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ABSTRACT
Black hole (BH) binary mergers formed through dynamical interactions in dense star clusters
are believed to be one of the main sources of gravitational waves (GWs) for Advanced LIGO
and Virgo. Here, we present a fast numerical method for simulating the evolution of star
clusters with BHs, including a model for the dynamical formation and merger of BH binaries.
Our method is based on Hénon’s principle of balanced evolution, according to which the flow
of energy within a cluster must be balanced by the energy production inside its core. Because
the heat production in the core is powered by the BHs, one can then link the evolution of the
cluster to the evolution of its BH population. This allows us to construct evolutionary tracks
of the cluster properties including its BH population and its effect on the cluster and, at the
same time, determine the merger rate of BH binaries as well as their eccentricity distributions.
The model is publicly available and includes the effects of a BH mass spectrum, mass-loss
due to stellar evolution, the ejection of BHs due to natal and dynamical kicks, and relativistic
corrections during binary–single encounters. We validate our method using direct N-body
simulations, and find it to be in excellent agreement with results from recent Monte Carlo
models of globular clusters. This establishes our new method as a robust tool for the study of
BH dynamics in star clusters and the modelling of GW sources produced in these systems.
Finally, we compute the rate and eccentricity distributions of merging BH binaries for a wide
range of cluster initial conditions, spanning more than two orders of magnitude in mass and
radius.
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1 IN T RO D U C T I O N

The advanced gravitational-wave observatories LIGO and Virgo are
routinely detecting gravitational waves (GWs) from the merger of
black hole (BH) binaries (Abadie et al. 2010; Acernese et al. 2015;
Abbott et al. 2016a,b). The planned detector KAGRA will soon
become operative (Abbott et al. 2018) and the Laser Interferometer
Space Antenna (LISA), planned to launch in 2030s, will detect GWs
in space (Amaro-Seoane et al. 2017), allowing to observe the BH
mergers at lower frequencies and opening the doors of multiband
GW astrophysics (Sesana 2016).

The detection of GWs has opened new perspectives for the study
of compact object binaries, and has generated great interest in
understanding how these sources form. A number of formation
scenarios have been proposed for the formation of BH binary
mergers. These include: the evolution of massive star binaries
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in the field of a galaxy (Belczynski et al. 2010; Dominik et al.
2012; Mandel & De Mink 2016; Marchant et al. 2016; Gerosa
et al. 2018; Michaely & Perets 2019), the evolution of hierarchical
multiple field stars (Antonini, Toonen & Hamers 2017; Silsbee &
Tremaine 2017; Fragione & Kocsis 2019; Liu & Lai 2019), and
dynamical few-body interactions in the core of a dense star cluster
such as young star clusters (Ziosi et al. 2014; Kimpson et al. 2016;
Banerjee 2017, 2018a, b; Di Carlo et al. 2019), nuclear star clusters
(Miller & Lauburg 2009; Antonini & Rasio 2016; Leigh et al.
2018), and globular clusters (GCs; Kulkarni, Hut & McMillan 1993;
Sigurdsson & Hernquist 1993; Portegies Zwart & McMillan 2000;
Downing et al. 2011; Rodriguez et al. 2015; Askar et al. 2017). In
this paper, we are concerned with the latter scenario, i.e. binary BH
formation in star clusters of all masses.

In the dynamical formation scenario, the BH binaries are as-
sembled through three-body processes in the core of a star cluster,
and subsequently harden and merge via dynamical binary–single
interactions. Recent studies suggest that such binaries might account
for many, or perhaps even most, binary BH mergers so far detected
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by LIGO-Virgo (Fragione & Kocsis 2018; Rodriguez & Loeb 2018;
Choksi et al. 2019). Moreover, a fraction of BH binary mergers from
clusters are expected to have a finite eccentricity when they first
enter the frequency band of current detectors. It has been argued
therefore that GW observations of eccentric binary BH mergers
will provide evidence for a dynamical formation of these systems
(Antonini, Murray & Mikkola 2014; Breivik et al. 2016; Nishizawa
et al. 2016; Rodriguez et al. 2018b; Samsing 2018). Major effort
around the detection and characterization of eccentric BH binaries
is currently underway (Cao & Han 2017; Hinder, Kidder & Pfeiffer
2018; Huerta et al. 2019).

Theoretical predictions for the dynamical formation channel are
currently based either on Monte Carlo or direct N-body simulations
of the long-term evolution of star clusters (Giersz 1998; Joshi,
Rasio & Portegies Zwart 2000; Aarseth 2012; Giersz et al. 2013).
These methods allow an accurate treatment of stellar dynamical
relaxation and strong encounters and have therefore the advantage
that they can solve the long-term evolution of a star cluster
self-consistently. Moreover, they include recipes for the effect of
stellar and binary evolution, Galactic tides, primordial binaries, and
relativistic corrections during strong encounters. The drawback is
that the time requirements for a simulation of a realistic set of
cluster models are prohibitive. For this reason, current predictions
for the merger rate and source properties are based on a limited
set of cluster initial conditions, which do not allow to explore the
relevant parameter space and uncertainties on the cluster initial
conditions (e.g. Fragione & Kocsis 2018; Rodriguez & Loeb 2018).
For example, Fragione & Kocsis (2018) ignored the dependence of
the binary merger rate on the cluster initial radius and its evolution.
Rodriguez & Loeb (2018) derived their binary BH merger rate
assuming that 50 per cent of clusters form with a virial radius of
rv = 1 pc and the rest with 2 pc. To fully explore the parameter
space that controls dynamically formed BH mergers, a significantly
faster recipe is required, without giving in too much on the accuracy
of the obtained results.

In this paper, we present a new, fast computational method for
the evolution of a star cluster with BHs, including a prescription
for the dynamical evolution of the BH binaries. Any of our model
takes less than a second to complete (using a commercial laptop).
In comparison, the typical wall-clock computation time for a full N-
body model of ∼106 M� cluster is about a year on a supercomputer
with Graphical Processing Units (GPUs; Wang et al. 2016), and a
similar Monte Carlo cluster model will require about one week on
a standard multicore PC.

Our method relies on Hénon’s principle (Hénon 1975), which
states that after an initial settling phase the rate of heat generation
in the core is a constant fraction of the total cluster energy per
half-mass relaxation time. Breen & Heggie (2013) showed that
in this so-called balanced evolution phase the heat is produced
by the BHs, and one can therefore link the evolution of the BH
population to the properties of the cluster itself. This allows us
to construct a series of coupled first-order differential equations
to express the time evolution of a cluster mass, radius, and the
total mass in BHs. We further assume that during binary–single
interactions, the eccentricity of the BH binaries follows that of a
so-called thermal distribution N(e) ∝ e (e.g. Heggie 1975). Based
on this assumption, we derive the merger rate, and the eccentricity
distribution of the BH binaries and their relation to a cluster global
properties.

The paper is organized as follows. In Section 2, we present the
model for the coevolution of a BH population and its host cluster,
and use direct N-body simulations to validate this simple model.

Section 3 describes the analytical prescriptions to determine the
rate and eccentricity distributions of BH binary mergers formed via
binary–single interactions. In Section 4, we compare the results of
our model to those of independent Monte Carlo simulations from
published literature. Finally, in Section 5 we make predictions for
the merger rate and eccentricities of BH binaries for a wide range
of cluster initial conditions, and discuss how these distributions are
linked to a cluster properties.

2 EVO LUTI ON O F STA R C LUSTERS W I TH A
B L AC K H O L E PO P U L AT I O N

2.1 Philosophy of the model

In this section, we present a fast model for the coevolution of a BH
population and its host cluster. To achieve speed, we only evolve
several bulk properties of the cluster and not its internal structure.
We limit the model to the cluster properties that are most relevant for
the formation and evolution of binary BHs. The hard–soft boundary
of binaries is set by the velocity dispersion of the cluster, which is
proportional to

√
Mcl/rh, where Mcl is the total cluster mass and rh its

half-mass radius. The binding energy, and therefore the semimajor
axis of escaping BH binaries depends on the central escape velocity
(vesc) of the cluster (see Rodriguez, Chatterjee & Rasio 2016),
which is also proportional to

√
Mcl/rh. The condition for in-cluster

BH binary mergers to be efficient can also be expressed in Mcl and
rh (see Antonini, Gieles & Gualandris 2019). We therefore model
the evolution of Mcl and rh. We will solve differential equations for
Ṁcl and ṙh, as is done in the fast cluster evolution model EMACSS

(Alexander & Gieles 2012; Alexander et al. 2014; Gieles et al.
2014). Here, we add the evolution of the BH population, and its
effect on the evolution of the cluster. We approximate the cluster
by a two-component system: a light component, consisting of the
stars, white dwarfs, and neutron stars, and a heavy component of
BHs.

Breen & Heggie (2013) showed that once a star cluster achieves
the balanced evolution1 phase, the total mass of the BH population
in a cluster (MBH) depends on Mcl and the half-mass relaxation time-
scale (trh) of the cluster as ṀBH ∝ Mcl/trh. This dependence of MBH

on the cluster properties, rather than the properties of the core where
the BH binaries reside, is because the heat production in the core is
set by the properties of a cluster as a whole (Hénon 1961), and the
BH binaries provide the heat via dynamical interactions with other
BHs, resulting in ejections of BHs and binaries (more on this in
Section 2.3). This discovery by Breen & Heggie allows us to relate
the evolution of the BH population to the cluster properties and we
therefore jointly solve for Mcl, rh, and MBH from the expressions for
their time derivatives.

We restrict ourselves in this paper to isolated star clusters,
avoiding the complication of the Galactic tidal field. This will result
in unrealistic cluster properties at redshift z � 0 for clusters that are
strongly tidally limited, but most of the BH binaries that are relevant
for GW detections are produced at high z, when the clusters are
dense compared to the tidal density (Gieles et al. 2010), and then GC
evolution is comparable to that of isolated GCs (Gieles, Heggie &
Zhao 2011). Clusters with low densities are more affected by the
tides, but less relevant for GWs. In addition, the most massive GCs,

1In their models this is the moment the BH core collapses, while in clusters
without BHs this is the moment of the collapse of the visible (i.e. stellar)
core.
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which are most important for GW production (Antonini & Rasio
2016) are still largely unaffected by the tidal field at z = 0 (Gieles
et al. 2011), providing further support for our assumption.

We first present in Section 2.2, a prescription for the fraction of
the initial MBH that is retained after natal kicks and in Section 2.3,
we discuss the coevolution of M, rh, and MBH. In Section 2.4, we
compare the model to a series of direct N-body simulations and use
these to determine a few model parameters.

2.2 Retention after supernova kicks

For the initial conditions, we need M, rh, and MBH at t = 0, i.e. when
the cluster forms. The value of MBH is zero initially, because all stars
are on the main sequence, but for simplicity we assume that all BHs
are already in place at formation avoiding the need for describing
BH formation in the first ∼20 Myr. The initial value of MBH then
depends on the stellar initial mass function (IMF) and the initial–
final mass relation (IFMR), which depends on metallicity ([Fe/H]).
At lower [Fe/H], BHs are more massive (e.g. Spera, Mapelli &
Bressan 2015) such that – for a given IMF – MBH is larger. The
[Fe/H] and IMF dependence can be parametrized. Here, we focus
on a canonical Kroupa, Aarseth & Hurley (2001) IMF, for which a
fraction f0 � 0.06 of the initial Mcl ends up in BHs for metal-poor
GCs.

Because BHs receive natal kicks, and the condition for escape
depends on vesc, we need a relation for the retention of the mass
retention fraction after supernova (SN) kicks (f M

ret ).2 Although the
magnitude of BH natal kick velocity (vkick) is not known, there is
some consensus that BH kicks are smaller than those of neutron stars
(Mandel 2016), and it likely depends on the mass of the BH (m),
with the more massive BHs receiving smaller kicks. If the escape
velocity from the centre of the cluster (vesc), where most BHs are
expected to form, is much larger than vkick of the lowest mass BH,
then f M

ret � 1. If vesc is much smaller than vkick of the most massive
BHs, then f M

ret � 0. In the GC–mass range, vesc is likely to be in
the intermediate regime, and for a given BH mass m, there is then a
distribution of vkick values. Both of these effects need to be captured
by our expression for f M

ret (vesc).
To proceed, we assume that vkick is drawn from a Maxwell–

Boltzmann distribution, PB(vkick|σ k), with dispersion σ k. We then
assume that BHs receive the same momentum kick as neutron stars
(Fryer & Kalogera 2001), such that σ k(m) = σ NS × mNS/m, for
which we adopt σNS = 265 km s−1 is the dispersion for neutron star
kicks (Hobbs et al. 2005) and mNS = 1.4 M� is the mass of a neutron
star. The resulting kicks are smaller than in the fallback scenario
(Dominik et al. 2013), but for our simple model the assumption of a
constant momentum kick is preferred, because it allows us to derive
a simple expression for f M

ret (vesc), without detailed knowledge of
the fallback fraction of BHs with different masses. We ignore direct
collapse SNe in this version of the model, but note that more detailed
kick prescriptions will be considered in future versions of the model.

The retained number fraction of BHs with mass m is then given
by the integral over PB from zero to vesc

f N
ret (vesc, m) =

∫ vesc

0
PB(v′|σk)dv′ = CB(vesc|σk), (1)

2The term ‘retention fraction’ is often used in references to the number
fraction, hence we use the superscript M to make it clear that we refer to a
mass fraction.

where CB(vesc|σ k) is the cumulative distribution function of the
Maxwell–Boltzmann distribution.

To find f M
ret , we define the BH mass function after SN kicks, φ(m),

defined as the number of BHs in an interval (m, m + dm). This mass
function follows from the birth BH mass function, φ0(m), as

φ(vesc, m) = CB(vesc|σk)φ0(m), (2)

� φ0(m)

(mb/m)3 + 1
. (3)

In the last step we used an approximation, where mb =
(9π /2)1/6σ NSmNS/vesc is the mass below which the BH mass function
is affected by kicks. For all φ0, this approximation underestimates
the exact result by only ∼ 10 per cent at m � mb, and quickly
approaches to the exact result for other values of m. This simple
approximation for φ serves to derive the maximum BH mass from
MBH when we include escape of BHs.

The mass retention fraction f M
ret is then found from integrating φ

over all BH masses

f M
ret (vesc) =

∫ mup

mlo

φ(m)mdm

/∫ mup

mlo

φ0(m)mdm. (4)

Assuming a power-law φ0 ∝ mα and the approximation for φ from
equation (3), then equation (4) gives

f M
ret (vesc) �

∫ mup

mlo

mα+1

(mb/m)3 + 1
dm

/∫ mup

mlo

mα+1dm

=

⎧⎪⎨
⎪⎩

ln
[(

q3
ub + 1

)
/
(
q3

lb + 1
)]

/ ln
(
q3

ul

)
, α = −2,

1 −
[
qα+2

ul h(qub) − h(qlb)
]

/
(
qα+2

ul − 1
)

, α 	= −2.

(5)

Here, mlo and mup are the lower and upper limit of φ0, respectively,
and qul = mup/mlo, qub = mup/mb, qlb = mlo/mb, and h(x) = 2F1(1,
(α + 2)/3; (α + 5)/3; −x3), with 2F1(a, b; c; x) a hypergeometric
function. This function diverges for negative integer values of c and
for c = 0, hence the result for f M

ret in equation (5) for α 	= −2 also
excludes the values α = −5, −8, −11, . . . , but because such steep
mass functions are not expected for BHs, we refrain from giving the
full solution for those values. In Fig. 1, we show results obtained
from numerical integrations of equation (2) in thick lines, and the
approximation of equation (5) with thin lines. We assumed a power-
law φ0, adopting both a declined and a rising BH mass function (α =
−1 and α = +1, respectively), between mlo = 3 M� and mup, for
which we used mup = 25 M� and mup = 35 M�. From Fig. 1 we
see that at low vesc, the retention fraction can be well approximated
by f M

ret ∝ v3
esc, which is the leading order term of CB(vesc|σ k). More

specifically, we find

f M
ret (vesc) ∝ v3

esc

σ 3
NS

〈m4〉
〈m〉 . (6)

This shows that at low vesc, f M
ret depends on the cluster properties as

v3
esc ∝ (M/rh)3/2 and is sensitive to the most massive BH, because

for top-heavy φ (i.e. α > −2) and mup > >mlo we find 〈m4〉/〈m〉 ∝
m3

up. This sensitivity to mup implies that for a given vesc, f M
ret is

higher in low-metallicity GCs, for which BHs are more massive.
This statement is valid for a continuous φ, since f M

ret can be low if
– for example – a single, massive BH forms among a population of
low-mass BHs.

2.3 Coevolution of the cluster and its BH population

In this section, we present a model for the temporal evolution of
Mcl, rh, and MBH. We consider clusters in isolation, which lose
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Figure 1. Fraction of BH mass retained after SNe as a function of vesc. The
thick (blue and red) lines show results from equation (2), for different mup

and BH mass function slope α. The thin lines show the approximation from
equation (5).

mass by stellar evolution and BHs via dynamical interactions. We
define expressions for Ṁcl, ṙh, and ṀBH, which are then integrated
numerically.

2.3.1 Stellar mass-loss

We assume that the cluster consists of two types of members: BHs
and all the other members (i.e. other stellar remnants and stars).
Each contribute a mass of MBH and M�, respectively, such that
Mcl = M� + MBH. We assume that as a result of stellar mass-loss,
M� evolves as a power of time, such that

Ṁ�,sev =
{

0, t < tsev,

−ν
M�

t
, t ≥ tsev,

(7)

with tsev � 2 Myr and ν � 0.07, depending slightly on [Fe/H]. We
further assume that as a result of stellar mass-loss the cluster expands
adiabatically, such that

ṙh,sev = −Ṁ�,sev

Mcl
rh. (8)

Note that we here assumed that stellar mass-loss occurs throughout
the cluster, and the expansion rate could be higher if the cluster is
mass segregated and mass-loss occurs more central. This can be
included (see Alexander et al. 2014), but here we do not implement
this, because in the presence of BHs and for high-density clusters,
the evolution becomes quickly dominated by relaxation driven
expansion, as we will show in the next section.

2.3.2 Relaxation

After several relaxation time-scales have elapsed, the core of the
cluster starts producing energy in order to sustain the relaxation
process. We define the start of this balanced evolution as

tcc = Nrhtrh,0, (9)

where Nrh is a constant of order unity that we will fit to N-body
models in Section 2.4 and trh,0 is the initial half-mass relaxation

time-scale. It would be more accurate to express tcc in terms of the
number of elapsed relaxation time-scales (Alexander et al. 2014),
but for simplicity we here express tcc in the time-scale that can be
straightforwardly evaluated at the start of the model computation.
The start of balanced evolution corresponds to the collapse of the
core, which is dominated by BHs in case f M

ret > 0. This type of core
collapse occurs well before the collapse of the core of visible stars,
which coincides with the moment that all BHs are ejected (Breen &
Heggie 2013).

The half-mass relaxation time-scale is the average relaxation
time-scale within rh, which is given by (Spitzer & Hart 1971)

trh = 0.138

√
Mclr

3
h

G

1

〈mall〉ψ ln 	
. (10)

Here, 〈mall〉 is the mean mass of the stars and all stellar remnants,
which we initially set to 〈mall〉 = 〈m�〉 � 0.638 M�, which is found
for a Kroupa et al. (2001) IMF between 0.1 and 100 M�. During
the evolution 〈mall〉 = Mcl/Ncl, where Ncl is the initial number of
stars which we assume to be constant throughout the evolution,
which is accurate in the case of 100 per cent BH retention and no
pair-instability SNe, and slightly overestimates the number of stars
once BH ejection occurs and at later times when the turn-off mass
drops. Then, ln 	 is the Coulomb logarithm, which depends weakly
on Ncl, and we therefore use a constant ln 	 = 10.

The quantity ψ depends on the mass spectrum within rh, which
is usually assumed to be ψ = 1, applicable to systems of equal
mass but in reality ψ can be between 1.5 and 2 for GC-like mass
functions (Spitzer & Hart 1971; Kim, Lee & Goodman 1998) and
30–100 for clusters that just formed (Gieles et al. 2010). In EMACSS,
a time-dependent ψ was adopted to include the effect of the loss
of massive stars by stellar evolution on the relaxation process.
However, EMACSS was compared to N-body models without BHs
(Baumgardt & Makino 2003) and here we want to include the
effect of BHs on ψ . We therefore search for an expression with a
dependence on the properties of the BH population.

Spitzer & Hart (1971) derive an expression for ψ for multi-
component systems, under the assumption of equipartition (their
equation 24): ψ = 〈m5/2

all 〉/〈mall〉5/2. For our two components model
this can be written as ψ = (m3/2

� M� + m3/2MBH)N3/2
cl /M

5/2
cl . For M�

� Mcl and m > >m� (such that also the number of BHs is small),
this expression for ψ reduces to

ψ � 1 + MBH

M�

(
m

m�

)3/2

. (11)

The second term on the right-hand side is Spitzer’s parameter
S (Spitzer 1969), whose value determines whether a system can
achieve equipartition (S ≤ 0.16). For MBH/M� = 0.05 and m/m� �
20 (see e.g. Zocchi, Gieles & Hénault-Brunet 2019, for the case of
ω Cen), we find S � 4. This is larger than the criteria for a two-
component system to achieve equipartition. Clusters with such a
BH population are therefore not expected to achieve equipartition
in the centre (see also Peuten et al. 2017, who show this with N-body
simulations of star clusters with BHs). If we instead of equipartition
assume that all members have the same velocity dispersion, then ψ

� 1 + (MBH/M�)(m/m�), i.e. the index 3/2 in equation (11) reduces
to 1. An additional complexity is that the values of MBH and M�

in equation (11) apply to the conditions within rh, where BHs are
contributing more to the mass than for the cluster as a whole.
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We therefore adopt a functional form inspired by equation (11)
and introduce a free parameter

ψ = 1 + a1
fBH

0.01
, (12)

where fBH = MBH/Mcl is the fraction of the total cluster mass that
is in BHs. With this expression, we have included the dynamical
feedback from the BHs on the relaxation process of the cluster. In
Section 2.4, we show that the evolution of a cluster can be well
described by a constant a1 of order unity and that it is important
to include this dependence of ψ on fBH , as for fBH � 0.05 and
a1 � 1, we find ψ � 6, which has a significant effect on the
relaxation process. Clearly, relaxation is more important in the early
stages when ψ is large, while ψ decreases in time because of the
ejection of BHs, narrowing the mass spectrum. We note that a1

could then also become smaller, because m/m� decreases as the
most massive BHs are ejected first, but in this first version of the
model we continue with the simple linear dependence of ψ on fBH

(i.e. equation 12) and reserve a dependence on the BH mass function
for future improvements.

In clusters with BHs, the heating in the balanced evolution phase
is done by the BHs (Breen & Heggie 2011), in the form of a BH
binary that heats the surrounding BHs, which in turn efficiently
transfer the heat to the stars because of the large mass ratio m/m�.
The dynamical hardening of BH binaries is an energy source which
complies with Hénon’s principle (Hénon 1975). In this, the rate of
energy generation in the core is set by the maximum heat flow that
can be conduced from the core to the rest of the cluster through two-
body relaxation, and we can therefore relate the heat generation in
the core to the cluster global properties (Hénon 1961; Gieles et al.
2011; Breen & Heggie 2013)

Ė = ζ
|E|
trh

, (13)

where E � −0.2GM2
cl/rh is the total energy of the cluster, with the

constant ζ � 0.1 (Hénon 1961; Gieles et al. 2011; Alexander &
Gieles 2012). This definition of the energy excludes the (negative)
energy stored in binaries and this energy is therefore sometimes
referred to as the ‘external energy’ (Heggie & Aarseth 1992;
Giersz & Heggie 1997). If heating is done by binaries and in the
absence of other changes to E (e.g. stellar evolution, Galactic tides,
etc.), negative energy flows into binaries in the centre at a rate
−Ė, while E increases at a rate +Ė (equation 13). As a result, the
cluster expands and loses mass via BH escapers from the core, see
e.g. Goodman (1984). Note that the efficiency of heat conduction
within the cluster is included in trh via ψ , in the sense that Ė is
higher in clusters with high fBH.

Breen & Heggie (2013) showed that BHs power the relaxation
process, and using theory and N-body simulations they showed that
this implies that the mass evolution of the BH population can be
coupled to the properties of the cluster. The explanation for this is,
in short, as follows: a BH binary hardens until it ejects itself as the
result of the recoil in the last encounter. If all BHs have the same
mass, the BH binary ejects on average ∼4 BHs before ejecting itself
(see Goodman 1984). This allows us to couple the mass-loss rate of
BHs to the energy generation rate, which itself is coupled to the total
E and trh of the cluster (equation 13), such that (Breen & Heggie
2013)

ṀBH =
⎧⎨
⎩

0, t < tcc or MBH = 0,

−β
Mcl

trh
, t ≥ tcc and MBH > 0.

(14)

From the definition of E (given just under equation 13) and the as-
sumption of virial equilibrium, we find that Ė/|E| = −2Ṁcl/Mcl +
ṙh/rh, such that the expansion rate as the result of relaxation is

ṙh,rlx = ζ
rh

trh
+ 2

Ṁcl

Mcl
rh. (15)

Both stellar mass-loss and BH ejection contribute to the mass-loss
of the cluster, such that

Ṁcl = Ṁ�,sev + ṀBH. (16)

Quantifying the interplay between these two mass-loss terms on the
energy evolution is beyond the scope of this work, and we simply
quantify the rate of BH ejection by fitting β to the N-body models.

The final expression for the half-mass radius evolution is then

ṙh =
{

ṙh,sev, t < tcc,

ṙh,sev + ṙh,rlx, t ≥ tcc.
(17)

With all the expressions for the derivatives, we can now numerically
solve a set of coupled ordinary differential equations to obtain
solutions for M�(t), MBH(t) (and therefore Mcl(t)), and rh(t).

We fix the parameters tsev = 2 Myr, ζ = 0.1 and determine Nrh,
β, ν, and a1 by fitting the model of this section to results of direct
N-body simulations.

2.4 Comparison to N-body simulations

To validate the simple model, we simulate the evolution of clusters
with BHs with direct N-body simulations, with different initial
cluster densities and BH natal kicks. For the calculations, we use
NBODY6 (version downloaded on 2016 May 25), which is a fourth-
order Hermite integrator with an Ahmad & Cohen (1973) neighbour
scheme (Makino & Aarseth 1992; Aarseth 1999, 2003), and force
calculations that are accelerated by GPUs (Nitadori & Aarseth
2012). NBODY6 contains metallicity-dependent prescriptions for the
evolution of individual stars and binary stars (Hurley, Pols & Tout
2000; Hurley, Tout & Pols 2002).

We model four different initial densities within rh: ρh =
[101, 102, 103, 104] M�/pc3, with the initial positions and velocities
drawn from a Plummer (1911) model. For each density, we consider
two assumptions for the BH kicks: (1) no kicks and (2) kicks with the
same momentum as neutron stars. In the latter, vkick is drawn from a
Maxwell–Boltzmann distribution with σk = σNS × 1.4 M�/m, and
σNS = 190 km s−1.3 For vesc we use equation (29), with fc = 0.68,
applicable to the average escape velocity of stars in a Plummer
model. We use a metallicity of Z = 0.0006 (i.e. [Fe/H] � −1.5),
typical for metal-poor GCs in the Milky Way and all clusters have
N = 105 stars initially, drawn from a Kroupa et al. (2001) IMF
between 0.1 and 100 M�, such that initially 〈m�〉 = 0.638 M�.
For these parameters, the maximum m � 28 M�. This is lower than
what is found from more recent IFMRs that have been implemented
in NBODY6 (Banerjee et al. 2019), but for the purpose of our
model testing this is no concern. In future versions of our model
CLUSTERBH4 we will compare to a range of [Fe/H] and IFMRs. All
models are evolved until 11.5 Gyr.

To determine the posteriors of the CLUSTERBH parameters, we
determine the values of Mcl, MBH, and rh from the N-body models

3This is the default value in NBODY6, which is lower than the value of
σNS = 265 km s−1 we adopt in the rest of this paper.
4A PYTHON implementation of the model is available from https://github.c
om/mgieles/clusterbh.
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Figure 2. N-body results of M� (top), rh (middle), and MBH (bottom) of
isolated star clusters with 100 per cent BH retention for different initial
densities (dashed lines). Best-fitting CLUSTERBH models are shown as full
lines.

at 200 equally spaced time intervals between 10 Myr and 11.5 Gyr.
We then define a log-likelihood

lnL = −
8∑

k=1

3∑
j=1

200∑
i=1

(Dijk − Mijk)2

(δDijk)2
, (18)

where Dijk is a 8 × 3 × 200 array with the N-body data of the
simulations, and Mijk is a similar-sized array with the CLUSTERBH
results. The index k loops over the 8 N-body models, the index
j over the 3 physical quantities (M�, rh, MBH), and the index i
over 200 equally spaced time-steps in the range 10 Myr–11.5 Gyr.
We assume each N-body data value has an associated uncertainty
δDijk = 0.05Dijk, which captures the fact that cluster parameters
evolve with some noise in time and cluster-to-cluster variation.

The parameters that maximize this log-likelihood are found with
EMCEE (Foreman-Mackey et al. 2013), which is a pure-PYTHON

implementation of the Goodman & Weare’s affine invariant Monte
Carlo Markov Chain (MCMC) ensemble sampler (Goodman &
Weare 2010). We use 100 walkers and after a few hundred steps
the fit converged. We continued for 1000 steps and in the analyses,
we use the final walker positions to generate posterior distributions.
The PYTHON implementation of EMCEE makes it straightforward to
couple it to CLUSTERBH.

For the parameters, we find Nrh = 3.21, β = 2.80 × 10−3, ν =
8.23 × 10−2, and a1 = 1.47. Because the uncertainties on the N-
body data are artificial, we do not report the uncertainties in the
parameters. Instead, we compute for each N-body data point the
fractional difference with the best-fiting model and sort all values.
We find that 68 per cent of the N-body data points are reproduced
within 12.8 per cent. Given the simplicity of our model, we consider
this accuracy satisfactory. The CLUSTERBH results are shown in
Figs 2 and 3 for 100 per cent BH retention and for momentum
conserving BH kicks, respectively. We note that when fitting the
model to individual models, better agreement can be obtained, but
we are here aiming to obtain model parameters that describe the
evolution of all eight N-body models. We note that CLUSTERBH
slightly overpredicts rate of BH escape for low MBH (see bottom

Figure 3. N-body results of M� (top), rh (middle), and MBH (bottom) of
isolated star clusters with different initial densities with BH kicks applied
(dashed lines). Best-fitting CLUSTERBH models are shown as full lines.

panels of Fig. 3), which is likely the result of that fact that we did
not include a dependence on m/m� in ψ (equation 12). Including
this would reduce |ṀBH| because when the BH population is about
to disappear, the average BH masses are lower than in the early
evolution. The good resemblance between the overall evolution of
all parameters in the eight models between the detailed N-body
models and CLUSTERBH confirms that the model does a good job.

3 B L AC K H O L E B I NA RY E VO L U T I O N

According to Hénon’s principle, the flow of energy through the half-
mass radius is independent of the precise mechanisms for energy
production within the core. We assume in what follows that the heat
is supplied by the hard binaries in the core of the BH subsystem
(e.g. Breen & Heggie 2013). Assuming that most of the heating is
produced by one binary in the core of the star cluster, we can then
relate the binary hardening rate to the rate of energy generation

Ėbin = Ė, (19)

where Ebin = Gm1m2/2a, with a the binary semimajor axis and
m1 and m2 the mass of the BH components. In this section,
we use equation (19) to derive the merger rate and eccentricity
distributions of merging BH binaries produced through binary–
single interactions. To achieve this, we first need to specify the
dynamical mechanisms that lead to the mergers.

The merger of a BH binary through (strong) binary–single
encounters in a dense star cluster following its formation and dy-
namical hardening can occur in three different ways (e.g. Gültekin,
Miller & Hamilton 2006; Rodriguez et al. 2018b; Samsing 2018):
(i) the merger occurs in between binary and single encounters
while the binary is still bound to its parent cluster (hereafter, we
will refer to these mergers as in-cluster inspirals); (ii) a merger
occurs during a binary–single (resonant) encounter as two BHs
are driven to a short separation such that GW radiation will lead
to their merger before the next intermediate binary–single state
is formed (hereafter, GW captures); and (iii) the binary merges
after it has been ejected from its parent cluster. In what follows
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2942 F. Antonini and M. Gieles

we derive an analytical model, BHBDYNAMICS,5 to compute the
rate and eccentricity distributions of merging BH binaries that are
produced through the mechanisms (i), (ii), and (iii). This model can
then be easily coupled to CLUSTERBH in order to compute such
distributions for and evolving model of a star cluster (Section 5).
Hereafter, the combination of our two models is referred to as
CLUSTERBHBDYNAMICS.

3.1 Merger fractions

3.1.1 In-cluster inspirals.

The binary–single interactions in the cluster core lead to a decrease
in the binary semimajor axis until the binary evolution becomes
dominated by GW energy loss. The time-scale, t3, over which
a binary will encounter another BH in the cluster core can be
obtained by noting that binaries release on average 20 per cent of
their binding energy to the passing BH in an encounter, such that
Ėbin � 0.2Ebin/t3 (Heggie & Hut 2003), which leads to the relation

t3 � 0.2
Gm1m2

2a
Ė−1

bin . (20)

At later times, the evolution of the binary semimajor axis and
eccentricity is described by the orbit averaged evolution equations
(Peters 1964)

ȧGW = −64

5

G3m1m2m12

c5a3�7

(
1 + 73

24
e2 + 37

96
e4

)
, (21)

ėGW = −304

15

G3m1m2m12

c5a4�5

(
e + 121

304
e3

)
, (22)

with � ≡ (1 − e2)1/2 the dimensionless angular momentum, e
the binary eccentricity, and m12 = m1 + m2. We define the
corresponding merger time-scale as tGW ≡ a/ |ȧGW|.

The transition from the dynamical to the GW regimes occurs at
tGW � t3, or equivalently when for a given a the eccentricity is larger
than

� < �GW � 1.3

[
G4 (m1m2)2 m12

c5Ėbin

]1/7

a−5/7, (23)

where Ėbin is related to the properties of the cluster through
equation (13), and we have taken the relevant limit e → 1. For
� � �GW, the evolution becomes dominated by GW energy loss and
the binary inspirals approximately as an isolated system.

During a single interaction with a cluster member of mass
m3, the semimajor axis of the binary decreases from a to εa.
Then energy and momentum conservation imply that the binary
will experience a recoil kick v2

bin � Gμ m3
m123

[1/(εa) − 1/a] =
(1/ε − 1) Gm1m2

m123
q3/a, where μ = m1m2/m12, m123 = m12 + m3,

q3 = m3/m12, and we have assumed that in the interaction the
binding energy of the binary increases by the fixed fraction (1/ε
− 1) = 0.2, which implies ε = 0.83 (e.g. Spitzer 1987; Portegies
Zwart, McMillan & Gieles 2010). Taking vbin = vesc, with vesc the
escape velocity from the cluster, we obtain the limiting semimajor
axis below which a three-body interaction will eject the binary from
the cluster (Antonini & Rasio 2016)

aej =
(

1

ε
− 1

)
G

m1m2

m123
q3/v

2
esc. (24)

5A FORTRAN implementation of these libraries is available from https://gith
ub.com/antoninifabio/BHBdynamics.

Given a criterion for when a binary enters the GW regime
(equation 23) and for when a binary is ejected from the cluster
(equation 24), we can now compute how probable it is for a binary
to attain � < �GW as it hardens through binary–single interactions
in the cluster core.

We assume that during each binary–single encounter, the binary
receives a large angular momentum kick such that the phase space
is stochastically scanned and approximately uniformly covered by
the periapsis values (e.g. Katz & Dong 2012). Thus, during a typical
encounter the BH binary semimajor axis will shrink while the orbital
eccentricity will be randomly drawn from the thermal distribution
p(> e) = 1 − e2 = �2. It follows that the probability that a binary
merges between two successive binary–single encounters is

pGW(a) = �2
GW. (25)

The total probability that a binary merges in between its binary–
single interactions (PGW) is then obtained by integrating the dif-
ferential merger probability per binary–single encounter, dPGW =
pGWdN3, over the total number of binary–single interactions expe-
rienced by the binary. Noting that da/dN3 = (ε − 1)a, this leads
to6

PGW(am) =
∫ am

ah

1

ε − 1
�2

GW(a)
da

a
� 7

10

1

1 − ε
�2

GW(am), (26)

where ah is the semimajor axis of a binary at the hard/soft boundary
(i.e. when it forms), am is the minimum semimajor axis value that
can be attained by any binary during the hardening sequence, and in
deriving the last expression we have assumed ah � am.7 The value
of am is

am � max
(
aej; aGW

)
, (27)

with aGW the semimajor axis at which the merger probability in
between binary and single interactions is one, i.e. PGW(aGW) = 1,
such that

aGW � 1.1 (1 − ε)−7/10

[
G4 (m1m2)2 m12

c5Ėbin

]1/5

. (28)

The binary–single interactions will terminate either because the
binary is ejected from the cluster or because the binary merges in
between binary and single interactions.

From equations (26) and (23), it can be seen that the probability
that a binary will merge inside the cluster before ejection is PGW ∝
v20/7

esc for am = aej, where we neglect the weak dependence of �GW

on Ėbin. Note that for am = aGW, all merges occur inside the cluster
and PGW = 1. The probability that a binary will merge inside its
parent cluster before ejection is possible is therefore related to the
host physical properties through its escape velocity

vesc � 50 km s−1M
1/3
5 ρ

1/6
5 fc, (29)

where we expressed the result in terms of M5 = Mcl/105 M� and
ρ5 = ρh/105 M�/pc3, with ρh = 3Mcl/(8πr3

h ) the average density
within rh. The coefficient fc in the latter equation takes into account
the dependence of the escape velocity on the location within the
cluster and the concentration of the cluster, i.e. c = log (rt/r0) with
rt the cluster truncation radius and r0 the King (or core) radius.

6A similar expression can be found in Samsing (2018).
7We note that the total merger probability before a state n of the hardening
sequence is reached is P (n) = ∏n

i=0pi , where pi is the probability that the
binary merged at state i. This gives P (n) ≈ 7

10
1

1−ε
pn only at leading order

(Samsing et al. 2019a).
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Below we simply set fc = 1, which corresponds to the centre of
a King model with concentration parameter W0 � 7. The other
factors affecting whether a binary can merge within the cluster are
the masses of the participants in the interactions and therefore the
mass function of the BHs and stars in the cluster. A simple model
for the evolution of the BH mass function is introduced later in
Section 3.4, where we make the assumption that m1 = m2 = m3

and all are equal to the most massive BH in the cluster at that
time.

3.1.2 Gravitational wave captures

In the previous section, we did not consider mergers that occur by
‘direct capture’ during a three-body resonant encounter. Although
such mergers are expected to be only a small fraction of the total
(� 10 per cent; Gültekin et al. 2006; Samsing 2018), they are
interesting because they might have residual eccentricities in the
LIGO-Virgo frequency band. For this reason, we include them in
the analysis below.

Following Samsing (2018), we divide each resonant encounter
into a number NIS of intermediate binary–single states, where an
intermediate BH binary is formed with a bound companion. Using
a large set of three-body scattering experiments Samsing (2018)
finds NIS � 20, which is the value we adopt throughout this
paper. Moreover, we define the characteristic angular momentum
below which two of the BHs can undergo a GW merger during
an intermediate binary–single state, �cap, as that for which the GW
energy loss integrated over one periapsis passage becomes of the
order the orbital energy of the binary. One finds that at (Samsing,
MacLeod & Ramirez-Ruiz 2014; Samsing 2018)

� < �cap � h

(
RS

a

)5/14

, (30)

a GW merger will occur before the next intermediate binary–single
state is formed. In the previous expression, RS = 2Gm12/c2 and the
constant h is of order unity.

Assuming that the eccentricity distribution of the intermediate
state binaries follows a thermal distribution, the probability per
encounter that a GW capture will occur is

pcap(a) = NIS�
2
cap. (31)

By using that the differential merger probability per encounter is
dPcap = pcapdN3, and integrating over all binary–single encounters
one finds the total merger probability via GW capture

Pcap(am) = NIS

∫ am

ah

1

ε − 1
�2

cap(a)
da

a

� NIS
7

5

1

1 − ε
�2

cap(am), (32)

where as before we have used that ah > >am. If GW captures are
included, then am has to be redefined as the semimajor axis where
the total in-cluster merger probability, Pin = PGW + Pcap, is unity.
From this latter condition, we find

aGW =
⎛
⎝
√

N2
ISg

2
cap + 10

7 (1 − ε)gGW − NISgcap

gGW

⎞
⎠

−7/5

, (33)

where gcap = h2R
5/7
S and gGW = 1.7

[
G4(m1m2)2m12

c5Ėbin

]2/7
. A value for

h was derived by fitting the GW capture fractions in the three-body
scattering experiments of table 1 in Gültekin et al. (2006). We find

the best-fitting value to be h = 1.8, which we adopt in what follows.
Note that in the limit RS → 0, equation (33) becomes equation (28).

3.1.3 Ejected binaries

A BH binary ejected at a (lookback) time τ from its parent cluster
will merge within the present time if its angular momentum satisfies
the relation

� < �H � 1.8

[
G3m1m2m12

c5
τ

]1/7

a−4/7

�
(

0.07AU

a

)4/7 (
m1m2m12

103 M3�

τ

10 Gyr

)1/7

, (34)

which was derived by setting tGW < τ in the limit of large
eccentricities.

Detailed Monte Carlo simulations of the secular evolution of
massive star clusters show that dynamically ejected BH binaries
have eccentricities which are well described by a thermal distribu-
tion (e.g. Breivik et al. 2016). Thus, the probability that an ejected
binary will merge on a time-scale shorter than τ is

pex(aej) = �2
H(aej). (35)

Finally, the total probability that a BH binary will merge outside
its parent cluster is obtained by multiplying the probability that
the binary did not merge inside the cluster (i.e. 1 − Pin), by the
probability that the binary will merge after being ejected

Pex(am, aej) = [1 − Pin(am)] pex(aej). (36)

Note that given the definition of am above, we have that 0 ≤ Pin ≤
1. From equation (36), it then follows that 0 ≤ Pex ≤ 1.

3.2 Merger rates

In balanced evolution, the binary formation rate is equal to the
binary ejection rate and can therefore be expressed as the BH mass
ejection rate of equation (14) divided by the total mass ejected by
each binary

�bin � −ṀBH

mej
,

� 0.4

Myr

60 M�
mej

β

2.8 × 10−3

ψ

5

〈mall〉
0.4 M�

ln 	

10
ρ

1/2
5 . (37)

Note that because the heating produced in the core is only
determined by the global properties of the cluster, the binary
formation rate equation (37) is independent of the cluster core
properties and the number of binaries in the core (see also Antonini
et al. 2019).

Noting that the condition for the recoil velocity of the interloper
to be larger than vesc is a ≤ a3 = aej/q

2
3 , then the total mass a BH

binary ejects, mej, is equal to the binary mass plus the total mass
ejected through the binary–single interactions experienced from a3

to aend, where aend is the semimajor axis at which the sequence of
binary–single interactions terminates, such that

mej = m12 +
∫ aend

a3

m3

ε − 1

da

a
� m12

+ m3

1 − ε
ln

(
aej

am
q−2

3

)
. (38)
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2944 F. Antonini and M. Gieles

In the last expression we have set aend = am, which is only correct
for ejected binaries. For in-cluster mergers, aend is a distribution
of values because a binary has a finite probability to merge at
any point between ah and am. However, equation (38) is still
a reasonable approximation given that mej depends on aend only
through the logarithmic term, and equation (26) shows that for in-
cluster mergers the distribution of aend has a median value of 1.6am.
We note another difference: for in-cluster mergers the binary is not
ejected dynamically from the cluster. However, it will be ejected
almost certainly by the relativistic recoil kick after a merger occurs
(Antonini & Rasio 2016).

In previous studies, the three-body binary formation rate was
computed via ‘microscopic’ approaches that directly consider the
three-body interactions and which introduce a relation to the cluster
core properties: �bin � √

2π2G5n2σ−9
c m5

12, with σ c the velocity
dispersion of the BHs and n their number density in the core
(e.g. Ivanova et al. 2005; Morscher et al. 2015a). In the present
framework instead, �bin is derived via a Hénon’s principle-based
(or a ‘macroscopic’) approach and it is therefore only expressed in
terms of Mcl and rh. Clearly, the advantage of our technique is that
it does not require any detailed knowledge of the evolution of the
cluster core properties which requires computationally expensive
simulations.

The rate �bin is the rate at which binaries harden from an initial
semimajor axis ah to a separation, am, where the GW inspiral
phase starts. Thus, multiplying �bin by the merger probability
and integrating over time we obtain the total number of mergers
produced within a given time interval. For the time-dependent
cluster model of Section 2, the number of BH binaries that merge
within a redshift z < zd is then

N =
∫ zd

0
�bin

[
PGW + Pcap + Pex

] dτ

dz
dz

+
∫ z0

zd

�bin [Pex(τ ) − Pex(τ − τd)]
dτ

dz
dz, (39)

where z0 is the formation redshift of the cluster, and τ d is the
lookback time corresponding to a redshift zd. The second term in
the right-hand side of equation (39) is the number of BH binaries
which are ejected at redshift z > zd but merge at redshift z < zd (i.e.
within the observable volume). The lookback time and redshift are
related through the equation

dτ

dz
= 1

H0(1 + z)
√

�M(1 + z)3 + �	

, (40)

and we assume here a 	CDM flat cosmology with the Planck
values for the cosmological parameters, H0 = 67.8 km s−1 Mpc−1

and �M = 0.308 (Planck Collaboration 2015).
Equation (39) can be numerically integrated to compute the rate

at which merging BHs are produced dynamically in a dense star
cluster and can be used to rapidly explore the relationship between
the merger rate and a cluster’s global properties.

3.3 Eccentricity distributions

The distribution of eccentricities of merging binaries at a given
GW frequency, f, for the three populations of mergers can be
approximated as described in what follows.

For a binary evolving under the influence of GW radiation, Peters
equation (Peters 1964) is used to relate the binary eccentricity to its

semimajor axis

a0�
2
0

a�2
=
( e0

e

)12/19
(

1 + 121
304 e2

0

1 + 121
304 e2

)870/2299

. (41)

Using that the peak GW frequency f of a binary with semimajor
axis a and eccentricity e is (Wen 2003)

f = 1

π

√
Gm12

a3

(1 + e)1.1954

�3
, (42)

we can rewrite equation (41) as

�2
0 = 1

a0

(
Gm12

π2

)1/3 ( 1

f

)2/3 ( e0

e

)12/19

×
(

1 + 121
304 e2

0

1 + 121
304 e2

)870/2299

(1 + e)0.7969 . (43)

The previous equation can be further simplified by noting that in
the limit where e0 ≈ 1, as justified for most dynamically formed
binary BH mergers, we can write

�2
0 � 1

a0

(
Gm12

π2

)1/3

F (e, f ), (44)

with

F (e, f ) = 1.14

(
1

f

)2/3 (1

e

)12/19

×
(

1

1 + 121
304 e2

)870/2299

(1 + e)0.7969. (45)

An isolated binary with initial semimajor axis a0 and angular
momentum �0 will have an eccentricity e at a GW frequency f.

For in-cluster inspirals, the differential probability that the in-
spiral will start from an angular momentum larger than a given
�0 is dPGW = (

�2
GW − �2

0

)
dN3. Integrating this probability over the

total number of binary–single interactions from formation to merger
gives the eccentricity distribution of merging BH binaries at a GW
frequency f:

PGW =
∫ am

ah

1

ε − 1

(
�2

GW(a) − �2
0(a)

) da

a

� 1

1 − ε

[
7

10
�2

GW(am) −
(

Gm12

π2

)1/3
F (e, f )

am

]
. (46)

For GW captures, the probability that inspiral will start from an

angular momentum larger than �0 is dPcap =
(
�2

cap − �2
0

)
dN3, and

the eccentricity distribution at f is

Pcap = NIS

∫ am

ah

1

ε − 1

(
�2

cap(a) − �2
0(a)

) da

a

� NIS

1 − ε

[
7

5
�2

cap(am) −
(

Gm12

π2

)1/3
F (e, f )

am

]
. (47)

Similarly, the cumulative eccentricity distribution of binaries merg-
ing after being ejected from their host cluster at a given GW
frequency f is

Pex = (1 − Pin)

[
�2

H(aej) −
(

Gm12

π2

)1/3
F (e, f )

aej

]
, (48)

where the second term inside the parenthesis comes from equa-
tion (44) with a0 replaced by aej.
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Finally, integrating equation (46)–(48) with respect to time gives
the eccentricity distribution of the entire population of binary BHs
that merge at a redshift z < zd and at a GW frequency f with an
eccentricity less than e

N<e =
∫ zd

0
�bin

[
PGW + Pcap + Pex

] dτ

dz
dz

+
∫ z0

zd

�bin [Pex(τ ) − Pex(τ − τd)]
dτ

dz
dz, (49)

where, as before, the first term in the right-hand side of the
equation represents the number of mergers from binaries that are
formed within a redshift zd, and the second term is the number
of BH binaries which are ejected at redshift z > zd but merge at
redshift z < zd. We compute later in Section 5.2, the eccentricity
distribution of BH binary mergers for a wide range of cluster initial
conditions.

3.4 Black hole masses

For the calculation of the merger rate and eccentricity distributions
in BHBDYNAMICS, we need a model for the time evolution of
the BH mass function. We assume that the BHs participating to
the interactions have the same mass, i.e. m1 = m2 = m3 and
use mmax below to indicate the mass of each of the three BHs.
The value of mmax is by definition restricted to the range of φ0,
i.e. mlo ≤ mmax ≤ mup. This choice is motivated by theory and
detailed numerical models of dense star clusters (e.g. Sigurdsson &
Hernquist 1993; Rodriguez et al. 2016). Because of equipartition of
energy, during a binary–single encounter the two heaviest objects
in the interaction are the most likely to be paired together. Thus,
after a few interactions the two BH components of a hard binary
will have a similar mass. Moreover, because of mass segregation,
the core densities will be dominated by the heaviest objects, so
the BHs that the binary will encounter more frequently will have a
mass comparable to the mass of its components, which are the most
massive BHs still present in the cluster.

The cluster will process its BH population such that the mass
of the ejected BHs progressively decreases with time as the most
massive BHs are the first to form binaries and to be ejected from
the cluster. Thus, in order to relate the evolution of mmax to the
evolution of MBH we compute the cumulative BH mass distribution
(corrected by ejections due to SN kicks) and invert the relation to
obtain an expression for the BH mass as a function of the current
total mass in BHs. Hence, for a generic mass function φ (after SN
kicks, see equation 2) we first solve mmax from∫ mmax

mlo

φmdm = MBH, (50)

where MBH is provided by the cluster evolution (i.e. CLUSTERBH). In
some special cases, the solution for mmax can be written analytically,
for example for a power-law φ0 ∝ mα and no kicks (i.e. φ = φ0) we
find

mmax =
[

MBH

MBH,0

(
mα+2

up − mα+2
lo

)
+ mα+2

lo

]1/(α+2)

, (51)

where MBH,0 is the initial total mass in BHs. Initially, when
MBH = MBH,0 we have mmax = mup, while mmax = mlo for the
last binary ejected from the cluster. Other prescriptions for φ0 and
φ could also be implemented within our theoretical framework
to describe higher metallicity systems and/or different natal kick
prescriptions.

Figure 4. Cumulative distribution of the initial BH masses obtained from
the stellar evolution calculations for Z = (0.1, 0.05, 0.025, 0.01) Z�, where
line thickness decreases with increasing metallicity. The red line shows the
cumulative distribution corresponding to the BH mass function φ ∝ mα

with α = 0.5 between mlo = 3 M� and mup = 33 M�, which is a good
approximation to the numerical results for Z � 0.05 Z�.

We assume that the BHs receive a natal kick given by the
momentum conserving model described in Section 2.2. We then
assume a power-law form for φ0, i.e. φ0 = Amα , and for the purpose
of finding mmax we approximate the mass function after kicks by
equation (3). From integrating this function as in equation (50), we
have

MBH(mmax) � A ×
⎧⎨
⎩

ln
[(

q3
mb + 1

)
/
(
q3

lb + 1
)]

, α = −2,

mα+2
max (1 − h(qmb)) − mα+2

lo (1 − h(qlb)) , α 	= −2,
(52)

where qml = mmax/mlo and qmb = mmax/mb. The constant A is found
from solving in a similar way MBH,0f

M
ret = ∫ mup

mlo
φmdm, which gives

the same result as in equation (52), but with mmax replaced by mup

(see equation 5). The relation MBH(mmax) of equation (52) needs to
be computed once and can then be inverted numerically to get mmax

for a given MBH.
Equations (51) and (52) apply only to systems for which φ0

can be described by a single power-law function. We now show
that this is a good approximation for clusters with metallicity Z �
0.05 Z�. We obtained an approximation to the initial BH mass
function using the single stellar evolution (SSE) package (Hurley
et al. 2002) but with the updated prescriptions for stellar winds
and mass-loss in order to replicate the BH mass distribution of
Dominik et al. (2013) and Belczynski et al. (2010). We sample the
masses of the stellar progenitors from a mass function φ� ∝ m−2.35

�

(Kroupa et al. 2001), with masses in the range 20 to 100 M� and
evolve the stars to BHs for the given metallicity. Fig. 4 shows that
for metallicities Z � 0.05 Z�, the BH mass distribution can be fit
by a power-law φ ∝ mα with α = 0.5 between mlo = 3 M� and
mup = 33 M�. Because the metallicity distribution of GCs in the
Milky Way peaks at about Z � 0.05 Z� (Zinn 1985), this model
can be used to provide a reasonably good approximation to the
mass function of BHs formed in these systems. In what follows, we
will therefore adopt this model and use equation (51) or numerically
determined inverse of equation (52) to describe the evolution of the
BH mass function due to SN and/or dynamical kicks.
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4 C O M PA R I S O N TO MO N T E C A R L O
SIMULATIONS

In this section, we show that CLUSTERBHBDYNAMICS reproduces
the eccentricity distribution, and rates of binary BH mergers formed
in detailed Monte Carlo simulations of GCs as well as the evolution
of the cluster itself. Specifically, we compare our results to the 24 GC
Monte Carlo models of Rodriguez et al. (2016, 2018a, b). The model
initial conditions are given in table 1 in Rodriguez et al. (2016); these
are 24 GC models with initial masses in the range � 105 − 106 M�,
and virial radius rv = 1 pc or 2 pc (where rh � 0.8rv). For each
value of mass and radius, three different realizations with metallicity
Z = (0.01, 0.05, 0.25) Z� were evolved for � 13 Gyr and during
this time produced 2819 merging BH binaries, of which 1561 (0.55
of the total) were formed inside the cluster, and 123 (0.04 of the
total) were GW captures. The rest of the mergers occurred among
the population of ejected binaries. The Monte Carlo models are
self-consistent simulations of the secular evolution of a cluster and
include the effect of stellar evolution, a realistic mass function of
stars, primordial binaries, the effect of an external tidal field, and
employ a three-body integrator (including post-Newtonian terms up
to order 2.5) in order to accurately follow the strong binary–single
interactions which lead to the hardening and merger of the core
binaries.

For each value of cluster half-mass radius and total mass, we
used equations (39) and (49) to compute the rate and eccentricity
distribution of binary BH mergers that occur after a given time.
Specifically, we consider mergers that occur after 3, 5, and 8 Gyr
from the start of the simulation; if we assume that the clusters
form at z0 = 3, then, for the cosmological parameters above, these

times correspond to binaries that merge within a redshift zd �
2, 1, and 0.5, respectively. The distributions from all the cluster
models were then added together and compared to those from all
the binary BH mergers produced in the Monte Carlo simulations. We
only show the comparison for models where the BHs received the
same momentum kick as neutron stars (with σNS = 265 km s−1). We
note, however, that because of the high retention fractions in these
systems, models without kicks applied to the BHs produce similar
eccentricity distributions as models with kicks applied. Moreover,
we use here an initial BH mass fraction fBH = 0.04, appropriate for
the low-metallicity clusters considered.

Fig. 5 shows the eccentricity distributions at the moment the
binaries first achieve a GW frequency of 10 Hz (i.e. near the low
end of the LIGO-Virgo frequency window). The two methods give a
very similar number of mergers at any given e over the entire range
of eccentricities (i.e. e > 10−7), and, for example, both produce
∼ 5 per cent of BH mergers with e > 0.1 inside the LIGO-Virgo
band. The individual eccentricity distributions of in-cluster mergers
and mergers among the ejected binaries shown in the bottom panels
also overlap reasonably well with those from the Monte Carlo
simulations as do the fraction of mergers produced by each of
the three channels (upper panels of Fig. 6), and the corresponding
total number of mergers per cluster at a given time (lower panels of
Fig. 6) for the entire cluster mass range considered.

In view of the approximate nature of our method, the agreement
with the Monte Carlo results can appear quite remarkable. However,
it is not a coincidence, but a rather natural consequence of Hénon’s
principle. This principle, which is the basis of our approach, is
also what determines the relation between the evolution of a cluster

Figure 5. Comparison between the eccentricity distribution of the BH mergers produced in the Monte Carlo simulations of Rodriguez et al. (2018a) and those
obtained with our method. Top panels show the cumulative distribution of e for all mergers. In the bottom panels, the distributions of GW captures, in-cluster
mergers, and mergers among ejected binaries are shown separately (from right to left, respectively). The distributions refer to binaries that merge after a given
time from the start of the evolution, as indicated.
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Black hole mergers from star clusters 2947

Figure 6. Fractions and total number of mergers for each of the three merger channels separately, at different times as a function of initial cluster mass obtained
using our method (lines), and from the full Monte Carlo models of Rodriguez et al. (2018a) (symbols). Each point represents the average number of mergers
from the three metallicities adopted in the Monte Carlo models.

Figure 7. Evolution of the cluster compactness, that we define as Mcl/rh,
and the BH binary merger rate predicted by our method. We compare this
to a similar Monte Carlo model from Rodriguez et al. (2018a). The cluster
mass and radius have been normalized to their initial values Mcl,0 = 1.3 ×
106 M� and rh,0 = 0.8pc.

Monte Carlo model and the merger rate and properties of the BH
binaries that are produced in its core. To illustrate this latter point,
we plot in Fig. 7 the evolution of the global cluster ‘compactness’,
defined here as Mcl/rh, and the corresponding merger rate of BHs
for a system with initial mass and radius Mcl,0 = 1.3 × 106 M�,

rh,0 = 0.8 pc. We compare our results to those from a Monte Carlo
cluster model with similar initial mass and radius (from fig. 4 of
Rodriguez et al. 2016). In both cases, two-body relaxation causes
the cluster radius to expand significantly over the time-scale of the
simulation, leading to a decrease in the BH binary merger rate.
The physical reason why the merger rate goes down is because
the cluster energy demand decreases as the cluster expands and a
significant drop in the binary hardening rate happens after about a
relaxation time.

5 A STRO PHYSI CAL I MPLI CATI ONS

In this section, we use CLUSTERBHBDYNAMICS to derive the number
and eccentricity distributions of merging BH binaries and study
their relation to the initial properties of the parent cluster. While a
more detailed analysis will be presented elsewhere, here we simply
consider how such distributions are linked to the initial mass and
radius of a GC and its time evolution. The new method allows us to
explore for the first time a wide range and physically motivated set
of initial conditions, spanning more than two orders of magnitude
both in radius and mass.

5.1 Cluster evolution and merger rates

We consider the evolution of a set of models with initial mass in
the range Mcl,0 � (105, 107) M� that we evolved for 13 Gyr. We
adopt three different models for the initial radius of the clusters.
We either assume that the initial radius is independent of mass and
set rh,0 = 1 pc or 3 pc, or we assume an initial mass–radius relation

MNRAS 492, 2936–2954 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/492/2/2936/5698822 by guest on 19 February 2020



2948 F. Antonini and M. Gieles

Figure 8. Evolution of cluster models for a range of masses and initial cluster radii. From top to bottom, the panels show the evolution of the total mass of the
clusters, the evolution of the mass in BHs, the cluster radius, and the number of BH binaries that merge after a given time from the start of the simulation. In
this case, we have adopted the momentum conserving natal kick model described in Section 2.2.

(Gieles et al. 2010)

log

(
rh,0

pc

)
= −3.560 + 0.615 log

(
Mcl,0

M�

)
. (53)

This latter relation was obtained by converting the original Faber–
Jackson relation of elliptical galaxies to a mass–radius relation
(Haşegan et al. 2005), and correcting for the adiabatic expansion
due to mass-loss caused by stellar evolution (Gieles et al. 2010). We
show the results for models with constant momentum natal kicks
and no natal kicks in Figs 8 and 9, respectively. We take hereafter
an initial BH mass fraction of fBH = 0.04.

The top panels in Figs 8 and 9 show that the total cluster mass
has decreased by approximately a factor of two by the end of the
simulation and that most of this mass-loss occurs during the first
few Gyr of evolution. Equation (7) implies that the fractional stellar
mass-loss per unit time is the same for all clusters, so the small
differences seen in the evolution of Mcl are a consequence of the
dependence of ṀBH on the cluster relaxation time, and therefore on
its mass and radius. The mass-loss from the system due to stellar
evolution also causes the cluster radius to expand by approximately
a factor 2. This can be seen in the figures at early times before
the subsequent expansion due to two-body relaxation starts to
dominate.

The top middle panels in Figs 8 and 9 show that the evolution of
the BH population is quite sensitive to the initial cluster properties.
Systems that are initially more compact and with a low mass have a
shorter relaxation time, and consequently they start to process their
BH binaries at earlier times (i.e. at tcc) and at a higher rate than larger
and more massive clusters (see equation 14). For example, the rh,0 ∝
M0.6

cl,0 models are highly dynamically active for Mcl,0 � 105 M�,
yielding rate of cluster expansion, BH depletion, and number of

merging binaries of larger magnitude than their rh,0 = 1 and 3 pc
counterparts.8

As a result of their long half-mass relaxation time, all cluster mod-
els with Mcl,0 � 106 M� still have BHs after 13 Gyr of evolution
for the initial radii we adopted, corroborating the recent inference
of stellar mass BHs in ωCen (Zocchi et al. 2019; Baumgardt et al.
2019) and 47 Tuc (Hénault-Brunet et al. 2020). Clusters with mass
lower than this can also retain some of their BHs if their densities
are sufficiently low initially (e.g. rh,0 = 3 pc). These results are
also illustrated in Fig. 10, which gives the total mass in BHs at
t = 13 Gyr for all the models considered. This figure demonstrates
that the final number of BHs in clusters with Mcl,0 � 5 × 105 M�
does not depend significantly on the assumptions we make about
the BH natal kicks. But, models with an initial mass lower than
this value retain a significant fraction of their BHs only if no kicks
are applied and the cluster initial radius is large, rh,0 = 3 pc. We
conclude that whether a cluster will be able to retain some of its
BHs depends on two main factors: the half-mass relaxation time
of the whole system, which determines the rate at which the BHs
are ejected from the cluster, and the initial BH fraction which is set
by the stellar IMF, metallicity, and most importantly, by the natal
kicks. These results are consistent with recent work based on Monte
Carlo simulations (Askar, Arca Sedda & Giersz 2018; Kremer et al.
2019b), while extending these conclusions to a much wider region
of relevant parameter space for star clusters.

After tcc, a system reaches balanced evolution, and its half-mass
radius starts to increase as the result of two-body relaxation. The
evolution of rh for our models appears to be very sensitive to the

8Interestingly, for the ∼105 M� clusters, the extent of the initial expansion
is comparable to that due to a residual gas expulsion (assuming an
overall, uniform star formation efficiency of 30 per cent–40 per cent) from
a similarly compact protocluster (Banerjee & Kroupa 2017).
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Figure 9. Same as Fig. 8 but for models where the BHs receive no natal kicks.

Figure 10. Mass in BHs left after 13 Gyr of evolution as a function of initial
cluster mass for the systems of Figs 8 and 9.

initial conditions. Generally, systems that have a shorter half-mass
relaxation time expand faster and end up with a larger rh after a
Hubble time. The evolution of the cluster radius should also depend
on metallicity, the initial stellar mass function, and the assumed
natal kick distribution because these set the initial fraction of BHs,
which changes trh through the parameter ψ . The effect of natal
kicks becomes especially important in systems with a low mass
(Mcl,0 � 5 × 105 M�) and a large half-mass radius (rh,0 � 3 pc)
due to the larger fraction of BHs that are ejected. These results fit
in the view that the properties of the whole system determine the

evolution of the BH subsystem (Breen & Heggie 2013), but the
evolution of the cluster itself is also affected by the remaining mass
fraction in BHs (Section 2.3).

The total number of BH binaries that merge at times >t can be
seen in the bottom panels of Figs 8 and 9. Clusters with a longer
relaxation time start forming binary BHs later, which explains the
initial lag between the start of the simulation and when the first
merger occurs (i.e. the plateau of N (> t) seen at early times). The
BH binary merger rate is shown as a function of cluster properties in
Fig. 11. Assuming a constant initial radius, the total number of BH
binaries that merge at late times (t > 8 Gyr) can be reasonably well
fit by a simple scaling N ∝ M1.6

cl,0. For the relation equation (53),
instead, the best-fitting model is N ∝ M1.2

cl,0, for Mcl,0 � 107 M�,
while for more massive clusters the segregation time-scale of the
BHs exceeds the Hubble time and no mergers are produced in these
systems. Taken together, our results imply that N ∝ M1.6

cl,0r
−2/3
h,0 .

These results can be compared to Hong et al. (2018) who find that
the total number of mergers produced by their cluster models over
12 Gyr scaled as N ∝ M1.3

cl,0r
−0.9
h,0 . The difference with our best-

fitting model could be due to the larger parameter space explored
by us and by the fact that these authors did not include in-cluster
mergers in their Monte Carlo simulations.

As a general trend, we observe a strong dependence of the
merger rate on the cluster initial conditions, with a larger cluster
mass and a smaller radius resulting into an overall higher BH
merger rate. These results put into question some of the current
literature where simplified assumptions about the initial mass/half-
mass radius relation were adopted. For example, Rodriguez &
Loeb (2018) derived their binary BH merger rate assuming that
50 per cent of clusters form with a virial radius of rv = 1 pc and
50 per cent form with rv = 2 pc. Similarly, Fragione & Kocsis
(2018) assumed that the binary BH merger rate is independent of
the cluster radius for which they assumed a fixed value. Askar et al.
(2017) derived a merger rate by using a limited set of models with
three values of cluster initial radii and four values of cluster mass.
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2950 F. Antonini and M. Gieles

Figure 11. Number of merging binaries as a function of cluster mass for the models of Fig. 8, where the BHs receive the same momentum kick as neutron
stars. From top to bottom line, we show the number of binaries which merge at times t > 0, 3, 5, and 8 Gyr from the start of the simulation. Blue lines show
the best-fitting models to the mergers that occur at late times.

These restrictions were due to time constraints imposed by the
computationally expensive techniques employed in these studies.
Although our models include less physics, the new treatment allows
for a complete exploration of the parameter space relevant for GCs.
This opens the possibility for a first realistic determination of the
merger rate and properties of BH binaries produced in star clusters,
which we reserve to a future paper. We note that a similar attempt
was made before in Choksi et al. (2019) who adopted the semi-
analytical approach of Antonini & Rasio (2016) to estimate a cosmic
BH merger rate from GCs. In Antonini & Rasio (2016), however, the
binary hardening rate was computed from the cluster core density
which cannot be easily linked to the secular evolution of a cluster.
Here, we have overcome this issue by using Hénon’s principle to
relate the binary hardening rate to the evolving global properties of
its host cluster.

5.2 Eccentricity distributions

Binary BHs formed in dynamical environments, such as globular
clusters and nuclear star clusters, can have a finite eccentricity in
both LIGO-Virgo and the LISA bands (e.g. Nishizawa et al. 2016).
For mergers formed through the evolution of field binaries instead,
any eccentricity is washed out by GW radiation by the time the signal
enters the detector frequency band (Belczynski, Kalogera & Bulik
2002). As a non-zero eccentricity would be a unique fingerprint of a
dynamical origin, we focus in this section on the relation between a
cluster properties and the eccentricity distribution of the BH binary
mergers that it produces.

In Fig. 12, we show the eccentricity distribution of the merging
BH binaries. We focus here on mergers occurring at late times
(t > 8 Gyr) because these are the most relevant for current and
planned GW detectors. If we assume that the clusters form at
z0 = 3, then, for the cosmological parameters above, this time

corresponds to binaries that merge within a redshift zd = 0.5.
We show these distributions for several values of Mcl, for our
three choices of cluster radius, and at the moment the binary GW
frequency first becomes larger than 10 and 0.01 Hz. We chose to plot
the eccentricity distributions at 10 and 0.01 Hz because these are
near the lower end of the LIGO-Virgo and LISA frequency windows,
respectively (Harry & LIGO Scientific Collaboration 2010; Amaro-
Seoane et al. 2017). In the bottom panels, the cumulative eccentricity
distributions of in-cluster inspirals, GW captures, and mergers
among the ejected binaries are shown separately.

Our analysis demonstrates that independently of the cluster initial
conditions, GW captures have e > 10−2 at f > 10 Hz, while all
other type of mergers have eccentricities at these frequencies (e
� 10−2) that might be too small to be measurable using current
detectors (e.g. Huerta & Brown 2013; Lower et al. 2018; Gondán &
Kocsis 2019). As expected, mergers among the ejected binaries have
the smallest eccentricities. We conclude that GW captures are the
only type of mergers that we have considered in our analysis which
could have a measurable residual eccentricity at the moment they
enter the LIGO-Virgo frequency window. At f > 10 Hz, in-cluster
mergers show a clear trimodality, with the lower peak corresponding
to isolated binaries that merge after a dynamical encounter, the
higher eccentricity population (0.1 < e < 1) corresponding to
sources which merge during an encounter via a GW capture, and a
third population of mergers with e � 1. These latter systems also
merge through a GW capture, but form directly at frequencies larger
than 10 Hz rather than reaching this frequency after substantial
circularization has already occurred.

Because all GW captures are formed at frequencies above
� 0.1 Hz, the eccentricity distributions of these mergers appear as a
delta function at e = 1 for the lowest frequency range considered in
Fig. 12. As shown in Chen & Amaro-Seoane (2017), these highly ec-
centric sources might elude detection because the high eccentricity
shifts the peak of the relative power of the GW harmonics towards
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Figure 12. Eccentricity distributions of merging BH binaries formed in star clusters for the three choices of rh,0, at the moment their GW frequency becomes
larger than 10 and 0.01 Hz. Bottom panels give the eccentricity distributions for ejected binaries (lowest eccentricities), in-cluster inspirals, and GW captures
(largest eccentricities) separately. Note that at 0.01 Hz, GW captures all have e � 1 because they all form at frequencies f > 0.1 Hz. In this calculation, we
have adopted the constant momentum natal kick model of Section 2.2, and we have only included late time mergers, occurring at t > 8 Gyr.

higher frequencies, so that their maximum power is emitted farther
away from the frequency band of interest. Mergers formed by GW
captures are therefore unlikely to be detectable at frequencies lower
than 0.1 Hz. On the other hand, for Mcl,0 � 106 M� we see that
all in-cluster inspirals reach f = 0.01 Hz with e � 0.01, which
is potentially measurable with planned missions such as LISA
(Nishizawa et al. 2016) and third-generation detectors (Punturo
et al. 2010).

The fraction of eccentric GW sources are shown in Fig. 13 as
a function of the peak frequency f and for three representative
values of cluster mass. From this plot, we see that between ≈30
and 100 per cent of our binaries start eccentric inside the LISA
frequency window (0.001–0.1 Hz) and many retain a significant
eccentricity by the time they reach f � 0.01 Hz, where LISA is
most sensitive. The exact fraction of systems that start eccentric in
the LISA band depend on the cluster properties, reaching unity for
Mcl,0 � 107 M�. This is different from BH binary mergers formed
from the evolution of field binaries of which only � 10 per cent are
expected to have e > 0.01 at f = 0.001 Hz (Breivik et al. 2016). We
conclude that sufficient observations of the eccentricity of binaries
in the LISA band could be used to discriminate between formation
in the field and in clusters (e.g. Nishizawa et al. 2016), but could
also help to determine which type of clusters are most likely to
produce the binaries.

The overall eccentricity distribution of the BH binaries is most
sensitive to the relative fraction of the three type of mergers. We
show how these fractions depend on the cluster properties in Fig. 14.
Three regimes can be identified: (i) if aGW > aej, all binary BH
mergers are produced inside the cluster. About � 10 per cent of
these in-cluster mergers are GW captures and the rest are mergers
that occur in between binary and single encounters. For the systems
in Fig. 14 this regime can be seen at Mcl,0 � 107 M�; (ii) when aGW

< aej almost half of the mergers occur inside the cluster, half are
mergers among the ejected binaries, and less than a few per cent
of the mergers are GW captures. For the clusters in Fig. 14 this
regime occurs at 106 M� � Mcl,0 � 107 M�; (iii) if the BH binary
population has been fully depleted by a time t, then all mergers
observed at later times will come from the ejected binary population.

This third regime occurs for the lowest mass systems in Fig. 14
where we see that the number of in-cluster mergers goes to zero.
The exact transition between the three regimes depends on the
initial mass–radius relation and the time between the formation of
the cluster and when the mergers are detected.

Our results show that for a typical GC the fraction of in-cluster
mergers can be quite large, in agreement with recent studies showing
that nearly half of all binary BH mergers occur inside the cluster
(Rodriguez et al. 2018a; Samsing 2018). On the other hand, our
models also show that the number of in-cluster mergers detectable
by LIGO-Virgo will be quite sensitive to the uncertain initial cluster
mass–radius relation and initial mass distribution of the clusters.
Notably, in the most massive GCs (Mcl,0 � 106 M�) we would
expect a large fraction (� 0.5) of mergers to be produced inside
the cluster rather than happening among the ejected binaries. In
even higher velocity dispersion clusters such as nuclear clusters,
all mergers should typically be formed while the BH binaries
are still bound to the cluster, although a significant contribution
from the ejected population might be expected near the low
end of the nuclear cluster mass distribution (Antonini & Rasio
2016).

We note, finally, that detailed post-Newtonian direct N-body
simulations show that in low-mass clusters (Mcl � 105M�), in-
cluster mergers are primarily triggered by long-term interactions
involving stable and marginally stable triples (Ziosi et al. 2014;
Kimpson et al. 2016; Banerjee 2017, 2018a,b; Rastello et al. 2019).
A large fraction of these mergers will have a finite eccentricity in
the LIGO band but are not included in our analysis.

5.3 Caveats and discussion

In deriving the merger probability and eccentricity distributions
above, we have made a few important assumptions which we now
discuss and justify.

We have assumed that the dynamical interactions only occur
between BHs. This is reasonable because due to mass segregation
the BH densities near the core are expected to be much larger than
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Figure 13. Fraction of binaries that have an eccentricity larger than 0.1 and 0.01 as a function of peak GW frequency. We have considered three representative
values of cluster mass for our three choices of radius, have adopted the natal kick model of Section 2.2, and only binaries that merge after a time larger than
8 Gyr from the start of the simulation have been included in the analysis.

Figure 14. Number of BH binaries that merge after 8 Gyr as a function of cluster mass, for the models of Fig. 8, and for the three merger channels shown
separately.

the densities of stars. BHs will therefore dominate the interactions.
Moreover, because exchange interactions tend to pair the BHs with
the highest mass and tens of three-body encounters are required
before a merger, then mergers will be primarily between BHs when
they are present (e.g. Sigurdsson & Hernquist 1993; Morscher et al.
2015). As the number of BHs in the core decreases, interactions
with main-sequence stars, giant, and white dwarfs can become more
frequent. These interactions could lead to the formation of mass-
transferring binaries with an observable electromagnetic signature
(e.g. Fabian, Pringle & Rees 1975; Ivanova et al. 2010), or detached
BH stellar binaries that can be identified with radial velocities

(Giesers et al. 2018). Note also that the removal of BHs strictly from
the upper end of its mass distribution and the interactions among
the most massive BH members, as assumed here, is an idealization.
Detailed N-body computations suggest that dynamically assembled
binaries span over a mass ratio between 0.5 and 1 (Banerjee 2017,
2018b), implying that BHs over a considerable mass range could
be involved in mutual encounters.

The eccentricity distributions were derived by assuming that the
binaries have a large eccentricity, e0 ≈ 1, at the moment their
evolution starts to be dominated by GW radiation. This allowed
us to find the simple analytical relation equation (44) between
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the eccentricity of a binary and its peak GW frequency. The
assumption of high initial eccentricity is reasonable for in-cluster
mergers, but might not be valid for some fraction of the mergers
occurring among the ejected binaries (Kremer et al. 2019a). The
eccentricity distribution of all ejected binaries is thermal, but for
the subset of these binaries that merge within one Hubble time
the distribution is skewed towards higher eccentricities. Thus, we
expect our approximation to hold as long as pex(aej) � 1, and to
progressively worsen as pex(aej) increases. By setting pex(aej) = 1
and solving for vesc, we find that for escape velocities larger than

vex � 19 km s−1

(
m1m2

m123
q3

6

M�

)1/2 (10 Gyr

τ

)1/8

, (54)

all ejected binaries will merge and their eccentricity distribution
will be thermal. Even in this case, however, the overall impact
on the eccentricity distribution should not be great as only about
10 per cent of the ejected binaries have e0 < 0.3. Moreover, the
contribution of the ejected binaries becomes less important for
the more massive clusters that satisfy the condition vesc > ṽex (see
Section 5.2).

We note also that our calculation is based on the assumption
that most binary BH mergers are formed through strong binary–
single interactions. However, BH mergers in star clusters can also
occur through other processes which have not been considered
in our analysis. These include mergers mediated by the Lidov–
Kozai mechanism in hierarchical triples (Miller & Hamilton 2002;
Wen 2003; Kimpson et al. 2016), non-hierarchical triples (Antonini
et al. 2014; Antonini et al. 2016; Arca-Sedda, Li & Kocsis 2018),
mergers from direct BH–BH captures (Quinlan & Shapiro 1990;
Kocsis & Levin 2012; Rasskazov & Kocsis 2019), and eccentric
mergers during binary–binary strong interactions (Zevin et al.
2019). All these effects are believed to play only a marginal role (at
a ∼ 1 per cent level) for the BH merger rate, but might somewhat
increase the number of binaries that enter the LIGO-Virgo frequency
band with a large eccentricity. More recently, Hamers & Samsing
(2019) and Samsing, Hamers & Tyles (2019b) argued that weak
flyby encounters could also affect the eccentricity distributions of
in-cluster mergers.

Finally, primordial binaries that are not considered here are an
essential ingredient of the early dynamical evolution of globular
clusters and their young progenitors. The presence of primordial
binaries would make the BH core-driven balanced evolution (and
hence tcc) less defined since they would be an ambient source of
central energy generation from the beginning of the cluster’s evo-
lution. After the segregation of BHs, the central energy generation
will be shared with the primordial binaries which could potentially
affect the relevant encounter rates among the BHs.
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