. Previous individual study cohorts have generally been 

too small for effective GWAS, while meta-analyses have contained considerable heterogeneity due 

to the use of different phenotyping instruments in the included studies. 

However, some notable genome-wide analyses of MDD and trauma exposure have been performed. 

A genome-wide by environment interaction study of depressive symptoms and stressful life events 

in 7179 African American women identified a genome-wide association near the CEP350 gene 

(although this did not replicate in a smaller cohort) [22]. An investigation in 9599 Han Chinese 

women with severe MDD identified three variants associated with MDD in individuals who did not 

report trauma exposure prior to MDD onset [23]. 

Several attempts have been made to estimate the inter-action of overall genetic risk and trauma by 

using polygenic risk scores for MDD to perform polygenic risk score-by-trauma interaction analyses. 

Such studies test whether there are departures from additivity (where the combined effect of risk 

score and trauma differs from the sum of the individual effects) or from multiplicativity (where the 

combined effect differs from the product of the individual effects). Reported results have been 

highly variable, with findings of both significant additive and multiplicative interactions [24]; 
significant multiplicative interactions only [25]; and, in the largest previous study published (a meta-

analysis of 5765 individuals), no interactions [26]. 

Studies of gene–environment interaction usually assume the genetic and environmental influences 
are independent and uncorrelated [27]. However, genetic correlations between reported trauma 

exposure and MDD have been reported, both from twin studies [28–30] and from the genomic 

literature [22, 26]. Reports of the magnitude of this genetic correlation have varied widely, which 

reflects differences in defining trauma exposure, and in the populations studied. While some studies 

have identified a very high genetic correlation (95%) [22], others have found no such correlation 
[23]. The genetic relationship between reported trauma exposure and MDD is therefore unresolved. 

The release of mental health questionnaire data from the UK Biobank resource provides an 

opportunity to assess the relationship between genetic variation, risk for MDD, and reported trauma 

exposure in a single large cohort. We performed GWAS of MDD (as defined from the mental health 
questionnaire [31]) with and without reported life-time trauma exposure in UK Biobank European 

ancestry individuals. These results enabled us to estimate the genetic contribution (via SNP-based 

heritability estimation) to MDD in individuals with and without reported lifetime trauma exposure. 

To examine differences in the genetic contribution, we calculated the genetic correlation between 

MDD in individuals reporting and not reporting trauma exposure. To assess whether the genetic 

relationship of MDD to other traits varies in the context of reported trauma exposure, we assessed 



genetic correlations with a wide range of physical and psychiatric traits. Finally, we per-formed 

polygenic risk scoring, using external traits commonly comorbid with MDD, and sought to extend 

previous analyses of polygenic risk score-by-trauma interactions in MDD. 

Methods 

Phenotype definitions 

The UK Biobank assessed a range of health-related phenotypes and biological measures including 

genome-wide genotype data in ~500,000 British individuals aged between 40 and 70 [32]. This 

includes 157,366 participants who completed an online follow-up questionnaire assessing common 

mental health disorders, including MDD symptoms, and 16 items assessing traumatic events 

(Resource 22 on http://biobank.ctsu.ox.ac.uk)[31]. Phenotypes were derived from this 

questionnaire, using definitions from a recent publication describing its phenotypic structure [31]. 
Individuals with probable MDD met lifetime criteria based on their responses to questions derived 

from the Composite International Diagnostic Interview (CIDI; Supplementary Table 1). We excluded 

cases if they self-reported diagnoses of schizophrenia, other psychoses, or bipolar disorder. Controls 

were excluded if they self-reported any mental illness, taking any drug with an anti-depressant 

indication, or had been hospitalised with a mood disorder or met previously-defined criteria for a 
mood dis-order (Supplementary Table 1) [33]. 

 

 

Participants were asked questions relating to traumatic experiences in childhood using the 

Childhood Trauma Screener (a shortened version of the Childhood Trauma Questionnaire [34–36]) 

and an equivalent screener for adulthood developed by the UK Biobank Mental Health steering 

group to mirror the childhood items [31]. In addition, participants were asked questions related to 

events that commonly trigger post-traumatic stress-disorder (PTSD). Responses to individual 

questions (items) in these three categories (child trauma, adult trauma, PTSD-relevant trauma) were 

dichotomised and compared between MDD cases and controls (Supplementary Table 2a). 

We selected reported items with an odds ratio >2.5 with MDD, to obtain a single binary variable for 

stratification that captured exposure to the traumatic events most associated with MDD. Items from 
all three trauma categories were reported more in MDD cases compared with controls. Of the 

selected items, three referred to events in childhood (did not feel loved, felt hated by a family 

member, sexually abused). Another three items referred to events in adulthood (physical violence, 

belittlement, sexual interference), and one item assessed a PTSD-relevant event (ever a victim of 

sexual assault). In order to capture increased severity of exposure, only individuals reporting two or 

more of these items were included as reporting trauma exposure. Individuals reporting none of the 

items were included as not reporting trauma exposure. Individuals reporting a single trauma item, or 

who did not provide an answer were excluded from the analyses (Supplementary Table 1). A 

breakdown of reported traumatic experiences by sex and MDD status is provided in Supplementary 



Table 2b. Further discussion of the definition of trauma exposure is included in the Supplementary 
Note. 

Phenotype preparation for analyses 

Three sets of analyses comparing MDD cases and controls were performed (i) overall, (ii) limited to 

individuals reporting trauma exposure, and (iii) limited to individuals not reporting trauma exposure 

(Table 1). In addition, sensitivity analyses were performed on reported trauma expo-sure (overall 

and stratified by MDD diagnosis; see Supplementary Methods and Results, and Supplementary Table 
3). For each analysis, phenotypes were first residualised on 6 ancestry principal components from 
the genetic data of the European samples as well as factors capturing initial assessment centre and 

genotyping batch. More details on phenotype preparation can be found in the Supplementary 

Methods. 

Phenotype distribution 

Previous analyses have shown that, compared with the participants in the UK Biobank as a whole, 

those who completed the mental health questionnaire were more likely to have a university degree, 

came from a higher socio-economic background, and reported fewer long-standing illnesses or 

disabilities [31]. Accordingly, participants were compared across a number of standard demographic 

variables and common correlates of MDD: sex, age (at questionnaire), education (university degree 

vs. not), neighbourhood socioeconomic status (SES, as Townsend deprivation index [37]) and BMI 

(recorded from measurements taken at the initial recruitment of the participants into the biobank). 

For further details on these analyses, see Supplementary Methods. 

Genetic data 

Genetic data for GWAS analyses came from the full release of the UK Biobank data (N = 487,410; 

[38]). Autosomal genotype data from two highly-overlapping custom genotyping arrays (covering 

~800,000 markers) underwent centralised quality control before being imputed in a two-stage 

imputation to the Haplotype Reference Consortium (HRC) and UK10K (for rarer variants not present 

in the HRC) reference panels [38–40]. In addition to this central quality control, variants for analysis 

were limited to com-mon variants (minor allele frequency > 0.01) that were either directly 

genotyped or imputed from the HRC with high confidence (IMPUTE INFO metric > 0.4) [39]. 

Individuals were excluded where recommended by the UK Biobank core analysis team for unusual 

levels of missingness or heterozygosity, or if they had withdrawn consent for analysis. Using the 

genotyped SNPs, individuals with call rate <98%, who were related to another individual in the 

dataset (KING r < 0.044, equivalent to removing third-degree relatives and closer [41]) or whose 

phenotypic and genotypic gender information was discordant (X-chromosome homozygosity (FX) < 

0.9 for phenotypic males, FX > 0.5 for phenotypic females) were also excluded. Removal of relatives 

was performed using a “greedy” algorithm, which minimises exclusions (for example, by excluding 
the child in a mother–father–child trio). All analyses were limited to individuals of European 

ancestry, as defined by 4-means clustering on the first two genetic principal components provided 
by the UK Biobank [42]. This ancestry group included 95% of the respondents to the mental health 

questionnaire—as such, the non-European ancestry groups were considered too small to analyse 

informatively. Principal components analysis was also performed on the European-only subset of the 

data using the software flashpca2 [43]. After quality control, individuals with high-quality genotype 

data and who had completed the online mental health questionnaire were retained for ana-lysis (N = 

126,522). 



GWAS analyses used the imputed data as described above. Genetic correlation analyses used the 

results of the GWAS analyses. Polygenic risk score analyses and SNP-based heritability analyses in 

BOLT-LMM used the genotyped variants [38]. These latter analyses were limited to common variants 

(minor allele frequency > 0.01) with call rate > 98% that were in approximate Hardy–Weinberg 

equilibrium (HWE test p >10−8). The same individuals were used for analyses using the imputed and 
the genotyped data. 

Analyses 

Genome wide association studies (GWAS) 

GWAS were performed to assess the association of individual genetic variants with MDD. These 

analyses were first undertaken for the entire sample regardless of reported trauma exposure, then 
stratified by reported trauma exposure. GWAS were performed using linear regressions on imputed 

genotype dosages in BGenie v1.2 [38], with residualised phenotypes as described above. Phenotypes 

and genotypes were mean-centred and standardised. 

Genome-wide significance was defined at the conventional level p <5 × 10−8 [44]. Results from each 

GWAS were clumped to define genetic loci in PLINK2 [45]. Loci were defined following established 
protocols (Supplementary Methods) [15]. 

Betas from the GWAS were converted to odds ratios (OR) using LMOR 

(http://cnsgenomics.com/shiny/LMOR/) and observed sample prevalences [46]. Standard errors 

were calculated from the p-value and estimated OR [47]. Performing GWAS on residuals, rather than 

including covariates in the analysis, is a restriction imposed by the BGenie software (which was used 

because it is specifically designed for analysing the UK Biobank genetic data). Sensitivity analyses 
were performed to test for biases resulting from this method. Specifically, for each GWAS, each 
variant with nominal significance (p < 0.0001) was also tested using logistic regression including 

covariates in R 3.4.1, in order to confirm the results from BGenie [48]. 

SNP-based heritability 

Results from GWAS were combined to assess the proportion of variance due to the additive effect of 

common genetic variants (SNP-based heritability). SNP-based heritability was calculated on the 

observed scale using BOLT-LMM v2.3 [49]. The estimate for MDD in the cohort was converted to the 

liability scale in R 3.4.1, assuming a population prevalence of 28% [2, 50]. Converting estimates of 

SNP-based heritability for a case-control trait from the observed scale to the liability scale requires 

accurate estimates of the lifetime prevalence of the trait in the (sub) population. When comparing a 

trait stratified by a correlated variable (as is the case when we compare the SNP-based heritability of 

MDD stratified by reported trauma exposure), the population prevalence in each stratum is 
unknown. To address this, we approximated the expected prevalence of MDD in individuals either 

reporting or not reporting trauma exposure (Supplementary Methods). This allowed us to convert 

the observed scale SNP-based heritability of MDD to the liability scale in both strata (i.e. those 

reporting and those not reporting trauma exposure). A second challenge is that trauma exposure is 

itself a heritable trait that is genetically correlated with MDD in this study. The potential impact of 

this on SNP-based heritability estimation is not intuitive. To benchmark our findings, we performed 
simulations of SNP-level data to explore the expected SNP-based heritability of MDD in individuals 

reporting and not reporting trauma exposure, assuming differences in SNP-based heritability 

resulted only from the genetic correlation between MDD and reported trauma exposure. Further 

details of these analyses are provided in the Supplementary Methods. 



Genetic correlations 

Genetic correlations (rg) were calculated to assess shared genetic influences between MDD and 
other phenotypes, using GWAS summary statistics and LD Score regression v1.0.0 [51] using the 

default HapMap LD reference. Two sets of genetic correlations were calculated. First, we calculated 

genetic correlations between the phenotypes examined within this paper (internal phenotypes). We 

calculated the genetic correlation between MDD and reported trauma exposure in the full dataset, 

and then the genetic correlation between MDD in individuals reporting trauma exposure and MDD 

in individuals not reporting trauma exposure. Secondly, we also calculated genetic correlations 

between each GWAS from this analysis and a curated list of 308 publicly-available phenotypes 

(external phenotypes) [51, 52]. 

Genetic correlations were tested for difference from 0 (default in LD Score), and for difference from 

1 (in Microsoft Excel, converting rg to a chi-square as [(rg − 1)/se]2)[51, 52]. Genetic correlations 
were considered significant if they passed the Bonferroni-adjusted threshold for the effective 

number of traits studied in each analysis (internal: p < 0.01; external: p < 2.5 × 10−4). The effective 

number of traits was calculated as the number of principal components explaining 99.5% of the 

variance in the pair-wise genetic correlation matrix (internal: 5; external: 202). External phenotype 

GWAS all had heritability estimates such that h2/SE > 2, and produced valid (i.e. non-NA) rg with all 

other phenotypes tested. 

The genetic correlation of MDD with each external phenotype was compared between individuals 

reporting trauma exposure and individuals not reporting trauma exposure using a two-stage 

method. First, differences were assessed using two sample z-tests [53]. Nominally-significant 
differences (p < 0.05) by this method were then compared using the block-jack knife (Supplementary 

Methods) [52, 54, 55]. Results using the jack knife were considered significant if they passed the 
Bonferroni-adjusted threshold (p < 2.5 × 10−4). 

Polygenic risk scoring 

Polygenic risk scores were calculated to further assess shared genetic influences between MDD and 
traits known to be correlated to MDD. Specifically, risk scores from analyses of major depression 

(MDD) [15], schizophrenia (SCZ)[56], bipolar disorder (BIP) [57], body mass index (BMI)[58] and 

glycated haemoglobin (HbA1c; used as a negative control) [59] were calculated and compared in all 

partici-pants and stratifying by reported trauma exposure. The PGC major depression GWAS 

contained participants from UK Biobank, so to derive the MDD risk score we used a restricted set of 

summary statistics without these individuals (but including individuals from 23andMe, whose 

diagnoses were self-reported [14]). For further discussion of this overlap, see Supplementary Note 

[15]. Risk scores were calculated using PRSice v2 at seven thresholds (external GWAS p < 0.001, 0.05, 

0.1, 0.2, 0.3, 0.4 and 0.5) to allow assessment of the spread of association between risk score and 

MDD [45, 60, 61]. Analyses used logistic regression, including all covariates used in creating the 

residuals for GWAS. In total, five external phenotypes were used to produce risk scores for the three 
target phenotypes (MDD overall, and stratified by reported trauma exposure/non-exposure), 

resulting in 15 analyses. A conservative Bonferroni adjustment for multiple testing was used, 

correcting for 105 tests (given seven thresholds and 15 analyses), giving a final threshold for 
significance of p < 0.0004. 

We also performed formal risk score-by-environment analyses to estimate the effect on MDD of the 

interaction between genetic variants across the whole genome (modelled as a polygenic risk score) 

and reported trauma exposure. These analyses included the same covariates used in the GWAS, and 



all risk score-by-covariate and reported trauma exposure-by-covariate interactions [62, 63]. Both 

multiplicative and additive interactions were tested. A significant multiplicative interaction means 

that the combined effect of the risk score and reported trauma exposure differs from the product of 

their individual effects. Multiplicative interactions were tested using logistic regression [25, 26]. A 

significant additive interaction means that the combined effect of the risk score and reported 

trauma exposure differs from the sum of their individual effects. Additive interactions were tested 

using linear regression (Supplementary Methods). 

Sensitivity analyses 

Differences in phenotypic variables were observed between cases and controls. To assess the impact 

of including these variables as covariates, all analyses were rerun retaining all previous covariates 

and including as further covariates: age (at questionnaire), neighbourhood socioeconomic status 

(SES, as Townsend deprivation index [37]), BMI (at baseline assessment), and a binary variable of 

education (university degree vs. not). The same covariates were also included in polygenic risk score 

and SNP-based heritability analyses. Sensitivity analyses focussing on reported trauma exposure as 

an out-come were similarly rerun (Supplementary Methods). 

The majority of the sample with data on both MDD symptoms and reported trauma status were 

controls who did not report trauma (Table 1). To assess whether this dis-balance in sample status 

affected our results, genetic correlation analyses with external phenotypes were rerun on ten down 

sampled cohorts, with 9,487 participants in each group (the number of cases not reporting trauma 

exposure; see Supplementary Methods). 

In order to test whether our definition of trauma exposure affected the main finding of our paper, 
we performed three further sensitivity analyses, redefining reported trauma expo-sure. First, we 

assessed if our main finding was robust to changing the threshold for including MDD-relevant 

trauma, by redefining reported trauma exposure as a report of (i) one or more and (ii) three or more 
of the seven MDD-relevant trauma items. Second, we assessed whether the timing of trauma 

exposure affected this finding by redefining reported trauma exposure as a report of (iii) one or 
more of the five childhood trauma items. We then re-analysed the heritability of MDD in individuals 

reporting and not reporting trauma exposure using these three alternative definitions. 

Results 

Phenotype distribution 

Phenotypic and genetic data were available on 24,094–92,957 individuals (Table 1). Overall, 36% of 

individuals met our definition of MDD-relevant trauma exposure, and were more frequently cases 

(45%) than controls (17%; OR = 5.23; p <10−50, chi-square test). We assessed a number of 

phenotypic correlates of depression to confirm that these correlates differed between MDD cases 
and controls, and to assess whether these differences were affected by trauma exposure. Cases 

differed significantly from controls overall. Individuals with MDD were mostly females, significantly 
younger, less likely to have a university degree, came from more deprived neighbourhoods, and had 

higher BMI at recruitment. These differences persisted when the cohort was limited just to 

individuals reporting trauma exposure, and when the cohort was limited just to individuals not 

reporting trauma exposure. Further-more, cases reporting trauma exposure differed from cases not 

reporting trauma exposure, in that they were mostly females, younger, more likely to have a degree 

(note difference from case-control comparisons), came from more deprived neighbourhoods, and 

had higher BMI at recruitment. The same differences (in the same direction) were observed 



between controls reporting and not reporting trauma exposure (all p < 0.05; Supplementary Table 

4). 

Genome-wide association studies 

We performed GWAS for MDD overall and stratified by reported trauma exposure to obtain results 
for heritability and genetic correlation analyses (Supplementary Table 5; Supplementary Figs. 1–3). 

No analysis showed evidence of genome-wide inflation attributable to confounding (the 
95%confidence intervals of all regression intercepts from LD Score included 1; Supplementary Table 

6). One genome wide significant locus (rs11515172, Chr 9:11 Mb, p = 3.82 × 10−8) was identified in 
the analysis of MDD overall, and remained significant when using logistic regression (p = 4.69 × 10−8, 
OR= 0.96, SE = 0.007; Supplementary Table 5). This locus has been repeatedly associated with 

depression [15, 64, 65], and with neuroticism [66–69]. However, it should be noted that all of these 

studies included UK Biobank. The locus is intergenic, and is not annotated to any currently known 

biological feature of interest (Supplementary Table 7). 

SNP-based heritability 

First we estimated the observed scale SNP-based heritability of MDD overall and stratified by 
reported trauma exposure. Second, in order to assess whether the relative influence of genetic 
variants on MDD differed by reported trauma status, we converted SNP-heritabilities to the liability 

scale. We assumed a prevalence of 28% for self-reported MDD in the full population [2]. Based on 

this, and on the ratio of MDD cases:controls in the sample, we estimated the prevalence of MDD in 

the trauma-exposed population as 52%, and in the unexposed population as 17%. Using these 

estimates of population prevalence, the liability scale estimate of MDD SNP-based heritability was 

20% (95% confidence interval: [18–22%]) overall. In those reporting trauma exposure, the liability 

scale SNP-based heritability of MDD was 24% [18–31%], and in those not reporting trauma exposure 

it was 12% [7–16%]. The SNP-based heritability of MDD was significantly greater in individuals who 
reported trauma exposure compared to those who did not (p = 0.0021, Z-test). 

These estimated SNP-heritabilities could be confounded by genetic correlation between MDD and 

reported trauma exposure. We designed and conducted simulations of SNP-level data to quantify 

the expected difference in SNP-based heritability from genetic correlation alone (Supplementary 

Methods). Our simulations yielded expected estimates for the liability scale SNP-based heritability of 

MDD of 14–15% in those reporting trauma exposure, and 15–16% in those not reporting trauma 

exposure (Supplementary Methods). This small difference in expected SNP-based heritability for 

those reporting and not reporting trauma is in the opposite direction to our findings. This suggests 
that our findings cannot be explained by genetic correlation between MDD and reported trauma 

exposure, nor by the transformation from the observed scale to the liability scale. 

Genetic correlations 

Genetic correlations were calculated between MDD and reported trauma to explore the genetic 

relationship between these traits. Further genetic correlations were calculated between MDD in the 

two strata to assess whether genetics influences on MDD differ in the context of reported trauma 
exposure (Supplementary Table 8). 

We observed a significant rg between MDD and reported trauma exposure in the full cohort (0.62 

[95% CI: 0.76–0.94], p <10−50). Given that trauma items were selected for association with MDD, we 
also calculated the genetic correlation between MDD in the full cohort and reported trauma 

exposure in just the controls, which was also significant (0.31 [0.18–0.45], p = 4×10−6; 



Supplementary Table 8). This correlation persisted when using independent major depression GWAS 

summary statistics, as reported trauma exposure was significantly correlated with the MDD 
polygenic risk score (Spearman's rho = 0.0675, p <10−50)[15]. The genetic correlation between MDD 
in individuals reporting trauma exposure and MDD in individuals not reporting trauma exposure was 

high and did not differ significantly from 1 (rg = 0.77 [0.48–1.05]; difference from 0: p = 1.8 × 10−7; 
difference from 1: p = 0.11). 

Genetic correlations were calculated between MDD and all available external traits to systematically 

assess whether genetic relationships with MDD differed in the context of reported trauma exposure. 

All psychiatric traits included were significantly associated (p < 2.5 × 10−4) with MDD, but this 
association did not differ substantially in magnitude between the groups reporting and not reporting 

trauma 

exposure (z-test for comparisons of rg − Δrg—ranged from p = 0.10–0.99; Fig. 1). In contrast, waist 

circumference was significantly associated with MDD only in individuals reporting trauma exposure 
(rg = 0.24), and the correlation was significantly larger than that in individuals not reporting 

trauma exposure (rg = −0.05, jackknife pΔrg = 2.3 × 10−4). Other correlations between MDD and 
body composition, reproductive, and socioeconomic phenotypes were larger in the group reporting 

trauma exposure compared to individuals not reporting trauma exposure, but these differences did 

not remain significant following multiple testing correction (all jackknife p > 2.5 × 10−4; Fig. 1, 
Supplementary Table 9). 

Polygenic risk scores across strata 

We performed polygenic risk score analyses to further explore how stratification by trauma status 
affects the genetic relationship between MDD and specific correlates of MDD, and to mirror 
previous analyses in the literature (Fig. 2, Table 2; see Supplementary Table 10 for full details of all 

risk score analyses, including the number of SNPs in each score) [26]. Individuals with high genetic 

risk scores for MDD were more likely to be cases than controls, and a significant additive interaction 
term was observed from linear regression. Specifically, the combined effect of the MDD risk score 

and reported trauma exposure on MDD was greater than the sum of the individual effects (beta > 0, 

Table 2 central panel). However, the multiplicative inter-action term was not significant (p > 0.01). 
The presence of an interaction on the additive scale reflects the greater SNP- based heritability of 

MDD in individuals reporting trauma exposure (SNP − h2 = 24%) compared with those not reporting 
trauma exposure (SNP − h2 = 12%), as described above. 

In contrast, although those with higher BMI risk scores were more likely to be cases than controls, 

this only passed correction for multiple testing in individuals reporting trauma exposure. Both the 

additive (beta > 0) and the multiplicative (OR > 1) interaction terms were significant, suggesting the 
combined effect on MDD from BMI risk score and reported trauma exposure together was greater 

than expected from both the sum of the individual risks and from their product, respectively (OR > 

1). 

Individuals with high genetic risk scores for SCZ were more likely to be cases than controls, but this 

did not differ between strata (both interaction terms p > 0.01). Individuals with higher BIP risk scores 

were also more likely to be cases than controls—although this association was not reporting trauma 

exposure (SNP − h2 = 12%), as described above. 

In contrast, although those with higher BMI risk scores were more likely to be cases than controls, 

this only passed correction for multiple testing in individuals reporting trauma exposure. Both the 



additive (beta > 0) and the multiplicative (OR > 1) interaction terms were significant, suggesting the 
combined effect on MDD from BMI risk score and reported trauma exposure together was greater 

than expected from both the sum of the individual risks and from their product, respectively (OR > 

1). 

Individuals with high genetic risk scores for SCZ were more likely to be cases than controls, but this 

did not differ between strata (both interaction terms p > 0.01). Individuals with higher BIP risk scores 

were also more likely to be cases than controls—although this association was not 

 

 

 



Fig. 1 Genetic correlations between MDD (overall and stratified by reported trauma exposure) and 
selected traits and disorders. Full genetic correlation results are available in Supplementary Table 9. 

Numbers = genetic correlations. Colour = direction of effect (blue = positive, red = negative). Colour 

intensity = size of correlation. Upper and lower bars are 95% confidence interval of genetic 
correlation 

 

 

 

 

Fig. 2 Association between MDD polygenic risk score (PRS) and MDD. Individuals reporting trauma 

exposure are shown as orange triangles, and those not reporting trauma exposure as green dots. a 

shows the relationship on the linear additive scale, and b shows the relationship on the 

multiplicative scale. A significant interaction is observed on the additive scale only, as shown by 
differing slopes of the two regression lines in panel a significant in the subset of individuals reporting 
trauma exposure, no significant interaction term was observed, suggesting the observed difference 

in results within-strata may be due to differences in power. No significant differ-ences were 

observed in the negative control analysis with HbA1c. 



Sensitivity analyses 

Four sets of sensitivity analyses were performed. In the first set, all analyses were repeated using 
reported trauma exposure as the phenotype, assessed overall and stratified by MDD (as opposed to 
the primary analysis, where MDD was the phenotype and analyses were stratified by reported 

trauma exposure). Results from these analyses were broadly similar to the results from the primary 

analysis (Supplementary Tables 3–11, Supplementary Figs. 4–7). 

The second set of sensitivity analyses repeated the primary analyses with additional covariates to 

assess the impact of controlling for age, neighbourhood socio-economic status, BMI, and education. 

This did not alter the conclusions drawn from the GWAS and SNP-based heritability analyses, nor 

from the genetic correlations observed between the internal phenotypes (those assessed in this 

study; Supplementary Tables 12–17). Genetic correlations between MDD and external phenotypes 

did not differ significantly from the main analysis (all z-test p < 0.05),but were sufficiently attenuated 
that the genetic correlations of MDD with waist circumference was no longer significantly different 
between individuals reporting and not reporting trauma exposure. Differences in the polygenic risk 

score analyses were limited to analyses involving the BMI risk score. In analyses adjusted for 

phenotypic BMI, the BMI polygenic risk score was no longer associated with MDD in any analysis, 

and no interactions including the BMI risk score remained significant. 

The third set of sensitivity analyses repeated the genetic correlation analyses, but down sampled the 

analysed cohort such that each of the four groups (MDD cases/controls reporting/not reporting 

trauma exposure) had 9487 participants (the size of the smallest group from the main analysis, cases 

not reporting trauma exposure). In these analyses, genetic correlations between MDD and external 

phenotypes were attenuated across most phenotypes, but not significantly (two-sample z-tests, all p 

> 0.05; Supplementary Table 18). As such, the general pattern of genetic correlations observed in the 

main analysis was retained, although the genetic correlations of MDD with waist circumference was 

no longer significantly different between individuals reporting and not reporting trauma exposure. 

The final set of sensitivity analyses repeated the SNP-based heritability analyses of MDD in 

individuals reporting and not reporting trauma exposure, altering the definition of reported trauma 
exposure in three ways (increasing and decreasing the number of items required to be defined as 
reporting trauma exposure, and limiting the items considered to only childhood experiences). The 

purpose of these analyses was to test the robustness of our key finding (greater MDD SNP-based 

heritability in trauma-exposed individuals compared with those not reporting trauma exposure). 

Neither increasing nor decreasing the number of MDD-relevant items selected, nor focussing on 

childhood items, altered our conclusions (Supplementary Table 19). 

Full results for all four sensitivity analyses, and for variant-level gene-by-environment interaction 

analyses (Supplementary Table 20), are included in the Supplementary Material. 

Discussion 

We investigated the relationship between MDD and self-reported trauma exposure in the largest 

single cohort available to date (N = 73,258 with MDD and reported trauma data). The SNP-based 

heritability of MDD was higher in individuals reporting trauma exposure than in individuals not 

reporting trauma exposure. This was not explained by gene–environment correlation, or the trans-

formation of SNP-based heritability from the observed to the liability scale. Despite the significant 
difference in SNP-based heritability across the two strata, the genetic correlation between MDD in 

individuals reporting and not reporting trauma exposure was not statistically different from 1. 

Polygenic risk score-by-reported trauma exposure interaction analyses identified significant 



interactions for both MDD and BMI risk scores. However, the interactions involving the BMI risk 

score appear to be explained by differences in measured BMI between MDD cases and controls. 

Finally, a significant genetic correlation between MDD and waist circumference was observed only in 
individuals reporting trauma exposure, and was absent from those not reporting trauma exposure. 

A number of limitations should be considered when assessing our results. Our simulations suggest 

that our SNP-based heritability differences did not result from gene–environment correlation 

between MDD and reported trauma exposure, nor the conversion of observed scale SNP-based 

heritabilities to the liability scale. However, we could not address further sources of potential bias. 

These could arise from non-additive genetic architectures, ascertainment bias and the effects of 

covariates not included in the model [70, 71], or from potential collider bias resulting from selection 

bias [72]. We also assumed that the population prevalence of reported trauma exposure can be 

extrapolated from that observed in this sample (see Supplementary Methods). Although the UK 

Biobank allows us to integrate genetic and environmental data at scale, and is a reasonably 

homogeneous cohort, it also has a “healthy volunteer bias”, whereby the participants tend to have 
better overall health and higher socioeconomic status compared with the equivalent overall 

population of this age [73]. It is possible that the depressive and traumatic experiences reported by 

these participants may not generalise to the whole population, or to clinically-ascertained cases. 

Furthermore, we focussed on European ancestry; further studies in non-European populations are 

required [74]. 

To obtain further insight into the association of genome-wide genetic variation and reported trauma 

exposure with MDD (and to enable comparison with previous studies [24–26]), we carried out 

polygenic risk score-by-environment interaction analyses. There are a number of limitations to 

consider when interpreting such analyses. Polygenic risk score-by-environment interaction analyses 

test a specific hypothesis, namely that the overall association of common variants with the outcome 

(modelled as a risk score) varies dependent on the environmental exposure being tested. We did not 

test the existence of specific variant-by-environment interactions, including those featuring variants 

contributing to the risk score. Furthermore, we cannot exclude the possibility that the correlation 

between the MDD and BMI risk scores with reported trauma exposure may alter the observed 

interactions. This prevents the drawing of strong conclusions, especially given the limited predictive 

power of the risk scores used in this study (Supplementary Table 10). 

Throughout this paper, we have referred to our depression phenotype as “MDD” rather than “major 
depression”. We do this because our definition is based on the CIDI-SF, which has previously been 

shown to have good concordance with direct clinical assessments of MDD [75, 76]. However, it 

should be noted that direct assessment was not performed, and our MDD cases may not have met 

criteria within a clinical setting. Nonetheless, genetic correlations between studies of clinical MDD 

and our definition are very high, suggesting there is strong genetic continuity across different 
methods of assessing depression [15, 65]. 

Trauma exposure was defined in this study using retrospective self-report. This is not the ideal 

measure for this phenotype, and precludes robust measurement of the severity and timing of the 

reported trauma exposure. However, retrospective report is the only feasible option for cohorts 

large enough to enable detailed genetic analyses of the interaction between trauma and MDD. 

Retrospectively reported trauma and MDD are also not robust to reverse causation, and our results 

cannot strongly inform any temporal or causal hypotheses about their relationship. Such hypotheses 

could be tested using (extensive) longitudinal studies or through more powerful genomic studies of 

trauma exposure including data from similar or larger cohorts. This could enable the identification of 

sufficient robustly associated genetic variants to inform approaches such as Mendelian 



randomisation (which we were under-powered to examine in this study). In addition, future work 

may benefit from assessing the heritability of broader depression phenotypes that lie beyond our 

binary criteria, including reward sensitivity and negative valence traits [77]. 

Our findings suggest that the genetic variants associated with MDD are the same in individuals 
reporting and not reporting trauma exposure, because the genetic correlation between MDD 

measured in these two groups was not significantly different from 1. However, the SNP-based 

heritability of MDD was greater in individuals reporting compared to not reporting trauma exposure. 

This suggests that the combined effect of the variants associated with MDD is greater in people 

reporting trauma exposure than in those who do not. The mechanism underlying this finding is 
uncertain. One possibility is that exposure to traumatic events might amplify genetic influences on 

MDD beyond the magnitude of the effects seen in the absence of trauma (consistent with the stress-

diathesis hypothesis [78–80]). The concept that genetic variance varies with exposure to different 

environments is well-recognised in studies of animal populations in the wild [81]. However, the 

opposite may also be true; genetic influences on MDD could increase an individual's likelihood of 
experiencing and/or reporting trauma, and through doing so increase the apparent heritability of 

MDD by partly incorporating genetic influences related to trauma reporting itself [11]. A third 
possibility relates to the components of variance involved in calculating SNP-based heritability. 

Phenotypic variance can be attributed either to the SNPs measured in the GWAS, or to 

environmental sources of variance reflecting all phenotypic variance not explained by common 
variants. It is possible that the genetic variance is constant across the strata, but that the 

environmental variance is decreased when only considering individuals reporting trauma exposure, 

due to the shared (and thus more similar/less variable) exposure of these individuals to MDD-

relevant traumatic experiences. This would result in greater heritability in individuals reporting 

trauma exposure. These explanations are potential interpretations of these findings but are not the 
only possibilities. It is also likely that multiple such mechanisms are involved. 

A final, separate, possibility is that self-report is impaired in the group reporting trauma exposure. 

Reported trauma exposure is associated with an increased prevalence of multiple psychiatric 

disorders including personality dis-orders. The rapidly fluctuating symptoms of personality disorders 
can reduce the reliability of self-report in affected individuals [82]. If self-report is less reliable in 

those reporting trauma exposure, this would affect the accuracy of our MDD definition in this group, 
such that the cases in this group may also include unreported cases of excluded dis-orders with 

higher heritability, such as bipolar disorder or schizophrenia. Although the reported prevalence of 

personality disorder diagnosis in this cohort is too low to explain the observed differences in SNP-

based heritability (142/22,880 MDD cases, <1% of MDD cases), the participants in the study have not 

undergone more extensive assessment, and further diagnoses of personality disorders may have 

been missed. 

In polygenic risk score-by-reported trauma exposure interaction analyses, we identified a significant 
interaction on the additive scale for the combined effect of the MDD risk score and reported trauma 

exposure on risk of MDD. These results are also reflected in the larger SNP-based heritability of MDD 

in exposed compared to unexposed individuals. The simplest explanation for this result is that the 

effects of the MDD risk score and reported trauma exposure on MDD combine multiplicatively, such 

that their combined effects are greater than the sum of their individual effects. For the BMI risk 

score however, the interaction with reported trauma exposure appears to be more complex, 

combining neither additively nor multiplicatively. In sensitivity analyses controlling for BMI (obtained 

at recruitment, approximately five years before the mental health questionnaire), the BMI risk score-

by-reported trauma exposure interaction was no longer significant, suggesting that the observed 



interaction can be explained by differences in measured BMI. Further research, with concurrent 

measurements of BMI, trauma exposure and MDD in a longitudinally-sampled cohort would offer 

further insight into the relationship between these three variables. 

The high genetic correlation between MDD in individuals reporting and not reporting trauma 

exposure was supported by significant genetic correlations between MDD and other psychiatric 

disorders regardless of reported trauma exposure. In individuals reporting trauma exposure, a 

further significant genetic correlation was observed between MDD and waist circumference, which 
was significantly greater than the equivalent correlation in those not reporting trauma exposure. 

Although not significant, there was also a general pattern of higher genetic correlations between 
MDD and several weight-related measures and educational attainment, in individuals reporting 

trauma exposure. This is consistent with previous literature on traumatic experiences and related 

phenomena such as Adverse Childhood Experiences, which has found that they are associated not 

only with psychiatric risk but also with wide-ranging impairments in social and health outcomes 

including obesity and (less) education [83–86]. However, we stress that causal conclusions cannot be 

drawn from these (or our) data, or that the reported trauma exposure is responsible for the 

observed differences. 

Our estimate of the SNP-based heritability of MDD (20%) is higher than that reported in previous 

studies of major depression (~9%) [15]. This may be explained by the relative homogeneity of the UK 

Biobank compared to previous meta-analyses. The UK Biobank is a single-country cohort ascertained 

using a consistent protocol. The same questionnaire was used to gather symptom data, and the 

samples were stored, extracted, and genotyped using a single method. In contrast, meta-analyses 

have needed to combine diverse ascertainment, sampling, and genotyping; SNP-based heritability 

has been reported to decrease with increasing numbers of meta-analysed samples [87]. 

Previous analyses have assessed alternative depression phenotypes in the UK Biobank [65]. Our 

MDD phenotype (based on DSM criteria for MDD) is most similar to the probable MDD phenotype 

from Howard et al, rather than the less strictly-defined "broad depression" phenotype, which 
includes those who seek treatment for depression, anxiety and related phenotypes. Our summary 

statistics LDSC-based estimate is higher than the equivalent from Howard et al (4–5%). However, our 

estimate using genotype data (20%) is within the bounds of equivalent estimates by geographic 

region reported for the probable MDD (0–27.5%) phenotype. We note that our MDD phenotype 

definition may have more specificity than the probable MDD phenotype used in Howard et al. 

Our results also differ in several respects from those of a study of MDD and adversity in Han Chinese 

women [23]. No difference in the SNP-based heritability of MDD between individuals reporting and 

not reporting trauma exposure was observed in the previous study, and we did not replicate 

individual variant results. However, this is unsurprising, as there are a number of differences 

between the studies of which the primary one is sample size (this study: 73,258; CONVERGE: 9599). 

Other differences included culture and ethnicity, and the deeper phenotyping methodology applied 

in CONVERGE, resulting in a severe inpatient MDD phenotype. Notably, the previous study did not 

report a genetic correlation between MDD and trauma exposure [23]. 

Sensitivity analyses focussed on trauma found that self-reported traumatic experience was 

significantly heritable, as has been previously observed [19]. We strongly emphasise that this does 

not necessarily imply that traumatic experiences themselves have a biological component—such 

experiences may be associated with other significantly heritable traits, and their biology would then 
be reflected in the observed heritability of trauma exposure. One potential set of heritable traits 

that may be associated with reporting traumatic experiences are personality traits such as risk-



taking, and this might explain the observed genetic correlations with psychiatric traits. A similar 

phenomenon has been proposed to underlie observed genetic correlations with socioeconomic 

status [88]. Our trauma exposure measure relies on retrospective self-report, which is itself 

correlated with personality traits and mood at time of report [9]. This may also explain the genetic 

correlations we observe with reported trauma exposure (including in controls, who do not report 

previous psychiatric illness). 

In summary, we find that genetic associations with MDD in UK Biobank vary by context. Specifically, 
the SNP- based heritability of MDD is larger in individuals reporting trauma exposure compared to 

those not doing so. Further- more, the genetic correlation of MDD with waist circumference was 

significant only in individuals reporting exposure to trauma. Nonetheless, a strong genetic 

correlation was observed between MDD measured in the two strata. Together, these findings 
suggest the relative contribution of genetic variants to variance in MDD is greater when additional 

risk factors are present. 
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