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ABSTRACT

A binary supermassive black hole loses energy via ejection of stars in a galactic nucleus, until emission of
gravitational waves becomes strong enough to induce rapid coalescence. Evolution via the gravitational slingshot
requires that stars be continuously supplied to the binary, and it is known that in spherical galaxies the reservoir of
such stars is quickly depleted, leading to stalling of the binary at parsec-scale separations. Recent N-body
simulations of galaxy mergers and isolated nonspherical galaxies suggest that this stalling may not occur in less
idealized systems. However, it remains unclear to what degree these conclusions are affected by collisional
relaxation, which is much stronger in the numerical simulations than in real galaxies. In this study, we present a
novel Monte Carlo method that can efficiently deal with both collisional and collisionless dynamics, and with
galaxy models having arbitrary shapes. We show that without relaxation, the final-parsec problem may be
overcome only in triaxial galaxies. Axisymmetry is not enough, but even a moderate departure from axisymmetry
is sufficient to keep the binary shrinking. We find that the binary hardening rate is always substantially lower than
the maximum possible, “full-loss-cone” rate, and that it decreases with time, but that stellar-dynamical interactions
are nevertheless able to drive the binary to coalescence on a timescale 1 Gyr in any triaxial galaxy.
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1. INTRODUCTION

Binary supermassive black holes (SBHs) are naturally
formed in galaxy mergers, if both merging galaxies contain a
central SBH. The heavy objects quickly sink to the center of
the merger remnant due to dynamical friction and form a binary
system. Subsequent evolution of the binary is driven by
interaction with stars in the galactic nucleus, which are ejected
by the slingshot mechanism (Saslaw et al. 1974) if they arrive
within a distance a from the binary center of mass, where a is
the semimajor axis of the binary orbit. As a result, the orbit
shrinks (hardens), and if the binary becomes sufficiently hard,
emission of gravitational waves (GWs) becomes the main
source of energy loss, rapidly bringing the two SBHs to
coalescence. The efficacy of this process, however, depends
crucially on the supply of stars into the loss cone (the low-
angular-momentum region of phase space in which stellar
orbits can approach the binary), and if the reservoir is depleted,
the binary nearly stalls, or at least its shrinking timescale may
become much longer than the Hubble time (Begelman
et al. 1980).

In idealized spherical galaxies, the only guaranteed mechan-
ism of loss-cone repopulation is two-body relaxation. The
problem of feeding stars into the loss cone of the binary has
much in common with the similar problem for a single SBH,
which was extensively studied in the 1970s in the context of
spherical systems (e.g., Frank & Rees 1976; Lightman &
Shapiro 1977). These papers identified an important distinction
between empty- and full-loss-cone regimes: in the former, the
flux of stars is inversely proportional to the relaxation time and
depends on the size of the loss cone only logarithmically, while
in the latter the relaxation is so efficient that the supply of stars
into the loss cone becomes independent of the relaxation time

and proportional to the size of the loss cone. Relaxation times
in real galaxies are so long that they are nearly always in the
empty-loss-cone regime. The conjectured stalling of the binary
evolution has been labeled the “final-parsec problem” (Milo-
savljević & Merritt 2003a).
On the other hand, in non-spherical galactic potentials the

angular momentum of stars changes not only by two-body
relaxation, but also by large-scale torques (Merritt 2013,
Chapter 4). The orbital structure of non-spherical galaxies is
rather diverse, and in triaxial galaxies there exist an entire class
of centrophilic orbits, (e.g., box or pyramid orbits) that may
attain arbitrarily low values of angular momentum without any
relaxation. These orbits were identified as a promising
mechanism of loss-cone repopulation (e.g., Norman &
Silk 1983; Merritt & Poon 2004; Holley-Bockelmann &
Sigurdsson 2006). Similarly, in an axisymmetric potential only
one component of angular momentum is conserved, and the
number of stars that can enter the loss cone is much larger than
in the spherical case (Magorrian & Tremaine 1999; Yu 2002;
Vasiliev & Merritt 2013), although not as large as in a triaxial
system.
Numerical simulations of the evolution of binary SBHs face

an important difficulty: since the number of particles N in a
typical simulation (106) is several orders of magnitude
smaller than the number of stars Nå in a real galaxy, it is
necessary to properly understand the scaling laws. The rate of
collisional evolution is inversely proportional to the relaxation
time, which scales roughly as N Nlog , while collisionless
effects are essentially independent of N. Even if only the
collisional effects play a role in the dynamics, the hardening
rate scales differently in the empty- and full-loss-cone regimes.
For small N the system is in the latter regime and the hardening
rate is nearly independent of N, while for large N the hardening
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rate should drop with N. Early studies were restricted to rather
low values of N and hence did not find any N-dependence of
the hardening rate (e.g., Quinlan & Hernquist 1997; Milosavl-
jević & Merritt 2001), while in more recent simulations of
isolated spherical systems with larger N the hardening rate was
found to decline with N (e.g., Makino & Funato 2004; Berczik
et al. 2005; Merritt et al. 2007), although less steeply than the
N−1 dependence expected in the empty-loss-cone regime. On
the other hand, simulations that considered isolated triaxial
(Berczik et al. 2006; Berentzen et al. 2009) or axisymmetric
(Khan et al. 2013) systems, or started from a merger of two
galaxies, which need not result in a spherical model, typically
find no dependence of hardening rate on N. This has been
interpreted as a sign that the binary remains in the full-loss-
cone regime due to efficient reshuffling of angular momenta of
orbits by non-spherical torques.

In a previous paper (Vasiliev et al. 2014, hereafter Paper I),
we reconsidered binary hardening in isolated galaxies with
different geometries (spherical, axisymmetric and triaxial)
using high-resolution N-body simulations with N up to 106.
Somewhat surprisingly, we found that the hardening rates do
depend on N in all three cases, although they decline less
rapidly with N for non-spherical models. With the exception of
the highest-N integrations, there was almost no difference
between axisymmetric and triaxial models. We also explored
the possible contribution to the hardening rate from collision-
less effects, by analyzing the properties of orbits in our models
and estimating the draining rates of centrophilic orbits. We
concluded that with presently accessible values of N it is
difficult to disentangle collisional and collisionless effects in
loss-cone repopulation. In real galaxies, however, collisional
effects are expected to play a much smaller role, so that it is
hard to draw firm conclusions about the evolution of binary
SBHs in non-spherical galaxies based on conventional N-body
simulations.

In this study, we return to the topic and present a novel
Monte Carlo method that can be used to model the evolution of
galaxies hosting binary SBHs. Our new algorithm contains an
adjustable rate of relaxation, which can even be set to zero,
yielding the collisionless limit. We demonstrate that in this
limit, triaxial systems have enough centrophilic orbits to
maintain an adequate supply of stars into the loss cone,
although the binary hardening rate is not as high as in the full-
loss-cone regime and slowly declines with time. Nevertheless,
for all reasonable values of the parameters, the coalescence
time is shorter than the Hubble time. We therefore conclude
that the final-parsec problem is solved by triaxiality even in a
purely collisionless stellar system. By contrast, in axisymmetric
and spherical galaxies the hardening rate rapidly drops in the
absence of relaxation, meaning that in most galaxies the binary
would never merge. Crucially, collisional relaxation in
conventional N-body simulations overwhelms the depletion
of the loss cone and completely changes the long-term behavior
of the binary.

In Section 2 we describe the Monte Carlo method used in
this study and compare it to previous similar approaches, while
in Section 3 we validate the method against a large suite of
conventional N-body simulations with N � 2 × 106. Section 4
is devoted to a detailed study of the evolution of isolated galaxy
models, constructed initially as equilibrium configurations in
spherical, axisymmetric and triaxial geometries. We present the
results of Monte Carlo simulations and illustrate the trends

found in long-term evolution with simple analytical arguments.
Based on these results, we compute coalescence times for
binary SBHs as a function of galaxy structure and initial
parameters of the binary orbit. In Section 5 we conduct N-body
simulations of mergers and compare them to Monte Carlo
models. Finally, in Section 6, we summarize our important
results and compare them with previous work on the final-
parsec problem.
As in Paper I, we focus on purely stellar-dynamical

processes. For a broader picture, including the effects of gas-
dynamical torques, see Section 8.4 of Merritt (2013) or the
recent review of Colpi (2014). Some preliminary results from
the work presented here were described in Vasiliev (2014b).

2. METHOD

2.1. Definitions

We consider the evolution of a binary SBH composed of two
point masses, m1 and m2, which are on a Keplerian orbit with
semimajor axis a and eccentricity e. The total mass of the
binary, M m mbin 1 2º + , is a small fraction (10−2

–10−3) of the
total mass of surrounding stellar distribution. The mass ratio of
the binary is q≡m2/m1 � 1.
A star passing at a distance a from the binary undergoes a

complex scattering interaction and is ejected with a typical
velocity GM abin~ (the characteristic orbital velocity of the
binary); for a hard binary this is higher than the average
velocity of the stellar population, thus the star carries away
energy and angular momentum from the binary. The precise
definition of a hard binary varies among different studies; here
we adopt that a binary is hard if its semimajor axis is smaller
than

a
q

q
r

4 1
, 1h 2 infl( )

( )º
+

where, in turn, the radius of influence rinfl is defined as the
radius enclosing the mass in stars equal to twice the total mass
of the binary. This definition depends on the evolutionary
phase, as the slingshot process reduces the density of stars in
the galactic nucleus. The most rapid depletion occurs just after
the binary formation, and after the binary becomes hard the
depletion slows down considerably. For consistency with
merger simulations, in which it is not possible to assign any
particular value to rinfl before the two galactic nuclei have
merged, we adopted the convention to evaluate the influence
radius after the hard binary has formed (see Merritt &
Szell 2006 for a discussion on different definitions of rinfl).
Another important quantity is the hardening rate S≡ d(1/a)/dt.

In what follows, we will frequently compare S with the reference
value Sfull that would occur if the distribution of stars in phase
space were not affected by the presence of the binary—in other
words, if the loss cone was “full.” Unfortunately this value also
does not have a commonly accepted definition. For instance, if the
stars were uniformly distributed in space, with density ρ and with
isotropically directed velocities all of the same magnitude v, then
the hardening rate can be expressed as

S H
G

v
, 2uniform 1 ( )r

=

where the dimensionless coefficient H1 can be measured from
scattering experiments (e.g., Quinlan 1996; Sesana et al. 2006),
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and has a value H1≈ 18 in the hard-binary limit. A more widely
used definition applies to systems with a uniform density and a
Maxwellian velocity distribution with dispersion σ:

f x v f v
v

S dv v f v S v H
G
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2
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where H H 2 14.51 pº » .
The assumption of a uniform-density background is clearly

an oversimplification, and a more robustly defined quantity is
obtained by averaging the single-velocity hardening rate (2)
over the actual distribution function of stars f(x,v) in the entire
galaxy. If we assume that the latter is isotropic (i.e., depends
only on the energy E, but not on the angular momentum), then

S dv v f E
H G

v
H G dE f E4 4 .

4

iso
0

2 1
1

0

0

( ) ( )

( )

ò òp pº =
¥

F

Here Φ0 is the depth of potential well of the stellar cusp
(excluding the potential of the SBH), so that the integration
includes energies corresponding to stars that are unbound to the
binary, but still bound to the entire galaxy (this is a rather
ad hoc convention, but it is justified by the fact that few stars
remain bound to the binary for any significant time after it
becomes hard). Another derivation of this quantity from a
somewhat different perspective can be found e.g., in Paper I,
Equations (7)–(9) or in Section 8.3 of Merritt (2013). Note that
the above value has no relation to the total mass of stars in the
galaxy, which is given by dE f E g E( ) ( )ò , where g(E) is the
density of states and rapidly rises with E.

Yet another way to define a reference hardening rate is to
substitute the density and velocity dispersion evaluated at rinfl
into Equation (3) (Sesana & Khan 2015). This definition has
the advantage of being easily computed from quantities that are
accessible to an N-body snapshot, without the need to calculate
the distribution function; on the other hand, it reflects only the
local parameters near the galaxy center and not the entire
population of stars that can interact with the binary. Since the
velocity dispersion can itself be expressed as GM r2

bin infls ~ ,
we may write

S GM r . 5infl bin
1 2

infl
5 2( ) ( )º -

Here the dimensionless factor A can be chosen to match the
previous definition (Equation (4)); its value depends weakly on
galaxy structure and lies in the range 3–5.

In what follows, we will refer to either Siso or Sinfl as the
“full-loss-cone hardening rate.” We stress that there is no
fundamental reason to expect that the actual hardening rate will
be close to Sfull, since the distribution of stars at low angular
momenta is not isotropic, and even the value of Sfull need not
remain constant in time—it merely serves as a useful reference
value.

The loss of energy and the evolution of eccentricity due to
the emission of GWs are given by the following expressions
(Peters 1964):

d a

dt

a

T
T
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G M

q

q
f e
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Throughout the paper, we will mostly present the results in
dimensionless N-body units, with the mass and the scale radius
of the galaxy model both set to unity. The models may be scaled
to a given galaxy using any two out of three fundamental scales
(length, time and mass). To simplify the discussion, we reduce
this freedom to a one-parameter family of galaxies in which the
length and mass scales are related through the M•–s relation in
the following form (e.g., Merritt et al. 2009, Figure 12):

r r M M r10 , 30 pc, 0.56. 9infl 0 •
8

0( ) ( )k= ´ = =k


2.2. Monte Carlo Code

The Monte Carlo method used in this work is an extension of
the RAGA code (Vasiliev 2015). We follow the motion of N
particles in the combined potential of the stellar distribution,

r( )F , and the two point masses orbiting each other, centered at
origin. The orbit of the binary is assumed to be Keplerian,
aligned in the x y– plane, and elongated in x direction; we make
no attempt to follow either the change of the orbital plane,
which we know to be small from the N-body simulations
(although it could be quite significant over long timescale in
triaxial galaxies, see Cui & Yu 2014), or the precession of its
periapsis, which we assume is not particularly important for
dynamics. The evolution is broken down into many small
intervals of time (episodes) of duration Tepi? Tbin; during each
episode we keep the stellar potential and the parameters of the
binary orbit unchanged.
Each particle is moving independently from the others under

the influence of three forces: the gradient of the smooth static
stellar potential, represented as a spherical-harmonic expansion
with spline-interpolated coefficients as functions of radius; the
time-dependent force from the binary; and random velocity
kicks that model the effect of two-body encounters for a system
composed of a certain number of stars, Nå, which does not need
to be related to the number of particles in the simulation, and
can even be set to infinity (thus switching off the two-body
relaxation). The velocity perturbations are computed from the
local (position-dependent) drift and diffusion coefficients,
using the standard formalism from the relaxation theory (e.g.,
Merritt 2013, Chapter 5) and an isotropic approximation for the
distribution function of stars (i.e., with dependence on energy
only). Thus our method descends from the Spitzerʼs formula-
tion of Monte Carlo approach (Spitzer & Hart 1971) and does
not rely on orbit-averaging, as other contemporary Monte Carlo
codes that use the formalism of Hénon (1971).
During the encounter of a particle with the binary, defined as

the time when the distance of the particle from origin is less
than 10a, we record the changes in energy and angular
momentum of the particle that arise due to the motion in time-
dependent potential of the binary (not including the perturba-
tions from relaxation or the torque from the non-spherical
stellar potential). After each particleʼs trajectory has been
calculated over the entire episode, we sum up these changes for
all particles that experienced one or more encounters with the
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binary, and change the binaryʼs energy and angular momentum
by the same amount with the opposite sign, while keeping its
orbital phase unchanged from the end of the episode to the start
of the next one. Thus the stars do not exert force on the black
holes directly, but we use conservation laws to impose the
changes to the binary orbit parameters. The binary orbit
parameters are optionally modified after each episode accord-
ing to the expressions for gravitational-wave emission (6), (8).
The stellar potential and the diffusion coefficients that account
for two-body relaxation are also updated at the end of each
episode, reflecting the changes in the stellar distribution in the
course of evolution (here the most important effect is the
gradual erosion of the central stellar cusp).

2.3. Comparison with Similar Approaches

It is instructive to compare our method with the other
schemes used for an approximate treatment of the joint
evolution of the binary and the stellar distribution. Quinlan &
Hernquist (1997) developed a program SCFBDY which combines
elements from the self-consistent field (SCF) method (Hern-
quist & Ostriker 1992) with a direct integration of black hole–
star interactions. The two black holes were integrated using
NBODY2 (Aarseth 1999)—a direct-summation code with
neighbor scheme, adaptive timestep, and optional two-body
regularization, taking into account the forces from all stars
individually. The motion of star particles, on the other hand,
was computed in the gravitational potential of the two black
holes and the smooth potential of the other stars, represented by
a basis-set expansion (Hernquist & Ostriker 1992). Their
approach is quite similar to ours, with the following
differences: (a) the binaryʼs center of mass is not fixed at
origin, although the center of stellar potential expansion is; (b)
the star particles exert “real” forces on the black holes, which
lead directly to the changes in the binary orbit, instead of
relying on the Newtonʼs third law as in our method; (c) two-
body relaxation is not modeled. They used a rather small
update interval for the stellar potential, which could lead to
artificial relaxation due to fluctuations in the expansion
coefficients (Hernquist & Barnes 1990; Weinberg 1996; Sell-
wood 2015); in our code we recompute the potential less
frequently and use Nsamp?1 sampling points from each
particleʼs trajectory stored during each episode, to further
reduce discreteness noise. Nevertheless, any finite-N system is
not entirely free of relaxation (e.g., Weinberg 1998), so our
simulations without explicitly added two-body relaxation
should be regarded as an upper limit for the evolution rate
expected in truly collisionless systems. Finally, Quinlan &
Hernquist (1997) only dealt with nearly spherical systems,
although in principle their scheme can equally well work for
non-spherical systems after switching on the corresponding
terms in the spherical-harmonic expansion (as in our method).

Hemsendorf et al. (2002) used a similar approach in their
code EUROSTAR: the two black holes and a subset of star
particles with angular momenta lower than a certain threshold
are integrated with a direct-summation method, adapted from
Aarsethʼs NBODY6 code, while the rest of the star particles are
followed in the smooth field by a modified version of the SCF
method.

Sesana et al. (2006, 2008) used a large suite of three-body
scattering experiments to derive the expressions for the rate of
hardening and eccentricity growth, extending the results
of Quinlan (1996) to a wider range of mass ratios and

eccentricities. Sesana et al. (2007) and Sesana (2010)
developed a hybrid approach for the evolution of the binary,
combining the analytical fits to these scattering experiments
with a time-dependent model for the loss cone draining and
repopulation. They did not simulate the effect of two-body
relaxation and Brownian motion of the binary center of mass
explicitly, but included some prescriptions to take it into
account. The changes in the stellar potential due to ejection of
stars were ignored.
Meiron & Laor (2012) introduced another scheme based on

the conservation laws to find the changes in the binaryʼs orbit.
The motion of stars in the static spherically symmetric potential
of the stellar cusp plus the time-dependent potential of the
binary is followed over a short interval of time, after which the
changes in the total energy and angular momentum of all stars
are translated into the forces that should be applied to the black
holes. Unlike our method, in which we assume a Keplerian
orbit for the binary and adjust its parameters on a timescale
much longer than the orbital period, their approach requires
rather short update intervals to follow the motion of the black
holes directly.
Compared to the previous studies, our approach most closely

resembles that of Quinlan & Hernquist (1997) and Hemsendorf
et al. (2002), in that we also use the spherical harmonic
expansion technique to represent the smooth potential of the
stellar cluster, which is itself a nearly collisionless system,
while considering the interaction between stars and the binary
as a succession of three-body scattering events, as in the series
of papers by Sesana et al. The treatment of the binary is
somewhat more approximate in our method—we assume its
center-of-mass to be at rest, and ignore the changes in its orbital
plane and orientation of the line of nodes. The evolution of its
most important parameters—binding energy and eccentricity—
is deduced from the orbits of stars using conservation laws, in a
similar manner to Meiron & Laor (2012), but using much
longer update intervals, spanning many orbital periods. The
most important new feature of our method with respect to the
previous studies is the ability to efficiently model the two-body
relaxation with adjustable magnitude, allowing us both to
compare our Monte Carlo simulations with direct N-body
simulations (using the same relaxation rate), and to extend
them into nearly collisionless regime, by switching off the
relaxation.
Fokker–Planck methods have also been applied to this

problem, always in the spherical geometry (Milosavljević &
Merritt 2003b; Merritt & Wang 2005; Merritt et al. 2007). The
Fokker–Planck approach has the advantage of a potentially
much finer resolution of the loss-cone region in (E, L) space. A
disadvantage is the need to orbit-average the diffusion
coefficients. Our Monte Carlo algorithm avoids that limitation;
on the other hand, the orbit-averaged approximation only
breaks down near the loss cone, and at least in the spherical
geometry, a boundary-layer treatment of the loss cone is
available that is based on the local (not orbit-averaged) Fokker–
Planck equation and which automatically accounts for empty
versus full loss cones (Cohn & Kulsrud 1978). The secondary
slingshot is also more naturally accounted for in a Monte Carlo
algorithm, although it has also been implemented in Fokker–
Planck treatments (Merritt et al. 2007). The primary advantage
of our method over Fokker–Planck algorithms is the ability to
model stellar systems regardless of their shape, including
the chaotic orbits that arise in non-spherical geometries.
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Limitations of our approach include neglect of Brownian
motion (justified to some extent below in Section 4.3) and the
assumption of near-equilibrium of the stellar distribution,
which means that it is not expected to perform well in highly
dynamic situations such as mergers. It is also worth noting that
the method scales linearly with N and already at N = 105

outperforms the GPU-accelerated direct-summation code by a
factor of 20.

3. TESTS

We first checked that the results of our calculations do not
depend on the technical parameters such as the number of
radial grid points in the spherical-harmonic expansion, the
update interval, or the type of orbit integrator and its accuracy
parameters, provided that they are set to reasonable values.

We also verified that the conservation-law method produces
the same results as the scattering experiments of Quinlan
(1996) and Sesana et al. (2006) which used a small but non-
zero mass of the incoming star, and computed its effect on the
binary orbit directly. In particular, the hardening rates and
eccentricity growth rates were found to be comparable to
Figures 3 and 4 of Sesana et al. (2006) for a uniform-density
isothermal background population of stars.

Next we compared the Monte Carlo code with a large suite
of conventional N-body integrations of isolated galaxy models
with various shapes and initial parameters for the binary. These
were similar to the simulations we used in Paper I, but covered
a wider range of eccentricities, mass ratios, and density profiles.
The initial density profile of stars follows the Dehnen (1993)
model with the inner cusp slope γ = 1 (our default model) and
γ = 2, in three different geometries: spherical, oblate
axisymmetric (axis ratio 1:0.8) and triaxial (axis ratios
1:0.9:0.8—our default model,—and 1:0.8:0.6). These are
constructed to be in equilibrium with a central SBH of mass
M 0.01• = of the total stellar mass, and have a nearly isotropic
velocity distribution. The mass M• is split between two
components of the binary, and the two SBHs are initially
placed at a separation 0.2 (for γ = 1) or 0.02 (for γ = 2),
slightly larger than the radius of influence.5 We considered two
values for the mass ratio—q = 1 (equal-mass binary) and
q = 1/9. Using (9), our γ = 1, q = 1 models can be scaled to
real galaxies so that one length unit equals

M M150 pc 10•
8 0.56( )´  and one time unit is

M M0.27 Myr 10•
8 0.84( )´  .

The N-body simulations were performed with the direct-
summation code fGRAPEch (Harfst et al. 2008), using the
SAPPORO library for GPU acceleration (Gaburov et al. 2009).
This code employs chain regularization to accurately follow the
motion of the binary and the stars interacting with it, in exact
Newtonian gravity (no softening); we used a very small
softening ò = 10−6 for particles outside the chain. Thanks to
the use of the chain, the relative error in energy was typically
below 10−5 at the later stages of evolution, when both massive
particles are included in the chain.

The initial conditions for Monte Carlo models were taken
from N-body simulations at the time when the binary has just
become hard, reaching the semimajor axis ah. The relaxation
rate is a free parameter in the Monte Carlo method, defined by

the number of stars in the target system Nå and the Coulomb
logarithm ln L. We have measured the changes in energies and
angular momenta of particles in the spherical N-body
simulations, and compared them to the expected diffusion rate
as a function of energy (see Vasiliev 2015, Figure 1); the value
of Λ = 0.02Nå provided the best agreement for 105 Nå 106.
The prefactor in the Coulomb logarithm is the only free
parameter in the code that could be assigned at will (apart from
technical parameters such as the number of terms in the
potential expansion), and we have adopted the above definition
to match the diffusion rate, not the hardening rate of the binary
or anything else; thus if the other aspects of evolution agree
between Monte Carlo and N-body simulations, this demon-
strates the predictive power of the Monte Carlo approach.
We compared the Monte Carlo and N-body simulations

using a number of criteria. The most important are the binary
parameters—semimajor axis and eccentricity. It should be
noted that individual simulations have a considerable scatter in
the hardening rates and the evolution of eccentricity, especially
at low N. Nevertheless, statistically the agreement between
Monte Carlo and N-body simulations is very good for a wide
range of parameters (N, initial eccentricity, geometry, binary
mass ratio), see Figure 1 for a few examples. We have also
checked that the long-term behavior of Monte Carlo simula-
tions with the same relaxation rate (set by Nå) but with different
number of particles N is similar; this allows to extrapolate our
method to large Nå while still using a reasonable (N 106)
number of particles.
The dependence of hardening rate on eccentricity was found

to be weak; if anything, models with high e evolved a little
faster, in agreement with the results of scattering experiments
of Sesana et al. (2006), Merritt et al. (2007), but typically the
difference was comparable to the scatter between individual
runs. The evolution of eccentricity itself is in fact more
important, since the energy losses due to GW emission depend
strongly on e. Scattering experiments typically suggest a slow
but steady growth of eccentricity, but in practice its evolution is
more erratic, because individual interactions may both increase
and reduce e (thus the outcome results from a slight imbalance
between them). Stars with smaller angular momenta tend to
reduce e (Sesana et al. 2008), and so do stars that corotate with

Figure 1. Evolution of inverse semimajor axis as a function of time, for a few
models with various N, initial eccentricity, binary mass ratio q, and geometry.
Thinner lines are from N-body simulations, and thicker ones are from Monte
Carlo simulations.

5 Recall that we measure rinfl just after the hard binary has formed; for
instance, in a γ = 1 Dehnen model with a single SBH rinfl = 0.165, but after the
binary becomes hard, the density cups is eroded and rinfl increases to ∼0.2 for
the models with q = 1, changing only slightly in the subsequent evolution.
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the binary (Iwasawa et al. 2011; Sesana et al. 2011). In our
simulations, the fraction of corotating and counterrotating stars
is approximately equal, so the latter factor does not come into
play, but the distribution of stars in angular momentum does
depend on the details of loss-cone repopulation, so the former
effect is quite important. The eccentricity itself stayed roughly
constant if it was initially small, and growed slightly if started
from e 0.5. Models with initial e � 0.8 typically increased it
to 0.9 e 0.95 in the course of evolution, especially in the
unequal-mass case (q = 1/9). Nevertheless, neither in N-body
nor in Monte Carlo simulations did we observe a rapid growth
of eccentricity to values 0.99, found in some previous studies
(e.g., Iwasawa et al. 2011; Meiron & Laor 2012), although we
did not consider systems with such high mass ratio as in the
latter study.

The eccentricity growth is traditionally described with a
dimensionless parameter K de d aln 1( )º . Previous studies
have found that in the hard-binary limit, K reaches a maximum
value of ∼0.1–0.2 at e ; 0.7, and drops to zero at e = 0 or 1.
We adopt the following parametrization for K, which is
comparable to the findings of Quinlan (1996) and Sesana et al.
(2006):

K
de

d a
A e e

a

a

b a a A

ln 1
1 1 ,
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b2

0

1

0 h

( )( )
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Figure 2 compares the evolution of eccentricity based on the
above equation (dotted lines) to the results of N-body and
Monte Carlo simulations. Even though there is considerable
scatter between runs, the overall trend is reasonably well
described by the fitting formula (10).

4. EVOLUTION OF ISOLATED GALAXY MODELS

4.1. Long-term Evolution of the Stellar-dynamical
Hardening Rate

We now consider the long-term evolution of binary SBH in
galaxies with a realistically large number of stars Nå. Figure 3
shows the hardening rates S computed on the interval 50 � t �
100 for a series of γ = 1 models with different Nå, shape and
binary mass ratio. It appears that in both spherical and
axisymmetric cases the hardening rates continue to drop with
increasing Nå, but triaxial models tend to a nonzero limiting
value of S as N  ¥. This was already suggested in Paper I
based on N-body simulations, but the number of particles N �
106 was not enough to establish it clearly; additional
simulations with N = 2 × 106 and Monte Carlo models
support this conclusion.

Figure 4 shows simulations extended to a much longer
interval of time, approximately 0.4 Gyr for a model scaled to a
galaxy with M M10bin

8= . For each geometry we show the
simulation without relaxation (i.e., in the collisionless limit), as
well as for a moderately small relaxation rate (smaller than is
achievable in N-body simulations). It is immediately clear that
in the collisionless limit there is a striking difference between
three geometries: in the spherical case, the binary stalls at a
semimajor axis barely smaller than ah, and in the axisymmetric
case it shrinks roughly a factor of ten below ah, but ultimately
also stalls. By contrast, in the triaxial case the binary continues
to shrink, although the hardening rate decreases with time. In

Figure 2. Evolution of binary eccentricity as a function of separation, in N-
body (top panel) and Monte Carlo (bottom panel) simulations. Shown are
tracks for isolated systems with equal-mass binaries (solid red) and q = 1/9
(dashed green), and merger simulations (dot–dashed purple); the adopted
analytic prescription for the evolution of eccentricity (Equation (10)) is shown
by the blue lines.

Figure 3. Hardening rates as functions of N for different geometries and mass
ratios, computed on the interval t50 100  from N-body simulations (filled
symbols, solid lines) and Monte Carlo simulations (open symbols, dashed
lines). The agreement is quite good, but Monte Carlo models underestimate the
hardening rate for N 106

  in the spherical case, presumably due to the
neglect of Brownian motion.
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the simulations that include relaxation, however, the situation is
quite different—the binary never stalls in any geometry. For
the triaxial case, the hardening rate in the Nå = 5 × 106

simulation is already not much higher than in the collisionless
limit, but the axisymmetric systems differ dramatically from
their collisionless counterpart: in both Nå = 5 × 106 and
Nå = 108 systems the hardening rate decreases at early times,
as in the collisionless limit, but unlike the latter, it then attains a
non-zero lower limit.

We also considered a model with a stronger initial degree of
triaxiality (axis ratio 1:0.8:0.6); initially it had a higher

hardening rate, which then dropped to a level comparable to
that of the less flattened model. While a higher hardening rate is
naturally explained by a larger reservoir of chaotic orbits in a
more triaxial model (see next section), its subsequent decrease
is a result of the loss of triaxiality in the central parts of the
model (Figure 5). Interestingly, the model with a milder initial
flattening retained its shape better. This evolution toward
axisymmetry clearly occurs due to the binary: if we replace it
with a single SBH, the shape stays nearly constant on much
longer intervals of time than considered here. It is commonly
assumed that even single SBHs inevitably destroy triaxiality
(e.g., Gerhard & Binney 1985). Merritt & Quinlan (1998)
simulated growth of black holes in triaxial models formed via
cold collapse and found that central SBHs containing more
than ∼3% the mass of their host galaxies induced evolution
toward axisymmetry. However, later studies have shown that
this does not necessary happen in isolated stationary systems:
using a more flexible, orbit-superposition algorithm, Poon &
Merritt (2002) found that self-consistent and apparently stable
models could be constructed in which the SBH mass was a
substantial fraction of the nuclear mass, a result confirmed in
other studies (Holley-Bockelmann et al. 2002; Poon &
Merritt 2004). Vasiliev (2015) demonstrated, using the same
Monte Carlo code, that relaxation is the main driving force
behind shape evolution: in the collisionless regime the shape
remains nearly constant. The likely reason is that the diffusion
of chaotic orbits, which tends to erase triaxiality, is greatly
facilitated by the noise from two-body relaxation (e.g.,
Kandrup et al. 2000). The shape evolution seen in the
collisionless simulations with a binary SBH—as opposed to a
single SBH—may be caused by resonant perturbations of
chaotic orbits by the time-dependent gravitational field
(Kandrup et al. 2003), although more work is needed to
explore this effect.
In addition, we performed simulations of models with a steep

cusp (γ = 2) and otherwise the same parameters. They
demonstrated a similar behavior, with only the triaxial model
continuing to shrink indefinitely in the collisionless case,
although the hardening rate was dropping with time more

Figure 4. Long-term evolution of binary hardness for the equal-mass case and
three different geometries (Spherical, Axisymmetric and Triaxial). Shown are
curves corresponding to different relaxation rates (dash–dotted lines:
N 2 10 , 5 106 6
 = ´ ´ and N 108

 = ) and to the simulations with no
relaxation (solid lines), dashed line is for the triaxial model with no relaxation
and stronger initial flattening (y x z x0.8, 0.6= = , while the other models
have z x 0.8= and, in the triaxial case, y x 0.9= ). It is apparent that in the
spherical and axisymmetric cases the binary separation approaches an upper
limit without relaxation, while in the triaxial case it continues to shrink. Also
notable is that even a modest amount of relaxation keeps the binary from
stalling, although the evolution rate could be quite low for a realistic number of
stars (even for a very low-mass binary, M M10bin

6= , the model scaled to a
real galaxy would have N 108

 = ). Top panel shows the time evolution of
semimajor axis, and bottom panel shows the dependence of hardening rate on
a ah . The full-loss-cone rate (4) is around 20 in our models, higher than any
value measured in the simulations. Models with relaxation eventually attain a
nearly constant hardening rate, depending on N and geometry. In collisionless
simulations, by contrast, the hardening rates keep decreasing, very mildly in the
triaxial case and steeply in the axisymmetric case. Dotted lines show the
asymptotic expressions for the hardening rate in scale-free galaxies (17), (20).

Figure 5. Evolution of shape of collisionless triaxial models. Dotted, dashed
and dash–dotted lines show the axis ratio (y/x—top curves, blue and cyan, z/x
—bottom curves, red and gold), measured at radii enclosing 10%, 50% and
90% of total mass for the models with initial x:y:z = 1:0.9:0.8 (thinner lines)
and 1:0.8:0.6 (thicker lines with longer dashes). The latter model evolves much
quicker toward axisymmetry in the central parts.
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rapidly than in the γ = 1 model. The loss of triaxiality was
mild, much like the γ = 1 model with the same axis ratios
(1:0.9:0.8).

Before we proceed to a theoretical explanation of the
hardening rates, we discuss the properties of orbits in our
models.

4.2. Properties of Orbits Interacting with the Binary

We have examined the types of orbits that bring stars into
interaction with the binary. For each particle that arrives at a
distance less than 10a from the center of mass of the binary, we
record its phase-space coordinates at its first approach. If a
particle is scattered more than once by the binary, we only
consider the first interaction, because it is difficult to define
unambiguously when one interaction ends and the next one
begins. Then we compute a trajectory starting from these initial
conditions in a smooth stellar potential plus a single point mass
Mbin at the origin, for a time corresponding to 100 orbital
periods. This allows us to use powerful analysis tools
applicable to orbits in smooth stationary potentials. To
distinguish regular and chaotic orbits, we use the Lyapunov
exponent, and to determine if an orbit is centrophilic, we follow
the algorithm described in the appendix of Paper I.

After the binary became sufficiently hard (a a0.3 h ), most
of the orbits that interact with it are unbound to the binary
(have energies higher than the depth of stellar potential well
Φ0). In the non-spherical cases, almost all such orbits (90%)
are found to be chaotic, and for the triaxial system, a similarly
large fraction of them are truly centrophilic, i.e., may attain
arbitrarily low values of angular momentum. There are no
genuinely centrophilic orbits in axisymmetric systems, because
the variation of angular momentum is bounded from below by
its conserved z-component, but for chaotic orbits the average
value of L is typically much larger than its minimum achievable
value Lz, thus they constitute a reservoir of “usable” orbits (loss
region) that is much larger than the loss cone itself.

Regarding the overall orbital structure of the model, the
chaotic orbits are a minority (∼10%, depending on the degree
of flattening and triaxiality). As discussed above, the shape of
triaxial models gradually evolves toward axisymmetry from the
inside out, but globally it remains sufficiently triaxial to support
a substantial population of centrophilic orbits—their fraction is
roughly proportional to the deviation from axisymmetry, and
their total mass is thus considerably larger than the mass of the
binary.

4.3. Theoretical Models for the Hardening Rate Evolution

The evolution of binary in the collisionless limit can be
qualitatively described with a rather simple model for the
draining of the population of orbits that can interact with the
binary—similar to the one presented in Paper I, but without a
detailed analysis of properties of orbits in a particular
simulation.

We begin with the triaxial case, and assume that at each
energy there is initially a fixed fraction η of chaotic centrophilic
orbits, which occupy the low-angular-momentum region of
phase space L L E2

circ
2 ( ) h . To account for their gradual

depletion, we introduce the fraction of surviving orbits ξ(E, t),

so that the mass of chaotic orbits is

M dE T E L E E t f E4 , , 11ch

0
2

rad circ
2

0

( ) ( ) ( ) ( ) ( )ò p h x=
F

where we have neglected the L-dependence of radial orbital
period Trad. The hardening rate due to interaction with these
low-angular-momentum orbits is given by a generalization of
Equation (4):

S t
d a

dt
H G dE f E E t

1
4 , . 121
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0
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On the other hand, the same interactions eject stars and
decrease the fraction of surviving orbits. Equating the energy
carried away by stars with the change in the binaryʼs binding
energy gives
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with m m M1 2 binm º is the binary reduced mass (e.g.,
Merritt 2004, Equation (25)). Thus
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If we assume that the stars interacting with the binary
become unbound to the galaxy (i.e., neglect the secondary
slingshot), then the draining of the loss region occurs
independently at each energy, and we can write the following
equation for the evolution of surviving fraction of stars:

d E t
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We take y a ahº as the new independent variable instead
of t. Substituting (12) into the above equation, we integrate it
over y with the initial condition y = 1, ξ(E, y = 1) = 1 and
obtain
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Here h(y) is another unknown function related to S(y).
Substituting the above expression back into (12), we can
perform the integration over E, keeping h as a fixed parameter,
and obtain an equation of the kind S(y) = g(h(y)) with some
function g. Then we express h from the resulting equation as a
function of S and y, and finally differentiate h by y to obtain an
ordinary differential equation for S(y).
To illustrate this approach and acquire qualitative insight, we

consider the asymptotic behavior of the system at large t for the
case of a power-law density profile, ρ(r) ∝ r− γ. Pure power-
law profiles are unphysical in the sense that the total mass is
infinite and the gravitational potential can take arbitrarily large
positive values, but the contribution of stars at large radii to the
hardening rate is negligible, so that all quantities of interest are
finite. We choose to define the gravitational potential of the
stellar cusp so that its value at the center is Φ0 = 0; since we
only consider stars that are not bound to the binary, their
energies lie in the range E0  < ¥. Moreover, we may
neglect the potential of the SBHs, because at late times most of
the surviving loss-region stars are located at far larger distances
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than rinfl. Then all dynamical quantities have power-law
dependence on energy: f E E 6 4 2( ) ( ) ( )µ g g- - - , L Ecirc ( )µ
E 4 4 2( ) ( )g g- - , T E Erad

4 2( ) ( )µ g g- . Carrying out the integration
in (12), we obtain S y h y 2 8( ) ( ( ) ) ( ) ( )hµ g g- + - , and ultimately
get the asymptotic dependence of the hardening rate on a:

S a a aln . 17h

2
6 2[ ]( ) ( ) ( )hµ

g
g

+
-

In other words, the hardening rate due to depletion of
centrophilic orbits drops with time (or a−1) very slowly, and
has a moderate dependence on the fraction of chaotic orbits in
the model η. This expression is also valid in the limiting case of
a singular isothermal sphere (γ = 2).

We now follow a similar argument for the axisymmetric
case. Here we again assume that orbits with L L E2

circ
2 ( )h< are

chaotic, but only those with L L GM a2z LC bin< º can
interact with the binary. The mass of such “useful” chaotic
orbits in the case of a hard enough binary, when
L LLC circh< , is given by
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and the expression for their depletion rate, analogous to (15), is
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The solution is obtained along the same lines as for the
triaxial case, with the different definition of
h y dy y S y( ) ( ( ))òº . We again consider the asymptotical
evolution described by (12) and (19) for an idealized scale-free
model and obtain
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Unlike the triaxial case, the hardening rate drops quickly
with decreasing a. Moreover, in realistic non-scale-free systems
the mass of chaotic orbits (18) that are both not yet depleted
(ξ(E, t) ∼1) and able to interact with the binary (Lz < LLC(a)) is
finite, and after some time drops below the mass of the binary
itself, which means that the further evolution virtually ceases.

These findings are beautifully illustrated by the results of
collisionless Monte Carlo models in Figure 4, bottom panel: the
hardening rate in the triaxial case drops very gently with a ah
and closely follows its asymptotic expression (17), while in the
axisymmetric case it decays much faster, following (20), and
then drops nearly to zero when all chaotic orbits are depleted.
Since our galaxy models are not scale-free and gradually lose
the triaxiality, the hardening rate in the collisionless triaxial
model is better described by a somewhat steeper dependence
on a, namely S ∝ a ν with ν ranging from ∼1/3 for mildly
triaxial γ = 1 models to 1/2 for more strongly triaxial models
or for steeper cusps (γ = 2), see Table 1. The fact that steeper
cusps result in a stronger slowdown of hardening rate can be
explained by a more rapidly declining dependence of the
distribution function on energy: once the centrophilic orbits
close to the binary are depleted, there are less available stars at
larger distances in models with steeper density profiles. Figure 6
illustrates the above arguments about the size of the loss region
and its depletion.

Finally, we consider the effects of relaxation on the long-
term behavior of the hardening rate. From the above
discussion, it is clear that it may only matter for spherical
and axisymmetric systems, because in the triaxial case the
draining is the main mechanism that keeps the loss cone filled.
In general, the relaxation rate scales as N 1


- , but it does not

trivially translate into the hardening rate because of several
complications. First of all, the steady-state flux of stars into the
loss cone has a different dependence on the size of the loss
cone LLC and the relaxation rate in the limits of empty and full
loss cone regimes: in the former case, at a fixed energy it scales
as N L Lln circ LC

1[ ( )]
- , and in the latter—as L LLC circ

2( ) .
Integrated over all energies with an appropriate boundary
condition at each energy, the hardening rate has a weaker than
N 1

- scaling, which furthermore depends on the evolutionary

stage: as a gets smaller, a larger fraction of total flux comes
from the full-loss-cone region. Second, the flux of stars into the
loss cone is actually higher than the steady-state models would
predict, because initially there are large gradients in the phase
space: stars with L LLC are absent while at larger L their
distribution is nearly unchanged. Time-dependent models for
the loss cone repopulation (Milosavljević & Merritt 2003b)
predict a flux that is several times higher than the steady-state
value at early times.
Overall, we find that in the spherical case the hardening rate

drops with Nå rather mildly at Nå 2 × 105, but for larger Nå

approaches the asymptotic N 1

- scaling. In N-body simulations,

however, it does not drop quite as fast at large Nå. One possible
reason might be the wandering (Brownian motion) of the
binary (Quinlan & Hernquist 1997; Chatterjee et al. 2003),
which effectively increases the size of the loss cone from
L GM a2LC

2
bin= to L GM r2LC

2
bin wand= . The wandering radius

scales as r m M Nwand bin
1 2 1 2( ) µ µ - (e.g., Merritt 2001),

thus for realistically large Nå it should remain below a for the
most part of evolution, and will not substantially increase the
hardening rate.
Relaxation in the axisymmetric case occurs at the same rate

as in the spherical system, but the effective size of the loss cone
corresponds to the angular momentum of the chaotic region of
the phase space Lcirch , which is then drained into the loss
cone proper by the non-spherical torques and not by relaxation.
This suggests that in the empty-loss-cone regime the steady-
state flux is moderately (a factor of few) larger than in the
spherical case (Magorrian & Tremaine 1999; Vasiliev &

Table 1
Long-term Evolution of Hardening Rate in Triaxial Models

Model Sinfl ah μ ν

Default (γ = 1, q = 1,
x:y:z = 1:0.9:0.8) 20 0.0125 0.38 0.32
q = 1/9 30 0.004 0.33 0.32
x:y:z = 1:0.8:0.6 20 0.0125 0.96 0.51
γ = 2 1700 0.0022 0.25 0.62
Merger (γ = 1), N = 128 k 15 0.017 0.21 0
Merger, N = 256 k 15 0.017 0.43 0.18
Merger, N = 512 k 15 0.017 0.45 0.25
Merger, N = 1024 k 15 0.017 0.87 0.47

Note. First column is the model type, second and third are the full-loss-cone
hardening rate and the radius of hard binary, in model units; last two columns
are the dimensionless parameters of Equation (21), computed as best-fit values
to the hardening rate found in collisionless Monte Carlo simulations.
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Merritt 2013), because it depends only logarithmically on the
effective size of the loss region. Time-dependent flux is again
higher than the steady-state value, by larger factors than in
spherical systems (Vasiliev & Merritt 2013, Figure 13, left
panel). Given these uncertain complications, it is hard to derive
more quantitative theoretical estimates for axisymmetric
systems. The results of Monte Carlo simulations suggest that
the hardening rate drops at least as N 1 2


- in the range

N10 106 9
  , and probably even steeper at larger Nå, which

means that it is too slow for realistic galaxies to bring the
binary to GW-dominated regime in a reasonable time.

4.4. Estimates of the Coalescence Time

Motivated by the above arguments, we write the stellar-
dynamical hardening rate Så in an evolving model as

S a S a a , 21infl h( ) ( ) ( ) m= n

where the dimensionless coefficient μ1 defines the initial
value of Så at the moment of hard binary formation, expressed
in the units of “full-loss-cone rate” (5), and the exponent ν
describes its decay with a. Theoretical models of the previous
section and the results of Monte Carlo simulations suggest that
in the collisionless case, 1( )m = and 0.3 0.6n ¸ in
triaxial models (see Table 1), while in the presence of
relaxation ν; 0 and μ= 1, scaling roughly as

N 105 1( )m - in the spherical and N 105 1 2( )m - in the
axisymmetric cases.

As the binary hardens, GW emission becomes more and
more effective. The instantaneous hardening rate due to GW is
SGW = 1/(aTGW), where TGW is given by Equation (6). We
denote aGW to be the value of a at which SGW = Så. Using the
definitions of ah (1) and Sinfl (5) with 4 = , we obtain a
simple estimate of the coalescence time for the case 0n = (i.e.,
Så = const):
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Let us now consider a qualitative model for the evolution of
the binary driven by both stellar-dynamical and GW hardening.
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where the values with subscript “h” refer to the moment of hard
binary formation, and the eccentricity dependence f(e) is given
by Equation (7). We further define a dimensionless parameter

S SGW GW,h ,h º . In all realistic situations, 1GW  , meaning
that at the early stage of evolution the hardening is driven by
stellar encounters and not by GW emission. If we assume that
the eccentricity remains constant throughout the evolution, then

Figure 6. Illustration of the loss region and hardening rate evolution in various geometries (Spherical, Axisymmetric, and Triaxial). Left panel shows the slice of the
phase space (L L, z) at a fixed energy E. The loss cone of the binary is the region L L GM a2LC bin< º ; stars in that region will interact and be ejected by the binary
in one dynamical time. In non-spherical geometries, the extended loss region consists of stars with L Lcirch< (more correctly, only a fraction of such stars are on
chaotic orbits, but this does not qualitatively change the picture). In a triaxial geometry, these stars can wander anywhere in this region (shaded in blue and green) due
to collisionless effects (non-spherical torques), and can eventually get into the loss cone proper (shaded in red). In the axisymmetric case they are restricted to lines of
constant Lz and can only wander in vertical direction, thus the loss region is a strip L L L L,z LC circh< < (shaded in green). The population of stars inside the loss
region is gradually depleted, and as the binary shrinks, LLC decreases. Dashed lines show the boundary of the loss cone and the axisymmetric loss region at a later
moment of time; the volume of the loss region in the axisymmetric case also shrinks with the binary, and the number of stars in this region drops both due to its
decreasing volume and decreasing fraction of surviving stars. Right panel illustrates the depletion of the loss region population as a function of energy and time.
Bottom plot shows the fraction of surviving stars E( )x at various moments of time. Initially 1x = and it depletes faster at high binding energies; thinner curves
correspond to later times. Top panel shows E( )x multiplied by the distribution function; the integral under this curve gives the hardening rate at any given time, and
initially is equal to the full-loss-cone hardening rate (Siso). Thus it is natural that the hardening rate is always smaller than Siso and decreases with time.
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the above equation yields the following time to coalescence
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Here F2 1 is the Gauss’ hypergeometric function and y a ahº .
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The ratio between ah and aGW, which describes how much
the binary must shrink by stellar-dynamical processes before
the GW emission takes over, is
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The assumption of a constant eccentricity is not quite
correct, though, as it both increases by stellar encounters, as
described by Equation (10), and decreases due to GW
emission, as given by Equation (8). In the final stage of
evolution, when one may neglect Så compared to SGW, the
following quantity is conserved:

a e e e304 121 1 const. 271 12 19 2 870 2299 2 1( ) ( ) ( )+ - =- -

Evolutionary tracks may be computed by numerical integra-
tion of the coupled system of Equations (8), (10), (23) for
a t e t,( ) ( ). Figure 7 shows several examples of evolutionary
tracks computed using these equations, together with the results
of Monte Carlo simulations of triaxial models with different
initial eccentricity and mass ratio. We used the initial
eccentricity as a free parameter in the evolutionary tracks,
and adjusted to match the coalescence times from the Monte
Carlo simulations: since the eccentricity varies rather erratically
at early stages of evolution, it is hard to match these two curves
without any tuning, but with this one free parameter one gets a
quite good agreement at late stages of evolution.

Figure 8 shows the coalescence times computed for triaxial
models with M M10bin

8= , using the simple estimate (22)
and numerically computed evolutionary tracks, as a function of
initial eccentricity. For e = 0, the coalescence time T e

coal
0= can be

obtained analytically (Equation (25)). For arbitrary eccentricity,
it may be approximated as

T T e k k e
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It is instructive to compare the above expression to the
simple estimate (22), which predicts T e1coal

2 7 10( )µ - for
the case of constant hardening rate and no evolution of
eccentricity. For e = 0 the latter underestimates the coalescence

time by a factor ∼3, but at higher eccentricities the detailed
evolutionary tracks come closer to the simple estimate, because
the slowdown of stellar-dynamical hardening is compensated
by the increase in eccentricity at the same evolutionary stage.
The rather weak trend of the eccentricity-dependent factor with

Figure 7. Evolution of the inverse semimajor axis (top panel) and eccentricity
(bottom panel) for several triaxial models with no relaxation and the speed of
light equal to 800 N-body velocity units. Red dotted line is the Monte Carlo
simulation, green dashed line is the result of numerical integration of Equations
(8), (10), and (23), and blue solid line is the reference Monte Carlo simulation
without GW emission. Green dot marks the transition to GW-dominated
regime (S SGW = ). The two evolutionary tracks ending at t ; 1000 and
t ; 1500 are for an equal-mass system (q = 1), and the other two are for mass
ratio q = 1/9.

Figure 8. Coalescence time for triaxial models with M M10bin
8=  and

r 30infl = pc, as a function of initial eccentricity. The initial hardening rate Så is
defined by (21) with μ = 0.4 and ν = 1/3, in accordance with Monte Carlo
simulations for an equal-mass binary. Green solid line is the result of numerical
integration of the evolutionary track under our standard assumptions, purple
dashed line is the evolutionary track computed without stellar-dynamical
eccentricity growth (setting A = 0 in Equation (10)), blue dot–dashed line is the
track computed for a constant Så (i.e., ν =0), and red dotted line is the simple
estimate (22) which also assumes a constant hardening rate and neglects the
changes in eccentricity.
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Mbin reflects the larger ratio between ah and aGW for smaller
Mbin (Equation (26)), thus for them the stellar-dynamical
increase in e is larger and consequently brings GW on stage
earlier.

The coalescence time very weakly depends on Mbin—if we
adopt the M•–s relation in the form (9), then T Mcoal bin

0 0.1µ ¸ . It
also only moderately depends on the initial eccentricity: despite
the much steeper dependence of the GW hardening rate on e,
most of the time is spent on the stellar-dynamical hardening
stage. As a consequence, the efficiency of stellar-dynamical
hardening μ is as important as the eccentricity. In the triaxial
case, the efficiency is high enough and it decays slowly enough
that for all reasonable parameters the coalescence time is
shorter than the Hubble time. It also rather mildly depends on
the fraction of chaotic orbits η, which itself is determined by
triaxiality; the caveat is that the latter changes in the course of
evolution, but generally even a slight triaxiality is enough to
support the required population of centrophilic orbits.

By contrast, in the collisionless axisymmetric case, the
hardening rate slows down so rapidly that the binary stalls at a
separation too large for efficient GW emission, unless the
eccentricity is very high. If we take into account relaxation-
driven repopulation of the loss cone, then Equation (22)
suggests that the coalescence time may be shorter than the
Hubble time for M M10bin

8  and moderate eccentricity
(under the optimistic assumption that the hardening rate,
determined from Monte Carlo simulations to be proportional to
N 1 2

- , stays at this relatively high value for a much longer time

than these simulations were run). But in a realistic galaxy, even
relatively minor perturbations from axisymmetry would create
a sufficient reservoir of centrophilic orbits, whose draining
maintains a much higher hardening rate than the relaxation can
provide.

5. EVOLUTION OF MERGER REMNANTS

The isolated models considered above serve as a controlled
experiment that helps to understand the physical mechanisms
responsible for the joint evolution of stars and the binary.
However, the initial conditions were somewhat artificial in that
we have set up initial models in almost perfect equilibrium. In
the cosmological setting, binary SBHs are expected to form via
galaxy mergers, and the merger remnants could well have a
complex and evolving structure quite unlike our idealized
models.

In this section we consider a limited set of merger
simulations, similar to those of Khan et al. (2011). We set up
two identical spherical γ= 1 Dehnen models with scale radius
and mass equal to unity, each containing a central SBH with
mass M 0.01• = . They are put on an elliptical orbit with initial
separation 20 and relative velocity 0.1; the first encounter
between the galaxies occurs at t; 80, the second at t; 100,
and by t = 110 the two nuclei are well merged and the binary is
formed. The spherically averaged density profile of the central
region of the merger remnant right after hard binary
formation is well described by a γ= 0.5 Dehnen profile with
unit scale radius and total mass ;1.7. We evolve the system
until t = 300, using the same direct-summation code
fGRAPEch, and extract a snapshot at a time t; 120 when
the binary semimajor axis a a0.01 h= ; this snapshot then
constitutes the initial conditions for the Monte Carlo simula-
tions. We ran four simulations with particle numbers
N 128, 256, 512, 1024 103{ }= ´ . The morphology of the

merger remnants was roughly the same, but the initial
eccentricity of the binary at the moment of its formation was
systematically larger for higher-resolution simulations (Fig-
ure 9), even though the orbit parameters of the merging
galaxies were identical; thus these four Monte Carlo models are
not exactly equivalent.
Unlike the isolated models, merger remnants do not exhibit

genuine triaxial symmetry, but only a reflection symmetry (i.e.,
even after a rotation that aligns the major axis with the
x-coordinate axis, they are not invariant with respect to a flip
about either the x or y axes, but stay the same under a
simultaneous inversion of both axes—like a barred spiral
galaxy in which the spiral arms break the triaxial symmetry of
the bar). We therefore kept all reflection-symmetric (even l and
all m) terms in the spherical-harmonic expansion of the
potential in the Monte Carlo code. The density profile rotates
with a non-uniform angular speed, which precludes the use of a
rotating reference frame; since the rotation is rather slow, we
just updated the expansion coefficients frequently enough (each
1 time unit) to track this figure rotation. We only used terms up
to quadrupole (l = 2), therefore smoothing out all irregularities
and small-scale structure that might be present in the merger
remnant, and retaining only the global non-spherical features.
We have checked that using higher-order harmonics does not
substantially change the results. In addition, we have run
simulations with imposed axisymmetry (setting all m 0¹
terms to zero). For each of the four values of N, we have
performed Monte Carlo simulations with relaxation (corre-
sponding to N N = in the actual N-body system) and without
relaxation.
The results, shown in Figure 10, can be summarized as

follows. In the N-body simulations, the hardening rate was
found to be almost independent of N, in agreement with other
studies. However, the highest-N model had a slightly lower
hardening rate at late times. The weaker N-dependence of
hardening rate in merger remnants compared to idealized
isolated models could have a number of reasons, e.g.
perturbations from the decaying large-scale clumps and
inhomogeneities in the merger remnant are presumably
independent of N and add up to the conventional two-body
relaxation. This conjecture is supported by the fact that the rate
of energy and angular momentum diffusion measured in the

Figure 9. Binary ecccentricity in merger simulations: solid lines are N-body
and dashed lines are Monte Carlo models with relaxation; from bottom to top:
N 128, 256, 512, 1024 103{ }= ´ .
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simulations is almost independent of N and much higher than
the rate expected from two-body relaxation. The eccentricity,
being quite high at the formation time, increased further by the
end of the simulation, up to 0.98 for N= 106. We note that
the measured hardening rate was ∼3 times lower than Sfull,
again underlining that even in strongly asymmetric and
dynamic systems the loss cone is at least partially depleted at
the highest binding energies.

While the results Monte Carlo simulations in this section
should be regarded as preliminary, it is remarkable that the
agreement in hardening rates between N-body and Monte Carlo
simulations that included relaxation is reasonably good
(Figure 10, top panel). Relaxation driven by large-scale
fluctuations in the merger remnant might be underestimated
in the Monte Carlo method because of two factors: (a) the
potential represented by spherical-harmonic expansion smooths
out small-scale clumps, (b) the interval between potential
updates is short enough to track global changes in the potential,
but may not represent higher-frequency transient perturbations.

Thus we should expect somewhat lower hardening rate in
Monte Carlo simulations compared to N-body simulations; in
fact it turned out to be comparable and even sometimes higher.
We defer a more detailed study of Monte Carlo models of
merger remnants for a future work.
In the collisionless regime, the hardening rate is initially only

slightly lower than in the N= 106 simulation with relaxation.
However, it slows down later on, much like in the case of
isolated triaxial systems (Table 1). Again, this is due to two
factors: depletion of centrophilic orbits and gradual decrease of
triaxiality. The shape of the merger remant is moderately
flattened (z x 0.75 at all radii throughout the simulation),
and the triaxiality is quite subtle: y x 0.9 right after merger
and increases to 0.97 toward the end of simulation. Never-
theless, this appears to be enough to sustain the reservoir of
centrophilic orbits needed to keep the binary shrinking. Even
with zero eccentricity, the binary would merge in ∼0.5 Gyr;
with such high eccentricity as in our simulations, this time
would be an order of magnitude shorter. If we force the
potential to be axisymmetric, the evolution slows down much
faster (Figure 10, bottom panel); by the end of simulation
a a0.05 h , which is not enough to ensure merger in a Hubble
time unless the eccentricity is 0.8.

6. DISCUSSION AND CONCLUSIONS

6.1. Summary of Our Results

In the present work, we have considered a stellar-dynamical
solution to the final-parsec problem—the evolution of binary
SBHs driven by encounters with stars in a galactic nucleus, as
its orbit shrinks from the radius of a hard binary (a 1h ~ pc) to
the separation a a10GW

2
h~ - at which GW emission becomes

effective. The central difficulty is to ensure a continuous supply
of stars onto low-angular-momentum orbits, where they can be
scattered by the binary and carry away its energy and angular
momentum. This region of phase space, dubbed the loss cone,
is quickly depleted by the binary once it becomes hard, so an
efficient refilling mechanism is required to enable continued
hardening. In a perfectly spherical galaxy, this can only be
achieved by two-body relaxation, which is not sufficient to
bring the binary to coalescence in a Hubble time, except in the
smallest galaxies (Merritt et al. 2007)—hence the problem. We
have focused on the additional mechanisms of loss-cone
repopulation that exist in non-spherical (axisymmetric and
triaxial) galaxies.
We addressed this problem using a variety of methods, but

primarily with RAGA,6 a novel stellar-dynamical Monte Carlo
code that is able to follow the evolution of non-spherical stellar
systems under the influence of two-body relaxation, the
magnitude of which can be adjusted—unlike conventional N-
body simulations in which the relaxation is essentially
determined by the number of particles. We extended the code
to include interactions between stars and the massive binary, by
following the trajectories of particles in the superposition of the
smooth galactic potential plus the time-dependent potential of
the two SBHs as they orbited one another, and used
conservation laws to determine the reciprocal changes in the
binary orbital parameters.
We used a large suite of direct-summation N-body simula-

tions to verify that the Monte Carlo code accurately describes

Figure 10. Evolution of inverse semimajor axis of the binary in merger
simulations. Top panel compares N-body (solid lines) and Monte Carlo models
with relaxation (dashed lines), from left to right:
N 128, 256, 512, 1024 103{ }= ´ (curves are shifted horizontally for clarity).
Bottom panel shows the long-term evolution of collisionless Monte Carlo
models, with imposed axisymmetry (dotted lines) and with only reflection
symmetry (i.e., nearly triaxial models with figure rotation, dashed lines). Solid
line shows the average hardening rate in collisional simulations.

6 The code is available at http://td.lpi.ru/~eugvas/raga/
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the evolution of the binary for a wide range of parameters—
mass ratio, eccentricity, number of particles and the shape of
the galaxy model. Then we extended the Monte Carlo
simulations into the range of N much larger than is presently
accessible for conventional N-body simulations, including the
intriguing collisionless limit (N = ¥), which is nearly
achieved in real galaxies. We determined the scaling laws
and asymptotic behavior of the stellar-dynamical hardening rate
from rather simple analytic arguments, and confirmed these
findings with the Monte Carlo simulations. Taking into account
GW emission, the evolution of binary semimajor axis a and
eccentricity e can be described by a simple system of
differential equations, which we used to determine the
coalescence time as a function of initial parameters of the
binary and the galaxy; these evolutionary tracks were again
verified by Monte Carlo simulations for a few test cases.

Our main results can be summarized as follows.

1. The binary continues to shrink as long as there are stars in
the so-called loss region—the region of phase space from
which stars can precess into the loss cone proper (that is,
L L GM a22

LC
2

bin< º ) due to non-spherical torques. In
the spherical case, the loss cone and loss region are the
same. In the triaxial case, the loss region consists of
mostly chaotic orbits, whose total mass is roughly
proportional to the mass of galaxy with a coefficient

1h  determined by the degree of flattening and
triaxiality, and unless the galaxy is nearly axisymmetric,
the mass of stars in the loss region is much larger than
Mbin. In the axisymmetric case, the volume of the loss
region shrinks with a as ah , halfway between the
spherical and triaxial cases.

2. The stellar-dynamical hardening rate Så is always smaller
than the value Sfull corresponding to a full loss cone. This
is explained by a gradual depletion (draining) of the loss
region, which occurs faster at high binding energies. As a
rough estimate, decreasing a by a factor of two requires
ejection of stars with total mass Mbin~ . In the collision-
less limit, the hardening rate declines with a very slowly
for a triaxial system, because the total mass of loss region
stars is typically large compared to Mbin. By contrast, in
an axisymmetric system, the volume of the loss region
also shrinks with a, and it depletes much faster; thus the
hardening rate declines rapidly and drops nearly to zero at
a a0.1 h . This is not enough to bridge the gap to the
GW-dominated regime.

3. Taking into account relaxation-driven repopulation of the
loss region does not change the results in the triaxial case
very much, because the hardening is dominated by
draining of stars that are initially in the loss region, but
accounting for relaxation does change the dynamics in
the axisymmetric and spherical cases dramatically. After
the initial population of the loss region is nearly depleted,
it is refilled by two-body relaxation, maintaing the
hardening rate at a nearly constant level that depends on
N. The axisymmetric case offers a didactic example of
how much a system with N 106

 ~ , typical of present-
day, high-fidelity N-body simulations, or even N 108

 ~ ,
can differ from the collisionless limit in its long-term
evolution.

4. Coalescence times estimated for triaxial galaxies weakly
depend on the mass of the binary, its mass ratio, or the
degree of triaxiality (provided that the departure from

axisymmetry is larger than a few percent). Coalescence
times fall in the range from a few Gyr for almost circular
binaries, to 108 year for very eccentric ones. For a given
combination of the binary mass Mbin and its radius of
influence rinfl, the coalescence time can be computed
using Equation (25) for a circular orbit, and using
Equation (28) for an eccentric orbit, where the typical
values of the dimensionless parameters 0.2 1m ~ ¸ and

0 0.5n ~ ¸ are listed in Table 1. This time is up to a
factor of few times greater than the simple estimate (22)
that does not account for the decrease of the hardening
rate with time.

6.2. Comparison with Previous Work

Consider first the spherical case, which has been extensively
studied by N-body simulations (e.g., Quinlan & Hern-
quist 1997; Milosavljević & Merritt 2001; Hemsendorf
et al. 2002; Berczik et al. 2005; Merritt et al. 2007), methods
based on scattering experiments (Quinlan 1996; Sesana 2010;
Meiron & Laor 2012 e.g.,), or Fokker–Planck models
(Milosavljević & Merritt 2003b; Merritt et al. 2007). It is
generally accepted that in the spherical case the binary quickly
depletes the loss cone and its evolution nearly stalls at a value
of a just a few times smaller than ah. A number of effects may
moderately decrease the stalling radius or increase the
relaxation rate. The secondary slingshot—the re-ejection of
stars that have once interacted with the binary but did not gain
enough energy to escape the galaxy—leads to a gradual
( tlogµ ) increase of a1 at late times (Milosavljević &
Merritt 2003b), and this trend was indeed found in our
collisionless Monte Carlo simulations. Once these stars are
completely eliminated, evolution of the binary finally stalls in
the purely collisionless case; Merritt (2006) and Sesana et al.
(2007) found that the stalling radius is only a few times smaller
than ah over a wide range of binary mass ratios and cusp
density profiles. Similarly, time-dependent solution of the
Fokker–Planck equation describing the relaxation of stars in
angular momentum yields a higher rate of loss-cone repopula-
tion at early times than the steady-state flux, due to sharper
gradients in the phase space (Milosavljević & Merritt 2003b);
this is taken into account automatically in the Monte Carlo
scheme, and does not substantially affect the overall evolution.
Brownian motion is not accounted for in our method, and

this may be the reason for the discrepancy between Monte
Carlo and N-body hardening rates at high N in spherical
systems. Quinlan & Hernquist (1997) and Chatterjee et al.
(2003) argued that wandering of the binary may explain the
very weak dependence of hardening rate on N found in their
simulations. However, as summarized by Makino & Funato
(2004), several factors complicate the interpretation of their
result: the N-body algorithm used in that paper is less
collisional than traditional N-body schemes, but not entirely
free of relaxation, and the unequal masses of particles mean
that the granularity of the potential depends on the evolutionary
stage. The amplitude of Brownian motion of the binary, while
larger than for a single SBH of the same mass (Merritt 2001),
scales roughly as N 1 2- , and in real galaxies would be smaller
than the size of the loss cone for most part of the evolution.
Using somewhat different arguments, Milosavljević & Merritt
(2003b) estimated the timescale of loss-cone refilling by
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Brownian motion and concluded that this effect is unlikely to
substantially affect the evolution.

Consider next the case of non-spherical galaxies, which
seem to offer a more promising way to solve the final-parsec
problem via collisionless dynamics. Yu (2002) estimated
draining rates for the loss regions in axisymmetric and triaxial
galaxies, using arguments similar to those in our Section 4.3.
Yu (2002) concluded that the loss region in triaxial galaxies is
not likely to be depleted if the flattening parameter, responsible
for the fraction of centrophilic orbits, is 0.05 , although the
plots in which she showed evolution timescales demonstrate
the effect of gradual depletion of the loss region only for the
case of small flattening. For axisymmetric systems, Yu (2002)
estimated that the loss region (or “loss wedge,” in the
terminology of Magorrian & Tremaine 1999) can be depleted
rather quickly in many cases, and the relaxation-limited
evolution timescales are still longer than the Hubble time.
Thus our conclusions qualitatively agree with that study.

Merritt & Poon (2004) considered self-consistent triaxial
models of galactic nuclei with SBHs which had a significant
fraction of centrophilic orbits. They solved the evolutionary
equations similar to (12) and (15), and found that the hardening
rate is nearly independent of time, but scales with the square of
the fraction of chaotic orbits. Analysis of the data plotted in
their Figure 6 suggests that a t1 0.7 0.9µ ¸ , more in line with
our findings in the present study and in Paper I. For the case of
a singular isothermal cusp ( 2g = ), Equation (17) suggests that
the asymptotic hardening rate scales as the squared fraction of
chaotic orbits η, in agreement with their results. Their Equation
(55) implies a hardening rate S2

fullh , and our Monte Carlo
simulation of a γ= 2 Dehnen model has on average a similar
hardening rate with η= 0.2, even though it declines with time.
Thus the basic conclusion of that paper, that even a moderate
amount of triaxiality is sufficient to drive the binary to
coalescence in less than a Hubble time, is corroborated by our
simulations and asymptotic analysis, even though some details
differ (most importantly, their neglect of the slowdown of the
hardening rate).

Most other studies to date have assumed or inferred that the
loss cone must be kept nearly full in non-spherical systems,
using various arguments. Holley-Bockelmann & Sigurdsson
(2006) explored the properties of orbits in a triaxial galaxy with
a central SBH. They estimated that the time required to change
the angular momenta of particles due to collisionless torques
was much shorter than the Hubble time, and concluded that the
loss cone must remain full. However, this argument does not
take into account the draining of the loss region, and they did
not analyze the evolution of their model under this process.
More recently, Li et al. (2014) performed a similar analysis for
a nearly axisymmetric model, which in fact was slightly triaxial
in the central part. They computed the mass of stars belonging
to orbits that are able to come into the loss cone with a size
corresponding to the initial stage of binary evolution, which
was several times larger than Mbin. From this they concluded
that the loss cone should remain well populated during the
subsequent evolution, but their estimate did not take into
account that the volume of the loss region also shrinks along
with the binary semimajor axis in the axisymmetric case. It is
unclear whether the slight triaxiality of their model would be
sufficient to support enough truly centrophilic orbits during the
entire evolution.

Sesana (2010) considered a hybrid model for binary
evolution, based on the hardening and eccentricity growth
rates computed from scattering experiments. He assumed that
after the initial phase of formation of a hard binary,
accompanied by the erosion of the stellar cusp at r rinfl ,
the subsequent evolution occurs in the full-loss-cone regime,
i.e., the hardening rate is given by Suniform (Equation (2)) with
density and velocity dispersion computed at rinfl. Thus his
evolutionary tracks are similar to our calculations in Section 4.4
with parameters 1m = (the loss cone is full) and 0n = (the
hardening rate does not decrease with time). As Figure 8 and
Equation (22) show, in this case the coalescence time is
shortened by a factor of few with respect to the more
conservative assumptions proposed in our study.
More recently, Sesana & Khan (2015) compared the

evolutionary tracks from the hybrid model of Sesana (2010)
with those obtained by N-body simulations of mergers (Khan
et al. 2012). They found reasonable agreement for the
eccentricity evolution and hardening rate, even though the
latter was somewhat lower and declined with time in N-body
simulations. They ascribed this to the gradual decrease of the
density and corresponding increase of rinfl. As we have argued
in Section 4.3, the decline of hardening rate is mostly caused by
the depletion of centrophilic orbits at all radii, rather than
simply the decrease of density at the influence radius. For
instance, in our collisionless simulations of isolated models
with γ = 1(2), the actual hardening rate dropped by a factor of
5 (10) by the end of simulations, while the density at rinfl, and
correspondingly the full-loss-cone hardening rate Sfull,
decreased by less than 30%. The coalescence times quoted in
Sesana & Khan (2015) are longer than ours due to a different
M rbin infl- relation adopted in that paper. We stress, however,
that their estimates are based on the hardening rates from
collisional N-body simulations, while coalescence times for
collisionless systems, advocated in the present study, are up to
a few times longer for the same galaxy parameters.
Studies based on N-body simulations have generally

observed little or no dependence of the hardening rate on N
in non-spherical galaxy models that were formed via mergers
(Khan et al. 2011, 2012; Preto et al. 2011) or created as isolated
models (Berczik et al. 2006; Khan et al. 2013). This result has
been interpreted as an indication that the loss cone remains
nearly full, although Berczik et al. (2006) reported that the
hardening rate was gradually decreasing with time, suggesting
that the reservoir of centrophilic orbits was being depopulated.
A similar trend can be seen in other merger simulations (e.g.,
Preto et al. 2011, Figure 1, or Khan et al. 2012, Figure 2); in the
latter paper, the models with steeper cusps displayed a
systematically more rapid decline of hardening rate with time.
All these trends are in agreement with our findings, even
though the previous studies did not highlight them. We note,
however, that in our simulations the hardening rate always
turns out to be substantially lower than Sfull for large enough N.
This might seem to be in contrast with other studies that report
a hardening rate comparable to Sfull for non-spherical systems.
However, a more detailed examination suggests that the
apparent discrepancy can be attributed to different definitions
of the full-loss-cone rate, and to different normalizations of the
stellar density profile. For instance, in Khan et al. (2013) and
Holley-Bockelmann & Khan (2015) the flattened models were
created by adiabatic squeezing of the original density profile,
and hence their scale radii are roughly a factor of two smaller
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than ours, as can be seen in Figure 1 of the latter paper. From
Equation (5), it is apparent that this translates to a hardening
rate ∼6 times higher than ours. We have re-simulated their
models with our N-body code and found generally good
agreement with their results.

Most importantly, as we have argued in Paper I and this
study, the hardening rates in N-body simulations are dominated
by, or at least have a significant contribution from, collisional
effects even for N 106~ , thus it is not easy to extrapolate these
results to real galaxies. Using the Monte Carlo method, we
were able to reach the collisionless regime, which turned out to
be very different for axisymmetric and triaxial galaxies, while
in N-body simulations of Paper I they looked nearly the same.

6.3. Single and Binary Black Holes

It is also instructive to compare loss-cone theory in the single
and binary SBH cases. The first obvious difference is the much
larger size of the loss cone in the case of a binary. As a
consequence, the relaxation-driven repopulation of the loss
cone almost always occurs in the empty-loss-cone regime; on
the other hand, collisionless changes in angular momentum due
to non-spherical torques occur on the same dynamical
timescale as the depletion of the loss cone, so that it always
remains partially populated in non-spherical systems. A second
important factor is that the size of the loss cone decreases as the
binary shrinks, while in the case of a single SBH it can only
grow. Third, the mass of stars needed to be delivered into the
loss cone of the binary is a few times larger than the mass of
(the lighter component of) the binary, while for single SBHs
the accreted mass in stars is typically small compared to the
SBH mass.

These three factors explain the fundamental difference
between collisionless spherical and axisymmetric systems, on
the one hand, and triaxial ones, on the other hand. For the latter
ones, the evolution is almost entirely driven by draining of
centrophilic orbits, whose total mass is much larger than M• and
furthermore does not depend on the size of the loss cone.
Interestingly, in the case of a single SBH most of captured stars
arrive from regular pyramid orbits inside rinfl, while in the case
of the binary the loss region consists mainly of chaotic orbits
outside rinfl; this explains the slightly different time dependence
of the draining rates. In the axisymmetric case, the volume of
the loss region composed of chaotic orbits that can be delivered
into the loss cone by collisionless torques, shrinks along with
the binary semimajor axis, and its orbit population is nearly
depleted before the binary reaches the GW-dominated regime.
The subsequent evolution is determined by the rate at which
this loss region is repopulated by relaxation. Since the volume
of this region is still much larger than the volume of the loss
cone proper, it is more easily repopulated in axisymmetric than
in spherical systems. The same is true for single SBHs; the fact
that for them the difference between axisymmetric and triaxial
systems is much less than between spherical and axisymmetric
ones (Vasiliev 2014a, Figure 4) stems largely from the adopted
isotropic (non-depleted) initial conditions for the relaxation. On
the other hand, in the case of a massive binary the phase space
is already depleted out to much larger values of angular
momentum than the current loss cone boundary, thus it takes
longer for the relaxation to resupply the loss region.

In short, loss cone theory in non-spherical systems is a
delicate interplay between collisional and collisionless effects,

and the outcome depends on the evolutionary history of the loss
cone, as well as the changes in the global structure of the
system (its shape and phase-space gradients). Only using a
combination of various approaches—N-body simulations, orbit
analysis, Monte Carlo methods and scaling arguments—can
one hope to understand the behavior of realistic stellar systems.

6.4. Conclusions

The evolution of binary SBHs in gas-poor galaxies is
determined by the rate of slingshot interactions with stars in the
loss cone—the low-angular-momentum region of the phase
space. The fact that the loss cone is quickly depleted in
idealized spherical systems gave rise to the final-parsec
problem. Repopulation of the loss cone occurs both due to
collisional and collisionless effects; the latter are only relevant
in non-spherical systems. We have developed a Monte Carlo
method that can efficiently deal with both collisionless and
collisional evolution, and used it to show that in the
collisionless limit, the repopulation is efficient if the galaxy is
even slightly triaxial. To the extent that mergers result in
galactic shapes that are not exactly axisymmetric, our results
imply that the final-parsec problem does not exist in most
galaxies.
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