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ABSTRACT

The density of stars in galactic bulges is often observed to be flat or slowly rising inside the influence radius
of the supermassive black hole (SMBH). Attributing the dynamical-friction force to stars moving more slowly
than the test body, as is commonly done, is likely to be a poor approximation in such a core since there are no
stars moving more slowly than the local circular velocity. We have tested this prediction using large-scale N-body
experiments. The rate of orbital decay never drops precisely to zero, because stars moving faster than the test body
also contribute to the frictional force. When the contribution from the fast-moving stars is included in the expression
for the dynamical-friction force, and the changes induced by the massive body on the stellar distribution are taken
into account, Chandrasekhar’s theory is found to reproduce the rate of orbital decay remarkably well. However, this
rate is still substantially smaller than the rate predicted by Chandrasekhar’s formula in its most widely used forms,
implying longer timescale for inspiral. Motivated by recent observations that suggest a parsec-scale core around the
Galactic center (GC) SMBH, we investigate the evolution of a population of stellar-mass black holes (BHs) as they
spiral into the center of the Galaxy. After ~10 Gyr, we find that the density of BHs can remain substantially less
than the density in stars at all radii; we conclude that it would be unjustified to assume that the spatial distribution
of BHs at the GC is well described by steady-state models. One consequence is that rates of capture of BHs
by the SMBH at the Galactic center (extreme-mass-ratio inspirals) may be much lower than in standard models.
When capture occurs, inspiraling BHs often reach the gravitational-radiation-dominated regime while on orbits
that are still highly eccentric; even after the semimajor axis has decreased to values small enough for detection
by space-based interferometers, eccentricities can be large enough that the efficient analysis of gravitational wave
signals would require the use of eccentric templates. We finally study the orbital decay of satellite galaxies into
the central region of giant ellipticals and discuss the formation of multi nuclei and multiplet of black holes in such
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systems.

Key words: black hole physics — galaxies: kinematics and dynamics — Galaxy: center — gravitational waves

Online-only material: color figures

1. INTRODUCTION

Dynamical friction plays a central role in many astrophysical
contexts. It drives the orbital inspiral and merger of satellite
galaxies (e.g., Murai & Fujimoto 1980; Ibata & Lewis 1998;
van den Bosch et al. 1999) and the formation of massive black
hole binaries (e.g., Quinlan 1996; Milosavljevi¢ & Merritt 2001;
Makino & Funato 2004), and it is the fundamental mechanism
leading to mass segregation in dense stellar systems (e.g.,
Bahcall & Wolf 1977; Freitag et al. 2006; Hopman & Alexander
2006).

Chandrasekhar formulated the principle of dynamical fric-
tion under the assumptions of an infinite, homogeneous, and
isotropic field of stars (Chandrasekhar 1943). Despite these sim-
plifications, his theory has been shown to work remarkably well
in a wide variety of more general situations. Dynamical friction
can be understood as the drag induced on a test particle by the
overdensity (i.e., the gravitational wake) that is raised behind it
by the deflection of stars (Danby & Camm 1957; Kalnajs 1972;
Mulder 1983). The surprisingly good agreement between the-
ory and numerical results may be attributed to the fact that the
wake is a local structure, and over small spatial scales, the stellar
background appears nearly homogeneous (Weinberg 1986). On
the other hand, numerical studies have revealed a few, astro-
physically important contexts in which Chandrasekhar’s theory
appears to break down. These include the deceleration of a rotat-
ing stellar bar (Weinberg 1985), inspiral in harmonic (constant-

density) cores (Hernandez & Gilmore 1998; Goerdt et al. 2006;
Read et al. 2006; Inoue 2009), and the orbital evolution of a dis-
placed supermassive black hole (SMBH; Gualandris & Merritt
2008).

In this paper, we present a comprehensive study of dynamical
friction in the nuclei of galaxies containing a dominant central
point mass. In particular, we investigate the case of shallow
density profiles around SMBHs. Such nuclei appear to be
common and perhaps even generic. For instance, the luminosity
profiles of bright elliptical galaxies always exhibit flat central
cores (Ferrarese et al. 1994; Lauer et al. 1992). Even the Milky
Way, which was long believed to have a steeply rising mass
density near Sgr A*, is now believed to have a parsec-scale
core (Buchholz et al. 2009; Do et al. 2009; Bartko et al. 2010).
Similar models may also be applicable to dark matter halos,
if the central point mass is identified with the stellar spheroid
(Borriello & Salucci 2001; Binney & Evans 2001; Spekkens
et al. 2005).

Theoretical treatments of dynamical friction make a sur-
prising prediction about the frictional force in such systems.
Essentially all of the decelerating force is predicted to come
from stars that are moving more slowly than the test body. But
the phase-space density of a galaxy with a shallow density cusp
around a SMBH falls to zero at low energies: below a certain
radius (roughly 1/2 the core radius), there are no stars locally
that move more slowly than the circular velocity at that radius.
Chandrasekhar’s formula, in its most widely used form, would
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predict no frictional force. In the case of an eccentric orbit
that passes in and out of the core, the frictional force would
be small near periapsis, leading to a rapid increase in orbital
eccentricity—the opposite of the usual assumption. Our numer-
ical experiments reveal that the frictional force does not drop
precisely to zero in such nuclei. We show that the evolution can
be well described by a more general form formula that includes
a contribution to the force from stars moving faster than the
test mass. In this sense, our results affirm the correctness of
Chandrasekhar’s physical picture, but only if the proper field-
star velocity distribution is used (as opposed to, say, a
Maxwellian), and only if the usual simplifying assumptions
that lead to a neglect of the contribution of the fast stars to the
frictional force are relaxed.

In Section 2, we review Chandrasekhar’s derivation of the
dynamical-friction force and highlight the approximations that
lead to the neglect of the contribution from the fast-moving
stars. We also briefly discuss alternative treatments of dynamical
friction. In Section 3, we use Chandrasekhar’s formulae to
integrate the equations of motion of a massive body and follow
its inspiral into the center of a model designed to represent
the Galactic center (GC). In Section 4, we use large-scale
N-body simulations to test the theory in the case of inspiral of
massive objects in a nuclear star cluster with a flat density profile.
Section 5 investigates the formation of the gravitational wake
in the self-consistent simulations. Applications of our results to
a variety of astrophysical problems are discussed in Section 6
and Section 7 sums up.

2. DYNAMICAL FRICTION

The motivation for the N-body experiments described in
this paper is the existence of physically interesting models of
galactic nuclei in which the standard dynamical-friction formula
predicts little, or zero, frictional force. We begin in this section
by re-deriving the standard formula, noting the simplifying
approximations that are usually made. We then present the
more general form of Chandrasekhar’s formula that includes
contributions from field stars of all velocities, not just those
that move more slowly than the test body at infinity, and we
evaluate the expected contribution from the fast-moving stars in
our models. We also compute how the fast- and slow-moving
stars contribute differently to the steady-state density wake,
using a technique first applied by Mulder (1983). Finally, we
comment on perturbative approaches to computing dynamical
friction that relax the assumption of an infinite homogeneous
medium. The results obtained in this section constitute a set of
baselines against which the N-body results can be compared.

2.1. Chandrasekhar’s Treatment

Chandrasekhar (1943) derived the coefficient of dynamical
friction by summing the encounters of a test body with passing
stars, assuming that the unperturbed motion of the test body
was linear and unaccelerated, and that the field-star distribution
was infinite and homogeneous spatially and isotropic in velocity
space.

The velocity change of a test body of mass M in one encounter
with a field star of mass m << M is

m 1

Avyy=-2V————,
: M1+ p2/p

ey

where Vis the relative velocity at infinity, p is the impact param-
eter, and py = G M/ V?. The velocity change in Equation (1) is
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parallel to the initial, relative velocity V before the encounter.
In order to derive the coefficient of dynamical friction, one sums
the velocity changes in the direction of motion of the test mass,
per unit interval of time, over all impact parameters, and over
all values for the relative velocity at infinity. The summation
over impact parameters, at fixed V, is achieved by multiplying
Equation (1) by 2w pnVdp, with n the number density of field
stars, and integrating dp

27G*Mmn

(AU”) = — V2

In (1+ prac/P5) - 2
Under the assumption that A = pmax/po > 1, this can be
written as

— 4 G*M 1 p?
(Au):—M[ln/u Py +} 3)

& 2 P

Terms beyond the first in brackets, the so-called non-dominant
terms, are usually neglected.

Returning to the more general form (2), the dynamical-
friction coefficient is obtained by a second integration over
field-star velocities v,. The relative velocity is V = v — v,,
with v being the velocity of the test star. Since Equation (2)
gives the velocity change in the direction of the initial relative
motion, it must be multiplied by

V-v_v—v* @
Vv V

to convert it into a velocity change in the direction of the test
star’s motion, assumed here to be along the x-axis. Let f(v,)dv,
be the number density of field stars in velocity increment
v,, v, + dv,, normalized to unit total number. The dynamical-
friction coefficient is

VT O dv, = —2nG*Mp

(Avy) = /f(v*)(AvH) v

2 4

U= Uux pmaxv
X f(v*)T In{1+ W dv*, (5)

where p = mn.

Henceforth, we assume that the field-star distribution is
isotropic in velocity space. Following Chandrasekhar (1943),
we represent the velocity-space volume element in terms of v,
and V using
V2 +v? —?

V— Uy =
2v
The result is
2m2G*Mp [
<AUII) = _T dv* Vs f(v*)H (Uv Vses pmax) )
0
(6a)
1 VHU, U2 _ U2
H(v, v., max/) — dv |1+ )1
(v, Vs, Pmax) ™ /U_U' < % ) n
2 4
PmaxV

(The quantity J defined in Equation (26) of Chandrasekhar
(1943) is equal to 8v,H.) The integral that defines H turns
out to have an analytic solution; the expression is complicated
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and we do not reproduce it here. Chandrasekhar (1943) gave
several approximate forms for H valid for pn./po > 1, e.g.,
his Equation (30):

In %(v2 — vf) if v > v,,
H A~ %ln (4fmey?) — 1 ifv =, 7)
In (u> -2t if v < v,.
V,—V v,

In the standard approximation (e.g., Rosenbluth et al. 1957),
the non-dominant terms are set to zero, and the veloc-
ity dependence of the logarithmic term in the integrand of
Equation (6) is ignored. Instead, one writes

2 4
1n<1+p(‘;“;xMVz>=21nAszln(@> 8)
Pmin

2

*,Tms*

and the lower bound pp, is set to GM /v
function H then takes on the simple form

The weighting

InA ifv> v,
HZ{O ifv < v,, ©)
and the coefficient of dynamical friction is
2 ’ Ua\?
(Av)) = —47 G*Mp x 4nf dv, (—) ). (10)
0 v

Equation (10) reproduces the well-known result that only field
stars with v, < v contribute to the frictional force.

In this paper, we consider models for galactic nuclei in which
the number of stars moving more slowly than the test body
can be vanishingly small. In such models, one expects that a
significant fraction of the frictional force might come from stars
with v, > v.

The distribution of field-star velocities in our models has the
following form within the core:

) y—=3/2 . 1
F,) = fo(ZvC v*) ¥f Uy < 2ivc, a1
0 if v, > 220,
where the normalizing constant
I'y +1) 1
fo= 12)

M =D rmm?

corresponds to unit total number. This expression is equivalent
to Equation (5); it gives the local distribution of velocities at a
radius where the circular velocity is v. = (GM,/r)!/?, assuming
the density of field stars follows r~7. The phase-space density
is zero for v, = vese = 21/%0,.

Of more interest here is the behavior of fat small values of v,,
and when y < 3/2; for such values of y the phase-space density
diverges at v, = 212y, As y — 1/2, the velocity distribution
becomes progressively narrower, and in the limit, f(v,) is a
delta-function at v, = 2!/2y,; in other words, all stars have zero
energy. This may be seen as a consequence of the well-known
fact that p o r~% is the shallowest power-law density profile
consistent with an isotropic velocity distribution in a point-mass
potential.

In the case of a test body moving in a circular orbit with
v = v, the number of field stars with v, < v will drop as y
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approaches 1/2 and will equal zero in the limiting case y = 1/2.
The standard dynamical-friction coefficient, Equation (10),
predicts zero frictional force in this limit.

In this situation, it is clearly of interest to compute the
contribution of the fast-moving stars to the total frictional force.
We did this by evaluating H in its “exact” form, Equation (6¢).
Figure 1 shows the results. In addition to y, the results depend
on the parameter

pmaxvc2
InA=In{—=, (13)
GM.

which plays the role of Coulomb logarithm. We note the
following results.

1. For y 2 3/2, the contribution to the frictional force from
the fast-moving stars is negligible, particularly when In A
is also large.

2. For y < 3/2, the fast-moving stars contribute a progres-
sively larger fraction of the total frictional force, particularly
when In A is small.

3. When y = 0.55, near the limiting value, the total frictional
force is small, and almost all of it comes from stars with
Ve > V.

4. Whereas the contribution to the force from the slow-moving
stars depends strongly on y, the contribution from the fast-
moving stars is almost independent of y.

According to Equation (7), the contribution of the fast stars
must tend to zero as In A is made sufficiently large. This is
consistent with Figure 1; however, for y &~ 0.5, the value of
In A required for the slow stars to dominate is far greater than
any physically reasonable value.

2.2. Mulder’s Treatment

The foregoing treatment highlighted the contribution of the
fast-moving stars, v, > v, to the total frictional force. However,
it did not provide much insight into why the two populations
contribute in such a different way to the force. Of course,
the N-body experiments described in this paper include both
populations of stars. In the simulations, the field stars quickly
establish a nearly steady-state distribution in a frame moving
with the test mass—a “dynamical-friction wake” (Danby &
Camm 1957; Kalnajs 1972; Mulder 1983). The overdensity in
the wake is responsible for the decelerating force that acts on
the test body. A large fraction of the mass in the wake must be
contributed by the fast stars, particularly in the case that the fast
stars dominate the density at large distances. Why then do these
stars contribute relatively little to the frictional force?

One way to address this question is via the technique of
Mulder (1983). Mulder computed the steady-state distributions
of stars around a moving test mass, making essentially the same
assumptions as made by Chandrasekhar (1943). He did this
by invoking Jeans’s theorem in a frame moving with the test
mass and showing that an isotropic f(v,) at infinity could be
expressed in terms of two of the integrals of motion in the
Kepler problem. This then allowed him to compute the steady-
state density, in the moving frame, at all locations around the
test mass. The dynamical-friction force followed from a second
integration of the density over space; Mulder showed that the
results for the frictional force so obtained were consistent with
Chandrasekhar’s predictions, if py.x were associated with the
maximum dimension of the spatial grid used to carry out the
force integration.
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Figure 1. Contribution to the total dynamical-friction force from stars moving faster, or more slowly, at infinity than the test body, assuming the velocity distribution
of Equation (11). The test body is assumed to be moving at the local circular velocity v.. In these plots, the configuration-space density p remains fixed as y is varied.

(A color version of this figure is available in the online journal.)
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Figure 2. Dynamical-friction wakes, computed via Mulder’s (1983) technique, assuming Equation (5) with y = 5/4 for the velocity distribution at infinity; the test
mass is located at the origin and is assumed to be moving at constant velocity v = v, as in Figure 1. The top panels show contours of the density, in a plane that
contains the test body’s velocity vector; the left panel shows the total density, the middle panel shows the density contributed by the stars with v, < v at infinity,
and the right panel shows the contribution from stars with v, > v at infinity. Black (solid) curves show the total response from the indicated stars; blue (dashed)
curves show the part of the response that is symmetric with respect to z; red (dotted) curves show the asymmetric part (only on one side), which is responsible for the
frictional force. The contours are spaced logarithmically in density and the contour spacing is different in the three panels. The lower panels show the density along
the symmetry axis, i.e., along a line through the test body in the direction of its motion. Unitsare G = M = v = 1.

(A color version of this figure is available in the online journal.)

Mulder’s technique can be modified, to compute the separate
contributions to the dynamical-friction wake of the fast (v, > v)
and slow (v, < v) stars; here, as above, v, refers to the field-
star velocity at infinity. The results are shown in Figure 2, for
y = 5/4. For this choice of y, the fast stars dominate the total
density at infinity. The density that they generate near the test

body is also higher, everywhere along the symmetry axis, than
the density due to the slow stars. However, the shapes of the two
density wakes are very different: in the case of the fast stars,
the wake is elongated counter to the direction of the test body’s
motion, while in the direction parallel to the motion, the change
in density between the upstream and downstream sides of the
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test mass is much less than in the case of the wake produced
by the slow stars. These two differences are responsible for the
small contribution of the fast stars to the total frictional force
(Figure 1), in spite of the higher density of those stars at infinity
and in the wake.

Comparison of the upstream and downstream densities in
Figure 2 also suggests why the relative contribution of the fast
stars to the frictional force drops off with increasing In A in
Chandrasekhar’s treatment (Figure 1). At large distances from
the test body, the wake produced by the fast stars is nearly
symmetric; the greatest asymmetry is in the region near the
test mass. The wake generated by the slow stars, on the other
hand, maintains its asymmetry much farther from the test body.
Roughly speaking, the density far from the origin in Figure 2
is produced by stars with large impact parameters, and so
increasing pmax in Chandrasekhar’s treatment corresponds to
more heavily weighting the contribution from the slow-moving
stars.

2.3. Perturbative Treatments and Inhomogeneous Systems

In treatments like Chandrasekhar’s and Mulder’s, the unper-
turbed trajectories consist of straight lines. In reality, both test
and field stars follow non-rectilinear orbits about the center
of the galaxy. Chandrasekhar’s theory might be expected to
give approximately correct results even in this case, as long as
Pmax > Pmin, Since over many decades in scale the orbits of
the field stars will appear nearly rectilinear as seen by the test
body. But given certain assumptions, perturbation theory can be
used to more correctly compute the response of the orbits in a
galaxy to the presence of a perturbing potential (Lynden-Bell &
Kalnajs 1972; Tremaine & Weinberg 1984; Rauch & Tremaine
1996). One finds that the net torque on the test mass is due to
orbits near resonance, i.e., orbits for which the frequencies as-
sociated with the radial and angular motions satisfy a relation
Lo, + howy — 3Q, = 0, where the [; are integers and €, is
the frequency of rotation of the test mass (assumed to be on a
circular orbit). The acceleration induced by the resonant orbits
depends on how quickly the orbit of the test mass is evolving;
if orbital decay is very slow, the influence of a single resonance
can buildup, invalidating the perturbative assumption, while if
it is too fast, the assumption of near-stationarity is violated.
Furthermore, in a real galaxy (or N-body system) the frequency
spectrum of the perturbing potential is not made up of sharp
lines, but rather is broadened by the time dependence of the
decaying orbit and by the finite age of the galaxy.

Due to the computational complexity involved, applications
of this approach have so far been limited to bodies following
circular orbits in simple (Plummer, scale-free) galaxy models,
and the results have mostly been interpreted as corrections to
the predictions of Mulder and Chandrasekhar. For instance,
Weinberg (1986) emphasized the similarity in the structure of
the wake as computed via the perturbation formulae and via
Mulder’s approach. The main element that the perturbative
treatments add is a quantitative estimate of the Coulomb
logarithm. Not surprisingly, none of these studies has attempted
to relate the frictional force separately to the “fast” and “slow”
stars as they appear in Chandrasekhar’s treatment; doing so
would be an ill-defined problem since all stars are included,
self-consistently, in the perturbative treatments. Nevertheless, as
far as we can tell, comparisons with Chandrasekhar’s theory are
always made via Equation (10), which ignores the fast-moving
stars.
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A potentially important application of the perturbative meth-
ods is to cases where the assumption of locality is violated. For
instance, a satellite that orbits just outside a galaxy, where the
local density is zero, would experience no frictional force if
the local properties of the background were assumed to hold
everywhere; in reality it feels a force due to polarization of
the orbits inside the galaxy (Palmer & Papaloizou 1985). The
models considered in this paper constitute a second case where
the assumption of locality may be inappropriate, since some of
the frictional force acting on a test mass orbiting in the core
will come from stars outside the core, where f(v) has a differ-
ent functional form, including (for instance) some slow-moving
stars. In lieu of such a calculation (and in view of the difficulties
associated with interpreting the results, e.g., Weinberg 2004),
an N-body treatment seems a logical first step. As we will see,
Chandrasekhar’s formula, in its more general form, turns out to
reproduce the N-body results quite well.

3. ORBITAL EVOLUTION BASED ON
CHANDRASEKHAR’S FORMULAE

We are interested in the orbital evolution of a massive body
as it spirals in toward the center of a galaxy that contains a
SMBH. In subsequent sections, we present results from large-
scale, direct-summation N-body simulations. As a basis for
comparison, we present in this section the predictions of Chan-
drasekhar’s approximate formula. We represent the stars via a
smooth, fixed potential and integrate the equations of motion of
the massive body in the fixed analytic potential including a term
that represents the non-conservative contribution of dynamical
friction.

We base our model for the stellar density on the observed
distribution of old stars at the GC. Number counts (Buchholz
et al. 2009; Do et al. 2009; Bartko et al. 2010) are consistent
with a density that follows a broken power law:

P4 r\¢ y=ve)/a
p(r) = po (—) [1 + (—) ] ; (14)
o o

where « is a parameter that defines the transition strength
between inner and outer power laws and ry is the scale radius.
Following Merritt (2010), we adopt ry = 0.3 pc, « = 4, and
y. = 1.8 as fiducial values. The central slope y was left as a
free parameter. The normalizing factor py was chosen in such a
way that for each value of y, the corresponding density profile
reproduces the coreless density model:

—1.8
0(r) = 1.5 x 10° (1ch> Mg pc=3 (15)

outside the core. This choice of normalizing constant gives a
mass density at 1 pc similar to what various authors have inferred
(e.g., Oh et al. 2009) and implies a total mass in stars within this
radius of ~1.6 x 10% Mg pc~>.

Assuming equal-mass stars of mass m and an isotropic
velocity distribution, the local two-body relaxation time is
defined as (Spitzer 1987)

0.33¢03
= ——, 16
omG2InA (16)

where InA is the Coulomb logarithm and o is the isotropic
velocity dispersion; the latter can be computed from Jeans’s
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Figure 3. Left panel: relaxation time # vs. radius for models based on the density law of Equation (14). Right panel: orbital decay of a 2 x 10> M, massive body
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equation,

o0
oMo (r)? =G / dr'vr' 2 [M, + M, (< fpG). A7)
Here M, is the mass of the central SMBH that we take to
be 4 x 10° Mg (Ghez et al. 2008; Gillessen et al. 2009) and
M, (< r)is the total mass in stars within r. The total stellar mass
contained within the SMBH influence radius (r,, & 2.5 pc) is
M, (< rpy) ~ 107 M; assuming solar-mass stars, the two-body
relaxation time at ryy, is #,(rpn) ~ 2 x 1010 yr.

3.1. Circular Orbits

The frictional acceleration on a point particle of mass M and
velocity v is (Chandrasekhar 1943)

47 G*Mp(r)F(< v, r)InA
— v

s
v3

fr= (18)
where F(< v, r) is the fraction of stars at r that are moving
more slowly than v. This is the standard expression, derived by
ignoring the velocity dependence of InA when integrating over
the field-star velocity distribution and setting the non-dominant
terms to zero. As a result of these approximations, the frictional
force is produced only by field stars with velocities less than v.
Although Equation (18) was derived under the assumptions of
an infinite and homogeneous background of stars, it has been
shown to work reasonably well even for more general stellar
distributions (White 1983; Lin & Tremaine 1983; Weinberg
1986; Cora et al. 1997; Merritt 2006; Just et al. 2010).

For a massive particle initially located at r,, on a circular
orbit, the inspiral time in the power-law density profile of
Equation (14) with y = 1.8 (i.e., the coreless model) is

2 3
1 x10° M
tr ~ 6 x 107 yr 4 ( c ) X ©
2.5pc 100km s~! M

()

independent of the mass of the field stars if M > m.

Figure 3 plots the relaxation time as a function of radius
for the same model, assuming InA = 15, m = Mg, and
adopting different values for the inner density slope y. It turns
out that the isotropic distribution function corresponding to the
adopted density law (14) becomes negative at certain energies

19)

for y < 0.6. For this reason, we consider in the following only
models with y > 0.6. Figure 3 also shows the evolution of
a 2 x 10° My black hole on a circular orbit starting from a
galactocentric distance of 2.5 pc and using In A = 7. The orbit
was numerically integrated by solving the system of first-order
differential equations

Fr=v,v=—-Vo+ fg (20)
with ¢(r) the total gravitational potential produced by the stars
and the SMBH:

M, GM,
+¢*(r) = -

G
¢(r)= —

p
l r o0

+47TG[— / dr'r?p(’) + f dr/r/p(r/)].(Zl)
rJo r

The numerical integration was performed using a 7/8 order
Runge—Kutta algorithm with a variable time step (Fehlberg
1968) in order to keep the relative error per step in energy, in
the absence of dynamical friction, less than a specified value
(107%). When dynamical friction was included, we checked
the integration accuracy through the quantity E + Eg4 with
E being the energy per unit mass and Eg the work done by
dynamical friction along the trajectory. The accuracy in this
case was of the same order as that found in integrations without
dynamical friction. The function F (< v, r) was evaluated using
the expression (Szell et al. 2005):

F(< v,r):l—l/Edqﬁ’d—p
0 Jo d¢’
X {1+%|:Lﬁ—tanl<
7| J& —E

where E = 1/2(v* + ¢(r)).

At all radii, the relaxation time is much longer than the time
required for the massive particle to reach the core. What happens
next depends on y: the orbital decay can essentially stall when
y is small (i.e., ~0.6) or continue rapidly if y is larger.

The explanation of this behavior can be found in Figure 4
which plots the fraction of stars moving more slowly than the
local circular velocity v () as a function of radius, for various
values of y. When y = 0.6, F(< v, ) approaches zero

v/\/z

#)

(22)



THE ASTROPHYSICAL JOURNAL, 745:83 (24pp), 2012 January 20

0
o T T T T
1.8
YL i
e 1.5
1.25
o]
>U
N 0.8
St 4
0.6
; = -
o I I I
0 0.05 0.1 0.15 0.2

r (pc)

Figure 4. Fraction of stars F(< g, ¥) moving more slowly than the local
circular velocity as a function of radius for y = (0.6,0.8, 1, 1.25, 1.5, 1.8).
When y = 0.6, Fis close to zero for r ~ 0.1 pc. Hence, the frictional force
acting on a massive particle which moves on a circular orbit drops essentially
to zero at this radius.

at r¢ ~ 0.1pc and consequently the dynamical-friction force
drops drastically at this radius (see Equation (18)). The stalling
observed in the orbital evolution for this value of y is therefore
a consequence of the lack of slowly moving stars in the core.
However, the inspiral always continues into the very center since
F(< vgire, r) > 0 everywhere.

For y > 0.6, the time required for dynamical friction to
bring a 103 M black hole into the center, starting from a
galactocentric distance of a few parsecs, is shorter than the two-
body relaxation time evaluated at the SMBH influence radius
t:("on). On the other hand, the dynamical-friction force decreases
with the mass of the inspiraling object, and for M < 10> M, the
infall timescale can significantly exceed a Hubble time. Merritt
& Szell (2006) found that #.(ry,) is also approximately the
timescale over which gravitational encounters change an initial
density profile into the Bahcall-Wolf form, i.e., p r=175 We
conclude that for a black hole of mass M > 10° M, inspiral
will occur in a mass profile that is almost independent of time.
However, for y ~ 0.6, the time required to reach a distance
~0.01 pc is still comparable with the local relaxation time. This
will result in a substantial evolution of the stellar background
during the orbital decay.

3.2. Eccentric Orbits

In the case of an isotropic distribution function f(E) de-
scribing a power-law density profile around a SMBH, if the
gravitational potential produced by the stars is ignored (i.e.,
E <« —GM,/rp), then

M, & <|E|)”/2
m (GM.)’

3—y |2 T(y+1)
FE) = Vs X
8 V> Iy —1/2) $o
with ¢9 = GM,/ryn, (Merritt 2012). For y < 0.5, f(E) is
undefined and so y & 0.5 is the shallowest density profile
consistent with an isotropic velocity distribution around a

SMBH. In the case y = 1.5, Equation (23) shows that the
distribution function is a constant (f(E) = fo). If one writes

P(VE(< v.7) = p(r) X ——4n / Cdua? fo = 2’ 4)
o(r) 0 3
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it can be immediately seen that the product p(r)F(< v, r) in
Equation (18) will be a function of v only (e.g., Just et al.
2011). Under these circumstances, the coefficient of dynamical
friction will have only a weak dependence on radius through
the Coulomb logarithm. It can be shown that, in this case, the
eccentricity of a massive body will remain unchanged during its
motion, while dynamical friction will either circularize the orbit
for y > 1.5 or make it more eccentric for y < 1.5 (Quinlan
1996; Gould & Quillen 2003).

To evaluate the eccentricity evolution of a massive particle
in response to Chandrasekhar’s dynamical-friction formula,
a numerical treatment is necessary. We therefore carried out
numerical integrations of the set of differential equations (20)
as described above, adopting as before Equations (14) and (21)
for the (fixed) stellar potential.

Figure 5 shows the results for M = 2 x 103 M. The massive
particle was initially placed at r = 2.5 pc with a tangential
velocity of ~0.36vi.. With this initial configuration the body
penetrates the inner core after few obits. Different values of the
internal slope y ranging from 1.8 to 0.6 were adopted. As a
proxy for the instantaneous orbital elements, we computed over
each radial period the largest and the smallest distance from the
origin (i.e., the SMBH) and defined these as the apoapsis ryp
and periapsis rper, respectively. The eccentricity and semimajor
axis were then computed using the Keplerian expressions

Tap — T'per Tap

e=—, a= . 25)
Tap + Fper l+e

The figure reveals a complex behavior of eccentricity on time.
For y < 1.5 we distinguish three regimes. In phase I, the
eccentricity decreases (even for y > 1.5). The duration of
this phase is shorter for shallower profiles. After reaching a
minimum, the eccentricity then increases rapidly with time
(phase II). Finally, in phase III, the eccentricity either continues
to increase, but more slowly than in phase II, or remains constant
fory =1.5.

This evolution can be understood by considering the changes
of 7, and rpe, with time. In phase I, the black hole periapsis is
close to the core radius, where the difference between the density
models is small. As a consequence, the eccentricity evolution
is nearly independent of y and the orbits circularize. In phase
II, rper is well inside the core, where the smaller dynamical
friction results in a rapid eccentricity increase. Finally, in phase
I1I, the orbit lies entirely inside the core. As a consequence of
the declining dynamical friction at r,, the eccentricity growth
slows down. As predicted, for y = 1.5, the eccentricity remains
unchanged in this phase.

These results show that, in the presence of a flat (y < 1)
density profile, a second black hole found initially on an
eccentric orbit can acquire very large eccentricities (<1) before
entering the regime where relativistic effects become important.
In Section 6.2, we discuss in more detail how very large
eccentricities may modify the expectations for the gravitational
wave (GW) signal from massive black hole binaries for proposed
space-based interferometers.

In the first phase, when the periapsis is still outside the core,
the orbit evolves completely in the outer cusp (y., = 1.8).
Evolution in this regime could lead to a rapid circularization
before the black hole reaches the inner core. To quantify
the amount of circularization in this phase we computed a
further orbit in the model with y = 0.8, adopting initially a
larger semimajor axis (@ ~ 10 pc) and a smaller eccentricity
(e = 0.3). The results of this integration (Figure 6) show that
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Figure 5. Left panel shows the time dependence of the orbital eccentricity of a M = 2 x 10°> M, black hole. In the right panel, the orbital evolution is shown in the
eccentricity—semimajor axis plane. The inner cusp slopes are y = (0.6, 1, 1.25, 1.5, 1.8). Initial apoapsis and periapsis distances were 2.5 and 0.35 pc, respectively,
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Figure 6. Left panel: eccentricity evolution for a 2 x 10> M black hole in a model with y = 0.8. The initial apoapsis and periapsis of the orbit are 12 and 7 pc,
respectively, which give a semimajor axis a & 9 pc. Right panel: eccentricity vs. semimajor axis (black line), apoapsis (green line), and periapsis (blue line).

(A color version of this figure is available in the online journal.)

the eccentricity reaches a minimum value, e ~ (.15, and then
increases rapidly reaching e ~ 0.3 at rpe; = 0.1pc. At the
end of the integration the orbit retains therefore a substantial
eccentricity (~0.4), even though it was almost circularized at
the beginning of phase II.

4. N-BODY SIMULATIONS

The numerical integrations of Equation (18) presented above
predict that a massive body that spirals into the center of a
galaxy containing a SMBH, and a nuclear star cluster with flat
(y < 0.6) density profile, will stall, at a radius that is roughly
the core radius. Moreover, its eccentricity is expected to increase
steeply once the orbital periapsis lies inside the core. Here we
use N-body simulations to test these predictions.

4.1. Initial Conditions and Numerical Method

In order to generate equilibrium N-body models of the GC
region that extend self-consistently to the Sgr A* influence
radius (r,, & 2.5 pc) we used the truncated mass model

r\77 r\? (y—ve)/
p(r) = po (—) [l + (—) } ¢/, (26)
ro ro

with truncation function

2

_ 27
sech(x) + cosh(x)

{(x) =
With this choice, the density falls off exponentially at large radii
(i.e., r > ry), while for r < ry, where {(x) ~ 1 — x4/8, the
model reproduces almost exactly the density of Equation (14).
As above, we chose rp = 0.3 pc, « = 4, Y, = 1.8, and
po = 1.3 x 10% M. Monte Carlo initial positions and velocities
were then generated by numerically solving Equation (22); we
stress that the equilibrium models so produced include self-
consistently the effects of the gravitational force from the stars.
Figure 7 shows the truncated density profiles for different values
of y and ry = 1.2 pc.

The initial conditions were evolved using the direct-
summation code ¢GRAPE (Harfst et al. 2007) which uses
a fourth-order Hermite integrator with a predictor—corrector
scheme and hierarchical time steps. The performance and accu-
racy of the code depend both on the time step parameter n and
on the smoothing length €. In what follows, we set n = 0.01
and € = 5 x 107 pc. With these choices, energy conserva-
tion was typically of order 0.1% over the entire length of the
integration. Most of the N-body integrations were carried out
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Figure 7. Density profiles of Equation (26) with y = (0.6, 1, 1.25, 1.5, 1.8),
ro = 0.3 pc, « = 4, and truncation radius r; = 1.2 pc (vertical dashed line).
The dash-dotted line gives the coreless model of Equation (15).

on the 32-node GRAPE cluster at the Rochester Institute of
Technology. In addition, a few were carried out in serial mode
using a TESLA C870 graphics processing unit with SAPPORO, a
CUDA library that emulates double-precision force calculations
on single-precision hardware (Gaburov et al. 2009).

Table 1 gives the parameters of the N-body models. The
initial distance of the secondary black hole is given by rjy,
while its initial orbital eccentricity is ej,. The quantity r* is
the radius at which the initial mass in stars equals M, the
mass of the second black hole. All of our N-body models
had r, < r;, so that the orbital evolution is expected to
be very similar to that in the corresponding non-truncated
models. In order to study the dependence of the results on
the secondary black hole mass we run simulations with a
range of masses, M = (2000, 5000, 10,000, 50,000) M. Two
cases with nonzero initial eccentricities (runs G1 and G2, with
e1 = 0.54) were also considered.

4.2. The Coulomb Logarithm

In Table 1, we report the values of the Coulomb logarithm
extracted from each N-body integration. The value of InA was
obtained by minimizing the quantity:

n

ANTONINI & MERRITT

outside a galactocentric radius r > 0.3 pc. Here, n is the number
of N-body data points, r;(¢) is the position of the black hole in the
N-body simulation at time ¢, and r'(¢) is its position at the same
time evaluated by means of the Chandrasekhar’s formula (18).
Since analytical expressions are not available for the trajectory
of an inspiraling black hole, in order to obtain the expected posi-
tion r'(t) at any given time, we first solved numerically the equa-
tions of motion (20) and then built a spline interpolant from the
results of the integration. This procedure was applied only in the
part of the orbit outside the core, where Equation (18) is able
to describe accurately the black hole orbit. In this way, unlike
in most previous studies, we could obtain an estimate of the
Coulomb logarithm without making any assumptions about the
velocity distribution of the field stars (e.g., that it followed a
Maxwellian distribution).

Our simulations do not show any obvious dependence of InA
on either the number of particles or on the initial eccentricity.
We found an average value of InA = 6.5 £ 0.2, in essentially
perfect agreement with the value reported by Spinnato et al.
(2003): InA = 6.6 £0.6.

4.3. Results
4.3.1. Circular Orbits

The first simulations we performed consisted in evolving the
massive body on a circular orbit with initial radius 0.1 pc (i.e.,
smaller than the stalling radius when y < 0.6) and for a time
corresponding approximately to 300 orbits (i.e., ~4 x 10° yr
at this distance). We used N = 130,000, M = 5000 M, and
y = (0.6, 1, 1.5, 1.8). We also implemented a high-resolution
simulation with N = 500,000 for the model with y = 0.6. Asin
most of the longer simulations of Table 1, the truncation radius
was ry = 1.2 pc. These shorter integrations allowed us to study
dynamical friction, while limiting the deviations of the models
from their initial configuration that was found to occur on longer
timescales as a result of two-body relaxation and perturbations
from the massive object (see below). The eccentricity of the
orbit remained small during these integrations (e < 0.1).

Figure 8 shows the time evolution of the semimajor axis
of the orbits and the rate of orbital decay s = —da/dt as a
function of y. The agreement with the decay rate computed
using Chandrasekhar’s formula (18) (open squares) is good. For
y = 0.6, there is not any significant evolution of the orbit in the
considered interval of time and, consequently, s ~ 0.

A similar conclusion is implied by Figure 9 which shows

2 . .
Z [r,- () —r'(z, lnA)] , (28) the trajectory of a 2000 My black hole in model D, a longer
i=1 integration with N = 130,000 and y = 0.6. Initially, the black
Table 1
Initial Models Parameters and Coulomb Logarithm Estimates
Model y N e M m €in Fin r* InA
k (pe) (10° Mo) (Mo) (pe) (pc)
Al 0.6 230 1.2 5 22 0 1 0.07 6.7
A2 0.6 130 1.2 5 38 0 1 0.07 6.6
B1 0.8 230 1.2 5 22 0 1 0.06 6.9
B2 0.8 130 1.2 5 38 0 1 0.06 6.9
C 0.6 80 0.6 5 26 0 0.5 0.07 6.3
D 0.6 130 1.2 2 38 0 0.3 0.05
E 0.6 130 1.2 10 38 0 1 0.10 6.4
F 0.6 130 1.2 50 38 0 1 0.18 4.8
Gl 0.6 200 1.2 5 25 0.54 1 0.07 6.9
G2 0.6 100 1.2 5 50 0.54 1 0.07 6.9
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Figure 8. Left panel: evolution of the semimajor axis for a 5000 M, black hole in the short N-body integrations, for different values of the central density slope
(from top to bottom, y = 0.6, 1, 1.5, 1.8). The thicker line is from the high-N integration, with N = 500,000 and y = 0.6. Dashed lines are predictions from
Chandrasekhar’s formula (18) using InA = 6.6. For y = 0.6 there is no significant evolution of the orbit in the considered interval of time. Right panel: orbital inspiral
rates s = —da/dt computed for the simulations displayed on the left panel as a function of y (filled circles). Open squares give the predictions from Chandrasekhar’s
formula. The star symbol is the decay rate computed from the high-resolution run (N = 500,000 and y = 0.6).
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Figure 9. Trajectory of a 2000 My black hole into a core with y = 0.6
(model D). The top red line is the theoretical prediction obtained from
Chandrasekhar’s formula (18) using InA = 6.6. The bottom red curve shows
the predicted inspiral in a y = 1.8 cusp.

(A color version of this figure is available in the online journal.)

hole sinks rapidly to the center, reaching ~rg in ~3 Myr. As the
inspiral progresses, the orbit becomes more eccentric (e & 0.3
at 4 Myr). At later times (24 Myr), the orbit shows no sign of
further decay, oscillating in radius between ~0.1 and ~0.2 pc.
The orbital eccentricity remains almost constant in this phase.
These findings, obtained for a flattened density cusp around a
SMBH, seem to confirm the theoretical predictions made above:
(1) dynamical friction “vanishes” within rg & 0.15 pc and (2)
the orbital eccentricity of an infalling body increases with time.
However, in any N-body simulation, stars are continuously
scattered by gravitational encounters with other stars, with the
result that the initially empty phase-space region responsible
for the vanishing dynamical-friction force will gradually be
filled. In addition, due in part to the low central density of
our GC models when y is small, the radius at which the
cumulative mass in stars becomes comparable to that of the
inspiraling black hole can be of order ry, even for relatively
small M (see Table 1). N-body simulations have shown that,
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in these circumstances, the orbit deviates from the theoretical
prediction of the Chandrasekhar’s formula as a consequence
of perturbations induced by the infalling black hole on the
inner cusp (Baumgardt et al. 2006; Lockmann & Baumgardt
2008). Finally, it is not clear whether the approximations made
in deriving Equation (18), which was the basis for the red lines
plotted in Figure 9, are reasonable, or how large might be the
frictional force from fast-moving stars that populate the low-
density core. In fact, as we now demonstrate, these additional
effects have a substantial influence on the long-term evolution
of the black hole orbit.

Figure 10 shows the trajectory of the black hole for some
of the N-body integrations from Table 1 and compares them to
the evolution predicted by Chandrasekhar’s formula (18) (upper
green curves). (In the upper panels, the comparison is displayed
only for the higher resolution runs, i.e., models Al and B1.)
Although the agreement with the theoretical prediction appears
fairly good, at least for M = 5000 Mg, when y = 0.6, the
N-body integrations reveal a faster decay than predicted. Either
some of the frictional force must come from stars with velocities
v, > v, or the background stellar distribution is changing during
the inspiral (or both). These two possibilities are investigated in
what follows.

Dynamical friction from fast-moving stars. Equation (18) was
derived under standard approximations that ignore the contribu-
tion from non-dominant terms and the velocity dependence of
InA. Although these approximations are reasonable when there
is a large fraction of stars with low velocities (i.e., v, < v), it
is unclear whether they can be applied to a region populated
mostly by stars moving faster than the black hole.

Without these assumptions, the instantaneous dynamical-
friction acceleration becomes (Chandrasekhar 1943)

dv,,47‘rf(v,,)vf

2 14
\%
>1n<1+me>,

fro= —47G>Mp(r)—
v

0
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Figure 10. Orbital evolution of the second black hole in models A1, A2, B1, B2, E, and F. Solid green lines show predictions assuming a fixed background of stars.
Upper green curves are obtained by using the standard Chandrasekhar’s formula (i.e., Equation (18)), while lower green curves give the orbital decay computed using
Equation (29) with pmax = 0.5 pc. Red lines were obtained with Equation (29) but allowing f(v,) and p(r) to change according to the evolution of the N-body system.

where f(v,) is the velocity distribution of field stars and ppax
is the effective, maximum value of the impact parameter. In
this more accurate treatment, some of the dynamical-friction
force is due to stars moving more rapidly than the massive
particle (Chandrasekhar 1943; White 1949; Merritt 2001). If
the condition pp,x V2 /GM > 1 is satisfied, the frictional force
can be approximated as (Chandrasekhar 1943; Equation (30))

i S04 170 = —4n G Mp(r)—
X (/U dv*47tf(v*)v21n [pm—ax(v2 — vz)]
0 * GM *
‘/W Uy + 0 v
+ f dv, 41 f (v,)v? [m <U — v) — 2U—J )

(30)

Inside ry, dynamical friction is produced mostly by stars with
v, > v and the first term in the integral becomes negligible.
This shows the weak dependence of the frictional deceleration
inside the core on ppax.

Adopting Equation (29), with pm, = 0.5 pc, for the
frictional force that appears in the equations of motion (20),
we obtained the lower green curves in Figure 10, which show
much better agreement with the N-body results. Evidently, the
standard expression for dynamical friction, Equation (18), is
inadequate to describe the orbital evolution of a massive body
at the GC in the case that the density profile of the nuclear
star cluster is shallow. This is apparently a consequence of
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neglecting the non-dominant terms, and not, for instance, of the
assumed independence of the Coulomb logarithm on the field-
star velocity distribution. For models Al and A2, Lagrangian
radii showed essentially no evolution, indicating the absence of
any significant change in the stellar distribution induced by the
second black hole. We conclude that (at least) some of the drag
within rg is due to field stars with v, > v. The red lines in
Figure 10 were derived from Equation (29) but using a time-
dependent distribution function f(v,,t) extracted (at time )
from the N-body models (see below). For models Al and A2,
the red curves agree exceptionally well with the N-body results
and they essentially match the results of the semianalytical
integration that takes into account the friction from fast-moving
stars. We conclude that for these runs it would be appropriate
to ignore the influence of the second black hole on the stellar
distribution.

In the left panel of Figure 11 we plot the fraction of the
dynamical-friction force that is predicted, by Equation (29),
to come from stars with v, > v, for different values of the
inner cusp slope and at different radii. In the right panel of the
figure, the total frictional deceleration in our models is given in
units of the frictional force computed under the assumption of
a Maxwellian distribution of velocities:

—47 G*Mp(r)InA

2X
—€
v3

JT
with X = v/+/20. Clearly, this equation, often used in the past

to describe the orbital evolution of a massive object into the GC,
overestimates the frictional drag within » < 0.2 pc for y < 1.

fl = v |:erf(X) - XZ} NGI))
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Figure 11. Left panel: fraction of the dynamical-friction force that is predicted to come from stars with v, > v as a function of y, at different galactocentric radii:
r =0.1,0.2,0.3, and 0.6 pc. Equation (29) was used to compute these curves. When y = 0.6, dynamical friction at small radii comes only from stars with v, > v.
As either y or rincrease, the contribution from fast-moving stars decreases. Right panel: total dynamical-friction force in units of the frictional deceleration computed
assuming a Maxwellian distribution of velocities. The frictional force produced by stars with v, > v in the flattened cusp (i.e., y = 0.6 and r < 0.2 pc) is much
smaller than that obtained under the simple assumption of thermal distribution of velocities. In both panels, we adopted pmax = 0.5 pc and M = 1000 M. In the right

panel, we used InA = 6.6 to solve Equation (31).
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Figure 12. Left panel: fraction of stars with velocities less than the local circular velocity F(< veirc, ') as a function of radius, at the same time (3 x 10° yr) for models
A2 (M = 5000 M), E (10,000 M), and F (50,000 M ). The dashed curve corresponds to the initial configuration. The larger the mass of the black hole the faster
the changes of the model in velocity space. Right panel: F(< vcirc, r) as a function of radius for model Al at different times. Due to two-body relaxation, stars are
scattered toward low velocities and the hole in phase space that characterized the initial configuration is gradually filled up.

Influence of the second black hole on the field-star distri-
bution. For larger masses of the infalling body, i.e., M =
10,000 M, the perturbations which it induces in the back-
ground system introduce a complex time dependence of the
phase-space distribution. During the orbital inspiral, the black
hole scatters stars into the inner cusp; consequently, once it
reaches ~rg, it will “see” stars with v, < v that contribute to
the frictional acceleration from that point on.

In order to test Chandrasekhar’s formulae under these circum-
stances, the black hole equations of motion were integrated in a
time-varying potential whose properties were varied over time in
a way designed to mimic the evolving N-body models. In more
detail, the density of the N-body model was computed at fixed
intervals of time by binning particles in concentric logarithmi-
cally spaced shells. At the same time the velocity distribution
of field stars was obtained directly from the N-body model.
Finally, the black hole equations of motion were numerically
integrated as described in Section (3.1) using expression (29).
In this way, we were able to approximately account for the back
reaction of the second black hole on the stellar distribution. It is
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worth noting that, even with this more sophisticated approach,
two relevant assumptions are retained: (1) any induced deviation
of the models from isotropy is neglected; (2) the black hole is
assumed to move always on a circular orbit, while the N-body
simulations clearly show an increase of the orbital eccentricity
with time. The red curves of Figure 10, obtained through this nu-
merical procedure, show that even when the galactic nucleus is
rapidly deviating from its initial configuration, Chandrasekhar’s
theory can still accurately reproduce the N-body results if the
changes in the stellar distribution are taken into account and the
fast-moving stars are included when computing the frictional
force.

In Figure 12 we show the evolution induced by the second
black hole in the velocity distribution of the model, by plotting
the function F(< uvgg,r) at the same time (3 x 10° yr)
for different masses (left panel). In addition, we show how
F (< Ui, 1), for M = 5000 Mg, evolves as a function of time
(right panel). In this latter case, two-body relaxation causes the
diffusion of stars at low velocities and the stalling radius is
shifted from the initial 0.1 pc to ~0.05 pc by the end of the
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Figure 13. Lagrangian radii evolution of models F (upper panel) and E (lower
panel). Green curves show the position of the massive body.

(A color version of this figure is available in the online journal.)

simulation. We note that—in a real galaxy with much larger
N—this effect would be essentially absent.

Figure 13 illustrates the changes in the configuration-space
density for models E and F via the time evolution of their
Lagrangian radii. The time evolution of models E and F
is remarkable: in model F, the perturbations on the stellar
distribution are initially so large that the core fills up during the
first ~2 x 10° yr. At this point, the black hole, at a galactocentric
distance of ~0.05 pc, starts to carve out the inner region,
destroying the cusp that it created before. The final model has a
core of size ~0.2 pc and the internal slope is y < 0.5. However
its density is, everywhere within 1 pc, smaller than that of the
initial model as a consequence of displacement of stars from
the cusp. A qualitatively similar evolution was found in model
E. Figure 14 shows the induced evolution of the density profile
for runs E and F as well as the time variation of the anisotropy
parameter, defined as

B=1 —atz/arz,

with o; and o, tangential and radial velocity dispersions,
respectively.

In summary, a straightforward interpretation of our N-body
results is that Equation (18) reproduces remarkably well the real
decay rate of a massive object into the GC only until it reaches
the stalling radius. In the subsequent evolution, the orbital decay
slows down as a consequence of the lack of slow-moving stars
in the inner galactic nucleus (see Figures 8 and 9), but it never

(32)
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drops to zero, due apparently to the frictional force generated by
stars moving faster than the inspiraling black hole (Figures 10
and 11).

A massive body of mass M ~ 1000 Mg, starting from dis-
tances of order ryy, will reach a galactocentric radius ~0.01 pc
in ~108 yr. For larger masses (i.e., M > 10,000 M), during the
inspiral, the black hole enhances the diffusion of stars into the
phase-space region that was initially nearly empty (Figures 12
and 13). During the stalling phase a low-density core is rapidly
regenerated by the second black hole as it displaced stars from
the cusp. Note that in our models the stalling distance is about
10 times larger than that found in previous works that assumed
a collisionally relaxed, steeply rising density profile around the
central black hole (e.g., Baumgardt et al. 2006; Lockmann &
Baumgardt 2008).

We note in passing that the background stars have orbital
periods similar to that of the massive body. It is conceivable that
correlations may be induced by the massive body in the orbital
elements of the stars that will change the evolution significantly
away from that produced by an uncorrelated background. On the
other hand, two-body relaxation in the N-body models will tend
to de-correlate the background response, leading, perhaps, to a
better correspondence with the predictions of Chandrasekhar’s
theory.

4.3.2. Eccentric Orbits

In this section, we investigate the rate of change of the orbital
eccentricity as a consequence of dynamical friction. We devised
two simulations that differ only in the number of particles:
200,000 and 100,000. We refer to these simulations as runs G1
and G2, respectively (see Table 1); both have y = 0.6. The black
hole was initially placed at a radius of r;, = 1 pc on an eccentric
orbit with e¢;, = 0.54. As discussed earlier (Section 3.2), when
the orbital periapsis lies within the core, the orbit is expected
to become more eccentric as a consequence of the declining
frictional force in this region.

Figure 15 shows the evolution of the eccentricity and semi-
major axis of the orbit as a function of time, demonstrating that,
at least qualitatively, Chandrasekhar’s theory reproduces the
evolution. Although the eccentricity undergoes significant fluc-
tuations, it evidently drifts toward larger values with time. This
behavior is quite robust showing a negligible N-dependence.

It is generally assumed that dynamical friction, in power-law
density models with an isotropic velocity distribution, would
circularize the orbit of an infalling body (see for instance
Baumgardt et al. 2006). Our N-body simulations demonstrate
that in models characterized by a flat density profile and a central
SMBH, the eccentricity can instead be an increasing function
of time.

5. GRAVITATIONAL WAKE

An alternate way to look at dynamical friction is in terms
of the acceleration produced by the overdensity of stars that
accumulate behind the massive body—the “gravitational wake”
(Danby & Camm 1957; Marochnik 1968; Mulder 1983). The
expression for the response wake in a homogeneous medium
is given for arbitrary spherical density distribution in Weinberg
(1986). The existence of a wake has rarely been confirmed in N-
body simulations; an isolated example is provided by Weinberg
& Katz (2002, see also Weinberg & Katz 2007) who show
the wake induced in a dark matter halo by a stellar bar. Other
examples include Weinberg (1989), Hernquist & Weinberg
(1989), and Vesperini & Weinberg (2000).
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Figure 14. Left panels: density profile evolution in run F (upper panel) and E (lower panel). The black curve corresponds to the initial model; the red line is obtained
at time 107 yr for run E and at 2 x 10° yr for run F, while the blue lines are the density profile of the final models, after the secondary black hole has stalled carving
out a deficiency of stars in the inner regions. Filled circles indicate the position of the inspiraling. Right panels: evolution of the anisotropy parameter in the models.
Line thickness increases with time. As the black hole spirals in, it induces tangential anisotropy in the background system.

(A color version of this figure is available in the online journal.)

We searched for the wake in our N-body simulations by
computing the relative overdensity at each radius along the
orbit of the second black hole. The N-body models were first
rotated in such a way that the second black hole was situated
at y z = 0 with v; = 0 and v, > 0. The density at
any position was then estimated using a Gaussian kernel with
radially varying smoothing length. Figure 16 shows the results
in runs Al, E, and F as a function of the azimuthal angle 6
at different radii and for different values of M. In the figure,
the black hole lies at & = 0 with & > 0 and the average
density is defined as (1/2m) ffﬂ dfBp(0) : outside the core
(r 2 0.3 pc), the peak in the overdensity lies at —20 < 6 < 0°,
independent of M, and the amplitude of the overdensity increases
with black hole mass, as expected. The wake is therefore
always just behind the massive body in this phase. When r <
0.3 pc, for M = 5000-10,000 M, the density enhancement
is reduced but its position remains essentially unchanged. The
reduced amplitude of the wake inside the core explains why
the frictional force is greatly suppressed in these regions. For
larger masses, the angular dependence of the overdensity in this
phase is more complex, revealing, in some cases, two distinct
peaks. During this phase, the mass distribution is affected by
gravitational scattering from the massive body. Finally, when
the black hole is well inside the core, the density maximum
is seen to lie at large angular separations (6 < —100°)
from the black hole. Indeed, a density “hole,” with amplitude
approximately proportional to M, is apparently induced by
the black hole at roughly its position during the stalling
phase.

14

Figure 17 shows two-dimensional contour maps of the over-
density for run E (M = 5 x 10*). The radial extension of the
wake (with respect to the galaxy center) does not change greatly
over time, but one can clearly see how the location of the density
maximum shifts, and a density gap is apparently created near
the black hole position during the stalling phase.

To more clearly illustrate how the location of the gravitational
wake with respect to the second black hole evolves, we plot in
Figure 18 the angular position of the maximum as a function
of the black hole galactocentric radius. Outside the core (i.e.,
r > 0.3 pc) the wake is located at small (negative) angles,
causing the initial rapid inspiral. Once the black hole starts to
modify the background of stars the wake becomes more difficult
to track. This causes the large oscillations seen in the relative
position of the wake and in turn explains why such oscillations
occur earlier for larger masses of the inspiraling object.

6. DISCUSSION

In this paper, we presented N-body simulations of the inspiral
of a massive body into the GC. Our models of the Milky Way
nuclear star cluster were motivated by recent observations that
suggest a relatively low density of stars inside the SMBH
influence radius. Such models are characterized by a zero
or near-zero phase-space density at low energies. Under the
standard approximation, in which the frictional force from fast-
moving stars is ignored, a second black hole that sinks toward
the center under the influence of dynamical friction would stall
at a distance of roughly 1/2 the core radius, or ~0.25 pc,
from the SMBH. If the smaller black hole moves initially
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Figure 15. Evolution of eccentricity and semimajor axis for models G1 (upper panel) and G2 (lower panel) that differ only in the number of field particles: N = 200,000
and 100,000 for models G1 and G2, respectively. Dashed lines are the theoretical predictions from Equation (18). Dotted lines were obtained with Equation (29) (i.e.,
including the frictional drag from stars with v, > v), where we used pmax = 0.5 pc. As the black hole spirals in, its orbital eccentricity increases. This conclusion is
quite robust, showing essentially no dependence on the number of background particles.
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Figure 16. Relative overdensity in the N-body models for runs A1, E, and F along the black hole orbit. Line thickness decreases with increasing galactocentric distance.
In the plots, the second black hole is always located at & = 0 with 6 > 0.

on a non-circular orbit, its orbital eccentricity is predicted to Chandrasekhar’s theory is also confirmed. When the inspiralling
increase with time due to the lower dynamical-friction force near object is more massive, a second mechanism contributes to the
periapsis. frictional force: the second black hole induces evolution of the
Using N-body simulations, we found that the frictional force background system, which tends to refill the initially empty
never falls precisely to zero. As noted also by Chandrasekhar, regions of phase space.
stars moving faster than the test body contribute to the drag. In what follows, we discuss the implications of these results
When this contribution is included in the expression for the for a number of astrophysical problems related to the dynamics
dynamical friction, Chandrasekhar’s formula reproduces quite of massive bodies near the centers of galaxies. But first, we
well the decay observed in N-body simulations of the inspiral of comment on how our N-body results can be approximately
a ~1000 Mg